4194304-BIT (262144-WORD BY 16-BIT) CMOS STATIC RAM

Those are summarized in the part name table below.

DESCRIPTION

The M5M5V416C is a family of low voltage 4-Mbit static RAMs organized as 262144-words by 16-bit, fabricated by Mitsubishi's high-performance 0.18µm CMOS technology.

The M5M5V416C is suitable for memory applications where a simple interfacing, battery operating and battery backup are the important design objectives.

M5M5V416CWG is packaged in a CSP (chip scale package), with the outline of 7.0mm x 8.5mm, ball matrix of 6 x 8 (48ball) and ball pitch of 0.75mm. It gives the best solution for a compaction of mounting area as well as flexibility of wiring pattern of printed circuit boards.

FEATURES

- Single 2.7~3.0V power supply
- Small stand-by current: 0.1µA (2.85V, typ.)
- No clocks, No refresh
- Data retention supply voltage =2.0V
- All inputs and outputs are TTL compatible.
- Easy memory expansion by S1, S2, BC1 and BC2
- Common Data I/O
- Three-state outputs: OR-tie capability
- OE prevents data contention in the I/O bus
- Process technology: 0.18µm CMOS
- Package: 48ball 7.0mm x 8.5mm CSP

	Version,)		Stand-by current (Vcc=3.0V))	Activ e
	Operating	Part name	Power	Access time	* Ty pical		Ratings (max.))	current Icc1
	temperature		Supply	max.	25°C	40°C	25°C	40°C	70°C	85°C	(3.0V, typ.)
I	1										40mA (10MHz)
	I-version -40 ~ +85°C	M5M5V416CWG -70HI	2.7 ~ 3.0V	70ns	0.2	0.4	1	2	10	20	5mA
	-40 ~ +03 C										(1MHz)

^{*} Typical parameter indicates the value for the center of distribution, and not 100% tested.

PIN CONFIGURATION

(TOP VIEW)

							$\overline{}$
A	$\frac{1}{\mathbb{B}\mathbb{C}^1}$	$\frac{2}{\overline{OE}}$	3 (A0)	4 (A1)	5 (A2)	6 (S2)	
В	Q16)	BC2	(A3)	(A4)	$\overline{\overline{S1}}$	(DQ1)	
С	Q 14)	Q15)	(A5)	(A6)	(DQ2)	DQ3	
D	GND	Q13)	(A17)	(A7)	(DQ4)	(VCC)	
E	vcc	Q12	GND	(A16)	DQ5	(GND)	
F	0011)	(Q10)	(A14)	(A15)	(DQ7)	(DQ6)	
G	0 29	(N.C.)	(A12)	(A13)	$\overline{\mathbb{W}}$	(DQ8)	
Н	(N C)	(A8)	(A9)	(A10)	(A11)	N.C.	

Outline: 48FJA NC: No Connection

Pin	Function
A0 ~ A17	Address input
DQ1 ~ DQ16	Data input / output
 S1	Chip select input 1
S2	Chip select input 2
\overline{W}	Write control input
OE	Output enable input
BC1	Lower Byte (DQ1 ~ 8)
BC2	Upper Byte (DQ9 ~ 16)
Vcc	Power supply
GND	Ground supply

4194304-BIT (262144-WORD BY 16-BIT) CMOS STATIC RAM

FUNCTION

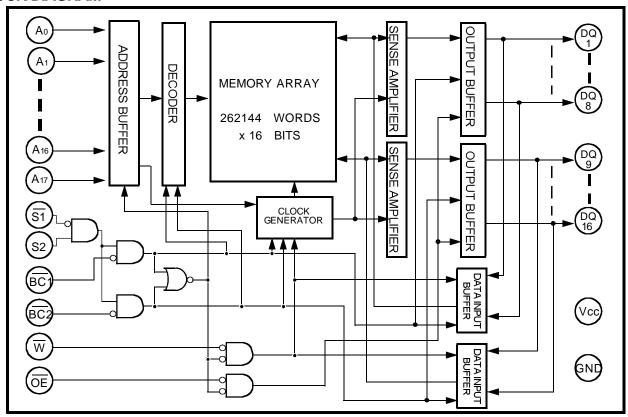
The M5M5V416CWG is organized as 262144-words by 16-bit. These devices operate on a single +2.7~3.0V power supply, and are directly TTL compatible to both input and output. Its fully static circuit needs no clocks and no refresh, and makes it useful.

The operation mode are determined by a combination of the device control inputs $\overline{BC1}$, $\overline{BC2}$, $\overline{S1}$, $\overline{S2}$, \overline{W} and \overline{OE} . Each mode is summarized in the function table.

