EBU WAN PLL
IDT82V32021 Version 3 July 23, 2009 6024 Silver Creek Valley Road, San Jose, CA 95138 Telephone: (800) 345-7015 • TWX: 910-338-2070 • FAX: (408) 284-2775 Printed in U.S.A. © 2009 Integrated Device Technology, Inc. | DISCLAIMER | |---| | Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply the best possible product. IDT does not assume any responsibility for use of any circuitry described other than the circuitry embodied in an IDT product. The Company makes no representations that circuitry described herein is free from patent infringement or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent, patent rights or other rights, of Integrated Device Technology, Inc. | | | | LIFE SUPPORT POLICY Integrated Device Technology's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is exe- | | cuted between the manufacturer and an officer of IDT. 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body or (b) support or sustain life and whose failure to perform, when properly used in | | accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. 2. A critical component is any components of a life support device or system, or to affect its | | safety or effectiveness. | | | | | | | | | | | | | ## **Table of Contents** | | A T11 | DEC | | | | |----|-------|--------|-----------|---|------| | FE | :AIU | | | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | RES | | | | | | | | | | | | | | | | | Fι | JNCT | IONAL | . BLOCI | K DIAGRAM | 10 | | | | | | | | | | | | | V | | | | | | | SCRIPTION | | | J | | | | SORIF HON | | | | | | | K | | | | | | | & FRAME SYNC SIGNALS | | | | 3.3 | | | ocks | | | | | | | YNC Input Signals | | | | 3 1 | | | PRE-DIVIDER | | | | | | | QUALITY MONITORING | | | | 0.0 | | | Monitoring | | | | | | | cy Monitoring | | | | 3.6 | | • | OCK SELECTION | | | | 0.0 | | | Fast Selection | | | | | | | Selection | | | | | | | tic Selection | | | | 3.7 | | | UT CLOCK MONITORING | | | | | | | ocking Detection | | | | | | 3.7.1.1 | Fast Loss | | | | | | 3.7.1.2 | Coarse Phase Loss | | | | | | 3.7.1.3 | Fine Phase Loss | | | | | | 3.7.1.4 | Hard Limit Exceeding | | | | | 3.7.2 | Locking | Status | 23 | | | | 3.7.3 | Phase L | ock Alarm | 23 | | | 3.8 | SELEC | TED INP | UT CLOCK SWITCH | 25 | | | | 3.8.1 | Input Clo | ock Validity | 25 | | | | 3.8.2 | Selected | I Input Clock Switch | 25 | | | | | 3.8.2.1 | Revertive Switch | 25 | | | | | 3.8.2.2 | Non-Revertive Switch | 25 | | | | | | I / Qualified Input Clocks Indication | | | | 3.9 | SELEC | TED INP | UT CLOCK STATUS VS. DPLL OPERATING MODE | . 27 | | | 3.10 | DPLL (| OPERATI | NG MODE | . 29 | | | | 3.10.1 | • | rating Modes | | | | | | | Free-Run Mode | | | | | | | Pre-Locked Mode | | | | | | 3.10.1.3 | Locked Mode | | | | | | | 3.10.1.3.1 Temp-Holdover Mode | | | | | | | Lost-Phase Mode | | | | | | 3 10 1 5 | Holdover Mode | 20 | | | | 3.10.1.5.1 Automatic Instantaneous | 30 | |---|------|---|----| | | | 3.10.1.5.2 Automatic Slow Averaged | 30 | | | | 3.10.1.5.3 Automatic Fast Averaged | | | | | 3.10.1.5.4 Manual | | | | | 3.10.1.5.5 Holdover Frequency Offset Read | 30 | | | | 3.10.1.6 Pre-Locked2 Mode | 30 | | | 3.11 | DPLL OUTPUT | 32 | | | | 3.11.1 PFD Output Limit | 32 | | | | 3.11.2 Frequency Offset Limit | | | | | 3.11.3 PBO | | | | | 3.11.4 Four Paths of T0 DPLL Output | | | | | TO APLL | | | | 3.13 | OUTPUT CLOCK & FRAME SYNC SIGNALS | | | | | 3.13.1 Output Clock | | | | | 3.13.2 Frame SYNC Output Signal | | | | | INTERRUPT SUMMARY | | | | | TO SUMMARY | | | | | LINE CARD APPLICATION | | | 4 | | PROGRAMMING INTERFACE | | | | 4.1 | FUNCTION DESCRIPTION | 40 | | | | 4.1.1 Data Transfer Format | | | | | 4.1.1.1 Slave-receiver Mode (Write) | | | | | 4.1.1.2 Slave-transmitter Mode (Read) | | | | | 4.1.2 Address Assignment | | | | 4.2 | TIMING DEFINITION | 42 | | 5 | JTA | G | 44 | | 6 | PRC | DGRAMMING INFORMATION | 45 | | | | REGISTER MAP | | | | | REGISTER DESCRIPTION | | | | V | 6.2.1 Global Control Registers | | | | | 6.2.2 Interrupt Registers | | | | | 6.2.3 Input Clock Frequency & Priority Configuration Registers | | | | | 6.2.4 Input Clock Quality Monitoring Configuration & Status Registers | | | | | 6.2.5 T0 DPLL Input Clock Selection Registers | | | | | 6.2.6 T0 DPLL State Machine Control Registers | | | | | 6.2.7 T0 DPLL & T0 APLL Configuration Registers | | | | | 6.2.8 Output Configuration Registers | | | | | 6.2.9 PBO & Phase Offset Control Registers | 90 | | | | 6.2.10 Synchronization Configuration Registers | 91 | | 7 | THE | RMAL MANAGEMENT | 92 | | | 7.1 | JUNCTION TEMPERATURE | 92 | | | 7.2 | EXAMPLE OF JUNCTION TEMPERATURE CALCULATION | 92 | | | 7.3 | HEATSINK EVALUATION | 92 | | | | VFQFPN EPAD THERMAL RELEASE PATH | | | 8 | ELE | CTRICAL SPECIFICATIONS | 94 | | - | | ABSOLUTE MAXIMUM RATING | | | | - | RECOMMENDED OPERATION CONDITIONS | - | | | | I/O SPECIFICATIONS | | | | • | 8.3.1 CMOS Input / Output Port | | | | | | | | | 8.4 | JITTER & WANDER PERFORMANCE | | | | | JITTER & WANDER PERFORMANCE | 97 | | IDT82V32021 | EBU WAN PLL | |--------------------------------|-------------| | 8.7 OUTPUT CLOCK TIMING | 101 | | PACKAGE DIMENSIONS - 68-PIN NL | | | ORDERING INFORMATION | 108 | | DATASHEET DOCUMENT HISTORY | 108 | 5 July 23, 2009 ## **List of Tables** | Table 1: | Pin Description | 12 | |-----------|--|----| | Table 2: | Related Bit / Register in Chapter 3.2 | 16 | | | Related Bit / Register in Chapter 3.3 | | | Table 4: | Related Bit / Register in Chapter 3.4 | 18 | | Table 5: | Related Bit / Register in Chapter 3.5 | 20 | | Table 6: | Input Clock Selection | 21 | | Table 7: | External Fast Selection | 21 | | Table 8: | 'n' Assigned to the Input Clock | 22 | | | Related Bit / Register in Chapter 3.6 | | | Table 10: | Coarse Phase Limit Programming (the selected input clock of 2 kHz, 4 kHz or 8 kHz) | 23 | | Table 11: | Coarse Phase Limit Programming (the selected input clock of other than 2 kHz, 4 kHz and 8 kHz) | 23 | | | Related Bit / Register in Chapter 3.7 | | | Table 13: | Related Bit / Register in Chapter 3.8 | 26 | | Table 14: | T0 DPLL Operating Mode Control | 27 | | | Related Bit / Register in Chapter 3.9 | | | | Frequency Offset Control in Temp-Holdover Mode | | | Table 17: | Frequency Offset Control in Holdover Mode | 30 | | Table 18: | Holdover Frequency Offset Read | 30 | | Table 19: | Related Bit / Register in Chapter 3.10 | 31 | | | Related Bit / Register in Chapter 3.11 | | | Table 21: | Related Bit / Register in Chapter 3.12 | 34 | | | Output on OUT1 if Derived from T0 DPLL Output | | | | Output on OUT1 if Derived from T0 APLL | | | Table 24: | Frame Sync Input Signal Selection | 36 | | | Synchronization Control | | | | Related Bit / Register in Chapter 3.13 | | | | Related Bit / Register in Chapter 3.14 | | | | Definition of S/Sr and P Conditions | | | | Timing Definition for Standard Mode and Fast Mode(1) | | | | JTAG Timing Characteristics | | | | Register List and Map | | | | Power Consumption and Maximum Junction Temperature | | | | Thermal Data | | | Table 34: | Absolute Maximum Rating | 94 | | | Recommended Operation Conditions | | | | CMOS Input Port Electrical Characteristics | | | | CMOS Input Port with Internal Pull-Up Resistor Electrical Characteristics | | | Table 38: | CMOS Input Port with Internal Pull-Down Resistor Electrical Characteristics | 95 | | | CMOS Output Port Electrical Characteristics | | | | Output Clock Jitter Generation | | | | Output Clock Phase Noise | | | | Input Jitter Tolerance (155.52 MHz) | | | | Input Jitter Tolerance (1.544 MHz) | | | | Input Jitter Tolerance (2.048 MHz) | | | | Input Jitter Tolerance (8 kHz) | | | | T0 DPLL Jitter Transfer & Damping Factor | | | | Input/Output Clock Timing | | | | Output Clock Timing | | # **List of Figures** | Figure 1. | Functional Block Diagram | 10 | |------------|---|-----| | Figure 2. | Pin Assignment (Top View) | 11 | | | Pre-Divider for An Input Clock | | | Figure 4. | Input Clock Activity Monitoring | 19 | | Figure 5. | External Fast Selection | 21 | | Figure 6. | T0 Selected Input Clock vs. DPLL Automatic Operating Mode | 27 | | Figure 7. | On Target Frame Sync Input Signal Timing | 36 | | - | 0.5 UI Early Frame Sync Input Signal Timing | | | Figure 9. | 0.5 UI Late Frame Sync Input Signal Timing | 37 | | Figure 10. | 1 UI Late Frame Sync Input Signal Timing | 37 | | Figure 11. | Line Card Application | 39 | | Figure 12. | Data Transfer on the I2C-bus | 40 | | Figure 13. | Slave-receiver Mode | 41 | | Figure 14. | Slave-transmitter Mode | 41 | | Figure 15. | Address Assignment | 42 | | Figure 16. | Timing Definition of I2C-bus | 42 | | Figure 17. |
JTAG Interface Timing Diagram | 44 | | Figure 18. | Assembly for Expose Pad thermal Release Path (Side View) | 93 | | Figure 19. | Output Wander Generation | 99 | | Figure 20. | Input / Output Clock Timing | 100 | | Figure 21. | 68-Pin NL Package Dimensions (a) (in Millimeters) | 106 | | Figure 22. | 68-Pin NL Package Dimensions (b) (in Millimeters) | 107 | # DIDT #### **EBU WAN PLL** IDT82V32021 #### **FEATURES** #### **HIGHLIGHTS** - · The first single PLL chip: - Features 1.2 Hz to 560 Hz bandwidth - Exceeds GR-253-CORE (OC-12) and ITU-T G.813 (STM-16/ Option I) jitter generation requirements - Provides node clocks for Cellular and WLL base-station (GSM and 3G networks) - Provides clocks for DSL access concentrators (DSLAM), especially for Japan TCM-ISDN network timing based ADSL equipments #### MAIN FEATURES - Provides an integrated single-chip solution for Synchronous Equipment Timing Source, including 4E and 4 clocks - Employs DPLL and APLL to feature excellent jitter performance and minimize the number of the external components - Supports Forced or Automatic operating mode switch controlled by an internal state machine; the primary operating modes are Free-Run, Locked and Holdover - Supports programmable DPLL bandwidth (1.2 Hz to 560 Hz in 8 steps) and damping factor (1.2 to 20 in 5 steps) - Supports 1.1X10⁻⁵ ppm absolute holdover accuracy and 4.4X10⁻⁸ ppm instantaneous holdover accuracy - Supports PBO to minimize phase transients on T0 DPLL output to be no more than 0.61 ns - Supports phase absorption when phase-time changes on T0 selected input clock are greater than a programmable limit over an interval of less than 0.1 seconds - Limits the phase and frequency offset of the output - Supports manual and automatic selected input clock switch - Supports automatic hitless selected input clock switch on clock failure - Supports three types of input clock sources: recovered clock from STM-N or OC-n, PDH network synchronization timing and external synchronization reference timing - Provides two 2 kHz, 4 kHz or 8 kHz frame sync input signals, and an 8 kHz frame sync output signal - Provides two input clocks whose frequency cover from 2 kHz to 155.52 MHz - Provides one output clock whose frequency covers from 1Hz to 155.52 MHz - Provides output clocks for BITS, GPS, 3G, GSM, etc. - Supports CMOS input/output - Supports master clock calibration - Supports Line Card application - Meets Telcordia GR-1244-CORE, GR-253-CORE, ITU-T G.812, ITU-T G.813 and ITU-T G.783 criteria #### **OTHER FEATURES** - I²C programming interface - IEEE 1149.1 JTAG Boundary Scan - Single 3.3 V operation with 5 V tolerant CMOS I/Os - 68-pin VFQFPN package, Green package options available #### **APPLICATIONS** - BITS / SSU - SMC / SEC (SONET / SDH) - DWDM cross-connect and transmission equipments - Central Office Timing Source and Distribution - Core and access IP switches / routers - · Gigabit and Terabit IP switches / routers - IP and ATM core switches and access equipments - Cellular and WLL base-station node clocks - Broadband and multi-service access equipments - Any other telecom equipments that need synchronous equipment system timing #### **DESCRIPTION** The IDT82V32021 is an integrated, single-chip solution for the Synchronous Equipment Timing Source for 4E and 4 clocks in SONET / SDH equipments, DWDM and Wireless base station, such as GSM, 3G, DSL concentrator, Router and Access Network applications. The device supports three types of input clock sources: recovered clock from STM-N or OC-n, PDH network synchronization timing and external synchronization reference timing. An input clock is automatically or manually selected for DPLL locking. The DPLL supports three primary operating modes: Free-Run, Locked and Holdover. In Free-Run mode, the DPLL refers to the master clock. In Locked mode, the DPLL locks to the selected input clock. In Holdover mode, the DPLL resorts to the frequency data acquired in Locked mode. Whatever the operating mode is, the DPLL gives a stable performance without being affected by operating conditions or silicon process variations. If the DPLL outputs are processed by T0 APLL, the outputs of the device will be in a better jitter/wander performance. A high stable input is required for the master clock in different applications. The master clock is used as a reference clock for all the internal circuits in the device. It can be calibrated within ±741 ppm. All the read/write registers are accessed only through an I²C programming interface. The device can be used typically in Line Card application. #### **FUNCTIONAL BLOCK DIAGRAM** Figure 1. Functional Block Diagram #### 1 PIN ASSIGNMENT Figure 2. Pin Assignment (Top View) #### 2 PIN DESCRIPTION **Table 1: Pin Description** | Name | Pin No. | I/O | Туре | Description ¹ | | | | |--|-------------------------------------|----------------|--|--|--|--|--| | | Global Control Signal | | | | | | | | OSCI | 7 | I | CMOS | OSCI: Crystal Oscillator Master Clock A nominal 12.8000 MHz clock provided by a crystal oscillator is input on this pin. It is the master clock for the device. | | | | | FF_SRCSW | 14 | l
pull-down | CMOS | FF_SRCSW: External Fast Selection Enable During reset, this pin determines the default value of the EXT_SW bit (b4, 0BH) ² . The EXT_SW bit determines whether the External Fast Selection is enabled. High: The default value of the EXT_SW bit (b4, 0BH) is '1' (External Fast selection is enabled); Low: The default value of the EXT_SW bit (b4, 0BH) is '0' (External Fast selection is disabled). After reset, this pin selects an input clock for the T0 DPLL if the External Fast selection is enabled: High: IN1_CMOS is selected. Low: IN2_CMOS is selected. After reset, the input on this pin takes no effect if the External Fast selection is disabled. | | | | | SONET/SDH 68 I pull-down CMOS SONET/SDH: S During reset, th High: The defau Low: The defau | | CMOS | SONET/SDH: SONET / SDH Frequency Selection During reset, this pin determines the default value of the IN_SONET_SDH bit (b2, 09H): High: The default value of the IN_SONET_SDH bit is '1' (SONET); Low: The default value of the IN_SONET_SDH bit is '0' (SDH). After reset, the value on this pin takes no effect. | | | | | | RST | 51 | l
pull-up | CMOS | RST: Reset A low pulse of at least 50 µs on this pin resets the device. After this pin is high, the device will still be held in reset state for 500 ms (typical). | | | | | | | <u>'</u> | Frame | Synchronization Input Signal | | | | | EX_SYNC1 | 30 | l
pull-down | CMOS | EX_SYNC1: External Sync Input 1 A 2 kHz, 4 kHz or 8 kHz signal is input on this pin. | | | | | EX_SYNC2 | 35 | l
pull-down | CMOS | EX_SYNC2: External Sync Input 2 A 2 kHz, 4 kHz or 8 kHz signal is input on this pin. | | | | | | | | | Input Clock | | | | | IN1_CMOS | 31 | l
pull-down | CMOS | IN1_CMOS: Input Clock 1 A 2 kHz, 4 kHz, N x 8 kHz ³ , 1.544 MHz (SONET) / 2.048 MHz (SDH), 6.48 MHz, 19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz or 155.52 MHz clock is input on this pin. | | | | | IN2_CMOS | 32 | l
pull-down | CMOS | IN2_CMOS: Input Clock 2 A 2 kHz, 4 kHz, N x 8 kHz ³ , 1.544 MHz (SONET) / 2.048 MHz (SDH), 6.48 MHz, 19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz or 155.52 MHz clock is input on this pin. | | | | | | Output Frame Synchronization Signal | | | | | | | | FRSYNC_8K | 18 | 0 | CMOS | FRSYNC_8K: 8 kHz Frame Sync Output An 8 kHz signal is output on this pin. | | | | | | | | | Output Clock | | | | | OUT1 | 59 | 0 | CMOS | OUT1: Output Clock 1 A 1 Hz, 400 Hz, 2 kHz, 8 kHz, 64 kHz, N x E1 (includes 65.536 MHz) 4 , N x T1 5 , N x 13.0 MHz 6 , N x 3.84 MHz 7 , E3, T3, 6.48 MHz, 19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz or 155.52 MHz clock is output on this pin. | | | | **Table 1: Pin Description (Continued)** | Name | Pin No. | I/O | Туре | Description ¹ | | | | |-----------|--|----------------|------|---|--|--|--| | | I ² C Programming Interface | | | | | | | | INT_REQ 6 | | 0 | CMOS | INT_REQ: Interrupt Request This pin is used as an interrupt request. The output characteristics are determined by the HZ_EN bit (b1, 0CH) and the INT_POL bit (b0, 0CH). | | | | | AD0 | 47 | | | AD[2:0]: Address Input 2 to 0 The address is input on these pins. | | | | | AD1 | 48 | 1 | CMOS | The address is input on tiese pins. | | | | | AD2 | 49 | | | | | | | | SCL | 50 | ı | CMOS | SCL: Serial Clock Line The serial clock is input on this pin. The clock is 100 kbit/s in Standard mode and 400 kbit/s in
Fast mode. Should be pulled high via a $10 \text{ k}\Omega$ resistor. | | | | | SDA | 55 | I/O | CMOS | SDA: Serial Data Input/Output This pin is used as the input/output for the serial data. Should be pulled high via a 10 k Ω resistor. | | | | | | | | , | JTAG (per IEEE 1149.1) | | | | | TRST | 39 | l
pull-down | CMOS | TRST: JTAG Test Reset (Active Low) A low signal on this pin resets the JTAG test port. This pin should be connected to ground when JTAG is not used. | | | | | TMS | 43 | l
pull-up | CMOS | TMS: JTAG Test Mode Select The signal on this pin controls the JTAG test performance and is sampled on the rising edge of TCK. | | | | | TCK | 52 | l
pull-down | CMOS | TCK: JTAG Test Clock The clock for the JTAG test is input on this pin. TDI and TMS are sampled on the rising edge of TCK and TDO is updated on the falling edge of TCK. If TCK is idle at a low level, all stored-state devices contained in the test logic will indefinitely retain their state. | | | | | TDI | 54 | l
pull-up | CMOS | TDI: JTAG Test Data Input The test data is input on this pin. It is clocked into the device on the rising edge of TCK. | | | | | TDO | 53 | 0 | CMOS | TDO: JTAG Test Data Output The test data is output on this pin. It is clocked out of the device on the falling edge of TCK. TDO pin outputs a high impedance signal except during the process of data scanning. This pin can indicate the interrupt of T0 selected input clock fail, as determined by the LOS_FLAG_ON_TDO bit (b6, 0BH). Refer to Chapter 3.8.1 Input Clock Validity for details. | | | | | | | | | Power & Ground | | | | | VDDD1 | 9 | | | VDDDn: 3.3 V Digital Power Supply Each VDDDn should be paralleled with ground through a 0.1 µF capacitor. | | | | | VDDD2 | 13 | | | | | | | | VDDD3 | 10 | Damas | | | | | | | VDDD4 | 34 | Power | - | | | | | | VDDD5 | 38, 40, 41 | | | | | | | | VDDD6 | 57 | | | | | | | | VDDA1 | 4 | | | VDDAn: 3.3 V Analog Power Supply Each VDDAn should be paralleled with ground through a 0.1 μF capacitor. | | | | | VDDA2 | 15 | Power | - | - Lagit νυυλιτ επουία σε paralicied with ground through a υ. τ με σαμασίω. | | | | | VDDA3 | 60 | | | | | | | Table 1: Pin Description (Continued) | Name | Pin No. | I/O | Туре | Description ¹ | |----------|---------|--------|------|------------------------------| | VDD_DIFF | 23 | Power | - | VDD_DIFF: 3.3 V Power Supply | | DGND1 | 8 | | | DGNDn: Digital Ground | | DGND2 | 12 | | | | | DGND3 | 11 | | | | | DGND4 | 33 | Ground | - | | | DGND5 | 42 | | | | | DGND6 | 56 | | | | | AGND1 | 3 | | | AGNDn: Analog Ground | | AGND2 | 16 | Ground | - | | | AGND3 | 61 | | | | | GND_DIFF | 22 | Ground | - | GND_DIFF: Ground | | AGND | 1 | Ground | - | AGND: Analog Ground | **Table 1: Pin Description (Continued)** | Name | Pin No. | I/O | Туре | Description ¹ | | | | | | |------|-------------------|-----|------|---|--|--|--|--|--| | | Others | | | | | | | | | | IC1 | 2 | | | IC: internally connected Internal Use. These pins should be left open for normal operation. | | | | | | | IC2 | 17 | | | Internal Ose. These pins should be left open for normal operation. | | | | | | | IC3 | 24 | | | | | | | | | | IC4 | 25 | | | | | | | | | | IC5 | 26 | | | | | | | | | | IC6 | 27 | | | | | | | | | | IC7 | 36 | | | | | | | | | | IC8 | 37 | | | | | | | | | | IC9 | 44 | | | | | | | | | | IC10 | 46 | - | - | | | | | | | | IC11 | 58 | | | | | | | | | | IC12 | 63 | | | | | | | | | | IC13 | 64 | | | | | | | | | | IC14 | 65 | | | | | | | | | | IC15 | 66 | | | | | | | | | | IC16 | 67 | | | | | | | | | | IC17 | 19 | | | | | | | | | | IC18 | 20 | | | | | | | | | | IC19 | 21 | | | | | | | | | | NC | 5, 28, 29, 45, 62 | - | - | NC: Not Connected | | | | | | #### Note ^{1.} All the unused input pins should be connected to ground; the output of all the unused output pins are don't-care. ^{2.} The contents in the brackets indicate the position of the register bit/bits. **^{3.}** N x 8 kHz: 1 ≤ N ≤ 19440. **^{4.}** N x E1: N = 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64. **^{5.}** N x T1: N = 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96. **^{6.}** N x 13.0 MHz: N = 1, 2, 4. **^{7.}** N x 3.84 MHz: N = 1, 2, 4, 8, 16, 10, 20, 40. #### 3 FUNCTIONAL DESCRIPTION #### 3.1 RESET The reset operation resets all registers and state machines to their default value or status. After power on, the device must be reset for normal operation. For a complete reset, the \overline{RST} pin must be asserted low for at least 50 µs. After the \overline{RST} pin is pulled high, the device will still be in reset state for 500 ms (typical). If the \overline{RST} pin is held low continuously, the device remains in reset state. #### 3.2 MASTER CLOCK A nominal 12.8000 MHz clock, provided by a crystal oscillator, is input on the OSCI pin. This clock is provided for the device as a master clock. The master clock is used as a reference clock for all the internal circuits. A better active edge of the master clock is selected by the OSC_EDGE bit to improve jitter and wander performance. In fact, an offset from the nominal frequency may input on the OSCI pin. This offset can be compensated by setting the NOMINAL_FREQ_VALUE[23:0] bits. The calibration range is within ± 741 ppm. The performance of the master clock should meet GR-1244-CORE, GR-253-CORE, ITU-T G.812 and G.813 criteria. Table 2: Related Bit / Register in Chapter 3.2 | Bit | Register | Address (Hex) | |--------------------------|---|---------------| | NOMINAL_FREQ_VALUE[23:0] | NOMINAL_FREQ[23:16]_CNFG, NOMINAL_FREQ[15:8]_CNFG, NOMINAL_FREQ[7:0]_CNFG | 06, 05, 04 | | OSC_EDGE | OSCI_CNFG | 0A | #### 3.3 INPUT CLOCKS & FRAME SYNC SIGNALS Altogether two clocks and two frame sync signals are input to the device. #### 3.3.1 INPUT CLOCKS The device provides two CMOS input clock ports: IN1_CMOS and IN2 CMOS. According to the input clock source, the following clock sources are supported: - T1: Recovered clock from STM-N or OC-n - T2: PDH network synchronization timing - T3: External synchronization reference timing The clock sources can be from T1, T2 or T3. For SDH and SONET networks, the default frequency is different. SONET / SDH frequency selection is controlled by the IN_SONET_SDH bit. During reset, the default value of the IN_SONET_SDH bit is deter- mined by the SONET/SDH pin: high for SONET and low for SDH. After reset, the input signal on the SONET/SDH pin takes no effect. #### 3.3.2 FRAME SYNC INPUT SIGNALS Two 2 kHz, 4 kHz or 8 kHz frame sync signals are input on the EX_SYNC1 and EX_SYNC2 pins respectively. They are CMOS inputs. The input frequency should match the setting in the SYNC_FREQ[1:0] bits. The frame sync signals are only valid for the OC-n clock (6.48 MHz, 19.44 MHz, 38.88 MHz and 77.76 MHz) input. Only one of the two frame sync input signals is used for frame sync output signal synchronization. Refer to Chapter 3.13.2 Frame SYNC Output Signal for details. Table 3: Related Bit / Register in Chapter 3.3 | Bit | Register | Address (Hex) | | |----------------|----------------------|---------------|--| | IN_SONET_SDH | INPUT MODE CNFG | 09 | | | SYNC_FREQ[1:0] | IIVI OT_IVIODE_ONI O | 09 | | #### 3.4 INPUT CLOCK PRE-DIVIDER Each input clock is assigned an internal Pre-Divider. The Pre-Divider is used to divide the clock frequency down to the DPLL required frequency, which is no more than 38.88 MHz. For each input clock, the DPLL required frequency is set by the corresponding IN FREQ[3:0] bits. If the input clock is of 2 kHz, 4 kHz or 8 kHz, the Pre-Divider is bypassed automatically and the corresponding IN_FREQ[3:0] bits should be set to match the input frequency; the input clock can be inverted, as determined by the IN 2K 4K 8K INV bit. Each Pre-Divider consists of a DivN Divider and a Lock 8k Divider, as shown in Figure 3. Either the DivN Divider or the Lock 8k Divider can be used or both can be bypassed, as determined by the DIRECT_DIV bit and the LOCK 8K bit. When the DivN Divider is used, the division factor setting should observe the following order: - 1. Select an input clock by the PRE_DIV_CH_VALUE[3:0] bits; - 2. Write the lower eight bits of the division factor to the PRE_DIVN_VALUE[7:0] bits; - 3. Write the higher eight bits of the division factor to the PRE_DIVN_VALUE[14:8] bits. Once the division factor is set for the input clock selected by the PRE_DIV_CH_VALUE[3:0] bits, it is valid until a different division factor is set for the same input clock. The division factor is calculated as follows: Division Factor = (the frequency of the clock input to the DivN Divider ÷ the frequency of the DPLL required clock set by the IN_FREQ[3:0] bits) - 1 The DivN Divider can only divide the input clock whose frequency is lower than (<) 155.52 MHz. When the Lock 8k Divider is used, the input clock is divided down to 8 kHz automatically. The Pre-Divider configuration and the division factor setting depend on the input clock on one of the clock input pin and the DPLL required clock. Here is an example: The input clock on the IN2_CMOS pin is 155.52 MHz; the DPLL required clock is 6.48 MHz by programming the IN_FREQ[3:0] bits of register IN2_CMOS_CNFG to '0010'. Do the following to divide the input clock: Use the DivN Divider to divide the clock down to 6.48 MHz: Set the PRE_DIV_CH_VALUE[3:0] bits to '0011'; Set the DIRECT_DIV bit in Register IN2_CMOS_CNFG to '1' and the LOCK_8K bit in Register IN2_CMOS_CNFG to '0'; 155.52 ÷ 6.48 = 24; 24 - 1 = 23, so set the PRE_DIVN_VALUE[14:0] bits to '10111'. Figure 3. Pre-Divider for An Input Clock Table 4: Related Bit / Register in Chapter 3.4 | Bit | Register | Address (Hex) | |-----------------------|---|---------------| | IN_FREQ[3:0] | | | | DIRECT_DIV | IN1_CMOS_CNFG, IN2_CMOS_CNFG | 16, 17 | | LOCK_8K | | | | IN_2K_4K_8K_INV | FR_SYNC_CNFG | 74 | |
