
VR5500™
64/32-Bit Microprocessor

2001
Printed in Japan

Document No. U16044EJ1V0UM00 (1st edition)
Date Published August 2002 N  CP(K)

Preliminary User’s Manual

µµµµPD30550

© 2002



Preliminary User’s Manual  U16044EJ1V0UM2

[MEMO]



Preliminary User’s Manual  U16044EJ1V0UM 3

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation.  Steps must be taken to stop generation of static electricity

as much as possible, and quickly dissipate it once, when it has occurred.  Environmental control

must be adequate.  When it is dry, humidifier should be used.  It is recommended to avoid using

insulators that easily build static electricity.  Semiconductor devices must be stored and transported

in an anti-static container, static shielding bag or conductive material.  All test and measurement

tools including work bench and floor should be grounded.  The operator should be grounded using

wrist strap.  Semiconductor devices must not be touched with bare hands.  Similar precautions need

to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction.  If no connection is provided

to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence

causing malfunction.  CMOS devices behave differently than Bipolar or NMOS devices.  Input levels

of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry.  Each unused

pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of

being an output pin.  All handling related to the unused pins must be judged device by device and

related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device.  Production process of MOS

does not define the initial operation status of the device.  Immediately after the power source is

turned ON, the devices with reset function have not yet been initialized.  Hence, power-on does

not guarantee out-pin levels, I/O settings or contents of registers.  Device is not initialized until the

reset signal is received.  Reset operation must be executed immediately after power-on for devices

having reset function.

VR Series, VR4000, VR4000 Series, VR4100 Series, VR4200, VR4300 Series, VR4400, VR5000, VR5000
Series, VR5000A, VR5432, VR5500, and VR10000 are trademarks of NEC Corporation.
MIPS is a registered trademark of MIPS Technologies, Inc. in the United States.
MC68000 is a trademark of Motorola Inc.
IBM370 is a trademark of IBM Corp.
Pentium is a trademark of Intel Corp.
DEC VAX is a trademark of Digital Equipment Corporation.
UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company Ltd.



Preliminary User’s Manual  U16044EJ1V0UM4

•  The information contained in this document is being issued in advance of the production cycle for the 
   device. The parameters for the device may change before final production or NEC Corporation, at its own
   discretion, may withdraw the device prior to its production.
•  Not all devices/types available in every country. Please check with local NEC representative for availability 
    and additional information. 
•  No part of this document may be copied or reproduced in any form or by any means without the prior written
   consent of NEC Corporation.  NEC Corporation assumes no responsibility for any errors which may appear in
   this document.
•  NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
   rights of third parties by or arising from use of a device described herein or any other liability arising from use
   of such device.  No license, either express, implied or otherwise, is granted under any patents, copyrights or other
   intellectual property rights of NEC Corporation or others.
•  Descriptions of circuits, software, and other related information in this document are provided for illustrative
   purposes in semiconductor product operation and application examples. The incorporation of these circuits,
   software, and information in the design of the customer's equipment shall be done under the full responsibility
   of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third
   parties arising from the use of these circuits, software, and information.
•  While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
   the possibility of defects cannot be eliminated entirely.  To minimize risks of damage or injury to persons or 
   property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
   measures in its design, such as redundancy, fire-containment, and anti-failure features.
•  NEC devices are classified into the following three quality grades:
   "Standard", "Special", and "Specific".  The Specific quality grade applies only to devices developed based on a
   customer designated "quality assurance program" for a specific application.  The recommended applications of
   a device depend on its quality grade, as indicated below.  Customers must check the quality grade of each device
   before using it in a particular application.
       Standard:  Computers, office equipment, communications equipment, test and measurement equipment,
                         audio and visual equipment, home electronic appliances, machine tools, personal electronic
                       equipment and industrial robots
       Special:     Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
                       systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
                         for life support)
       Specific:    Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
                      support systems or medical equipment for life support, etc.
   The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
   If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
   they should contact an NEC sales representative in advance.

M5D  98. 12

Exporting this product or equipment that includes this product may require a governmental license from the U.S.A. for some
countries because this product utilizes technologies limited by the export control regulations of the U.S.A.



Preliminary User’s Manual  U16044EJ1V0UM 5

Regional Information

Some information contained in this document may vary from country to country.  Before using any NEC
product in your application, pIease contact the NEC office in your country to obtain a list of authorized
representatives and distributors.  They will verify: 

•  Device availability

•  Ordering information

•  Product release schedule

•  Availability of related technical literature

•  Development environment specifications (for example, specifications for third-party tools and
   components, host computers, power plugs, AC supply voltages, and so forth)

•  Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
       800-366-9782
Fax: 408-588-6130
        800-729-9288

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Shanghai, Ltd.
Shanghai, P.R. China
Tel: 021-6841-1138
Fax: 021-6841-1137

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 253-8311
Fax: 250-3583

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP, Brasil
Tel: 11-6462-6810
Fax: 11-6462-6829

J02.4

NEC Electronics (Europe) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 01
Fax: 0211-65 03 327

• Sucursal en España
Madrid, Spain
Tel: 091-504 27 87
Fax: 091-504 28 60

Vélizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

• Succursale Française

• Filiale Italiana
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

• Branch The Netherlands
Eindhoven, The Netherlands
Tel: 040-244 58 45
Fax: 040-244 45 80

• Branch Sweden
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

• United Kingdom Branch
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290



Preliminary User’s Manual  U16044EJ1V0UM6

INTRODUCTION

Readers This manual is intended for users who wish to understand the functions of the
VR5500 (µPD30550) and to develop application systems using this microprocessor.

Purpose This manual introduces the architecture and hardware functions of the VR5500 to
users, following the organization described below.

Organization This manual consists of the following contents.

•  Introduction
•  Pipeline operation
•  Cache organization and memory management system
•  Exception processing
•  Floating-point unit operation
•  Hardware
•  Instruction set details

How to read this manual It is assumed that the reader of this manual has general knowledge in the fields of
electrical engineering, logic circuits, and microcontrollers.

The VR4400TM in this manual includes the VR4000TM.
The VR4000 SeriesTM in this document indicates the VR4100 SeriesTM, VR4200TM,
VR4300 SeriesTM, and VR4400.

To learn in detail about the function of a specific instruction,
→ Read CHAPTER 3 OUTLINE OF INSTRUCTION SET, CHAPTER 7

FLOATING-POINT UNIT, CHAPTER 17 CPU INSTRUCTION SET, and
CHAPTER 18 FPU INSTRUCTION SET.

To know about the overall functions of the VR5500:
→ Read this manual in the order of the contents.

To know about electrical specifications of the VR5500:
→ Refer to Data Sheet which is separately available.

Conventions Data significance: Higher digits on the left and lower digits on the right
Active low representation: XXX# (trailing # after pin and signal names)
Note: Footnote for item marked with Note in the text
Caution: Information requiring particular attention
Remark: Supplementary information
Numerical representation: Binary... XXXX or XXXX2

Decimal…XXXX
Hexadecimal ... 0xXXXX

Prefix indicating the power of 2 (address space, memory capacity):
K (kilo) 210 = 1,024
M (mega) 220 = 1,0242

G (giga) 230 = 1,0243

T (tera) 240 = 1,0244

P (peta) 250 = 1,0245

E (exa) 260 = 1,0246



Preliminary User’s Manual  U16044EJ1V0UM 7

Related Documents The related documents indicated in this publication may include preliminary versions.
However preliminary versions are not marked as such.

Documents Related to Devices

Document Name Document No.

µPD30550 (VR5500) Data Sheet To be prepared

VR5500 User's Manual This Manual

VR5432TM User's Manual Volume 1 U13751E

VR5432 User's Manual Volume 2 U15397E

VR5000TM,  VR5000ATM User's Manual U11761E

VR5000,  VR10000TM Instruction User's Manual U12754E

Application Note

Document Name Document No.

VR SeriesTM Programming Guide Application Note U10710E



Preliminary User’s Manual  U16044EJ1V0UM8

CONTENTS
                          

CHAPTER 1  GENERAL..............................................................................................................................25
1.1 Features .......................................................................................................................................25
1.2 Ordering Information ..................................................................................................................26
1.3 VR5500 Processor........................................................................................................................26

1.3.1 Internal block configuration .............................................................................................................. 28

1.3.2 CPU registers................................................................................................................................... 30

1.3.3 Coprocessors ................................................................................................................................... 31

1.3.4 System control coprocessors (CP0)................................................................................................. 32

1.3.5 Floating-point unit ............................................................................................................................ 33

1.3.6 Cache memory................................................................................................................................. 33

1.4 Outline of Instruction Set ...........................................................................................................34
1.5 Data Format and Addressing .....................................................................................................35
1.6 Memory Management System....................................................................................................38

1.6.1 High-speed translation lookaside buffer (TLB)................................................................................. 38

1.6.2 Processor modes ............................................................................................................................. 38

1.7 Instruction Pipeline .....................................................................................................................38
1.7.1 Branch prediction ............................................................................................................................. 38

CHAPTER 2   PIN FUNCTIONS ..................................................................................................................39
2.1 Pin Configuration ........................................................................................................................39
2.2 Pin Functions...............................................................................................................................43

2.2.1 System interface signals .................................................................................................................. 43

2.2.2 Initialization interface signals ........................................................................................................... 44

2.2.3 Interrupt interface signals................................................................................................................. 46

2.2.4 Clock interface signals ..................................................................................................................... 46

2.2.5 Power supply.................................................................................................................................... 46

2.2.6 Test interface signal ......................................................................................................................... 47

2.3 Handling of Unused Pins............................................................................................................48
2.3.1 System interface pin......................................................................................................................... 48

2.3.2 Test interface pins............................................................................................................................ 49

CHAPTER 3   OUTLINE OF INSTRUCTION SET.......................................................................................50
3.1 Instruction Set Architecture .......................................................................................................50

3.1.1 Instruction format ............................................................................................................................. 51

3.1.2 Load/store instructions..................................................................................................................... 52

3.1.3 Operation instructions ...................................................................................................................... 55

3.1.4 Jump/branch instructions ................................................................................................................. 55

3.1.5 Special instructions .......................................................................................................................... 56

3.1.6 Coprocessor instructions ................................................................................................................. 56

3.2 Addition and Modification of VR5500 Instructions...................................................................57
3.2.1 Integer rotate instructions ................................................................................................................ 57

3.2.2 Sum-of-products instructions ........................................................................................................... 58

3.2.3 Register scan instructions................................................................................................................ 59

3.2.4 Floating-point load/store instructions ............................................................................................... 59

3.2.5 Other additional instructions ............................................................................................................ 59



Preliminary User’s Manual  U16044EJ1V0UM 9

3.2.6 Instructions for which functions and operations were changed ....................................................... 60

3.3 Outline of CPU Instruction Set .................................................................................................. 60
3.3.1 Load and store instructions ............................................................................................................. 60

3.3.2 Computational instructions .............................................................................................................. 63

3.3.3 Jump and branch instructions.......................................................................................................... 72

3.3.4 Special instructions.......................................................................................................................... 75

3.3.5 Coprocessor instructions ................................................................................................................. 77

3.3.6 System control coprocessor (CP0) instructions............................................................................... 78

CHAPTER 4   PIPELINE ............................................................................................................................. 80
4.1 Overview...................................................................................................................................... 80

4.1.1 Pipeline stages ................................................................................................................................ 81

4.1.2 Configuration of pipeline.................................................................................................................. 82

4.2 Branch Delay............................................................................................................................... 85
4.3 Load Delay................................................................................................................................... 86

4.3.1 Non-blocking load............................................................................................................................ 86

4.4 Exception Processing ................................................................................................................ 87
4.5 Store Buffer ................................................................................................................................. 87
4.6 Write Transaction Buffer............................................................................................................ 87

CHAPTER 5   MEMORY MANAGEMENT SYSTEM .................................................................................. 88
5.1 Processor Modes........................................................................................................................ 88

5.1.1 Operating modes ............................................................................................................................. 88

5.1.2 Instruction set modes ...................................................................................................................... 89

5.1.3 Addressing modes........................................................................................................................... 89

5.2 Translation Lookaside Buffer (TLB) ......................................................................................... 90
5.2.1 Format of TLB entry......................................................................................................................... 91

5.2.2 TLB instructions............................................................................................................................... 92

5.2.3 TLB exception.................................................................................................................................. 92

5.3 Virtual-to-Physical Address Translation .................................................................................. 93
5.3.1 32-bit addressing mode address translation.................................................................................... 96

5.3.2 64-bit addressing mode address translation.................................................................................... 97

5.4 Virtual Address Space................................................................................................................ 98
5.4.1 User mode virtual address space .................................................................................................... 99

5.4.2 Supervisor mode virtual address space ........................................................................................ 101

5.4.3 Kernel mode virtual address space ............................................................................................... 104

5.5 Memory Management Registers.............................................................................................. 111
5.5.1 Index register (0) ........................................................................................................................... 112

5.5.2 Random register (1)....................................................................................................................... 112

5.5.3 EntryLo0 (2) and EntryLo1 (3) registers ........................................................................................ 113

5.5.4 PageMask register (5) ................................................................................................................... 115

5.5.5 Wired register (6) ........................................................................................................................... 116

5.5.6 EntryHi register (10)....................................................................................................................... 117

5.5.7 PRId (processor revision ID) register (15) ..................................................................................... 118

5.5.8 Config register (16) ........................................................................................................................ 118

5.5.9 LLAddr (load linked address) register (17) .................................................................................... 121

5.5.10 TagLo (28) and TagHi (29) registers ............................................................................................. 122



Preliminary User’s Manual  U16044EJ1V0UM10

CHAPTER  6   EXCEPTION  PROCESSING ............................................................................................123
6.1 Exception Processing Operation.............................................................................................123
6.2 Exception Processing Registers .............................................................................................124

6.2.1 Context register (4) ........................................................................................................................ 125

6.2.2 BadVAddr register (8) .................................................................................................................... 126

6.2.3 Count register (9) ........................................................................................................................... 127

6.2.4 Compare register (11) .................................................................................................................... 127

6.2.5 Status register (12)......................................................................................................................... 128

6.2.6 Cause register (13) ........................................................................................................................ 131

6.2.7 EPC (exception program counter) register (14) ............................................................................. 133

6.2.8 WatchLo (18) and WatchHi (19) registers...................................................................................... 134

6.2.9 XContext register (20) .................................................................................................................... 135

6.2.10 Performance Counter register (25) ................................................................................................ 136

6.2.11 Parity Error register (26)................................................................................................................. 138

6.2.12 Cache Error register (27) ............................................................................................................... 139

6.2.13 ErrorEPC register (30) ................................................................................................................... 140

6.3 Details of Exceptions ................................................................................................................141
6.3.1 Exception types.............................................................................................................................. 141

6.3.2 Exception vector address............................................................................................................... 143

6.3.3 Priority of exceptions...................................................................................................................... 146

6.4 Details of Exceptions ................................................................................................................147
6.4.1 Reset exception ............................................................................................................................. 147

6.4.2 Soft reset exception ....................................................................................................................... 148

6.4.3 NMI exception ................................................................................................................................ 149

6.4.4 Address error exception................................................................................................................. 150

6.4.5 TLB exceptions .............................................................................................................................. 152

6.4.6 Cache error exception.................................................................................................................... 155

6.4.7 Bus error exception........................................................................................................................ 156

6.4.8 System call exception .................................................................................................................... 157

6.4.9 Breakpoint exception ..................................................................................................................... 157

6.4.10 Coprocessor unusable exception................................................................................................... 158

6.4.11 Reserved instruction exception...................................................................................................... 159

6.4.12 Trap exception ............................................................................................................................... 159

6.4.13 Integer overflow exception ............................................................................................................. 160

6.4.14 Floating-point operation exception................................................................................................. 160

6.4.15 Watch exception ............................................................................................................................ 161

6.4.16 Interrupt exception ......................................................................................................................... 162

6.5 Exception Processing Flowcharts...........................................................................................163

CHAPTER 7   FLOATING-POINT UNIT ....................................................................................................170
7.1 Overview ....................................................................................................................................170
7.2 FPU Registers............................................................................................................................170

7.2.1 Floating-point general-purpose registers (FGRs)........................................................................... 171

7.2.2 Floating-point registers (FPRs) ...................................................................................................... 172

7.2.3 Floating-point control registers (FCRs) .......................................................................................... 172

7.3 Floating-Point Control Register...............................................................................................173
7.3.1 Control/Status register (FCR31)..................................................................................................... 173

7.3.2 Enable/Mode register (FCR28) ...................................................................................................... 176



Preliminary User’s Manual  U16044EJ1V0UM 11

7.3.3 Cause/Flag register (FCR26)......................................................................................................... 176

7.3.4 Condition Code register (FCR25) .................................................................................................. 176

7.3.5 Implementation/Revision register (FCR0)...................................................................................... 177

7.4 Data Format............................................................................................................................... 178
7.4.1 Floating-point format...................................................................................................................... 178

7.4.2 Fixed-point format.......................................................................................................................... 180

7.5 Outline of FPU Instruction Set ................................................................................................ 181
7.5.1 Floating-point load/store/transfer instructions................................................................................ 182

7.5.2 Conversion instructions ................................................................................................................. 185

7.5.3 Operation instructions.................................................................................................................... 187

7.5.4 Comparison instruction.................................................................................................................. 189

7.5.5 FPU branch instructions ................................................................................................................ 190

7.5.6 Other instructions .......................................................................................................................... 190

7.6 Execution Time of FPU Instruction......................................................................................... 191

CHAPTER 8   FLOATING-POINT EXCEPTIONS..................................................................................... 193
8.1 Types of Exceptions................................................................................................................. 193
8.2 Exception Processing .............................................................................................................. 194

8.2.1 Flag................................................................................................................................................ 194

8.3 Details of Exceptions ............................................................................................................... 196
8.3.1 Inexact operation exception (I) ...................................................................................................... 196

8.3.2 Invalid operation exception (V) ...................................................................................................... 197

8.3.3 Division-by-zero exception (Z)....................................................................................................... 197

8.3.4 Overflow exception (O) .................................................................................................................. 198

8.3.5 Underflow exception (U) ................................................................................................................ 198

8.3.6 Unimplemented operation exception (E) ....................................................................................... 199

8.4 Saving and Restoring Status................................................................................................... 200
8.5 Handler for IEEE754 Exceptions ............................................................................................. 200

CHAPTER 9   INITIALIZATION INTERFACE........................................................................................... 201
9.1 Functional Outline .................................................................................................................... 201
9.2 Reset Sequence ........................................................................................................................ 202

9.2.1 Power-on reset .............................................................................................................................. 202

9.2.2 Cold reset ...................................................................................................................................... 203

9.2.3 Warm reset .................................................................................................................................... 204

9.2.4 Processor status at reset............................................................................................................... 204

9.3 Initialization Signals ................................................................................................................. 205

CHAPTER 10   CLOCK INTERFACE ....................................................................................................... 206
10.1 Term Definitions ....................................................................................................................... 206
10.2 Basic System Clock.................................................................................................................. 207

10.2.1  Synchronization with SysClock..................................................................................................... 208

10.3 Phase Lock Loop (PLL)............................................................................................................ 208

CHAPTER 11   CACHE MEMORY............................................................................................................ 209
11.1 Memory Organization ............................................................................................................... 209

11.1.1 Internal cache ................................................................................................................................ 210

11.2 Configuration of Cache............................................................................................................ 211



Preliminary User’s Manual  U16044EJ1V0UM12

11.2.1 Configuration of instruction cache.................................................................................................. 211

11.2.2 Configuration of data cache ........................................................................................................... 212

11.2.3 Location of data cache................................................................................................................... 212

11.3  Cache Operations.....................................................................................................................213
11.3.1 Coherency of cache data ............................................................................................................... 213

11.3.2 Replacing instruction cache line .................................................................................................... 214

11.3.3 Replacing data cache line.............................................................................................................. 214

11.3.4 Speculative replacement of data cache line .................................................................................. 215

11.3.5 Accessing cache ............................................................................................................................ 216

11.4 Status of Cache .........................................................................................................................217
11.5 Manipulating Cache by External Agent...................................................................................217

CHAPTER 12   OVERVIEW OF SYSTEM INTERFACE ...........................................................................218
12.1 Definition of Terms....................................................................................................................218
12.2 Bus Modes .................................................................................................................................219
12.3 Outline of System Interface......................................................................................................220

12.3.1 Interface bus .................................................................................................................................. 220

12.3.2 Address cycle and data cycle ........................................................................................................ 221

12.3.3 Issuance cycle ............................................................................................................................... 221

12.3.4 Handshake signal .......................................................................................................................... 222

12.3.5 System interface bus data.............................................................................................................. 223

