NL7WB66

Ultra-Small SPST Analog Switch

The NL7WB66 is a very low R_{ON} dual SPST analog switch. R_{ON} is 5.0Ω (Typ) at 5.0 V . The device is offered in the very popular low cost US8 package. It is designed as a general purpose dual switch and can be used to switch either analog signals such as audio and video or digital signal such as TTL, CMOS, LVDS, ECL, or complex digital signals such as QPSK.

Features

- Excellent Performance RDS $_{\mathrm{ON}}=5.0 \Omega$ at 5.0 V
- High Speed Operation: $\mathrm{t}_{\mathrm{PD}}=0.25 \mathrm{~ns}($ Max) at 5.0 V
- 1.65 to 5.5 V Operating Range
- Reduced Threshold Voltages for LVTTL on Control Pin
- Eliminates the Need for Translators for Many Applications
- TTL Compatibility when V_{CC} is 5.0 V
- Can Operate with 1.8 V Inputs, if V_{CC} is 3.0
- Also Meets Full CMOS Specifications
- Ultra-Low Charge Injection $=7.5 \mathrm{pC}$ at 5.0 V
- Low Stand-by Power $\mathrm{I}_{\mathrm{CC}}=1.0 \mathrm{nA}(\mathrm{Max})$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Control Pins IN1, IN2, are Overvoltage Tolerant
- Pin for Pin Replacement TC7WB66, NC7WB66, 74LVC2G66

Typical Applications

- Cell Phones
- PDAs
- Digital Still Cameras
- Video
- Digital Video

Important Information

- ESD Protection: MM >200 V, HBM >2000 V
- Latch-Up Max Rating: 200 mA

ON Semiconductor ${ }^{\text {² }}$

http://onsemi.com

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

MAXIMUM RATINGS

Symbol	Rating	Value	Unit
V_{CC}	DC Supply Voltage	-0.5 to +7.0	V
V_{1}	DC Input Voltage	-0.5 to +7.0	V
V_{O}	DC Output Voltage	-0.5 to +7.0	V
I_{IK}	DC Input Diode Current $\quad \mathrm{V}_{1}<$ GND	-50	mA
lok	DC Output Diode Current $\quad \mathrm{V}_{\mathrm{O}}<$ GND	-50	mA
10	DC Output Sink Current	± 50	mA
$I_{\text {cc }}$	DC Supply Current per Supply Pin	± 100	mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 100	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature under Bias	+150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	Power Dissipation in Still Air at $85^{\circ} \mathrm{C}$	250	mW
MSL	Moisture Sensitivity	Level 1	-
F_{R}	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	-
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	$\begin{gathered} >2000 \\ >200 \\ \text { N/A } \end{gathered}$	V

Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm -by-1 inch, 2-ounce copper trace with no air flow.
2. Tested to EIA/JESD22-A114-A.
3. Tested to EIA/JESD22-A115-A.
4. Tested to JESD22-C101-A.

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics		Min	Max	Unit
V_{CC}	Positive DC Supply Voltage		1.65	5.5	V
$\mathrm{V}_{\text {IN }}$	Digital Input Voltage (Enable)		GND	5.5	V
V_{10}	Static or Dynamic Voltage Across an Off Switch		GND	V_{CC}	V
$\mathrm{V}_{\text {IS }}$	Analog Input Voltage	$\begin{array}{r} \mathrm{NO} \\ \mathrm{COM} \end{array}$	GND	V_{CC}	V
$\mathrm{T}_{\text {A }}$	Operating Temperature Range, All Package Types		-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{tf}$	Input Rise or Fall Time (Enable Input)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 100 \\ & 20 \end{aligned}$	ns/V

NL7WB66

DEVICE JUNCTION TEMPERATURE VS. TIME TO 0.1\% BOND FAILURES

Junction Temperature ${ }^{\circ} \mathbf{C}$	Time, Hours	Time, Years
80	$1,032,200$	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

