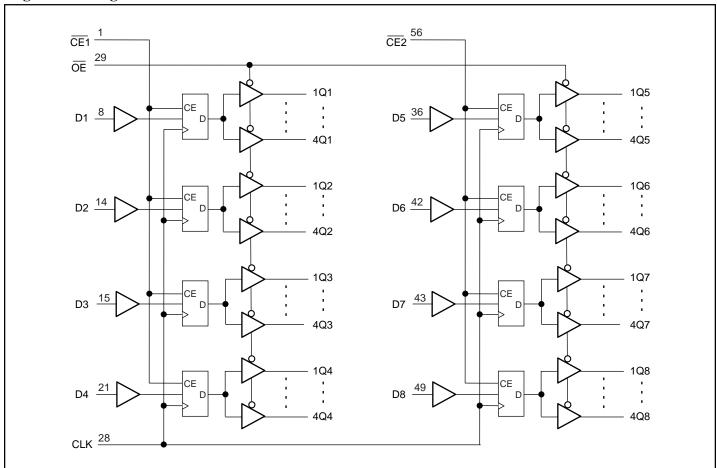


2.5V, Registered 1-Bit to 4-Bit Address Driver w/3-State Outputs

Product Features

- PI74AVC+16345 is designed for low-voltage operation, $V_{CC} = 1.65 \text{V to } 3.6 \text{V}$
- True ±24mA Balanced Drive @3.3V
- I_{OFF} supports partial power down operation
- I/O Tolerant to 3.6V
- All outputs contain a patented DDC (Dynamic DriveControl) circuit that reduces noise without degrading propagation delay.
- Industrial operation: -40°C to +85°C
- Available Packages:
 - -56-pin 240 mil wide plastic TSSOP (A)
 - 56-pin 173 mil wide plastic TVSOP (K)


Product Description

Pericom Semiconductor's PI74AVC+ series of logic circuits are produced using the Company's advanced submicron CMOS technology, achieving industry leading speed.

The PI74AVC+16345 is ideal for driving memory modules in systems where multiple memory modules are used. One each of the four output banks drive a different module; modules can be added or removed without affecting the signal integrity of the other modules in the system. Dual clock enables ($\overline{CE}x$) allow use of the device in high-speed memory interleaving applications where the clock can be alternately enabled and disabled, allowing the address to be held for additional cycles during memory access.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current sinking capability of the driver.

Logic Block Diagram

1

Pin Description

Pin Name	Description
ŌĒ	3-State Output Enable Inputs (Active LOW)
CLK	Clock Input
CEx	Clock Enable Inputs (Active Low)
Dx	Data Inputs
xQx	3-State Outputs
GND	Ground
Vcc	Power

Pin Configuration

CE1 [1 1 1 1 1 1 2 2 2 2 1 1 2 3 GND [4 3 2 1 [5 4 2 1] 6 VCC [7 D1 [8 1 2 2 2 2] 1 0 GND [1 1 3 2 2 [1 2 4 2 2 [1 3 1 2 2] 1 2 4 2 2 [1 3 1 2 2] 1 4 2 2 [1 3 1 3 2 2 [1 4 2 2] 1 3 1 5 1 2 3 [1 6 2 2 3 [1 7 GND [1 8 3 2 3 [1 9 4 2 3 [2 0 2 2 1 2 4 2 2] 1 2 4 2 2] 1 2 4 2 2 1 2 4 2 2 3 1 2 4 2 2 3 1 2 4 4 5 2 3 5 3 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5	56-Pin A,K	44	
GND [18 3Q3 [19 4Q3 [20 D4 [21 VCC [22		39	

Truth Table(1)

	Outputs			
<u>CE</u> x	ŌĒ	CLK	Dx	xQx
Н	L	X	X	В0
X	L	L	X	В0
L	L	1	L	L
L	L	1	Н	Н
X	Н	X	X	Z

Note:

