
GETTING
STARTED

GUIDE

A
V

R
 B

A
SI

C

for AVR BASIC 1.00.206
or later

(Manual Version 1.21)

AVR BASIC Getting Started Guide V1.21

i

Copyright Information

© 1999 Copyright Equinox Technologies UK Limited. All rights reserved.

AtmelTM and AVRTM are trademarks of the Atmel Corporation
Microsoft, MS-DOS, WindowsTM and Windows 95TM Windows NT™ are registered
trademarks of the Microsoft Corporation
IBM, PC and PS/2 are registered trademarks of International Business Machines
Corporation

Every effort was made to ensure accuracy in this manual and to give appropriate credit to
persons, companies and trademarks referenced herein.

Information in this document is subject to
change without notice and does not
represent a commitment on the part of the
manufacturer. The software described in
this document is furnished under license
agreement or nondisclosure agreement and
may be used or copied only in accordance
with the terms of the agreement.

It is against the law to copy the software on
any medium except as specifically allowed
in the license or non-disclosure agreement.

The purchaser may make one copy of the
software for backup purposes. No part of
this manual may be reproduced or
transmitted in any form or by any means,
electronic, mechanical, including
photocopying, recording, or information
retrieval systems, for any purpose other
than for the purchaser’s personal use,
without written permission.

AVR BASIC Getting Started Guide V1.21

ii

Contact Information

Equinox Technologies UK Limited
3 Atlas House, St George's Square, Bolton, England BL1 2HB

Telephone Sales : +44 (0) 1204 529000

Fax .. : +44 (0) 1204 535555

Technical Support : avrbasic@equinox-tech.com

E-mail ... : sales@equinox-tech.com

Web site : www.equinox-tech.com

AVR BASIC is a Silicon Studio product

AVR BASIC Getting Started Guide V1.21

iii

Technical Support

Registration
Please fill out the ‘Customer Registration Form’ provided with your system and submit this to
Equinox directly. Equinox will issue you a customer registration number which must be
quoted when making any technical support enquiry to Equinox. Equinox can not provide
technical support to unregistered users of our products.

Levels of technical support
Equinox provide a range of technical support services for the AVR BASIC Toolset. The level of
support depends on the package you have purchased and also on whether you have
purchased a ‘Technical Support Contract’ from Equinox. The level of technical support
offered for each package is detailed below. A separate support contract may be purchased
for AVR-BASIC-LITE and AVR-BASIC-FULL if more in-depth technical support is required.

AVR-BASIC-DEMO : No support
AVR-BASIC-LITE : Installation support only
AVR-BASIC-FULL : Installation support only

Installation Support
After ordering either AVR-BASIC-LITE or AVR-BASIC-FULL, Equinox offer you 30 days of
support from date of registration with a reaction time of 5 working days. This support is only
to solve installation problems. Please note that this support can only be given by e-mail.

Please send your enquiries to:
E-mail: avrbasic@equinox-tech.com
Fax: +44 (0) 1204 535555

Standard Support (Chargeable)
Standard technical support is offered only via e-mail and fax with a response time of 48
hours. Equinox will attempt to answer any question relating to the general use of the
AVR-BASIC environment. We can not, however, answer questions on how to write BASIC or
AVR Assembler source code or relating to user-specific hardware.
An automated e-mail service is available which will send you news of new update releases
and device support enhancements.

Standard Support................£200

Please send your enquiries to:
E-mail: avrbasic_support@equinox-tech.com
Fax: +44 (0) 1204 535555

AVR BASIC Getting Started Guide V1.21

iv

Section 1

INTRODUCTION1/1

AVR BASIC OVERVIEW1/2

AVR BASIC SOFTWARE OVERVIEW1/4

IDE OVERVIEW1/5
(Integrated Development Environment)

AVR BASIC SYSTEM SUMMARY1/6

AVR BASIC PACKAGE SUMMARY1/7

TYPICAL PROJECT OVERVIEW1/8

INSTALLATION OVERVIEW1/10

SOFTWARE INSTALLATION1/11

DIRECTORIES OVERVIEW1/12

INTERFACING TO DEVICE PROGRAMMERS1/13

AVR BASIC EXAMPLES1/14

Section 2

AVR BASIC Language - Quick Reference Guide

AVR BASIC Getting Started Guide V1.21

1/1

Introduction

The AVR BASIC Toolset contains a
comprehensive suite of code

development tools for the Atmel AVR
RISC microcontroller family. The
package includes a powerful Integrated
Development Environment (IDE) which
encompasses a BASIC compiler, macro
assembler, editor and hex creator all
within one easy-to-use Windows
environment.

The AVR BASIC language allows you to
write code in a high level language, while
still retaining the fast execution speed of
assembler. The code is compiled from a
BASIC source program into optimised AVR
assembly instructions ready to be
programmed into an AVR microcontroller
device. It is entirely possible to write your
complete project using AVR BASIC without
ever resorting to assembler as the compiler
produces very optimised code. Even time-
critical code such as interrupt service
routines can be optimised at compilation
stage so as to generate the most efficient
code. It is also possible to generate almost
all AVR instructions either directly or
indirectly within AVR BASIC.

AVR BASIC is now available in three
different packages from an evaluation
version to the fully unrestricted version. The
choice of package depends on the amount
of code to be generated and the target
AVR device which is to be used.

The AVR BASIC Tool set
highlights:

• Compiled BASIC generates highly
optimised AVR machine code

• Hybrid Language including BASIC
commands plus support for many
Pascal and C-type structures

• Target speeds comparable with
assembler

• Not a Run-Time Interpreter; NO code
overhead

• Supports AT90S1200 reduced
instruction set devices

• Direct support for all AVR-specific
machine code instructions within
BASIC source file

• Support for 16-bit Integer and
IEEE 32 bit Floating Point Maths

• Comprehensive suite of code
examples available

• Breaks the cost barrier for small
projects

• Ideal for educational, hobbyist and
professional use

AVR BASIC Getting Started Guide V1.21

1/2

AVR BASIC

Why choose BASIC as the language for programming a microcontroller?

BASIC has been supplied as a standard accessory with almost all microcomputers. Its
accessibility and ease of use have made it one of the most widely used programming
languages. Originally devised in 1963, by John 18 and Thomas Kurtz of Dartmouth College
(New Hampshire, U.S.A.), it was intended to provide students with an easy introduction to
programming language, hence the name ‘Beginners All-purpose Symbolic Instruction Code’.
Many scientists and engineers found BASIC attractive for developing solutions to technical
problems, and the language soon became established as a tool in its own right.

High and Low Level Programming Languages

A low level language describes precisely which actions are done and specifies exactly the
parts of the target system to be operated on. At the lowest programming level (closest to
the object code) is assembly code, consisting of a short mnemonic code for each instruction,
to identify the operation to be performed, and the part of the memory, Central Processor
(CPU), or Input/Output (I/O) device on which to operate. The list of mnemonics, called the
‘source file’, is then processed by a computer program called an ‘assembler’ which translates
the source into object code.