PRE_DIV_CH_VALUE[3:0] | PRE_DIV_CH_CNFG | 23 | | PRE_DIVN_VALUE[14:0] | PRE_DIVN[14:8]_CNFG, PRE_DIVN[7:0]_CNFG | 25, 24 | #### 3.5 INPUT CLOCK QUALITY MONITORING The qualities of the input clocks are always monitored in the following aspects: - Activity - Frequency The qualified clocks are available for T0 DPLL selection. The T0 selected input clock has to be monitored further. Refer to Chapter 3.7 Selected Input Clock Monitoring for details. #### 3.5.1 ACTIVITY MONITORING Activity is monitored by using an internal leaky bucket accumulator, as shown in Figure 4. Each input clock is assigned an internal leaky bucket accumulator. The input clock is monitored for each period of 128 ms and the internal leaky bucket accumulator increases by 1 when an event is detected; it decreases by 1 if no event is detected within the period set by the decay rate. The event is that an input clock drifts outside (>) ± 500 ppm with respect to the master clock within a 128 ms period. There are four configurations (0 - 3) for a leaky bucket accumulator. The leaky bucket configuration for an input clock is selected by the cor- responding BUCKET_SEL[1:0] bits. Each leaky bucket configuration consists of four elements: upper threshold, lower threshold, bucket size and decay rate. The bucket size is the capability of the accumulator. If the number of the accumulated events reach the bucket size, the accumulator will stop increasing even if further events are detected. The upper threshold is a point above which a no-activity alarm is raised. The lower threshold is a point below which the no-activity alarm is cleared. The decay rate is a certain period during which the accumulator decreases by 1 if no event is detected. The leaky bucket configuration is programmed by one of four groups of register bits: the BUCKET_SIZE_n_DATA[7:0] bits, the UPPER_ THRESHOLD_n_DATA[7:0] bits, the LOWER_THRESHOLD_n_ DATA[7:0] bits and the DECAY_RATE_n_DATA[1:0] bits respectively; 'n' is $0 \sim 3$. The no-activity alarm status of the input clock is indicated by the $INn_CMOS_NO_ACTIVITY_ALARM$ bit (n = 1 or 2). The input clock with a no-activity alarm is disqualified for clock selection for T0 DPLL. Figure 4. Input Clock Activity Monitoring #### 3.5.2 FREQUENCY MONITORING Frequency is monitored by comparing the input clock with a reference clock. The reference clock can be derived from the master clock or the output of T0 DPLL, as determined by the FREQ_MON_CLK bit. A frequency hard alarm threshold is set for frequency monitoring. If the FREQ_MON_HARD_EN bit is '1', a frequency hard alarm is raised when the frequency of the input clock with respect to the reference clock is above the threshold; the alarm is cleared when the frequency is below the threshold. The frequency hard alarm threshold can be calculated as follows: Frequency Hard Alarm Threshold (ppm) = (ALL_FREQ_HARD_THRESHOLD[3:0] + 1) X FREQ_MON_FACTOR[3:0] If the FREQ_MON_HARD_EN bit is '1', the frequency hard alarm status of the input clock is indicated by the INn_CMOS_FREQ_HARD_ALARM bit (n = 1 or 2). When the FREQ_MON_HARD_EN bit is '0', no frequency hard alarm is raised even if the input clock is above the frequency hard alarm threshold. The input clock with a frequency hard alarm is disqualified for clock selection for T0 DPLL. In addition, if the input clock is 2 kHz, 4 kHz or 8 kHz, its clock edges with respect to the reference clock are monitored. If any edge drifts outside $\pm 5\%$, the input clock is disqualified for clock selection for T0 DPLL. The input clock is qualified if any edge drifts inside $\pm 5\%$. This function is supported only when the IN_NOISE_WINDOW bit is '1'. The frequency of each input clock with respect to the reference clock can be read by doing the following step by step: - Select an input clock by setting the IN_FREQ_READ_CH[3:0] bits: - 2. Read the value in the IN_FREQ_VALUE[7:0] bits and calculate as follows: Input Clock Frequency (ppm) = IN_FREQ_VALUE[7:0] X FREQ_MON_FACTOR[3:0] Note that the value set by the FREQ_MON_FACTOR[3:0] bits depends on the application. Table 5: Related Bit / Register in Chapter 3.5 | Bit | Register | Address (Hex) | |---|---|----------------| | BUCKET_SIZE_n_DATA[7:0] $(3 \ge n \ge 0)$ | BUCKET_SIZE_0_CNFG ~ BUCKET_SIZE_3_CNFG | 33, 37, 3B, 3F | | UPPER_THRESHOLD_n_DATA[7:0] $(3 \ge n \ge 0)$ | UPPER_THRESHOLD_0_CNFG ~ UPPER_THRESHOLD_3_CNFG | 31, 35, 39, 3D | | LOWER_THRESHOLD_n_DATA[7:0] $(3 \ge n \ge 0)$ | LOWER_THRESHOLD_0_CNFG ~ LOWER_THRESHOLD_3_CNFG | 32, 36, 3A, 3E | | DECAY_RATE_n_DATA[1:0] $(3 \ge n \ge 0)$ | DECAY_RATE_0_CNFG ~ DECAY_RATE_3_CNFG | 34, 38, 3C, 40 | | BUCKET_SEL[1:0] | IN1_CMOS_CNFG, IN2_CMOS_CNFG | 16, 17 | | INn_CMOS_NO_ACTIVITY_ALARM (n = 1 or 2) | IN1 IN2 CMOS STS | 44 | | INn_CMOS_FREQ_HARD_ALARM (n = 1 or 2) | 1111_1112_011100_010 | 77 | | FREQ_MON_CLK | MON SW PBO CNFG | 0B | | FREQ_MON_HARD_EN | MON_OW_I BO_ONI O | OB | | ALL_FREQ_HARD_THRESHOLD[3:0] | ALL_FREQ_MON_THRESHOLD_CNFG | 2F | | FREQ_MON_FACTOR[3:0] | FREQ_MON_FACTOR_CNFG | 2E | | IN_NOISE_WINDOW | PHASE_MON_PBO_CNFG | 78 | | IN_FREQ_READ_CH[3:0] | IN_FREQ_READ_CH_CNFG | 41 | | IN_FREQ_VALUE[7:0] | IN_FREQ_READ_STS | 42 | #### 3.6 DPLL INPUT CLOCK SELECTION The EXT_SW bit and the T0_INPUT_SEL[3:0] bits determine the input clock selection, as shown in Table 6: **Table 6: Input Clock Selection** | Control Bits | | Input Clock Selection | | |--------------|-------------------|-------------------------|--| | EXT_SW | T0_INPUT_SEL[3:0] | - Input Glock Selection | | | 1 | don't-care | External Fast selection | | | 0 | other than 0000 | Forced selection | | | | 0000 | Automatic selection | | External Fast selection is done between IN1_CMOS and IN2 CMOS. Forced selection is done by setting the related registers. Automatic selection is done based on the results of input clocks quality monitoring and the related registers configuration. The selected input clock is attempted to be locked by T0 DPLL. #### 3.6.1 EXTERNAL FAST SELECTION In External Fast selection, only IN1_CMOS and IN2_CMOS are available for selection. Refer to Figure 5. The results of input clocks quality monitoring (refer to Chapter 3.5 Input Clock Quality Monitoring) do not affect input clock selection. The T0 input clock selection is determined by the FF_SRCSW pin after reset (this pin determines the default value of the EXT_SW bit during reset, refer to Chapter 2 Pin Description), the IN1_CMOS_SEL_PRIORITY[3:0] bits and the IN2_CMOS_SEL_PRIORITY[3:0] bits, as shown in Figure 5 and Table 7: Figure 5. External Fast Selection **Table 7: External Fast Selection** | Control Pin & Bits FF_SRCSW (after reset) IN1_CMOS_SEL_PRIORITY[3:0] IN2_CMOS_SEL_PRIORITY[3:0] | | the Selected Input Clock | | |--|-----------------|-----------------------------|----------| | | | tille delegated input didek | | | high | other than 0000 | don't-care | IN1_CMOS | | low | don't-care | other than 0000 | IN2_CMOS | #### 3.6.2 FORCED SELECTION In Forced selection, the selected input clock is set by the T0_INPUT_SEL[3:0] bits. The results of input clocks quality monitoring (refer to Chapter 3.5 Input Clock Quality Monitoring) do not affect the input clock selection. #### 3.6.3 AUTOMATIC SELECTION In Automatic selection, the input clock selection is determined by its validity and priority. The validity depends on the results of input clock quality monitoring (refer to Chapter 3.5 Input Clock Quality Monitoring). In the qualified input clocks, the one with the higher priority is selected. The priority is configured by the corresponding INn_CMOS_SEL_PRIORITY[3:0] bits (n = 1 or 2). If more than one qualified input clock is available and has the same priority, the input clock with the smaller 'n' is selected. See Table 8 for the 'n' assigned to the input clock. Table 8: 'n' Assigned to the Input Clock | Input Clock | 'n' Assigned to the Input Clock | |-------------|---------------------------------| | IN1_CMOS | 1 | | IN2_CMOS | 3 | Table 9: Related Bit / Register in Chapter 3.6 | Bit | Register | Address (Hex) | |---|--------------------------------|---------------| | EXT_SW | MON_SW_PBO_CNFG | 0B | | T0_INPUT_SEL[3:0] | T0_INPUT_SEL_CNFG | 50 | | INn_CMOS_SEL_PRIORITY[3:0] (n = 1 or 2) | IN1_IN2_CMOS_SEL_PRIORITY_CNFG | 27 | #### 3.7 SELECTED INPUT CLOCK MONITORING The quality of the selected input clock is always monitored (refer to Chapter 3.5 Input Clock Quality Monitoring) and the DPLL locking status is always monitored. #### 3.7.1 DPLL LOCKING DETECTION The following events is always monitored: - · Fast Loss; - · Coarse Phase Loss; - · Fine Phase Loss: - · Hard Limit Exceeding. #### 3.7.1.1 Fast Loss A fast loss is triggered when the selected input clock misses 2 consecutive clock cycles. It is cleared once an active clock edge is detected. The occurrence of the fast loss will result in T0 DPLL unlocked if the FAST LOS SW bit is '1'. #### 3.7.1.2 Coarse Phase Loss The T0 DPLL compares the selected input clock with the feedback signal. If the phase-compared result exceeds the coarse phase limit, a coarse phase loss is triggered. It is cleared once the phase-compared result is within the coarse phase limit. When the selected input clock is of 2 kHz, 4 kHz or 8 kHz, the coarse phase limit depends on the MULTI_PH_8K_4K_2K_EN bit, the WIDE_EN bit and the PH_LOS_COARSE_LIMT[3:0] bits. Refer to Table 10. When the selected input clock is of other frequencies but 2 kHz, 4 kHz and 8 kHz, the coarse phase limit depends on the WIDE_EN bit and the PH_LOS_COARSE_LIMT[3:0] bits. Refer to Table 11. Table 10: Coarse Phase Limit Programming (the selected input clock of 2 kHz, 4 kHz or 8 kHz) | MULTI_PH_8K_4K
_2K_EN | WIDE_EN | Coarse Phase Limit | |--------------------------|------------
---| | 0 | don't-care | ±1 UI | | 1 | 0 | ±1 UI | | ' | 1 | set by the PH_LOS_COARSE_LIMT[3:0] bits | Table 11: Coarse Phase Limit Programming (the selected input clock of other than 2 kHz, 4 kHz and 8 kHz) | WIDE_EN | Coarse Phase Limit | |---------|---| | 0 | ±1 UI | | 1 | set by the PH_LOS_COARSE_LIMT[3:0] bits | The occurrence of the coarse phase loss will result in T0 DPLL unlocked if the COARSE_PH_LOS_LIMT_EN bit is '1'. #### 3.7.1.3 Fine Phase Loss The T0 DPLL compares the selected input clock with the feedback signal. If the phase-compared result exceeds the fine phase limit programmed by the PH_LOS_FINE_LIMT[2:0] bits, a fine phase loss is triggered. It is cleared once the phase-compared result is within the fine phase limit. The occurrence of the fine phase loss will result in T0 DPLL unlocked if the FINE PH LOS LIMT EN bit is '1'. #### 3.7.1.4 Hard Limit Exceeding Two limits are available for this monitoring. They are DPLL soft limit and DPLL hard limit. When the frequency of the DPLL output with respect to the master clock exceeds the DPLL soft / hard limit, a DPLL soft / hard alarm will be raised; the alarm is cleared once the frequency is within the corresponding limit. The occurrence of the DPLL soft alarm does not affect the T0 DPLL locking status. The DPLL soft alarm is indicated by the corresponding T0_DPLL_SOFT_FREQ_ALARM bit. The occurrence of the DPLL hard alarm will result in T0 DPLL unlocked if the FREQ_LIMT_PH_LOS bit is '1'. The DPLL soft limit is set by the DPLL_FREQ_SOFT_LIMT[6:0] bits and can be calculated as follows: #### DPLL Soft Limit (ppm) = DPLL_FREQ_SOFT_LIMT[6:0] X 0.724 The DPLL hard limit is set by the DPLL_FREQ_HARD_LIMT[15:0] bits and can be calculated as follows: DPLL Hard Limit (ppm) = DPLL_FREQ_HARD_LIMT[15:0] X 0.0014 #### 3.7.2 LOCKING STATUS The DPLL locking status depends on the locking monitoring results. The DPLL is in locked state if none of the following events is triggered during 2 seconds; otherwise, the DPLL is unlocked. - Fast Loss (the FAST LOS SW bit is '1'); - Coarse Phase Loss (the COARSE_PH_LOS_LIMT_EN bit is '1'): - Fine Phase Loss (the FINE_PH_LOS_LIMT_EN bit is '1'); - DPLL Hard Alarm (the FREQ_LIMT_PH_LOS bit is '1'). If the FAST_LOS_SW bit, the COARSE_PH_LOS_LIMT_EN bit, the FINE_PH_LOS_LIMT_EN bit or the FREQ_LIMT_PH_LOS bit is '0', the DPLL locking status will not be affected even if the corresponding event is triggered. If all these bits are '0', the DPLL will be in locked state in 2 seconds. The DPLL locking status is indicated by the T0_DPLL_LOCK bit. #### 3.7.3 PHASE LOCK ALARM A phase lock alarm will be raised when the selected input clock can not be locked in T0 DPLL within a certain period. This period can be calculated as follows: Period (sec.) = TIME_OUT_VALUE[5:0] X MULTI_FACTOR[1:0] The phase lock alarm is indicated by the corresponding INn_CMOS_PH_LOCK_ALARM bit (n = 1 or 2). The phase lock alarm can be cleared by the following two ways, as selected by the PH_ALARM_TIMEOUT bit: - Be cleared when a '1' is written to the corresponding INn_CMOS_PH_LOCK_ALARM bit; - Be cleared after the period (= TIME_OUT_VALUE[5:0] X MULTI_FACTOR[1:0] in second) which starts from when the alarm is raised. Table 12: Related Bit / Register in Chapter 3.7 | Bit | Register | Address (Hex) | |-------------------------------------|---|---| | FAST_LOS_SW | | | | PH_LOS_FINE_LIMT[2:0] | PHASE_LOSS_FINE_LIMIT_CNFG | 5B | | FINE_PH_LOS_LIMT_EN | | | | MULTI_PH_8K_4K_2K_EN | | | | WIDE_EN | PHASE_LOSS_COARSE_LIMIT_CNFG | 5A | | PH_LOS_COARSE_LIMT[3:0] | | O/ C | | COARSE_PH_LOS_LIMT_EN |] | | | T0_DPLL_SOFT_FREQ_ALARM | OPERATING STS | 52 | | T0_DPLL_LOCK | Of ENVIRO | JZ | | DPLL_FREQ_SOFT_LIMT[6:0] | DPLL_FREQ_SOFT_LIMIT_CNFG | 65 | | FREQ_LIMT_PH_LOS | DI EE_TREQ_OOT I_ENVIT_ON O | 05 | | DPLL_FREQ_HARD_LIMT[15:0] | DPLL_FREQ_HARD_LIMIT[15:8]_CNFG, DPLL_FREQ_HARD_LIMIT[7:0]_CNFG | 67, 66 | | TIME OUT VALUE[5:0] | DFEE_FREQ_HARD_LIMIT[7.0]_CNFG | | | MULTI_FACTOR[1:0] | PHASE_ALARM_TIME_OUT_CNFG | 08 | | INn_CMOS_PH_LOCK_ALARM (n = 1 or 2) | IN1 IN2 CMOS STS | 44 | | | IN1_IN2_CMOS_STS | * | | PH_ALARM_TIMEOUT | INPUT_MODE_CNFG | 09 | #### 3.8 SELECTED INPUT CLOCK SWITCH If the input clock is selected by External Fast selection or by Forced selection, it can be switched by setting the related registers (refer to Chapter 3.6.1 External Fast Selection & Chapter 3.6.2 Forced Selection) any time. In this case, whether the input clock is qualified for DPLL locking does not affect the clock switch. When the input clock is selected by Automatic selection, the input clock switch depends on its validity and priority. If the current selected input clock is disqualified, a new qualified input clock may be switched to. #### 3.8.1 INPUT CLOCK VALIDITY For the input clocks, the validity depends on the results of input clock quality monitoring (refer to Chapter 3.5 Input Clock Quality Monitoring). When all of the following conditions are satisfied, the input clock is valid; otherwise, it is invalid. - No no-activity alarm (the INn_CMOS_NO_ACTIVITY_ALARM bit is '0'); - No frequency hard alarm (the INn_CMOS_FREQ_HARD_ ALARM bit is '0'); - If the IN_NOISE_WINDOW bit is '1', all the edges of the input clock of 2 kHz, 4 kHz or 8 kHz drift inside ±5%; if the IN_NOISE_WINDOW bit is '0', this condition is ignored. - No phase lock alarm, i.e., the INn_CMOS_PH_LOCK_ALARM bit is '0'; - If the ULTR_FAST_SW bit is '1', the T0 selected input clock misses less than (<) 2 consecutive clock cycles; if the ULTR_FAST_SW bit is '0', this condition is ignored. The validities of the input clocks are indicated by the INn_CMOS 1 bit (n = 1 or 2). When the input clock validity changes (from 'valid' to 'invalid' or from 'invalid' to 'valid'), the INn_CMOS 2 bit will be set. If the INn_CMOS 3 bit is '1', an interrupt will be generated. When the T0 selected input clock has failed, i.e., the validity of the T0 selected input clock changes from 'valid' to 'invalid', the T0_MAIN_REF_FAILED ¹ bit will be set. If the T0_MAIN_REF_FAILED ² bit is '1', an interrupt will be generated. This interrupt can also be indicated by hardware - the TDO pin, as determined by the LOS_FLAG_TO_TDO bit. When the TDO pin is used to indicate this interrupt, it will be set high when this interrupt is generated and will remain high until this interrupt is cleared. #### 3.8.2 SELECTED INPUT CLOCK SWITCH Revertive and Non-Revertive switches are supported, as selected by the REVERTIVE MODE bit. The difference between Revertive and Non-Revertive switches is that whether the selected input clock is switched when another qualified input clock with a higher priority than the current selected input clock is available for selection. In Non-Revertive switch, input clock switch is minimized. Conditions of the qualified input clocks available for T0 selection are as the following: - Valid, i.e., the INn CMOS ¹ bit is '1'; - Priority enabled, i.e., the corresponding INn_CMOS_SEL _PRIORITY[3:0] bits are not '0000'. The input clock is disqualified if any of the above conditions is not satisfied. In summary, the selected input clock can be switched by: - · External Fast selection; - · Forced selection: - · Revertive switch; - · Non-Revertive switch. #### 3.8.2.1 Revertive Switch In Revertive switch, the selected input clock is switched when another qualified input clock with a higher priority than the current selected input clock is available. The selected input clock is switched if any of the following is satisfied: - The selected input clock is disqualified; - Another qualified input clock with a higher priority than the selected input clock is available. A qualified input clock with the higher priority is selected by revertive switch. If more than one qualified input clock is available and has the same priority, the input clock with the smaller 'n' is selected. See Table 8 for the 'n' assigned to each input clock. #### 3.8.2.2 Non-Revertive Switch In Non-Revertive switch, the T0 selected input clock is not switched when another qualified input clock with a higher priority than the current selected input clock is available. In this case, the selected input clock is switched and a qualified input clock with the higher priority is selected only when the T0 selected input clock is disqualified. If more than one qualified input clock is available and has the same priority, the input clock with the smaller 'n' is selected. See Table 8 for the 'n' assigned to each input clock. #### 3.8.3 SELECTED / QUALIFIED INPUT CLOCKS INDICATION The selected input clock is indicated by the CURRENTLY_SELECTED_INPUT[3:0] bits. The qualified input clocks with the two highest priorities are indicated by the HIGHEST_PRIORITY_VALIDATED[3:0] bits and the SECOND_HIGHEST_PRIORITY_VALIDATED[3:0] bits respectively. If more than one input clock has the same priority, the input clock with the smaller 'n' is indicated by the HIGHEST_PRIORITY_VALIDATED[3:0] bits. See Table 8 for the 'n' assigned to the input clock. When the device is configured in Automatic selection and Revertive switch is enabled, the input clock indicated by the CURRENTLY_SELECTED_INPUT[3:0] bits is the same as the one indicated by the HIGHEST_PRIORITY_VALIDATED[3:0] bits; otherwise, they are not the same. Table 13: Related Bit / Register in Chapter 3.8 | Bit | Register | Address (Hex) | |---|--|---------------| | INn_CMOS ¹ (n = 1 or 2) | INPUT_VALID1_STS | 4A | | INn_CMOS ² (n = 1 or 2) | INTERRUPTS1_STS, INTERRUPTS2_STS | 0D, 0E | | INn_CMOS ³ (n = 1 or 2) | INTERRUPTS1_ENABLE_CNFG, INTERRUPTS2_ENABLE_CNFG | 10, 11 | | INn_CMOS_NO_ACTIVITY_ALARM (n = 1 or 2) | | | | INn_CMOS_FREQ_HARD_ALARM (n = 1 or 2) |
IN1_IN2_CMOS_STS | 44 | | INn_CMOS_PH_LOCK_ALARM (n = 1 or 2) | | | | IN_NOISE_WINDOW | PHASE_MON_PBO_CNFG | 78 | | ULTR_FAST_SW | MON SW PBO CNFG | 0B | | LOS_FLAG_TO_TDO | MON_SW_I BO_ON G | VB | | T0_MAIN_REF_FAILED ¹ | INTERRUPTS2_STS | 0E | | T0_MAIN_REF_FAILED ² | INTERRUPTS2_ENABLE_CNFG | 11 | | REVERTIVE_MODE | INPUT_MODE_CNFG | 09 | | INn_CMOS_SEL_PRIORITY[3:0] (n = 1 or 2) | IN1_IN2_CMOS_SEL_PRIORITY_CNFG | 27 | | CURRENTLY_SELECTED_INPUT[3:0] | PRIORITY TABLE1 STS | 4E | | HIGHEST_PRIORITY_VALIDATED[3:0] | I MOMI I _ IABLE I_515 | 45 | | SECOND_HIGHEST_PRIORITY_VALIDATED[3:0] | PRIORITY_TABLE2_STS | 4F | # 3.9 SELECTED INPUT CLOCK STATUS VS. DPLL OPERATING MODE T0 DPLL supports three primary operating modes: Free-Run, Locked and Holdover, and three secondary, temporary operating modes: Pre-Locked, Pre-Locked2 and Lost-Phase. The operating mode of T0 DPLL can be switched automatically or by force, as controlled by the T0_OPERATING_MODE[2:0] bits. When the operating mode is switched by force, the operating mode switch is under external control and the status of the selected input clock takes no effect to the operating mode selection. The forced operating mode switch is applicable for special cases, such as testing. When the operating mode is switched automatically, the internal state machine for T0 automatically determine the operating mode. The T0 DPLL operating mode is controlled by the T0_OPERATING_MODE[2:0] bits, as shown in Table 14: Table 14: T0 DPLL Operating Mode Control | T0_OPERATING_MODE[2:0] | T0 DPLL Operating Mode | |------------------------|------------------------| | 000 | Automatic | | 001 | Forced - Free-Run | | 010 | Forced - Holdover | | 100 | Forced - Locked | | 101 | Forced - Pre-Locked2 | | 110 | Forced - Pre-Locked | | 111 | Forced - Lost-Phase | When the operating mode is switched automatically, the operation of the internal state machine is shown in Figure 6. Whether the operating mode is under external control or is switched automatically, the current operating mode is always indicated by the T0_DPLL_OPERATING_MODE[2:0] bits. When the operating mode switches, the T0_OPERATING_MODE 1 bit will be set. If the T0_OPERATING_MODE 2 bit is '1', an interrupt will be generated. Figure 6. T0 Selected Input Clock vs. DPLL Automatic Operating Mode #### Notes to Figure 6: - 1. Reset. - 2. An input clock is selected. - 3. The T0 selected input clock is disqualified AND No qualified input clock is available. - 4. The T0 selected input clock is switched to another one. - 5. The T0 selected input clock is locked (the T0_DPLL_LOCK bit is '1'). - 6. The T0 selected input clock is disqualified **AND** No qualified input clock is available. - 7. The T0 selected input clock is unlocked (the T0_DPLL_LOCK bit is '0'). - 8. The T0 selected input clock is locked again (the T0_DPLL_LOCK bit is '1'). - 9. The T0 selected input clock is switched to another one. - 10. The T0 selected input clock is locked (the T0_DPLL_LOCK bit is '1'). - 11. The T0 selected input clock is disqualified **AND** No qualified input clock is available. - 12. The T0 selected input clock is switched to another one. - 13. The T0 selected input clock is disqualified **AND** No qualified input clock is available. - 14. An input clock is selected. - 15. The T0 selected input clock is switched to another one. The causes of Item 4, 9, 12, 15 - 'the T0 selected input clock is switched to another one' - are: (The T0 selected input clock is disqualified **AND** Another input clock is switched to) **OR** (In Revertive switch, a qualified input clock with a higher priority is switched to) **OR** (The T0 selected input clock is switched to another one by External Fast selection or Forced selection). Refer to Chapter 3.8.2 Selected Input Clock Switch for details about T0 input clock qualification. Table 15: Related Bit / Register in Chapter 3.9 | Bit | Register | Address (Hex) | |--------------------------------|-------------------------|---------------| | T0_OPERATING_MODE[2:0] | T0_OPERATING_MODE_CNFG | 53 | | T0_DPLL_OPERATING_MODE[2:0] | OPERATING STS | 52 | | T0_DPLL_LOCK | Of Elvillio_ofo | UL. | | T0_OPERATING_MODE ¹ | INTERRUPTS2_STS | 0E | | T0_OPERATING_MODE ² | INTERRUPTS2_ENABLE_CNFG | 11 | #### 3.10 DPLL OPERATING MODE The T0 DPLL gives a stable performance in different applications without being affected by operating conditions or silicon process variations. It integrates a PFD (Phase & Frequency Detector), a LPF (Low Pass Filter) and a DCO (Digital Controlled Oscillator), which forms a closed loop. If no input clock is selected, the loop is not closed, and the PFD and LPF do not function. The PFD detects the phase error, including the fast loss, coarse phase loss and fine phase loss (refer to Chapter 3.7.1.1 Fast Loss to Chapter 3.7.1.3 Fine Phase Loss). The averaged phase error of the T0 DPLL feedback with respect to the selected input clock is indicated by the CURRENT_PH_DATA[15:0] bits. It can be calculated as follows: #### Averaged Phase Error (ns) = CURRENT_PH_DATA[15:0] X 0.61 The LPF filters jitters. Its 3 dB bandwidth and damping factor are programmable. A range of bandwidths and damping factors can be set to meet different application requirements. Generally, the lower the damping factor is, the longer the locking time is and the more the gain is. The DCO controls the DPLL output. The frequency of the DPLL output is always multiplied on the basis of the master clock. The phase and frequency offset of the DPLL output may be locked to those of the selected input clock. The current frequency offset with respect to the master clock is indicated by the CURRENT_DPLL_FREQ[23:0] bits, and can be calculated as follows: Current Frequency Offset (ppm) = CURRENT_DPLL_FREQ[23:0] X 0.000011 #### 3.10.1 SIX OPERATING MODES The T0 DPLL loop is closed except in Free-Run mode and Holdover mode For a closed loop, different bandwidths and damping factors can be used depending on DPLL locking stages: starting, acquisition and locked. In the first two seconds when the T0 DPLL attempts to lock to the selected input clock, the starting bandwidth and damping factor are used. They are set by the T0_DPLL_START_BW[4:0] bits and the T0_DPLL_START_DAMPING[2:0] bits respectively. During the acquisition, the acquisition bandwidth and damping factor are used. They are set by the T0_DPLL_ACQ_BW[4:0] bits and the T0_DPLL_ACQ_DAMPING[2:0] bits respectively. When the T0 selected input clock is locked, the locked bandwidth and damping factor are used. They are set by the T0_DPLL_LOCKED_BW[4:0] bits and the T0_DPLL_LOCKED_DAMPING[2:0] bits respectively. The corresponding bandwidth and damping factor are used when the T0 DPLL operates in different DPLL locking stages: starting, acquisition and locked, as controlled by the device automatically. Only the locked bandwidth and damping factor can be used regardless of the T0 DPLL locking stage, as controlled by the AUTO_BW_SEL bit. #### 3.10.1.1 Free-Run Mode In Free-Run mode, the T0 DPLL output refers to the master clock and is not affected by any input clock. The accuracy of the T0 DPLL output is equal to that of the master clock. #### 3.10.1.2 Pre-Locked Mode In Pre-Locked mode, the T0 DPLL output attempts to track the selected input clock. The Pre-Locked mode is a secondary, temporary mode. #### 3.10.1.3 Locked Mode In Locked mode, the T0 selected input clock is locked. The phase and frequency offset of the T0 DPLL output track those of the T0 selected input clock. In this mode, if the T0 selected input clock is in fast loss status and the FAST_LOS_SW bit is '1', the T0 DPLL is unlocked (refer to Chapter 3.7.1.1 Fast Loss) and will enter Lost-Phase mode when the operating mode is switched automatically; if the T0 selected input clock is in fast loss status and the FAST_LOS_SW bit is '0', the T0 DPLL locking status is not affected and the T0 DPLL will enter Temp-Holdover mode automatically. #### 3.10.1.3.1 Temp-Holdover Mode The T0 DPLL will automatically enter Temp-Holdover mode with a selected input clock switch or no qualified input clock available when the operating mode switch is under external control. In Temp-Holdover mode, the T0 DPLL has temporarily lost the selected input clock. The T0 DPLL operation in Temp-Holdover mode and that in Holdover mode are alike (refer to Chapter 3.10.1.5 Holdover Mode) except the frequency offset acquiring methods. See Chapter 3.10.1.5 Holdover Mode for details about the methods. The method is selected by the TEMP_HOLDOVER_MODE[1:0] bits, as shown in Table 16: Table 16: Frequency Offset Control in Temp-Holdover Mode | TEMP_HOLDOVER_MODE[1:0] | Frequency Offset Acquiring Method | |-------------------------|--| | 00 | the same as that used in Holdover mode | | 01 | Automatic Instantaneous | | 10 | Automatic Fast Averaged | | 11 | Automatic Slow Averaged | The device automatically controls the T0 DPLL to exit from Temp-Holdover mode. #### 3.10.1.4 Lost-Phase Mode In Lost-Phase mode, the T0 DPLL output attempts to track the selected input clock. The Lost-Phase mode is a secondary, temporary mode. #### 3.10.1.5 Holdover Mode In Holdover mode, the T0 DPLL resorts to the stored frequency data acquired in Locked mode to control its output. The T0 DPLL output is not phase locked to any input clock. The frequency offset acquiring method is selected by the MAN_HOLDOVER bit, the AUTO_AVG bit and the FAST_AVG bit, as shown in Table 17: **Table 17: Frequency Offset Control in Holdover Mode** | MAN_HOLDOVER | AUTO_AVG | FAST_AVG | Frequency Offset Acquiring Method | |--------------|----------|------------|-----------------------------------| | | 0 | don't-care | Automatic Instantaneous | | 0 | 1 | 0 | Automatic Slow Averaged | | | | 1 | Automatic Fast Averaged | | 1 | don't | -care | Manual | #### 3.10.1.5.1 Automatic Instantaneous By this method, the T0 DPLL freezes at the operating frequency when it enters Holdover mode. The accuracy is