A write operation is executed whenever the low level W overlaps with the low level BC1 and/or BC2 and the low level $\overline{S1}$ and the high level S2. The address(A0~A17) must be set up before the write cycle and must be stable during the entire cycle.

A read operation is executed by setting \overline{W} at a high level and \overline{OE} at a low level while $\overline{BC1}$ and/or $\overline{BC2}$ and $\overline{S1}$ and S2 are in an active state($\overline{S1}$ =L,S2=H).

When setting $\overline{BC1}$ at the high level and other pins are in an active stage, upper-byte are in a selectable mode in which both reading and writing are enabled, and lower-byte are in a non-selectable mode. And when setting $\overline{BC2}$ at a high level and other pins are in an active stage, lower-


When setting BC1 and $\overline{BC2}$ at a high level or $\overline{S1}$ at a high level or S2 at a low level, the chips are in a non-selectable mode in which both reading and writing are disabled. In this mode, the output stage is in a high-impedance state, allowing OR-tie with other chips and memory expansion by $\overline{BC1}$, $\overline{BC2}$ and $\overline{S1}$, $\overline{S2}$.

The power supply current is reduced as low as 0.1µA(25°C, typical), and the memory data can be held at +1V power supply, enabling battery back-up operation during power

FUNCTION TABLE

<u></u> S1	S2	BC1	BC2	$\overline{\mathbb{W}}$	ŌE	Mode	DQ1~8	DQ9~16	Icc
Χ	L	Χ	Χ	Χ	Χ	Non selection	High-Z	High-Z	Standby
Η	Ι	Χ	Χ	Χ	Χ	Non selection	High-Z	High-Z	Standby
Χ	Χ	Η	Н	Χ	Χ	Non selection	High-Z	High-Z	Standby
L	Н	L	Н	L	Χ	Write	Din	High-Z	Activ e
L	Н	L	Н	Н	L	Read	Dout	High-Z	Activ e
L	Η	L	Н	Н	Н		High-Z	High-Z	Activ e
L	Η	Η	L	ᆚ	Χ	Write	High-Z	Din	Activ e
L	Н	Н	L	Η	L	Read	High-Z	Dout	Activ e
┙	Τ	Η	L	Η	Н		High-Z	High-Z	Activ e
L	Η	L	L	L	Χ	Write	Din	Din	Activ e
L	Η	L	L	Η	L	Read	Dout	Dout	Activ e
L	Н	L	L	Н	Н		High-Z	High-Z	Activ e

BLOCK DIAGRAM

4194304-BIT (262144-WORD BY 16-BIT) CMOS STATIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Units
		With respect to GND	-0.5* ~ +3.6	
Vı	Input voltage	With respect to GND	-0.2* ~ Vcc + 0.2	V
Vo	Output voltage	With respect to GND	0 ~ Vcc	
Pd	Power dissipation	Ta=25°C	700	mW
Ta	Operating temperature	I-v ersion	- 40 ~ +85	°C
Tstg	Storage temperature		- 65 ~ + 150	°C

^{* -3.0}V in case of AC (Pulse width \leq 30ns)

DC ELECTRICAL CHARACTERISTICS

(Vcc=2.7 ~ 3.0V, unless otherwise noted)

Symbol	Parameter	Conditions			Limits	3	Units
Cyrricol	i arameter	Conditions	Conditions			Max	Offics
Vін	High-level input voltage			2.2		Vcc+0.2V	
VIL	Low-lev el input v oltage	Iон= -0.5mA		-0.2 *		0.4	
Vон	High-level output voltage			2.4			V
Vol	Low-lev el output voltage	IoL=2mA				0.4	
- Iı	Input leakage current	Vı=0 ~ Vcc				±1	^
lo	Output leakage current	BC1 and BC2=VIH or S1=VIH or S2=VIL or OE=VIH,	VI/O=0 ~ Vcc			±1	μA
14	Active supply current	ive supply current BC1 and BC2≤ 0.2V, S1≤ 0.2V, S2 ≥ Vcc-0.2V other inputs ≤ 0.2V or ≥ Vcc-0.2V	f= 10MHz	-	40	50	
1001	(AC,MOS level)	Output - open (duty 100%)	f= 1MHz	-	5	10	
	Active supply current	BC1 and BC2=VIL, S1=VIL, S2=VIH other pins =VIH or VIL	f= 10MHz	-	40	50	mA
lcc2	(AC,TTL level)	Output - open (duty 100%)	f= 1MHz	ı	5	10	
		(1) \$\overline{\S1} \geq \text{Vcc} - 0.2\text{V}, \$2 \geq \text{Vcc} - 0.2\text{V}, other inputs = 0 ~ \text{Vcc}	~ +25°C	-	0.1	1	
lcc3	Stand by supply current (MOS level)	(2) S2 ≤ 0.2V, other inputs = 0 ~ Vcc	~ +40°C	1	0.2	2	
	(IVIOS IEV EI)	(3) <u>BC1</u> and <u>BC2</u> ≥Vcc - 0.2V <u>S1</u> ≤ 0.2V, S2≥ Vcc - 0.2V other inputs = 0 ~ Vcc	~ +85°C	ı	-	20	μΑ
Icc4	Stand by supply current (TTL level)	BC1 and BC2=VIH or S1=VIH or S2=VIL Other inputs= 0 ~ Vcc		-	-	0.5	mA