2

1. H = High Signal Level

L = Low Signal Level

X = Irrelevant

Z = High Impedance

↑ = LOW-to-HIGH Transition

B0 = Previous State

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

ı	
I	Supply voltage range, V _{CC} 0.5V to +4.6V
I	Input voltage range, V_{I} $-0.5V$ to $+4.6V$
I	Voltage range applied to any output in the
I	high-impedance or power-off state, $V_{O}^{(1)}$ 0.5V to +4.6V
I	Voltage range applied to any output in the
I	high or low state, $V_{O}^{(1,2)}$
I	Input clamp current, $I_{IK}(V_I < 0)$
I	Output clamp current, I_{OK} (V_O <0)
I	Continuous output current, I_O
I	Continuous current through each V_{CC} or GND $\pm 100 mA$
I	Package thermal impedance, $\theta_{JA}^{(3)}$: package A
I	package K48°C/W
I	Storage Temperature range, T_{stg} 65°C to 150°C

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Notes:

- 1.Input & output negative-voltage ratings may be exceeded if the input and output curent rating are observed.
- 2.Output positive-voltage rating may be exceeded up to 4.6V maximum if theoutput current rating is observed.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

Recommended Operating Conditions⁽¹⁾

		Min.	Max.	Units
V _{CC} Supply Voltage	Operating	1.65	3.6	
	Data retention only	1.2		
V _{IH} High-level Input Voltage	$V_{\rm CC} = 1.2 V$	V _{CC}		
	$V_{CC} = 1.65 V \text{ to } 1.95 V$	0.65 x V _{CC}		
	$V_{\rm CC} = 2.3 \text{V} \text{ to } 2.7 \text{V}$	1.7		
	$V_{\rm CC} = 3V$ to $3.6V$	2		
V _{IL} Low-level Input Voltage	$V_{\rm CC} = 1.2 V$		Gnd	V
	$V_{\rm CC} = 1.65 \text{V} \text{ to } 1.95 \text{V}$		0.35 x V _{CC}	
	$V_{CC} = 2.3 V \text{ to } 2.7 V$		0.7	
	$V_{\rm CC} = 3V$ to $3.6V$		0.8	
V _I Input Voltage		0	3.6	
V _O Output Voltage	Active State	0	$V_{\rm CC}$	
	3-State	0	3.6	
I _{OH} High-level output current	$V_{CC} = 1.65 V \text{ to } 1.95 V$		- 6	
	$V_{\rm CC} = 2.3 \text{V} \text{ to } 2.7 \text{V}$		- 12	
	$V_{\rm CC} = 3V$ to $3.6V$		- 24	A
I _{OL} Low-level output current	$V_{CC} = 1.65 V \text{ to } 1.95 V$		6	mA
	$V_{CC} = 2.3 V \text{ to } 2.7 V$		12	
	$V_{\rm CC} = 3V$ to $3.6V$		24	
ΔtΔv Input transition rise or fall rate	$V_{CC} = 1.65 V \text{ to } 3.6 V$		5	ns/V
T _A Operating free-air temperature	,	-40	85	°C

3

Notes:

1. All unused inputs must be held at V_{CC} or GND to ensure proper device operation.

DC Electrical Characteristics (Over the Operating Range, $T_A = -40^{\circ}\text{C} + 85^{\circ}\text{C}$)

1	Parameters	Test Conditions(1)	V _{CC}	Min.	Тур.	Max.	Units
		$I_{OH} = -100\mu A$	1.65V to 3.6V	V _{CC} -0.2V			
	V	$I_{OH} = -6mA \qquad V_{IH} = 1.07V$	1.65V	1.2			
	V_{OH}	$I_{OH} = -12\text{mA} \qquad V_{IH} = 1.7\text{V}$	2.3V	1.75			
		$I_{OH} = -24 \text{mA}$ $V_{IH} = 2 \text{V}$	3V	2.0			$_{ m V}$
		$I_{OL} = 100 \mu A$	1.65V to 3.6V			0.2	v
	V	$I_{OL} = 6mA$ $V_{IH} = 0.57V$	1.65V			0.45	
	V_{OL}	$I_{OL} = 12 \text{mA}$ $V_{IH} = 0.7 \text{V}$	2.3V	2.3V		0.55	
		$I_{OL} = 24 \text{mA}$ $V_{IH} = 0.8 \text{V}$	3V			0.8	
I_{I}	Control Inputs	$V_{\rm I} = V_{\rm CC}$ or GND	3.6V			±2.5	
I _{OFF}		$V_{\rm I}$ or $V_{\rm O} = 3.6 \rm V$	0			±10	
I _{OZ}		$V_{\rm I} = V_{\rm CC}$ or GND	3.6V			±10	μΑ
I_{CC}		$V_O = V_{CC}$ or GND $I_O = 0$	3.6V			40	
	Control Imputa		2.5V		4		
	Control Inputs	W = W = CND	3.3V		4		
C_{I}	Data Innata	$V_{\rm I} = V_{\rm CC}$ or GND	2.5V		6		
	Data Inputs		3.3V		6		pF
	Outmuta	V - V ar CND	2.5V		8		
Co	Outputs	$V_{O} = V_{CC}$ or GND	3.3V		8		

