AKD12575 Ku-Band DBS MMIC Downconverter

The ANADIGICS Ku-Band MMIC Downconverter is a low-cost, high-volume GaAs MMIC which is suitable for use in the field of consumer electronics.

AKD12575 offers a high degree of functionality in a very small and user friendly configuration. The MMIC provides LNB manufacturers the ability to produce in high volume LNBs with a low component count, high reliability, and exceptional price performance ratios. The AKD12575 is specifically suitable for France Telecom Band LNB's.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	MIN.	MAX.	UNITS
Vdd	0	+ 8	V
Vss	0	- 8	v
Vlo	- 5	+ 0.5	v
Vrf/Vif	- 10	+ 10	v
Case Temperature	- 55	+ 85	۰C
Storage Temperature	- 55	+ 100	° C
Soldering Temperature		+ 260 *	° C
Soldering Time		15	Sec.
Input Power RF		+ 10	dBm
Input Power LO		+ 17	dBm

OPERATING RANGES

PARAMETER	MIN	NOMINAL	MAX	UNITS
Frequency				
RF	12.5		12.75	GHz
IF	1025		1275	MHz
LO		11.475		GHz
Power Supplies				
$\mathbf{V}_{\mathbf{D}\mathbf{D}}$	5	6	7	V
Vss	- 3.5	- 5	- 6	l v
Case Temperature	- 55	25	85	•C
Input Power RF	- 80	- 50	- 30	dBm
Input Impedance		50		ohms
Output Impedance		75		ohms

^{*} The device may be held at a remperature of 230 °C for 3 minutes

ELECTRICAL SPECIFICATIONS

(Packaged unit, TA = 25 °C, VDD = +6V, Vss = -5V) LO Port Terminated in 50 ohms.4

PARAMETER	MIN.	TYP.	MAX.	UNITS
Conversion Gain 1				
$F_{RF} = 12.5 \text{ GHz}$ $F_{RF} = 12.75 \text{ GHz}$	30 30	35 35		dB dB
$r_{RF} = 12.75 \text{ GHz}$	30	33		ШÞ
SSB Noise Figure ¹				
$\mathbf{F}_{\mathbf{RF}} = 12.5 \; \mathbf{GHz}$		6.0	8.5	dB
$\mathbf{F}_{\mathbf{RF}} = 12.75 \mathbf{GHz}$		6.0	8.5	dB
Gain Flatness ¹		± 2	± 2.5	dB
Gain Ripple over any		<0.2	0.6	ďВ
27 MHz band			0.0	
LO - RF Leakage		25	10	dBm
LO - KF Leakage LO - IF Leakage		- 25 - 5	- 10	dBm
LO Phase Noise ²		- 3	0	ubin
10 KHz Offset		- 70	- 50	dBc/Hz
100 KHz Offset		- 100	- 70	dBc/Hz
Temperature Stability ³ of LO		± 1.5		MHz
oi LO				
Image Rejection	0	5		dB
Output power @ 1dB	0	+ 6		dBm
Gain Compression				
Output Third Order IP	+ 10	+ 16		dBm
Power Supply Current				
Idd	75	120	150	mA
Iss	1	3.5	4	mA
Spurious Output any Band			- 60	dBm
Input VSWR with Respect to		2:1		
50 ohms Over RF Band		2.1		
Output VSWR with Respect to		1.5:1		
75 ohms over IF Band				

NOTES:

(Test procedure available upon request)

- 2. Using an appropiate dielectric resonator and spacer.
- 3. Variation of LO frequency with temperature is largely a function of the dielectric resonator and its coupling.
- 4. LO port must be terminated with 50 ohms DC coupled resistor.

^{1.} As measured in ANADIGICS test fixture, FLO = 11.475 GHz