Programming in assembly code requires detailed knowledge of the instruction set and
internal circuit architecture of the CPU, and the I/O devices. Every individual instruction
appears as a mnemonic, and it is difficult to see structure or relationship between parts of
the program. To perform the same task on different target systems requires a separate
program for each. However, careful assembly programming can deliver the shortest or fastest
program possible on a given system.

In a High Level Language the source code is translated to machine code by a compiler
program, or by a run-time interpreter program, either of which will link CPU and I/O
resources of the target system to the program. The compiler produces an executable object
code file, which is loaded into the target system and run. The interpreter is itself a program
which runs on the target system, and translates the source file line-by-line as required, on
the target machine itself. Interpreted language programs run much more slowly than
compiled programs because of the translation and file access overheads.

AVR BASIC Getting Started Guide V1.21

1/3

AVR BASIC Continued

A high-level language:

• Allows quite complex operations to be expressed as short command words or phrases,
(or graphical symbols)

• Hides unnecessary system details from the programmer

• Allows the structure of the program to be expressed more clearly,

• Enables a faster programming and testing cycle

• In principle one high-level-language program is capable of being run on many different
systems, if a suitable compiler is available for each system i.e. it is ‘portable’.

BASIC

BASIC is a High-Level-Language, easier to learn than assembler or ‘C’. It has a format and
syntax already familiar to most programmers and engineers. For control applications a true
compiled BASIC is desirable, to obtain maximum execution speed. Additional low - level
commands may be provided, to allow the programmer to specify CPU, I/O, and memory
resources, and insert assembler - level instructions for optimisation.

Introducing AVR BASIC

AVR BASIC is a hybrid language consisting of most of the familiar BASIC commands but has
been significantly extended to encorporate many desirable features from the ‘Pascal’ and ‘C’
languages. It is a compiled language and so is capable of generating highly-optimised code
which runs at the full speed of AVR machine code. The compiler features the ability to freely
mix many AVR specific assembly language instructions with BASIC instructions in the same
source file.

AVR BASIC has been specially written so as to be able to fully support all Atmel AVR
microcontroller derivatives on the market today. The compiler is capable of generating code
for the AVR AT90S1200(A) devices which are not currently supported by any commercially
available C compiler as these devices do not have any on-chip SRAM. The recently
introduced Atmel ATmega family of AVR microcontrollers is also supported.

AVR BASIC Getting Started Guide V1.21

1/4

Figure 1

EDITOR

AVR BASIC
Compiler

AVR Macro
Assembler

Linker

Device Programmer

AVR BASIC Tool Kit
Overview

Atmel AVR Microcontroller

CODE EEPROM

@@@@@@@@e?
@@@@@@@@e?
@@h?
@@h?
@@h?
@@h?
@@h?
@@h?

@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e
@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e

@@@@@@@@
@@@@@@@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

?@@
?@@
?@@
?@@
?@@
?@@

?@@@@@@@@
?@@@@@@@@

?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@
?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@

@@g
@@g
@@g
@@g
@@g
@@g
@@@@@@@@
@@@@@@@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

Atmel AVR
Studio

@@@@@@@@e?
@@@@@@@@e?
@@h?
@@h?
@@h?
@@h?
@@h?
@@h?

@@@@@@@@e?@@@@@@@@?e
@@@@@@@@e?@@@@@@@@?e

@@@@@@@@
@@@@@@@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

?@@
?@@
?@@
?@@
?@@
?@@

?@@@@@@@@
?@@@@@@@@

?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@
?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@

@@g
@@g
@@g
@@g
@@g
@@g
@@@@@@@@
@@@@@@@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

SIDE

*.ROM *.EEP

*.obj

AVR CODE

AVR BASIC Software Overview

The diagram below shows the interaction between the AVR BASIC Integrated
Development Environment (SIDE) and the device programmer supplied with this
system.

File types

*.obj Object file containing symbolic and debug information

*.rom File containing data to be programmed into the code area

*.EEP File containing data to be programmed into the EEPROM area

AVR BASIC Getting Started Guide V1.21

1/5

IDE Overview

SIDE - Silicon Studios Integrated Development Environment

• Powerful Integrated Development Environment
• Operates under Windows 95 and Windows NT (Windows 3.11 is not supported)
• Powerful Project Manager
• Integrated editor allows multiple files to be open at the same time
• Interactive source code error correction
• Direct support for external tools e.g. device programmers

AVR BASIC Compiler

• Translates AVR BASIC source code into AVR machine code
• Generates highly optimised AVR machine code
• Target execution speeds of compiled code is comparable with AVR assembler
• Supports low-level AVR instructions directly
• Features function calling with parameter passing
• Direct code support for Interrupt Service Routines (ISR’s)
• Includes powerful C-like ‘switch’ construct

AVR Macro Assembler

• Public Domain AVR Macro Assembler
• No direct support currently offered for this utility

Linker

• Generates an Intel HEX file suitable for downloading the code to a device programmer
• Generate an object file containing symbolic information suitable for downloading to a

simulator or emulator

AVR BASIC Getting Started Guide V1.21

1/6

Which package?
AVR BASIC is now available in three different packages from an evaluation version to the
fully unrestricted version. The choice of package depends on the amount of code to be
generated and the target AVR device which is to be used.

AVR BASIC DEMO
This is an evaluation version of the AVR BASIC Toolset which is capable of compiling up to 64 bytes of
AVR code for any AVR derivative. This version is ideal for evaluating the package as many of the
examples provided in the \source directory will compile using this version.

This software can be downloaded from the ‘AVR BASIC section’ on the Equinox Web Site.

AVR BASIC LITE
This is a fully functional version of the AVR BASIC Toolset which is capable of compiling up to 1K bytes
of AVR code. This version is ideal for evaluating the package as many of the examples provided in the
\source directory will compile using this version. Floating-point libraries are not included in this version.

AVR BASIC Full Version
This is a fully functional version of the AVR BASIC Toolset which is capable of compiling up to 128K
bytes of code for any AVR derivative. This version supports all the AVR instructions of the classic AVR
family and will also support the Atmel ATmega derivatives. Floating-point libraries are included in this
version.

Please note:

The CODE/EEPROM sizes of Atmel microcontrollers are quoted in bytes even though the processor
instruction is 16-bits (2 bytes) long. For this reason, the code sizes for the different versions of AVR
BASIC are also quoted in bytes.

AVR BASIC System Summary

AVR BASIC Getting Started Guide V1.21

1/7

AVR BASIC Package Summary

Figure 2

Order Code AVR-BAS-LITE AVR-BAS-FULL

Price FREE $39.95 $249.95

Download from
our Web site

AVR BASIC Package DEMO LITE FULL

Code Size limit (bytes) 64 1K 128K

Integrated Development YES YES YES
Environment (IDE)

AVR BASIC Compiler YES YES YES

AVR Macro Assembler YES YES YES

Linker YES YES YES

HEX Translator YES YES YES

Floating Point Libraries NO NO YES

DEVICE SUPPORT

AVR Device Support ALL AT90S1200(A) ALL

AT90S1200 instruction set YES YES YES

AT90S8515 instruction set YES NO YES

ATmega support NO NO YES

DOCUMENTATION

AVR BASIC Getting Started Guide PDF Only YES YES

AVR BASIC Reference Guide NO NO YES

On-line HELP YES YES YES

MISCELLANEOUS

Windows Operating System 95/NT 95/NT 95/NT

AVR BASIC Getting Started Guide V1.21

1/8

Typical Project Overview

Project Based Development

Back in the old days of DOS development tools, it was necessary to run separate command line driven
programs to compile, link and then produce a hex file. This was not only time consuming, but could
also lead to a lot of compilation and linking errors due to typing errors.