4.4X10⁻⁸ ppm. #### 3.10.1.5.2 Automatic Slow Averaged By this method, an internal IIR (Infinite Impulse Response) filter is employed to get the frequency offset. The IIR filter gives a 3 dB attenuation point corresponding to a period of 110 minutes. The accuracy is 1.1X10⁻⁵ ppm. #### 3.10.1.5.3 Automatic Fast Averaged By this method, an internal IIR (Infinite Impulse Response) filter is employed to get the frequency offset. The IIR filter gives a 3 dB attenuation point corresponding to a period of 8 minutes. The accuracy is 1.1X10⁻⁵ ppm. #### 3.10.1.5.4 Manual By this method, the frequency offset is set by the $T0_HOLDOVER_FREQ[23:0]$ bits. The accuracy is $1.1X10^{-5}$ ppm. The frequency offset of the T0 DPLL output is indicated by the CURRENT_DPLL_FREQ[23:0] bits. The device provides a reference for the value to be written to the T0_HOLDOVER_FREQ[23:0] bits. The value to be written can refer to the value read from the CURRENT_DPLL_FREQ[23:0] bits or the T0_HOLDOVER_FREQ[23:0] bits (refer to Chapter 3.10.1.5.5 Holdover Frequency Offset Read); or then be processed by external software filtering. #### 3.10.1.5.5 Holdover Frequency Offset Read The offset value, which is acquired by Automatic Slow Averaged, Automatic Fast Averaged and is set by related register bits, can be read from the T0_HOLDOVER_FREQ[23:0] bits by setting the READ_AVG bit and the FAST AVG bit, as shown in Table 18. Table 18: Holdover Frequency Offset Read | READ_AVG | FAST_AVG | Offset Value Read from
T0_HOLDOVER_FREQ[23:0] | |----------|------------|---| | 0 | don't-care | The value is equal to the one written to. | | 1 | 0 | The value is acquired by Automatic Slow Averaged method, not equal to the one written to. | | ' | 1 | The value is acquired by Automatic Fast Averaged method, not equal to the one written to. | The frequency offset in ppm is calculated as follows: Holdover Frequency Offset (ppm) = T0_HOLDOVER_FREQ[23:0] X 0.000011 #### 3.10.1.6 Pre-Locked2 Mode In Pre-Locked2 mode, the T0 DPLL output attempts to track the selected input clock. The Pre-Locked2 mode is a secondary, temporary mode. #### Table 19: Related Bit / Register in Chapter 3.10 | Bit | Register | Address (Hex) | |---|---|---------------| | CURRENT_PH_DATA[15:0] | CURRENT_DPLL_PHASE[15:8]_STS, CURRENT_DPLL_PHASE[7:0]_STS | 69, 68 | | CURRENT_DPLL_FREQ[23:0] | CURRENT_DPLL_FREQ[23:16]_STS, CURRENT_DPLL_FREQ[15:8]_STS, CURRENT_DPLL_FREQ[7:0]_STS | 64, 63, 62 | | T0_DPLL_START_BW[4:0] T0_DPLL_START_DAMPING[2:0] | T0_DPLL_START_BW_DAMPING_CNFG | 56 | | T0_DPLL_ACQ_BW[4:0] T0_DPLL_ACQ_DAMPING[2:0] | T0_DPLL_ACQ_BW_DAMPING_CNFG | 57 | | T0_DPLL_LOCKED_BW[4:0] T0_DPLL_LOCKED_DAMPING[2:0] | T0_DPLL_LOCKED_BW_DAMPING_CNFG | 58 | | AUTO_BW_SEL | T0_BW_OVERSHOOT_CNFG | 59 | | FAST_LOS_SW | PHASE_LOSS_FINE_LIMIT_CNFG | 5B | | TEMP_HOLDOVER_MODE[1:0] MAN_HOLDOVER AUTO_AVG FAST_AVG READ_AVG | T0_HOLDOVER_MODE_CNFG | 5C | | T0_HOLDOVER_FREQ[23:0] | T0_HOLDOVER_FREQ[23:16]_CNFG, T0_HOLDOVER_FREQ[15:8]_CNFG, T0_HOLDOVER_FREQ[7:0]_CNFG | 5F, 5E, 5D | #### 3.11 DPLL OUTPUT The DPLL output is locked to the selected input clock. According to the phase-compared result of the feedback and the selected input clock, and the DPLL output frequency offset, the PFD output is limited and the DPLL output is frequency offset limited. #### 3.11.1 PFD OUTPUT LIMIT The PFD output is limited to be within ±1 UI or within the coarse phase limit (refer to Chapter 3.7.1.2 Coarse Phase Loss), as determined by the MULTI PH APP bit. #### 3.11.2 FREQUENCY OFFSET LIMIT The DPLL output is limited to be within the DPLL hard limit (refer to Chapter 3.7.1.4 Hard Limit Exceeding). The integral path value can be frozen when the DPLL hard limit is reached. This function, enabled by the T0_LIMT bit, will minimize the subsequent overshoot when T0 DPLL is pulling in. #### 3.11.3 PBO When a PBO event is triggered, the phase offset of the selected input clock with respect to the T0 DPLL output is measured. The device then automatically accounts for the measured phase offset and compensates an appropriate phase offset into the DPLL output so that the phase transients on the T0 DPLL output are minimized. A PBO event is triggered if any one of the following conditions occurs: - T0 selected input clock switches (the PBO_EN bit is '1'); - T0 DPLL exits from Holdover mode or Free-Run mode (the PBO EN bit is '1'); - Phase-time changes on the T0 selected input clock are greater than a programmable limit over an interval of less than 0.1 seconds (the PH_MON_PBO_EN bit is '1'). For the first two conditions, the phase transients on the T0 DPLL output are minimized to be no more than 0.61 ns with PBO. The PBO can also be frozen at the current phase offset by setting the PBO_FREZ bit. When the PBO is frozen, the device will ignore any further PBO events triggered by the above two conditions, and maintain the current phase offset. When the PBO is disabled, there may be a phase shift on the T0 DPLL output and the T0 DPLL output tracks back to 0 degree phase offset with respect to the T0 selected input clock. The last condition is specially for stratum 2 and 3E clocks. The PBO requirement specified in the Telcordia GR-1244-CORE is: 'Input phase-time changes of 3.5 μ s or greater over an interval of less than 0.1 seconds or less shall be built-out by stratum 2 and 3E clocks to reduce the resulting clock phase-time change to less than 50 ns. Phase-time changes of 1.0 μ s or less over an interval of 0.1 seconds shall not be built-out.' Based on this requirement, phase-time changes of more than 1.0 μ s but less than 3.5 μ s that occur over an interval of less than 0.1 seconds may or may not be built-out. An integrated Phase Transient Monitor can be enabled by the PH_MON_EN bit to monitor the phase-time changes on the T0 selected input clock. When the phase-time changes are greater than a limit over an interval of less than 0.1 seconds, a PBO event is triggered and the phase transients on the DPLL output are absorbed. The limit is programmed by the PH_TR_MON_LIMT[3:0] bits, and can be calculated as follows: #### $Limit(ns) = (PH_TR_MON_LIMT[3:0] + 7) X 156$ The phase offset induced by PBO will never result in a coarse or fine phase loss. #### 3.11.4 FOUR PATHS OF TO DPLL OUTPUT The T0 DPLL output is phase aligned with the T0 selected input clock every 125 µs period. T0 DPLL has four output paths as follows: - 77.76 MHz path outputs a 77.76 MHz clock; - 16E1/16T1 path outputs a 16E1 or 16T1 clock, as selected by the IN_SONET_SDH bit; - GSM/OBSAI/16E1/16T1 path outputs a GSM, OBSAI, 16E1 or 16T1 clock, as selected by the T0_GSM_OBSAI_16E1_16T1_ SEL[1:0] bits; - 12E1/24T1/E3/T3 path outputs a 12E1, 24T1, E3 or T3 clock, as selected by the T0_12E1_24T1_E3_T3_SEL[1:0] bits. T0 selected input clock is compared with a T0 DPLL output for DPLL locking. The output can only be derived from the 77.76 MHz path or the 16E1/16T1 path. The output path is automatically selected and the output is automatically divided to get the same frequency as the T0 selected input clock. T0 DPLL outputs are provided for T0 APLL or device output process. Table 20: Related Bit / Register in Chapter 3.11 | Bit | Register | Address (Hex) | |---------------------------------|-------------------------------|---------------| | MULTI_PH_APP | PHASE_LOSS_COARSE_LIMIT_CNFG | 5A | | T0_LIMT | T0_BW_OVERSHOOT_CNFG | 59 | | PBO_EN | MON SW PBO CNFG | 0B | | PBO_FREZ | - INIOIN_SVV_I BO_CIVI G | OB | | PH_MON_PBO_EN | | | | PH_MON_EN | PHASE_MON_PBO_CNFG | 78 | | PH_TR_MON_LIMT[3:0] | 7 | | | PH_OFFSET_EN | PHASE_OFFSET[9:8]_CNFG | 7B | | IN_SONET_SDH | INPUT_MODE_CNFG | 09 | | T0_GSM_OBSAI_16E1_16T1_SEL[1:0] | TO DPLL APLL PATH CNFG | 55 | | T0_12E1_24T1_E3_T3_SEL[1:0] | - IV_DI LL_AI LL_I AIII_ONI O | 33 | #### 3.12 T0 APLL A T0 APLL is provided for a better jitter and wander performance of the device output clock. The bandwidth of the T0 APLL is set by the T0 APLL BW[1:0] bits. The lower the bandwidth is, the better the jitter and wander performance of the T0 APLL output are. The input of the T0 APLL can be derived from T0 DPLL output, as selected by the T0_APLL_PATH[3:0] bits. Both the APLL and DPLL outputs are provided for selection for the device output. Table 21: Related Bit / Register in Chapter 3.12 | Bit | Register | Address (Hex) | |-------------------|------------------------|---------------| | T0_APLL_BW[1:0] | T0_APLL_BW_CNFG | 6A | | T0_APLL_PATH[3:0] | T0_DPLL_APLL_PATH_CNFG | 55 | #### 3.13 **OUTPUT CLOCK & FRAME SYNC SIGNALS** The device supports 1 output clock and 1 frame sync output signal altogether. #### 3.13.1 **OUTPUT CLOCK** The device provides 1 output clock. The output on OUT1 is variable, depending on the signals derived from the T0 DPLL and T0 APLL outputs, and the corresponding OUT1_PATH_SEL[3:0] bits. The derived signal can be from the T0 DPLL and T0 APLL outputs, as selected by the corresponding OUT1_PATH_SEL[3:0] bits. If the signal is derived from the T0 DPLL output, please refer to Table 22 for the output frequency. If the signal is derived from the T0 APLL output, please refer to Table 23 for the output frequency. The output on OUT1 can be inverted, as determined by the corresponding OUT1 INV bit. The output clock derived from T0 selected input clock is aligned with the T0 selected input clock every 125 µs period. Table 22: Output on OUT1 if Derived from T0 DPLL Output | OUT1_DIVIDER[3:0]
(Output Divider) | output on OUT1 if derived from T0 DPLL output ¹ | | | | | | | | | | |---------------------------------------|--|------|------|------|------------------|---------------|----|--------------|-------------------|--| | | 77.76 MHz | 12E1 |
16E1 | 24T1 | 16T1 | E3 | Т3 | GSM (26 MHz) | OBSAI (30.72 MHz) | | | 0000 | Į. | | | Ou | tput is disabled | (output low). | | | | | | 0001 | | | | | | | | | | | | 0010 | | 12E1 | 16E1 | 24T1 | 16T1 | E3 | T3 | | | | | 0011 | | 6E1 | 8E1 | 12T1 | 8T1 | | | 13 MHz | 15.36 MHz | | | 0100 | | 3E1 | 4E1 | 6T1 | 4T1 | | | | | | | 0101 | | 2E1 | | 4T1 | | | | | | | | 0110 | | | 2E1 | 3T1 | 2T1 | | | | | | | 0111 | | E1 | | 2T1 | | | | | | | | 1000 | | | E1 | | T1 | | | | | | | 1001 | | | | T1 | | | | | | | | 1010 | 64 kHz | | | | | | | | | | | 1011 | 8 kHz | | | | | | | | | | | 1100 | 2 kHz | | | | | | | | | | | 1101 | 400 Hz | | | | | | | | | | | 1110 | 1Hz | | | | | | | | | | | 1111 | Output is disabled (output high). | | | | | | | | | | ^{1.} E1 = 2.048 MHz, T1 = 1.544 MHz, E3 = 34.368 MHz, T3 = 44.736 MHz. The blank cell means the configuration is reserved. Table 23: Output on OUT1 if Derived from T0 APLL | OUT1_DIVIDER[3:0] | | | | output on | OUT1 if deriv | ed from T0 | APLL out | put ¹ | | |-------------------|---------------|----------|----------|-----------|-----------------|--------------|----------|------------------|------------------------| | (Output Divider) | 77.76 MHz X 4 | 12E1 X 4 | 16E1 X 4 | 24T1 X 4 | 16T1 X 4 | E3 | Т3 | GSM (26 MHz X 2) | OBSAI (30.72 MHz X 10) | | 0000 | | | I | I | Output is disa | bled (output | low). | | | | 0001 | | | | | | | | | | | 0010 | | 48E1 | 64E1 | 96T1 | 64T1 | E3 | T3 | 52 MHz | | | 0011 | 155.52 MHz | 24E1 | 32E1 | 48T1 | 32T1 | | | 26 MHz | 153.6 MHz | | 0100 | 77.76 MHz | 12E1 | 16E1 | 24T1 | 16T1 | | | 13 MHz | 76.8 MHz | | 0101 | 51.84 MHz | 8E1 | | 16T1 | | | | | | | 0110 | 38.88 MHz | 6E1 | 8E1 | 12T1 | 8T1 | | | | 38.4 MHz | | 0111 | 25.92 MHz | 4E1 | | 8T1 | | | | | | | 1000 | 19.44 MHz | 3E1 | 4E1 | 6T1 | 4T1 | | | | | | 1001 | | 2E1 | | 4T1 | | | | | 61.44 MHz ² | | 1010 | | | 2E1 | 3T1 | 2T1 | | | | 30.72 MHz ² | | 1011 | 6.48 MHz | E1 | | 2T1 | | | | | 15.36 MHz ² | | 1100 | | | E1 | | T1 | | | | 7.68 MHz ² | | 1101 | | | | T1 | | | | | 3.84 MHz ² | | 1110 | | | | | | | | | | | 1111 | | | | 1 | Output is disal | oled (output | high). | l | | #### Note: ^{1.} In the APLL, the selected T0 DPLL output may be multiplied. E1 = 2.048 MHz, T1 = 1.544 MHz, E3 = 34.368 MHz, T3 = 44.736 MHz. The blank cell means the configuration is reserved. 2. The 61.44 MHz, 30.72 MHz, 15.36 MHz, 7.68 MHz and 3.84 MHz outputs are only derived from T0 APLL. #### 3.13.2 FRAME SYNC OUTPUT SIGNAL An 8 kHz frame sync signal is output on the FRSYNC_8K pin if enabled by the 8K_EN bit. It is a CMOS output. The frame sync signal is derived from the T0 APLL output and are aligned with the output clock. It can be synchronized to one of the two frame sync input signals. One of the two frame sync input signals is selected, as determined by the SYNC_BYPASS bit and the T0 selected input clock, as shown in Table 24: Table 24: Frame Sync Input Signal Selection | SYNC_BYPASS | T0 Selected Input Clock | Selected Frame Sync Input
Signal | |-------------|-------------------------|-------------------------------------| | 0 | don't-care | EX_SYNC1 | | | IN1_CMOS | EX_SYNC1 | | 1 | IN2_CMOS | EX_SYNC2 | | | none | none | If the selected frame sync input signal with respect to the T0 selected input clock is above a limit set by the SYNC_MON_LIMT[2:0] bits, an external sync alarm will be raised and the selected frame sync input signal is disabled to synchronize the frame sync output signal. The external sync alarm is cleared once the selected frame sync input signal with respect to the T0 selected input clock is within the limit. If it is within the limit, whether the selected frame sync input signal is enabled to synchronize the frame sync output signal is determined by the SYNC_BYPASS bit, the AUTO_EXT_SYNC_EN bit and the EXT_SYNC_EN bit. Refer to Table 25 for details. When the selected frame sync input signal is enabled to synchronize the frame sync output signal, it should be adjusted to align itself with the T0 selected input clock. Nominally, the falling edge of the selected frame sync input signal is aligned with the rising edge of the T0 selected input clock. The selected frame sync input signal may be 0.5 UI early/late or 1 UI late due to the circuit and board wiring delays. Setting the sampling of the selected frame sync input signal by the SYNC_PHn[1:0] bits (n = 1 or 2 corresponding to EX_SYNC1 or EX_SYNC2 respectively) will compensate this early/late. Refer to Figure 7 to Figure 10. The EX_SYNC_ALARM_MON bit indicates whether the selected frame sync input signal is in external sync alarm status. The external sync alarm is indicated by the EX_SYNC_ALARM 1 bit. If the EX_SYNC_ALARM 2 bit is '1', the occurrence of the external sync alarm will trigger an interrupt. The 8 kHz frame sync output signal can be inverted by setting the 8K_INV bit. The frame sync output can be 50:50 duty cycle or pulsed, as determined by the 8K_PUL bit. When they are pulsed, the pulse width is defined by the period of OUT1; and they are pulsed on the position of the falling or rising edge of the standard 50:50 duty cycle, as selected by the 8K_PUL_POSITION bit. **Table 25: Synchronization Control** | SYNC_BYPASS | AUTO_EXT_SYNC_EN | EXT_SYNC_EN | Synchronization | |-------------|------------------|-------------|-----------------| | | don't-care | 0 | Disabled | | 0 | 0 | 1 | Enabled | | | 1 | 1 | Disabled | | 1 | don't-c | are | Enabled | Figure 7. On Target Frame Sync Input Signal Timing Figure 8. 0.5 UI Early Frame Sync Input Signal Timing Figure 9. 0.5 UI Late Frame Sync Input Signal Timing Figure 10. 1 UI Late Frame Sync Input Signal Timing Table 26: Related Bit / Register in Chapter 3.13 | Bit | Register | Address (Hex) | |----------------------------|-------------------------|---------------| | OUT1_PATH_SEL[3:0] | OUT1 FREQ CNFG | 6D | | OUT1_DIVIDER[3:0] | OUTI_FREQ_CNFG | 0D | | IN_SONET_SDH | | | | AUTO_EXT_SYNC_EN | INPUT_MODE_CNFG | 09 | | EXT_SYNC_EN | | | | OUT1_INV | OUT1_INV_CNFG | 73 | | 8K_EN | | | | 8K_INV | ED SYNC ONEG | 74 | | 8K_PUL | FR_SYNC_CNFG | 14 | | 8K_PUL_POSITION | | | | SYNC_BYPASS | SANC MONITOD CNEC | 7C | | SYNC_MON_LIMT[2:0] | SYNC_MONITOR_CNFG | 70 | | SYNC_PHn[1:0] (n = 1 or 2) | SYNC_PHASE_CNFG | 7D | | EX_SYNC_ALARM_MON | OPERATING_STS | 52 | | EX_SYNC_ALARM ¹ | INTERRUPTS3_STS | 0F | | EX_SYNC_ALARM ² | INTERRUPTS3_ENABLE_CNFG | 12 | #### 3.14 INTERRUPT SUMMARY The interrupt sources of the device are as follows: - · T0 Input clocks validity change - · T0 selected input clock fail - · T0 DPLL operating mode switch - · External sync alarm All of the above interrupt events are indicated by the corresponding interrupt status bit. If the corresponding interrupt enable bit is set, any of the interrupts can be reported by the INT_REQ pin. The output characteristics on the INT_REQ pin are determined by the HZ_EN bit and the INT_POL bit. Interrupt events are cleared by writing a '1' to the corresponding interrupt status bit. The INT_REQ pin will be inactive only when all the pending enabled interrupts are cleared. In addition, the interrupt of T0 selected input clock fail can be reported by the TDO pin, as determined by the LOS_FLAG_TO_TDO bit. Table 27: Related Bit / Register in Chapter 3.14 | Bit | Register | Address (Hex) | |-----------------|-----------------|---------------| | HZ_EN | INTERRUPT CNFG | 0C | | INT_POL | | | | LOS_FLAG_TO_TDO | MON_SW_PBO_CNFG | 0B | #### 3.15 TO SUMMARY The main features supported by the T0 path are as follows: - · Phase lock alarm: - Forced or Automatic input clock selection/switch; - 3 primary and 3 secondary, temporary DPLL operating modes, switched automatically or under external control; - Automatic switch between starting, acquisition and locked bandwidths/damping factors; - Programmable DPLL bandwidths from 1.2 Hz to 560 Hz in 8 steps: - Programmable damping factors: 1.2, 2.5, 5, 10 and 20; - Fast loss, coarse phase loss, fine phase loss and hard limit exceeding monitoring; - · Output phase and frequency offset limited; - Automatic Instantaneous, Automatic Slow Averaged, Automatic Fast Averaged or Manual holdover frequency offset acquiring; - PBO to minimize output phase transients; - · Programmable output phase offset; - · Low jitter multiple clock outputs with programmable polarity; - Low jitter 8 kHz frame sync signal output with programmable pulse width and polarity; ### 3.16 LINE CARD APPLICATION Figure 11. Line Card Application # 4 I²C PROGRAMMING INTERFACE The I²C bus interface provides access to read and write the registers in the IDT82V32021. #### 4.1 FUNCTION DESCRIPTION The timing of a complete data transfer is shown in Figure 12. The transfer process can be divided into three phases: - START (S) or repeated START (Sr) condition; - · Byte data transfer condition; - · STOP (P) condition. The definitions of S/Sr and P conditions are shown in Table 28: Table 28: Definition of S/Sr and P Conditions | Condition | Definition | |-----------|--| | S/Sr | A high to low transition on the SDA pin while the SCL pin is high. | | Р | A low to high transition on the SDA pin while the SCL pin is high. | Every byte put on the SDA line must be 8-bit long. The number of bytes that can be transmitted per transfer is unrestricted in theory. Each byte has to be followed by an acknowledge bit (ACK). So the whole data transfer needs a period of 9 clock cycles. The data is transferred with the most significant bit (MSB) first. The input SCL signal for the IDT82V32021 is from the master device. Figure 12. Data Transfer on the I²C-bus #### 4.1.1 DATA TRANSFER FORMAT Two kinds of data transfer formats are supported by the IDT82V32021: - · Slave-receiver mode (Write); - · Slave-transmitter mode (Read); #### 4.1.1.1 Slave-receiver Mode (Write) The Slave-receiver mode is as shown in Figure 13. The Master device asserts the slave address followed by the Write bit. The Slave device
acknowledges and the Master device delivers the address byte. The Slave device again acknowledges before the Master device sends the data byte. The Slave device acknowledges each byte, and the entire transaction is finished with a STOP condition. Figure 13. Slave-receiver Mode #### 4.1.1.2 Slave-transmitter Mode (Read) The Slave-transmitter mode is as shown in Figure 14. First the Master device must write an address byte to the slave device. Then it must follow that address byte with a repeated START condition to denote a read from that device's address. The Slave device then returns one byte data corresponding the address. Note that there is no STOP condition before the repeated STRAT condition, and that a no-acknowledge (NACK) signifies the end of the read transfer. Figure 14. Slave-transmitter Mode #### 4.1.2 ADDRESS ASSIGNMENT | A6 | A5 | A4 | A3 | A2 | A1 | A0 | R/W | |----|----|----|----|-----|-----|-----|-----| | 1 | 0 | 1 | 0 | AD2 | AD1 | AD0 | 1/0 | Figure 15. Address Assignment Each device is recognized by a unique slave address. The slave addressing procedure for the I²C-bus is such that the first byte after the START condition usually determines which slave device will be selected by the Master device. In this specification, the 4 MSB bits of the address byte are fixed and the 3 LSB bits are decided by address input pins AD[2:0], as shown in Figure 15. The R/\overline{W} bit is used as a data transfer direction bit which is determined by the Master device. A '0' on this bit indicates a transmission (Write) to registers and a '1' indicates a request for data (Read) from the registers. The device will acknowledge (ACK) the first byte which is received after the Start Condition even though it is other device's address. If the slave address of the device matches the address input pins AD[2:0], the device will process the normal read/write operation; otherwise the device will release the data line with the right pin address for other chip operation. #### 4.2 TIMING DEFINITION The timing of I^2 C-bus is as shown in Figure 16. Figure 16. Timing Definition of I²C-bus Table 29: Timing Definition for Standard Mode and Fast Mode⁽¹⁾ | Cumbal | Parameter | Standa | rd Mode | Fast | Mode | Unit | |----------------------|---|-------------------------|--------------------------|---------------------------|-------------------------|------| | Symbol | Parameter | Min | Max | Min | Max | Unit | | SCL | Serial clock frequency | 0 | 100 | 0 | 400 | KHz | | t _{HD; STA} | Hold time (repeated) START condition. After this period, the first clock pulse is generated | 4.0 | - | 0.5 | - | μ\$ | | t _{LOW} | LOW period of the SCL clock | 4.7 | - | 1.3 | - | μs | | t _{HIGH} | HIGH period of the SCL clock | 4.0 | - | 0.6 | - | μS | | t _{SU; STA} | Set-up time for a repeated START condition | 4.7 | - | 0.6 | - | μS | | t _{HD; DAT} | Data hold time: for CBUS compatible masters for I ² C-bus devices | 5.0
0 ⁽²⁾ | -
3.45 ⁽³⁾ | -
0 ⁽²⁾ | -
