

Clock Driver Quad D-Type Flip-Flop With Matched Propagation Delays

The MC74F803 is a high-speed, low-power, quad D-type flip-flop featuring separate D-type inputs, and inverting outputs with closely matched propagation delays. With a buffered clock (CP) input that is common to all flip-flops, the F803 is useful in high-frequency systems as a clock driver, providing multiple outputs that are synchronous. Because of the matched propagation delays, the duty cycles of the output waveforms in a clock driver application are symmetrical within 1.0 to 1.5 nanoseconds.

- Edge-Triggered D-Type Inputs
- Buffered Positive Edge-Triggered Clock
- Matched Outputs for Synchronous Clock Driver Applications
- Outputs Guaranteed for Simultaneous Switching

Pinout: 14-Lead Plastic (Top View)

GUARANTEED OPERATION RANGES

Symbol	Parameter	Min	Тур	Max	Unit
VCC	Supply Voltage	4.5	5.0	5.5	V
TA	Operating Ambient Temperature Range	0	25	70	ç
loн	Output Current — High	1		-20	mA
loL	Output Current — Low	_	_	24	mA

LOGIC DIAGRAM

MC74F803

CLOCK DRIVER QUAD D-TYPE FLIP-FLOP WITH MATCHED PROPAGATION DELAYS

FUNCTIONAL DESCRIPTION

The F803 consists of four positive edge-triggered flip-flops with individual D-type inputs and inverting outputs. The buffered clock is common to all flip-flops and the following specifications allow for outputs switching simultaneously. The four flip-flops store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. The maximum frequency of the clock input is 70 megahertz, and the LOW-to-HIGH and HIGH-to-LOW propagation delays of the O₁ output vary by, at most, 1 nanosecond. Therefore, the device is ideal for use as

a divide-by-two driver for high-frequency clock signals that require symmetrical duty cycles. The difference between the LOW-to-HIGH_and HIGH-to-LOW propagation delays for the O_0 , O_2 , and O_3 outputs vary by at most 1.5 nanoseconds. These outputs are very useful as clock drivers for circuits with less stringent requirements. In addition, the output-to-output skew is a maximum of 1.5 nanoseconds. Finally, the I_{OH} specification at 2.5 volts is guaranteed to be at least - 20 milliamps. If their inputs are identical, multiple outputs can be tied together and the I_{OH} is commensurately increased.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

		Limits					1	
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions*		
VIH	Input HIGH Voltage	2.0	_	_	٧	Guaranteed Input HIGH Voltage		1
V _{IL}	Input LOW Voltage	_	_	0.8	٧	Guaranteed Input LOW Voltage		1
VIK	Input Clamp Diode Voltage	_	_	- 1.2	٧	I _{IN} = -18 mA	V _{CC} = MIN	1
VOH	Output HIGH Voltage	2.5	_	_	٧	I _{OH} = -20 mA	V _{CC} = 4.5 V	1
VOL	Output LOW Voltage	_	0.35	0.5	٧	I _{OL} = 24 mA	V _{CC} = MIN	1
		_	_	20	μА	V _{IN} = 2.7 V	V _{CC} = MAX]
lін	Input HIGH Current	_	_	100		V _{IN} = 7.0 V	V _{CC} = MAX]
I _Ι L	Input LOW Current			-0.6	mA	V _{IN} = 0.5 V	V _{CC} = MAX]
los	Output Short Circuit Current (Note 2)	-60	_	-150	mA	V _{OUT} = 0 V	V _{CC} = MAX]
Icc	Power Supply Current	l –	l —	70	mA	V _{CC} = MAX		1

- * Normal test conditions for this device are all four outputs switching simultaneously. Two outputs of the 74F803 can be tied together and the IOH doubles.
- 1. For conditions such as MIN or MAX, use the appropriate value specified under guaranteed operating ranges.
- 2. Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS ($T_A = 0$ to 70° C, $V_{CC} = 5.0 \text{ V} \pm 10\%$, see Note 1)