The AVR BASIC Integrated Development Environment (SIDE) takes care of all file management for you,
so all you have to worry about is actually writing code that works! The table below shows the different
files contained within a typical project.

Extension Example Description

.BAS test.bas BASIC source file: This file is an ASCII text file containing a program written in
BASIC. The BASIC Compiler takes .bas files as its input and outputs a .lst and a .hex
file.

.INI 1200.ini Device initialisation file: This file contains all the device-specific information
pertaining to a particular AVR microcontroller derivative. All register declarations,
code size, EEPROM size, RAM size and port assignments can be found in this file.

.ROM test.rom Microcontroller CODE area file: When a BASIC or assembler language source file
is compiled, the output of the compiler is both a ‘.rom’ and a ‘.eep’ file. The .rom
file contains the actual data image which is to be programmed into the CODE area
of the target device. This is currently in generic Intel HEX format.

.EEP test.eep Microcontroller EEPROM area file: When a BASIC or assembler language source
file is compiled, the output of the compiler is both a ‘.ROM’ and a ‘.EEP’ file. The
.eep file contains the actual data image which is to be programmed into the
EEPROM area of the target device. This is currently in generic Intel HEX format. If
the compiler generated no data for the EEPROM area, a .eep file is created
containing all bytes set to ‘ffh’.

.LST test.lst Compiler ‘List’ file: When a BASIC or assembler language source file is compiled,
the compiler creates a ‘.lst’ file which is an ASCII file which logs the compilation
process and any errors found during compilation.

.OBJ test.obj Object file: When a BASIC or assembler language source file is compiled, the
compiler creates an ‘.obj’ file which contains the actual code generated by the
compiler and Symbolic information for debugging. This code is not in a useable
form for programming into a device and so is converted by SIDE into a HEX file.

.ERR test.err Error file: When a BASIC or assembler language source file is compiled, an error file
is produced if any compilation errors were encountered. These errors are also
displayed in the error window within SIDE.

Figure 3

AVR BASIC Getting Started Guide V1.21

1/9

Typical Project Overview Continued

Figure 4

evalu8r.inc

Symbol & port
assignments

for the
Equinox
‘Evalu8r’
module

1200.ini

AT90S1200
Initialisation

file

test.obj

Object
File

test.lst

List File
(Log of

compilation)

test.err

Error
Message

Information

test.rom

Device
Code
Area

Image

test.eep

Device
EEPROM

Area
Image

DEVICE PROGRAMMER

BASIC COMPILER

test.bas

Family AVR

Device 1200

Include evalu8r

AVR COREEEPROMCODE

BASIC source file

Atmel AVR Microcontroller

AVR BASIC Getting Started Guide V1.21

1/10

Introduction
This section explains how to set up an operating environment and how to install the
software on your hard disk. Before starting the installation program, please verify that your
computer system meets the minimum requirements and make a copy of the installation
diskettes for backup purposes.

System Requirements
There are minimum hardware and software requirements that must be satisfied to ensure
that the compiler and utilities function properly.

These are as follows:
• 100% IBM Compatible 386 or higher PC
• Windows 95 or Windows NT (Windows 3.11 and DOS are NOT supported)
• 16Mb RAM minimum
• Hard disk with minimum 6Mb free space

Default Install Directory
The installation program copies the
development tools into the
sub-directories show in Fig. 5.

Installation Overview

Package Default Install Directory

AVR BASIC-DEMO Program files\avrbasic
AVR BASIC-LITE Program files\avrbasic
AVR BASIC -FULL Program files\avrbasic

Figure 5

AVR BASIC Getting Started Guide V1.21

1/11

Software Installation

AVR BASIC features a straightforward installation program which, once launched, gives full
on-screen prompts at every stage. As with any software package, actually getting up and
running can be the most frustrating exercise. Please consult the list of installation hints below
for help.

AVR BASIC

1 Is compatible with Windows 95 &
Windows NT only.

2 Is NOT compatible with Windows 3.11
or DOS.

3 Can be installed on a network drive and
launched from a remote client machine

Installation Procedure

The following installation instructions below
cover all versions of AVR BASIC:

From Windows 95 or Windows NT
environment:

1 Insert ‘AVR BASIC’ disk into floppy drive
e.g. a:

2 From the ‘Start’ menu, select ‘Run..’

3 Type ‘a:\setup.exe’ or browse to the
required drive and select ‘setup.exe’

4 The installation program should now
commence

5 Follow instructions and prompts given
on screen

To install from the Equinox Web
Site:

1 Go to http://www.equinox-tech.com and
browse to the Software section

2 Download 'Sidexxx.exe' where 'xxx' is
the version number

3 Double-click on 'Sidexxx.exe'

4 Follow instructions and prompts given
on screen

Please Note: Unless you already have a
licence file the web version is 'AVR BASIC
DEMO' only. Please see the Upgrading
section for information on obtaining a
licence file.

The AVR BASIC Toolset is automatically
added to the Windows 95 Program Menu
and can be found as follows:

<Start> –> <Programs> –>
<Equinox><SIDE>

Where SIDE is the AVR BASIC Integrated
Development Environment.

Upgrading AVR BASIC to Lite or Full
Versions

1 Install 'AVR BASIC DEMO' version on
your computer

2 Obtain a 'Licence file (*.lic)' for either
'AVR BASIC LITE' or 'AVR BASIC FULL'
from Equinox or your local Equinox
distributor

3 With the 'Side.exe' NOT launched (ie. Do
not run Side.exe), copy the 'Licence file'
into the following directory:
..\side\bin ie. Into the \bin directory.

AVR BASIC Getting Started Guide V1.21

1/12

Directories Overview

The AVR BASIC installation routine creates
the following directories within the
\avrbasic directory:

Directory Description

\bin Executables and license files

\config IDE and device-specific
config/initialisation files

\help Windows help files

\html HTML documents and help
information

\inc Include files

\install Installed files

\plugins SIDE plugins e.g. AS
Assembler

\source Example source files and
applications

\temp For IDE use only

\update For downloaded application
updates

Software Installation Continued

4 Launch 'Side.exe'

5 Your copy of AVR BASIC will now be
automatically updated to become either
'AVR BASIC LITE' or 'AVR BASIC FULL'
depending on the licence file entered.
Your Windows Registry will be
automatically updated and the 'Licence
file' will be deleted from the \bin
directory.

Please note: If you wish to move AVR
BASIC to another PC, it will be necessary to
retain a copy of your licence file separately,
as the installation procedure automatically
deletes it once the software is installed.