Figure 1. Failure Rate vs. Time Junction Temperature

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

Symbol	Parameter	Condition	V_{cc}	Guaranteed Max Limit			Unit
				$25^{\circ} \mathrm{C}$	$\begin{gathered} -40 \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & -55 \text { to } \\ & <125^{\circ} \mathrm{C} \end{aligned}$	
V_{IH}	High-level Input Voltage, Control Input		$\begin{gathered} 1.65 \text { to } 1.95 \\ 2.3 \text { to } 2.7 \\ 3.0 \text { to } 3.6 \\ 4.5 \text { to } 5.5 \end{gathered}$	$\begin{aligned} & V_{C C} \times 0.65 \\ & V_{C C} \times 0.7 \\ & V_{C C} \times 0.7 \\ & V_{C C} \times 0.7 \end{aligned}$	$\begin{aligned} & V_{C C} \times 0.65 \\ & V_{C C} \times 0.7 \\ & V_{C C} \times 0.7 \\ & V_{C C} \times 0.7 \end{aligned}$	$\begin{aligned} & V_{C C} \times 0.65 \\ & V_{C C} \times 0.7 \\ & V_{C C} \times 0.7 \\ & V_{C C} \times 0.7 \end{aligned}$	V
VIL	Low-level Input Voltage, Control Input		$\begin{array}{\|c} \hline 1.65 \text { to } 1.95 \\ 2.3 \text { to } 2.7 \\ 3.0 \text { to } 3.6 \\ 4.5 \text { to } 5.5 \end{array}$	$\begin{aligned} & \hline V_{C C} \times 0.35 \\ & V_{C C} \times 0.3 \\ & V_{C C} \times 0.3 \\ & V_{C C} \times 0.3 \end{aligned}$	$\begin{aligned} & V_{C C} \times 0.35 \\ & V_{C C} \times 0.3 \\ & V_{C C} \times 0.3 \\ & V_{C C} \times 0.3 \end{aligned}$	$\begin{aligned} & V_{C C} \times 0.35 \\ & V_{C C} \times 0.3 \\ & V_{C C} \times 0.3 \\ & V_{C C} \times 0.3 \end{aligned}$	V
1 N	Maximum Input Leakage Current, Enable Inputs	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND	0 V to 5.5 V	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
$I_{\text {cc }}$	Maximum Quiescent Supply Current (per package)	$\begin{aligned} & \text { Enable and VIS = VCC or } \\ & \text { GND } \end{aligned}$	5.5	1.0	1.0	2.0	$\mu \mathrm{A}$

NL7WB66

DC ELECTRICAL CHARACTERISTICS - Analog Section

Symbol	Parameter	Condition	$\mathrm{V}_{\text {cc }}$	Guaranteed Max Limit			Unit
				$25^{\circ} \mathrm{C}$	-40 to $85^{\circ} \mathrm{C}$	-55 to $<125^{\circ} \mathrm{C}$	
R_{ON}	On-State Switch Resistance	 $V_{I S}=V_{C C}$ $I_{S}=4 \mathrm{~mA}$ $V_{I S}=G N D$ $I_{S}=4 \mathrm{~mA}$ $V_{I S}=V_{C C}$ $I_{S}=8 \mathrm{~mA}$ $V_{I S}=G N D$ $I_{S}=8 \mathrm{~mA}$ $V_{I S}=V_{C C}$ $I_{S}=24 \mathrm{~mA}$ $V_{I S}=G N D$ $I_{S}=24 \mathrm{~mA}$ $V_{I S}=V_{C C}$ $I_{S}=32 \mathrm{~mA}$ $V_{I S}=2.4$ $I_{S}=15 \mathrm{~mA}$ $V_{\text {IS }}=G N D$ $I_{S}=32 \mathrm{~mA}$	$\begin{aligned} & \hline 1.65 \\ & 1.65 \\ & 2.3 \\ & 2.3 \\ & 3.0 \\ & 3.0 \\ & 4.5 \\ & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 30 \\ & 15 \\ & 20 \\ & 10 \\ & 15 \\ & 7.0 \\ & 10 \\ & 8.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 30 \\ & 15 \\ & 20 \\ & 10 \\ & 15 \\ & 7.0 \\ & 10 \\ & 8.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 30 \\ & 15 \\ & 20 \\ & 10 \\ & 15 \\ & 7.0 \\ & 10 \\ & 8.0 \\ & 5.0 \end{aligned}$	Ω
$\mathrm{R}_{\mathrm{ON}(\mathrm{p})}$	Peak On-State Resistance	$\begin{array}{ll} \hline V_{I S}=V_{C C} \text { to } G N D, & I_{S}=4 \mathrm{~mA} \\ V_{I N}=V_{I H} & I_{S}=8 \mathrm{~mA} \\ & I_{S}=24 \mathrm{~mA} \\ & I_{S}=32 \mathrm{~mA} \end{array}$	$\begin{gathered} 1.65 \\ 2.3 \\ 3.0 \\ 4.5 \end{gathered}$	$\begin{gathered} 120 \\ 30 \\ 20 \\ 15 \end{gathered}$	$\begin{gathered} \hline 120 \\ 30 \\ 20 \\ 15 \end{gathered}$	$\begin{gathered} \hline 120 \\ 30 \\ 20 \\ 15 \end{gathered}$	Ω
$\triangle \mathrm{R}_{\mathrm{ON}}$	Difference of On-State Resistance between Switches	$\begin{array}{ll} V_{I S}=V_{C C} \text { to } G N D, & I_{S}=4 \mathrm{~mA} \\ V_{I N}=V_{I H} & I_{S}=8 \mathrm{~mA} \\ & I_{S}=24 \mathrm{~mA} \\ & I_{S}=32 \mathrm{~mA} \end{array}$	$\begin{gathered} \hline 1.65 \\ 2.3 \\ 3.0 \\ 4.5 \end{gathered}$	$\begin{aligned} & 1.2 \\ & 1.3 \\ & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.3 \\ & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.3 \\ & 1.5 \\ & 2.0 \end{aligned}$	Ω
$\mathrm{R}_{\text {FLAT }}$		$\begin{array}{ll} V_{I S}=V_{C C} \text { to } G N D & I_{S}=4 \mathrm{~mA} \\ I_{S}=8 \mathrm{~mA} \\ I_{S}=24 \mathrm{~mA} \\ I_{S}=32 \mathrm{~mA} \end{array}$	$\begin{gathered} \hline 1.65 \\ 2.3 \\ 3.0 \\ 4.5 \end{gathered}$	$\begin{gathered} \hline 240 \\ 60 \\ 14 \\ 5.0 \end{gathered}$	$\begin{gathered} 240 \\ 60 \\ 14 \\ 5.0 \end{gathered}$	$\begin{gathered} 240 \\ 60 \\ 14 \\ 5.0 \end{gathered}$	Ω
$\mathrm{I}_{\text {NO(OFF) }}$	Off Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{LL}} \\ & \mathrm{~V}_{\mathrm{NO}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{COM}}=1.0 \mathrm{~V} \text { and } \mathrm{V}_{\mathrm{NO}} 4.5 \mathrm{~V} \end{aligned}$	5.5	1.0	10	100	nA
$\mathrm{I}_{\text {Com(OFF) }}$	Off Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{NO}}=4.5 \mathrm{~V} \text { or } 1.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COM}}=1.0 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \end{aligned}$	5.5	1.0	10	100	nA