0.9 ⁽³⁾ | μ\$ | | t _{SU; DAT} | Data set-up time | 250 | - | 100 ⁽⁴⁾ | - | ns | | t _r | Rise time of both SDA and SCL signals | - | 1000 | 20 + 0.1Cb ⁽⁵⁾ | 300 | ns | | t _f | Fall time of both SDA and SCL signals | - | 300 | 20 + 0.1Cb ⁽⁵⁾ | 300 | ns | | t _{SU; STO} | Set-up time for STOP condition | 4.0 | - | 0.6 | - | μS | | t _{BUF} | Bus free time between a STOP and START condition | 4.7 | - | 1.3 | - | μS | | C _b | Capacitive load for each bus line | - | 400 | - | 400 | pF | | V_{nL} | Noise margin at the LOW level for each connected device (Including hysteresis) | 0.1VDD | - | 0.1VDD | - | V | | V_{nH} | Noise margin at the HIGH level for each connected device (Including hysteresis) | 0.2VDD | - | 0.2VDD | - | V | | t _{sp} | Pulse width of spikes which must be suppressed by the input filter | 0 | 50 | 0 | 50 | ns | #### Note: ^{1.} All values referred to V_{IHmin} and V_{ILmax} levels (see Table 37) ^{2.} A device must Internally provide a hold time of at least 300 ns for the SDA signal (referred to the V_{IHmin} of the SCL signal) to bridge the undefined region of the falling edge of SCL. ^{3.} The maximum $t_{\text{HD; DAT}}$ has only to be met if the device does not strech the LOW period (t_{LOW}) of the SCL signal. ^{4.} A Fast-mode I^2C -bus device can be used in a Standard-mode I^2C -bus system, but the requirement $t_{SU; DAT} \ge 250$ ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line $t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250$ ns (according to the Standard-mode I^2C -bus specification) before the SCL line is released. ^{5.} C_b = total capacitance of one bus line in pF. If mixed with Hs-mode device, faster fall-times according to Table 39 allowed. n/a = not applicable ### 5 JTAG This device is compliant with the IEEE 1149.1 Boundary Scan standard except the following: - The output boundary scan cells do not capture data from the core and the device does not support EXTEST instruction; - The TRST pin is set low by default and JTAG is disabled in order to be consistent with other manufacturers. The JTAG interface timing diagram is shown in Figure 17. Figure 17. JTAG Interface Timing Diagram **Table 30: JTAG Timing Characteristics** | Symbol | Parameter | Min | Тур | Max | Unit | |------------------|-----------------------------|-----|-----|-----|------| | t _{TCK} | TCK period | 100 | | | ns | | t _S | TMS / TDI to TCK setup time | 25 | | | ns | | t _H | TCK to TMS / TDI Hold Time | 25 | | | ns | | t _D | TCK to TDO delay time | | | 50 | ns | #### 6 PROGRAMMING INFORMATION After reset, all the registers are set to their default values. The registers are read or written via the microprocessor interface. Before any write operation, the value in register PROTECTION_CNFG is recommended to be confirmed to make sure whether the write operation is enabled. The device provides 3 register protection modes: - Protected mode: no other registers can be written except register PROTECTION_CNFG itself; - Fully Unprotected mode: all the writable registers can be written; - Single Unprotected mode: one more register can be written besides register PROTECTION_CNFG. After write operation (not including writing a '1' to clear a bit to '0'), the device automatically switches to Protected mode. Writing '0' to the registers will take no effect if the registers are cleared by writing '1'. The access of the Multi-word Registers is different from that of the Single-word Registers. Take the registers (04H, 05H and 06H) for an example, the write operation for the Multi-word Registers follows a fixed sequence. The register (04H) is configured first and the register (06H) is configured last. The three registers are configured continuously and should not be interrupted by any operation. The crystal calibration configuration will take effect after all the three registers are configured. During read operation, the register (04H) is read first and the register (06H) is read last. The crystal calibration reading should be continuous and not be interrupted by any operation. Certain bit locations within the device register map are designated as Reserved. To ensure proper and predictable operation, bits designated as Reserved should not be written by the users. In addition, their value should be masked out from any testing or error detection methods that are implemented. #### 6.1 REGISTER MAP Table 31 is the map of all the registers, sorted in an ascending order of their addresses. Table 31: Register List and Map | Address
(Hex) | Register Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Reference
Page | |------------------|--|--------------------------|---------------------------------------|--------------------------|------------|--------------|------------------|-------|--------------------------|-------------------| | | L | I | Globa | I Control Re | gisters | I | | | I | | | 00 | ID[7:0] - Device ID 1 | | | | ID[| 7:0] | | | | P 49 | | 01 | ID[15:8] - Device ID 2 | | | | ID[1 | 5:8] | | | | P 49 | | 04 | NOMINAL_FREQ[7:0]_CNFG - Crystal Oscillator Frequency Offset Calibration Configuration 1 | | | NO | OMINAL_FRI | EQ_VALUE[7 | :0] | | | P 50 | | 05 | NOMINAL_FREQ[15:8]_CNFG - Crystal Oscillator Frequency Offset Calibration Configuration 2 | | NOMINAL_FREQ_VALUE[15:8] | | | | | P 50 | | | | 06 | NOMINAL_FREQ[23:16]_CNFG -
Crystal Oscillator Frequency Offset
Calibration Configuration 3 | | NOMINAL_FREQ_VALUE[23:16] | | | | | P 50 | | | | 08 | PHASE_ALARM_TIME_OUT_CNFG -
Phase Lock Alarm Time-Out Configu-
ration | | MULTI_FACTOR[1:0] TIME_OUT_VALUE[5:0] | | | | | P 51 | | | | 09 | INPUT_MODE_CNFG - Input Mode Configuration | AUTO_EX
T_SYNC_
EN | EXT_SYN
C_EN | PH_ALAR
M_TIMEO
UT | SYNC_F | REQ[1:0] | IN_SONET
_SDH | - | REVERTIV
E_MODE | P 52 | | 0A | OSCI_CNFG - Master Clock Configuration | - | - | - | - | - | OSC_EDG
E | - | - | P 53 | | 0B | MON_SW_PBO_CNFG - Frequency
Monitor, Input Clock Selection & PBO
Control | FREQ_MO
N_CLK | LOS_FLA
G_TO_TD
O | ULTR_FAS
T_SW | EXT_SW | PBO_FRE
Z | PBO_EN | - | FREQ_MO
N_HARD_
EN | P 54 | | 7E | PROTECTION_CNFG - Register Protection Mode Configuration | | | | | N_DATA[7:0 | | | | P 55 | | | | | Int | errupt Regis | ters | | | | | | | 0C | INTERRUPT_CNFG - Interrupt Configuration | - | - | - | - | - | - | HZ_EN | INT_POL | P 56 | Table 31: Register List and Map (Continued) | NTERRUPTS2_STS - Interrupt Status | Address
(Hex) | Register Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Reference
Page |
--|------------------|--|----------------|---------------|--------------|--------------|--------------------|------------|-------------|---------|-------------------| | INTERRUPTS2_STS-Interrupt Status DE ED | 0D | INTERRUPTS1_STS - Interrupt Status
1 | - | - | - | - | IN2_CMOS | IN1_CMOS | - | - | P 56 | | University Status | 0E | • | ATING_MO | REF_FAIL | - | - | - | - | - | - | P 57 | | Interrupt Control 1 | 0F | 3 | | - | - | - | - | - | - | - | P 57 | | INTERRUPTS3_ENABLE_CNFG | 10 | | - | | - | - | IN2_CMOS | IN1_CMOS | - | - | P 58 | | Interrupt Control 3 | 11 | Interrupt Control 2 | ATING_MO
DE | REF_FAIL | - | - | - | - | - | - | P 58 | | 16 | 12 | | _ALARM | - | - | - | - | - | - | - | P 59 | | Clock 1 Configuration IV | | | Input Cloc | k Frequency | & Priority C | Configuratio | n Registers | | | | | | Clock 2 Configuration IV LOCK_6R BUCKET_SEL[1:0] IN_FREQ[3:0] | 16 | Clock 1 Configuration | IV | LOCK_8K | BUCKET | _SEL[1:0] | | IN_FRE | EQ[3:0] | | P 60 | | Channel Selection | 17 | Clock 2 Configuration | IV | LOCK_8K | BUCKET | _SEL[1:0] | | IN_FRE | EQ[3:0] | | P 61 | | Division Factor Configuration 1 PRE_DIVN_VALUE[17:0] PRE_DIVN_VALUE[14:8] PRE_DIVN_VA | 23 | Channel Selection | - | - | - | - | I | PRE_DIV_CH | H_VALUE[3:0 |] | P 62 | | Divider Division Factor Configuration 2 IN1_IN2_CMOS_SEL_PRIORITY_CN FG - CMOS Input Clock 1 & 2 Priority Configuration Input Clock Quality Monitoring Configuration & Status Registers 2E FREQ_MON_FACTOR_CNFG - Factor of Frequency Monitor Configuration | 24 | Division Factor Configuration 1 | | | | PRE_DIVN | N_VALUE[7:0] | | | | P 62 | | Proceed to the configuration Input Clock 1 & 2 Priority IN2_CMOS_SEL_PRIORITY[3:0] IN1_CMOS_SEL_PRIORITY[3:0] | 25 | Divider Division Factor Configuration 2 | - | | | PRE_ | DIVN_VALUE | Ξ[14:8] | | | P 63 | | 2E FREQ_MON_FACTOR_CNFG - Factor of Frequency Monitor Configuration 2F FG - Frequency Monitor Threshold for All Input Clocks Configuration UPPER_THRESHOLD_0_CNFG - Upper Threshold for Leaky Bucket Configuration 0 LOWER_THRESHOLD_0_CNFG - Lower Threshold for Leaky Bucket Configuration 0 32 Lower Threshold for Leaky Bucket Configuration 0 33 BUCKET_SIZE_0_CNFG - Bucket Size for Leaky Bucket Configuration 0 BUCKET_SIZE_0_CNFG - Decay Rate for Leaky Bucket Configuration 0 34 DECAY_RATE_0_CNFG - Decay Rate for Leaky Bucket Configuration 0 UPPER_THRESHOLD_1_CNFG - Upper Threshold for Leaky Bucket Configuration 0 UPPER_THRESHOLD_1_CNFG - Upper Threshold for Leaky Bucket Configuration 0 UPPER_THRESHOLD_1_CNFG - Upper Threshold for Leaky Bucket Configuration 1 LOWER_THRESHOLD_1_CNFG - Lower Threshold for Leaky Bucket Configuration 1 LOWER_THRESHOLD_1_CNFG - Lower Threshold for Leaky Bucket Configuration 1 LOWER_THRESHOLD_1_CNFG - Lower Threshold for Leaky Bucket LOWER_THRESHOLD_1_DATA[7:0] | 27 | FG - CMOS Input Clock 1 & 2 Priority Configuration | | | | · • | | | _PRIORITY[| 3:0] | P 64 | | tor of Frequency Monitor Configuration ALL_FREQ_MON_THRESHOLD_CN FG - Frequency Monitor Threshold for All Input Clocks Configuration UPPER_THRESHOLD_0_CNFG Upper Threshold for Leaky Bucket Configuration LOWER_THRESHOLD_0_CNFG 22 Lower Threshold for Leaky Bucket Configuration 0 BUCKET_SIZE_0_CNFG - Bucket Size for Leaky Bucket Configuration 0 33 BUCKET_SIZE_0_CNFG - Decay Rate for Leaky Bucket Configuration 0 34 DECAY_RATE_0_CNFG - Decay Rate for Leaky Bucket Configuration 0 UPPER_THRESHOLD_1_CNFG - Upper Threshold for Leaky Bucket Configuration 0 UPPER_THRESHOLD_1_CNFG - Upper Threshold for Leaky Bucket Configuration 1 LOWER_THRESHOLD_1_CNFG - Lower Threshold for Leaky Bucket Configuration 1 LOWER_THRESHOLD_1_CNFG - Lower Threshold for Leaky Bucket LOWER_THRESHOLD_1_DATA[7:0] | | | put Clock Q | uality Monito | oring Config | uration & S | tatus Registe | ers | | | _ | | 2F FG - Frequency Monitor Threshold for All Input Clocks Configuration UPPER_THRESHOLD_0_CNFG - Upper Threshold for Leaky Bucket Configuration 0 LOWER_THRESHOLD_0_CNFG - Lower Threshold for Leaky Bucket Configuration 0 32 Lower Threshold for Leaky Bucket Configuration 0 33 BUCKET_SIZE_0_CNFG - Bucket Size for Leaky Bucket Configuration 0 34 DECAY_RATE_0_CNFG - Decay Rate for Leaky Bucket Configuration 0 UPPER_THRESHOLD_1_CNFG - Upper Threshold for Leaky Bucket Configuration 0 UPPER_THRESHOLD_1_CNFG - Upper Threshold for Leaky Bucket Configuration 1 LOWER_THRESHOLD_1_DATA[7:0] UPPER_THRESHOLD_1_CNFG - Upper Threshold for Leaky Bucket Configuration 1 LOWER_THRESHOLD_1_CNFG - Lower Threshold for Leaky Bucket LOWER_THRESHOLD_1_DATA[7:0] | 2E | tor of Frequency Monitor Configuration | - | - | - | - | F | FREQ_MON_ | FACTOR[3:0 |] | P 65 | | Upper Threshold for Leaky Bucket Configuration 0 LOWER_THRESHOLD_0_CNFG - Lower Threshold for Leaky Bucket Configuration 0 BUCKET_SIZE_0_CNFG - Bucket Size for Leaky Bucket Configuration 0 DECAY_RATE_0_CNFG - Decay Rate for Leaky Bucket Configuration 0 UPPER_THRESHOLD_1_CNFG - Upper Threshold for Leaky Bucket Configuration 1 UPPER_THRESHOLD_1_CNFG - UPPER_THRESHOLD_1_CNFG - Lower Threshold for Leaky Bucket LOWER_THRESHOLD_1_DATA[7:0] | 2F | FG - Frequency Monitor Threshold for
All Input Clocks Configuration | - | - | - | - | ALL_F | REQ_HARD | _THRESHOL | .D[3:0] | P 65 | | 32 Lower Threshold for Leaky Bucket Configuration 0 BUCKET_SIZE_0_CNFG - Bucket Size for Leaky Bucket Configuration 0 BUCKET_SIZE_0_DATA[7:0] 34 | 31 | Upper Threshold for Leaky Bucket Configuration 0 | | | UPPE | ER_THRESH | IOLD_0_DAT | A[7:0] | | | P 66 | | Size for Leaky Bucket Configuration 0 BUCKET_SIZE_U_DATA[7:0] | 32 | Lower Threshold for Leaky Bucket | | | LOWI | ER_THRESH | :SHOLD_0_DATA[7:0] | | | | P 66 | | for Leaky Bucket Configuration 0 [1:0] UPPER_THRESHOLD_1_CNFG - Upper Threshold for Leaky Bucket Configuration 1 LOWER_THRESHOLD_1_CNFG - Lower Threshold for Leaky Bucket UPPER_THRESHOLD_1_DATA[7:0] | 33 | Size for Leaky Bucket Configuration 0 | | | В | UCKET_SIZ | IZE_0_DATA[7:0] | | | | P 66 | | 35 Upper Threshold for Leaky Bucket Configuration 1 LOWER_THRESHOLD_1_CNFG - Lower Threshold for Leaky Bucket LOWER_THRESHOLD_1_DATA[7:0] | 34 | for Leaky Bucket Configuration 0 | - | - | - | - | - | - | | | P 67 | | 36 Lower Threshold for Leaky Bucket LOWER_THRESHOLD_1_DATA[7:0] | 35 | Upper Threshold for Leaky Bucket Configuration 1 | | | UPPE | ER_THRESH | IOLD_1_DAT | A[7:0] | | | P 67 | | Configuration 1 | 36 | Lower Threshold for Leaky Bucket | | | LOWI | ER_THRESH | HOLD_1_DAT | TA[7:0] | | | P 67 | Table 31: Register List and Map (Continued) | Address
(Hex) | Register Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Reference
Page | |------------------|---|---------------------------|--------------------------|---------------------------------|--------------------------------|------------------|--------------------------------------|--|--------------------------------|-------------------| | 37 | BUCKET_SIZE_1_CNFG - Bucket Size for Leaky Bucket Configuration 1 | | | В | UCKET_SIZE | =_1_DATA[7: | 0] | • | | P 68 | | 38 | DECAY_RATE_1_CNFG - Decay Rate for Leaky Bucket Configuration 1 | - | - | - | - | - | - | DECAY_RA
[1 | TE_1_DATA
:0] | P 68 | | 39 | UPPER_THRESHOLD_2_CNFG -
Upper Threshold for Leaky Bucket
Configuration 2 | | | UPPE | ER_THRESH | OLD_2_DAT | A[7:0] | | | P 68 | | 3A | LOWER_THRESHOLD_2_CNFG -
Lower Threshold for Leaky Bucket
Configuration 2 | | | LOWI | ER_THRESH | IOLD_2_DAT | A[7:0] | | | P 69 | | 3B | BUCKET_SIZE_2_CNFG - Bucket
Size for Leaky Bucket Configuration 2 | | | В | UCKET_SIZI | =_2_DATA[7: | 0] | | | P 69 | | 3C | DECAY_RATE_2_CNFG - Decay Rate for Leaky Bucket Configuration 2 | - | - | - | - | - | - | | TE_2_DATA
:0] | P 69 | | 3D | UPPER_THRESHOLD_3_CNFG -
Upper
Threshold for Leaky Bucket
Configuration 3 | | | UPPE | ER_THRESH | OLD_3_DAT | A[7:0] | | | P 70 | | 3E | LOWER_THRESHOLD_3_CNFG -
Lower Threshold for Leaky Bucket
Configuration 3 | | | LOWI | ER_THRESH | IOLD_3_DAT | A[7:0] | | | P 70 | | 3F | BUCKET_SIZE_3_CNFG - Bucket Size for Leaky Bucket Configuration 3 | | | В | UCKET_SIZE | E_3_DATA[7: | 0] | | | P 70 | | 40 | DECAY_RATE_3_CNFG - Decay Rate for Leaky Bucket Configuration 3 | - | - | - | - | - | - | | TE_3_DATA
:0] | P 71 | | 41 | IN_FREQ_READ_CH_CNFG - Input
Clock Frequency Read Channel
Selection | - | - | - | - | | IN_FREQ_R | EAD_CH[3:0 | | P 71 | | 42 | IN_FREQ_READ_STS - Input Clock
Frequency Read Value | | | | IN_FREQ_ | VALUE[7:0] | | | | P 71 | | 44 | IN1_IN2_CMOS_STS - CMOS Input
Clock 1 & 2 Status | - | _FREQ_H
ARD_ALA
RM | VITY_ALA
RM | IN2_CMOS
_PH_LOC
K_ALARM | - | IN1_CMOS
_FREQ_H
ARD_ALA
RM | IN1_CMOS
_NO_ACTI
VITY_ALA
RM | IN1_CMOS
_PH_LOC
K_ALARM | P 72 | | | | T | DPLL Inpu | t Clock Sele | ction Regist | ers | | | | | | 4A | INPUT_VALID1_STS - Input Clocks
Validity 1 | - | - | - | - | IN2_CMOS | IN1_CMOS | - | - | P 73 | | 4E | PRIORITY_TABLE1_STS - Priority
Status 1 | HIGHE | ST_PRIORI | ΓY_VALIDAT | ED[3:0] | | | ECTED_INP | | P 73 | | 4F | PRIORITY_TABLE2_STS - Priority
Status 2 | - | - | - | - | SECOND_H | HIGHEST_PF | riority_val
] | IDATED[3:0 | P 74 | | 50 | T0_INPUT_SEL_CNFG - T0 Selected Input Clock Configuration | - | - | - | - | | T0_INPU1 | Γ_SEL[3:0] | | P 74 | | | | | DPLL State | | ntrol Regist | ers | | | | | | 52 | OPERATING_STS - DPLL Operating Status | EX_SYNC
ALARM
MON | - | T0_DPLL_
SOFT_FRE
Q_ALARM | - | T0_DPLL_
LOCK | T0_DPLL_0 | OPERATING_ | MODE[2:0] | P 75 | | 53 | T0_OPERATING_MODE_CNFG - T0
DPLL Operating Mode Configuration | - | - | - | - | - | T0_OPE | ERATING_MO | DDE[2:0] | P 76 | Table 31: Register List and Map (Continued) | Address
(Hex) | Register Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Reference
Page | |------------------|---|----------------------|-----------------|------------------|------------------------------|---------------------|------------------------|-------------|---------------------|-------------------| | | | T0 I | PLL & TO A | PLL Configu | ration Regis | sters | l . | | | | | 55 | T0_DPLL_APLL_PATH_CNFG - T0
DPLL & APLL Path Configuration | | T0_APLL_ | _PATH[3:0] | | | DBSAI_16E1
SEL[1:0] | | 4T1_E3_T3
L[1:0] | P 77 | | 56 | T0_DPLL_START_BW_DAMPING_C
NFG - T0 DPLL Start Bandwidth &
Damping Factor Configuration | T0_DPLL_ | START_DAN | MPING[2:0] | | T0_DP | LL_START_E | 3W[4:0] | | P 78 | | 57 | T0_DPLL_ACQ_BW_DAMPING_CNF
G - T0 DPLL Acquisition Bandwidth &
Damping Factor Configuration | T0_DPLL | _ACQ_DAM | PING[2:0] | | T0_DI | PLL_ACQ_B' | W[4:0] | | P 79 | | 58 | T0_DPLL_LOCKED_BW_DAMPING_
CNFG - T0 DPLL Locked Bandwidth &
Damping Factor Configuration | | .OCKED_DA | MPING[2:0] | | T0_DPL | L_LOCKED_ | _BW[4:0] | | P 80 | | 59 | T0_BW_OVERSHOOT_CNFG - T0
DPLL Bandwidth Overshoot Configu-
ration | _SEL | - | - | - | T0_LIMT | - | - | - | P 80 | | 5A | PHASE_LOSS_COARSE_LIMIT_CNF
G - Phase Loss Coarse Detector Limit
Configuration | PH_LOS_L
IMT_EN | WIDE_EN | MULTI_PH
_APP | MULTI_PH
_8K_4K_2
K_EN | Pŀ | H_LOS_COA | RSE_LIMT[3 | :0] | P 81 | | 5B | PHASE_LOSS_FINE_LIMIT_CNFG - Phase Loss Fine Detector Limit Configuration | _EN | FAST_LOS
_SW | - | - | - | | OS_FINE_LIN | MT[2:0] | P 82 | | 5C | T0_HOLDOVER_MODE_CNFG - T0
DPLL Holdover Mode Configuration | MAN_HOL
DOVER | AUTO_AV
G | FAST_AVG | READ_AV
G | TEMP_HOL
ODE | DOVER_M
[1:0] | - | - | P 83 | | 5D | T0_HOLDOVER_FREQ[7:0]_CNFG - T0 DPLL Holdover Frequency Configuration 1 | | | Т | 0_HOLDOVE | _HOLDOVER_FREQ[7:0] | | | | P 83 | | 5E | T0_HOLDOVER_FREQ[15:8]_CNFG - T0 DPLL Holdover Frequency Configuration 2 | | | T | 0_HOLDOVE | R_FREQ[15: | 8] | | | P 84 | | 5F | T0_HOLDOVER_FREQ[23:16]_CNFG - T0 DPLL Holdover Frequency Configuration 3 | | | TO | _HOLDOVE | R_FREQ[23: | 16] | | | P 84 | | 62 | CURRENT_DPLL_FREQ[7:0]_STS - DPLL Current Frequency Status 1 | | | С | URRENT_DF | PLL_FREQ[7: | :0] | | | P 84 | | 63 | CURRENT_DPLL_FREQ[15:8]_STS -
DPLL Current Frequency Status 2 | | | Cl | JRRENT_DP | LL_FREQ[15 | 5:8] | | | P 85 | | 64 | CURRENT_DPLL_FREQ[23:16]_STS - DPLL Current Frequency Status 3 | | | CU | RRENT_DPL | L_FREQ[23: | :16] | | | P 85 | | 65 | DPLL_FREQ_SOFT_LIMIT_CNFG - DPLL Soft Limit Configuration | FREQ_LIM
T_PH_LOS | | | DPLL_FF | REQ_SOFT_I | LIMT[6:0] | | | P 85 | | 66 | DPLL_FREQ_HARD_LIMIT[7:0]_CNF
G - DPLL Hard Limit Configuration 1 | | | DF | PLL_FREQ_H | IARD_LIMT[7 | 7:0] | | | P 86 | | 67 | DPLL_FREQ_HARD_LIMIT[15:8]_CN
FG - DPLL Hard Limit Configuration 2 | | | DP | LL_FREQ_H | ARD_LIMT[1 | 5:8] | | | P 86 | | 68 | CURRENT_DPLL_PHASE[7:0]_STS - DPLL Current Phase Status 1 | | | | CURRENT_PH_DATA[7:0] | | | | P 86 | | | 69 | CURRENT_DPLL_PHASE[15:8]_STS - DPLL Current Phase Status 2 | | | (| CURRENT_P | H_DATA[15:8 | 3] | | | P 87 | | 6A | T0_APLL_BW_CNFG - T0 APLL Bandwidth Configuration | - | - | T0_APLL | _BW[1:0] | - | - | - | - | P 87 | Table 31: Register List and Map (Continued) | Address
(Hex) | Register Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Reference
Page | |------------------|--|--------------------------------------|-------------|---------------|---------------------|--------|----------|-------------|----------|-------------------| | | | | Output C | onfiguration | Registers | | | l . | | • | | 6D | OUT1_FREQ_CNFG - Output Clock 1 Frequency Configuration | OUT1_PATH_SEL[3:0] OUT1_DIVIDER[3:0] | | | | | | | P 88 | | | 73 | OUT1_INV_CNFG - Output Clock 1 Invert Configuration | - | - | - | - | - | OUT1_INV | - | - | P 88 | | 74 | FR_SYNC_CNFG - Frame Sync Output Configuration | IN_2K_4K_
8K_INV | 8K_EN | - | 8K_PUL_P
OSITION | 8K_INV | 8K_PUL | - | - | P 89 | | | | F | BO & Phase | Offset Con | trol Register | rs | | • | | • | | 78 | PHASE_MON_PBO_CNFG - Phase
Transient Monitor & PBO Configura-
tion | IN_NOISE
_WINDOW | - | PH_MON_
EN | PH_MON_
PBO_EN | | PH_TR_MO | N_LIMT[3:0] | | P 90 | | | | Sy | nchronizati | on Configur | ation Registe | ers | | | | | | 7C | SYNC_MONITOR_CNFG - Sync Monitor Configuration | SYNC_BY
PASS | SYNO | C_MON_LIM | T[2:0] | | | | - | P 91 | | 7D | SYNC_PHASE_CNFG - Sync Phase Configuration | - | - | | - | SYNC_ | PH2[1:0] | SYNC_i | PH1[1:0] | P 91 | ## 6.2 REGISTER DESCRIPTION ### 6.2.1 GLOBAL CONTROL REGISTERS ### ID[7:0] - Device ID 1 | Type | ess: 00H
: Read
ult Value: 10 | 001000 | | | | | | | | | |------|-------------------------------------|---------|-----------------------------|---|------|---------|-----|-----|--|--| | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | IE | ID7 | ID6 | ID5 | ID4 | ID3 | ID2 | ID1 | ID0 | | | | | Bit | Name | | | Desc | ription | | | | | | | 7 - 0 | ID[7:0] | Refer to the description of | er to the description of the ID[15:8] bits (b7~0, 01H). | | | | | | | # ID[15:8] - Device ID 2 | Type: | Address: 01H Type: Read Default Value: 00010001 | | | | | | | | | | | |-------|---|----------|---|-------------|------|------|-----|-----|--|--|--| | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | IC | ID15 | ID14 | ID13 | ID12 | ID11 | ID10 | ID9 | ID8 | | | | | | Bit | Name | | Description | | | | | | | | | | 7 - 0 | ID[15:8] | The value in the ID[15:0] bits are pre-set, representing the identification number for the IDT82V32021. | | | | | | | | | ### NOMINAL_FREQ[7:0]_CNFG - Crystal Oscillator Frequency Offset Calibration Configuration 1 | | :: 04H
ead / Write
Value: 000000 | 00 | | | | | | | | | |-------|--|-------------------------|--------------------------|--|-------------------------|-------------------------|-------------------------|-------------------------|--|--| | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | //INAL_FRE
_VALUE7 | NOMINAL_FRE
Q_VALUE6 | NOMINAL_FRE
Q_VALUE5 | NOMINAL_FRE
Q_VALUE4 | NOMINAL_FRE
Q_VALUE3 | NOMINAL_FRE
Q_VALUE2 | NOMINAL_FRE
Q_VALUE1 | NOMINAL_FRE
Q_VALUE0 | | | | Bit | ı | Name | | Description | | | | | | | | 7 - 0 | NOMINAL_F | REQ_VALUE[7:0] | Refer to the description | efer to the description of the NOMINAL_FREQ_VALUE[23:16] bits (b7~0, 06H). | | | | | | | ### NOMINAL_FREQ[15:8]_CNFG - Crystal Oscillator Frequency Offset Calibration Configuration 2 | | : 05H
ead / Write
/alue: 000000 | 00 | | | | | | | | |-------|--|------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------|-------------------------|--| | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | NOMINAL_FRE NOMINAL_FRE Q_VALUE15 Q_VALUE14 | | NOMINAL_FRE
Q_VALUE13 | NOMINAL_FRE
Q_VALUE12 | NOMINAL_FRE
Q_VALUE11 | NOMINAL_FRE
Q_VALUE10 | NOMINAL_FRE
Q_VALUE9 | NOMINAL_FRE
Q_VALUE8 | | | Bit | | Name | | Description | | | | | | | 7 - 0 | 7 - 0 NOMINAL_FREQ_VALUE[15:8] Refer to the description of the NOMINAL_FREQ_VALUE[23:16] bits (b7~0, 06H). | | | | | | | | | ## NOMINAL_FREQ[23:16]_CNFG - Crystal Oscillator Frequency Offset Calibration Configuration 3 | Type: R | Address: 06H Type: Read / Write Default Value: 00000000 | | | | | | | | | | | |
---|---|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--|--|--|--| | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | NOMINAL_FRE NOMINAL_FRE Q_VALUE22 | | | NOMINAL_FRE
Q_VALUE21 | NOMINAL_FRE
Q_VALUE20 | NOMINAL_FRE
Q_VALUE19 | NOMINAL_FRE
Q_VALUE18 | NOMINAL_FRE
Q_VALUE17 | NOMINAL_FRE
Q_VALUE16 | | | | | | Bit | | Name | | Description | | | | | | | | | | The NOMINAL_FREQ_VALUE[23:0] bits represent a 2's cor 0.0000884, the calibration value for the master clock in ppm will For example, the frequency offset on OSCI is +3 ppm. Though calculated as +3 ppm: 3 ÷ 0.0000884 = 33937 (Dec.) = 8490 (Hex); So '008490' should be written into these bits. The calibration range is within ±741 ppm. | | | | | n will be gotten. | - | | | | | | | # PHASE_ALARM_TIME_OUT_CNFG - Phase Lock Alarm Time-Out Configuration | Address: 08H
Type: Read / Wri
Default Value: 00 | | | | | | | | | | | |---|-------------------|---------------------------------------|----------------------|--|-----------------------|---------------------|--|--|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | MULTI_FACT
R1 | | | TIME_OUT_VA
LUE4 | TIME_OUT_VA
LUE3 | TIME_OUT_VA
LUE2 | TIME_OUT_VA
LUE1 | TIME_OUT_VAL
UE0 | | | | | Bit | Name | | Description | | | | | | | | | 7 - 6 | MULTI_FACTOR[1:0] | selected input cl
phase lock alarm | ock is not locked in | TO DPLL within the this period (starting | is period. If the PH_ | ALARM_TIMEOUT | m will be raised if the T0 bit (b5, 09H) is '1', the to the description of the | | | | | 11: 16 These bits represent an unsigned integer. If the value in these bits is multiplied by the value in the MULTI_FACTOR bits (b7~6, 08H), a period in seconds will be gotten. A phase lock alarm will be raised if the T0 selected input clock is not locked in T0 DPLL within this period. If PH_ALARM_TIMEOUT bit (b5, 09H) is '1', the phase lock alarm will be cleared after this period (starting from when alarm is raised). | | | | | | | vithin this period. If the | | | | # INPUT_MODE_CNFG - Input Mode Configuration | Address: 09H
Type: Read / V
Default Value: | | | | | | | | | | | | |--|------------------|---|---|--|----------------------------------|--------------------|---|--|--|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | AUTO_EXT
NC_EN | | PH_ALARM_TI
MEOUT | SYNC_FREQ1 | SYNC_FREQ0 | IN_SONET_SD
H | - | REVERTIVE_M
ODE | | | | | | Bit | Name | | | Desc | ription | | | | | | | | 7 | AUTO_EXT_SYNC_EN | This bit is valid only v | when the SYNC_BY | PASS bit (b7, 7CH) i | • | | | | | | | | , | AOTO_EXT_OTNO_EN | Refer to the description | | | (0) | | | | | | | | This bit is valid only when the SYNC_BYPASS bit (b7, 7CH) is '0'. This bit, together with the AUTO_EXT_SYNC_EN bit (b7, 09H), determines whether the selected frame sync input sign enabled to synchronize the frame sync output signals. 6 EXT_SYNC_EN | | | | | | | ame sync input signal is | | | | | | 6 | EXT_SYNC_EN | | | C_EN | - | | | | | | | | | | don't-care | | | Disabled (default) Enabled | | | | | | | | | | 1 | 1 | | | sabled | | | | | | | 5 | PH_ALARM_TIMEOUT | or 2) (b4/0, 44H).