Upgrading from a Previous Version
of AVR BASIC

1 Install the new version of AVR BASIC on
a machine with a copy of AVR BASIC
Lite, 8K or Full already installed. The
installation directory does not have to be
the same as the previous installation.

2 Launch 'Side.exe'

3 Check the licence file is correct by
choosing <Help><Show Licence> in the
IDE.

AVR BASIC Getting Started Guide V1.21

1/13

The AVR BASIC environment has been specially designed to support external device
programmers. The compiler produces two output files which can be programmed into the
target AVR microcontroller. The *.ROM should be programmed into the CODE area and the
*.EEP should be programmed into the EEPROM area of the microcontroller. The default file
type is Intel HEX which is compatible with most device programmers.

Example

Using the Equinox ‘Meridian for Windows’ programmer interface software:

1 Compile the sample AVR BASIC project called eeprom.spr found in
avrbasic\source\avr\equinox\evalu8r\eeprom.spr

2 Check that the two files: 'eeprom.rom' and 'eeprom.eep' are created by the compiler.
Please note that not all examples will create an '.eep' file.

3 Launch the Meridian software

4 Select <File><Load to buffer>
-> File load dialogue box should appear

5 In the CODE area section of the Window, select <Browse> and then select the file for the
CODE area i.e. 'eeprom.rom'

6 In the EEPROM area section of the Window, select <Browse> and then select the file for
the EEPROM area i.e. 'eeprom.eep'

7 Click the <Load> button at the bottom of the Window
-> The two files 'eeprom.rom' and 'eeprom.eep' are now loaded into the CODE and
EEPROM buffers respectively.

8 Click the <Exit> button at the bottom of the Window

9 To program the device, select <Device><Auto-program>
-> The device is programmed with the contents of the CODE and EEPROM buffers.

Interfacing to Device Programmers

AVR BASIC Getting Started Guide V1.21

1/14

The AVR BASIC Toolset is supplied with a suite of software examples to help you get up and
running quickly. All of the examples have been written for the Equinox ‘Evalu8r’
microcontroller evaluation module fitted with an Atmel AT90S1200 microcontroller, but can
easily be adapted for other similar targets.

The following software examples are supplied with AVR BASIC:

Example 1 : LED1 Turns on an LED
Example 2 : LED2 Flashes an LED
Example 3 : BUZZ1 Outputs an audible tone on a piezo sounder
Example 4 : BUTTON1 Reads and debounces a push-button switch
Example 5 : EEPROM Demonstrates use of AVR on-chip EEPROM
Example 6 : I2CEE External 24C16 EEPROM Driver Utility
Example 7 : ANACOMPI A/D Utility using on-chip comparator
Example 8 : TIMER Flashes an LED using an interrupt driven timer

Source File location: \AvrBasic\Source\Avr\Equinox\Evalu8r

Most of the above examples use the ‘evalu8r.inc’ include file to pre-define all the hardware
on this module. This include file can be found as follows: \AvrBasic\Source\Avr\Equinox\Inc.

Trying out the example programs

1. Launch the AVR BASIC Toolset by
selecting
<Start><Programs><Equinox><SIDE>
or by double clicking the ‘side.exe’
icon.

AVR BASIC Examples

AVR BASIC Getting Started Guide V1.21

1/15

Example 1: LED1

Source file : led1.bas
Include file : evalu8r.inc
Default processor : Atmel AT90S1200
CODE size : 2 words
EEPROM size : 0 bytes

This example simply turns on an LED connected to Port B bit 0 of an AVR device and then
waits in an endless loop. The LED port is first initialised to all off (all pins set to 1) by calling
the ‘Init_LEDS’ function which can be found in the ‘evalu8r.inc’ file.

AVR BASIC Examples Continued

#include <equinox\evalu8r\leds>

Begin
LED7 := 1; // Turn LED 7 ON

End.

2. From the menu bar, select
<File><Open> and then browse to
your selected example

e.g. \AvrBasic\Source\Avr\Equinox\
Evalu8r\led1.spr

-> The source file for ‘led1.bas’
should now be displayed.

3. Select <Project><Compile> or simply
press the <F9> hot key.

-> The source file is compiled and a
message in the bottom line of the
main window should say:
”Compiled OK, xx Words of CODE”.

4. To view the symbols defined during this compilation, select <View><Symbols>.

5. To view the ‘list’ file containing all compilation information, select <View><Listing>.

6. To program the two files (*.rom and *.eep) into a target AVR microcontroller, please
refer to the instructions supplied with your programmer. (For Equinox programmers
please refer to section ‘Interfacing to Device Programmers’)

Example 2: LED2

Source file : led2.bas
Include file : evalu8r.inc
Default processor : Atmel AT90S1200
CODE size : 56 words
EEPROM size : 0 bytes

This example flashes an LED connected to Port B bit 0 of any AVR device at a pre-determined
rate. The LED port is first initialised to all off (all pins set to 1) by calling the ‘Init_LEDS’
function which can be found in the ‘evalu8r.inc’ file. The flash rate can be altered by
changing the parameter value in the delay() function and/or by changing the processor
oscillator frequency. When using the Equinox Evalu8r module, the piezo will also buzz as this
is connected to the same port as the LED.

AVR BASIC Getting Started Guide V1.21

1/16

AVR BASIC Examples Continued

Example 3: BUZZ1

Source file : buzz.bas
Include file : evalu8r.inc
Default processor : Atmel AT90S1200
CODE size : 53 words
EEPROM size : 0 bytes

This example produces a tone on a piezo sounder device connected to port B bit 7 of an
AVR device. The frequency of the tone can be altered by changing the parameter value in
the delay() functions and/or by changing the processor oscillator frequency.

#include ..\inc\evalu8r
//
Begin

Init_LEDS; // Init LED Port
Repeat

LED0 := Not LED0; // Invert LED
Delay(20);

Until FALSE; // Loop forever
End.

AVR BASIC Getting Started Guide V1.21

1/17

Example 3 Continued

Example 4: BUTTON1

Source file : button1.bas
Include file : evalu8r.inc
Default processor : Atmel AT90S1200
CODE size : 57 words
EEPROM size : 0 bytes

This example demonstrates a software method of reading and debouncing a push-button
switch. A beep sound is made when the push button is released.

#include ..\inc\evalu8r
//
Begin

Init_BUZZER; // Init BUZZER Port
Repeat

Beep; // Make a BEEP..
Delay(100); // Same Delay

Until FALSE; // Loop.. Do it Again!
End.

#include ../inc/evalu8r
//
Begin

Init_BUZZER; // Init BUZZER Port
Repeat

Wait !S1; // Wait until PushButton S1 Pressed
Delay(1); // Debounce Delay
Wait S1; // Wait until Button Released
Beep; // Make a BEEP..

Until FALSE; // Loop for FOREVER
End.

AVR BASIC Examples Continued

AVR BASIC Getting Started Guide V1.21

1/18

AVR BASIC Examples Continued

Example 5: EEPROM

Source file : eeprom.bas
Include file : evalu8r.inc
Default processor : Atmel AT90S1200
CODE size : 58 words
EEPROM size : 16 bytes

This example demonstrates the use of the AVR on-chip EEPROM. A series of 16 data bytes
are placed in the EEPROM area at compile time. When the program runs, the data bytes are
read sequentially from the EEPROM and displayed one at a time on the LED port. The speed
of the LED port update can be changed by altering the parameter in the delay() function.
The ‘eeprom.eep’ file must also be programmed into the target device in order for this
program to work.