AC ELECTRICAL CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Symbol	Parameter	Test Conditions	Guaranteed Max Limit								Unit
			$\begin{gathered} \mathrm{V}_{\mathrm{Cc}}=1.8 \mathrm{~V} \\ \pm 0.15 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{Cc}}=2.5 \mathrm{~V} \\ \pm 0.2 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \\ \pm 0.5 \mathrm{~V} \end{gathered}$		
			Min	Max	Min	Max	Min	Max	Min	Max	
ton	Output Enable Time		2.3	10	1.6	5.6	1.5	4.4	1.3	3.9	ns
toff	Output Disable Time		2.5	10.5	1.2	6.9	2.0	7.2	1.1	6.3	ns
$t_{\text {PD }}$	Propagation Delay Time		-	0.55	-	0.5	-	0.35	-	0.25	ns

		Typical @ 25	
$\mathbf{C}, \mathbf{v}_{\mathbf{C C}}=\mathbf{5 . 0} \mathbf{V}$	Unit		
C_{IN}	Maximum Input Capacitance, Select Input	3.0	pF
$\mathrm{C}_{\mathrm{NO} 1}$ or $\mathrm{C}_{\text {NO2 }}$	Analog I/O (Switch Off)	10	
$\mathrm{C}_{\mathrm{COM}(\mathrm{OFF})}$	Common I/O (Switch Off)	10	
$\mathrm{C}_{\mathrm{COM}(\mathrm{ON})}$	Feed-through (Switch Off)	10	

ADDITIONAL APPLICATIONS CHARACTERISTICS (Voltage Reference to GND Unless Noted)