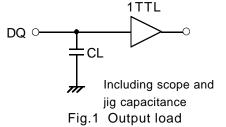
Note 1: Direction for current flowing into IC is indicated as positive (no mark)

CAPACITANCE

(Vcc=2.7 ~ 3.0V, unless otherwise noted)

Symbo	Doromotor	Parameter Conditions		Limits			
Syllibo	Parameter	Conditions	Min	Тур	Max	Units	
Сі	Input capacitance	V=GND, V=25mVrms, f=1MHz			10	pF	
Со	Output capacitance	Vo=GND,Vo=25mVrms, f=1MHz			10	þΓ	

^{* -1.0}V in case of AC (Pulse width \leq 30ns)

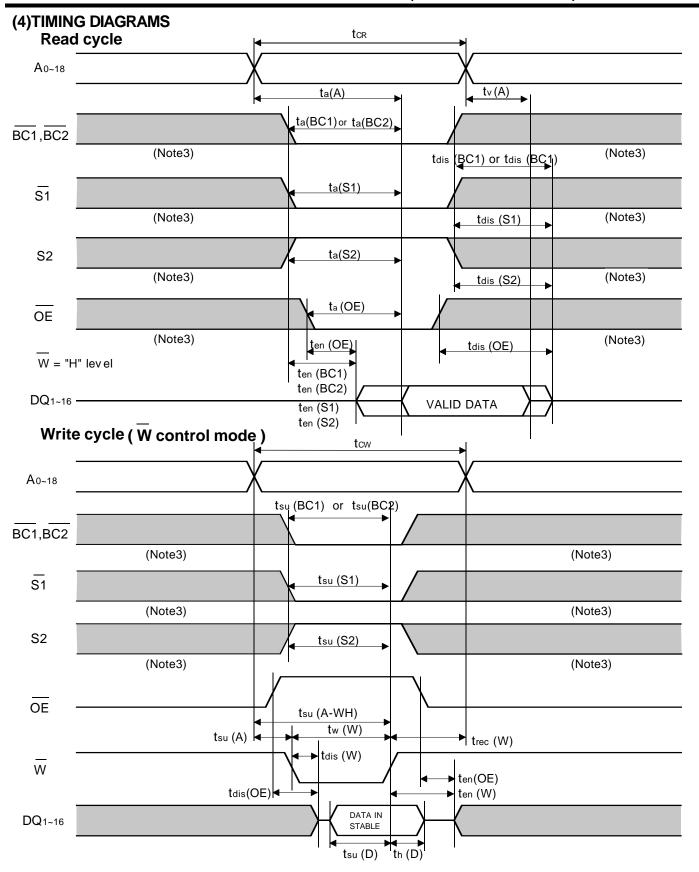

Note 2: Typical parameter indicates the value for the center of distribution at 2.85V, and is not 100% tested.

4194304-BIT (262144-WORD BY 16-BIT) CMOS STATIC RAM

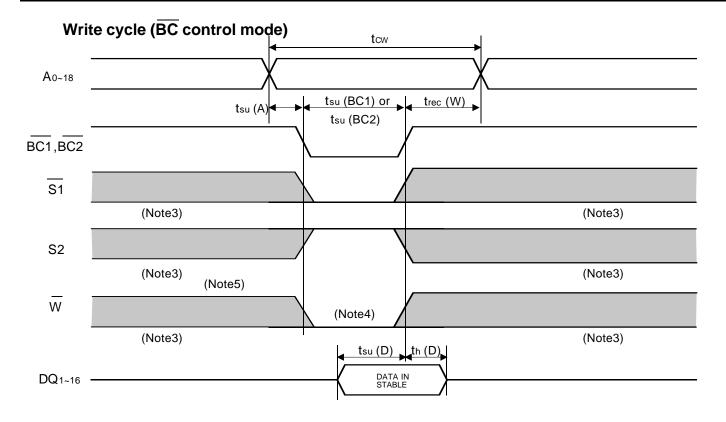
AC ELECTRICAL CHARACTERISTICS (Vcc=2.7 ~ 3.0V, unless otherwise noted)