#include ..\inc\evalu8r
Var Index: Byte;
// Sequence to Display on LEDS
Const XX EEPROM = $55,$AA,$55,$AA, $33,$CC,$33,$CC, $66,$99,$66,$99,
$F0,$0F,$F0,$0F

Begin
Init_LEDS; // Init LED Port
Repeat

LEDS := EEPROM[index]; // Read EEPROM and Display
Delay(5); // Short Delay
Index := Index + 1 and $0F // make sure index stays in range [0..15]

Until FALSE; // Loop forever
End.

AVR BASIC Getting Started Guide V1.21

Section 2
AVR BASIC Language-Quick Reference Guide

AVR DEVICE-SPECIFIC INITIALISATION FILES2/1

COMMANDS2/2

PROGRAM LAYOUT2/3

CONSTANTS2/6

LABELS2/8

VARIABLES2/9

RESERVED WORDS2/11

EXPRESSIONS2/12

LOGIC OPERATORS2/13

STATEMENTS2/14

FUNCTIONS & PROCEDURES2/15

LABELS & IDENTIFIERS2/17

OPTIMISATION TECHNIQUES2/18

AVR SUPPORT PRODUCTS2/19

AVR PRODUCT SELECTION GUIDE2/20

AVR BASIC Getting Started Guide V1.21

2/1

Most AVR microcontrollers feature the same generic core, but have different on-chip
hardware resources and also different pinouts. They can also differ in code, EEPROM and
RAM sizes.

AVR BASIC allows you to write, as far as possible, in non device-specific code. All the device-
specific information can be automatically loaded into a BASIC source file by including the
relevant .ini file (device initialisation file) from the list below. When new devices within the
AVR family are released, a new .ini will usually be made available.

11.ini Atmel ATtiny11 initialisation file
103.ini Atmel ATmega103 initialisation file
603.ini Atmel ATmega603 initialisation file
1200.ini Atmel AT90S1200(A) initialisation file
2313.ini Atmel AT90S2313 initialisation file
2323.ini Atmel AT90S2323 initialisation file
2333.ini Atmel AT90S2333 initialisation file
2343.ini Atmel AT90S2343 initialisation file
4414.ini Atmel AT90S4414 initialisation file
8515.ini Atmel AT90S8515 initialisation file
4433.ini Atmel AT90S4433 initialisation file
4434.ini Atmel AT90S4434 initialisation file
8535.ini Atmel AT90S8535 initialisation file

The ‘.ini’ files can be found in the \avrbasic\config\device\avr directory.

The following example source file shows how to declare that the Atmel AT90S8515 is the
target device.

Example:

Please Note: If the target device is not specified,
the AT90S1200 is used as default.

AVR Device-specific initialisation files

example.bas

Family AVR
Device 8515

AVR BASIC Getting Started Guide V1.21

2/2

Commands

ADC Add with Carry
ADD Addition
AND Logic AND
ASR Arithmetic Shift Right
CP Compare
CPC Compare with Carry
COM Complement
DEC Decrement
EOR Exclusive OR
FOR..NEXT Loop
GOSUB Subroutine Call
GOTO Unconditional Jump
IF..THEN Conditional Branch
INC Increment
LSL Logic Shift Left
LSR Logic Shift Right

NEG Negate
NOP No Operation
OR Logic OR
REPEAT..UNTIL Loop
RETI Return from Interrupt
RETURN Return from Subroutine
ROL Rotate Left through Carry
ROR Rotate Right through Carry
SBC Subtract with Carry
SUB Subtract
SWAP Swap Nibbles or Bytes
SWITCH C-multiple branch selection
WAIT Insert time delay
XOR Exclusive OR

AVR Basic provides a set of BASIC command words which allow programs to be written in a
conventional format.

The following commands can currently be used in AVR Basic:

REPEAT...UNTIL, and the WAIT command each allow a loop to run until a test condition is
satisfied - usually required for I/O operations.

The ‘C’ style SWITCH command allows multiple conditional decisions to be implemented
efficiently.

In addition, a set of assembly code style instructions, for logical and arithmetic operations,
permits efficient use of the microcontroller - usually one command generates one assembler
instruction. Any AVR instruction can be generated from BASIC.

AVR BASIC Getting Started Guide V1.21

2/3

AVR Basic supports two different layout styles. The first resembles other microcomputer
BASIC language variants, appearing as a list of statements, typically one per line, supporting
conditional and unconditional jumps to labels (IF -THEN, GOTO,). Source file line numbers are
not explicitly used, but are generated by the compiler for code debugging, in the *.lst file
(see section 1.4, IDE Overview).

Variant #1 (Basic Style)

#FAMILY AVR // [0]
#DEVICE 1200
#INCLUDE ..\inc\evalu8r
// The REM comment is not supported. Use // for comments
//
// Variable and Constant Definitions
//
Var i,j: Byte //Declare two byte variables [5]
Var n[5]: Byte // and a subscripted variable[6]
//
//** The first executable instruction will be **[8]
//** compiled at location 0x0000 **

i = 0 // LET i = 0 - assignment.[11]
j = PINB // Get Port B input [12]
If j > 3 Then LabelA // [13]
i = j + 1
LabelA:
Repeat Until FALSE //Loop Forever [16]
// ** end of program **

Notes:
[0] Pre - processor directives, beginning with # in column 1, allow the compiler to load processor specific parameters,

identifiers and common definitions. The default family is AVR and default device is AT90S1200.

[5] All variables must be declared, and type specified, (compare with DIM in other BASIC dialects).
Var <name1,name2...>: <type>

[11] As in other dialects, LET may be omitted from the assignment statement.

[12] Input of data from PORT B is handled by assigning to a variable the value of pre-defined I/O variable PINB I/O variables
can also be used directly in conditional statements.

[13] Labels can be used in IF-THEN, GOTO, GOSUB

[16] The Loop Forever statement might be used this way during debugging, to freeze
the program after a single pass. Programs do not automatically terminate. The
programmer must provide a final statement which ensures that some part of program
repeats endlessly - otherwise execution will continue in the unprogrammed ROM
following the last valid instruction, with unpredictable consequences.

Program Layout

AVR BASIC Getting Started Guide V1.21

2/4

Variant #2 (Pascal / C Style)

The second style resembles the layout of procedural languages commonly used for
microcontroller programming. Such as Pascal, and the ‘C’ language. Procedures and functions
to be called from main program body are defined at the head of the program body.