12.4 System Interface Protocol ........................................................................................................224
12.4.1 Master status and slave status ...................................................................................................... 224

12.4.2 External arbitration......................................................................................................................... 225

12.4.3 Uncompelled transition to slave status .......................................................................................... 225

12.4.4 Processor requests and external requests .................................................................................... 226

12.5 Processor Requests..................................................................................................................227
12.5.1 Processor read request.................................................................................................................. 228

12.5.2 Processor write request ................................................................................................................. 228

12.6 External Requests .....................................................................................................................229
12.6.1 External write request .................................................................................................................... 230

12.6.2 Read response............................................................................................................................... 230

12.7 Event Processing ......................................................................................................................231
12.7.1 Load miss....................................................................................................................................... 231

12.7.2 Store miss ...................................................................................................................................... 232

12.7.3 Store hit.......................................................................................................................................... 232

12.7.4 Load/store in uncached area ......................................................................................................... 232

12.7.5 Accelerated store in uncached area .............................................................................................. 232

12.7.6 Instruction fetch from uncached area............................................................................................. 233

12.7.7 Fetch miss...................................................................................................................................... 233

12.8 Error Check Function................................................................................................................234
12.8.1 Parity error check........................................................................................................................... 234

12.8.2 Error check operation..................................................................................................................... 235

CHAPTER  13   SYSTEM  INTERFACE  (64-BIT  BUS  MODE) ..............................................................237
13.1 Protocol of Processor Requests..............................................................................................238

13.1.1 Processor read request protocol .................................................................................................... 238

13.1.2 Processor write request protocol.................................................................................................... 239



Preliminary User’s Manual  U16044EJ1V0UM 13

13.1.3 Control of processor request flow.................................................................................................. 241

13.1.4 Timing mode of processor request ................................................................................................ 242

13.2 Protocol of External Request .................................................................................................. 246
13.2.1 External arbitration protocol........................................................................................................... 246

13.2.2 External null request protocol ........................................................................................................ 248

13.2.3 External write request protocol ...................................................................................................... 249

13.2.4 Read response protocol ................................................................................................................ 250

13.2.5 SysADC(7:0) protocol for block read response ............................................................................. 252

13.3 Data Flow Control ..................................................................................................................... 252
13.3.1 Data rate control ............................................................................................................................ 252

13.3.2 Block write data transfer pattern.................................................................................................... 253

13.3.3 System endianness ....................................................................................................................... 253

13.4 Independent Transfer with SysAD Bus .................................................................................. 254
13.5 System Interface Cycle Time................................................................................................... 254
13.6 System Interface Commands and Data Identifiers................................................................ 255

13.6.1 Syntax of commands and data identifiers...................................................................................... 255

13.6.2 Syntax of command....................................................................................................................... 255

13.6.3 Syntax of data identifier ................................................................................................................. 258

13.7 System Interface Address........................................................................................................ 260
13.7.1 Address specification rules............................................................................................................ 260

13.7.2 Sub-block ordering ........................................................................................................................ 260

13.7.3 Processor internal address map.................................................................................................... 260

CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE) ............................................................. 261
14.1 Protocol of Processor Requests ............................................................................................. 262

14.1.1 Processor read request protocol ................................................................................................... 262

14.1.2 Processor write request protocol ................................................................................................... 263

14.1.3 Control of processor request flow.................................................................................................. 265

14.1.4 Timing mode of processor request ................................................................................................ 267

14.2 Protocol of External Request .................................................................................................. 271
14.2.1 External arbitration protocol........................................................................................................... 271

14.2.2 External null request protocol ........................................................................................................ 273

14.2.3 External write request protocol ...................................................................................................... 274

14.2.4 Read response protocol ................................................................................................................ 275

14.2.5 SysADC(3:0) protocol for block read response ............................................................................. 277

14.3 Data Flow Control ..................................................................................................................... 277
14.3.1 Data rate control ............................................................................................................................ 277

14.3.2 Block write data transfer pattern.................................................................................................... 278

14.3.3 Word transfer sequence ................................................................................................................ 279

14.3.4 System endianness ....................................................................................................................... 281

14.4 Independent Transfer with SysAD Bus .................................................................................. 282
14.5 System Interface Cycle Time................................................................................................... 282
14.6 System Interface Commands and Data Identifiers................................................................ 283

14.6.1 Syntax of commands and data identifiers...................................................................................... 283

14.6.2 Syntax of command....................................................................................................................... 283

14.6.3 Syntax of data identifier ................................................................................................................. 286

14.7 System Interface Address........................................................................................................ 288
14.7.1 Address specification rules............................................................................................................ 288



Preliminary User’s Manual  U16044EJ1V0UM14

14.7.2 Sub-block ordering......................................................................................................................... 288

14.7.3 Processor internal address map .................................................................................................... 288

CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE) .....................................289
15.1 Overview ....................................................................................................................................290

15.1.1 Timing mode .................................................................................................................................. 290

15.1.2 Master status and slave status ...................................................................................................... 291

15.1.3 Identifying request.......................................................................................................................... 291

15.2 Protocol of Out-of-Order Return Mode ...................................................................................292
15.2.1 Successive read requests.............................................................................................................. 293

15.2.2 Successive write requests ............................................................................................................. 296

15.2.3 Write request following read request.............................................................................................. 298

15.2.4 Bus arbitration of processor ........................................................................................................... 299

15.2.5 Single read request following block read request .......................................................................... 302

15.2.6 Unaligned 2-word read request...................................................................................................... 305

15.3 System Interface Commands and Data Identifiers ................................................................306
15.3.1 Syntax of commands and data identifiers ...................................................................................... 306

15.3.2 Syntax of command ....................................................................................................................... 306

15.3.3 Syntax of data identifier ................................................................................................................. 311

15.4 Request Identifier ......................................................................................................................313

CHAPTER  16   INTERRUPTS ..................................................................................................................314
16.1 Interrupt Request Type.............................................................................................................314

16.1.1 Non-maskable interrupt (NMI)........................................................................................................ 314

16.1.2 External ordinary interrupt.............................................................................................................. 315

16.1.3 Software interrupts ......................................................................................................................... 315

16.1.4 Timer interrupt................................................................................................................................ 315

16.2 Acknowledging Interrupt Request Signal...............................................................................315
16.2.1 Detecting hardware interrupt.......................................................................................................... 317

16.2.2 Masking interrupt signal ................................................................................................................. 318

CHAPTER  17   CPU  INSTRUCTION  SET ..............................................................................................319
17.1 Instruction Notation Conventions ...........................................................................................319
17.2 Cautions on Using CPU Instructions ......................................................................................321

17.2.1 Load and store instructions............................................................................................................ 321

17.2.2 Jump and branch instructions ........................................................................................................ 322

17.2.3 Coprocessor instructions ............................................................................................................... 322

17.2.4 System control coprocessor (CP0) instructions ............................................................................. 323

17.3 CPU Instruction .........................................................................................................................323
17.4 CPU Instruction Opcode Bit Encoding ...................................................................................523

CHAPTER  18   FPU  INSTRUCTION  SET ..............................................................................................526
18.1 Type of Instruction ....................................................................................................................526

18.1.1 Data format .................................................................................................................................... 529

18.2 Instruction Notation Conventions ...........................................................................................530
18.3 Cautions on Using FPU Instructions.......................................................................................532

18.3.1 Load and store instructions............................................................................................................ 532

18.3.2 Floating-point operation instructions .............................................................................................. 533



Preliminary User’s Manual  U16044EJ1V0UM 15

18.3.3 FPU branch instruction .................................................................................................................. 534

18.4 FPU  Instruction ........................................................................................................................ 534
18.5 FPU Instruction Opcode Bit Encoding ................................................................................... 613

CHAPTER  19   INSTRUCTION  HAZARDS ............................................................................................ 615
19.1 Overview.................................................................................................................................... 615
19.2 Details of Instruction Hazard................................................................................................... 615

CHAPTER  20   PLL  PASSIVE  ELEMENTS........................................................................................... 616

CHAPTER  21   DEBUGGING  AND  TESTING....................................................................................... 617
21.1 Overview.................................................................................................................................... 617
21.2 Test Interface Signals............................................................................................................... 619
21.3 Boundary Scan ......................................................................................................................... 621
21.4 Connecting Debugging Tool ................................................................................................... 623

21.4.1 Connecting in-circuit emulator and target board............................................................................ 623

21.4.2 Connection circuit example ........................................................................................................... 625

APPENDIX  A   SUB-BLOCK  ORDER .................................................................................................... 626

APPENDIX  B   RECOMMENDED  POWER  SUPPLY  CIRCUIT ........................................................... 629

APPENDIX  C   RESTRICTIONS  ON  VR5500......................................................................................... 630
C.1 Restrictions on Ver.1.x............................................................................................................. 630

C.1.1 During normal operation ................................................................................................................ 630

C.1.2 When debug function is used ........................................................................................................ 631

C.2 Restrictions on Ver. 2.0............................................................................................................ 633
C.2.1 During normal operation ................................................................................................................ 633

C.2.2 When using debug function ........................................................................................................... 634

C.3 Restrictions on Ver. 2.1 or Later ............................................................................................. 635
C.3.1 During normal operation ................................................................................................................ 635

C.3.2 When using debug function ........................................................................................................... 635



Preliminary User’s Manual  U16044EJ1V0UM16

LIST  OF  FIGURES (1/5)

Figure No. Title Page

1-1 Internal Block Diagram................................................................................................................................27

1-2 CPU Registers ............................................................................................................................................31

1-3 FPU Registers.............................................................................................................................................33

1-4 Instruction Type ..........................................................................................................................................34

1-5 Byte Address of Big Endian ........................................................................................................................35

1-6 Byte Address of Little Endian......................................................................................................................36

1-7 Byte Address (Unaligned Word) .................................................................................................................37

3-1 Expansion of MIPS Architecture .................................................................................................................50

3-2 Instruction Format .......................................................................................................................................51

3-3 Byte Specification Related to Load and Store Instructions .........................................................................54

4-1 Pipeline Stages of VR5500 and Instruction Flow.........................................................................................81

4-2 Combination of Instructions That Can Be Packed ......................................................................................83

4-3 Instruction Flow in Execution Pipeline ........................................................................................................84

4-4 Branch Delay ..............................................................................................................................................85

4-5 Load Delay..................................................................................................................................................86

4-6 Exception Detection ....................................................................................................................................87

5-1 Format of TLB Entry....................................................................................................................................91

5-2 Outline of TLB Manipulation........................................................................................................................92

5-3 Virtual-to-Physical Address Translation ......................................................................................................94

5-4 TLB Address Translation ............................................................................................................................95

5-5 Virtual Address Translation in 32-Bit Addressing Mode..............................................................................96

5-6 Virtual Address Translation in 64-Bit Addressing Mode..............................................................................97

5-7 User Mode Address Space .......................................................................................................................100

5-8 Supervisor Mode Address Space .............................................................................................................102

5-9 Kernel Mode Address Space ....................................................................................................................105

5-10 xkphys Area Address Space.....................................................................................................................106

5-11 Index Register...........................................................................................................................................112

5-12 Random Register ......................................................................................................................................112

5-13 EntryLo0 and EntryLo1 Registers .............................................................................................................113

5-14 PageMask Register...................................................................................................................................115

5-15 Positions Indicated by Wired Register ......................................................................................................116

5-16 Wired Register ..........................................................................................................................................116

5-17 EntryHi Register........................................................................................................................................117

5-18 PRId Register............................................................................................................................................118

5-19 Config Register .........................................................................................................................................119

5-20 LLAddr Register ........................................................................................................................................121

5-21 TagLo and TagLo Registers .....................................................................................................................122

6-1 Context Register .......................................................................................................................................125

6-2 BadVAddr Register ...................................................................................................................................126



Preliminary User’s Manual  U16044EJ1V0UM 17

LIST  OF  FIGURES (2/5)

Figure No. Title Page

6-3 Count Register.......................................................................................................................................... 127

6-4 Compare Register Format ........................................................................................................................ 127

6-5 Status Register ......................................................................................................................................... 128

6-6 Status Register Diagnostic Status Field ................................................................................................... 129

6-7 Cause Register......................................................................................................................................... 131

6-8 EPC Register............................................................................................................................................ 133

6-9 WatchLo and WatchHi Registers.............................................................................................................. 134

6-10 XContext Register .................................................................................................................................... 135

6-11 Performance Counter Register ................................................................................................................. 136

6-12 Parity Error Register ................................................................................................................................. 138

6-13 Cache Error Register................................................................................................................................ 139

6-14 ErrorEPC Register .................................................................................................................................... 140

6-15 General Exception Processing ................................................................................................................. 164

6-16 TLB/XTLB Refill Exception Processing .................................................................................................... 166

6-17 Processing of Cache Error Exception....................................................................................................... 168

6-18 Processing of Reset/Soft Reset/NMI Exceptions ..................................................................................... 169

7-1 Registers of FPU ...................................................................................................................................... 170

7-2 FCR31 ...................................................................................................................................................... 173

7-3 Cause/Enable/Flag Bits of FCR31............................................................................................................ 173

7-4 FCR28 ...................................................................................................................................................... 176

7-5 FCR26 ...................................................................................................................................................... 176

7-6 FCR25 ...................................................................................................................................................... 176

7-7 FCR0 ........................................................................................................................................................ 177

7-8 Single-Precision Floating-Point Format .................................................................................................... 178

7-9 Double-Precision Floating-Point Format................................................................................................... 178

7-10 32-Bit Fixed-Point Format......................................................................................................................... 180

7-11 64-Bit Fixed-Point Format......................................................................................................................... 180

8-1 Cause/Enable/Flag Bits of FCR31............................................................................................................ 194

9-1 Power-on Reset Timing ............................................................................................................................ 203

9-2 Cold Reset Timing .................................................................................................................................... 203

9-3 Warm Reset Timing.................................................................................................................................. 204

10-1 Signal’s Transition Points ......................................................................................................................... 206

10-2 Clock-Q Delay .......................................................................................................................................... 206

10-3 When Frequency Ratio of SysClock to PClock Is 1:2............................................................................... 207

11-1 Logical Hierarchy of Memory.................................................................................................................... 209

11-2 Internal Cache and Main Memory............................................................................................................. 210

11-3 Format of Instruction Cache Line ............................................................................................................. 211

11-4 Line Format of Data Cache ...................................................................................................................... 212



Preliminary User’s Manual  U16044EJ1V0UM18

LIST  OF  FIGURES (3/5)

Figure No. Title Page

11-5 Index and Data Output of Cache ..............................................................................................................216

12-1 Bus Modes of VR5500...............................................................................................................................219

12-2 System Interface Bus (64-Bit Bus Mode) ..................................................................................................220

12-3 System Interface Bus (32-Bit Bus Mode) ..................................................................................................220

12-4 Status of RdRdy#/WrRdy# Signal of Processor Request .........................................................................221

12-5 Operation of System Interface Between Registers ...................................................................................224

12-6 Requests and System Events...................................................................................................................226

12-7 Flow of Processor Requests .....................................................................................................................227

12-8 Flow of External Request..........................................................................................................................229

12-9 Read Response ........................................................................................................................................230

13-1 Processor Read Request..........................................................................................................................239

13-2 Processor Non-Block Write Request Protocol ..........................................................................................240

13-3 Processor Block Write Request ................................................................................................................240

13-4 Control of Processor Request Flow ..........................................................................................................241

13-5 Timing When Second Processor Write Request Is Delayed.....................................................................242

13-6 Timing of VR4000-Compatible Back-to-Back Write Cycle .........................................................................243

13-7 Write Re-Issuance ....................................................................................................................................244

13-8 Pipeline Write............................................................................................................................................245

13-9 External Request Arbitration Protocol .......................................................................................................247

13-10 External Null Request Protocol .................................................................................................................248

13-11 External Write Request Protocol ...............................................................................................................249

13-12 Protocol of Read Request and Read Response .......................................................................................251

13-13 Block Read Response in Slave Status .....................................................................................................251

13-14 Read Response with Data Rate Pattern DDx ...........................................................................................253

13-15 Bit Definition of System Interface Command ............................................................................................255

13-16 Bit Definition of SysCmd Bus During Read Request.................................................................................256

13-17 Bit Definition of SysCmd Bus During Write Request.................................................................................257

13-18 Bit Definition of SysCmd Bus During Null Request ...................................................................................258

13-19 Bit Definition of System Interface Data Identifier ......................................................................................258

14-1 Processor Read Request..........................................................................................................................263

14-2 Processor Non-Block Write Request Protocol ..........................................................................................264

14-3 Processor Block Write Request ................................................................................................................264

14-4 Control of Processor Request Flow ..........................................................................................................265

14-5 Timing When Second Processor Write Request Is Delayed.....................................................................267

14-6 Timing of VR4000-Compatible Back-to-Back Write Cycle .........................................................................268

14-7 Write Re-Issuance ....................................................................................................................................269

14-8 Pipeline Write............................................................................................................................................270

14-9 External Request Arbitration Protocol .......................................................................................................272

14-10 External Null Request Protocol .................................................................................................................273

14-11 External Write Request Protocol ...............................................................................................................274



Preliminary User’s Manual  U16044EJ1V0UM 19

LIST  OF  FIGURES (4/5)

Figure No. Title Page

14-12 Protocol of Read Request and Read Response....................................................................................... 276

14-13 Block Read Response in Slave Status ..................................................................................................... 276

14-14 Read Response with Data Rate Pattern DDx........................................................................................... 278

14-15 Bit Definition of System Interface Command............................................................................................ 283

14-16 Bit Definition of SysCmd Bus During Read Request ................................................................................ 284

14-17 Bit Definition of SysCmd Bus During Write Request ................................................................................ 285

14-18 Bit Definition of SysCmd Bus During Null Request................................................................................... 286

14-19 Bit Definition of System Interface Data Identifier ...................................................................................... 286

15-1 Successive Read Requests (in Pipeline Mode, with Subsequent Request)............................................. 293

15-2 Successive Read Requests (in Pipeline Mode, Without Subsequent Request)....................................... 294

15-3 Successive Read Requests (in Re-Issuance Mode) ................................................................................ 295

15-4 Successive Write Requests (in Pipeline Mode)........................................................................................ 296

15-5 Successive Write Requests (in Re-Issuance Mode) ................................................................................ 297

15-6 Write Request Following Read Request................................................................................................... 298

15-7 Bus Arbitration of Processor (in Pipeline Mode, with Subsequent Request) ............................................ 299

15-8 Bus Arbitration of Processor (in Pipeline Mode, Without Subsequent Request) ...................................... 300

15-9 Bus Arbitration of Processor (in Re-Issuance Mode) ............................................................................... 301

15-10 Single Read Request Following Block Read Request  (in Pipeline Mode, with Subsequent Request).... 302

15-11 Single Read Request Following Block Read Request

(in Pipeline Mode, Without Subsequent Request).................................................................................... 303

15-12 Single Read Request Following Block Read Request (in Re-Issuance Mode) ........................................ 304

15-13 Unaligned 2-Word Read (in Pipeline Mode, with Subsequent Request) .................................................. 305

15-14 Bit Definition of System Interface Command............................................................................................ 306

15-15 Bit Definition of SysCmd Bus During Read Request ................................................................................ 307

15-16 Bit Definition of SysCmd Bus During Write Request ................................................................................ 309

15-17 Bit Definition of SysCmd Bus During Null Request................................................................................... 311

15-18 Bit Definition of System Interface Data Identifier ...................................................................................... 311

16-1 NMI# Signal .............................................................................................................................................. 314

16-2 Bits of Interrupt Register and Enable Bits................................................................................................. 316

16-3 Hardware Interrupt Request Signal .......................................................................................................... 317

16-4 Masking Interrupt Signal........................................................................................................................... 318

17-1 CPU Instruction Opcode Bit Encoding...................................................................................................... 523

18-1 Load/Store Instruction Format .................................................................................................................. 527

18-2 Operation Instruction Format.................................................................................................................... 528

18-3 FPU Instruction Opcode Bit Encoding ...................................................................................................... 613

20-1 Example of Connection of PLL Passive Elements ................................................................................... 616

21-1 Access to Processor Resources in Debug Mode ..................................................................................... 618



Preliminary User’s Manual  U16044EJ1V0UM20

LIST  OF  FIGURES (5/5)

Figure No. Title Page

21-2 Boundary Scan Register ...........................................................................................................................621

21-3 IE Connection Connector Pin Layout........................................................................................................623

21-4 Debugging Tool Connection Circuit Example (When Trace Function Is Used) ........................................625

A-1 Extracting Data Blocks in Sequential Order..............................................................................................626

A-2 Extracting Data in Sub-Block Order ..........................................................................................................627

B-1 Example of Recommended Power Supply Circuit Connection .................................................................629