1: The phase lock a
(b7~6, 08H) in secon | arm will be cleared value will be cleare d) which starts from | when a '1' is written t
d after a period (=
when the alarm is ra | TIME_OUT_VALUE[saised. (default) | 5:0] (b5~0, 08H) 2 | OCK_ALARM bit (n = 1
X MULTI_FACTOR[1:0] | | | | | | 4 - 3 | SYNC_FREQ[1:0] | These bits set the fre 00: 8 kHz (default) 01: 8 kHz. 10: 4 kHz. 11: 2 kHz. | | | on the EX_SYNC1 ~ I | EX_SYNC2 pins. | | | | | | | 2 | IN_SONET_SDH | This bit selects the SDH or SONET network type. 0: SDH. The DPLL required clock is 2.048 MHz when the IN_FREQ[3:0] bits (b3~0, 16H, 17H) are '0001' and the T0 DF output from the 16E1/16T1 path is 16E1 | | | | | | | | | | | 1 | - | Reserved. | | | | | | | | | | | 0 | REVERTIVE_MODE | This bit selects Revel 0: Non-Revertive switch. | | ve switch. | | | | | | | | # OSCI_CNFG - Master Clock Configuration | | Address: 0AH Type: Read / Write Default Value: XXXXX00X | | | | | | | | | | | | |-------|---|--------------------|---|---|-------------|---|---|--|--|--|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | - | · · | · | - | - | OSC_EDGE | - | - | | | | | | | Bit | Name | | | | Description | | | | | | | | | 7 - 3 | - | Reserved. | | | | | | | | | | | | 2 | OSC_EDGE | 0: The rising edge | This bit selects a better active edge of the master clock. D: The rising edge. (default) 1: The falling edge. | | | | | | | | | | | 1 - 0 | - | Reserved | | | | | | | | | | | ## MON_SW_PBO_CNFG - Frequency Monitor, Input Clock Selection & PBO Control | Address: 0Bl
Type: Read /
Default Value | Write | | | | | | | | |---|--|---|---|-----------------------------------|-----------------------|----------------------|---|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | FREQ_MO | ON_C LOS_FLAG_TO _TDO | ULTR_FAST_SW | EXT_SW | PBO_FREZ | PBO_EN | - | FREQ_MON_H
ARD_EN | | | Bit | Name | | | Descr | iption | | | | | 7 | FREQ_MON_CLK | The bit selects a reference clock for input clock frequency monitoring. 0: The output of T0 DPLL. 1: The master clock. (default) | | | | | | | | 6 | The bit determines whether the interrupt of T0 selected input clock fail - is reported by the TDO pin. O: Not reported. TDO pin is used as JTAG test data output which complies with IEEE 1149.1. (default) 1: Reported. TDO pin mimics the state of the T0_MAIN_REF_FAILED bit (b6, 0EH) and does not strictly comply 1149.1. | | | | | | | | | 5 | ULTR_FAST_SW | This bit determines who: Valid. (default) 1: Invalid. | | · | d when missing 2 co | onsecutive clock cyc | cles or more. | | | 4 | EXT_SW | This bit determines the T0 input
clock selection. 0: Forced selection or Automatic selection, as controlled by the T0_INPUT_SEL[3:0] bits (b3~0, 50H). 1: External Fast selection. The default value of this bit is determined by the FF_SRCSW pin during reset. | | | | | | | | 3 | PBO_FREZ | rent phase offset when 0: Not frozen. (default 1: Frozen. Further PB | n a PBO event is triç
)
O events are ignore | ggered.
d and the current ph | ase offset is maintai | ined. | 3O is frozen at the cur- | | | 2 | This bit determines whether PBO is enabled when the T0 selected input clock switch or the T0 DPLL exiting from Hol | | | | | | exiting from Holdover | | | 1 | Reserved. This bit determines whether the frequency hard alarm is enabled when the frequency of the input clock with respect to the second of the input clock with respect to r | | | | | | | | | 0 | FREQ_MON_HARD_EN | | ve the frequency ha | ird alarm threshold. ⁻ | The reference clock | | ock with respect to the f T0 DPLL or the mas- | | # PROTECTION_CNFG - Register Protection Mode Configuration | - | Address: 7EH Type: Read / Write Default Value: 10000101 | | | | | | | | | | | |---|---|--------------------------|---|---|----------------------|----------------------|----------------------|----------------------|--|--|--| | | 7 6 5 4 3 2 1 0 | | | | | | | | | | | | | PROTECTION DATA? | ON_ PROTECTION_
DATA6 | PROTECTION_
DATA5 | PROTECTION_
DATA4 | PROTECTION_
DATA3 | PROTECTION_
DATA2 | PROTECTION_
DATA1 | PROTECTION_
DATA0 | | | | | | Bit | Name | | | Des | scription | | | | | | | | 7 - 0 | PROTECTION_DATA[7:0] | 00000000 - 10000
10000101: Fully U
10000110: Single | hese bits select a register write protection mode. 2000000 - 10000100, 10000111 - 111111111: Protected mode. No other registers can be written except this register. 2000101: Fully Unprotected mode. All the writable registers can be written. (default) 2000110: Single Unprotected mode. One more register can be written besides this register. After write operation (not cluding writing a '1' to clear the bit to '0'), the device automatically switches to Protected mode. | | | | | | | | ### 6.2.2 INTERRUPT REGISTERS ## INTERRUPT_CNFG - Interrupt Configuration | | Address: 0CH Type: Read / Write Default Value: XXXXXX10 | | | | | | | | | | | | |-------|---|--|--|---|---|-------|---------|--|--|--|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | - | - | · | - | · | | HZ_EN | INT_POL | | | | | | | Bit | Name | | Description | | | | | | | | | | | 7 - 2 | - | Reserved. | | | | | | | | | | | | 1 | HZ_EN | 0: The output on the INT | is bit determines the output characteristics of the INT_REQ pin. The output on the INT_REQ pin is high/low when the interrupt is active; the output is the opposite when the interrupt is inactive. The output on the INT_REQ pin is high/low when the interrupt is active; the output is in high impedance state when the interrupt | | | | | | | | | | | 0 | INT_POL | This bit determines the a 0: Active low. (default) 1: Active high. | bit determines the active level on the INT_REQ pin for an active interrupt indication. ctive low. (default) | | | | | | | | | | # INTERRUPTS1_STS - Interrupt Status 1 | | Address: 0DH Type: Read / Write Default Value: XXXX11XX | | | | | | | | | | | | |-------|---|---|-------------|----------|----------|---|---|--|--|--|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | - | - | | - | IN2_CMOS | IN1_CMOS | - | | | | | | | | Bit | Name | | Description | | | | | | | | | | | 7 - 4 | - | Reserved. | | | | | | | | | | | | 3 - 2 | INn_CMOS | whether there is a transiti 0: Has not changed. 1: Has changed. (default) | • | | | | | | | | | | | 1 - 0 | - | Reserved. | | | | | | | | | | | # INTERRUPTS2_STS - Interrupt Status 2 | | Address: 0EH Type: Read / Write Default Value: 00XXXXXX | | | | | | | | | | |---|---|---|------------------------------|---------------------------------------|---|---------------|-----------|--------|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | T0_OPERAT
_MODE | ING T0_MAIN_REF_F
AILED | - | - | | | | <u> </u> | | | | | Bit | Name | | Description | | | | | | | | | 7 | T0_OPERATING_MODE | This bit indicate: T0_DPLL_OPERATI 0: Has not switched. 1: Has switched. This bit is cleared by | ING_MODE[2:0] b
(default) | g mode switch
its (b2~0, 52H) char | | i.e., whether | the value | in the | | | | This bit indicates whether the T0 selected input clock has failed. This bit indicates whether the T0 selected input clock has failed. | | | | | | | | | | | | 5 - 0 - Reserved. | | | | | | | | | | | ## INTERRUPTS3_STS - Interrupt Status 3 | Address: 0FH
Type: Read / Wri
Default Value: 1X | | | | | | | | | | | | | |---|---------------|---|------------------------------|------------|------------|-----------------|---------|----------|--------------|----------|--------|--------| | 7 | 6 | 5 | | 4 | | 3 | 2 | | 1 | | 0 | | | EX_SYNC_AL | ARM - | - | \perp | - | | - | - | \perp | | \perp | - | | | Bit | Name | | | | | Description | | | | | | | | 7 | EX_SYNC_ALARM | This bit indicates EX_SYNC_ALARM 0: Has not occurred 1: Has occurred. (c This bit is cleared by | I_MON bit (
d.
efault) | (b7, 52H). | sync alarm | is raised; i.e. | whether | there is | a transition | from '0' | to '1' | on the | | 6 - 0 | - | Reserved. | | | | | | | | | | | ## INTERRUPTS1_ENABLE_CNFG - Interrupt Control 1 | Address: 10H
Type: Read / Wr
Default Value: X | | | | | | | | |---|----------|---|---|----------|----------|---|---| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | - | - | · | | IN2_CMOS | IN1_CMOS | - | | | Bit | Name | | | Descrip | tion | | | | 7 - 4 | - | Reserved. | | | | | | | 3 - 2 | INn_CMOS | This bit controls whether 'valid' to 'invalid' or from 0: Disabled. (default) 1: Enabled. | | | | | | | 1 - 0 | - | Reserved. | | | | | | ### INTERRUPTS2_ENABLE_CNFG - Interrupt Control 2 | Address: 11H
Type: Read / Wri
Default Value: 00 | | | | | | | | | |---|--------------------|--|-----------------|------|----------|------------------|------------------------|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
0 | | | T0_OPERAT
_MODE | | - | - | | - | - | - | | | Bit | Name | | | Desc | cription | | | | | 7 | T0_OPERATING_MODE | This bit controls who switches, i.e., when 0: Disabled. (default 1: Enabled. | the T0_OPERATIN | | | REQ pin when the | TO DPLL operating mode | | | 6 | T0_MAIN_REF_FAILED | his bit controls whether the interrupt is enabled to be reported on the INT_REQ pin when the T0 selected input clock as failed; i.e., when the T0_MAIN_REF_FAILED bit (b6, 0EH) is '1'. : Disabled. (default) : Enabled. | | | | | | | | 5 - 0 | - | Reserved. | | | | | | | # INTERRUPTS3_ENABLE_CNFG - Interrupt Control 3 | Address: 12H
Type: Read / Wri
Default Value: 0X | | | | | | | | | | | | | |---|---------------|--|------------|-------------------------------|----------------------------|---------------------|-----------|------------|---------|---------|------------|----------------| | 7 | 6 | 5 | | 4 | | 3 | | 2 | | 1 | | 0 | | EX_SYNC_AL | ARM - | - | \Box | - | \perp | - | 工 | · | \perp | - | \perp | - | | Bit | Name | | | | | Des | scription | | | | | | | 7 | EX_SYNC_ALARM | This bit controls occurred, i.e., who 0: Disabled. (defa 1: Enabled. | en the EX_ | ne interrupt is
_SYNC_ALAF | s enabled f
RM bit (b7, | to be re
0FH) is | eported o | n the INT_ | REQ pin | when an | external s | sync alarm has | | 6 - 0 | - | Reserved. | | | | | | | | | | | ### 6.2.3 INPUT CLOCK FREQUENCY & PRIORITY CONFIGURATION REGISTERS # IN1_CMOS_CNFG - CMOS Input Clock 1 Configuration | Address: 16H
Type: Read / Wr
Default Value: 0 | | | | | | | | | | | |---|--------------|---|--|---|--|----------|----------|--|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | DIRECT_DI | V LOCK_8K | BUCKET_SEL1 | BUCKET_SEL0 | IN_FREQ3 | IN_FREQ2 | IN_FREQ1 | IN_FREQ0 | | | | | Bit | Name | | | Descr | iption | | | | | | | 7 | DIRECT_DIV | Refer to the description | efer to the description of the LOCK_8K bit (b6, 16H). | | | | | | | | | | | IN1_CMOS: | is bit, together with the DIRECT_DIV bit (b7, 16H), determines whether the DivN Divider or the Lock 8k Divider is used f
1_CMOS: | | | | | | | | | 6 | LOCK 8K | DIRECT_DIN | DIRECT_DIV bit LOCK_8K bit Used Divider 0 0 Both bypassed (default) | | | | | | | | | | LOOK_OK | 0 | 1 | | Lock 8k Divider | | | | | | | | | 1 | 0 | | | Divider | | | | | | | | 1 | 1 | | | served | | | | | | 5 - 4 | | These bits select one of 00: Group 0; the addres 01: Group 1; the addres 10: Group 2; the addres 11: Group 3; the addres | ses of the configura
ses of the configura
ses of the configura | tion registers are 31
tion registers are 35
tion registers are 39 | H ~ 34H. (default)
H ~ 38H.
H ~ 3CH. | I1_CMOS: | | | | | | 3 - 0 | IN_FREQ[3:0] | 0000: 8 kHz. (default)
0001: 1.544 MHz (wher
0010: 6.48 MHz.
0011: 19.44 MHz.
0100: 25.92 MHz.
0101: 38.88 MHz.
0110 ~ 1000: Reserved
1001: 2 kHz.
1010: 4 kHz.
1011 ~ 1111: Reserved. | 001: 1.544 MHz (when the IN_SONET_SDH bit (b2, 09H) is '1') / 2.048 MHz (when the IN_SONET_SDH bit (b2, 09H) is '0'). 010: 6.48 MHz. 011: 19.44 MHz. 100: 25.92 MHz. 101: 38.88 MHz. 110 ~ 1000: Reserved. 001: 2 kHz. 010: 4 kHz. | | | | | | | | # IN2_CMOS_CNFG - CMOS Input Clock 2 Configuration | Address: 17H
Type: Read / Wr
Default Value: 0 | | | | | | | | | | | |---|-----------------|--|--|------------|-----------------|----------|----------|--|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | DIRECT_D | IV LOCK_8K | BUCKET_SEL1 | BUCKET_SEL1 BUCKET_SEL0 IN | | IN_FREQ2 | IN_FREQ1 | IN_FREQ0 | | | | | Bit | Name | | Description | | | | | | | | | 7 | DIRECT_DIV | Refer to the description | of the LOCK_8K bit | (b6, 17H). | | | | | | | | | | IN2_CMOS: | s bit, together with the DIRECT_DIV bit (b7, 17H), determines whether the DivN Divider or the Lock 8k Divider is us | | | | | | | | | 6 | LOCK_8K | 0 | | | | | | | | | | | | 0 | 1 | | Lock 8k Divider | | | | | | | | | 1 | 0 | | DivN | Divider | | | | | | | | 1 | 1 | | Res | erved | | | | | | 5 - 4 | BUCKET_SEL[1:0] | 00: Group 0; the address
01: Group 1; the address
10: Group 2; the address | These bits select one of the four groups of leaky bucket configuration registers for IN2_CMOS: 00: Group 0; the addresses of the configuration registers are 31H ~ 34H. (default) 10: Group 1; the addresses of the configuration registers are 35H ~ 38H. 10: Group 2; the addresses of the configuration registers are 39H ~ 3CH. 11: Group 3; the addresses of the configuration registers are 3DH ~ 40H. | | | | | | | | | 3 - 0 | IN_FREQ[3:0] | 0000: 8 kHz. (default)
0001: 1.544 MHz (when
0010: 6.48 MHz.
0011: 19.44 MHz.
0100: 25.92 MHz.
0101: 38.88 MHz.
0110 ~ 1000: Reserved.
1001: 2 kHz.
1010: 4 kHz.