#FAMILY AVR
#DEVICE 1200
#INCLUDE ..\inc\evalu8r
//
// Variable and Constant Definitions
//
Var i,j: Byte; //Declare two byte variables [4]
Var n[5]: Byte ; // and a subscripted variable
//
//** The first executable instruction will be **
//** a jump to address of main program body **

Procedure MyProc; // Declare a procedure
Begin // [11]

i := j+1;
End; //of procedure

Begin
i:= 0; // LET i = 0 - assignment.
j:= PINB; // Get Port B input
If j <= 3 Then //

MyProc;
End; //

Repeat Until FALSE; // Loop Forever [21]
End. // ** end of program **

[4] Each program statement may be terminated with a semicolon, and the end of main program body
with End. (If used to terminate program, the period . is required).

[11] Each procedure or function is enclosed by Begin and End.

[21] End is also required to terminate a list of executable clauses within If - Then - Else statements.

The above layout is preferred in all cases where Procedures and Interrupts are used.

Program Layout Continued

AVR BASIC Getting Started Guide V1.21

2/5

Program Layout Continued

Comments
Comments are used to add a more descriptive meaning to a line of code. This helps
somebody who does not understand the BASIC language to follow the functionality of the
program. Comments in AVR BASIC must be preceded by two forward slashes (//) and
continue to the end of the line. The use of comments can be seen in the examples in this
section.

Example:

I:= 0; //Initialise I to zero

AVR BASIC Getting Started Guide V1.21

2/6

Constants

Constants fall in to four categories: Hexadecimal, Binary, Decimal and ASCII.
The default is Decimal thus anything starting with a 0..9 is interpreted as a Decimal constant.
Prefixes % and $ are used for Binary and Hexadecimal constants respectively. To declare an
ASCII constant enclose it in quotes (“).

Declaration examples:

50 Decimal
$50 Hexadecimal
%01101110 Binary
“z” ASCII “z” from ASCII lookup tables = 122
“World” ASCII “W”, “o”, “r”, “l”, “d”

EEPROM Constants

AVR BASIC supports placing of data into the EEPROM area of an AVR microcontroller. This
data can either be a constant which is placed in the EEPROM at compile time or a dynamic
write which occurs when the code is actually executed.

i) EEPROM Constants

Various Data types can be placed in internal EEPROM at Compile time. This data will be
inserted into the ‘.eep’ file ready for programming into the target AVR device.

Example:

Const message EEPROM = “AVR Basic”, 0
Const msg2 EEPROM = “Hello”, 0

EEPROM Space is allocated from the bottom (low address) by default. Constants and
Variables created at absolute addresses do not change the EEPROM Allocation Pointer and
may overwrite existing data.

ii) EEPROM as Array

It is easy to Read/Write the internal Data EEPROM, by simply accessing elements of a pre-
defined Array in EEPROM.

AVR BASIC Getting Started Guide V1.21

2/7

Constants Continued

Example:

R0 := EEPROM[0] // Read
EEPROM[R0] := “A” // Write

Notes: EEPROM Writing is automatically enabled and disabled as required.

iii) EEPROM as Object

Properties:

• EEPROM.Addr - EEAR EEPROM Address Register
• EEPROM.Data - EEDR EEPROM Data Register

iv) Methods:

• EEPROM.Read - Reads from EEPROM
• EEPROM.Write - Writes to EEPROM

Examples:

EEPROM.Addr := 5 // Address to 5
EEPROM.Data := “A” // Set Data to “A”
EEPROM.Write // Write to EEPROM

EEPROM.Addr := 0 // Address to 0
EEPROM.Read // Read EEPROM
R0 := EEPROM.Data // R0 := Data Read

Notes: It is OK to use AVR I/O Register Variables EEAR, EEDR, directly to perform EEPROM
low level Read/Write Functions. Using EEPROM Object makes the code compatible for non-
AVR Targets.

AVR BASIC Getting Started Guide V1.21

2/8

Labels

Labels fall in to two categories, Address labels and Value labels. Address labels are used to
mark sections of program within your program and end in a colon (:). These can be up to 32
characters long. Labels can not start with a number or be the same as a reserved word or
variable. Labels make it possible to jump or go to areas of code without specifying an actual
address.

Value labels are declared using the ‘const’ directive and are used to make your program
more readable and allow for good programming practice by defining numbers as constants.
Value labels can also be used to reference variables that have already been declared.

Example:

#include <equinox\evalu8r\leds>.

const min = 1; // Define constant value label
const max = 5; // Define constant value label

var tally:byte; // Define tally as byte variable

Begin
jump: for tally = min to max

LED0 := Not LED0; //Toggle LED pin 5 times
next
goto jump // Move the program pointer to the for loop

statement
End.

AVR BASIC Getting Started Guide V1.21

2/9

The compiler supports Bit, Byte and Word variables.
A Bit is a single Bit (1 or 0) Boolean, Byte is 8 bits and a word is 16 bits. All AVR Resources
(Registers, I/O Ports, internal EEPROM and SRAM) can be accessed as variables. Variables are
declared using the Var directive. Below is a summary table of different variable types.

Variable type Type Possible values Syntax examples

Bit Boolean 0 or 1 var T : bit;

Byte 8-bit byte 0 to 255 decimal var S : byte;

Word 16-bit word 0 to 65535 decimal var x : word;

EEPROM 8-bit byte 0 to 255 decimal var e1 : EEPROM;

Pre-defined Variables
Variables that are pre-defined for system use can not be redefined for any other use or used
as a label.

e.g. AT90S1200

Variables mapped to Register Space

• R0..R15 Low Bank Register Variables
• R16..R31 High Bank Register Variables
• W0,W2..W30 - Word Variables (Low, High Bank aligned at Word Boundaries)
• WREG Compiler Working Register (R31 by Default)
• WBIT Compiler Working Bit Storage (SREG.6)

Variables

Figure 6

AVR BASIC Getting Started Guide V1.21

2/10

Variables mapped to I/O Ports

• ACSR - Analog Comparator Control and Status
• DDRB - PORT B Data Direction Register
• DDRD - PORT D Data Direction Register
• EEAR - EEPROM Address Register
• EECR - EEPROM Control Register
• EEDR - EEPROM Data Register
• GIMSK - Global Interrupt Mask Register
• MCUCR - CPU Control Register
• PINB - PORT B Input Pins (Read Only)
• PIND - PORT D Input Pins (Read Only)
• PORTB - PORT B Output Latches (Read/Write)
• PORTD - PORT D Output Latches (Read/Write)
• SREG - Processor Status Register
• TCNT0 - Timer/Counter 0
• TCCR0 - Timer/Counter Control Register
• TIFR - Timer/Counter Interrupt Flag Register
• TIMSK - Timer/Counter Interrupt Mask Register
• WDTCR - Watchdog Control Register
• SREG - Status Register

All I/O Variables have the name as in the relevant Atmel AVR Datasheet. Please refer to AVR
Documentation for a complete description of all I/O registers.

Variables Continued

AVR BASIC Getting Started Guide V1.21

2/11

Reserved Words

The following words are also reserved for compiler use only:

Notes: Not all of these Reserved Words are currently supported or recognised.

Reserved Words can not be used as identifiers.

