

UltraMAX[™]

LX5120

ULTRA 27-LINE SCSI TERMINATOR

THE INFINITE POWER OF INNOVATION

PRODUCTION DATA SHEET

DESCRIPTION

The LX5120 UltraMAX[™] terminator represents next-generation technology for SCSI termination applications. The low-voltage BiCMOS architecture employed in its design offers superior performance to older passive and active techniques.

Linfinity's architecture employs high-speed adaptive elements for each channel, providing the fastest response possible. The channel bandwidth is typically 35MHz. The LX5120 compares favorably to older linear regulator approaches whose bandwidth's are dominated by the output compensation capacitor and are limited to the 500KHz bandwidth region (see further discussion in the Functional Description section). Linfinity's architecture also eliminates the output compensation capacitor typical in earlier terminator designs. Each is approved for use with SCSI-1,-2,-3, ULTRA and beyond - providing the highest performance alternative available today.

Another key improvement of LX5120 products lies in their ability to ensure reliable, errorfree communications even in systems which do not necessarily adhere to recommended SCSI hardware design guidelines, such as the use of improper cable lengths and impedances. Frequently, this situation is not controlled by the peripheral or host designer and, when problems occur, they are the first to be made aware of these problems. The LX5120 architecture is much more tolerant of marginal system integrations.

Recognizing the needs of portable and configurable peripherals, the LX5120 has a TTL compatible sleep/disable mode. To enter this mode, the DIS pin must be driven low, thereby disconnecting the LX5120 from the SCSI bus. Quiescent current is less than 150µA in this mode.

Reduced component count is also inherent in the LX5120 architecture. Traditional termination techniques require large stabilization and transient protection capacitors of up to 20μ F in value and size. The LX5120 architecture does not require these components, allowing all the cost savings associated with inventory, board space, assembly, reliability, and component costs.

KEY FEATURES

- Ultra-Fast Response For Fast-20 SCSI Applications
- Split Disconnect For Mixing 16-Bit (Wide) Or 8-Bit (Narrow) Buses
- 35mhz Channel Bandwidth
- Sleep-Mode Current Less Than 150µA
- Hot-Swap Compatible
- <u>NO</u> External Compensation Capacitors
- Compatible With Active Negation Drivers
- Superior Pin-for-Pin Replacement For The UCC5620

NOTE: For current data & package dimensions, visit our web site: http://www.linfinity.com.

Copyright © 2000 Rev. 1.0 4/00

LINFINITY MICROELECTRONICS INC.

11861 WESTERN AVENUE, GARDEN GROVE, CA. 92841, 714-898-8121, FAX: 714-893-2570

LX5120

UltraMAX

ULTRA 27-Line, Plug and Play SCSI Terminator

PRODUCTION DATA SHEET

ABSOLUTE MAXIMUM RATINGS (Note 1)

TermPwr Voltage	7V
Continuous Output Voltage Range	0 to 5.5V
Continuous Disable Voltage Range	0 to 5.5V
Operating Junction Temperature	
Plastic (DB Package)	150°C
Storage Temperature Range	65°C to +150°C
Solder Temperature (Soldering, 10 seconds)	300°C

Note 1. Exceeding these ratings could cause damage to the device.

THERMAL DATA

DB PACKAGE:

THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ_{J_A}

50°C/W

Junction Temperature Calculation: $T_J = T_A + (P_D \ge \theta_{JA})$.

The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.

PAC	KA	GE	PIN		DUTS
T19		1_	36	\square	T27
T20		20	35		T26
TI		3	34		T25
T2		4	33		T18
Т3		5	32		T17
T4		6	31		T16
T5		7	30		T15
GND		8	29		N.C.
GND		9	28		GND
GND		10	27		GND
DIS		11	26		GND
T6		12	25		V _T
17		13	24		T14
T8		14	23		T13
T9		15	22		T12
T10		16	21		T11
T21		17	20		T24
T22		18	19		T23
DB PACKAGE					
(Top View)					

RECOMMENDED OPERATING CONDITIONS (Note 2)

Barameter	Symbol	Recommended Operating Conditions			Unite
Falanietei		Min.	Тур.	Max.	Units
Termination Voltage	V	4.0		5.5	V
High Level Disable Input Voltage	V _{IH}	2		V	V
Low Level Disable Input Voltage	V _{IL}	0		0.8	V
Operating Virtual Junction Temperature Range					
LX5120C		0		125	°C

Note 2. Range over which the device is functional.

ELECTRICAL CHARACTERISTICS

Term Power = 4.75V unless otherwise specified. Unless otherwise specified, these specifications apply at the recommended operating ambient temperature of $T_A = 25^{\circ}$ C. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.

Parameter	Symbol	Test Conditions	LX5120			Unite
Falanister	Jyillool	Test conditions		Тур.	Max.	Units
Output High Voltage	V _{OUT}		2.65	2.85		V
TermPwr Supply Current	I _{cc}	All data lines = open		12	20	mA
		All data lines = 0.2V		635	670	mA
		DIS (Disable) Pin >2.0V		10	150	μA
Output Current	I _{OUT}	$V_{OUT} = 0.2V$	-20	-23	-24	mA
Disable Input Current	I _{IN}	DIS = 0V			-10	μA
Output Leakage Current		$DIS > 2.0V, V_0 = 0.2V$			1	μA
Channel Bandwidth	BW			35		MHz
Termination Sink Current, per Channel	I _{SINK}	$V_{OUT} = 4V$	7			mA

UltraMAX

LX5120

ULTRA 27-LINE, PLUG AND PLAY SCSI TERMINATOR

PRODUCTION DATA SHEET

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

Cable transmission theory suggests that in order to optimize signal speed and quality, the termination should act both as an ideal voltage reference when the line is released (de-asserted) and as an ideal current source when reproduces the optimum case when the device is enabled. To enable the device the DIS (Disable) pin should be driven low. During this mode of operation, quiescent current is 20mA

and as an ideal current source when
the line is active (asserted). Common
active terminators, which consist of
Linear Regulators in series with resis-
tors (typically 110Ω), are a compro-
mise. As the line voltage increases,
the amount of current decreases lin-
early by the equation $V = I * R$. The
UltraMAX LX5120, with its unique new
architecture, applies the maximum
amount of current regardless of line

Disable	Quiescent

LX5120	Outputs	Current
L	Enabled	20mA (Max.)
н	HI Z	150µA (Max.)
Open	HI Z	150µA (Max.)

POWER UP / POWER DOWN FUNCTION TABLE

(Max.) and the device will respond to line demands by delivering 24mA on assertion and by imposing 2.85V on deassertion. Disable mode places the device in a sleep state, where a meager 150µA (Max.) of quiescent current is consumed. Additionally, all outputs are in a Hi-Z (impedance) state. Sleep mode can be used for power conservation or to completely eliminate the terminator from the SCSI chain.

voltage until the termination high threshold (2.85V) is reached. Acting as a near ideal line terminator, the LX5120 closely An additional feature of the LX5120 is its compatibility with active negation drivers.

UltraMAX is a trademark of Linfinity Microelectronics Inc.

PRODUCTION DATA - Information contained in this document is proprietary to LinFinity, and is current as of publication date. This document may not be modified in any way without the express written consent of LinFinity. Product processing does not necessarily include testing of all parameters. Linfinity reserves the right to change the configuration and performance of the product and to discontinue product at any time.