Preliminary User’s Manual  U16044EJ1V0UM 21

LIST  OF  TABLES (1/4)

Table No. Title Page

1-1 CP0 Registers ............................................................................................................................................ 32

2-1 System Interface Signals............................................................................................................................ 43

2-2 Initialization Interface Signals ..................................................................................................................... 44

2-3 Interrupt Interface Signals .......................................................................................................................... 46

2-4 Clock Interface Signals............................................................................................................................... 46

2-5 Power Supply ............................................................................................................................................. 46

2-6 Test Interface Signals................................................................................................................................. 47

3-1 Load/Store Instructions Using Register + Offset Addressing Mode ........................................................... 53

3-2 Load/Store Instructions Using Register + Register Addressing Mode........................................................ 53

3-3 Definition and Usage of Coprocessors by MIPS Architecture .................................................................... 56

3-4 Rotate Instructions...................................................................................................................................... 57

3-5 MACC Instructions...................................................................................................................................... 58

3-6 Sum-of-Products Instructions ..................................................................................................................... 58

3-7 Register Scan Instructions.......................................................................................................................... 59

3-8 Floating-Point Load/Store Instructions ....................................................................................................... 59

3-9 Coprocessor 0 Instructions......................................................................................................................... 59

3-10 Special Instructions .................................................................................................................................... 60

3-11 Instruction Function Changes in VR5500.................................................................................................... 60

3-12 Load/Store Instructions............................................................................................................................... 61

3-13 Load/Store Instructions (Extended ISA) ..................................................................................................... 62

3-14 ALU Immediate Instructions ....................................................................................................................... 63

3-15 ALU Immediate Instructions (Extended ISA) .............................................................................................. 64

3-16 Three-Operand Type Instructions............................................................................................................... 64

3-17 Three-Operand Type Instructions (Extended ISA) ..................................................................................... 65

3-18 Shift Instructions ......................................................................................................................................... 65

3-19 Shift Instructions (Extended ISA)................................................................................................................ 66

3-20 Rotate Instructions (For VR5500)................................................................................................................ 67

3-21 Multiply/Divide Instructions ......................................................................................................................... 68

3-22 Multiply/Divide Instructions (Extended ISA)................................................................................................ 68

3-23 MACC Instructions (For VR5500)................................................................................................................ 69

3-24 Sum-of-Products Instructions (For VR5500) ............................................................................................... 71

3-25 Number of Cycles for Multiply and Divide Instructions ............................................................................... 71

3-26 Register Scan Instructions (For VR5500).................................................................................................... 72

3-27 Jump Instruction ......................................................................................................................................... 72

3-28 Branch Instructions..................................................................................................................................... 73

3-29 Branch Instructions (Extended ISA) ........................................................................................................... 74

3-30 Special Instructions .................................................................................................................................... 75

3-31 Special Instructions (Extended ISA) ........................................................................................................... 75

3-32 Special Instructions (For VR5500) .............................................................................................................. 76

3-33 Coprocessor Instructions............................................................................................................................ 77

3-34 Coprocessor Instructions (Extended ISA) .................................................................................................. 78

3-35 System Control Coprocessor (CP0) Instructions........................................................................................ 78



Preliminary User’s Manual  U16044EJ1V0UM22

LIST  OF  TABLES (2/4)

Table No. Title Page

3-36 System Control Coprocessor (CP0) Instructions (For VR5500) ..................................................................79

5-1 Operating Modes ........................................................................................................................................88

5-2 Instruction Set Modes .................................................................................................................................89

5-3 Addressing Modes ......................................................................................................................................89

5-4 32-Bit and 64-Bit User Mode Segments....................................................................................................100

5-5 32-Bit and 64-Bit Supervisor Mode Segments ..........................................................................................103

5-6 32-Bit Kernel Mode Segments ..................................................................................................................107

5-7 64-Bit Kernel Mode Segments ..................................................................................................................108

5-8 Cache Algorithm and xkphys Address Space...........................................................................................109

5-9 CP0 Memory Management Registers .......................................................................................................111

5-10 Cache Algorithm .......................................................................................................................................114

5-11 Mask Values and Page Sizes ...................................................................................................................115

6-1 CP0 Exception Processing Registers .......................................................................................................124

6-2 Exception Codes.......................................................................................................................................132

6-3 Events to Count ........................................................................................................................................137

6-4 32-Bit Mode Exception Vector Addresses ................................................................................................143

6-5 64-Bit Mode Exception Vector Addresses ................................................................................................143

6-6 TLB Refill Exception Vector ......................................................................................................................145

6-7 Exception Priority Order............................................................................................................................146

7-1 FCR...........................................................................................................................................................172

7-2 Flush Value of Denormalized Number Result ...........................................................................................174

7-3 Rounding Mode Control Bits .....................................................................................................................175

7-4 Calculation Expression of Floating-Point Value ........................................................................................179

7-5 Floating-Point Format and Parameter Value.............................................................................................179

7-6 Maximum and Minimum Values of Floating Point .....................................................................................179

7-7 Load/Store/Transfer Instructions...............................................................................................................183

7-8 Conversion Instructions ............................................................................................................................185

7-9 Operation Instructions...............................................................................................................................187

7-10 Comparison Instruction .............................................................................................................................189

7-11 Conditions for Comparison Instruction......................................................................................................189

7-12 FPU Branch Instructions ...........................................................................................................................190

7-13 Prefetch Instruction ...................................................................................................................................190

7-14 Conditional Transfer Instructions ..............................................................................................................190

7-15 Number of Execution Cycles of Floating-Point Instructions ......................................................................191

8-1 Default Values of IEEE754 Exceptions in FPU.........................................................................................195

8-2 FPU Internal Result and Flag Status ........................................................................................................195

12-1 System Interface Bus Data .......................................................................................................................223

12-2 Operation in Case of Load Miss................................................................................................................231

12-3 Operation in Case of Store Miss ...............................................................................................................232



Preliminary User’s Manual  U16044EJ1V0UM 23

LIST  OF  TABLES (3/4)

Table No. Title Page

12-4 Error Check for Internal Transaction ........................................................................................................ 236

12-5 Error Check for External Transaction ....................................................................................................... 236

13-1 Transfer Data Rate and Data Pattern....................................................................................................... 253

13-2 Code of System Interface Command SysCmd(7:5).................................................................................. 255

13-3 Code of SysCmd(4:3) During Read Request............................................................................................ 256

13-4 Code of SysCmd(2:0) During Block Read Request.................................................................................. 256

13-5 Code of SysCmd(2:0) During Single Read Request................................................................................. 256

13-6 Code of SysCmd(4:3) During Write Request............................................................................................ 257

13-7 Code of SysCmd(2:0) During Block Write Request .................................................................................. 257

13-8 Code of SysCmd(2:0) During Single Write Request................................................................................. 257

13-9 Code of SysCmd(4:3) During Null Request .............................................................................................. 258

13-10 Codes of SysCmd(7:5) of Processor Data Identifier................................................................................. 259

13-11 Codes of SysCmd(7:4) of External Data Identifier.................................................................................... 259

14-1 Transfer Data Rate and Data Pattern....................................................................................................... 278

14-2 Data Write Sequence ............................................................................................................................... 279

14-3 Data Read Sequence ............................................................................................................................... 280

14-4 Code of System Interface Command SysCmd(7:5).................................................................................. 283

14-5 Code of SysCmd(4:3) During Read Request............................................................................................ 284

14-6 Code of SysCmd(2:0) During Block Read Request.................................................................................. 284

14-7 Code of SysCmd(2:0) During Single Read Request................................................................................. 284

14-8 Code of SysCmd(4:3) During Write Request............................................................................................ 285

14-9 Code of SysCmd(2:0) During Block Write Request .................................................................................. 285

14-10 Code of SysCmd(2:0) During Single Write Request................................................................................. 285

14-11 Code of SysCmd(4:3) During Null Request .............................................................................................. 286

14-12 Codes of SysCmd(7:5) of Processor Data Identifier................................................................................. 287

14-13 Codes of SysCmd(7:4) of External Data Identifier.................................................................................... 287

15-1 System Interface Bus Data....................................................................................................................... 292

15-2 Code of System Interface Command SysCmd(7:5).................................................................................. 306

15-3 Code of SysCmd(4:3) During Read Request............................................................................................ 307

15-4 Code of SysCmd(2:0) During Block Read Request.................................................................................. 308

15-5 Code of SysCmd(2:0) During Single Read Request................................................................................. 308

15-6 Code of SysCmd(4:3) During Write Request............................................................................................ 309

15-7 Code of SysCmd(2:0) During Block Write Request .................................................................................. 310

15-8 Code of SysCmd(2:0) During Single Write Request................................................................................. 310

15-9 Code of SysCmd(4:3) During Null Request .............................................................................................. 311

15-10 Codes of SysCmd(7:5) of Processor Data Identifier................................................................................. 312

15-11 Codes of SysCmd(7:4) of External Data Identifier.................................................................................... 312

15-12 Code of Request Identifier SysID0 ........................................................................................................... 313

15-13 Code of SysID(2:1) During Instruction Read ............................................................................................ 313

15-14 Code of SysID(2:1) During Data Read ..................................................................................................... 313



Preliminary User’s Manual  U16044EJ1V0UM24

LIST  OF  TABLES (4/4)

Table No. Title Page

17-1 CPU Instruction Operation Notations........................................................................................................320

17-2 Load and Store Common Functions .........................................................................................................321

17-3 Access Type Specifications for Loads/Stores...........................................................................................322

18-1 Format Field Code ....................................................................................................................................528

18-2 Valid Format of FPU Instruction................................................................................................................529

18-3 Load and Store Common Functions .........................................................................................................532

18-4 Logical Inversion of Term Depending on True/False of Condition............................................................534

19-1 Instruction Hazard of VR5500....................................................................................................................615

21-1 Test Interface Signals ...............................................................................................................................619

21-2 Boundary Scan Sequence ........................................................................................................................622

21-3 IE Connector Pin Functions ......................................................................................................................624

A-1 Transfer Sequence by Sub-Block Ordering: Where Start Address Is 102 ................................................628

A-2 Transfer Sequence by Sub-Block Ordering: Where Start Address Is 112 ................................................628

A-3 Transfer Sequence by Sub-Block Ordering: Where Start Address Is 012 ................................................628



Preliminary User’s Manual  U16044EJ1V0UM 25

CHAPTER 1  GENERAL

This chapter outlines the RISC 64-/32-bit microprocessor VR5500 (µPD30550).

1.1  Features

The VR5500 is one of NEC’s VR Series microprocessors.  It is a high-performance 64-/32-bit microprocessor

employing the RISC (Reduced Instruction Set Computer) architecture developed by MIPSTM.

A bus width of 64 bits or 32 bits can be selected for the system interface of the VR5500, which operates with a

protocol compatible with the VR5000 SeriesTM and VR5432.

The VR5500 has the following features.

• Maximum operating frequency: Internal: 400 MHz, 300 MHz, external: 133 MHz

• Internal operating frequency obtained from the external operating clock (input clock and clock for bus

interface) through multiplication.

The multiplication rate can be selected from 2, 2.5, 3, 3.5, 4, 4.5, or 5.5 at reset.

• 64-bit architecture for 64-bit data processing

• 2-way superscalar pipeline

Parallel processing by six execution units (ALU0, ALU1, FPU, FPU/MAC, BRU, and LSU)

• Employment of out-of-order mechanism

• Branch prediction mechanism

Branch history table with 4K entries reduces branch delay.

• Virtual address management by high-speed translation lookaside buffer (TLB) (48 double entries)

• Address space Physical: 36 bits (with 64-bit bus)

32 bits (with 32-bit bus)

Virtual: 40 bits (in 64-bit mode)

31 bits (in 32-bit mode)

• Internal cache memory

2-way set associative with line lock function

Instruction: 32 KB

Data: 32 KB, non-blocking structure.  Write method can be selected from writeback and write through.

• 64-/32-bit address/data multiplexed bus

The bus width is selected at reset.  Compatible with the bus protocol of existing products

64-bit bus: Compatible with bus protocol of VR5000 Series

32-bit bus: Compatible with bus protocol of VR5432 (native mode) or RM523xNote

Out-of-order return mode can be selected for each bus width.

Note  Product of PMC-Sierra



CHAPTER 1  GENERAL

Preliminary User’s Manual  U16044EJ1V0UM26

• Internal transaction buffer

• Internal floating-point unit

• Hardware debug function (N-Wire)

• Conforms to MIPS I, II, III, and IV instruction sets.

Also supports sum-of-products instructions, rotate instructions, register scan instructions, and low-power

mode instructions.

• Support of standby mode to reduce power consumption during standby

• Supply voltage Core block: VDD = 1.5 V ±5% (300 MHz model), 1.6 to 1.7 V (400 MHz model)

I/O block: VDDIO = 3.3 V ±5%, 2.5 V ±5%

1.2 Ordering Information

Part Number Package Internal Maximum

Operating Frequency

µPD30550F2-300-NN1 272-pin plastic BGA (C/D advanced type) (29 × 29) 300 MHz

µPD30550F2-400-NN1 272-pin plastic BGA (C/D advanced type) (29 × 29) 400 MHz

1.3 VR5500 Processor

All the internal structures of the VR5500 such as the operation units, register files, and data bus, are 64 bits wide.

However, the VR5500 can also execute 32-bit applications even when it operates as a 64-bit microprocessor.

The VR5500 manages instruction execution by using a 2-way superscalar, high-performance pipeline, and

realizes out-of-order processing by using six execution units.

“Out-of-order” is a method that executes two or more instructions in a queue according to their execution

readiness, independent of the program sequence.  The hardware detects the dependency relationship of registers

and delay due to load/branch, and locates and processes resources so that there is no gap in the pipeline.  The

execution result is output (i.e., written back to memory) in the program sequence.

Figure 1-1 shows the internal block diagram of the VR5500.  The VR5500 consists of 11 main units.



CHAPTER 1  GENERAL

Preliminary User’s Manual  U16044EJ1V0UM 27

Figure 1-1.  Internal Block Diagram

SysAD bus
(64/32 bits)

SIU

SysClock

VR5500

CP0

Clock
generator

FPU/
MACU LSU

IFU

EXU

FPU

ICU

Test
interface

Instruction
cache

DCU

Data
cache

ALU0

WTB

IMQ

RNRF RS

RCU
Control signals

RB

TLB

BHT RAS

RF

SB

BRUALU1



CHAPTER 1  GENERAL

Preliminary User’s Manual  U16044EJ1V0UM28

1.3.1 Internal block configuration

(1) Instruction cache

The instruction cache uses a 2-way set associative, virtual index, physical tag system and enables line-locking.

The capacity is 32 KB.  The cache is replaced by the LRU (Least Recently Used) method.  The line size is 32

bytes (8 words).

(2) Instruction fetch unit (IFU)

This unit fetches an instruction from the instruction cache, stores it once in an instruction management queue

(IMQ) of 16 entries, and then transfers it to an instruction control unit (ICU).  Up to two instructions are fetched

and transferred per cycle.

The IFU also has a branch prediction mechanism and a branch history table (BHT) of 4096 entries so that

instructions can continue to be fetched speculatively.  Moreover, one return address stack (RAS) entry is

provided so that exiting from a subroutine is speculatively processed.

(3) Instruction control unit (ICU)

This unit controls out-of-order execution of instructions.  It renames registers to reduce the hazards caused by

the dependency relationship of registers, when an instruction is transferred from the IFU.  The instruction is then

stored in a reservation station (RS) of 20 entries until it is ready for execution.  When execution is ready, up to

two instructions are taken out from the RS and are transferred to the execution unit (EXU).

(4) Register control unit (RCU)

This unit has a register file (RF) and a renaming register file (RNRF).  RF consists of sixty-four 64-bit registers,

and RNRF consists of sixteen 64-bit registers.  These registers serve as source and destination registers when

an instruction is executed.  When instruction execution is complete, the RCU transfers the contents of RNRF to

RF in accordance with the renaming by the ICU, and completes instruction execution (commits).  Up to three

instructions can be committed per cycle.

(5) Execution unit (EXU)

This unit consists of the following six sub-units.

• ALU0: 64-bit integer operation unit

• ALU1: 64-bit integer operation unit

• FPU/MAC: 64-/32-bit floating-point operation unit and sum-of-products operation unit (floating-point

multiplication and sum-of-products operations, integer multiplication, sum-of-products, and division

operations)

• FPU: 64-/32-bit floating-point operation unit

• BRU: Branch unit

• LSU: Load/store unit



CHAPTER 1  GENERAL

Preliminary User’s Manual  U16044EJ1V0UM 29

(6) Data cache control unit (DCU)

This unit controls transactions to the data cache and replacement of cache lines.  It has a refill buffer (RB) and

store buffer (SB) with four entries each, and can process a non-blocking cache operation of up to four accesses.

The DCU also supports functions such as uncached load/store, completion of transaction in the order of

issuance, and data transfer from SB to the data cache by instruction execution commitment.

(7) Data cache

The data cache uses a two-way set associative, virtual index, physical tag system, and enables line-locking.

The capacity is 32 KB.  The cache is replaced by the LRU (Least Recently Used) method.  Write method can be

selected from writeback and write through.  The line size is 32 bytes (8 words).

(8) Coprocessor 0 (CP0)

CP0 manages memory, processes exceptions, and monitors the performance.

For memory management, it protects access to various operation modes (user, supervisor, and kernel), memory

segments, and memory pages.

Virtual addresses are translated by a translation lookaside buffer (TLB).  The TLB is a full-associative type and

has 48 entries.  Each entry can be mapped in page sizes of 4 KB to 1 GB.

The coprocessor performs control when an interrupt or exception occurs as exception processing.

It counts the number of times an event has occurred to check if instruction execution is efficient in order to

monitor the performance.

(9) System interface unit (SIU)

The SysAD bus realizes interfacing with an external agent.  This bus is a 64-/32-bit address/data multiplexed

bus and is compatible with the VR5000 Series.

To enhance the bus efficiency, four 64-bit write transaction buffers (WTBs) are provided.

The SIU also supports an uncached accelerated store operation, so that consecutive single write accesses are

combined into one block write access.

(10) Clock generator

The clock generator generates a clock for the pipeline from an externally input clock.  The frequency ratio can

be selected from 1:2, 1:2.5, 1:3, 1:3.5, 1:4, 1:4.5, 1:5, and 1:5.5.

(11) Test interface

This interface connects an external debugging tool.  It conforms to the N-Wire specification and controls testing

and debugging of the processor by using JTAG interface signals and debug interface signals.



CHAPTER 1  GENERAL

Preliminary User’s Manual  U16044EJ1V0UM30

1.3.2 CPU registers

The VR5500 has the following registers.

• General-purpose registers (GPR): 64 bits × 32

In addition, the processor provides the following special registers.

• PC: Program Counter (64 bits)

• HI register: Contains the integer multiply and divide higher doubleword result (64 bits)

• LO register: Contains the integer multiply and divide lower doubleword result (64 bits)

Two of the general-purpose registers have assigned the following functions.

• r0: Since it is fixed to zero, it can be used as the target register for any instruction whose result is to be

discarded.  r0 can also be used as a source when a zero value is needed.

• r31: The link register used by the JAL/JALR instruction.  This register can be used for other instructions.

However, be careful that use of the register by the JAL/JALR instruction does not coincide with use of the

register for other operations.

The register group is provided in the CP0 (system control coprocessor), to process exceptions and to manage

addresses and in the FPU (floating-point unit) used for the floating-point operation.

CPU registers can operate as either 32-bit or 64-bit registers, depending on the processor’s operation mode.

The operation of the CPU register differs depending on what instructions are executed: 32-bit instructions or

MIPS16 instructions.

Figure 1-2 shows the CPU registers.



CHAPTER 1  GENERAL

Preliminary User’s Manual  U16044EJ1V0UM 31

Figure 1-2.  CPU Registers

General-purpose registers

r0 = 0

0 Multiply/divide register63

HI

063

LO

Program Counter

0

PC

0

63

63

r1

r2

⋅
⋅
⋅
⋅

r29

r30

r31 (Link address)

The VR5500 has no Program Status Word (PSW) register; this is covered by the Status and Cause registers

incorporated within the system control coprocessor (CP0).  For details of the CP0 registers, refer to 1.3.4  System

control coprocessors (CP0).

1.3.3 Coprocessors

ISA of MIPS defines that up to four coprocessors (CP0 to CP3) can be used.  Of these, CP0 is defined as a

system control coprocessor, and CP1 is defined as a floating-point unit.  CP2 and CP3 are reserved for future

expansion.