1011 ~ 1111: Reserved. | 001: 1.544 MHz (when the IN_SONET_SDH bit (b2, 09H) is '1') / 2.048 MHz (when the IN_SONET_SDH bit (b2, 09H) is '0'). 010: 6.48 MHz. 011: 19.44 MHz. 100: 25.92 MHz. 101: 38.88 MHz. 110 ~ 1000: Reserved. 001: 2 kHz. 010: 4 kHz. | | | | | | | | ## PRE_DIV_CH_CNFG - DivN Divider Channel Selection | Address: 23H
Type: Read / Wr
Default Value: X | | | | | | | | | | |---|-----------------------|---|-------------------|-------------------|--------------------------------|--|--|--|--| | 7 | 6 5 4 | 3 | 2 | 1 | 0 | | | | | | · | | PRE_DIV_CH_VALUE3 | PRE_DIV_CH_VALUE2 | PRE_DIV_CH_VALUE1 | PRE_DIV_CH_VALUE0 | | | | | | Bit | t Name Description | | | | | | | | | | 7 - 4 | - | Reserved. | | | | | | | | | 3 - 0 | PRE_DIV_CH_VALUE[3:0] | This register is an indirect addrest These bits select an input clock selected input clock. 0000: Reserved. (default) 0001, 0010: Reserved. 0011: IN1_CMOS. 0100: IN2_CMOS. 0101 ~ 1111: Reserved. | • | | 25H, 24H) is available for the | | | | | # PRE_DIVN[7:0]_CNFG - DivN Divider Division Factor Configuration 1 | Т | Address: 24H
Type: Read / Wri
Default Value: 00 | | | | | | | | | | | |---|---|------------------------|--|---------------------|---------------------|---------------------|---------------------|---------------------|--|--|--| | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | PRE_DIVN_\
LUE7 | VA PRE_DIVN_VA
LUE6 | PRE_DIVN_VA
LUE5 | PRE_DIVN_VA
LUE4 | PRE_DIVN_VA
LUE3 | PRE_DIVN_VA
LUE2 | PRE_DIVN_VA
LUE1 | PRE_DIVN_VA
LUE0 | | | | | F | Bit | Name | | Description | | | | | | | | | | 7 - 0 | PRE_DIVN_VALUE[7:0] | Refer to the description of the PRE_DIVN_VALUE[14:8] bits (b6~0, 25H). | | | | | | | | | # PRE_DIVN[14:8]_CNFG - DivN Divider Division Factor Configuration 2 | Address: 25H
Type: Read / Wri
Default Value: X0 | | | | | | | | | | | |---|----------------------|---|--|----------------------|----------------------|---------------------|---------------------|--|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | - | PRE_DIVN_VAL
UE14 | PRE_DIVN_VAL
UE13 | PRE_DIVN_VAL
UE12 | PRE_DIVN_VAL
UE11 | PRE_DIVN_VAL
UE10 | PRE_DIVN_VAL
UE9 | PRE_DIVN_VAL
UE8 | | | | | Bit | Name | | Description | | | | | | | | | 7 | - | Reserved. | | | | | | | | | | 6 - 0 | PRE_DIVN_VALUE[14:8] | clock is selected
A value from '0' the reserved. So the
The division factors. Write the lower | the value in the PRE_DIVN_VALUE[14:0] bits is plus 1, the division factor for an input clock will be gotten. The input lock is selected by the PRE_DIV_CH_VALUE[3:0] bits (b3~0, 23H). A value from '0' to '4BEF' (Hex) can be written into, corresponding to a division factor from 1 to 19440. The
others are esserved. So the DivN Divider only supports an input clock whose frequency is lower than (<) 155.52 MHz. The division factor setting should observe the following order: Write the lower eight bits of the division factor to the PRE_DIVN_VALUE[7:0] bits; Write the higher eight bits of the division factor to the PRE_DIVN_VALUE[14:8] bits. | | | | | | | | 63 # IN1_IN2_CMOS_SEL_PRIORITY_CNFG - CMOS Input Clock 1 & 2 Priority Configuration | Address: 27H
Type: Read / Wri
Default Value: 00 | | | | | | | | | | | |---|-------------------|--|---|---|----------------------------|----------------------------|----------------------------|----------------------------|--|--| | 7 | 6 | 5 | | 4 | 3 | 2 | 1 | 0 | | | | IN2_CMOS_S
L_PRIORITY: | | IN2_CMC
L_PRIOR | | IN2_CMOS_SE
L_PRIORITY0 | IN1_CMOS_SE
L_PRIORITY3 | IN1_CMOS_SE
L_PRIORITY2 | IN1_CMOS_SE
L_PRIORITY1 | IN1_CMOS_SE
L_PRIORITY0 | | | | Bit | Name | | Description | | | | | | | | | 7 - 4 | IN2_CMOS_SEL_PRIC | These bits set the priority of the corresponding IN2_CMOS. 0000: Disable IN2_CMOS for automatic selection. 0001: Priority 1. 0010: Priority 2. 0011: Priority 3. (default) 0100: Priority 4. 0101: Priority 5. 0110: Priority 6. PRIORITY[3:0] 0111: Priority 7. 1000: Priority 8. 1001: Priority 9. 1010: Priority 10. 1011: Priority 11. 1100: Priority 12. 1101: Priority 13. 1110: Priority 14. 1111: Priority 15. | | | | | | | | | | 3 - 0 | IN1_CMOS_SEL_PRIG | ORITY[3:0] | 0000: C
0001: F
0010: F
0011: P
0100: F
0101: F
0110: P
1000: F
1001: F
1010: F
1100: P
1101: P
1101: P | oits set the priority of pisable IN1_CMOS for priority 1. Priority 2. (default) priority 4. Priority 5. Priority 6. Priority 7. Priority 9. Priority 10. Priority 11. Priority 12. Priority 13. Priority 13. Priority 14. Priority 14. Priority 15. | | | | | | | ### 6.2.4 INPUT CLOCK QUALITY MONITORING CONFIGURATION & STATUS REGISTERS ## FREQ_MON_FACTOR_CNFG - Factor of Frequency Monitor Configuration | Address: 2EH
Type: Read / Wi
Default Value: X | | | | | | | | | | | |---|----------------------|--------------------------------|--|--------------------------------------|---|---|--|--|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | FREQ_MON_F
ACTOR3 | FREQ_MON_F
ACTOR2 | FREQ_MON_F
ACTOR1 | FREQ_MON_F
ACTOR0 | | | | | Bit | Name | Description | | | | | | | | | | 7 - 4 | - | Reserved. | | | | | | | | | | 3 - 0 | FREQ_MON_FACTOR[3:0] | the description clock with res | n of the ALL_FREQ pect to the master cluresents the accuracy as. | _HARD_THRESHOLock in ppm (refer to t | LD[3:0] bits (b3~0, 2) the description of the | PFH)) and with the fearing IN_FREQ_VALUE[| shold in ppm (refer to requency of the input 7:0] bits (b7~0, 42H)). requirements of differ- | | | | ## ALL_FREQ_MON_THRESHOLD_CNFG - Frequency Monitor Threshold for All Input Clocks Configuration | Address: 2FH
Type: Read / Wr
Default Value: X | | | | | | | | |---|-------------|---------------|--------------------------------|------------------------------|--------------------------------|------------------------------|---| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | - | - | - | - | ALL_FREQ_HARD_
THRESHOLD3 | ALL_FREQ_HARD_
THRESHOLD2 | ALL_FREQ_HARD_
THRESHOLD1 | ALL_FREQ_HARD_
THRESHOLD0 | | Bit | | Name | | | Descripti | on | | | 7 - 4 | | - | Reserve | ed. | | | | | 3 - 0 | ALL_FREQ_HA | RD_THRESHOLD[| follows:
Frequent
FREQ_I | | reshold (ppm) = (A
~0, 2EH) | | opm can be calculated as ESHOLD[3:0] + 1) X | ### UPPER_THRESHOLD_0_CNFG - Upper Threshold for Leaky Bucket Configuration 0 | Address: 31H
Type: Read /
Default Value | Write | 110 | | | | | | | | | | |---|-----------------------------------|---------------------------------|--------------------------|-------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--| | 7 | | 6 | 5 | | 4 | 3 | 2 | 1 | 0 | | | | UPPER_THRE
SHOLD_0_DAT
A7 | | UPPER_THRE
SHOLD_0_DAT
A6 | UPPER_1
SHOLD_0
A5 | | UPPER_THRE
SHOLD_0_DAT
A4 | UPPER_THRE
SHOLD_0_DAT
A3 | UPPER_THRE
SHOLD_0_DAT
A2 | UPPER_THRE
SHOLD_0_DAT
A1 | UPPER_THRE
SHOLD_0_DAT
A0 | | | | Bit | Bit Name | | | Description | | | | | | | | | 7 - 0 | 7 - 0 UPPER_THRESHOLD_0_DATA[7:0] | | | | These bits set an upper threshold for the internal leaky bucket accumulator. When the number of the accumulated events is above this threshold, a no-activity alarm is raised. | | | | | | | ### LOWER_THRESHOLD_0_CNFG - Lower Threshold for Leaky Bucket Configuration 0 | Т | Address: 32H
Type: Read /
Default Value | Write | 100 | | | | | | | | | |---|---|----------|---------------------------------|------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--| | | 7 | | 6 | 5 | | 4 | 3 | 2 | 1 | 0 | | | | LOWER_THRE
SHOLD_0_DAT
A7 | | LOWER_THRE
SHOLD_0_DAT
A6 | LOWER_
SHOLD_
A5 | 0_DAT | LOWER_THRE
SHOLD_0_DAT
A4 | LOWER_THRE
SHOLD_0_DAT
A3 | LOWER_THRE
SHOLD_0_DAT
A2 | LOWER_THRE
SHOLD_0_DAT
A1 | LOWER_THRE
SHOLD_0_DAT
A0 | | | ľ | Bit | Bit Name | | | Description | | | | | | | | | 7 - 0 | LOWER | R_THRESHOLD_0_ | | These bits set a lower threshold for the internal leaky bucket accumulator. When the number of the accumulated events is below this threshold, the no-activity alarm is cleared. | | | | | | | ### BUCKET_SIZE_0_CNFG - Bucket Size for Leaky Bucket Configuration 0 | Address: 33H Type: Read / Write Default Value: 00001000 | | | | | | | | | | | | | |---|-------|-------------------|-----------------------------------|--|-------------------------|-------------------------|-------------------------|-------------------------|--|--|--|--| | 7 | _ | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | BUCKET_
_0_DAT | | | BUCKET_SIZE
_0_DATA5 | BUCKET_SIZE
_0_DATA4 | BUCKET_SIZE
_0_DATA3 | BUCKET_SIZE
_0_DATA2 | BUCKET_SIZE
_0_DATA1 | BUCKET_SIZE
_0_DATA0 | | | | | | Bit | | Name | | Description | | | | | | | | | | 7 - 0 | BUCKE | ET_SIZE_0_DATA[7: | These bits set a the bucket size, | These bits set a bucket size for the internal leaky bucket accumulator. If the number of the accumulated events reach the bucket size, the accumulator will stop increasing even if further events are detected. | | | | | | | | | ### DECAY_RATE_0_CNFG - Decay Rate for Leaky Bucket Configuration 0 | | Address: 34H Type: Read / Write Default Value: XXXXXXX01 | | | | | | | | | | | | | |-------|--|---|---|---|------------|------------------------|------------------------|--|--|--|--|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | - | - | - | - | - | - | DECAY_RATE_
0_DATA1 | DECAY_RATE_
0_DATA0 | | | | | | | | Bit | Name | | | D | escription | | | | | | | | | | 7 - 2 | - | Reserved. | | | | | | | | | | | | | 1 - 0 | DECAY_RATE_0_DATA[| 00: The accum
01: The accum
10: The accum | These bits set a decay rate for the internal leaky bucket accumulator: 00: The accumulator decreases by 1 in every 128 ms with no event detected. 01: The accumulator decreases by 1 in every 256 ms with no event detected. (default) 10: The accumulator decreases by 1 in every 512 ms with no event detected. 11: The accumulator decreases by 1 in every 1024 ms with no event detected. | | | | | | | | | | | ### UPPER_THRESHOLD_1_CNFG - Upper Threshold for Leaky
Bucket Configuration 1 | Ту | ddress: 35H
/pe: Read / \
efault Value: | Write | 10 | | | | | | | | | | |----|---|-------|---------------------------------|------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--| | | 7 | | 6 | 5 | | 4 | 3 | 2 | 1 | 0 | | | | | UPPER_THRE
SHOLD_1_DAT
A7 | | UPPER_THRE
SHOLD_1_DAT
A6 | UPPER_
SHOLD_
AS | 1_DAT | UPPER_THRE
SHOLD_1_DAT
A4 | UPPER_THRE
SHOLD_1_DAT
A3 | UPPER_THRE
SHOLD_1_DAT
A2 | UPPER_THRE
SHOLD_1_DAT
A1 | UPPER_THRE
SHOLD_1_DAT
A0 | | | | F | Bit Name | | | | Description | | | | | | | | | | 7 - 0 UPPER_THRESHOLD_1_DATA[7:0] | | | | These bits set an upper threshold for the internal leaky bucket accumulator. When the number of the accumulated events is above this threshold, a no-activity alarm is raised. | | | | | | | | ### LOWER_THRESHOLD_1_CNFG - Lower Threshold for Leaky Bucket Configuration 1 | T | • • | ddress: 36H /pe: Read / Write efault Value: 00000100 | | | | | | | | | | | | | |---|---------------------------------|---|---------------------------------|------------------------|-------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|--| | | 7 6 | | | | | 4 | 3 | 2 | 1 | 0 | | | | | | | LOWER_THRE
SHOLD_1_DAT
A7 | | LOWER_THRE
SHOLD_1_DAT
A6 | LOWER_
SHOLD_
A5 | 1_DAT | LOWER_THRE
SHOLD_1_DAT
A4 | LOWER_THRE
SHOLD_1_DAT
A3 | LOWER_THRE
SHOLD_1_DAT
A2 | LOWER_THRE
SHOLD_1_DAT
A1 | LOWER_THRE
SHOLD_1_DAT
A0 | | | | | | | Bit | t Name | | | | Description | | | | | | | | | | | 7 - 0 | 7 - 0 LOWER_THRESHOLD_1_DATA[7:0] These bits set a lower threshold for the internal leaky bucket accumulator. When the number of the accumulate events is below this threshold, the no-activity alarm is cleared. | | | | | | | er of the accumulated | | | | | | ## BUCKET_SIZE_1_CNFG - Bucket Size for Leaky Bucket Configuration 1 | Address: 37H Type: Read / Write Default Value: 00001000 | | | | | | | | | | | | | |---|--------------------|--|--|-------------------------|-------------------------|-------------------------|-------------------------|--|--|--|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | BUCKET_SI
_1_DATA7 | | BUCKET_SIZE
_1_DATA5 | BUCKET_SIZE
_1_DATA4 | BUCKET_SIZE
_1_DATA3 | BUCKET_SIZE
_1_DATA2 | BUCKET_SIZE
_1_DATA1 | BUCKET_SIZE
_1_DATA0 | | | | | | | Bit | Name | T | Description | | | | | | | | | | | 7 - 0 | BUCKET_SIZE_1_DATA | [7:0] These bits set
the bucket siz | These bits set a bucket size for the internal leaky bucket accumulator. If the number of the accumulated events reach the bucket size, the accumulator will stop increasing even if further events are detected. | | | | | | | | | | ### DECAY_RATE_1_CNFG - Decay Rate for Leaky Bucket Configuration 1 | Address: 38H Type: Read / Write Default Value: XXXXXXX01 | | | | | | | | | | | | | |--|-------------------|---|--|---|--|----------------------------|------------------------|--|--|--|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | | | | | DECAY_RATE_
1_DATA1 | DECAY_RATE_
1_DATA0 | | | | | | | Bit | Name | | Description | | | | | | | | | | | 7 - 2 | - | Reserved. | | | | | | | | | | | | 1-0 | DECAY_RATE_1_DATA | 00: The acc
01: The acc
10: The acc | set a decay rate for the
cumulator decreases b
cumulator decreases b
cumulator decreases b
cumulator decreases b | by 1 in every 128 r
by 1 in every 256 r
by 1 in every 512 r | ns with no event det
ns with no event det
ns with no event det | ected. (default)
ected. | | | | | | | ### UPPER_THRESHOLD_2_CNFG - Upper Threshold for Leaky Bucket Configuration 2 | T | Address: 39H Type: Read / Write Default Value: 00000110 | | | | | | | | | | | | | |---|---|---------------------------------|---------------------------------|---------------|-------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--| | | 7 | | 6 | 5 | | 4 | 3 | 2 | 1 | 0 | | | | | | UPPER_TH
SHOLD_2_
A7 | | UPPER_THRE
SHOLD_2_DAT
A6 | UPPER_SHOLD_2 | | UPPER_THRE
SHOLD_2_DAT
A4 | UPPER_THRE
SHOLD_2_DAT
A3 | UPPER_THRE
SHOLD_2_DAT
A2 | UPPER_THRE
SHOLD_2_DAT
A1 | UPPER_THRE
SHOLD_2_DAT
A0 | | | | | F | Bit | Name | | | Description | | | | | | | | | | | 7 - 0 | - 0 UPPER_THRESHOLD_2_DATA[7:0] | | | | These bits set an upper threshold for the internal leaky bucket accumulator. When the number of the accumulated events is above this threshold, a no-activity alarm is raised. | | | | | | | | ### LOWER_THRESHOLD_2_CNFG - Lower Threshold for Leaky Bucket Configuration 2 | Address: 3AH
Type: Read / V
Default Value: | | 00 | | | | | | | | | |--|-----------------------------|---------------------------------|---------------------------|-------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--| | 7 | | 6 | 5 | | 4 | 3 | 2 | 1 | 0 | | | LOWER_TI
SHOLD_2_
A7 | | LOWER_THRE
SHOLD_2_DAT
A6 | LOWER_T
SHOLD_2_
A5 | | LOWER_THRE
SHOLD_2_DAT
A4 | LOWER_THRE
SHOLD_2_DAT
A3 | LOWER_THRE
SHOLD_2_DAT
A2 | LOWER_THRE
SHOLD_2_DAT
A1 | LOWER_THRE
SHOLD_2_DAT
A0 | | | Bit | Name | | | Description | | | | | | | | 7 - 0 | LOWER_THRESHOLD_2_DATA[7:0] | | | | These bits set a lower threshold for the internal leaky bucket accumulator. When the number of the accumulated events is below this threshold, the no-activity alarm is cleared. | | | | | | ### BUCKET_SIZE_2_CNFG - Bucket Size for Leaky Bucket Configuration 2 | Address: 3BH Type: Read / Write Default Value: 00001000 | | | | | | | | | | | | |---|-------|-------------------------|-------------------------|--|-------------------------|-------------------------|-------------------------|-------------------------|--|--|--| | 7 | | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | BUCKET_
_2_DAT | | BUCKET_SIZE
_2_DATA6 | BUCKET_SIZE
_2_DATA5 | BUCKET_SIZE
_2_DATA4 | BUCKET_SIZE
_2_DATA3 | BUCKET_SIZE
_2_DATA2 | BUCKET_SIZE
_2_DATA1 | BUCKET_SIZE
_2_DATA0 | | | | | Bit | | Name | | Description | | | | | | | | | 7 - 0 | BUCKI | ET_SIZE_2_DATA[7 | | These bits set a bucket size for the internal leaky bucket accumulator. If the number of the accumulated events reach the bucket size, the accumulator will stop increasing even if further events are detected. | | | | | | | | ## DECAY_RATE_2_CNFG - Decay Rate for Leaky Bucket Configuration 2 | Address: 30 | CH | | | | | | | | | | | | | |--------------|------------|---------------
--|--|---|---|------------------------|------------------------|--|--|--|--|--| | Type: Read | / Write | | | | | | | | | | | | | | Default Valu | ie: XXXXXX | 01 | | | | | | | | | | | | | 7 | _ | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | \Box | - | - | - | - | | DECAY_RATE_
2_DATA1 | DECAY_RATE_
2_DATA0 | | | | | | | Bit | Bit Name | | | Description | | | | | | | | | | | 7 - 2 | | - | Reserved. | Reserved. | | | | | | | | | | | 1 - 0 | DECAY_ | rate_2_data[1 | :0] 00: The accuming 10: 10 | a decay rate for the i
ulator decreases by
ulator decreases by
ulator decreases by
ulator decreases by | 1 in every 128 ms w
1 in every 256 ms w
1 in every 512 ms w | vith no event detecte
vith no event detecte
vith no event detecte | ed. (default)
ed. | | | | | | | ### UPPER_THRESHOLD_3_CNFG - Upper Threshold for Leaky Bucket Configuration 3 | Address: 3DH Type: Read / Write Default Value: 00000110 | | | | | | | | | | |---|----------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | 7 | | 6 | 5 | | 4 | 3 | 2 | 1 | 0 | | UPPER_TH
SHOLD_3_
A7 | | UPPER_THRE
SHOLD_3_DAT
A6 | UPPER_THRE
SHOLD_3_DAT
A5 | | UPPER_THRE
SHOLD_3_DAT
A4 | UPPER_THRE
SHOLD_3_DAT
A3 | UPPER_THRE
SHOLD_3_DAT
A2 | UPPER_THRE
SHOLD_3_DAT
A1 | UPPER_THRE
SHOLD_3_DAT
A0 | | Bit | Bit Name | | | Description | | | | | | | 7 - 0 | UPPE | R_THRESHOLD_3 | | These bits set an upper threshold for the internal leaky bucket accumulator. When the number of the accumulated events is above this threshold, a no-activity alarm is raised. | | | | | | ### LOWER_THRESHOLD_3_CNFG - Lower Threshold for Leaky Bucket Configuration 3 | Address: 3EH Type: Read / Write Default Value: 00000100 | | | | | | | | | | | |---|----------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--| | 7 | | 6 | 5 | | 4 | 3 | 2 | 1 | 0 | | | LOWER_SHOLD_3 | | LOWER_THRE
SHOLD_3_DAT
A6 | LOWER_THRE
SHOLD_3_DAT
A5 | | LOWER_THRE
SHOLD_3_DAT
A4 | LOWER_THRE
SHOLD_3_DAT
A3 | LOWER_THRE
SHOLD_3_DAT
A2 | LOWER_THRE
SHOLD_3_DAT
A1 | LOWER_THRE
SHOLD_3_DAT
A0 | | | Bit | Bit Name | | | | Description | | | | | | | 7 - 0 | LOWE | R_THRESHOLD_3_ | 1101017:01 | These bits set a lower threshold for the internal leaky bucket accumulator. When the number of the accumulated events is below this threshold, the no-activity alarm is cleared. | | | | | | | ### BUCKET_SIZE_3_CNFG - Bucket Size for Leaky Bucket Configuration 3 | Address: 3FH Type: Read / Write Default Value: 00001000 | | | | | | | | | | | |---|--------------------|--------------------------------------|--|-------------------------|-------------------------|-------------------------|-------------------------|--|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | BUCKET_S
_3_DATA | _ | BUCKET_SIZE
_3_DATA5 | BUCKET_SIZE
_3_DATA4 | BUCKET_SIZE
_3_DATA3 | BUCKET_SIZE
_3_DATA2 | BUCKET_SIZE
_3_DATA1 | BUCKET_SIZE
_3_DATA0 | | | | | Bit | Bit Name | | | | escription | | | | | | | 7 - 0 | BUCKET_SIZE_3_DATA | [7:0] These bits set the bucket size | These bits set a bucket size for the internal leaky bucket accumulator. If the number of the accumulated events reach the bucket size, the accumulator will stop increasing even if further events are detected. | | | | | | | | ### DECAY_RATE_3_CNFG - Decay Rate for Leaky Bucket Configuration 3 | Address: 40H Type: Read / Write Default Value: XXXXXX01 | | | | | | | | | | |---|-----------------------|---|---|---|---|------------------------|------------------------|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | - | - | - | - | - | - | DECAY_RATE_
3_DATA1 | DECAY_RATE_
3_DATA0 | | | | Bit | Name | | Description | | | | | | | | 7 - 2 | - | Reserved. | Reserved. | | | | | | | | 1 - 0 | DECAY_RATE_3_DATA[1:0 | 00: The accum
01: The accum
10: The accum | These bits set a decay rate for the internal leaky bucket accumulator: 00: The accumulator decreases by 1 in every 128 ms with no event detected. 01: The accumulator decreases by 1 in every 256 ms with no event detected. (default) 10: The accumulator decreases by 1 in every 512 ms with no event detected. 11: The accumulator decreases by 1 in every 1024 ms with no event detected. | | | | | | | ### IN_FREQ_READ_CH_CNFG - Input Clock Frequency Read Channel Selection | Address: 41H Type: Read / Write Default Value: XXXX0000 | | | | | | | | | | |---|------|-------------|---|----------------------|----------------------|----------------------|----------------------|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | - | · | - | - | IN_FREQ_READ
_CH3 | IN_FREQ_READ
_CH2 | IN_FREQ_READ
_CH1 | IN_FREQ_READ
_CH0 | | | | Bit | Name | Description | | | | | | | | | | | Reserved. | | | | | | | | | 7 - 4 | - | Reserved. | | | | | | | | ## IN_FREQ_READ_STS - Input Clock Frequency Read Value | Address: 42H | | | | | | | | | | |-------------------------|--------------------|---|--------------------|--------------------|--------------------|--------------------|--------------------|--|--| | Type: Read | | | | | | | | | | | Default Value: 00000000 | | | | | | | | | | | 7 6 | | 5 | 4 | 3 | 2 | 1 | 0 | | | | IN_FREQ_VA | IN_FREQ_VAL
UE6 | IN_FREQ_VAL
UE5 | IN_FREQ_VAL
UE4 | IN_FREQ_VAL
UE3 | IN_FREQ_VAL
UE2 | IN_FREQ_VAL
UE1 | IN_FREQ_VAL
UE0 | | | | Bit | Name | Description | | | | | | | | | 7 - 0 | IN_FREQ_VALUE[7:0] | These bits represent a 2's complement signed integer. If the value is multiplied by the value in the FREQ_MON_FACTOR[3:0] bits (b3~0, 2EH), the frequency of an input clock with respect to the reference clock in ppm will be gotten. The input clock is
selected by the IN_FREQ_READ_CH[3:0] bits (b3~0, 41H). The value in these bits is updated every 16 seconds, starting when an input clock is selected. | | | | | | | | # IN1_IN2_CMOS_STS - CMOS Input Clock 1 & 2 Status | Address: 44H
Type: Read
Default Value: X | (110X110 | | | | | | | | | | |--|--|--------------|--|---|----------------------------------|------------------------------------|----------------------------|--|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | IN2_CMOS_FRE IN2_CMOS_N
Q_HARD_ALAR ACTIVITY_AL
M M | | | · | IN1_CMOS_FRE
Q_HARD_ALAR
M | IN1_CMOS_NO_
ACTIVITY_ALAR
M | IN1_CMOS_PH_
LOCK_ALARM | | | | | Bit | Name |) | Description | | | | | | | | | 7 | - | | Reserved. | | | | | | | | | 6 | IN2_CMOS_FREQ_ | HARD_ALARM | This bit indicates whether IN2_CMOS is in frequency hard alarm status. 0: No frequency hard alarm. 1: In frequency hard alarm status. (default) | | | | | | | | | 5 | IN2_CMOS_NO_ACTIVITY_ALARM | | This bit indicates whether IN2_CMOS is in no-activity alarm status. 0: No no-activity alarm. 1: In no-activity alarm status. (default) | | | | | | | | | 4 | IN2_CMOS_PH_LOCK_ALARM | | This bit indicates whether IN2_CMOS is in phase lock alarm status. 0: No phase lock alarm. (default) 1: In phase lock alarm status. If the PH_ALARM_TIMEOUT bit (b5, 09H) is '0', this bit is cleared by writing '1' to this bit; PH_ALARM_TIMEOUT bit (b5, 09H) is '1', this bit is cleared after a period (= TIME_OUT_VALUE[5:0] or (08H) X MULTI_FACTOR[1:0] (b7~6, 08H) in second) which starts from when the alarm is raised. | | | | | | | | | 3 | - | | Reserved. | | | | | | | | | 2 | IN1_CMOS_FREQ_ | HARD_ALARM | This bit indicates whether IN1_CMOS is in frequency hard alarm status. 0: No frequency hard alarm. 1: In frequency hard alarm status. (default) | | | | | | | | | 1 | IN1_CMOS_NO_AC | TIVITY_ALARM | This bit indicates whether IN1_CMOS is in no-activity alarm status. 10: No no-activity alarm. 1: In no-activity alarm status. (default) | | | | | | | | | 0 | 1: In no-activity alarm status. (default) This bit indicates whether IN1_CMOS is in phase lock alarm status. 0: No phase lock alarm. (default) 1: In phase lock alarm status. 1: In phase lock alarm status. If the PH_ALARM_TIMEOUT bit (b5, 09H) is '0', this bit is cleared by writing '1' to this PH_ALARM_TIMEOUT bit (b5, 09H) is '1', this bit is cleared after a period (= TIME_OUT_VALUE[08H) X MULTI_FACTOR[1:0] (b7~6, 08H) in second) which starts from when the alarm is raised. | | | | | | OUT_VALUE[5:0] (b5~0, | | | | #### 6.2.5 TO DPLL INPUT CLOCK SELECTION REGISTERS ### INPUT_VALID1_STS - Input Clocks Validity 1 | Address: 4AH
Type: Read
Default Value: X | XXX00XX | | | | | | | | | | |--|----------|--|---|----------|----------|---|---|--|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | · | - | · · | - | IN2_CMOS | IN1_CMOS | - | · | | | | | Bit | Name | | | Descrip | otion | | | | | | | 7 - 4 | - | Reserved. | | | | | | | | | | 3 - 2 | INn_CMOS | This bit indicates the valid 0: Invalid. (default) 1: Valid. | | | | | | | | | | 1 - 0 | - | Reserved. | | | | | | | | | ### PRIORITY_TABLE1_STS - Priority Status 1 | Address: 4EH
Type: Read
Default Value: 00 | 0000000 | | | | | | | |---|---|----------------|---|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------| | 7 | 7 6 5 | | 4 | 3 | 2 | 1 | 0 | | | HIGHEST_PRI HIGHEST_PRI HIGHEST_PRI ORITY_VALIDA TED3 TED2 TED1 | | HIGHEST_PRI
ORITY_VALIDA
TED0 | CURRENTLY_S
ELECTED_INP
UT3 | CURRENTLY_S
ELECTED_INP
UT2 | CURRENTLY_S
ELECTED_INP
UT1 | CURRENTLY_S
ELECTED_INP
UT0 | | Bit | Name | | | | Description | | | | 7 - 4 | HIGHEST_PRIORITY_ | VALIDATED[3:0] | These bits indicate a c
2000: No input clock is
2001, 0010: Reserved
2011: IN1_CMOS.
2100: IN2_CMOS.