ADD
ADDR
ADC
AND
ASM
ARRAY
ASSEMBLER
BEGIN
BIT
BOOLEAN
BREAK
BYTE
CASE
COM
CONST
DEFAULT
DO

DOWNTO
EEPROM
ELSE
END
EXIT
FALSE
FOR
FUNCTION
GOSUB
GOTO
HIGH
IF
INTERRUPT
IN
LOW
NEXT
NOP

NOT
OR
POP
PROCEDURE
PROGRAM
POINTER
PUSH
RAM
REGISTER
REPEAT
RETURN
ROM
SHL
SHR
SKIP
SUB
SBC

STEP
SYMBOL
SWITCH
THEN
TRUE
TO
UNIT
UNTIL
USE
USES
VAR
VARIABLE
WAIT
WHILE
WORD
XOR

AVR BASIC Getting Started Guide V1.21

2/12

Expressions are evaluated from the left to right. Brackets can be used in Constant
Expressions.

Valid operators

Expression Syntax

Examples

1 + (9 - 5)

MyConst and %00001111

1 + 9 * 5 = 50

9 * 5 + 1 = 46

Note that there is no operator precedence. Different orders of operations may yield different
results.

• + Add

• - Subtract

• * Multiply

• / Divide

• and Logic AND

• or Logic OR

• xor Exclusive OR

• << Shift Left

• >> Shift Right

AVR BASIC Getting Started Guide V1.21

2/13

Logic operators are used with decision based commands. The following operators for
example can be used with the ‘if then’ expression:

• Bit Variables are used as ‘Booleans’

• Not or ! can be used for inverse test of Bit Variables

• = Equal

• <> Not Equal

• > Greater

• < Less

• >= Greater or Equal

• <= Less or Equal

>, <, <=, >= are not available for Bit Variables.

Logic Operators

AVR BASIC Getting Started Guide V1.21

2/14

Statements

Simple Statements may be separated by the Carriage Return character - i.e. one statement
per line, or by the semicolon ;

If multiple statements appear on a single line then they each must be separated from the
next by a semicolon.

Examples

PORTB := $FF

Single statement on a line, no semicolon required. (Semicolon is optional)

PORTD := $FF ; PORTB := 00 ;

Two statements on a line ; the first semicolon is required, the last is optional.

Compound statements i.e. those which can include one or more simple statements
These require a separator between each part of the command structure and between each
enclosed simple statement.

Examples

If j < 3 Then
PORTB := $FE ;
j := 0 ;

Else
j := j+1 ;

End;
If !PINB.1 Then

PORTD.2 :=1
End

Each clause of the statement should be on a separate line. A semicolon at the end of each
simple statement is optional.

AVR BASIC Getting Started Guide V1.21

2/15

Procedures and functions are used like subroutines (GOSUB), but are called from any part of
the program by using the procedure name as a command. They return when completed to
the address following the call instruction. As they are declared at the head of the program
body they are easily located and if given meaningful identifiers their relation to the program
is obvious. Use of procedures and functions encourages structured programming, and is
recommended in place of GOTO <label> and GOSUB <label>.

The executable code of the procedure or function must be enclosed by “Begin” and “End”.

Each can optionally take a Bit, Byte or Word type parameter, which may be used to pass data
from main program body to the Procedure or Function. The formal parameter name given in
the definition is used as a variable in the procedure body. Using the parameter can save one
variable declaration for each procedure or function used.

Procedure Declaration

Procedure MyProc(Param1: Byte);
Begin

My_word := Param1 AND $F0 *16 //use parameter
... // Procedure body statements

End;

Function Declaration

The function operates like a procedure, but remains a value to the main program. It must
therefore be declared with a Bit, Byte or Word type. A function call assigns the function
value to a variable, or uses it in a conditional statement. The pseudo - variable “Result” is
assigned the value to be returned.

Function MyFun: Bit;
Begin

... // Function body code
Result := 1; // Assign value

End;

Function Another_Fun(NewParam: Byte) : Word;
Begin

If NewParam >9 Then // Function body code
PORTB:=$0A; // Function body code
Result := $FABC // Assign value

End;
End;

Functions & Procedures

AVR BASIC Getting Started Guide V1.21

2/16

Procedure/Function call

// main program body
//
Myproc(newinput);
// main program code
//
If MyFun Then// e.g. test for complex condition
//.... more main program code
//
Errorcode := Another_Fun(4);
//

Notes

A Byte Parameter is passed in the Working Register, WREG, (normally R31).

A Bit Parameter is passed in WBIT (the T bit of CPU Status register).

A Word Parameter is passed in R30 and R31.

Limitations of the AT90S1200 allow only single parameter to be used. Future compiler
releases will support full parameter passing for other microcontroller targets.

As the AT90S1200 has only a three - level hardware stack, calling one proc/fn from within
another is not recommended on this microcontroller. If interrupts are also in use, procedures,
functions and subroutines must be used with care. (See also Section 2: GOSUB command).

A function result is returned in: WREG (bytes), WBIT (bits) or R30 and R31 (words), so a
function called within a procedure with parameter may corrupt the parameter value.

Functions & Procedures Continued

AVR BASIC Getting Started Guide V1.21

2/17

Labels and Identifiers are not case-sensitive and can be maximum of 32 characters long. The
first character must a letter. Labels must end with a colon but are not required to be in the
first column of text.

It is recommended that long and descriptive names are used to minimise the need for
comments, and to make the source code more readable.

Examples

Var Input_Code_Mask: Byte; // Define a Byte Variable
Procedure MyProc_input; // Declare a Procedure
This_is_My_First_Label:

Label_not_at_Column_1:
More_Labels_with_Colon:

Labels & Identifiers

AVR BASIC Getting Started Guide V1.21

2/18

Using “Basic Style Notation” it is not always possible to write optimised code which couples
a BASIC command to a single AVR instruction. To achieve assembly compactness, special
features have been added to the compiler. If required, any AVR instruction can be generated.

• SKIP Label is used to directly generate one Word AVR Conditional Skip
Instructions. (See Section 2, IF - THEN - ELSE command).

• GOTO ROM[W30]; emits IJMP (Indirect Jump on Z Register Value).

• GOSUB ROM[W30]; emits ICALL (Indirect Call on Z Register Value).

• R0 := ROM[W30]; emits LPM (Load Program Memory) Instruction.

Register usage

From the 32 general purpose AVR Registers (R0..R31), only High Bank Registers (R16..R31)
can be directly used in instructions with immediate Constants. AVR Basic does allow Low
Bank registers to be used, but in this case the code is emulated i.e. the compiler adds some
instructions.