CHAPTER 1  GENERAL

Preliminary User’s Manual  U16044EJ1V0UM32

1.3.4 System control coprocessors (CP0)

CP0 translates virtual addresses to physical addresses, switches the operating mode (kernel, supervisor, or user

mode), and manages exceptions.  It also controls the cache subsystem to analyze a cause and to return from the

error state.

Table 1-1 shows a list of the CP0 registers.  For details of the registers related to the virtual system memory, refer

to CHAPTER 5  MEMORY MANAGEMENT SYSTEM.  For details of the registers related to exception handling,

refer to CHAPTER 6  EXCEPTION PROCESSING.

Table 1-1.  CP0 Registers

Register Number Register Name Usage Description

0 Index Memory management Programmable pointer to TLB array

1 Random Memory management Pseudo-random pointer to TLB array (read only)

2 EntryLo0 Memory management Lower half of TLB entry for even VPN

3 EntryLo1 Memory management Lower half of TLB entry for odd VPN

4 Context Exception processing Pointer to virtual PTE table in 32-bit mode

5 PageMask Memory management Page size specification

6 Wired Memory management Number of wired TLB entries

7 − − Reserved

8 BadVAddr Memory management Display of virtual address where the most recent error occurred

9 Count Exception processing Timer count

10 EntryHi Memory management Higher half of TLB entry (including ASID)

11 Compare Exception processing Timer compare value

12 Status Exception processing Operation status setting

13 Cause Exception processing Display of cause of the most recent exception occurred

14 EPC Exception processing Exception program counter

15 PRId Memory management Processor revision ID

16 Config Memory management Memory system mode setting

17 LLAddr Memory management Display of address of the LL instruction

18 WatchLo Exception processing Memory reference trap address lower bits

19 WatchHi Exception processing Memory reference trap address higher bits

20 XContext Exception processing Pointer to virtual PTE table in 64-bit mode

21 to 24 − − Reserved

25 Performance

Counter

Exception processing Count and control of performances

26 Parity Error Exception processing Cache parity bits

27 Cache Error Exception processing Cache error and status register

28 TagLo Memory management Lower half of cache tag

29 TagHi Memory management Higher half of cache tag

30 ErrorEPC Exception processing Error exception program counter

31 − − Reserved



CHAPTER 1  GENERAL

Preliminary User’s Manual  U16044EJ1V0UM 33

1.3.5 Floating-point unit

The floating-point unit (FPU) executes floating-point operations.  The FPU of the VR5500 conforms to ANSI/IEEE

Standard 754-1985 “IEEE2 Floating-Point Operation Standard”.

The FPU can perform an operation with both single-precision (32-bit) and double-precision (64-bit) values.

The FPU has the following registers.

• Floating-point general-purpose register (FGR): 64/32 bits × 32

• Floating-point control register (FCR): 32 bits × 32

The number of bits of the FGR can be changed depending on the setting of the FR bit of the Status register in

CP0.  If the number of bits is set to 32, sixteen 64-bit FGRs can be used for floating-point operations.  If it is set to 64

bits, thirty-two 64-bit registers can be used.

Of the 32 FCRs, only five can be used.

Figure 1-3 shows the FPU registers.

Figure 1-3.  FPU Registers

63 0
FGR0

FGR1

FGR2

•

•

•

•

FGR29

FGR30

FGR31

Floating-point general-purpose registers
31 0

FCR0 (Implementation/Revision)

Reserved

FCR25 (Condition Code)

FCR26 (Cause/Flag)

Reserved

FCR28 (Enable/Mode)

Reserved

FCR31 (Control/Status)

Floating-point control registers

Like the CPU, the FPU uses an instruction set with a load/store architecture.  A floating-point operation can be

started in each cycle.  The load instructions of the FPU include R-type instructions.

For details of the FPU, refer to CHAPTER 7 FLOATING-POINT UNIT and CHAPTER 8 FLOATING-POINT

EXCEPTIONS.

1.3.6 Cache memory

The VR5500 has an internal instruction cache and data cache to enhance the efficiency of the pipeline.  The

instruction cache and data cache can be accessed in parallel.  Both the instruction cache and data cache have a

data width of 64 bits and a capacity of 32 KB, and are managed by a two-way set associative method.

For details of the caches, refer to CHAPTER 11 CACHE MEMORY.



CHAPTER 1  GENERAL

Preliminary User’s Manual  U16044EJ1V0UM34

1.4 Outline of Instruction Set

All the instructions are 32 bits long.  The instructions come in three types as shown in Figure 1-4: immediate (I-

type), jump (J-type), and register (R-type).

Figure 1-4.  Instruction Type

31 26  25 21  20 16  15 0

op rs rt immediateI-type (immediate)

31 26  25 0

op targetJ-type (jump)

31 26  25 21  20 16  15 0

op rs rt saR-type (register)

11  10 6  5

rd funct

The instructions are classified into the following six groups.

(1) Load/store instructions transfer data between memory and a general-purpose register.  Most of these

instructions are I-type.  The addressing mode is in the format in which a 16-bit signed offset is added to the

base register.  Some load/store instructions are index-type instructions that use floating-point registers (R-type).

(2) Arithmetic operation instructions execute an arithmetic operation, logical operation, shift manipulation, or

multiplication/division on register values.  The instruction types of these instructions are R-type (both the

operand and the result of the operation are stored in registers) and I-type (one of the operands is a 16-bit signed

immediate value).

(3) Jump/branch instructions change the flow of program control.  A jump instruction jumps to an address that is

generated by combining a 26-bit target address and the higher bits of the program counter (J-type), or to an

address indicated by a register (R-type).  A branch instruction branches to a 16-bit offset address relative to the

program counter (I-type).  The Jump and Link instruction saves the return address to register 31.

(4) Coprocessor instructions execute the operations of the coprocessor.  The load and store instructions of the

coprocessor are I-type instructions.  The format of the operation instruction of a coprocessor differs depending

on the coprocessor (refer to CHAPTER 7 FLOATING-POINT UNIT).

(5) System control coprocessor instructions execute operations on the CP0 register to manage the memory of the

processor and to process exceptions.

(6) Special instructions execute system call exceptions and breakpoint exceptions.  In addition, they branch to a

general-purpose exception processing vector depending on the result of comparison.  The instruction types are

R-type and I-type.

For each instruction, refer to CHAPTER 3 OUTLINE OF INSTRUCTION SET, CHAPTER 17 CPU INSTRUCTION

SET, and CHAPTER 18 FPU INSTRUCTION SET.



CHAPTER 1  GENERAL

Preliminary User’s Manual  U16044EJ1V0UM 35

1.5 Data Format and Addressing

The VR5500 has the following four types of data formats.

Doubleword (64 bits)

Word (32 bits)

Halfword (16 bits)

Byte (8 bits)

If the data format is doubleword, word, or halfword, the byte order can be set to big endian or little endian by

using the BigEndian pin at reset.

The endianness is defined by the position of byte 0 in the data structure of multiple bytes.

In a big-endian system, byte 0 is the most significant byte (leftmost byte).  This byte order is compatible with that

employed for MC68000TM and IBM370TM.  Figure 1-5 shows the configuration.

Figure 1-5.  Byte Address of Big Endian

(a) Word data

12

8

4

0

13

9

5

1

14

10

6

2

15

11

7

3

31 24  23 16  15 8  7 0

12

8

4

0

Word
address

Higher
address

Lower
address

(b) Doubleword data

16

8

0

17

9

1

18

10

2

19

11

3

63 0

16

8

0

Doubleword
address

Higher
address

Lower
address

20

12

4

21

13

5

22

14

6

23

15

7

32 31 16 15 8 7

Word Halfword Byte

Remarks 1.  The most significant byte is at the least significant address.

2.  A word is specified by the address of the most significant byte.



CHAPTER 1  GENERAL

Preliminary User’s Manual  U16044EJ1V0UM36

In a little-endian system, byte 0 is the least significant byte (rightmost byte).  This byte order is compatible with

that employed for PentiumTM and DEC VAXTM.  Figure 1-6 shows the configuration.

Unless otherwise specified, little endian is used in this manual.

Figure 1-6.  Byte Address of Little Endian

(a) Word data

15

11

7

3

14

10

6

2

13

9

5

1

12

8

4

0

31 24  23 16  15 8  7 0

12

8

4

0

Word
address

Higher
address

Lower
address

(b) Doubleword data

23

15

7

22

14

6

21

13

5

20

12

4

16

8

0

Doubleword
address

Higher
address

Lower
address

19

11

3

18

10

2

17

9

1

16

8

0

63 032 31 16 15 8 7

Word Halfword Byte

Remarks 1.  The least significant byte is at the least significant address.

2.  A word is specified by the address of the least significant byte.



CHAPTER 1  GENERAL

Preliminary User’s Manual  U16044EJ1V0UM 37

The CPU uses the following addresses to access halfwords, words, and doublewors.

• Halfword: Even-byte boundary (0, 2, 4 …)

• Word: 4-byte boundary (0, 4, 8 …)

• Doubleword: 8-byte boundary (0, 8, 16 …)

To load/store data that is not aligned at a 4-byte boundary (word) or 8-byte boundary (doubleword), the following

dedicated instructions are used.

• Word: LWL, LWR, SWL, SWR

• Doubleword: LDL, LDR, SDL, SDR

These instructions are always used in pairs of L and R.

Figure 1-7 illustrates how the word at byte address 3 is accessed.

Figure 1-7.  Byte Address (Unaligned Word)

(a) Big endian

31 24  23 16  15 8  7 0

4 5 6

3Lower address

Higher address

(b) Little endian

31 24  23 16  15 8  7 0

6 5 4

3

Higher address

Lower address



CHAPTER 1  GENERAL

Preliminary User’s Manual  U16044EJ1V0UM38

1.6 Memory Management System

The VR5500 can manage a physical address space of up to 64 GB (36 bits).  Most systems, however, are

provided with a physical memory only in units of 1 GB or lower.  Therefore, the CPU translates addresses, allocates

them to a vast virtual address space, and supplies the programmer with an extended memory space.

For details of these address spaces, refer to CHAPTER 5 MEMORY MANAGEMENT SYSTEM.

1.6.1 High-speed translation lookaside buffer (TLB)

TLB translates a virtual address into a physical address.  It is of full-associative method and has 48 entries.  Each

entry has consecutive two pages of mapping information.  The page size can be changed from 4 KB to 1 GB in units

of power of 4.

(1) Joint TLB (JTLB)

This TLB holds both instruction addresses and data addresses.

The higher bits of a virtual address (the number of bits depends on the size of the page) and a process identifier

are combined and compared with each entry of JLTB.  If there is no matching entry in the TLB, an exception

occurs, and the entry contents are written by software from a page table on memory to the TLB.  The entry is

determined by the value of the Random register or Index register.

(2) Micro TLB

This TLB is for address translation in a cache.  Two micro TLBs, an instruction micro TLB and a data micro TLB,

are available.  Each micro TLB has four entries and the contents of an entry can be loaded from the JTLB.

However, loading to the micro TLB is performed internally and cannot be monitored by software.

1.6.2 Processor modes

(1) Operating mode

The VR5500 has three operating modes: user, supervisor, and kernel.  The memory mapping differs depending

on the operating mode.  For details, refer to CHAPTER 5 MEMORY MANAGEMENT SYSTEM.

(2) Addressing mode

The VR5500 has two addressing modes: 32-bit and 64-bit addressing.  The address translation method and

memory mapping differ depending on the addressing mode.  For details, refer to CHAPTER 5 MEMORY

MANAGEMENT SYSTEM.

1.7 Instruction Pipeline

The VR5500 has an instruction pipeline of up to 10 stages.  It also has a mechanism that can simultaneously

execute two instructions and thus can execute a floating-point operation instruction and an instruction of another

type at the same time.  For details, refer to CHAPTER 4 PIPELINE.

1.7.1 Branch prediction

The VR5500 has an internal branch prediction mechanism that accelerates branching.  The branch history is

recorded in a branch history table.  The branch instruction that has been fetched is executed according to this table.

The subsequent instructions are speculatively processed.  For operations when branch prediction hits or misses,

refer to CHAPTER 4 PIPELINE.



Preliminary User’s Manual  U16044EJ1V0UM 39

CHAPTER 2   PIN FUNCTIONS

2.1 Pin Configuration

• 272-pin plastic BGA (C/D advanced type) (29 × 29)

Bottom View Top View

21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

AA Y W V U T R P N M L K J H G F E D C B A A B C D E F G H J K L M N P R T U V W Y AA



CHAPTER 2   PIN FUNCTIONS

Preliminary User’s Manual  U16044EJ1V0UM40

(1/2)

Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name

A1 VSS B17 SysAD27 D12 VSS H4 VDD

A2 VSS B18 VDDIO D13 SysAD31 H18 VSS

A3 VDDIO B19 VDDIO D14 VDD H19 VSS

A4 VDDIO B20 VSS D15 SysAD60 H20 VSS

A5 Reset# B21 VSS D16 VSS H21 SysAD21

A6 PReq# C1 VDDIO D17 SysAD26 J1 SysCmd7

A7 ValidIn# C2 VDDIO D18 VSS J2 SysCmd8

A8 ValidOut# C3 VSS D19 VSS J3 TIntSel

A9 VSS C4 VSS D20 VDDIO J4 Int0#

A10 SysADC7 C5 VSS D21 VDDIO J18 SysAD52

A11 SysADC3 C6 VDD E1 SysCmd0 J19 SysAD20

A12 SysADC1 C7 WrRdy# E2 DisDValidO# J20 SysAD51

A13 SysADC4 C8 VSS E3 DWBTrans# J21 SysAD19

A14 SysAD62 C9 SysID1 E4 O3Return# K1 Int1#

A15 SysAD30 C10 VDD E18 SysAD57 K2 VSS

A16 SysAD28 C11 SysADC2 E19 SysAD25 K3 VSS

A17 SysAD59 C12 VSS E20 SysAD56 K4 VSS

A18 VDDIO C13 SysAD63 E21 SysAD24 K18 VDD

A19 VDDIO C14 VDD F1 SysCmd1 K19 VDD

A20 VSS C15 SysAD29 F2 VSS K20 VDD

A21 VSS C16 VSS F3 VSS K21 VDD

B1 VSS C17 SysAD58 F4 VSS L1 Int2#

B2 VSS C18 VDDIO F18 VDD L2 Int3#

B3 VDDIO C19 VSS F19 VDD L3 Int4#

B4 VDDIO C20 VDDIO F20 VDD L4 Int5#

B5 ColdReset# C21 VDDIO F21 SysAD55 L18 SysAD17

B6 Release# D1 VDDIO G1 SysCmd2 L19 SysAD49

B7 ExtRqst# D2 VDDIO G2 SysCmd3 L20 SysAD18

B8 BusMode D3 VSS G3 SysCmd4 L21 SysAD50

B9 SysID2 D4 VSS G4 SysCmd5 M1 RMode#/BKTGIO#

B10 VDD D5 IC G18 SysAD23 M2 VDD

B11 SysADC6 D6 VDD G19 SysAD54 M3 VDD

B12 VSS D7 RdRdy# G20 SysAD22 M4 VDD

B13 SysADC0 D8 VSS G21 SysAD53 M18 VSS

B14 VDD D9 SysID0 H1 SysCmd6 M19 VSS

B15 SysAD61 D10 VDD H2 VDD M20 VSS

B16 VSS D11 SysADC5 H3 VDD M21 VSS

Caution  Leave the IC pin open.

Remark  # indicates active low.



CHAPTER 2   PIN FUNCTIONS

Preliminary User’s Manual  U16044EJ1V0UM 41

(2/2)

Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name

N1 VDDIO T21 SysAD12 W2 VDDIO Y12 VDD

N2 NMI# U1 NTrcClk W3 VSS Y13 SysAD3

N3 VDDIO U2 NTrcData0 W4 VSS Y14 VSS

N4 BigEndian U3 NTrcData1 W5 VDDPA2 Y15 SysAD37

N18 SysAD15 U4 NTrcData3 W6 VSS Y16 SysAD39

N19 SysAD47 U18 SysAD10 W7 VDDIO Y17 SysAD40

N20 SysAD16 U19 SysAD42 W8 VDD Y18 VDDIO

N21 SysAD48 U20 SysAD11 W9 JTDI Y19 VDDIO

P1 VSS U21 SysAD43 W10 VSS Y20 VSS

P2 VSS V1 NTrcData2 W11 SysAD1 Y21 VSS

P3 VSS V2 NTrcEnd W12 VDD AA1 VSS

P4 VSS V3 VSS W13 SysAD35 AA2 VSS

P18 VDD V4 VSS W14 VSS AA3 VDDIO

P19 VDD V5 VSSPA2 W15 SysAD38 AA4 VDDIO

P20 VDD V6 VSS W16 VDD AA5 VDDPA1

P21 SysAD46 V7 VDDIO W17 SysAD9 AA6 VDDIO

R1 DivMode0 V8 VDD W18 VSS AA7 IC

R2 DivMode1 V9 JTMS W19 VSS AA8 JTDO

R3 DivMode2 V10 VSS W20 VDDIO AA9 DrvCon

R4 VDDIO V11 SysAD33 W21 VDDIO AA10 VSS

R18 SysAD44 V12 VDD Y1 VSS AA11 SysAD0

R19 SysAD13 V13 SysAD4 Y2 VSS AA12 SysAD2

R20 SysAD45 V14 VSS Y3 VDDIO AA13 SysAD34

R21 SysAD14 V15 SysAD7 Y4 VDDIO AA14 SysAD36

T1 VDD V16 VDD Y5 VSSPA1 AA15 SysAD5

T2 VDD V17 SysAD41 Y6 SysClock AA16 SysAD6

T3 VDD V18 VSS Y7 JTRST# (VSS) AA17 SysAD8

T4 VDD V19 VSS Y8 VDD AA18 VDDIO

T18 VSS V20 VDDIO Y9 JTCK AA19 VDDIO

T19 VSS V21 VDDIO Y10 VSS AA20 VSS

T20 VSS W1 VDDIO Y11 SysAD32 AA21 VSS

Caution  Leave the IC pin open.

Remarks 1. Inside the parentheses indicates the pin name in Ver. 1.x.

2.  # indicates active low.



CHAPTER 2   PIN FUNCTIONS

Preliminary User’s Manual  U16044EJ1V0UM42

Pin Identification

BigEndian: Big endian

BKTGIO#: Break/trigger input/output

BusMode: Bus mode

ColdReset#: Cold reset

DisDValidO#: Disable delay ValidOut#

DivMode(2:0): Divide mode

DrvCon: Driver control

DWBTrans#: Doubleword block transfer

ExtRqst#: External request

IC: Internally connected

Int(5:0)#: Interrupt

JTCK: JTAG clock

JTDI: JTAG data input

JTDO: JTAG data output

JTMS: JTAG mode select

JTRST#: JTAG reset

NMI#: Non-maskable interrupt

NTrcClk: N-Trace clock

NTrcData(3:0): N-Trace data output

NTrcEnd: N-Trace end

O3Return#: Out-of-Order Return mode

PReq#: Processor request

RdRdy#: Read ready

Release#: Release

Reset#: Reset

SysAD(63:0): System address/data bus

SysADC(7:0): System address/data check

bus

SysClock: System clock

SysCmd(8:0): System command/data

identifier bus

SysID(2:0): System bus identifier

TIntSel: Timer interrupt selection

ValidIn#: Valid input

ValidOut#: Valid output

VDD: Power supply for CPU core

VDDIO: Power supply for I/O

VDDPA1, VDDPA2: Quiet VDD for PLL

VSS: Ground

VSSPA1, VSSPA2: Quiet VSS for PLL

WrRdy#: Write ready

 Remark  # indicates active low.



CHAPTER 2   PIN FUNCTIONS

Preliminary User’s Manual  U16044EJ1V0UM 43

2.2 Pin Functions

Remark  # indicates active low.

2.2.1 System interface signals

These signals are used when the VR5500 is connected to an external device in the system.  Table 2-1 shows the

functions of these signals.

Table 2-1.  System Interface Signals

Pin Name I/O Function

SysAD(63:0) I/O System address/data bus

This is a 64-bit bus that establishes communication between the processor and external agent.

The lower 32 bits (SysAD(31:0)) of this bus are used in the 32-bit bus mode.

SysADC(7:0) I/O System address/data check bus

This is a parity bus for the SysAD bus.  It is valid only in the data cycle.  The lower 4 bits

(SysADC(3:0)) are used in the 32-bit bus mode.

SysCmd(8:0) I/O System command/data ID bus

This is a 9-bit bus that transfers commands and data identifiers between the processor and

external agent.

SysID(2:0) I/O System bus protocol ID

These signals transfer a request identifier in the out-of-order return mode.

The processor drives the valid identifier when the ValidOut# signal is asserted.