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Typical $25^{\circ} \mathrm{C}$	Unit
BW	Maximum On-Channel -3.0 dB Bandwidth or Minimum Frequency Response	$\mathrm{V}_{\mathrm{IS}}=0 \mathrm{dBm}$ $\mathrm{V}_{\text {IS }}$ centered between V_{CC} and GND	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 102 \\ & 180 \\ & 186 \end{aligned}$	MHz
$\mathrm{V}_{\text {ONL }}$	Maximum Feed-Through On Loss	$\begin{gathered} \mathrm{V}_{\text {IS }}=0 \mathrm{dBm} @ 10 \mathrm{kHz} \\ \mathrm{~V}_{\text {IS }} \text { centered between } \mathrm{V}_{\mathrm{CC}} \text { and GND } \end{gathered}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & -2.2 \\ & -0.8 \\ & -0.4 \end{aligned}$	dB
VISO	Off-Channel Isolation	$\begin{aligned} f & =100 \mathrm{kHz} \\ \mathrm{~V}_{\mathrm{IS}} & =1.0 \mathrm{~V} \text { RMS } \end{aligned}$ $\mathrm{V}_{\text {IS }}$ centered between V_{CC} and GND	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline-73 \\ & -74 \\ & -75 \end{aligned}$	dB
Q	Charge Injection Enable Input to Common I/O	$\begin{gathered} \mathrm{V}_{I S}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND}, \mathrm{~F}_{I S}=20 \mathrm{kHz} \\ \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{nS} \\ \mathrm{R}_{I S}=0 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \end{gathered}$	$\begin{aligned} & 3.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 7.5 \end{aligned}$	pC
THD	Total Harmonic Distortion TDH + Noise	$\begin{gathered} \mathrm{F}_{\text {IS }}=10 \mathrm{~Hz} \text { to } 100 \mathrm{kHz}, \\ \mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\text {gen }}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{~V}_{\text {IS }}=3.0 \mathrm{~V}_{\mathrm{PP}} \text { Sine Wave } \\ \mathrm{V}_{\text {IS }}=5.0 \mathrm{~V} \text { PP Sine Wave } \end{gathered}$	$\begin{aligned} & 3.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.19 \\ & 0.06 \end{aligned}$	\%

NL7WB66

TIMING INFORMATION

Figure 2. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 3. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

NL7WB66

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\text {ONL }}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \mathrm{Log}\left(\frac{\mathrm{VOUT}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\mathrm{ONL}}=$ On Channel Loss $=20$ Log $\left(\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{V}_{\mathrm{IN}}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz to 50 MHz
Bandwidth $(B W)=$ the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$

Figure 4. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V ${ }_{\text {ONL }}$

Figure 5. Charge Injection: (Q)

NL7WB66

DEVICE ORDERING INFORMATION

Device Order Number	Device Nomenclature				Package Type	Tape and Reel Size
	Circuit Indicator	Technology	Device Function	Package Suffix		
NL7WB66	NL	AS	2066	US	US8	$\begin{gathered} 178 \mathrm{~mm}\left(7^{\prime \prime}\right) \\ 3000 \text { Unit } \end{gathered}$

Figure 6. Tape Ends for Finished Goods

Figure 7. US8 Reel Configuration/Orientation

NL7WB66

Figure 8. Reel Dimensions

REEL DIMENSIONS

Tape Size	T and R Suffix	A Max	G	t Max
8 mm	US	178 mm	$8.4 \mathrm{~mm},+1.5 \mathrm{~mm},-0.0$	14.4 mm
		$(7 \mathrm{in})$	$(0.33 \mathrm{in}+0.059 \mathrm{in},-0.00)$	$(0.56 \mathrm{in})$

Figure 9. Reel Winding Direction

NL7WB66

PACKAGE DIMENSIONS

US8
US SUFFIX
CASE 493-02
ISSUE A

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION "A" DOES NOT INCLUDE MOLD LASH, PROTRUSION OR GATE BURR. MOLD FLASH. PROTRUSION AND GATE BURR SHALL NOT EXCEED 0.140 MM (0.0055") PER SIDE
4. DIMENSION "B" DOES NOT INCLUDE INTER-LEAD FLASH OR PROTRUSION INTER-LEAD FLASH AND PROTRUSION SHALL NOT E3XCEED 0.140 (0.0055 ") PER SHALL NOT E3XCEED 0.140 (0.0055 ") PER
SIDE.
5. LEAD FINISH IS SOLDER PLATING WITH THICKNESS OF 0.0076-0.0203 MM.
(300-800 ")
6. ALL TOLERANCE UNLESS OTHERWISE SPECIFIED ± 0.0508 (0.0002 ")

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	1.90	2.10	0.075	0.083
B	2.20	2.40	0.087	0.094
C	0.60	0.90	0.024	0.035
D	0.17	0.25	0.007	0.010
F	0.20	0.35	0.008	0.014
G	0.50 BSC		0.020 BSC	
H	0.40 REF		0.016 REF	
J	0.10	0.18	0.004	0.007
K	0.00	0.10	0.000	0.004
L	3.00	3.20	0.118	0.126
M	0°	6°	0°	6°
N	5°	10°	5°	10°
P	0.23	0.34	0.010	0.013
R	0.23	0.33	0.009	0.013
S	0.37	0.47	0.015	0.019
U	0.60	0.80	0.024	0.031
V	0.12 BSC		0.005 BSC	

NL7WB66
Notes

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center
2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051
Phone: 81-3-5773-3850
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