In speed-critical sections of code, ensure that all variable assignments are to other register
(variable) values. If assignment to constant must be used, ensure that the variable is held in
the high register-bank

Optimisation Techniques

AVR BASIC Getting Started Guide V1.21

2/19

AVR™ Support Products

Order code Description
PROGRAMMING SYSTEMS
AVR2-ST Professional AVR Microcontroller Starter System
MPW-PLUS Micro-Pro Professional Device Programming System
UISP-S4 Micro-ISP Series IV - Atmel Microcontroller ISP System (4.6-6.0V)
UISP-LV4 Micro-ISP Series IV LV - Low Voltage Atmel Microcontroller ISP System (3.0-6.0V)
UISP-UPG1 Micro-ISP Upgrade: Atmel ATmega programming support
ACT-UPG1 Activ8r Upgrade: Atmel ATmega programming support
ACT-UPG2 Activ8r - ATtiny library upgrade
EVALUATION/OEM MODULES
OEM-UC-20/40 Universal 8051/AVR Microcontroller OEM Module
EVALU8R-1P Evalu8r - Universal 8051/AVR Microcontroller Evaluation Module
PACKAGE ADAPTORS ETC.
AD-PLCC44-A Programming adaptor - 44-pin PLCC to DIL-40
AD-DIL40-PLCC44-A Emulation adaptor - 44-pin PLCC on target system to 40-pin DIL
AD-SOIC20-A Microcontroller Programming adaptor - 20-pin SOIC to 20-pin DIL
AD-SOIC8-A Microcontroller Programming adaptor - 8-pin SOIC to 8-pin DIL
AD-8535-A Parallel programming adaptor - Atmel AT90S8535/AT90S4434 (40-pin DIL)
AD-TQFP44-A Programming adaptor - 44-pin TQFP to 40-pin DIL
SS-90S8515-P ISP Socket Stealer Module fitted with Atmel AT90S8515 microcontroller (DIL)
SS-90S8515-J ISP Socket Stealer Module fitted with Atmel AT90S8515 microcontroller (PLCC)
AVR BASIC Programming Language
AVR-BAS-LITE AVR BASIC LITE Version (1K bytes - AT90S1200 support only)
AVR-BAS-FULL AVR BASIC Full Version (8K bytes - All AVR derivatives supported)
IAR AT90S Language Tools
EWA90BAS-EE “IAR Baseline Tool Set” - C compiler, assembler, debugger (8K code limit)
EWA90 “IAR Full AT90S Version” - C compiler, assembler, debugger (unrestricted code)
DO-BOX (Dynamically Optimised BASIC Box) + Accessories
DOBOX-ST1 DO-BOX Starter System 1
DOBOX-DV1 DO-BOX Development System 1
DOBOX-MOD1 DO-BOX Module 1
DOBOX-PM1 DO-BOX Prototyping Module
DOBOX-AM1 DO-BOX Applications Module 1
LITERATURE
CD-AT98 Atmel CD-ROM Databook 1998
DB-AVR-981 Atmel AVR Microcontroller Data Book (Paper format)
MAN-AVRBAS-REF AVR BASIC Reference Guide
MAN-AVRBAS-GS AVR BASIC Getting Started Guide
MISCELLANEOUS
CAB-SER1 PC Serial Cable Adaptor Kit (9W-25W & 25W-9W)
CAB-PAR25MM PC Parallel Cable (25W to 25W M/M 2M)

AVR BASIC Getting Started Guide V1.21

2/20

Atmel AVR Microcontroller Product Selection Guide

DEVICE 90S1200 90S2313 90S2323 90S2343 90S4414 90S8515

ON-CHIP MEMORY

FLASH (Bytes) 1K 2K 2K 2K 4K 8K

EEPROM (Bytes) 64 128 128 128 256 512

SRAM (Bytes) 0 128 128 128 256 512

In-System Programmable (ISP) YES YES YES YES YES YES

PINS + I/O

Package Pins 20 20 8 8 40/44 40/44

I/O Pins 15 15 3 5 32 32

Packages 20P3,20S, 20P3,20S 8P3,8S2 8P3,8S2 40P6,44J, 40P6,44J,

20Y 44A 44A

HARDWARE FEATURES

SPI Port NO NO NO NO YES YES

Full Duplex Serial UART NO YES YES NO YES YES

Watchdog Timer YES YES NO YES YES YES

Timer/Counters 1 2 NO 2 2 2

PWM Channels (10-bit) - 1 - - 2 2

Analogue Comparator YES YES NO NO YES YES

ADC NO NO NO NO NO NO

IDLE and Power Down modes YES YES YES YES YES YES

Interrupts (MAX) 4 11 3 3 13 13

MISCELLANEOUS

AVR Instructions 89 120 118 118 118 118

On-chip RC Oscillator YES NO NO YES NO NO

Wakeup Time 16ms 1.1ms 1 ms/16 ms 16us 1.1ms 1.1ms

Real Time Clock (RTC) NO NO NO NO NO NO

Max External Clock Frequency 12MHz 10MHz 10MHz 10MHz 8MHz 8MHz

Vcc Voltage Range (V) 2.7-6.0 2.7-6.0 2.7-6.0 2.7-6.0 2.7-6.0 2.7-6.0

EQUINOX SUPPORT TOOLS

Activ8r Device Programmer PAR+ISP PAR+ISP PAR+ISP PAR+ISP PAR+ISP PAR+ISP

Micro-ISP Series III/IV Prog. ISP only ISP only ISP only ISP only ISP only ISP only

Micro-Pro Device Programmer PAR only PAR only - - ZIF-ISP ZIF-ISP

Evalu8r Evaluation Module YES YES YES YES YES YES

Disclaimer: Whilst information is supplied in good faith, we are not liable for
any errors or omissions. Please consult the relevant Atmel datasheet. E&OE

AVR BASIC Getting Started Guide V1.21

2/21

* Max speed depends on Vcc
voltage. Frequencies and
Currents listed are for
Vcc = 5.0V & T = 25ºC

Please verify correct part codes
for low voltage parts before
ordering.

90S2333 90S4433 90S4434 90S8535 MEGA603 MEGA103

2K 4K 4K 8K 64K 128K

128 256 256 512 2K 4K

128 128 256 512 4K 4K

YES YES YES YES YES YES

28 28 40/44 40/44 64 64

20 20 32 32 32I/O + 8O + 8I 32I/O + 8O + 8I

28PDIP/SOIC 28PDIP/SOIC 40P6,44J, 40P6,44J, 64A 64A

44A 44A

YES YES YES YES YES YES

YES YES YES YES 1 1

YES YES YES YES YES YES

2 2 2 2 3 3

1 1 TBA TBA 2 2

YES YES YES YES YES YES

6CH/10BIT 6CH/10BIT 8CH/10BIT 8CH/10BIT 8CH/10BIT 8CH/10BIT

YES YES YES YES YES YES

14 14 17 17 24 24

118 118 120 120 121 121

NO NO NO NO NO NO

TBA TBA TBA 1.1ms 4clks 4clks

NO NO NO NO YES YES

8MHz 8MHz 8MHz 8MHz 6MHz 6MHz

2.7-6.0 2.7-6.0 2.7-6.0 2.7-6.0 2.7-6.0 2.7-6.0

ISP only ISP only ISP only ISP only ISP only ISP only

ISP only ISP only ISP only ISP only ISP only ISP only

- - - - -

NO NO NO NO NO NO

Key

SRAM - Static RAM

ISP - In-System
Programmable

I/O - Input/Output

ADC - Analogue to Digital
Convertor

SPI - Serial Peripheral
Interface

PWM - Pulse Width
Modulation

PAR - Parallel programming
mode

Equinox Technologies UK Limited reserves the right to change any information contained within
this booklet without prior notice. E&OE

Terms and product names contained in this document may be trademarks of others. MCS-51 is a
trademark of Intel Corporation.