The external agent must drive the valid identifier when the ValidIn# signal is asserted.

ValidIn# Input Valid in

This signal indicates that the external agent is driving a valid address or data onto the SysAD

bus or a valid command or data identifier onto the SysCmd bus, or a valid request identifier

onto the SysID bus in the out-of-order return mode.

ValidOut# Output Valid out

This signal indicates that the processor is driving a valid address or data onto the SysAD bus or

a valid command or data identifier onto the SysCmd bus, or a valid request identifier onto the

SysID bus in the out-of-order return mode.

RdRdy# Input Read ready

This signal indicates that the external agent is ready to acknowledge a processor read request.

WrRdy# Input Write ready

This signal indicates that the external agent is ready to acknowledge a processor write request.

ExtRqst# Input External request

This signal is used by the external agent to request the right to use the system interface.

Release# Output Release interface

This signal indicates that the processor releases the system interface to the slave status.

PReq# Output Processor request

This signal indicates that the processor has a pending request.



CHAPTER 2   PIN FUNCTIONS

Preliminary User’s Manual  U16044EJ1V0UM44

2.2.2 Initialization interface signals

These signals are used by the external device to initialize the operation parameters of the processor.  Table 2-2

shows the functions of these signals.

Table 2-2.  Initialization Interface Signals (1/2)

Pin Name I/O Function

DivMode(2:0) Input Division mode

These signals set the division ratio of PClock and SysClock.

111: Divided by 5.5

110: Divided by 5

101: Divided by 4.5

100: Divided by 4

011: Divided by 3.5

010: Divided by 3

001: Divided by 2.5

000: Divided by 2

Set the level of these signals before starting a power-on reset, and make sure that the level

does not change during operation.

BigEndian Input Endian mode

This signal sets the byte order for addressing.

1: Big endian

0: Little endian

Set the level of these signals before starting a power-on reset, and make sure that the level

does not change during operation.

BusMode Input Bus mode

This signal sets the bus width of the system interface.

1: 64 bits

0: 32 bits

Set the level of these signals before starting a power-on reset, and make sure that the level

does not change during operation.

TIntSel Input Interrupt source select

This signal sets the interrupt source to be allocated to the IP7 bit of the Cause register.

1: Timer interrupt

0: Int5# input and external write request (SysAD5)

Set the level of these signals before starting a power-on reset, and make sure that the level

does not change during operation.

DisDValidO# Input ValidOut# delay enable

1: ValidOut# is active even while address cycle is stalled.

0: ValidOut# is active only in the address issuance cycle.

Set the level of these signals before starting a power-on reset, and make sure that the level

does not change during operation.

Remark  1: High level, 0: Low level



CHAPTER 2   PIN FUNCTIONS

Preliminary User’s Manual  U16044EJ1V0UM 45

Table 2-2.  Initialization Interface Signals (2/2)

Pin Name I/O Function

DWBTrans# Input Doubleword block transfer enable (valid only in 32-bit mode)

1: Disabled

0: Enabled

Set the level of these signals before starting a power-on reset, and make sure that the level

does not change during operation.

O3Return# Input Out-of-order return mode

This signal sets the protocol of the system interface.

1: Normal mode

0: Out-of-order return mode

Set the level of these signals before starting a power-on reset, and make sure that the level

does not change during operation.

ColdReset# Input Cold reset

This signal completely initializes the internal status of the processor.  Deassert this signal in

synchronization with SysClock.

Reset# Input Reset

This signal logically initializes the internal status of the processor.  Deassert this signal in

synchronization with SysClock.

DrvCon Input Drive control

This signal sets the impedance of the external output driver.

1: Weak

0: Normal (recommended)

Set the level of these signals before starting a power-on reset, and make sure that the level

does not change during operation.

Remark  This signal is used in Ver. 2.0 or later.  It is fixed to 0 in Ver. 1.x.

Remark  1: High level, 0: Low level

The O3Return#, DWBTrans#, DisDValidO#, and BusMode signals are used to determine the protocol of the

system interface.  These signals select the protocol as follows.

Protocol O3Return# DWBTrans# DisDValidO# BusMode

VR5000-compatible 1 1 1 1

RM523x-compatible 1 1 1 0

VR5432 native mode-compatible 1 0 0 0

Out-of-order return mode 0 Any Any Any

Remark  1: High level, 0: Low level

RM523x is a product of PMC-Sierra.



CHAPTER 2   PIN FUNCTIONS

Preliminary User’s Manual  U16044EJ1V0UM46

2.2.3 Interrupt interface signals

The external device uses these signals to send an interrupt request to the VR5500.  Table 2-3 shows the functions

of these signals.

Table 2-3.  Interrupt Interface Signals

Pin Name I/O Function

Int(5:0)# Input Interrupt

These are general-purpose processor interrupt requests.  The input status of these signals can

be checked by the Cause register.

Whether Int5# is acknowledged is determined by the status of the TIntSel signal at reset.

NMI# Input Non-maskable interrupt

This is an interrupt request that cannot be masked.

2.2.4 Clock interface signals

These signals are used to supply or manage the clock.  Table 2-4 shows the functions of these signals.

Table 2-4.  Clock Interface Signals

Pin Name I/O Function

SysClock Input System clock

Clock signal input to the processor.

VDDPA1

VDDPA2

− VDD for PLL

Power supply for the internal PLL.

VSSPA1

VSSPA2

− VSS for PLL

Ground for the internal PLL.

2.2.5 Power supply

Table 2-5.  Power Supply

Pin Name I/O Function

VDD − Power supply pin for core

VDDIO − Power supply pin for I/O

VSS − Ground pin

Caution  The VR5500 uses two power supplies.  Power can be applied to these power supplies in any

order.  However, do not allow a voltage to be applied to only one of the power supplies for 100

ms or more.



CHAPTER 2   PIN FUNCTIONS

Preliminary User’s Manual  U16044EJ1V0UM 47

2.2.6 Test interface signal

These signals are used to test the VR5500.  They include the JTAG interface signals conforming to IEEE

Standard 1149.1 and debug interface signals conforming to the N-Wire specifications.  Table 2-6 shows the function

of these signals.

Table 2-6.  Test Interface Signals

Pin Name I/O Function

NTrcData(3:0) Output Trace data

Trace data output.

NTrcEnd Output Trace end

This signal delimits (indicates the end of) a trace data packet.

NTrcClk Output Trace clock

This clock is for the test interface.  The same clock as SysClock is output.

RMode#/

BKTGIO#

I/O Reset mode/break trigger I/O

This pin inputs a debug reset mode signal while the JTRST# signal (ColdReset# signal in Ver.

1.x) is active.

It inputs/outputs a break or trigger signal during normal operation.

JTDI Input JTAG data input

Serial data input for JTAG.

JTDO Output JTAG data output

Serial data output for JTAG.  This signal is output at the falling edge of JTCK.

JTMS Input JTAG mode select

This signal selects the JTAG test mode.

JTCK Input JTAG clock input

This is a serial clock input signal for JTAG.  The maximum frequency is 33 MHz.  It is not

necessary to synchronize this signal with SysClock.

JTRST# Input JTAG reset input

This signal is used to initialize the JTAG test module.

Remark  Only Ver. 2.0 or later



CHAPTER 2   PIN FUNCTIONS

Preliminary User’s Manual  U16044EJ1V0UM48

2.3 Handling of Unused Pins

2.3.1 System interface pin

(1) 32-bit bus mode

In the VR5500, the width of the SysAD bus can be selected from 64 bits or 32 bits.  When the 32-bit bus mode is

selected, only the necessary system interface pins are selected and used.  In the 32-bit bus mode, therefore,

handle the pins that are not used, as follows.

Pin Handling

SysAD(63:32) Leave open

SysADC(7:4) Leave open

(2) Normal mode

The VR5500 in the out-of-order return mode can process read/write transactions regardless of the request

issuance sequence.  At this time, the SysID(2:0) pins are used to identify the request.  These signals are not

used in the normal mode and therefore must be handled as follows.

Pin Handling

SysID(2:0) Leave open

(3) Parity bus

The VR5500 allows selection of whether to protect data by using parity or not.  When parity is used, parity data

is output from the processor or external agent to the SysADC bus.

Because whether parity is used or not is selected by software, however, the VR5500 cannot determine the

operation of the SysADC bus until the program is started.  Therefore, make sure that the SysADC bus is not left

open nor goes into a high-impedance state.

When it is known that parity will not be used in the system, it is recommended to connect each pin of the

SysADC bus to VDDIO via a high resistance.



CHAPTER 2   PIN FUNCTIONS

Preliminary User’s Manual  U16044EJ1V0UM 49

2.3.2 Test interface pins

The VR5500 can be tested and debugged with the device mounted on the board.  The test interface pins are used

to connect an external debugging tool.  Therefore, handle the test interface pins as follows when the debugging

function is not used and in the normal operating mode.

Pin Handling

JTCK Pull up

JTDI Pull up

JTMS Pull up

JTRST#Note Pull down

JTDO Leave open

NTrcClk Leave open

NTrcData(3:0) Leave open

NTrcEnd Leave open

RMode#/BKTGIO# Pull up

Note  Only Ver. 2.0 or later



Preliminary User’s Manual  U16044EJ1V0UM50

CHAPTER 3   OUTLINE OF INSTRUCTION SET

This chapter describes the architecture of the instruction set and outlines the CPU instruction set used for the

VR5500.

3.1 Instruction Set Architecture

The VR5500 can execute the MIPS IV instruction set and additional instructions dedicated to the VR5500.

At present, five MIPS instruction set levels, levels I to V, are available.  Instruction sets with higher level numbers

include instruction sets with lower level numbers (refer to Figure 3-1).  Therefore, a processor having the MIPS V

instruction set can execute the binary program of MIPS I, MIPS II, MIPS III, and MIPS IV without modification.

Figure 3-1.  Expansion of MIPS Architecture

MIPS I

MIPS II

MIPS III

MIPS IV

MIPS V

The instructions used in the VR5500 can be classified as follows.  For operation details, refer to the corresponding

chapter.

• CPU instructions (refer to 3.3 Outline of CPU Instruction Set and CHAPTER 17 CPU INSTRUCTION SET)

• Floating-point (FPU) instructions (Refer to 7.5 Outline of FPU Instruction Set and CHAPTER 18 FPU

INSTRUCTION SET)



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM 51

3.1.1 Instruction format

All instructions are 1-word (32-bit) instructions and are located at the word boundary.  Three types of instruction

formats are available as shown in Figure 3-2.  By simplifying the instruction formats to three, decoding instructions is

simplified.  Operations and addressing modes that are complicated and not often used are realized by combining two

or more instructions with a compiler.

Figure 3-2.  Instruction Format

op immediate

015162021252631

op target

0252631

rtrs

op

I type (immediate)

J type (jump)

R type (register)

015162021252631

sard

561011

rtrs funct

op: 6-bit operation code

rs: 5-bit source register number

rt: 5-bit target (source/destination) register number or branch condition

immediate: 16-bit immediate value, branch displacement, or address displacement

target: 26-bit unconditional branch target address

rd: 5-bit destination register number

sa: 5-bit shift amount

funct: 6-bit function field



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM52

3.1.2 Load/store instructions

The load/store instructions transfer data between memory, the CPU, and the general-purpose registers of the

coprocessor.  These instructions are used to transfer fields of various sizes, treat loaded data as a signed or

unsigned integer, access unaligned fields, select the addressing mode, and update the atomic memory (read-modify-

write).

A halfword, word, or doubleword address indicates the least significant byte of the bytes generating an object,

regardless of the byte order (big endian or little endian).  In big endian, this is the most significant byte; it is the least

significant byte in little endian.

With some exceptions, the load/store instructions must access an object that is naturally aligned.  If an attempt is

made to load/store an object at an address that is not even times greater than the size of the object, an address

error exception occurs.

New load/store operations have been added at each level of the architecture.

MIPS II

• 64-bit coprocessor transfer

• Atomic update

MIPS III

• 64-bit CPU transfer

• Loading unsigned word to CPU

MIPS V

• Register + register addressing mode of FPU

Remarks 1. The VR5500 does not support an environment where two or more processors operate

simultaneously.  To maintain compatibility with the other VR Series processors, however, the atomic

update instructions of memory defined by MIPS II ISA (such as the load link instruction and

conditional store instruction) operate correctly.

The load link bit (LL bit) is set by the LL instruction, cleared by the ERET instruction, and tested by

the SC instruction.  If the LL bit cannot be set because the cache has become invalid, it can be

manipulated only when it is reset from an external source.

2. The SYNC instruction is processed as a NOP instruction.  The processor waits until all the

instructions issued before the SYNC instruction are committed.  Therefore, an LL/SC instruction

placed before and after the SYNC instruction can be executed in the program sequence.

Tables 3-1 and 3-2 show the supported load/store instructions and the level of the MIPS architecture at which

each instruction is supported first.



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM 53

Table 3-1.  Load/Store Instructions Using Register + Offset Addressing Mode

CPU Coprocessor (Except 0)

Data Size Signed Load Unsigned

Load

Store Load Store

Byte I I I

Halfword I I I

Word I III I I I

Doubleword III III II II

Unaligned word I I

Unaligned doubleword III III

Link word (atomic modify) II II

Link doubleword (atomic modify) III III

Table 3-2.  Load/Store Instructions Using Register + Register Addressing Mode

Floating-Point Coprocessor Only
Data Size

Load Store

Word IV IV

Doubleword IV IV

(1) Scheduling load delay slot

The instruction position immediately after a load instruction is called a load delay slot.  An instruction that

contains a load destination register can be described in the load delay slot, but an interlock is generated for the

required number of cycles.  Therefore, although any instruction description can be made, it is recommended to

schedule the load delay slot from the viewpoints of improving performance and maintaining compatibility with

the VR Series.  However, because the VR5500 executes instructions by using an out-of-order mechanism, it can

resolve a load delay even if scheduling is not made by software.

(2) Definition of access type

The access type is the size of the data the processor loads/stores.

The opcode of a load/store instruction determines the access type.  Figure 3-3 shows the access type and the

data that is loaded/stored.  The address used for a load/store instruction is the least significant byte address

(address indicating the least significant byte in little endian), regardless of the access type and byte order

(endianness).

The byte order in the doubleword of the accessed data is determined by the access type and the lower 3 bits of

the address, as shown in Figure 3-3.  Combinations of the access type and the lower bits of the address other

than those shown in Figure 3-3 are prohibited (except for the LUXC1 and SUXC1 instructions).  If such

combinations are used, an address error exception occurs.



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM54

Figure 3-3.  Byte Specification Related to Load and Store Instructions

Access Type

(Value)

Lower

Address Bit

Accessed Byte (Big Endian) Accessed Byte (Little Endian)

2 1 0 63 0 63 0

Doubleword (7) 0 0 0 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1 0

7-byte (6) 0 0 0 0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 0 1 1 2 3 4 5 6 7 7 6 5 4 3 2 1

6-byte (5) 0 0 0 0 1 2 3 4 5 5 4 3 2 1 0

0 1 0 2 3 4 5 6 7 7 6 5 4 3 2

5-byte (4) 0 0 0 0 1 2 3 4 4 3 2 1 0

0 1 1 3 4 5 6 7 7 6 5 4 3

Word (3) 0 0 0 0 1 2 3 3 2 1 0

1 0 0 4 5 6 7 7 6 5 4

3-byte (2) 0 0 0 0 1 2 2 1 0

0 0 1 1 2 3 3 2 1

1 0 0 4 5 6 6 5 4

1 0 1 5 6 7 7 6 5

Halfword (1) 0 0 0 0 1 1 0

0 1 0 2 3 3 2

1 0 0 4 5 5 4

1 1 0 6 7 7 6

Byte (0) 0 0 0 0 0

0 0 1 1 1

0 1 0 2 2

0 1 1 3 3

1 0 0 4 4

1 0 1 5 5

1 1 0 6 6

1 1 1 7 7



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM 55

3.1.3 Operation instructions

Arithmetic operations of 2’s complement are executed using integers expressed as 2’s complement.  Signed

addition, subtraction, multiplication, and division instructions are available.  “Unsigned” addition and subtraction

instructions are also available but these are actually modulo operation instructions that do not detect overflow.

Unsigned multiplication and division instructions are also available, as are all shift and logical operation instructions.

MIPS I executes a 32-bit arithmetic operation using 32-bit integers.  MIPS III can also execute arithmetic shift

instructions using 64-bit operands as 64-bit integers have been added.  The logical operations are not affected by

the width of the registers.

The operation instructions perform the following operations, using the value of registers.

• Arithmetic operation • Multiplication

• Logical operation • Division

• Shift • Sum-of-products operation

• Rotate • Counting 0/1 in data

These operations are processed by the following six types of operation instructions.

• ALU immediate instructions • Multiplication/division instructions

• 3-operand type instructions • Sum-of-products instructions

• Shift/rotate instructions • Register scan instructions

Internally, the VR5500 performs processing in 64-bit units.  A 32-bit operand can also be used but must be sign-

extended.  The basic arithmetic and logical instructions such as ADD, ADDU, SUB, SUBU, ADDI, SLL, SRA, and

SLLV can support 32-bit operands.  If the operand is not correctly sign-extended, however, the operation is

undefined.  32-bit data is sign-extended and stored in a 64-bit register.

3.1.4 Jump/branch instructions

All jump and branch instructions always have a delay slot of one instruction.  The instruction immediately after a

jump/branch instruction (instruction in the delay slot) is executed while the instruction at the destination is being

fetched from the cache.  The jump/branch instruction cannot be placed in a delay slot.  Even if it is placed, however,

an error is not detected, and the execution result of the program is undefined.

If execution of the instruction in a delay slot is aborted by the occurrence of an exception or interrupt, the virtual

address of the jump/branch instruction immediately before is stored in the EPC register.  When the program returns

from processing the exception or interrupt, both the jump/branch instruction and the instruction in its delay slot are

re-executed.  Therefore, do not use register 31 (link address register) as the source register of the Jump and Link,

and Branch and Link instructions.

Because an instruction must be placed at the word boundary, use a register in which an address whose lower bits

are 0 is stored as the operand of the JR and JALR instructions.  If the lower 2 bits of the address are not 0, an

address error exception occurs when the destination of the instruction is fetched.



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM56

(1) Outline of jump instructions

To call a subroutine described in a high-level language, the J or JAL instruction is usually used.  The J and JAL

instructions are J-type instructions.  This format shifts a 26-bit target address 2 bits to the left and combines the

result with the higher 4 bits of the current program counter to generate an absolute address.

Usually, the JR or JALR instruction is used to exit, dispatch, or jump between pages.  Both these instructions

are R-type and reference the 64-bit byte address of a general-purpose register.

(2) Outline of branch instructions

The branch address of all the branch instructions is calculated by adding a 16-bit offset (signed 64 bits shifted 2

bits to the left) to the address of the instruction in the delay slot.  All the branch instructions generate one delay

slot.

If the branch condition of the Branch Likely instruction is not satisfied, the instruction in the delay slot is invalid.

The instruction in the delay slot is executed unconditionally for the other branch instructions.

3.1.5 Special instructions

The special instructions generate an exception by software unconditionally or conditionally.  Actually, system call,

breakpoint, and trap exceptions occur in the processor.  System calls and breakpoints are unconditionally executed,

whereas a condition can be specified for a trap.

The SYNC instruction is used to terminate all pending instructions.  The VR5500 executes the SYNC instruction

as NOP.

3.1.6 Coprocessor instructions

The coprocessor is an alternate execution unit that has a register file separated from the CPU.  The MIPS

architecture allows allocation of up to four coprocessors, 0 to 3.  Each architecture level defines these coprocessors

as shown in Table 3-3.  Coprocessor 0 is always used for system control, and coprocessor 1 is used as a floating-

point unit.  The other coprocessors are valid in terms of architecture but have no usage allocated.  Some

coprocessors are undefined and their opcode is reserved or used for other purposes.

Table 3-3.  Definition and Usage of Coprocessors by MIPS Architecture

MIPS Architecture Level
Coprocessor

I II III IV

0 System control System control System control System control

1 Floating-point operation Floating-point operation Floating-point operation Floating-point operation

2 Unused Unused Unused Unused

3 Unused Unused Undefined Floating-point operation

(COP1X)

A coprocessor has two register sets: coprocessor general-purpose registers and coprocessor control registers.

Each register set has up to 32 registers.  Depending on the operation instruction of the coprocessor, both the

register sets may be changed.



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM 57

All system control of a MIPS processor is provided as coprocessor 0 (CP0: system control processor).  This

coprocessor has processor control, memory management, and exception processing functions.  The CP0

instructions are peculiar to each CPU.