2101 ~ 1111: Reserved | s qualified. (default) | with the highest prior | ity. | | | 3 - 0 | CURRENTLY_SELECT | ED_INPUT[3:0] | These bits indicate the 2000: No input clock is 2001, 0010: Reserved 2011: IN1_CMOS. 2010: IN2_CMOS. 20101 ~ 1111: Reserved | s selected. (default) | lock. | | | ### PRIORITY_TABLE2_STS - Priority Status 2 | Address: 4FH
Type: Read
Default Value: XX | XXX0000 | | | | | | | | |---|------------------|-------------------|--------------------------------------|---|--|--|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | - | - | - | - | SECOND_HIGH
EST_PRIORITY
_VALIDATED3 | SECOND_HIGH
EST_PRIORITY
_VALIDATED2 | SECOND_HIGH
EST_PRIORITY
_VALIDATED1 | SECOND_HIGH
EST_PRIORITY
_VALIDATED0 | | | Bit | 1 | Name Description | | | | | | | | 7 - 4 | | - Reserved. | | | | | | | | 3 - 0 | SECOND_HIGHEST_I | PRIORITY_VALIDATE | D[3:0] 0000
0001
0011:
0100 | e bits indicate a qualified i No input clock is qualified, 0010: Reserved. IN1_CMOS. IN2_CMOS. ~ 1111: Reserved. | | econd highest priorit | y. | | ### T0_INPUT_SEL_CNFG - T0 Selected Input Clock Configuration | * . | Address: 50H
Type: Read / Write
Default Value: XXXX0000 | | | | | | | | | | | | |-------|---|-----------|---|---------------|---------------|---------------|---------------|--|--|--|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | - | - | - | T0_INPUT_SEL3 | T0_INPUT_SEL2 | T0_INPUT_SEL1 | T0_INPUT_SEL0 | | | | | | | Bit | Name | | | De | escription | | | | | | | | | 7 - 4 | | Reserved. | | | | | | | | | | | | | - | Reserveu. | nis bit determines T0 input clock selection. It is valid only when the EXT_SW bit (b4, 0BH) is '0'. 000: Automatic selection. (default) 001, 0010: Reserved. 011: Forced selection - IN1_CMOS is selected. 100: Forced selection - IN2_CMOS is selected. 101 ~ 1111: Reserved. | | | | | | | | | | #### 6.2.6 TO DPLL STATE MACHINE CONTROL REGISTERS ### OPERATING_STS - DPLL Operating Status | Address: 52H
Type: Read
Default Value | | | | | | | | | | |---|-------------------|-----------------------|--|---------|--------------------|---------------|---|---|--| | 7 | 6 | 5 | | 4 | 3 | 2 | 1 | 0 | | | EX_SYNC
RM_MC | | T0_DPLL_S
_FREQ_AL | | | | | | | | | Bit | Name | | | | | Description | | | | | 7 | EX_SYNC_ALARM | | This bit indicates whether the selected frame sync input signal is in external sync alarm status. 0: No external sync alarm. 1: In external sync alarm status. (default) | | | | | | | | 6 | - | | Reserve | ed. | | | | | | | 5 | T0_DPLL_SOFT_FRE | | This bit indicates whether the T0 DPLL is in soft alarm status. 0: No T0 DPLL soft alarm. (default) 1: In T0 DPLL soft alarm status. | | | | | | | | 4 | - | | Reserved. | | | | | | | | 3 | T0_DPLL_LOG | | This bit indicates the T0 DPLL locking status. 0: Unlocked. (default) 1: Locked. | | | | | | | | 2 - 0 | T0_DPLL_OPERATING | _MODE[2:0] | 000: Re
001: Fr
010: Ho
011: Re
100: Lo
101: Pr
110: Pr | served. | ent operating mode | e of T0 DPLL. | | | | ### T0_OPERATING_MODE_CNFG - T0 DPLL Operating Mode Configuration | Address: 53H
Type: Read / Wri
Default Value: XX | | | | | | | | | | | |---|------------------------|---|-------------------------------|--------------------|--------------------|--|--|--|--|--| | 7 | 6 5 | 4 3 | 2 | 1 | 0 | | | | | | | · | | | T0_OPERATING_MODE2 | T0_OPERATING_MODE1 | T0_OPERATING_MODE0 | | | | | | | Bit | Bit Name Description | | | | | | | | | | | 7 - 3 | - | Reserved. | | | | | | | | | | 2 - 0 | T0_OPERATING_MODE[2:0] | 000: Automatic. (defa
001: Forced - Free-R
010: Forced - Holdov | un.
er.
cked2.
cked. | | | | | | | | #### 6.2.7 TO DPLL & TO APLL CONFIGURATION REGISTERS ### T0_DPLL_APLL_PATH_CNFG - T0 DPLL & APLL Path Configuration | Address: 55H
Type: Read / \ | | | | | | | | | |
--------------------------------|--------|-------------------|-------------------|--|---|-------------|---|----------------------------------|--| | Default Value: | | 0X | | | | | | | | | 7 | | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | T0_APLL_F | PATH | T0_APLL_PA
TH2 | T0_APLL_PA
TH1 | T0_APLL_PA
TH0 | T0_12E1_24T1_
E3_T3_SEL0 | | | | | | Bit | | Name | | | | Description | | | | | 7 - 4 | | T0_APLL_PAT | ΓH[3:0] | These bits select an input to the T0 APLL. 0000: The output of T0 DPLL 77.76 MHz path. (default) 0001: The output of T0 DPLL 12E1/24T1/E3/T3 path. 0010: The output of T0 DPLL 16E1/16T1 path. 0011: The output of T0 DPLL GSM/OBSAI/16E1/16T1 path. 0100 ~ 1111: Reserved. | | | | | | | 3 - 2 | T0_GSI | M_OBSAI_16E1 | _16T1_SEL[1:0] | These bits select an output clock from the T0 DPLL GSM/OBSAI/16E1/16T1 path. 00: 16E1. 01: 16T1. 10: GSM. 11: OBSAI. The default value of the T0_GSM_OBSAI_16E1_16T1_SEL0 bit is determined by the SONET/SD ing reset. | | | | | | | 1 - 0 | T0_ | 12E1_24T1_E3_ | T3_SEL[1:0] | 00: 12E1.
01: 24T1.
10: E3.
11: T3. | an output clock from the of the T0_12E1_24T $^{\prime}$ | | | SONET/ SDH pin during | | ### T0_DPLL_START_BW_DAMPING_CNFG - T0 DPLL Start Bandwidth & Damping Factor Configuration | Address: 56H
Type: Read / Wri
Default Value: 01 | | | | | | | | | | |---|-------------------|--------------------|--|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--| | 7 | 6 | 5 | | 4 | 3 | 2 | 1 | 0 | | | T0_DPLL_ST
RT_DAMPING | | T0_DPLL
RT_DAME | | T0_DPLL_STA
RT_BW4 | T0_DPLL_STA
RT_BW3 | T0_DPLL_STA
RT_BW2 | T0_DPLL_STA
RT_BW1 | T0_DPLL_STA
RT_BW0 | | | Bit | Name | Name Description | | | | | | | | | 7 - 5 | T0_DPLL_START_DAI | MDINICI3:01 | 100: 10.
101: 20. | | | | | | | | 4 - 0 | T0_DPLL_START_ | BW[4:0] | 110, 111: Reserved. These bits set the starting bandwidth for T0 DPLL. 00XXX: Reserved. 01000 ~ 01010 : Reserved. 01101: 1.2 Hz. 01100: 2.5 Hz. 01101: 4 Hz. 01110: 8 Hz. 01111: 18 Hz. (default) 10000: 35 Hz. 10010: 560 Hz. | | | | | | | ### T0_DPLL_ACQ_BW_DAMPING_CNFG - T0 DPLL Acquisition Bandwidth & Damping Factor Configuration | Address: 57H
Type: Read / Wri
Default Value: 01 | | | | | | | | | |---|--|----------|---|----------------------|---------------------|---------------------|---------------------|---------------------| | 7 | 6 | | 5 | 4 | 3 | 2 | 1 | 0 | | T0_DPLL_AC
_DAMPING2 | | | LL_ACQ
MPING0 | T0_DPLL_ACQ
_BW4 | T0_DPLL_ACQ
_BW3 | T0_DPLL_ACQ
_BW2 | T0_DPLL_ACQ
_BW1 | T0_DPLL_ACQ
_BW0 | | Bit | Name Description | | | | | | | | | 7 - 5 | T0_DPLL_ACQ_DAMP | ING[2:0] | 000: Rese
001: 1.2.
010: 2.5.
011: 5. (de
100: 10.
101: 20.
110, 111: I | efault)
Reserved. | | | | | | 4 - 0 | These bits set the acquisition bandwidth for T0 DPLL. 00XXX ~ 01010 : Reserved. 01011: 1.2 Hz. 01100: 2.5 Hz. 01101: 4 Hz. T0_DPLL_ACQ_BW[4:0] 01110: 8 Hz. 01111: 18 Hz. (default) 10000: 35 Hz. 10001: 70 Hz. 10010: 560 Hz. 10011 ~ 11111: Reserved. | | | | | | | | ### T0_DPLL_LOCKED_BW_DAMPING_CNFG - T0 DPLL Locked Bandwidth & Damping Factor Configuration | Address: 58H
Type: Read / Wri
Default Value: 01 | | | | | | | | | |---|---------------------------|----------------------|---|---|---|---|---|---| | 7 | 6 | 5 | | 4 | 3 | 2 | 1 | 0 | | T0_DPLL_LOC
ED_DAMPING | | T0_DPLL_I
ED_DAMP | | | | | | | | Bit | Name | | Description | | | | | | | 7 - 5 | T0_DPLL_LOCKED_D <i>i</i> | Amping[2:0] | 100: 10.
101: 20. | | | | | | | 4 - 0 | T0_DPLL_LOCKED | _BW[4:0] | 110, 111: Reserved. These bits set the locked bandwidth for T0 DPLL. 00XXX ~ 01010 : Reserved. 01011: 1.2 Hz. (default) 01100: 2.5 Hz. 01101: 4 Hz. 01110: 8 Hz. 01111: 18 Hz. 10000: 35 Hz. 10001: 70 Hz. 10010: 560 Hz. 10011 ~ 11111: Reserved. | | | | | | ### T0_BW_OVERSHOOT_CNFG - T0 DPLL Bandwidth Overshoot Configuration | Address: 59H
Type: Read / Wri
Default Value: 1> | | | | | | | | |---|-------------|--|---|---------------------|----------------------|-------------------|-----| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | AUTO_BW_SI | EL - | - | - | T0_LIMT | - | - | - | | Bit | Name | | | Descrip | otion | | | | 7 | AUTO_BW_SEL | This bit determines whe 0: The starting and acquiregardless of the T0 DP 1: The starting, acquisitistages. (default) | isition bandwidths /
LL locking stage. | damping factors are | not used. Only the I | ocked bandwidth / | . • | | 6 - 4 | - | Reserved. | | | | | | | 3 | T0_LIMT | This bit determines whe 0: Not frozen. 1: Frozen. It will minimiz | | | | | | | 2 - 0 | - | Reserved. | | | | | | ### PHASE_LOSS_COARSE_LIMIT_CNFG - Phase Loss Coarse Detector Limit Configuration | Type: | ess: 5AH
Read / Write
ılt Value: 100001 | 01 | | | | | | | | | | | |-------|---|---------------|---|---|--------------------------|---------------------------------------|------------------------------|-----------------------|--------------------------------|---|--|--| | | 7 | 6 | | 5 | 4 | 3 | | 2 | 1 | 0 | | | | | ARSE_PH_L
S_LIMT_EN | WIDE_EN | I | MULTI_PH_APP | MULTI_PH_8K_
4K_2K_EN | PH_LOS_CO | | LOS_COA
SE_LIMT2 | PH_LOS_COA
RSE_LIMT1 | PH_LOS_COA
RSE_LIMT0 | | | | Bit | Na | me | | | | De | escription | | | | | | | 7 | COARSE_PH_ | LOS_LIMT_EN | 0: Di | This bit controls whether the occurrence of the coarse phase loss will result in the T0 DPLL unlocked. 0: Disabled. 1: Enabled. (default) | | | | | | | | | | 6 | WIDE | E_EN | | | of the MULTI_PH_8 | | | | | | | | | 5 | MULTI_f | PH_APP | 0: Lir
1: Lir
on th
clock
PH_I | This bit determines whether the PFD output of T0 DPLL is limited to ±1 UI or is limited to the coarse phase lin 0: Limited to ±1 UI. (default) 1: Limited to the coarse phase limit. When the selected input clock is of 2 kHz, 4 kHz or 8 kHz, the coarse phase on the MULTI_PH_8K_4K_2K_EN bit, the WIDE_EN bit and the PH_LOS_COARSE_LIMT[3:0] bits; when the clock is of other frequencies but 2 kHz, 4 kHz and 8 kHz, the coarse phase limit depends on the WIDE PH_LOS_COARSE_LIMT[3:0] bits. Refer to the description of the MULTI_PH_8K_4K_2K_EN bit (b4, 5AH) from the coarse phase limit depends on the WIDE PH_LOS_COARSE_LIMT[3:0] bits. | | | | | | | | | | | | | coars | se phase limit when
but 2 kHz, 4 kHz ar | the selected input of | clock is of 2 kHz
e phase limit de | z, 4 kHz or 8
pends on th | kHz. When the WIDE_EN | he selected input clo | 5AH), determines the ock is of other frequen-
B_COARSE_LIMT[3:0] | | | | 4 | MILITI DLI G | K_4K_2K_EN | | | | 0 | don't-care | | ±1 UI | | | | | 4 | WIOLII_FII_O | N_4N_ZN_EN | | 2 kHz, 4 kHz or 8 | kHz | | 0 | | ±1 UI | | | | | | | | | 2 M 12, 4 M 12 OF O | KI IZ | 1 | 1 | set by the | PH_LOS_COARSE_
(b3~0, 5AH). | _LIMT[3:0] bits | | | | | | | | other than 2 kHz | - Д | | 0 | | ±1 UI | | | | | | | | | kHz and 8 kHz | . non | -care | 1 | set by the | PH_LOS_COARSE_
(b3~0, 5AH). | _LIMT[3:0] bits | | | | 3 - 0 | PH_LOS_COA | RSE_LIMT[3:0] | MUL
0000
0001
0010
0011
0100
0111
1000
1001 | TI_PH_8K_4K_2K_
): ±1 UI.
 : ±3 UI.
): ±7 UI.
: ±15 UI. | • | The limit is | used only | in some c | ases. Refer to th | e description of the | | | ### PHASE_LOSS_FINE_LIMIT_CNFG - Phase Loss Fine Detector Limit Configuration | Address: 5BH
Type: Read / Wri
Default Value: 10 | | | | | | | | | | |---|-----------------------
---|--|-------------------|--|-----------------------|---|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | FINE_PH_LOS
LIMT_EN | S_ FAST_LOS_SW | - | - | - | PH_LOS_FINE
_LIMT2 | PH_LOS_FINE
_LIMT1 | PH_LOS_FINE
_LIMT0 | | | | Bit | Name | | | De | escription | | | | | | 7 | FINE_PH_LOS_LIMT_EN | 0: Disabled.
1: Enabled. (defa | his bit controls whether the occurrence of the fine phase loss will result in the T0 DPLL unlocked. Disabled. Enabled. (default) | | | | | | | | 6 | FAST_LOS_SW | 0: Does not resu | It in the T0 DPLL un | locked. T0 DPLL w | will result in the T0 D
will enter Temp-Holdov
or Lost-Phase mode if | er mode automatica | ally. (default)
ating mode is switched | | | | 5 - 3 | - | Reserved. | | | | | | | | | 2 - 0 | PH_LOS_FINE_LIMT[2:0] | These bits set a 000: 0. 001: ± (45 ° ~ 90 010: ± (90 ° ~ 18 011: ± (180 ° ~ 3 100: ± (20 ns ~ 2 101: ± (60 ns ~ 6 110: ± (120 ns ~ 111: ± (950 ns ~ 6 11: ± (950 ns ~ 6 11: ± (950 ns ~ 6 11: ± (950 ns ~ 6 111: ± (950 ns ~ 6 11: |) °).
80 °). (default)
60 °).
25 ns).
55 ns).
125 ns). | | | | | | | ### T0_HOLDOVER_MODE_CNFG - T0 DPLL Holdover Mode Configuration | Address: 5CH
Type: Read / W
Default Value: 0 | | | | | | | | | | | |--|------------------------|---|--|----------------------------------|---------------------|---------|-----------------|-----------|-----------|--| | 7 | 6 | 5 | 4 | | 3 | | 2 | | 1 | 0 | | MAN_HOLD
ER | OV AUTO_AVG FA | AST_AVG | READ_ | AVG | TEMP_HOI
VER_MOI | | TEMP_HOLDO | | - | | | Bit | Name | | Description | | | | | | | | | 7 | MAN_HOLDOVER | Refer to the | description | of the FA | AST_AVG bit | (b5, 5C | CH). | | | | | 6 | AUTO_AVG | Refer to the description of the FAST_AVG bit (b5, 5CH). | | | | | | | | | | | | quency offs | et acquiring | method i | n T0 DPLL H | oldove | r Mode. | | | CH), determines a fre- | | | 5 FAST_AVG | MAN_H | OLDOVER | AUT | O_AVG | F | AST_AVG | Frequency | Offset A | cquiring Method | | 5 | | | | | 0 | C | don't-care | | | antaneous | | | | | 0 | | 1 | | 0 | | | eraged (default) | | | | | | | | | 1 | Auto | | t Averaged | | | | | 1 don't-care Manual | | | | ıal | | | | | 4 | READ_AVG | (5FH ~ 5DH
0: The valu
(default)
1: The value
The value is
Automatic F | This bit controls the holdover frequency offset reading, which is read from the T0_HOLDOVER_FREQ[23:0] b (5FH ~ 5DH). 0: The value read from the T0_HOLDOVER_FREQ[23:0] bits (5FH ~ 5DH) is equal to the one written to the | | | | | | | e one written to them. ne one written to them. is '0'; or is acquired by | | 3-2 | TEMP_HOLDOVER_MODE[1:0 | 00: The me
01: Automa
10: Automa
11: Automa | thod is the s | ame as tl
eous. (de
raged. | hat used in T | | - Holdover mode | | 23.01.110 | | | 1 - 0 | - | Reserved. | | | | | | | | | ### T0_HOLDOVER_FREQ[7:0]_CNFG - T0 DPLL Holdover Frequency Configuration 1 | Address: 5DH
Type: Read / Wri
Default Value: 00 | | | | | | | | | | | |---|------------------|-----------------------|---|---|---|---|-----------------------|--|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | T0_HOLDOVE
_FREQ7 | | | | | | | T0_HOLDOVE
R_FREQ0 | | | | | Bit | Name | | Description | | | | | | | | | 7 - 0 | T0_HOLDOVER_FREQ | [7:0] Refer to the de | tefer to the description of the T0_HOLDOVER_FREQ[23:16] bits (b7~0, 5FH). | | | | | | | | ### T0_HOLDOVER_FREQ[15:8]_CNFG - T0 DPLL Holdover Frequency Configuration 2 | Address: 5EH
Type: Read / Wri
Default Value: 00 | | | | | | | | | | |---|------------------------|------------------------|---|------------------------|------------------------|-----------------------|-----------------------|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | T0_HOLDOVE
_FREQ15 | T0_HOLDOVER
_FREQ14 | T0_HOLDOVER
_FREQ13 | T0_HOLDOVE
R_FREQ12 | T0_HOLDOVE
R_FREQ11 | T0_HOLDOVE
R_FREQ10 | T0_HOLDOVE
R_FREQ9 | T0_HOLDOVE
R_FREQ8 | | | | Bit | Name | | Description | | | | | | | | 7 - 0 | T0_HOLDOVER_FREC | [15:8] Refer to the | Refer to the description of the T0_HOLDOVER_FREQ[23:16] bits (b7~0, 5FH). | | | | | | | ### T0_HOLDOVER_FREQ[23:16]_CNFG - T0 DPLL Holdover Frequency Configuration 3 | Address: 5FH
Type: Read / Wri
Default Value: 00 | | | | | | | | | | | |---|------------------------|---|-----------------------------|---|------------------------|------------------------|------------------------|------------------------|--|--| | 7 | 6 | | 5 | 4 | 3 | 2 | 1 | 0 | | | | T0_HOLDOVE
_FREQ23 | T0_HOLDOVER
_FREQ22 | _ | OLDOVER
FREQ21 | T0_HOLDOVE
R_FREQ20 | T0_HOLDOVE
R_FREQ19 | T0_HOLDOVE
R_FREQ18 | T0_HOLDOVE
R_FREQ17 | T0_HOLDOVE
R_FREQ16 | | | | Bit | Name | | | | D | escription | | | | | | 7 - 0 | T0_HOLDOVER_FREQ | | In T0 DPLL I ally; the valu | The T0_HOLDOVER_FREQ[23:0] bits represent a 2's complement signed integer. In T0 DPLL Holdover mode, the value written to these bits multiplied by 0.000011 is the frequency offset set ally; the value read from these bits multiplied by 0.000011 is the frequency offset automatically slow or fast aged or manually set, as determined by the READ_AVG bit (b4, 5CH) and the FAST_AVG bit (b5, 5CH). | | | | | | | ### CURRENT_DPLL_FREQ[7:0]_STS - DPLL Current Frequency Status 1 | Address: 62H
Type: Read
Default Value: 00 | 000000 | | | | | | | | | |---|-----------------------|------------------------|--|------------------------|------------------------|------------------------|------------------------|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | CURRENT_D
LL_FREQ7 | P CURRENT_DP LL_FREQ6 | CURRENT_DF
LL_FREQ5 | CURRENT_DP
LL_FREQ4 | CURRENT_DP
LL_FREQ3 | CURRENT_DP
LL_FREQ2 | CURRENT_DP
LL_FREQ1 | CURRENT_DP
LL_FREQ0 | | | | Bit | Name | | Description | | | | | | | | 7 - 0 | CURRENT_DPLL_FR | EQ[7:0] Refer to | Refer to the description of the CURRENT_DPLL_FREQ[23:16] bits (b7~0, 64H). | | | | | | | ### CURRENT_DPLL_FREQ[15:8]_STS - DPLL Current Frequency Status 2 | Address: 63H
Type: Read
Default Value: 00 | 000000 | | | | | | | | | |---|------------------|-------------------------|--|-------------------------|-------------------------|------------------------|------------------------|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | CURRENT_D
LL_FREQ15 | | CURRENT_DP
LL_FREQ13 | CURRENT_DP
LL_FREQ12 |
CURRENT_DP
LL_FREQ11 | CURRENT_DP
LL_FREQ10 | CURRENT_DP
LL_FREQ9 | CURRENT_DP
LL_FREQ8 | | | | Bit | Name | | Description | | | | | | | | 7 - 0 | CURRENT_DPLL_FRE | Q[15:8] Refer to the | Refer to the description of the CURRENT_DPLL_FREQ[23:16] bits (b7~0, 64H). | | | | | | | ### CURRENT_DPLL_FREQ[23:16]_STS - DPLL Current Frequency Status 3 | Address: 64H
Type: Read
Default Value: 0 | 00000 | 000 | | | | | | | | |--|-------|---|--|-------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------| | 7 | | 6 | | 5 | 4 | 3 | 2 | 1 | 0 | | CURRENT_
LL_FREQ2 | | CURRENT_DP
LL_FREQ22 | | RENT_DP
FREQ21 | CURRENT_DP
LL_FREQ20 | CURRENT_DP
LL_FREQ19 | CURRENT_DP
LL_FREQ18 | CURRENT_DP
LL_FREQ17 | CURRENT_DP
LL_FREQ16 | | Bit | | Name | | | | Γ | Description | | | | 7 - 0 | CUR | The CURRENT_DPLL_FREQ[23:0] bits represent a 2's complement signed integer. If the value in these bits is CURRENT_DPLL_FREQ[23:16] tiplied by 0.000011, the current frequency offset of the T0 DPLL output in ppm with respect to the master clock be gotten. | | | | | | | | ### DPLL_FREQ_SOFT_LIMIT_CNFG - DPLL Soft Limit Configuration | Address: 65H | | | | | | | | | | |----------------|--------|--------------------------|--------|---|--|--------------------------|--------------------------|--------------------------|--------------------------| | Type: Read / V | Vrite | | | | | | | | | | Default Value: | 100011 | 100 | | | | | | | | | 7 | | 6 | | 5 | 4 | 3 | 2 | 1 | 0 | | FREQ_LIMTH_LOS | | DPLL_FREQ_S
OFT_LIMT6 | | LL_FREQ_S
FT_LIMT5 | DPLL_FREQ_S
OFT_LIMT4 | DPLL_FREQ_S
OFT_LIMT3 | DPLL_FREQ_S
OFT_LIMT2 | DPLL_FREQ_S
OFT_LIMT1 | DPLL_FREQ_S
OFT_LIMT0 | | Bit | | Name | | | | D | escription | | | | 7 | Fl | REQ_LIMT_PH_LC | S | This bit determines whether the T0 DPLL in hard alarm status will result in it unlocked. 0: Disabled. 1: Enabled. (default) | | | | | | | 6 - 0 | DPLL | _FREQ_SOFT_LIM | T[6:0] | be gotten. | resent an unsigned it limit is symmetrical | Ū | is multiplied by 0.724 | , the DPLL soft limit | for T0 path in ppm will | ### DPLL_FREQ_HARD_LIMIT[7:0]_CNFG - DPLL Hard Limit Configuration 1 | Address: 66H
Type: Read / Wri
Default Value: 10 | | | | | | | | | | |---|-------------------|------------------|---|---|---|---|---|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | DPLL_FREQ_H | | | | | | | | | | Bit | Name | | Description | | | | | | | | 7 - 0 | DPLL_FREQ_HARD_LI | MT[7:0] Refer to | Refer to the description of the DPLL_FREQ_HARD_LIMT[15:8] bits (b7~0, 67H). | | | | | | | ### DPLL_FREQ_HARD_LIMIT[15:8]_CNFG - DPLL Hard Limit Configuration 2 | Address: 67H
Type: Read / Wri
Default Value: 00 | | | | | | | | | |---|------------------|---------------------------|--|---------------------------|---------------------------|--------------------------|--------------------------|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | DPLL_FREQ_
ARD_LIMT1 | | DPLL_FREQ_H
ARD_LIMT13 | DPLL_FREQ_H
ARD_LIMT12 | DPLL_FREQ_H
ARD_LIMT11 | DPLL_FREQ_H
ARD_LIMT10 | DPLL_FREQ_H
ARD_LIMT9 | DPLL_FREQ_H
ARD_LIMT8 | | | Bit | Name | | | | Description | | | | | 7 - 0 | DPLL_FREQ_HARD_L | IMT[15:8] DPLL har | The DPLL_FREQ_HARD_LIMT[15:0] bits represent an unsigned integer. If the value is multiplied by 0.001-DPLL hard limit for T0 path in ppm will be gotten. The DPLL hard limit is symmetrical about zero. | | | | | | ### CURRENT_DPLL_PHASE[7:0]_STS - DPLL Current Phase Status 1 | Address: 68H
Type: Read
Default Value: 00 | 000000 | | | | | | | | | |---|------------------------|----------------------|---|----------------------|----------------------|----------------------|----------------------|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | CURRENT_P
_DATA7 | H CURRENT_PH
_DATA6 | CURRENT_PH
_DATA5 | CURRENT_PH
_DATA4 | CURRENT_PH
_DATA3 | CURRENT_PH
_DATA2 | CURRENT_PH
_DATA1 | CURRENT_PH
_DATA0 | | | | Bit | Name | | Description | | | | | | | | 7 - 0 | CURRENT_PH_DATA | 7:0] Refer to the d | Refer to the description of the CURRENT_PH_DATA[15:8] bits (b7~0, 69H). | | | | | | | ### CURRENT_DPLL_PHASE[15:8]_STS - DPLL Current Phase Status 2 | Address: 69H
Type: Read
Default Value: 00 | 000000 | | | | | | | | |---|------------------|------------------------------|---|-----------------------|-----------------------|----------------------|----------------------|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | CURRENT_PI
_DATA15 | | | CURRENT_PH
_DATA12 | CURRENT_PH
_DATA11 | CURRENT_PH
_DATA10 | CURRENT_PH
_DATA9 | CURRENT_PH
_DATA8 | | | Bit | Name | | Description | | | | | | | 7 - 0 | CURRENT_PH_DATA[| 5:8] The CURREN averaged pha | he CURRENT_PH_DATA[15:0] bits represent a 2's complement signed integer. If the value is multiplied by 0.61, the veraged phase error of the T0 DPLL feedback with respect to the selected input clock in ns will be gotten. | | | | | | ### T0_APLL_BW_CNFG - T0 APLL Bandwidth Configuration | | Address: 6AH
Type: Read / Write
Default Value: XX01XX01 | | | | | | | | | | | |-------|---|---|----------------------------------|-------|---------|---|---|--|--|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | - | · . | T0_APLL_BW1 | T0_APLL_BW0 | - | | · | Bit | Name | | | Desci | ription | | | | | | | | 7 - 6 | - | Reserved. | | | | | | | | | | | 5 - 4 | T0_APLL_BW[1:0] | These bits set the band
00: 100 kHz.
01: 500 kHz. (default)
10: 1 MHz.