(1) TEST CONDITIONS

Supply voltage	2.7~3.0V				
Input pulse	VIH=2.4V, VIL=0.2V				
Input rise time and fall time	5ns				
Reference level	Voh=Vol=1.5V Transition is measured ±200mV from steady state voltage.(for ten,tdis)				
Output loads	Fig.1,CL=30pF				
Output loads	CL=5pF (for ten,tdis)				

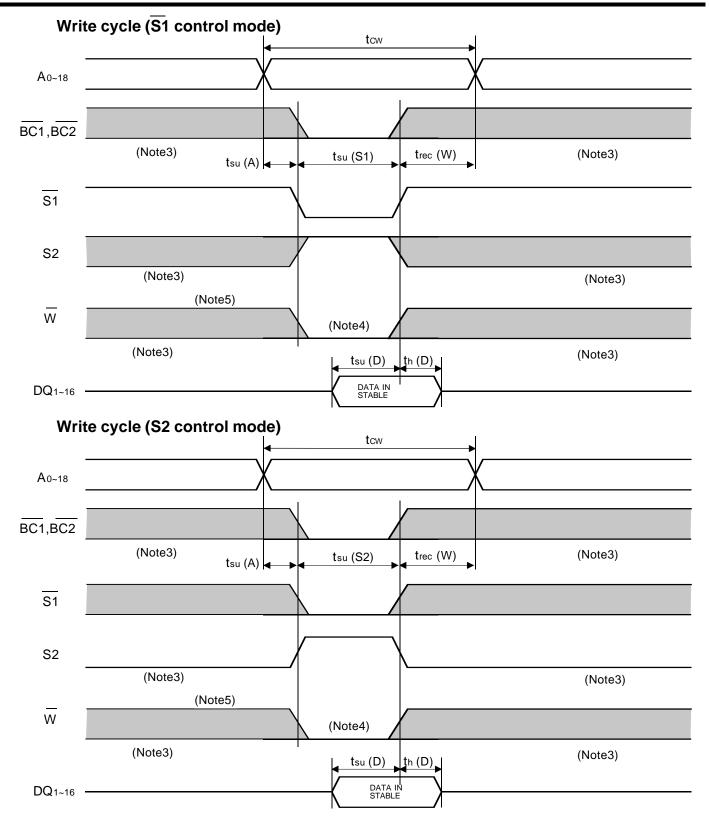

(2) READ CYCLE

		Lin	nits	
Symbol	Parameter	70	HI	Units
,		Min	Max	
tcr	Read cycle time	70		ns
ta(A)	Address access time		70	ns
ta(S1)	Chip select 1 access time		70	ns
ta(S2)	Chip select 2 access time		70	ns
ta(BC1)	Byte control 1 access time		70	ns
ta(BC2)	Byte control 2 access time		70	ns
ta(OE)	Output enable access time		35	ns
tdis(S1)	Output disable time after \$\overline{S1}\$ high		25	ns
tdis(S2)	Output disable time after S2 low		25	ns
tdis(BC1)	Output disable time after BC1 high		25	ns
tdis(BC2)	Output disable time after BC2 high		25	ns
tdis(OE)	Output disable time after OE high		25	ns
ten(S1)	Output enable time after S1 low	10		ns
ten(S2)	Output enable time after S2 high	10		ns
tdis(BC1)	Output enable time after BC1 low	10		ns
tdis(BC2)	Output enable time after BC2 low	10		ns
ten(OE)	Output enable time after OE low	5		ns
t∨(A)	Data valid time after address	10	·	ns