If the system has an internal floating-point unit, it is used as coprocessor 1 (CP1).  With MIPS IV, the FPU uses

the opcode space for coprocessor unit 3 as COP1X.  For the FPU instructions, refer to 7.5 Outline of FPU

Instruction Set and CHAPTER 18 FPU INSTRUCTION SET.

The coprocessor instructions can be classified into the following two major groups.

• Load/store instructions reserved for the main opcode space

• Coprocessor-specific operations that are defined by the coprocessor

(1) Load/store for coprocessor

No load/store instruction is defined for CP0.  To read/write a CP0 register, therefore, only an instruction that

transfers data to or from the coprocessor can be used.

(2) Coprocessor operation

Up to four coprocessors can be used.  To which coprocessor an instruction belongs is indicated by z (z = 0 to 3)

suffixed to the mnemonic.  In the main opcode, the coprocessor has a coprocessor-specific coded instruction.

3.2 Addition and Modification of VR5500 Instructions

The VR5500 has additional instructions that can be used for multimedia applications, such as sum-of-products

instructions and register scan instructions.  These additional instructions are not included in the MIPS IV instruction

set.

In addition, MIPS ISA makes instructions already defined available again and expands and changes functions.

3.2.1 Integer rotate instructions

Integer rotate instructions have also been added to the VR5500 in the same manner as the VR5432.

These instructions shift the value of a general-purpose register to the right by the number of bits specified by 5

bits of the instruction or by the number of bits specified by a register.  The least significant bit that has been shifted is

joined to the most significant bit, and the result is stored in the destination register.

Table 3-4.  Rotate Instructions

Instruction Definition

DROR Doubleword Rotate Right

DROR32 Doubleword Rotate Right + 32

DRORV Doubleword Rotate Right Variable

ROR Rotate Right

RORV Rotate Right Variable



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM58

3.2.2 Sum-of-products instructions

Sum-of-products instructions have also been added to the VR5500 in the same manner as the VR5432.

These instructions add a value to the result of multiplication, using the HI register and LO register as an

accumulator, and store the result in the destination register.  The accumulator is 64 bits long with the lower 32 bits of

the HI register as its higher bits and the lower 32 bits of the LO register as its lower bits.  No overflow or underflow

occurs as a result of executing these instructions.  Therefore, no exception occurs.

In addition to the MACC instruction added to the VR5432, the VR5500 also has a sum-of-products instruction that

does not store the result in a general-purpose register, and a multiplication instruction that does not store the result

in the HI or LO register.

Table 3-5.  MACC Instructions

Instruction Definition

MACC Multiply, Accumulate, and Move LO

MACCHI Multiply, Accumulate, and Move HI

MACCHIU Unsigned Multiply, Accumulate, and Move HI

MACCU Unsigned Multiply, Accumulate, and Move LO

MSAC Multiply, Negate, Accumulate, and Move LO

MSACHI Multiply, Negate, Accumulate, and Move HI

MSACHIU Unsigned Multiply, Negate, Accumulate, and Move HI

MSACU Unsigned Multiply, Negate, Accumulate, and Move LO

MUL Multiply and Move LO

MULHI Multiply and Move HI

MULHIU Unsigned Multiply and Move HI

MULS Multiply, Negate, and Move LO

MULSHI Multiply, Negate, and Move HI

MULSHIU Unsigned Multiply, Negate, and Move HI

MULSU Unsigned Multiply, Negate, and Move LO

MULU Unsigned Multiply and Move LO

Table 3-6.  Sum-of-Products Instructions

Instruction Definition

MADD Multiply and Add Word

MADDU Multiply and Add Word Unsigned

MSUB Multiply and Subtract Word

MSUBU Multiply and Subtract Word Unsigned

MUL64 Multiply



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM 59

3.2.3 Register scan instructions

Register scan instructions have been added to the VR5500.

These instructions scan the contents of a general-purpose register and store the number of 0s or 1s of the

register in the destination register.

Table 3-7.  Register Scan Instructions

Instruction Definition

CLO Count Leading Ones

CLZ Count Leading Zeros

DCLO Count Leading Ones in Doubleword

DCLZ Count Leading Zeros in Doubleword

3.2.4 Floating-point load/store instructions

These instructions have been added to the VR5500.

They load/store data between a floating-point register and memory regardless of whether data is aligned or not.

Table 3-8.  Floating-Point Load/Store Instructions

Instruction Definition

LUXC1 Load Doubleword Indexed Unaligned

SUXC1 Store Doubleword Indexed Unaligned

3.2.5 Other additional instructions

Coprocessor 0 branch instructions are not supported by the VR5000 Series but they are available in the VR5500

again.

In addition, an instruction that is used to manipulate the contents of the performance counter in coprocessor 0,

and a NOP instruction that synchronizes the superscalar pipeline are also provided.

The standby mode instructions supported by the VR5000 are also provided in the VR5500.

Table 3-9.  Coprocessor 0 Instructions

Instruction Definition

BC0T Branch on Coprocessor 0 True

BC0F Branch on Coprocessor 0 False

BC0TL Branch on Coprocessor 0 True Likely

BC0FL Branch on Coprocessor 0 False Likely

MTPC Move to Performance Counter

MFPC Move from Performance Counter

MTPS Move to Performance Event Specifier

MFPS Move from Performance Event Specifier



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM60

Table 3-10.  Special Instructions

Instruction Definition

SSNOP Superscalar NOP

WAIT Wait

3.2.6 Instructions for which functions and operations were changed

Functions and operations have been changed in the following instructions.

Table 3-11.  Instruction Function Changes in VR5500

Instruction Major Changed Points

CACHE In Fill and Fetch_and_Lock operation, the way to be replaced is

selected based on the LRU bit of the cache tag.

TLBP (Compatible with MIPS64)

TLBR (Compatible with VR5000 Series)

SC The LL bit is not changedNote

SCD

SYNC The SYNC instruction is executed after all the on-going

instructions complete the commit stage.

Note  In the VR5432, the LL bit is cleared when the SC/SCD instruction is executed.

3.3 Outline of CPU Instruction Set

3.3.1 Load and store instructions

Load and store are I-type instructions that transfer data between memory and general-purpose registers.  The

only addressing mode that load and store instructions directly support is the mode to add a signed 16-bit signed

immediate offset to the base register.



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM 61

Table 3-12.  Load/Store Instructions

Instruction Format and Description

Load Byte

LB  rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address.  The contents

of the bytes specified by the address are sign-extended and loaded to register rt.

Load Byte Unsigned

LBU  rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address.  The contents

of the bytes specified by the address are zero-extended and loaded to register rt.

Load Halfword

LH  rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address.   The

contents of the halfword specified by the address are sign-extended and loaded to register rt.

Load Halfword

Unsigned

LHU  rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address.   The

contents of the halfword specified by the address are zero-extended and loaded to register rt.

Load Word

LW  rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address.  The contents

of the word specified by the address is loaded to register rt.  In the 64-bit mode, it is sign-extended.

Load Word Left

LWL  rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address.  The word

whose address is specified is shifted to the left so that the address-specified byte is at the left-most

position of the word.  The result is merged with the contents of register rt and loaded to register rt.  In

the 64-bit mode, it is sign-extended.

Load Word Right

LWR  rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address.  The word

whose address is specified is shifted to the right so that the address-specified byte is at the right-

most position of the word.  The result is merged with the contents of register rt and loaded to register rt.

In the 64-bit mode, it is sign extended.

Store Byte

SB  rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address.  The least

significant byte of register rt is stored in the memory location specified by the address.

Store Halfword

SH  rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address.  The least

significant halfword of register rt is stored in the memory location specified by the address.

Store Word

SW  rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address.  The lower

word of register rt is stored in the memory location specified by the address.

Store Word Left

SWL  rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address.  The contents

of register rt is shifted to the right so that the left-most byte of the word is in the position of the

address-specified byte.  The result is stored in the lower word in memory.

Store Word Right

SWR  rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address.  The contents

of register rt is shifted to the left so that the right-most byte of the word is in the position of the

address-specified byte.  The result is stored in the upper word in memory.

op base rt offset



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM62

Table 3-13.  Load/Store Instructions (Extended ISA)

Instruction Format and Description

Load Doubleword

LD  rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address.   The

contents of the doubleword specified by the address are loaded to register rt.

Load Doubleword Left

LDL  rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address.  The

doubleword whose address is specified is shifted to the left so that the address-specified byte is at

the left-most position of the doubleword.  The result is merged with the contents of register rt and

loaded to register rt.

Load Doubleword Right

LDR  rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address.  The

doubleword whose address is specified is shifted to the right so that the address-specified byte is at

the right-most position of the doubleword.  The result is merged with the contents of register rt and

loaded to register rt.

Load Linked

LL  rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address.   The

contents of the word specified by the address are loaded to register rt and the LL bit is set to 1.

Load Linked

Doubleword

LLD  rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address.   The

contents of the doubleword specified by the address are loaded to register rt and the LL bit is set to 1.

Load Word Unsigned

LWU  rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address.  The contents

of the word specified by the address are zero-extended and loaded to register rt.

Store Conditional

SC  rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address.   If the LL bit

is set to 1, the contents of the lower word of register rt are stored in the memory specified by the

address, and register rt is set to 1.

If the LL bit is set to 0, the store operation is not performed and register rt is cleared to 0.

Store Conditional

Doubleword

SCD  rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address.   If the LL bit

is set to 1, the contents of register rt are stored in the memory specified by the address, and register rt is

set to 1.

If the LL bit is set to 0, the store operation is not performed and register rt is cleared to 0.

Store Doubleword

SD  rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address.  The contents

of register rt are stored in the memory specified by the address.

Store Doubleword Left

SDL rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address.  The contents

of register rt is shifted to the right so that the left-most byte of the doubleword is in the position of the

address-specified byte.  The result is stored in the lower doubleword in memory.

Store Doubleword Right

SDR rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address.  The contents

of register rt is shifted to the left so that the right-most byte of the doubleword is in the position of the

address-specified byte.  The result is stored in the higher doubleword in memory.

op base rt offset



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM 63

3.3.2 Computational instructions

Computational instructions perform arithmetic, logical, and shift operations on values in registers.  Computational

instructions can be either in register (R-type) format, in which both operands are registers, or in immediate (I-type)

format, in which one operand is a 16-bit immediate.

Computational instructions are classified as:

(1) ALU immediate instructions

(2) Three-operand type instructions

(3) Shift/rotate instructions

(4) Multiply/divide instructions

(5) Sum-of-products instructions

(6) Register scan instructions

Table 3-14.  ALU Immediate Instructions

Instruction Format and Description

Add Immediate

ADDI  rt, rs, immediate

The 16-bit immediate is sign-extended and added to the contents of register rs.  The 32-bit result is

stored in register rt.  In the 64-bit mode, it is sign-extended.

An exception occurs on the generation of 2's complement overflow.

Add Immediate

Unsigned

ADDIU  rt, rs, immediate

The 16-bit immediate is sign-extended and added to the contents of register rs.  The 32-bit result is

stored in register rt.  In the 64-bit mode, it is sign extended.  No exception occurs on the generation of

overflow.

Set on Less Than

Immediate

SLTI  rt, rs, immediate

The 16-bit immediate is sign-extended and compared to the contents of register rt treating both

operands as signed integers.  If rs is less than the immediate, 1 is stored in register rt; otherwise 0 is

stored in register rt.

Set on Less Than

Immediate Unsigned

SLTIU  rt, rs, immediate

The 16-bit immediate is sign-extended and compared to the contents of register rt treating both

operands as unsigned integers.  If rs is less than the immediate, 1 is stored in register rt; otherwise 0

is stored in register rt.

AND Immediate

ANDI  rt, rs, immediate

The 16-bit immediate is zero-extended and ANDed with the contents of the register rs.  The result is

stored in register rt.

OR Immediate

ORI  rt, rs, immediate

The 16-bit immediate is zero-extended and ORed with the contents of the register rs.  The result is

stored in register rt.

Exclusive OR

Immediate

XORI  rt, rs, immediate

The 16-bit immediate is zero-extended and Ex-ORed with the contents of the register rs.  The result

is stored in register rt.

Load Upper Immediate

LUI rt, immediate

The 16-bit immediate is shifted left by 16 bits to set the lower 16 bits of word to 0.  The result is

stored in register rt.  In the 64-bit mode, it is sign extended.

op rs rt immediate



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM64

Table 3-15.  ALU Immediate Instructions (Extended ISA)

Instruction Format and Description

Doubleword Add

Immediate

DADDI  rt, rs, immediate

The 16-bit immediate is sign-extended to 64 bits and added to the contents of register rs.  The 64-bit

result is stored in register rt.  An exception occurs on the generation of integer overflow.

Doubleword Add

Immediate Unsigned

DADDIU  rt, rs, immediate

The 16-bit immediate is sign-extended to 64 bits and added to the contents of register rs.  The 64-bit

result is stored in register rt.  No exception occurs on the generation of overflow.

Table 3-16.  Three-Operand Type Instructions

Instruction Format and Description

Add

ADD  rd, rs, rt

The contents of registers rs and rt are added.  The 32-bit result is stored in register rd.  In the 64-bit

mode, it is sign-extended.

An exception occurs on the generation of integer overflow.

Add Unsigned

ADDU  rd, rs, rt

The contents of registers rs and rt are added.  The 32-bit result is stored in register rd.  In the 64-bit

mode, it is sign-extended.

No exception occurs on the generation of integer overflow.

Subtract

SUB  rd, rs, rt

The contents of register rt are subtracted from the contents of register rs.  The 32-bit result is stored in

register rd.  In the 64-bit mode, it is sign-extended.

An exception occurs on the generation of integer overflow.

Subtract Unsigned

SUBU  rd, rs, rt

The contents of register rt are subtracted from the contents of register rs.  The 32-bit result is stored in

register rd.  In the 64-bit mode, it is sign-extended.

No exception occurs on the generation of integer overflow.

Set on Less Than

SLT  rd, rs, rt

The contents of registers rs and rt are compared, treating both operands as signed integers.

If the contents of register rs are less than those of register rt, 1 is stored in register rd; otherwise 0 is

stored in register rd.

Set on Less Than

Unsigned

SLTU  rd, rs, rt

The contents of registers rs and rt are compared, treating both operands as unsigned integers.

If the contents of register rs are less than those of register rt, 1 is stored in register rd; otherwise 0 is

stored in register rd.

AND

AND  rd, rt, rs

The contents of register rs are ANDed with those of general-purpose register rt bit-wise.  The result is

stored in register rd.

OR

OR  rd, rt, rs

The contents of register rs are ORed with those of general-purpose register rt bit-wise.  The result is

stored in register rd.

Exclusive OR

XOR  rd, rt, rs

The contents of register rs are Ex-ORed with those of general-purpose register rt bit-wise.  The result

is stored in register rd.

NOR

NOR  rd, rt, rs

The contents of register rs are NORed with those of general-purpose register rt bit-wise.  The result is

stored in register rd.

op rs rt immediate

op rs rt functrd sa



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM 65

Table 3-17.  Three-Operand Type Instructions (Extended ISA)

Instruction Format and Description

Doubleword Add

DADD  rd, rt, rs

The contents of register rs and register rt are added.  The 64-bit result is stored in register rd.

An exception occurs on the generation of integer overflow.

Doubleword Add

Unsigned

DADDU  rd, rt, rs

The contents of register rs and register rt are added.  The 64-bit result is stored in register rd.

No exception occurs on the generation of integer overflow.

Doubleword Subtract

DSUB  rd, rt, rs

The contents of register rt are subtracted from those of register rs.  The 64-bit result is stored in

register rd.

An exception occurs on the generation of integer overflow.

Doubleword Subtract

Unsigned

DSUBU  rd, rt, rs

The contents of register rt are subtracted from those of register rs.  The 64-bit result is stored in

register rd.

No exception occurs on the generation of integer overflow.

Instruction Format and Description

Move Conditional on

Not Zero

MOVN  rd, rs, rt

The contents of register rs are stored in register rd if register rt is not equal to 0.

Move Conditional on

Zero

MOVZ  rd, rs, rt

The contents of register rs are stored in register rd if register rt is equal to 0.

Table 3-18.  Shift Instructions

Instruction Format and Description

Shift Left Logical

SLL  rd, rs, sa

The contents of register rt are shifted left by sa bits and zeros are inserted into the lower bits.

The 32-bit result is stored in register rd.  In the 64-bit mode, it is sign-extended.

Shift Right Logical

SRL  rd, rs, sa

The contents of register rt are shifted right by sa bits and zeros are inserted into the higher bits.

The 32-bit result is stored in register rd.  In the 64-bit mode, it is sign-extended.

Shift Right Arithmetic

SRA  rd, rt, sa

The contents of register rt are shifted right by sa bits and the higher bits are sign-extended.

The 32-bit result is stored in register rd.  In the 64-bit mode, it is sign-extended.

Shift Left Logical

Variable

SLLV  rd, rt, rs

The contents of register rt are shifted left and zeros are inserted into the lower bits.  The number of

bits shifted is specified by the lower 5 bits of register rs.

The 32-bit result is stored in register rd.  In the 64-bit mode, it is sign-extended.

Shift Right Logical

Variable

SRLV  rd, rt, rs

The contents of register rt are shifted right and zeros are inserted into the higher bits.  The number

of bits shifted is specified by the lower 5 bits of register rs.

The 32-bit result is stored in register rd.  In the 64-bit mode, it is sign-extended.

Shift Right Arithmetic

Variable

SRAV  rd, rt, rs

The contents of register rt are shifted right and the higher bits are sign-extended.  The number of bits

shifted is specified by the lower 5 bits of register rs.

The 32-bit result is stored in register rd.  In the 64-bit mode, it is sign-extended.

op rs rt functrd sa

op rs rt functrd sa

SPECIAL rs rt functrd sa



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM66

Table 3-19.  Shift Instructions (Extended ISA)

Instruction Format and Description

Doubleword Shift Left

Logical

DSLL  rd, rt, sa

The contents of register rt are shifted left by sa bits and zeros are inserted into the lower bits.

The 64-bit result is stored in register rd.

Doubleword Shift Right

Logical

DSRL  rd, rt, sa

The contents of register rt are shifted right by sa bits and zeros are inserted into the higher bits.

The 64-bit result is stored in register rd.

Doubleword Shift Right

Arithmetic

DSRA  rd, rt, sa

The contents of register rt are shifted right by sa bits and the higher bits are sign-extended.

The 64-bit result is stored in register rd.

Doubleword Shift Left

Logical Variable

DSLLV  rd, rt, rs

The contents of register rt are shifted left and zeros are inserted into the lower bits.  The number of

bits shifted is specified by the lower 6 bits of register rs.

The 64-bit result is stored in register rd.

Doubleword Shift Right

Logical Variable

DSRLV  rd, rt, rs

The contents of register rt are shifted right and zeros are inserted into the higher bits.  The number of

bits shifted is specified by the lower 6 bits of register rs.   The 64-bit result is stored in register rd.

Doubleword Shift Right

Arithmetic Variable

DSRAV  rd, rt, rs

The contents of register rt are shifted right and the higher bits are sign-extended.  The number of bits

shifted is specified by the lower 6 bits of register rs.

The 64-bit result is stored in register rd.

Doubleword Shift Left

Logical + 32

DSLL32  rd, rt, sa

The contents of register rt are shifted left by 32 + sa bits and zeros are inserted into the lower bits.

The 64-bit result is stored in register rd.

Doubleword Shift Right

Logical + 32

DSRL32  rd, rt, sa

The contents of register rt are shifted right by 32 + sa bits and zeros are inserted into the higher bits.

The 64-bit result is stored in register rd.

Doubleword Shift Right

Arithmetic + 32

DSRA32  rd, rt, sa

The contents of register rt are shifted right by 32 + sa bits and the higher bits are sign-extended.

The 64-bit result is stored in register rd.

op rs rt functrd sa



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM 67

Table 3-20.  Rotate Instructions (For VR5500)

Instruction Format and Description

Rotate Right

ROR  rd, rt, sa

The contents of register rt are shifted right by sa bits and the lower bits shifted out are inserted into

the higher bits.

The 32-bit result is stored in register rd.  In the 64-bit mode, it is sign-extended.

Rotate Right Variable

RORV  rd, rt, rs

The contents of register rt are shifted right and the lower bits shifted out are inserted into the higher

bits.  The number of bits shifted is specified by the lower 5 bits of register rs.

The 32-bit result is stored in register rd.  In the 64-bit mode, it is sign-extended.

Doubleword Rotate

Right

DROR  rd, rt, sa

The contents of register rt are shifted right by sa bits and the lower bits shifted out are inserted into

the higher bits.

The 64-bit result is stored in register rd.