4

Note:

^{1.} Typical values are measured at $T_A = 25$ °C.

Timing Requirements

(Over recommended operating free-air temperature range, unless otherwise noted, see Figures 1 thru 4)

	$V_{CC} = 1.2V$				$V_{CC} = 2.5V$ $\pm 0.2V$		$V_{CC} = 3.3V$ $\pm 0.3V$				
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Units
f _{clock} Clock Frequency						150		180		180	MHz
t _W Pulse Width, CLK High or Low					6.0		3		3		
t _{SU} Setup Time, $\overline{\text{CE}}$ x to CLK, High or Low					2.0		1.5		1.5		
t _{SU} Setup Time, Dx to CLK, High or Low					2.0		1.5		1.5		ns
t_H Hold Time, \overline{CEx} to CLK, High or Low					0		0		0		
t _H Hold Time, CLK to Dx, High or Low					0.5		0.5		0.5		

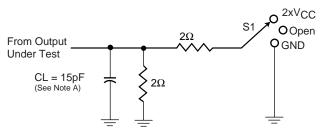
Switching Characteristics

(Over recommended operating free-air temperature range, unless otherwise noted, see Figures 1 thru 4)

	From	То	V _{CC} =	= 1.2V		= 1.5V .1V		= 1.8V 15V	V _{CC} = ±0.		V _{CC} = ±0.	= 3.3V .3V	
Parameters	(Input)	(Output)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
f _{max}							150		180	_	180	_	
t_{pd}	CLK	xQx						4.5	_	3.1	_	2.7	
t _{en}	ŌĒ	xQx						5.3	_	4.5	_	3.9	.
t _{dis}	ŌĒ	xQx						5.6	_	3.6	_	3.4	ns
t _{SK(o)} Output Skew ⁽¹⁾								0.5	_	0.5	_	0.5	
t _{SK(b)} Output Skew ⁽¹⁾								0.3	_	0.3	_	0.3	

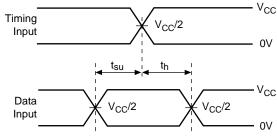
Note:

1. This is the skew between any two outputs of the same package, and switching in the same direction. For $t_{SK(0)}$ Output 1 and Output 2 are any two outputs. For $t_{SK(b)}$ Output 1 and Output 2 are in the same bank.

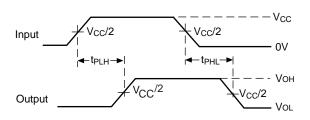

Operating Characteristics, $T_A = 25^{\circ}C$

Parameters		Test Conditions	$V_{CC} = 1.8V$ $\pm 0.15V$	$V_{\text{CC}} = 2.5V$ $\pm 0.2V$	$V_{CC} = 3.3V$ $\pm 0.3V$	Units
			Typical	Typical	Typical	
C _{pd} Power Dissipation	Output Enabled	$C_{L} = 0 pF, f = 10 MHZ$	84	95	110	"E
Capacitance	Outputs Disabled	Four outputs switching	48	55	63	pF