11: 2 MHz. | : 500 kHz. (default)
: 1 MHz. | | | | | | | | | | 3 - 0 | - | Reserved. | | | | | | | | | | #### 6.2.8 OUTPUT CONFIGURATION REGISTERS ### OUT1_FREQ_CNFG - Output Clock 1 Frequency Configuration | Address: 6DH
Type: Read / Wri
Default Value: 00 | | | | | | | | | | | |---|----------------------|--|---|--|--|--|--|--|--|--| | 7 | 6 | 5 4 3 2 1 | | | | | | | | | | OUT1_PATH_
EL3 | S OUT1_PATH_S
EL2 | OUT1_PATH_S
EL1 | | | | | | | | | | Bit | Name | | Description | | | | | | | | | 7 - 4 | OUT1_PATH_SEL[3:0] | 0000 ~ 0011: The
0100: The output
0101: The output
0110: The output
0111: The output | These bits select an input to OUT1. 0000 ~ 0011: The output of T0 APLL. (default: 0000) 0100: The output of T0 DPLL 77.76 MHz path. 0101: The output of T0 DPLL 12E1/24T1/E3/T3 path. 0110: The output of T0 DPLL 16E1/16T1 path. 0111: The output of T0 DPLL GSM/OBSAI/16E1/16T1 path. | | | | | | | | | 3 - 0 | OUT1_DIVIDER[3:0] | The output freque (selected by the C refer to Table 22 for | 11: The output of 10 DPLL GSM/OBSA/10E1/1011 path. 00 ~ 1111: Reserved. ese bits select a division factor of the divider for OUT1. e output frequency is determined by the division factor and the signal derived from T0 DPLL or T0 APLL output elected by the OUT1_PATH_SEL[3:0] bits (b7~4, 6DH)). If the signal is derived from one of the T0 DPLL outputs, please er to Table 22 for the division factor selection. If the signal is derived from the T0 APLL output, please refer to Table 23 the division factor selection. | | | | | | | | ### OUT1_INV_CNFG - Output Clock 1 Invert Configuration | Address:73H
Type: Read / Wr
Default Value: X | ite
XXXX0XX | | | | | | | | | |--|----------------|-----------|---|-----|----------|---|---|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | - | · | | | - | OUT1_INV | - | · | | | | | | | | | | | | | | | Bit | Name | | | Des | cription | | | | | | 7 - 3 | - | Reserved. | | | | | | | | | 2 | OUT1_INV | | This bit determines whether the output on OUT1 is inverted. 0: Not inverted. (default) 1: Inverted. | | | | | | | | 1 - 0 | - | Reserved. | | | | | | | | ### FR_SYNC_CNFG - Frame Sync Output Configuration | Address:74H
Type: Read / Wri
Default
Value: 01 | | | | | | | | | | | |--|-----------------|---|--|--|---|---------------------|-----------------------------|--|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | IN_2K_4K_8K
NV | S_I 8K_EN | - | - 8K_PUL_POSIT 8K_INV 8K_PUL | | | | | | | | | Bit | Name | | Description | | | | | | | | | 7 | IN_2K_4K_8K_INV | or 8 kHz. | 0: Not inverted. (default) | | | | | | | | | 6 | 8K_EN | | es whether an 8 kHz :
SYNC_8K outputs low.
ault) | | be output on FRSYN | NC_8K. | | | | | | 5 | - | Reserved. | | | | | | | | | | 4 | 8K_PUL_POSITION | 8K_PUL bit (b2, 0: Pulsed on the 1: Pulsed on the | 74H) is '1'. It determir
falling edge of the sta
rising edge of the sta | nes the pulse position
andard 50:50 duty cy
andard 50:50 duty cy | on referring to the sta
ycle position. (defaul
ycle position. | ndard 50:50 duty cy | 4H) is '1' or when the cle. | | | | | 3 | 8K_INV | | This bit determines whether the output on FRSYNC_8K is inverted. 0: Not inverted. (default) 1: Inverted. | | | | | | | | | 2 | 8K_PUL | 0: 50:50 duty cyc | This bit determines whether the output on FRSYNC_8K is 50:50 duty cycle or pulsed. 0: 50:50 duty cycle. (default) 1: Pulsed. The pulse width is defined by the period of the output on OUT1. | | | | | | | | | 1 - 0 | - | Reserved. | | | | | | | | | #### 6.2.9 PBO & PHASE OFFSET CONTROL REGISTERS ### PHASE_MON_PBO_CNFG - Phase Transient Monitor & PBO Configuration | Address:78H
Type: Read / Wri | | | | | | | | | | | |---------------------------------|---------------------|-----------------------------------|---|--|------------------------|-----------------------|------------------------|--|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | IN_NOISE_W
DOW | IN _ | PH_MON_EN | PH_MON_EN PH_MON_PBO PH_TR_MON_L PH_TR_MON_L PH_TR_MON_L PH_TR_M _EN IMT3 IMT2 IMT1 IMT0 | | | | | | | | | Bit | Name | | Description | | | | | | | | | 7 | IN_NOISE_WINDOW | selected for T0 D | This bit determines whether the input clock whose edge respect to the reference clock is outside ±5% is enabled to be selected for T0 DPLL. D: Disabled. (default) Enabled. | | | | | | | | | 6 | - | Reserved. | | | | | | | | | | 5 | PH_MON_EN | | nitor the phase-time | ON_PBO_EN bit (b4) changes on the T0 s | | | hase Transient Monitor | | | | | 4 | PH_MON_PBO_EN | greater than a prois programmed b | This bit determines whether a PBO event is triggered when the phase-time changes on the T0 selected input clock are greater than a programmable limit over an interval of less than 0.1 seconds with the PH_MON_EN bit being '1'. The limit s programmed by the PH_TR_MON_LIMT[3:0] bits (b3~0, 78H). D: Disabled. (default) | | | | | | | | | 3 - 0 | PH_TR_MON_LIMT[3:0] | • | ent an unsigned into
_TR_MON_LIMT[3: | eger. The Phase Tra
0] + 7) X 156. | nsient Monitor limit i | n ns can be calculate | ed as follows: | | | | #### 6.2.10 SYNCHRONIZATION CONFIGURATION REGISTERS ### SYNC_MONITOR_CNFG - Sync Monitor Configuration | Address:7CH
Type: Read / Wri
Default Value: 00 | | | | | | | | | | | |--|--------------------|---|---|---|---|---|---|--|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | SYNC_BYPA | SS SYNC_MON_LIM | T2 SYNC_MON_LIMT1 | SYNC_MON_LIMT1 SYNC_MON_LIMT0 | | | | | | | | | Bit | Name | | Description | | | | | | | | | 7 | SYNC_BYPASS | 0: EX_SYNC1 is selected. (1: When the T0 selected | nis bit selects one frame sync input signal to synchronize the frame sync output signal. EX_SYNC1 is selected. (default) When the T0 selected input clock is IN1_CMOS, EX_SYNC1 is selected; when the T0 selected input clock is I2_CMOS, EX_SYNC2 is selected; when there is no T0 selected input clock, no frame sync input signal is selected. | | | | | | | | | 6 - 4 | SYNC_MON_LIMT[2:0] | 000: ±1 UI.
001: ±2 UI.
010: ±3 UI. (default) | ese bits set the limit for the external sync alarm. 0: ±1 UI. 1: ±2 UI. 0: ±3 UI. (default) 1: ±4 UI. 0: ±5 UI. 1: ±6 UI. 0: ±7 UI. | | | | | | | | | 3 - 0 | - | These bits must be set to '1 | 011'. | | | | | | | | ### SYNC_PHASE_CNFG - Sync Phase Configuration | Address:7DH
Type: Read / W
Default Value: X | | | | | | | | | | | | | |---|---------------|---|---|---|---|---|-----------------------|--|--|--|--|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | _ | | • | SYNC_PH21 SYNC_PH20 SYNC_PH11 SYNC_PH10 | | | | | | | | | | | Bit | Name | | Description | | | | | | | | | | | 7 - 4 | - | Reserved. | | | | | | | | | | | | 3 - 2 | SYNC_PH2[1:0] | | hese bits set the sampling of EX_SYNC2 when EX_SYNC2 is enabled to synchronize the frame sync output signal. Nomially, the falling edge of EX_SYNC2 is aligned with the rising edge of the T0 selected input clock. O: On target. (default) 1: 0.5 UI early. O: 1 UI late. | | | | | | | | | | | 1 - 0 | SYNC_PH1[1:0] | These bits set the sample nally, the falling edge of 00: On target. (default) 01: 0.5 UI early. 10: 1 UI late. 11: 0.5 UI late. | • | | • | • | c output signal. Nomi | | | | | | #### 7 THERMAL MANAGEMENT The device operates over the industry temperature range -40°C ~ +85°C. To ensure the functionality and reliability of the device, the maximum junction temperature T_{jmax} should not exceed 125°C. In some applications, the device will consume more power and a thermal solution should be provided to ensure the junction temperature T_j does not exceed the T_{jmax} . #### 7.1 JUNCTION TEMPERATURE Junction temperature T_j is the temperature of package typically at the geographical center of the chip where the device's electrical circuits are. It can be calculated as follows: Equation 1: $$T_i = T_A + P X \theta_{JA}$$ Where: θ_{JA} = Junction-to-Ambient Thermal Resistance of the Package T_i = Junction Temperature T_A = Ambient Temperature P = Device Power Consumption In order to calculate junction temperature, an appropriate θ_{JA} must be used. The θ_{JA} is shown in Table 32: Power consumption is the core power excluding the power dissipated in the loads. Table 33 provides power consumption in special environments. **Table 32: Power Consumption and Maximum Junction Temperature** | Package | Power
Consumption (W) | Operating
Voltage
(V) | T _A (°C) | Maximum
Junction
Temperature (°C) | |-------------|--------------------------|-----------------------------|---------------------|---| | VFQFPN/NL68 | 1.57 | 3.6 | 85 | 125 | # 7.2 EXAMPLE OF JUNCTION TEMPERATURE CALCULATION Assume: $T_A = 85^{\circ}C$ θ_{JA} = 20.9 °C/W (VFQFPN/NL68 Soldered & when airfow rate is 0 m/ s) P = 1.57W **Table 33: Thermal Data** | | Pin Count | Thermal Pad | θ _{JC} (°C/W) | θ _{JB} (°C/W) | θ _{JA} (°C/W) Air Flow in m/s | | | | | | | |----------------------|---|---------------|------------------------|------------------------|--|------|------|------|------|------|--| | | l III Gouile | | | ∘JB (€/11) | 0 | 1 | 2 | 3 | 4 | 5 | | | VFQFPN/NL68 | 68 | Yes/Exposed | 9.1 | 8.3 | 39.4 | 34.1 | 31.7 | 30.2 | 29.1 | 28.2 | | | VFQFPN/NL68 | 68 | Yes/Soldered* | 9.1 | 1.2 | 20.9 | 16.2 | 15.2 | 14.6 | 14.1 | 13.8 | | | *note: Simulated wit | note: Simulated with 3 x 3 array of thermal vias. | | | | | | | | | | | The junction temperature T_i can be calculated as follows: $$T_i = T_A + P X \theta_{JA} = 85^{\circ}C + 1.57W X 20.9^{\circ}C/W = 117.8^{\circ}C$$ The junction temperature of 117.8°C is below the maximum junction temperature of 125°C so no extra heat enhancement is required. In some operation environments, the calculated junction temperature might exceed the maximum junction temperature of 125°C and an external thermal solution such as a heatsink is required. #### 7.3 HEATSINK EVALUATION A heatsink is expanding the surface area of the device to which it is attached. θ_{JA} is now a combination of device case and heat-sink thermal resistance, as the heat flowing from the die junction to ambient goes through the package and the heatsink. θ_{JA} can be calculated as follows: Equation 2: $$\theta_{JA} = \theta_{JC} + \theta_{CH} + \theta_{HA}$$ Where: θ_{JC} = Junction-to-Case Thermal Resistance θ_{CH} = Case-to-Heatsink Thermal Resistance θ_{HA} = Heatsink-to-Ambient Thermal Resistance θ_{CH} +
θ_{HA} determines which heatsink and heatsink attachment can be selected to ensure the junction temperature does not exceed the maximum junction temperature. According to Equation 1 and 2, θ_{CH} + θ_{HA} can be calculated as follows: Equation 3: $$\theta_{CH} + \theta_{HA} = (T_i - T_A) / P - \theta_{JC}$$ Assume: $T_j = 125^{\circ}C (T_{jmax})$ $T_A = 85^{\circ}C$ P = 1.57W θ_{JC} = 12.6°C/W (VFQFPN/NL68) θ_{CH} + θ_{HA} can be calculated as follows: θ_{CH} + θ_{HA} = (125°C - 85°C) / 1.57W - 12.6°C/W = 12.9°C/W That is, if a heatsink and heatsink attachment whose θ_{CH} + θ_{HA} is below or equal to 12.9°C/W is used in such operation environment, the junction temperature will not exceed the maximum junction temperature. #### 7.4 VFQFPN EPAD THERMAL RELEASE PATH In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in Figure 18. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts. Figure 18. Assembly for Expose Pad thermal Release Path (Side View) While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as 'heat pipes'. The number of vias (i.e. 'heat pipes') are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1 oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/Electrically Enhance Lead fame Base Package, Amkor Technology. ### 8 ELECTRICAL SPECIFICATIONS #### 8.1 ABSOLUTE MAXIMUM RATING **Table 34: Absolute Maximum Rating** | Symbol | Parameter | Min | Max | Unit | |-------------------|----------------------------------|------|------|------| | V_{DD} | Supply Voltage VDD | -0.5 | 4.0 | V | | V _{IN} | Input Voltage (non-supply pins) | | 5.5 | V | | V _{OUT} | Output Voltage (non-supply pins) | | 5.5 | V | | T _{STOR} | Storage Temperature | -50 | +150 | °C | ### 8.2 RECOMMENDED OPERATION CONDITIONS **Table 35: Recommended Operation Conditions** | Symbol | Parameter | Min | Тур | Max | Unit | Test Condition | |------------------|-------------------------------|-----|------|------|------|---------------------| | V_{DD} | Power Supply (DC voltage) VDD | 3.0 | 3.3 | 3.6 | V | | | T _A | Ambient Temperature Range | -40 | | +85 | °C | | | I _{DD} | Supply Current | | 325 | 365 | mA | Exclude the loading | | P _{TOT} | Total Power Dissipation | | 1.08 | 1.30 | W | current and power | #### 8.3 I/O SPECIFICATIONS #### 8.3.1 CMOS INPUT / OUTPUT PORT **Table 36: CMOS Input Port Electrical Characteristics** | Parameter | Description | Min | Тур | Max | Unit | Test Condition | |-----------------|--------------------|------|-----|-----|------|----------------| | V _{IH} | Input Voltage High | 2.0 | | | V | | | V _{IL} | Input Voltage Low | | | 0.8 | V | | | I _{IN} | Input Current | | | 10 | μΑ | | | V _{IN} | Input Voltage | -0.5 | | 5.5 | V | | #### Table 37: CMOS Input Port with Internal Pull-Up Resistor Electrical Characteristics | Parameter | Description | Min | Тур | Max | Unit | Test Condition | |-----------------|--------------------|------|-----|-----|------|----------------| | V _{IH} | Input Voltage High | 2.0 | | | V | | | V _{IL} | Input Voltage Low | | | 0.8 | V | | | | | 23 | | 38 | | TDI, TMS pin | | P_{U} | Pull-Up Resistor | 41 | | 82 | KΩ | RST pin | | | | 82 | | 165 | | | | | | 85 | | 140 | | TDI, TMS pin | | I _{IN} | Input Current | 40 | | 80 | μΑ | RST pin | | | | 20 | | 40 | | | | V_{IN} | Input Voltage | -0.5 | | 5.5 | V | | #### Table 38: CMOS Input Port with Internal Pull-Down Resistor Electrical Characteristics | Parameter | Description | Min | Тур | Max | Unit | Test Condition | |-----------------|--------------------|------|-----|-----|------|--| | V _{IH} | Input Voltage High | 2.0 | | | V | | | V _{IL} | Input Voltage Low | | | 0.8 | V | | | | | 8 | | 14 | | TRST and TCK pin | | P_{D} | Pull-Down Resistor | 16 | | 23 | KΩ | other CMOS input port with internal pull-down resistor | | | | 183 | | 366 | | SDI, CLKE pin | | | | 390 | | 640 | | TRST and TCK pin | | I _{IN} | Input Current | 180 | | 340 | μΑ | other CMOS input port with internal pull-down resistor | | | | 15 | | 30 | | SDI, CLKE pin | | V _{IN} | Input Voltage | -0.5 | | 5.5 | V | | **Table 39: CMOS Output Port Electrical Characteristics** | Application Pin | Parameter | Description | Min | Тур | Max | Unit | Test Condition | |-----------------|-----------------|------------------------|-----|-----|----------|------|------------------------| | | V _{OH} | Output Voltage High | 2.4 | | V_{DD} | V | I _{OH} = 8 mA | | Output Clock | V _{OL} | Output Voltage Low | 0 | | 0.4 | V | I _{OL} = 8 mA | | Output Clock | t _R | Rise time (20% to 80%) | | 3 | 4 | ns | 15 pF | | | t _F | Fall time (20% to 80%) | | 3 | 4 | ns | 15 pF | | | V _{OH} | Output Voltage High | 2.4 | | V_{DD} | V | I _{OH} = 4 mA | | Other Output | V _{OL} | Output Voltage Low | 0 | | 0.4 | V | I _{OL} = 4 mA | | Other Output | t _R | Rise Time (20% to 80%) | | | 10 | ns | 50 pF | | | t _F | Fall Time (20% to 80%) | | | 10 | ns | 50 pF | #### 8.4 JITTER & WANDER PERFORMANCE **Table 40: Output Clock Jitter Generation** | Test Definition ¹ | Peak to Peak
Typ | RMS
Typ | Note | Test Filter | |---|---------------------|--------------|--|------------------| | N x 2.048MHz without APLL | <2 ns | <200 ps | | 20 Hz - 100 kHz | | N x 2.048MHz with T0 APLL | <1 ns | <100 ps | See Table 41: Output Clock Phase Noise for details | 20 Hz - 100 kHz | | N x 1.544 MHz without APLL | <2 ns | <200 ps | | 10 Hz - 40 kHz | | N x 1.544 MHz with T0 APLL | <1 ns | <100 ps | See Table 41: Output Clock Phase Noise for details | 10 Hz - 40 kHz | | 44.736 MHz with T0 APLL | <1 ns | <100 ps | See Table 41: Output Clock Phase Noise for details | 100 Hz - 800 kHz | | 44.736 MHz without APLL | <2 ns | <200 ps | | 100 Hz - 800 kHz | | 34.368 MHz with T0 APLL | <1 ns | <100 ps | See Table 41: Output Clock Phase Noise for details | 10 Hz - 400 kHz | | 34.368 MHz without APLL | <2 ns | <200 ps | | 10 Hz - 400 kHz | | 00.2 | 0.004 UI p-p | 0.001 UI RMS | GR-253, G.813 Option 2
limit 0.1 UI p-p
(1 UI-6430 ps) | 12 kHz - 1.3 MHz | | OC-3
(Chip T0 DPLL + T0 APLL) 6.48 MHz, 19.44 MHz, 25.92
MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz, 155.52 MHz out-
put | 0.004 UI p-p | 0.001 UI RMS | G.813 Option 1, G.812
limit 0.5 UI p-p
(1 UI-6430 ps) | 500 Hz - 1.3 MHz | | | 0.001 UI p-p | 0.001 UI RMS | G.813 Option 1
limit 0.1 UI p-p
(1 UI-6430 ps) | 65 kHz - 1.3 MHz | | OC-12 | 0.018 UI p-p | 0.007 UI RMS | GR-253, G.813 Option 2
limit 0.1 UI p-p
(1 UI-1608 ps) | 12 kHz - 5 MHz | | OC-12
(Chip T0 DPLL + T0 APLL) 6.48 MHz, 19.44 MHz, 25.92
MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz, 155.52 MHz out-
put + Intel GD16523 + Optical transceiver) | 0.028 UI p-p | 0.009 UI RMS | G.813 Option 1, G.812
limit 0.5 UI p-p
(1 UI-1608 ps) | 1 kHz - 5 MHz | | put · mer ob 10020 · Opucar transcerver) | 0.002 UI p-p | 0.001 UI RMS | G.813 Option 1, G.812
limit 0.1 UI p-p
(1 UI-160 8ps) | 250 kHz - 5 MHz | | STM-16
(Chip T0 DPLL + T0 APLL) 6.48 MHz, 19.44 MHz, 25.92 | 0.162 UI p-p | 0.03 UI RMS | G.813 Option 1, G.812
limit 0.5 UI p-p
(1 UI-402 ps) | 5 kHz - 20 MHz | | MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz, 155.52 MHz out-
put + Intel GD16523 + Optical transceiver) | 0.01 UI p-p | 0.009 UI RMS | G.813 Option 1, G.812
limit 0.1 UI p-p
(1 UI-402 ps) | 1 MHz - 20 MHz | **Table 41: Output Clock Phase Noise** | Output Clock ¹ | @100Hz Offset
Typ | @1kHz Offset
Typ | @10kHz Offset
Typ | @100kHz Offset
Typ | @1MHz Offset
Typ | @5MHz Offset
Typ | Unit | |-----------------------------------|----------------------|---------------------|----------------------|-----------------------|---------------------|---------------------|--------| | 155.52 MHz (T0 DPLL + T0 APLL) | -82 | -98 | -107 | -112 | -119 | -140 | dBC/Hz | | 38.88 MHz (T0 DPLL + T0 APLL) | -94 | -110 | -118 | -124 | -131 | -143 | dBC/Hz | | 16E1 (T0 APLL) | -94 | -110 | -118 | -125 | -131 | -142 | dBC/Hz | | 16T1 (T0 APLL) | -95 | -112 | -120 | -127 |
-132 | -143 | dBC/Hz | | E3 (T0 APLL) | -93 | -109 | -116 | -124 | -131 | -138 | dBC/Hz | | T3 (T0 APLL) | -92 | -108 | -116 | -122 | -126 | -141 | dBC/Hz | | Note: 1. CMAC E2747 TCXO is used. | • | | | | | | • | Table 42: Input Jitter Tolerance (155.52 MHz) | Jitter Frequency | Jitter Tolerance Amplitude (UI p-p) | |------------------|-------------------------------------| | 12 μHz | > 2800 | | 178 μHz | > 2800 | | 1.6 mHz | > 311 | | 15.6 mHz | > 311 | | 0.125 Hz | > 39 | | 19.3 Hz | > 39 | | 500 Hz | > 1.5 | | 6.5 kHz | > 1.5 | | 65 kHz | > 0.15 | | 1.3 MHz | > 0.15 | Table 43: Input Jitter Tolerance (1.544 MHz) | Jitter Frequency | Jitter Tolerance Amplitude (UI p-p) | |------------------|-------------------------------------| | 1 Hz | 150 | | 5 Hz | 140 | | 20 Hz | 130 | | 300 Hz | 38 | | 400 Hz | 25 | | 700 Hz | 15 | | 2400 Hz | 5 | | 10 kHz | 1.2 | | 40 kHz | 0.5 | Table 44: Input Jitter Tolerance (2.048 MHz) | Jitter Frequency | Jitter Tolerance Amplitude (UI p-p) | |------------------|-------------------------------------| | 1 Hz | 150 | | 5 Hz | 140 | | 20 Hz | 130 | | 300 Hz | 40 | | 400 Hz | 33 | | 700 Hz | 18 | | 2400 Hz | 5.5 | | 10 kHz | 1.3 | | 50 kHz | 0.4 | | 100 kHz | 0.4 | Table 45: Input Jitter Tolerance (8 kHz) | Jitter Frequency | Jitter Tolerance Amplitude (UI p-p) | |------------------|-------------------------------------| | 1 Hz | 0.8 | | 5 Hz | 0.7 | | 20 Hz | 0.6 | | 300 Hz | 0.16 | | 400 Hz | 0.14 | | 700 Hz | 0.07 | | 2400 Hz | 0.02 | | 3600 Hz | 0.01 | Table 46: T0 DPLL Jitter Transfer & Damping Factor | 3 dB Bandwidth | Programmable Damping Factor | |----------------|-----------------------------| | 1.2 Hz | 1.2, 2.5, 5, 10, 20 | | 2.5 Hz | 1.2, 2.5, 5, 10, 20 | | 4 Hz | 1.2, 2.5, 5, 10, 20 | | 8 Hz | 1.2, 2.5, 5, 10, 20 | | 18 Hz | 1.2, 2.5, 5, 10, 20 | | 35 Hz | 1.2, 2.5, 5, 10, 20 | | 70 Hz | 1.2, 2.5, 5, 10, 20 | | 560 Hz | 1.2, 2.5, 5, 10, 20 | #### 8.5 OUTPUT WANDER GENERATION Figure 19. Output Wander Generation #### 8.6 INPUT / OUTPUT CLOCK TIMING The inputs and outputs are aligned ideally. But due to the circuit delays, there is delay between the inputs and outputs. Figure 20. Input / Output Clock Timing **Table 47: Input/Output Clock Timing** | Symbol | Typical Delay ¹ (ns) | Peak to Peak Delay Variation (ns) | | | |---|---------------------------------|-----------------------------------|--|--| | t ₁ | 4 | 1.6 | | | | t ₂ | 1 | 1.6 | | | | t ₃ | 1 | 1.6 | | | | t ₄ | 2 | 1.6 | | | | t ₅ | 1.4 | 1.6 | | | | t ₆ | 3 | 1.6 | | | | ote:
Typical delay provided as reference only. | | | | | ### 8.7 OUTPUT CLOCK TIMING **Table 48: Output Clock Timing** | Symbol | Typical Delay (ns) | Peak to Peak Delay Variation (ns) | |-----------------|--------------------|-----------------------------------| | t ₁ | 0 | 2 | | t ₂ | 0 | 2 | | t ₃ | 0 | 2 | | t ₄ | 0 | 2 | | t ₅ | 0 | 2 | | t ₆ | 0 | 2 | | t ₇ | 0 | 2 | | t ₈ | 0 | 2 | | t ₉ | 0 | 2 | | t ₁₀ | 0 | 2 | | t ₁₁ | 0 | 1.5 | ## **Glossary** **3G** --- Third Generation ADSL --- Asymmetric Digital Subscriber Line AMI --- Alternate Mark Inversion APLL --- Analog Phase Locked Loop ATM --- Asynchronous Transfer Mode BITS --- Building Integrated Timing Supply CMOS --- Complementary Metal-Oxide Semiconductor DCO --- Digital Controlled Oscillator **DPLL** --- Digital Phase Locked Loop **DSL** --- Digital Subscriber Line **DSLAM** --- Digital Subscriber Line Access MUX **DWDM** --- Dense Wavelength Division Multiplexing **EPROM** --- Erasable Programmable Read Only Memory GPS --- Global Positioning System GSM --- Global System for Mobile Communications IIR --- Infinite Impulse Response IP --- Internet Protocol ISDN --- Integrated Services Digital Network JTAG --- Joint Test Action Group LOS --- Loss Of Signal **LPF** --- Low Pass Filter MTIE --- Maximum Time Interval Error MUX --- Multiplexer OBSAI --- Open Base Station Architecture Initiative **OC-n** --- Optical Carried rate, n = 1, 3, 12, 48, 192, 768; 51 Mbit/s, 155 Mbit/s, 622 Mbit/s, 2.5 Gbit/s, 10 Gbit/s, 40 Gbit/s. PBO --- Phase Build-Out PDH --- Plesiochronous Digital Hierarchy PFD --- Phase & Frequency Detector PLL --- Phase Locked Loop RMS --- Root Mean Square PRS --- Primary Reference Source **SDH** --- Synchronous Digital Hierarchy SEC --- SDH / SONET Equipment Clock SMC --- SONET Minimum Clock SONET --- Synchronous Optical Network SSU --- Synchronization Supply Unit STM --- Synchronous Transfer Mode TCM-ISDN --- Time Compression Multiplexing Integrated Services Digital Network **TDEV** --- Time Deviation UI --- Unit Interval WLL --- Wireless Local Loop | A | Frequency Hard Alarm | 20, 25 | |---|--|--------| | Averaged Phase Error2 | Prequency Hard Alarm Threshold | 20 | | В | Н | | | Bandwidths and Damping Factors | 29 Hard Limit | 23 | | Acquisition Bandwidth and Damping Factor2 | Holdover Frequency Offset | 30 | | Locked Bandwidth and Damping Factor | | | | C | IIR | 30 | | | Input Clock Fraguancy | | | Calibration1 | 10 | | | Coarse Phase Loss | | | | Crystal Oscillator | Automatic selection External Fast selection | | | Current Frequency Offset | | | | D | Internal Leaky Bucket Accumulator | 19 | | | Bucket Size | | | DCO | Decay Nate | | | Division Factor | | | | DPLL Hard Alarm2 | | 19 | | DPLL Hard Limit | L L | | | DPLL Operating Mode | Limit | 32 | | Free-Run mode2 | 29 LPF | 29 | | Holdover mode2 | ²⁹ M | | | Automatic Fast Averaged | 30 | | | Automatic Instantaneous | | 16 | | Automatic Slow Averaged | N | | | Manual | | 40.05 | | Temp-Holdover mode | Tio douvity / warm | 19, 25 | | Lost-Phase mode | D | | | Pre-Locked mode2 | ²⁹ PFD | 29 | | Pre-Locked2 mode | 30 | _ | | DPLL Soft Alarm | Phase Lock Alarm23 | | | DPLL Soft Limit | | , | | E | Phase-time | 32 | | External Sync Alarm | Pre-Divider | | | • | DIVIN DIVINGI | | | F | Lock 8k Divider | 18 | | Fast Loss | ₂₃ R | | | Fine Phase Loss | Reference Clock | 20 | | S | State Machine | 27 | |-----------------------------|---------------------------------------|----| | Selected Input Clock Switch | V | | | Non-Revertive switch25 | Validity2 | 25 | | Revertive switch25 | · · · · · · · · · · · · · · · · · · · | -0 | ### **PACKAGE DIMENSIONS - 68-PIN NL** Figure 21. 68-Pin NL Package Dimensions (a) (in Millimeters) 106 July 23, 2009 Figure 22. 68-Pin NL Package Dimensions (b) (in Millimeters) 107 July 23, 2009 #### **ORDERING INFORMATION** #### **DATASHEET DOCUMENT HISTORY** 09/11/2008 Page 103 03/20/2009 Pages 42, 43, 92, 93, 97 07/23/2009 Pages 12, 96 **CORPORATE HEADQUARTERS** 6024 Silver Creek Valley Road San Jose, CA 95138 www.idt.com for SALES: 1-800-345-7015 or 408-284-8200 fax: 408-284-2775 for Tech Support: 408-360-1552 email:telecomhelp@idt.com