(3) WRITE CYCLE

		Lin	nits	
Symbol	Parameter 70 III Min Max Write cycle time 70 Write pulse width 55 Address setup time 0 Address setup time with respect to W 60 By te control 1 setup time 60 Chip select 2 setup time 60 Chip select 1 setup time 60 Chip select 2 setup time 60 Data setup time 35 Data hold time 0 Write recovery time 0 Output disable time from W low 25	HI	Units	
Í		Min	Max	
tcw	Write cycle time	70		ns
$t_w(W)$	Write pulse width	55		ns
tsu(A)	Address setup time	0		ns
tsu(A-WH)	Address setup time with respect to \overline{W}	60		ns
tsu(BC1)	Byte control 1 setup time	60		ns
tsu(BC2)	Byte control 2 setup time	60		ns
tsu(S1)	Chip select 1 setup time	60		ns
tsu(S2)	Chip select 2 setup time	60		ns
tsu(D)	Data setup time	35		ns
th(D)	Data hold time	0		ns
trec(W)	Write recovery time	0		ns
tdis(W)	Output disable time from \overline{W} low		25	ns
tdis(OE)	Output disable time from OE high		25	ns
ten(W)	Output enable time from $\overline{\overline{W}}$ high	5	5	
ten(OE)	Output enable time from \overline{OE} low	5		ns

4194304-BIT (262144-WORD BY 16-BIT) CMOS STATIC RAM



4194304-BIT (262144-WORD BY 16-BIT) CMOS STATIC RAM

- Note 3: Hatching indicates the state is "don't care".
- Note 4: A Write occurs during \$\overline{S1}\$ low, \$2 high overlaps \$\overline{BC1}\$ and/or \$\overline{BC2}\$ low and \$\overline{W}\$ low.
- Note 5: When the falling edge of \overline{W} is simultaneously or prior to the falling edge of $\overline{BC1}$ and/or $\overline{BC2}$ or the falling edge of $\overline{S1}$ or rising edge of S2, the outputs are maintained in the high impedance state.
- Note 6: Don't apply inverted phase signal externally when DQ pin is in output mode.

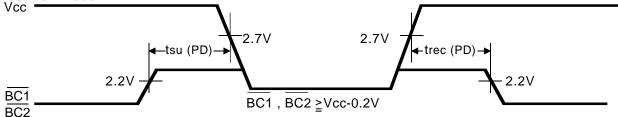
4194304-BIT (262144-WORD BY 16-BIT) CMOS STATIC RAM

4194304-BIT (262144-WORD BY 16-BIT) CMOS STATIC RAM

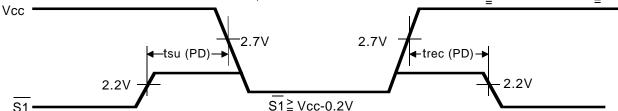
POWER DOWN CHARACTERISTICS

(1) ELECTRICAL CHARACTERISTICS

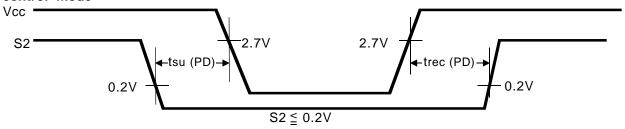
	5 .	T			Limits		
Symbol	Parameter	Test conditions		Min	Тур	Max	Units
Vcc (PD)	Power down supply voltage			2.0			V
VI (BC)	Byte control input BC1 & BC2	2.7V ≦ Vcc(PD)		2.2			
VI (BC)	Byte control input BC1 & BC2	2.0V ≦ Vcc(PD)≦2.7V		Vcc(PD)		V	
VI (S1)	Chip select input S1	2.7V ≦ Vcc(PD)		2.2			
		2.0V ≦ Vcc(PD)≦2.7V			Vcc(PD)		V
VI (S2)	Chip select input S2					0.2	
	Power down	Vcc=2.0V (1) S1 ≥ Vcc - 0.2V, other inputs = 0 ~ Vcc	~ +25°C	-	0.1	8.0	
ICC (PD)		(2) S2 ≤ 0.2V, other inputs = 0 ~ Vcc	~ +40°C	-	0.2	1.5	μA
		(3) <u>BC1</u> and <u>BC2</u> ≥Vcc - 0.2V S1 ≤ 0.2V, S2≥ Vcc - 0.2V other inputs = 0 - Vcc	~ +85°C	-	-	15	


(2) TIMING REQUIREMENTS

Note 2: Typical parameter of Icc(PD) indicates the value for the center of distribution at 2.0V, and not 100% tested.


Symbol	Parameter	Test conditions	Min	Тур	Max	Units
tsu (PD)	Power down set up time		0			ns
trec (PD)	Power down recovery time		5			ms

(3) TIMING DIAGRAM



 $\overline{\textbf{S1}}$ **control mode** note7 : On the S1 mode, the level of $\overline{\textbf{S2}}$ must be fixed at S2 \geq Vcc-0.2V or S2 \leq 0.2V.

S2 control mode

4194304-BIT (262144-WORD BY 16-BIT) CMOS STATIC RAM

Revision History

Ver. 0.0 / September.08.2000

Initial (-70HI)

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.

Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com).

When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