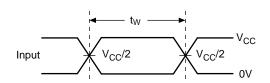
5

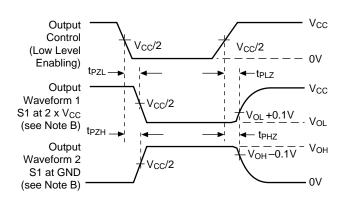


PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.2V$ and $1.5V \pm 0.1V$



Test	S1
t _{pd}	Open
tpLZ/tpZL	2 x V _{CC}
tpHZ/tpZH	GND


Load Circuit


Voltage Waveforms Setup and Hold Times

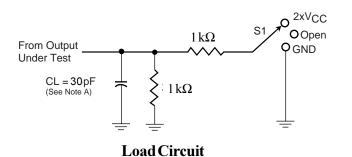
Voltage Waveforms Propagation Delay Times

Voltage Waveforms Pulse Duration

Voltage Waveforms Enable and Disable Times

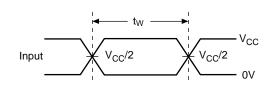
Figure 1. Load Circuit and Voltage Waveforms

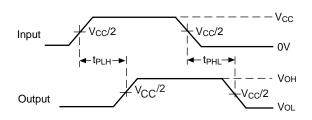
Notes:


- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input impulses are supplied by generators having the following characteristics: $PRR \le 10 \text{ MHz}$, $Z_O = 50\Omega$, $t_R \le 2.0 \text{ns}$, $t_F \le 2.0 \text{ns}$.

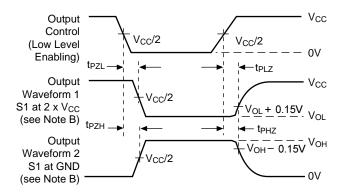
6

- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}
- F. tpzL and tpzH are the same as ten
- G. t_{PLH} and t_{PHL} are the same as t_{pd}


PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8V \pm 0.15V$


Test	S1
t _{pd}	Open
tpLz/tpzl	2 x V _{CC}
tpHz/tpzH	GND

Timing Input $\begin{array}{c|c} V_{CC}/2 & V_{CC}/2 \\ \hline \\ Data \\ Input & V_{CC}/2 \\ \hline \\ V_{CC}/2 & V_{CC}/2 \\ \hline \\ V_{CC}/2 & OV \\ \hline \end{array}$


Voltage Waveforms Setup and Hold Times

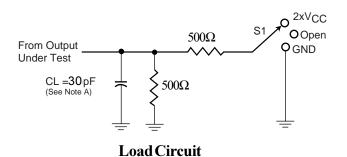
Voltage Waveforms Pulse Duration

Voltage Waveforms Propagation Delay Times

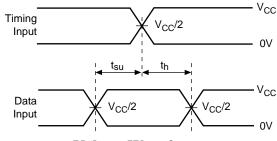
Voltage Waveforms Enable and Disable Times

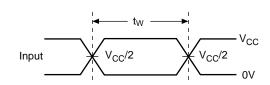
Figure 2. Load Circuit and Voltage Waveforms

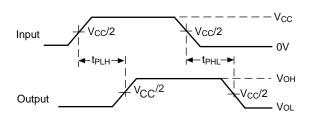
Notes:

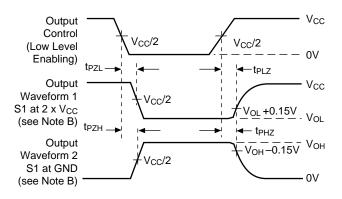

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input impulses are supplied by generators having the following characteristics: $PRR \le 10 \text{ MHz}$, $Z_O = 50\Omega$, $t_R \le 2.0 \text{ns}$, $t_F \le 2.0 \text{ns}$.