Doubleword Rotate

Right + 32

DROR32  rd, rt, sa

The contents of register rt are shifted right by 32 + sa bits and the lower bits shifted out are inserted

into the higher bits.

The 64-bit result is stored in register rd.

Doubleword Rotate

Right Variable

DRORV  rd, rt, rs

The contents of register rt are shifted right and the lower bits shifted out are inserted into the higher

bits.

The number of bits shifted is specified by the lower 5 bits of register rs.

The 64-bit result is stored in register rd.

SPECIAL rs rt functrd sa



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM68

Table 3-21.  Multiply/Divide Instructions

Instruction Format and Description

Multiply

MULT  rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit signed integers.

The 64-bit result is stored in special registers HI and LO.  In the 64-bit mode, it is sign-extended.

Multiply Unsigned

MULTU  rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit unsigned integers.

The 64-bit result is stored in special registers HI and LO.  In the 64-bit mode, it is sign-extended.

Divide

DIV  rs, rt

The contents of register rs are divided by those of register rt, treating both operands as 32-bit signed

integers.  The 32-bit quotient is stored in special register LO, and the 32-bit remainder is stored in

special register HI.  In the 64-bit mode, it is sign-extended.

Divide Unsigned

DIVU  rs, rt

The contents of register rs are divided by those of register rt, treating both operands as 32-bit

unsigned integers. The 32-bit quotient is stored in special register LO, and the 32-bit remainder is

stored in special register HI. In the 64-bit mode, it is sign-extended.

Move from HI
MFHI  rd

The contents of special register HI are loaded to register rd.

Move from LO
MFLO  rd

The contents of special register LO are loaded to register rd.

Move to HI
MTHI  rs

The contents of register rs are loaded to special register HI.

Move to LO
MTLO  rs

The contents of register rs are loaded to special register LO.

Table 3-22.  Multiply/Divide Instructions (Extended ISA)

Instruction Format and Description

Doubleword Multiply

DMULT  rs, rt

The contents of registers rs and rt are multiplied, treating both operands as signed integers.

The 128-bit result is stored in special registers HI and LO.

Doubleword Multiply

Unsigned

DMULTU  rs, rt

The contents of registers rs and rt are multiplied, treating both operands as unsigned integers.

The 128-bit result is stored in special registers HI and LO.

Doubleword Divide

DDIV  rs, rt

The contents of register rs are divided by those of register rt, treating both operands as signed

integers.  The 64-bit quotient is stored in special register LO, and the 64-bit remainder is stored in

special register HI.

Doubleword Divide

Unsigned

DDIVU  rs, rt

The contents of register rs are divided by those of register rt, treating both operands as unsigned

integers.

The 64-bit quotient is stored in special register LO, and the 64-bit remainder is stored in special

register HI.

op rs rt functrd sa

op rs rt functrd sa



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM 69

Table 3-23.  MACC Instructions (For VR5500) (1/2)

Instruction Format and Description

Multiply, Accumulate,

and Move LO

MACC  rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit signed integers,

and result is added to a value that combines the lower 32 bits of special registers HI and LO.  The

lower 32 bits of the result are stored in register rd.

Unsigned Multiply,

Accumulate, and Move

LO

MACCU  rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit unsigned integers,

and result is added to a value that combines the lower 32 bits of special registers HI and LO.  The

lower 32 bits of the result are stored in register rd.

Multiply, Accumulate,

and Move HI

MACCHI  rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit signed integers,

and result is added to a value that combines the lower 32 bits of special registers HI and LO.  The

higher 32 bits of the result are stored in register rd.

Unsigned Multiply,

Accumulate, and Move

HI

MACCHIU  rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit unsigned integers,

and result is added to a value that combines the lower 32 bits of special registers HI and LO.  The

higher 32 bits of the result are stored in register rd.

Multiply, Negate,

Accumulate, and Move

LO

MSAC  rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit signed integers,

and result is subtracted from a value that combines the lower 32 bits of special registers HI and LO.

The lower 32 bits of the result are stored in register rd.

Unsigned Multiply,

Negate, Accumulate,

and Move LO

MSACU  rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit unsigned integers,

and result is subtracted from a value that combines the lower 32 bits of special registers HI and LO.

The lower 32 bits of the result are stored in register rd.

Multiply, Negate,

Accumulate, and Move

HI

MSACHI  rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit signed integers,

and result is subtracted from a value that combines the lower 32 bits of special registers HI and LO.

The higher 32 bits of the result are stored in register rd.

Unsigned Multiply,

Negate, Accumulate,

and Move HI

MSACHIU  rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit unsigned integers,

and result is subtracted from a value that combines the lower 32 bits of special registers HI and LO.

The higher 32 bits of the result are stored in register rd.

Multiply and Move LO

MUL  rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit signed integers.

The higher 32 bits of the result is stored in the lower bits of special register HI, and lower 32 bits of

the result are stored in lower bits of special register LO and register rd.

Unsigned Multiply and

Move LO

MULU  rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit unsigned integers.

The higher 32 bits of the result is stored in the lower bits of special register HI, and lower 32 bits of

the result are stored in lower bits of special register LO and register rd.

SPECIAL rs rt functrd



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM70

Table 3-23.  MACC Instructions (For VR5500) (2/2)

Instruction Format and Description

Multiply and Move HI

MULHI  rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit signed integers.

The higher 32 bits of the result are stored in the lower bits of special register HI and register rd, and

the lower 32 bits of the result are stored in the lower bits of special register LO.

Unsigned Multiply and

Move HI

MULHIU  rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit unsigned integers.

The higher 32 bits of the result are stored in the lower bits of special register HI and register rd, and

the lower 32 bits of the result are stored in the lower bits of special register LO.

Multiply, Negate, and

Move LO

MULS  rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit signed integers,

and the result is inverted. The higher 32 bits of the result are stored in the lower bits of special

register HI, and the lower 32 bits of the result are stored in the lower bits of special register LO and

register rd.

Unsigned Multiply,

Negate, and Move LO

MULSU  rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit unsigned integers,

the result is inverted. The higher 32 bits of the result are stored in the lower bits of special register

HI, and the lower 32 bits of the result are stored in the lower bits of special register LO and register

rd.

Multiply, Negate, and

Move HI

MULSHI  rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit signed integers,

the result is inverted. The higher 32 bits of the result are stored in the lower bits of special register HI

and register rd, and the lower 32 bits of the result are stored in the lower bits of special register LO.

Unsigned Multiply,

Negate, and Move HI

MULSHIU  rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit unsigned integers,

the result is inverted. The higher 32 bits of the result are stored in the lower bits of special register HI

and register rd, and the lower 32 bits of the result are stored in the lower bits of special register LO.

SPECIAL rs rt functrd



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM 71

Table 3-24.  Sum-of-Products Instructions (For VR5500)

Instruction Format and Description

Multiply and Add Word

MADD  rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit signed integers,

and the result is added to a value that combines the lower 32 bits of special registers HI and LO.

The 64-bit result is stored in special registers HI and LO.

Multiply and Add Word

Unsigned

MADDU  rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit unsigned integers,

and the result is added to a value that combines the lower 32 bits of special registers HI and LO.

The 64-bit result is stored in special registers HI and LO.

Multiply and Subtract

Word

MSUB  rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit signed integers,

and the result is subtracted from a value that combines the lower 32 bits of special registers HI and

LO.  The 64-bit result is stored in special registers HI and LO.

Multiply and Subtract

Word Unsigned

MSUBU  rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit unsigned integers,

and the result is subtracted from a value that combines the lower 32 bits of special registers HI and

LO.  The 64-bit result is stored in special registers HI and LO.

Multiply

MUL64  rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit signed integers.

The lower 32 bits of the result are stored in register rd.

Since the VR5500 stalls the entire pipeline when executing an integer multiply/divide instruction, the number of

execution cycle increases compared with normal instruction execution.  The number of processor cycles (PCycles)

required for an integer multiply/divide instruction is shown below.

Table 3-25.  Number of Cycles for Multiply and Divide Instructions

Number of PCyclesInstruction

When Executed

Singly

When Executed

Repeatedly

DIV, DIVU 40 40

DDIV, DDIVU 72 72

MACC, MACCHI, MACCHIU, MACCU, MSAC, MSACHI, MSACHIU, MSACU 3 3

MUL, MULHI, MULHIU, MULU, MULS, MULSHI, MULSHIU, MULSU 3 3

MADD, MADDU, MSUB, MSUBU 2 2

MUL64 2 2

MULT, MULTU 3 3

DMULT, DMULTU 3 3

SPECIAL2 rs rt functrd 0



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM72

Table 3-26.  Register Scan Instructions (For VR5500)

Instruction Format and Description

Count Leading Ones

CLO  rd, rs

The 32-bit contents of register rs are scanned from the highest to lowest bit, and the number of 1s is

stored in register rd.

Count Leading Zeros

CLZ  rd, rs

The 32-bit contents of register rs are scanned from the highest to lowest bit, and the number of 0s is

stored in register rd.

Count Leading Ones in

Doubleword

DCLO  rd, rs

The 64-bit contents of register rs are scanned from the highest to lowest bit, and the number of 1s is

stored in register rd.

Count Leading Zeros in

Doubleword

DCLZ  rd, rs

The 64-bit contents of register rs are scanned from the highest to lowest bit, and the number of 0s is

stored in register rd.

3.3.3 Jump and branch instructions

Jump and branch instructions change the control flow of a program.  All jump and branch instructions occur with a

delay of one instruction: that is, the instruction immediately following the jump or branch instruction (this is known as

the instruction in the delay slot) always executes while the target instruction is being fetched from memory.

For instructions involving a link (such as JAL and BLTZAL), the return address is saved in register r31.

Table 3-27.  Jump Instruction

Instruction Format and Description

Jump

J  target

The contents of the 26-bit target address is shifted left by two bits and combined with the higher 4 bits

of the PC.  The program jumps to this calculated address with a delay of one instruction.

Jump and Link

JAL  target

The contents of the 26-bit target address is shifted left by two bits and combined with the higher 4 bits

of the PC.  The program jumps to this calculated address with a delay of one instruction.  The

address of the instruction following the delay slot is stored in r31 (link register).

Instruction Format and Description

Jump Register
JR  rs

The program jumps to the address specified in register rs with a delay of one instruction.

Jump and Link Register

JALR  rs, rd

The program jumps to the address specified in register rs with a delay of one instruction.

The address of the instruction following the delay slot is stored in rd.

op rs rt functrd sa

op target

SPECIAL2 rs rt functrd 0



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM 73

Table 3-28.  Branch Instructions

Instruction Format and Description

Branch on Equal

BEQ  rs, rt, offset

If the contents of register rs are equal to those of register rt, the program branches to the target

address.

Branch on Not Equal

BNE  rs, rt, offset

If the contents of register rs are not equal to those of register rt, the program branches to the target

address.

Branch on Less Than or

Equal to Zero

BLEZ  rs, offset

If the contents of register rs are less than or equal to zero, the program branches to the target

address.

Branch on Greater Than

Zero

BGTZ  rs, offset

If the contents of register rs are greater than zero, the program branches to the target address.

Instruction Format and Description

Branch on Less Than

Zero

BLTZ  rs, offset

If the contents of register rs are less than zero, the program branches to the target address.

Branch on Greater Than

or Equal to Zero

BGEZ  rs, offset

If the contents of register rs are greater than or equal to zero, the program branches to the target

address.

Branch on Less Than

Zero and Link

BLTZAL  rs, offset

The address of the instruction that follows delay slot is stored in register r31 (link register).  If the

contents of register rs are less than zero, the program branches to the target address.

Branch on Greater Than

or Equal to Zero and Link

BGEZAL  rs, offset

The address of the instruction that follows delay slot is stored in register r31 (link register).  If the

contents of register rs are greater than or equal to zero, the program branches to the target

address.

Remark  sub: Sub-operation code

Instruction Format and Description

Branch on Coprocessor 0

True

BC0T offset

The 16-bit offset (shifted left by two bits and sign-extended) is added to the address of the

instruction in the delay slot to calculate the branch target address.

If the conditional signal of the coprocessor 0 is true, the program branches to the target address

with one-instruction delay.

Branch on Coprocessor 0

False

BC0F offset

The 16-bit offset (shifted left by two bits and sign-extended) is added to the address of the

instruction in the delay slot to calculate the branch target address.

If the conditional signal of the coprocessor 0 is false, the program branches to the target address

with one-instruction delay.

Remark  BC: BC sub-operation code

br: Branch condition identifier

op rs rt offset

REGIMM offsetrs sub

COP0 offsetBC br



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM74

Table 3-29.  Branch Instructions (Extended ISA)

Instruction Format and Description

Branch on Equal Likely

BEQL  rs, rt, offset

If the contents of register rs are equal to those of register rt, the program branches to the target

address.  If the branch condition is not met, the instruction in the delay slot is discarded.

Branch on Not Equal

Likely

BNEL  rs, rt, offset

If the contents of register rs are not equal to those of register rt, the program branches to the target

address.  If the branch condition is not met, the instruction in the delay slot is discarded.

Branch on Less Than

or Equal to Zero Likely

BLEZL  rs, offset

If the contents of register rs are less than or equal to zero, the program branches to the target

address.  If the branch condition is not met, the instruction in the delay slot is discarded.

Branch on Greater

Than Zero Likely

BGTZL  rs, offset

If the contents of register rs are greater than zero, the program branches to the target address.  If

the branch condition is not met, the instruction in the delay slot is discarded.

Instruction Format and Description

Branch on Less Than

Zero Likely

BLTZL  rs, offset

If the contents of register rs are less than zero, the program branches to the target address.  If the

branch condition is not met, the instruction in the delay slot is discarded.

Branch on Greater

Than or Equal to Zero

Likely

BGEZL  rs, offset

If the contents of register rs are greater than or equal to zero, the program branches to the target

address.  If the branch condition is not met, the instruction in the delay slot is discarded.

Branch on Less Than

Zero and Link Likely

BLTZALL  rs, offset

The address of the instruction that follows delay slot is stored in register r31 (link register).

If the contents of register rs are less than zero, the program branches to the target address.  If the

branch condition is not met, the instruction in the delay slot is discarded.

Branch on Greater

Than or Equal to Zero

and Link Likely

BGEZALL  rs, offset

The address of the instruction that follows delay slot is stored in register r31 (link register).

If the contents of register rs are greater than or equal to zero, the program branches to the target

address.  If the branch condition is not met, the instruction in the delay slot is discarded.

Remark  sub: Sub-operation code

Instruction Format and Description

Branch on Coprocessor

0 True Likely

BC0TL offset

The 16-bit offset (shifted left by two bits and sign-extended) is added to the address of the

instruction in the delay slot to calculate the branch target address.

If the conditional signal of the coprocessor 0 is true, the program branches to the target address with

one-instruction delay.

If the branch condition is not met, the instruction in the delay slot is discarded.

Branch on Coprocessor

0 False Likely

BC0FL offset

The 16-bit offset (shifted left by two bits and sign-extended) is added to the address of the

instruction in the delay slot to calculate the branch target address.

If the conditional signal of the coprocessor 0 is false, the program branches to the target address

with one-instruction delay.

If the branch condition is not met, the instruction in the delay slot is discarded.

Remark  BC: BC sub-operation code

br: Branch condition identifier

op rs rt offset

REGIMM offsetrs sub

COP0 offsetBC br



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM 75

3.3.4 Special instructions

Special instructions mainly generate software exceptions.

Table 3-30.  Special Instructions

Instruction Format and Description

Synchronize

SYNC

Completes the load/store instruction executing in the current pipeline before the next load/store

instruction starts execution.

System Call
SYSCALL

Generates a system call exception, and then transits control to the exception handling program.

Breakpoint
BREAK

Generates a break point exception, and then transits control to the exception handling program.

Table 3-31.  Special Instructions (Extended ISA) (1/2)

Instruction Format and Description

Trap if Greater Than or

Equal

TGE  rs, rt

The contents of register rs are compared with those of register rt, treating both operands as signed

integers.  If the contents of register rs are greater than or equal to those of register rt, an exception

occurs.

Trap if Greater Than or

Equal Unsigned

TGEU  rs, rt

The contents of register rs are compared with those of register rt, treating both operands as unsigned

integers.  If the contents of register rs are greater than or equal to those of register rt, an exception

occurs.

Trap if Less Than

TLT  rs, rt

The contents of register rs are compared with those of register rt, treating both operands as signed

integers.  If the contents of register rs are less than those of register rt, an exception occurs.

Trap if Less Than

Unsigned

TLTU  rs, rt

The contents of register rs are compared with those of register rt, treating both operands as unsigned

integers.  If the contents of register rs are less than those of register rt, an exception occurs.

Trap if Equal
TEQ  rs, rt

If the contents of registers rs and rt are equal, an exception occurs.

Trap if Not Equal
TNE  rs, rt

If the contents of registers rs and rt are not equal, an exception occurs.

SPECIAL rs rt functrd sa

SPECIAL rs rt functrd sa



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM76

Table 3-31.  Special Instructions (Extended ISA) (2/2)

Instruction Format and Description

Trap if Greater Than or

Equal Immediate

TGEI  rs, immediate

The contents of register rs are compared with 16-bit sign-extended immediate data, treating both

operands as signed integers.  If the contents of register rs are greater than or equal to 16-bit sign-

extended immediate data, an exception occurs.

Trap if Greater Than or

Equal Immediate

Unsigned

TGEIU  rs, immediate

The contents of register rs are compared with 16-bit zero-extended immediate data, treating both

operands as unsigned integers.  If the contents of register rs are greater than or equal to 16-bit sign-

extended immediate data, an exception occurs.

Trap if Less Than

Immediate

TLTI  rs, immediate

The contents of register rs are compared with 16-bit sign-extended immediate data, treating both

operands as signed integers.  If the contents of register rs are less than 16-bit sign-extended

immediate data, an exception occurs.

Trap if Less Than

Immediate Unsigned

TLTIU  rs, immediate

The contents of register rs are compared with 16-bit zero-extended immediate data, treating both

operands as unsigned integers.  If the contents of register rs are less than 16-bit sign-extended

immediate data, an exception occurs.

Trap if Equal Immediate
TEQI  rs, immediate

If the contents of register rs and immediate data are equal, an exception occurs.

Trap if Not Equal

Immediate

TNEI  rs, immediate

If the contents of register rs and immediate data are not equal, an exception occurs.

Remark  sub: Sub-operation code

Instruction Format and Description

Prefetch

PREF  hint, offset (base)

Sign-extends a 16-bit offset and adds it to register base to generate a virtual address.  The operation

to be performed on that address is indicated by 5-bit hint.

Table 3-32.  Special Instructions (For VR5500)

Instruction Format and Description

Superscalar NOP

SSNOP

The processor waits until all preceding instructions have been committed or until writeback to a

register by the preceding load instruction has been completed.

REGIMM immediaters sub

op base hint offset

SPECIAL rs rd functrt sa



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM 77

3.3.5 Coprocessor instructions

The coprocessor instructions perform the operations of each coprocessor.  The coprocessor load and store

instructions are I-type instructions.  The format of the operation instructions of the coprocessor differs depending on

the coprocessor.

Table 3-33.  Coprocessor Instructions

Instruction Format and Description

Load Word to

Coprocessor z

LWCz  rt, offset (base)

Sign-extends an offset and adds it to register base to generate an address.

Loads the contents of a word specified by the address to general-purpose register rt of coprocessor z.

Store Word from

Coprocessor z

SWCz  rt, offset (base)

Sign-extends an offset and adds it to register base to generate an address.

Stores the contents of general-purpose register rt of coprocessor z in the memory location specified

by the address.

Instruction Format and Description

Move to Coprocessor z
MTCz  rt, rd

Transfers the contents of CPU register rt to register rd of coprocessor z.

Move from

Coprocessor z

MFCz  rt, rd

Transfers the contents of register rd of coprocessor z to CPU register rt.

Move Control to

Coprocessor z

CTCz  rt, rd

Transfers the contents of CPU register rt to coprocessor control register rd of coprocessor z.

Move Control from

Coprocessor z

CFCz  rt, rd

Transfers the contents of coprocessor control register rd of coprocessor z to CPU register rt.

Remark  sub: Sub-operation code

Instruction Format and Description

Coprocessor z

Operation

COPz cofun

Coprocessor z executes the operation defined for each coprocessor.

The CPU status is not affected by the operation of the coprocessor.

Remark  CO: Sub-operation identifier

op base rt offset

COPz sub rt 0rd

COPz CO cofun



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM78

Table 3-34.  Coprocessor Instructions (Extended ISA)

Instruction Format and Description

Doubleword Move to

Coprocessor z

DMTCz  rt, rd

Transfers the contents of general-purpose register rt of the CPU to register rd of coprocessor z.