		C _L = 50 pF		C _L = 100 pF		
Symbol	Parameter	Min	Max	Min	Max	Unit
f _{max}	Maximum Clock Frequency	70	1	50	_	MHz
tPLH tPHL	Propagation Delay CP to On	3.0	7.5	3.0	10	ns
tpv	Propagation Delay CP to On Variation (see Note 3)	_	3.0	_	4.0	ns
t _{ps} O ₁	Propagation Delay Skew tpLH Actual - tpHL Actual for O ₁ Only	_	1.0	_	2.0	ns
t _{ps} Q ₀ , O ₂ , O ₃	Propagation Delay Skew tpLH Actual - tpHL Actual for O ₀ , O ₂ , O ₃	_	1.5		2.0	ns
tos	Output to Output Skew (see Note 2) tp On - tp Om	_	1.5	_	2.5	ns
[‡] rise ^{, †} fall O ₁	Rise/Fall Time for O ₁ (0.8 to 2.0 V)	_	3.0	_	4.0	ns
trise, tfall O ₀ , O ₂ , O ₃	Rise/Fall Time for O ₀ , O ₂ , O ₃ (0.8 to 2.0 V)	_	3.5	_	4.5	ns

- The test conditions used are all four outputs switching simultaneously. The AC characteristics described above (except for O₁) are also guaranteed when two outputs are tied together.
- 2. Where t_p On and t_p Om are the actual propagation delays (any combination of high or low) for two separate outputs from a given high transition of CP.
- 3. For a given set of conditions (i.e., capacitive load, temperature, V_{CC}, and number of outputs switching simultaneously) the variation from device to device is guaranteed to be less than or equal to the maximum.

AC OPERATING REQUIREMENTS ($T_A = 0 \text{ to } 70^{\circ}\text{C}, V_{CC} = 5.0 \text{ V} \pm 10\%$)

		C _L = 50 pF		C _L = 100 pF		
Symbol	Parameter	Min	Max	Min	Max	Unit
t _{s(H)}	Setup Time, HIGH or LOW D _n to CP	3.0 3.0		4.0 4.0	_	ns
tf	t _p + t _s (see Note)	_	9.0	_	12	ns
th(H) th(L)	Hold Time, HIGH or LOW D _n to CP	2.0 2.0		2.0 2.0	-	ns
tw(H) tw(L)	CP Pulse Width HIGH or LOW	7.0 6.0	_	8.0 8.0	_ _	ns

The combination of the setup time (t_s) requirement and maximum propagation delay (t_p) are guaranteed to be within this limit for all conditions.

APPLICATION NOTE

The closely matched outputs of the MC74F803 provide an ideal interface for the clock input of Motorola's high-frequency microprocessors.

74F803 INTERFACE AS CLOCK TO MC68020 SYSTEM

OUTLINE DIMENSIONS

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEAD WHEN
- FORMED PARALLEL.
 4. DIM F MAY NARROW TO 0.76 (0.030) WHERE
- THE LEAD ENTERS THE CERÂMIC BODY.
 5. 632-01 THRU -07 OBSOLETE, NEW STANDARD

	MILLIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	19.05	19.94	0.750	0.785
В	6.23	7.11	0.245	0.280
С	3.94	5.08	0.155	0.200
D	0.39	0.50	0.015	0.020
F	1.40	1.65	0.055	0.065
G	2.54	BSC	0.100	BSC
J	0.21	0.38	0.008	0.015
K	3.18	4.31	0.125	0.170
L	7,62	BSC 。	0.300 BSC	
M	0	15	0	15
N	0.51	1.01	0.020	0.040

N SUFFIX

PLASTIC PACKAGE CASE 646-06

NOTES:

- 1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
- 2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
- DIMENSION "B" DOES NOT INCLUDE MOLD
- FLASH.
- ROUNDED CORNERS OPTIONAL. 646-05 OBSOLETE, NEW STANDARD 646-06.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	18.16	19.56	0.715	0.770
В	6.10	6.60	0.240	0.260
С	3.69	4.69	0.145	0.185
D	0.38	0.53	0.015	0.021
F	1.02	1.78	0.040	0.070
G	2.54	BSC	0.100	BSC
Н	1.32	2.41	0.052	0.095
J	0.20	0.38	0.008	0.015
K	2.92	3.43	0.115	0.135
L	₀ Z.62	BSÇ₀∘	Д₃300 BSÇ₃	
М	0.39	1.01	0.015	0.039
N	0.00	1.01	0.010	0.000

D SUFFIX

SOIC PACKAGE CASE 751A-02

NOTES:

- DIMENSIONS "A" AND "B" ARE DATUMS AND "T" IS A DATUM SURFACE.
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- 751A-01 IS OBSOLETE, NEW STANDARD 751A-02.

	MILLIM	ETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
A	8.55	8.75	0.337	0.344	
В	3.80	4.00	0.150	0.157	
C	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	F 0.40 1.25		0.016	0.049	
ß	1.27	BSC	0.050	BSC	
<u>_</u>	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
М	0 7		0	7	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	