7


- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}
- F. tpzL and tpzH are the same as ten
- G. t_{PLH} and t_{PHL} are the same as t_{pd}


PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5V \pm 0.2V$


$\begin{array}{c|c} \textbf{Test} & \textbf{S1} \\ \hline \\ t_{pd} & \text{Open} \\ t_{PLZ}/t_{PZL} & 2 \times V_{CC} \\ t_{PHZ}/t_{PZH} & \text{GND} \\ \hline \end{array}$

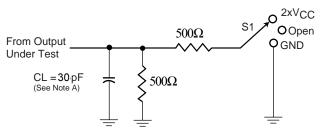

Voltage Waveforms Setup and Hold Times

Voltage Waveforms Pulse Duration

Voltage Waveforms Propagation Delay Times

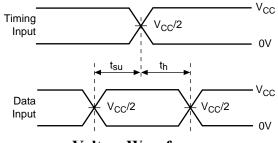
Voltage Waveforms Enable and Disable Times

Figure 3. Load Circuit and Voltage Waveforms

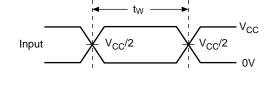

8

Notes:

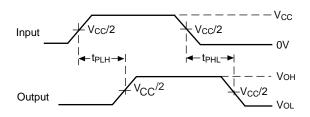
- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input impulses are supplied by generators having the following characteristics: $PRR \le 10 \text{ MHz}$, $Z_O = 50\Omega$, $t_R \le 2.0 \text{ns}$, $t_F \le 2.0 \text{ns}$.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}
- F. tpzL and tpzH are the same as ten
- G. t_{PLH} and t_{PHL} are the same as t_{pd}

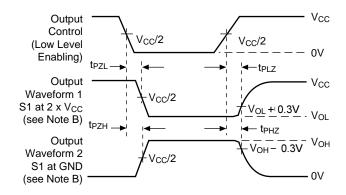


PARAMETER MEASUREMENT INFORMATION $V_{CC} = 3.3V \pm 0.3V$



Test	S1
t _{pd}	Open
tpLz/tpzL	2 x V _{CC}
tpHz/tpzH	GND


Load Circuit


Voltage Waveforms Setup and Hold Times

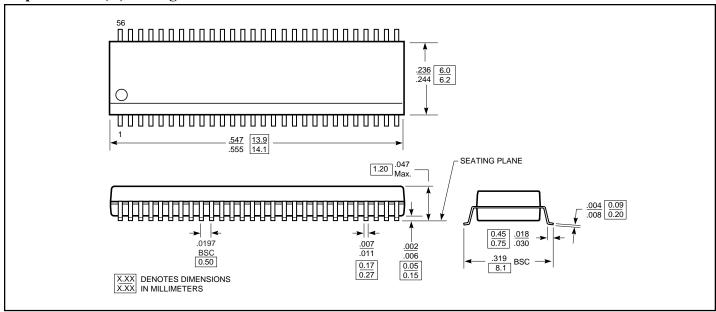
Voltage Waveforms Pulse Duration

Voltage Waveforms Propagation Delay Times

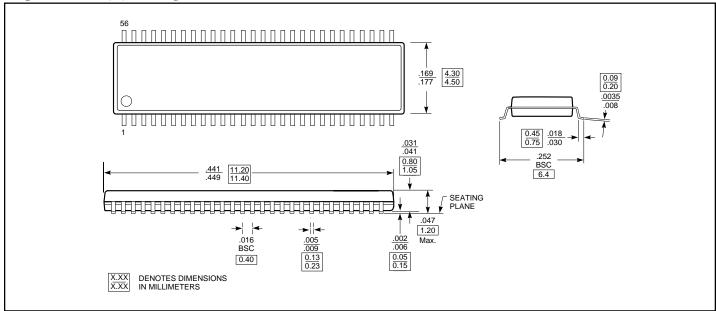
Voltage Waveforms Enable and Disable Times

Figure 4. Load Circuit and Voltage Waveforms

Notes:


- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input impulses are supplied by generators having the following characteristics: $PRR \le 10 \text{ MHz}$, $Z_O = 50\Omega$, $t_R \le 2.0 \text{ns}$, $t_F \le 2.0 \text{ns}$.

9


- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}
- F. tpzL and tpzH are the same as ten
- G. t_{PLH} and t_{PHL} are the same as t_{pd}

56-pin TSSOP (A) Package

56-pin TVSOP(K) Package

Ordering Information

Ordering Data	Description
PI74AVC+16345A	56-pin, 240-mil wide plastic TSSOP
PI74AVC+16345K	56-pin, 173-mil wide plastic TVSOP

Pericom Semiconductor Corporation

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com