Doubleword Move from

Coprocessor z

DMFCz  rt, rd

Transfers the contents of register rd of coprocessor z to general-purpose register rt of the CPU.

Remark  sub: Sub-operation code

Instruction Format and Description

Load Doubleword to

Coprocessor z

LDCz  rt, offset (base)

Sign-extends an offset and adds it to register base to generate an address.

Loads the contents of the doubleword specified by the address to a general-purpose register (rt if FR

= 1, or rt and rt + 1 if FR = 0) of coprocessor z.

Store Doubleword from

Coprocessor z

SDCz  rt, offset (base)

Sign-extends an offset and adds it to register base to generate an address.

Stores the contents of the doubleword of a general-purpose register (rt if FR = 1, or rt and rt + 1 if FR

= 0) of coprocessor z in the memory location specified by the address.

3.3.6 System control coprocessor (CP0) instructions

System control coprocessor (CP0) instructions perform operations specifically on the CP0 registers to manipulate

the memory management and exception handling facilities of the processor.

Table 3-35.  System Control Coprocessor (CP0) Instructions (1/2)

Instruction Format and Description

Move to System

Control Coprocessor

MTC0  rt, rd

The word data of general register rt in the CPU are loaded to general register rd in the CP0.

Move from System

Control Coprocessor

MFC0  rt, rd

The word data of general register rd in the CP0 are loaded to general register rt in the CPU.

Doubleword Move to

System Control

Coprocessor 0

DMTC0  rt, rd

The doubleword data of general register rt in the CPU are loaded to general register rd in the CP0.

Doubleword Move from

System Control

Coprocessor 0

DMFC0  rt, rd

The doubleword data of general register rd in the CP0 are loaded to general register rt in the CPU.

Remark  sub: Sub-operation code

COP0 sub rt 0rd

op base rt offset

COPz sub rt 0rd



CHAPTER 3   OUTLINE OF INSTRUCTION SET

Preliminary User’s Manual  U16044EJ1V0UM 79

Table 3-35.  System Control Coprocessor (CP0) Instructions (2/2)

Instruction Format and Description

Read Indexed TLB

Entry

TLBR

The TLB entry indexed by the Index register is loaded to the EntryHi, EntryLo0, EntryLo1, or

PageMask register.

Write Indexed TLB

Entry

TLBWI

The contents of the EntryHi, EntryLo0, EntryLo1, or PageMask register are loaded to the TLB entry

indexed by the Index register.

Write Random TLB

Entry

TLBWR

The contents of the EntryHi, EntryLo0, EntryLo1, or PageMask register are loaded to the TLB entry

indexed by the Random register.

Probe TLB for Matching

Entry

TLBP

The address of the TLB entry that matches the contents of EntryHi register is loaded to the Index

register.

Return from Exception
ERET

The program returns from exception, interrupt, or error trap.

Remark  CO: Sub-operation identifier

Instruction Format and Description

Cache Operation

CACHE  op, offset (base)

Sign-extends the 16-bit offset and adds to the contents of register base to generate a virtual address.

This virtual address is translated to physical address with TLB.  For this physical address, cache

operation that is indicated by 5-bit op is performed.

Table 3-36.  System Control Coprocessor (CP0) Instructions (For VR5500)

Instruction Format and Description

Wait
WAIT

The processor’s operating mode is shifted to standby mode.

Remark  CO: Sub-operation identifier

Instruction Format and Description

Move to Performance

Counter

MTPC  rt, reg

The contents of general-purpose register rt in the CPU are loaded to performance counter reg in the

CP0.

Move from

Performance Counter

MFPC  rt, reg

The contents of performance counter reg in the CP0 are loaded to general-purpose register rt in the

CPU.

Move to Performance

Event Specifier

MTPS  rt, reg

The contents of general-purpose register rt in the CPU are loaded to performance counter control

register reg in the CP0.

Move from

Performance Event

Specifier

MFPS  rt, reg

The contents of performance counter control register reg in the CP0 are loaded to general-purpose

register rt in the CPU.

Remark  sub: Sub-operation code

COP0   functCO

CACHE offsetbase op

COP0 codeCO funct

COP0 sub rt 0rd reg



Preliminary User’s Manual  U16044EJ1V0UM80

CHAPTER 4   PIPELINE

This chapter explains the pipeline.

4.1 Overview

The pipeline is one of the instruction execution formats.  It divides instruction execution processing into several

stages.  An instruction has been completely executed when it has gone through all the stages.  When one instruction

has been processed in one stage, the next instruction enters that stage.

The operating clock of the pipeline is called PClock, and one of its cycles is called PCycle.  Each stage of the

pipeline is executed in 1 PCycle.

The pipeline of the VR5500 has a two-way superscalar architecture in which two instructions are fetched at a time.

The instructions are executed in the pipeline out of order.  If the pipeline is completely filled, execution of two

instructions can be completed in 1PCycle.



CHAPTER 4   PIPELINE

Preliminary User’s Manual  U16044EJ1V0UM 81

4.1.1 Pipeline stages

The VR5500 has six execution units including integer operation, floating-point operation (including sum-of-

products operation), load/store, and branch units.  Each of these units operates independently.  Therefore, the

number of stages of the pipeline differs depending on the instruction.  For example, an integer arithmetic operation

instruction uses nine stages.

The stages that make up the pipeline include the following.

IF: Instruction fetch EX: Execution

BR: Branch prediction DF: Data fetch

IQ: Instruction queue AL: Data align

RN: Register renaming WB: Writeback

RS: Reservation station CoR: Commit register

RF: Register fetch CoM: Commit memory

Figure 4-1.  Pipeline Stages of VR5500 and Instruction Flow

EX WB

IF

Fetch pipeline

ALU0 (integer)

ALU1 (integer)

LSU (load/store)

BRU (JR/branch)

FPU (floating-point)

IQ

RN RS

RF

BR

EX WB

EX DF AL

EX1 EX2

EX1 EX2 WB

EX1 EX2 WB

CoR

Renaming & dispatch
pipeline

Execution pipeline Commit pipeline

CoM

IF IQ

In
st

ru
ct

io
n

qu
eu

e

RN RS

R
es

er
va

tio
n

st
at

io
n

R
en

am
in

g
re

gi
st

er

RF

CoR CoM

CoR CoM

FPU/MACU (floating-point/multiplication/division)



CHAPTER 4   PIPELINE

Preliminary User’s Manual  U16044EJ1V0UM82

4.1.2 Configuration of pipeline

The pipeline of the VR5500 is divided into four blocks.  Each block operates independently.

(1) Fetch pipeline

The fetch pipeline generates a speculative fetch stream in accordance with branch prediction and stores a

fetched instruction in a 16-entry instruction queue.  It can fetch two instructions per cycle from the 64-bit bus

connected to the instruction cache.  If the fetched instruction includes a branch or jump instruction, the fetch

pipeline immediately calculates the address at the destination by using a branch history table and information

on the return address stack, and changes the program flow.  As a result, all processing is speculatively issued.

Even if the execution pipeline does not execute a branch instruction, therefore, the fetch pipeline continues

processing a branch instruction and tracing an instruction stream without stalling, until the instruction queue

becomes full.

(2) Renaming & dispatch pipeline

The renaming & dispatch pipeline can receive up to two instructions from the instruction queue per cycle, and

assign a renaming register number to the received instructions.  At the same time, it overwrites the register

number specified as an operand with a renaming register number.  The renamed instructions are stored in the

reservation station (RS).  The VR5500 has an RS dedicated to each execution unit.  Four entries each are

available for the two ALUs, four entries for LSU, four entries for BRU, two entries for FPU, and two entries for

FPU/MACU.

This pipeline continues operating until the instruction queue becomes empty or the RS becomes full.

Each instruction stored in the RS is checked for its dependency upon other instructions and the utilization status

of the execution unit necessary for execution.  An instruction that has been judged as executable is selected

from the RS.  Up to two instructions can be selected per cycle.  The instruction sequence described in the

program is ignored.  The two selected instructions are packed into one instruction, like VLIW.  The packed

instructions are sent to the execution pipeline.



CHAPTER 4   PIPELINE

Preliminary User’s Manual  U16044EJ1V0UM 83

The types of instructions that can be packed are shown below.

Figure 4-2.  Combination of Instructions That Can Be Packed

INT

Higher-side
instruction

Lower-side
instruction

Higher-side
instruction

Lower-side
instruction

Higher-side
instruction

Lower-side
instruction

INT

INT BR

INT FP

MEM INT

MEM BR

MEM FP

FP INT

FP BR

FP FP

MAC INT

MAC BR

MAC FP

FP nop

INT nop

MEM nop

nop BR

nop MAC

Remark INT: Integer operation BR: Branch

FP: Floating-point operation MEM: Load/store (memory access)

MAC: Sum-of-products operation,

multiplication/division

nop: No operation

(3) Execution pipeline

The execution pipeline consists of six execution units.  The higher side of the packed instructions is sent to the

LSU, ALU0, and FPU/MACU, and is executed by one of these units.  The lower side is sent to the FPU/MACU,

ALU1, BRU, and FPU, and is executed by one of them.

The FPU/MACU and FPU execute floating-point operations.  The FPU/MACU is a FPU with a multiplier/divider

added, and can also execute integer multiplication/division.

All the execution results are stored in the renaming register assigned to the instruction along with exception

information that has been detected.

Instructions do not stall in the execution pipeline of the VR5500.  All dependency relationships and resource

conflicts are resolved by the renaming & dispatch pipeline before the execution pipeline.  Therefore, the

execution pipeline of the VR5500 is not provided with a mechanism for stall detection.



CHAPTER 4   PIPELINE

Preliminary User’s Manual  U16044EJ1V0UM84

Figure 4-3.  Instruction Flow in Execution Pipeline

ALU0 ALU1LSU BRU FPUFPU/MACU

Higher-side
instruction

Lower-side
instructionPacked instruction

RS RSRS RS RSRS

Instruction

(4) Commit pipeline

The commit pipeline controls the processor state.  The instructions that are executed by the execution pipeline

regardless of the program sequence are completed (committed) in the program sequence by this pipeline.  The

commit pipeline performs the following processing.

• Checking of exception/trap

• Updating store buffer

• Updating processor state



CHAPTER 4   PIPELINE

Preliminary User’s Manual  U16044EJ1V0UM 85

4.2 Branch Delay

The position of the instruction next to a branch instruction is called the branch delay slot.  The instruction in the

branch delay slot is executed regardless of whether the condition of the branch instruction (except the Branch Likely

instruction) is satisfied or not.

To accelerate branch processing, the VR5500 has a branch prediction mechanism.  This mechanism uses a

branch history table (BHT) with 4096 entries (2 bits each) to record satisfaction of the condition of branch

instructions executed in the past.  It also uses a return address stack (RAS) to hold the address to which execution

is to return after a function call.  The VR5500 predicts the target address of a branch instruction in accordance with

the BHT, and speculatively fetches and executes the subsequent instructions.

The pipeline of the VR5500 generates a branch delay of six cycles if branch prediction is wrong.  If branch

prediction is correct, the branch delay is 1 cycle.

Figure 4-4 shows how branch prediction is performed and the position of the branch delay slot.

Figure 4-4.  Branch Delay

(a) If branch prediction is correct

Branch for which
prediction is correct

Branch delay slot

Target

Branch delayNote

IF BR, IQ RN RS RF EX WB CoR

IF BR, IQ RN RS RF EX WB CoR

IF BR, IQ RN RS RF EX WB CoR

CoM

CoM

CoM

(b) If branch prediction is wrong

Branch for which
prediction is wrong

Branch delay slot

Target

Branch delayNote

IF BR, IQ RN RS RF EX WB CoR

IF BR, IQ RN RS RF EX WB CoR

IF BR, IQ RN RS RF EX WB CoR

CoM

CoM

CoM

Note  The branch delay is covered if there is a valid instruction in the instruction queue.



CHAPTER 4   PIPELINE

Preliminary User’s Manual  U16044EJ1V0UM86

4.3 Load Delay

The load delay instruction generates a delay until the subsequent instruction can use the result of loading.  The

processor performs the scheduling necessary for eliminating this delay.

Because the VR5500 uses an out-of-order mechanism to execute instructions, the delay can be covered by

executing an instruction that is not dependent upon the load instruction even if a load delay occurs.

Figure 4-5.  Load Delay

RF EX
Dispatch

Data transfer

RF EX DF AL

RF EX
Dispatch

RF EX

RF EX
Dispatch

RF EX

RF EX
Dispatch

RF EX

ADD

LW

4.3.1 Non-blocking load

To alleviate the penalty due to a cache miss, the data cache of the VR5500 has a non-blocking mechanism.  This

allows the VR5500 to continue accessing the cache while holding a cache miss, even if a cache miss occurs as a

result of executing a load instruction.  This means that the subsequent instructions, including other load instructions,

can be consecutively executed if they do not have dependency relationship with the load instruction that has caused

the cache miss.  Up to four cache misses can be held.



CHAPTER 4   PIPELINE

Preliminary User’s Manual  U16044EJ1V0UM 87

4.4 Exception Processing

If an exception occurs, the instruction that has caused the exception and all the subsequent instructions in the

pipeline are canceled.

If the instruction responsible for the exception has reached the commit stage, the following three events occur.

• The status and cause of the exception are written to each CP0 register.

• The current PC changes to an appropriate exception vector address.

• The previous exception bit is cleared.

As a result, all the instructions that had been issued before the exception occurred are completed, and all the

instructions issued after the instruction responsible for the exception are discarded.  Therefore, the EPC indicates

the value from which execution can be resumed.

Figure 4-6 shows an example of detecting an exception.

Figure 4-6.  Exception Detection

Exception detected

All instructions are aborted.

Instruction at exception
vector executed

IF BR, IQ RN RS RF EX WB CoR

IF BR, IQ RN RS RF EX WB

IF BR, IQ RN RS RF EX

IF BR, IQ RN RS RF

IF BR, IQ RN RS RF EX WB CoR

CoM

CoR

WB

EX

CoM

4.5 Store Buffer

The VR5500 has a 4-entry store buffer (SB) in the DCU so that it can speculatively execute store instructions.

The SB temporarily holds the store data of a speculatively executed store instruction, and actually writes data to the

cache when that store instruction is committed.

4.6 Write Transaction Buffer

The VR5500 has a write transaction buffer (WTB) that improves the performance of write operations to the

external memory.  The WTB is used for all transactions of the system interface.  The WTB is a four-stage FIFO and

can hold data of up to 256 bits.  It can therefore hold up to four read requests or one uncached write request or

cache line writeback.

The entire WTB is used for writeback data in case of a cache miss that requires writeback, and the processor can

perform processing in parallel with memory updating.  In the case of storing in an uncached area and a write-through

store, processing by the WTB and writing to the memory by the CPU are not executed in parallel.  If the WTB is full,

the subsequent store operation is stalled until there is a space available.

The WTB cannot be read or written by software.



Preliminary User’s Manual  U16044EJ1V0UM88

CHAPTER 5   MEMORY MANAGEMENT SYSTEM

The VR5500 has a memory management unit (MMU) that uses a high-speed translation lookaside buffer (TLB)

which translates virtual addresses into physical addresses.  This chapter explains in detail the operation of the TLB,

the CP0 registers used as a software interface with the TLB, and the memory mapping method used to translate

virtual addresses into physical addresses.

5.1  Processor Modes

5.1.1  Operating modes

The VR5500 has the following three operating modes with priority assigned by the system to these modes,

starting with the one at the top.

• Kernel mode (highest priority): In this mode, all the registers can be accessed and changed.  The nucleus of

the operating system operates in the kernel mode.

• Supervisor mode: The priority of this mode is lower than that of the kernel mode.  This mode is used for

sections assigned a lower importance by the operating system.

• User mode (lowest priority): This mode prevents users from interfering with each other.

The basic operating mode of the processor is the user mode.  When the processor processes an error (when the

ERL bit is set) or an exception (when the EXL bit is set), it enters the kernel mode.

The operating mode of the processor is set by the KSU field of the Status register and the ERL and EXL bits.

Table 5-1 shows the three operating modes, and the setting of the Status register related to the error and exception

levels.  A blank indicates that any setting is possible.

Table 5-1.  Operating Modes

Status Register Bit

KSU(1:0) EXL ERL

Operating Mode

10 0 0 User mode

01 0 0 Supervisor mode

00 0 0 Kernel mode

1

1

In the case of an exception or error, the EXL and ERL bits are set regardless of the setting of the KSU field.

When these bits are set, interrupts are disabled.  If the EXL bit is cleared by an exception handler to enable

processing of multiple interrupts, for example, the processor enters the mode set by the KSU field from the kernel

mode.  Therefore, change the KSU field before clearing the EXL bit by an exception handler.



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM 89

5.1.2  Instruction set modes

The instruction set mode of the processor determines which instructions are enabled.  By default, the MIPS IV

instruction set architecture (ISA) is implemented.  However, MIPS III ISA or MIPS I/II ISA can also be used to

maintain compatibility with a conventional machine.

The instruction set mode is set by bits UX, SX, and XX of the Status register.  Table 5-2 shows the setting of the

Status register related to the instruction set mode.  A blank indicates that any setting is possible.

Table 5-2.  Instruction Set Modes

Status Register Bit Instruction Set ModeOperating Mode

UX SX XX MIPS I, II MIPS III MIPS IV

User mode 0 0 Can be used Cannot be used Cannot be used

0 1 Can be used Cannot be used Can be used

1 0 Can be used Can be used Cannot be used

1 1 Can be used Can be used Can be used

Supervisor mode 0 Can be used Cannot be used Can be used

1 Can be used Can be used Can be used

Kernel mode Can be used Can be used Can be used

5.1.3  Addressing modes

The addressing mode of the processor determines whether a 32-bit or 64-bit memory address is to be generated.

Refer to Table 5-3 for the settings of the following addressing modes.

• In the kernel mode, 64-bit addressing is enabled by the KX bit.  All the instructions are always valid.

• In the supervisor mode, 64-bit addressing and the MIPS III instructions are enabled by the SX bit.

• In the user mode, 64-bit addressing and the MIPS III instructions are enabled by the UX bit.  In addition, the

MIPS IV instructions are enabled by the XX bit.

Table 5-3.  Addressing Modes

Status Register BitOperating Mode

UX SX KX

Addressing

Mode

User mode 0 32-bit

1 64-bit

Supervisor mode 0 32-bit

1 64-bit

Kernel mode 0 32-bit

1 64-bit



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM90

5.2  Translation Lookaside Buffer (TLB)

Virtual addresses are translated into physical addresses using an on-chip TLBNote.  The on-chip TLB is a fully-

associative memory that holds 48 entries, which provide mapping to odd/even page in pairs for one entry.  These

pages can have ten different sizes, 4 K, 16 K, 64 K, 256 K, 1 M, 4 M, 16 M, 64 M, 256 M, and 1 G, and can be

specified for each entry.

If it is supplied with a virtual address, each TLB entry checks the 48 entries simultaneously to see whether they

match the virtual addresses that are provided with the ASID field and saved in the EntryHi register.

If there is a virtual address match (hit) in the TLB, a physical address is created from the physical page number

and the offset value.

If no match occurs (miss), an exception is taken and software refills the TLB entry from the page table resident in

memory. The software writes to an entry selected using the Index register or a random entry indicated in the

Random register.

If more than one entry in the TLB matches the virtual address being translated, the operation is undefined.  In this

case, the TS bit of the Status register is set to 1, and a TLB refill exception occurs regardless of the valid bit status of

the TLB entry.  Replace the TLB entry using the exception handler and clear the TS bit to 0.

Note  Depending on the address space, virtual addresses may be translated to physical addresses without

using a TLB.  For example, address translation for the kseg0 or kseg1 address space does not use

mapping.  The physical addresses of these address spaces are determined by subtracting the base

address of the address space from the virtual addresses.

(1) Micro TLB

The VR5500 has two 4-entry micro TLBs in addition to a 48-entry TLB.  These TLBs are also full-associative

memories and are respectively dedicated to the translation of instruction and data addresses.

The micro TLBs are a subset of the TLB, and the page size can be set for each entry in the same manner as the

TLB.  If a mismatch occurs in a micro TLB, the entries are replaced with new entries from the TLB by using a

dummy LRU (Least Recently Used) algorithm.  The pipeline stalls while an entry is being transferred from the

TLB.



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM 91

5.2.1 Format of TLB entry

Figure 5-1 shows the TLB entry formats for both 32- and 64-bit modes. Each field of an entry has a corresponding

field in the EntryHi, EntryLo0, EntryLo1, or PageMask registers.

Figure 5-1.  Format of TLB Entry

(a) 32-bit addressing mode

127 96

0 0

126

MASK

95 64

VPN2 ASID0

75

G

77

63 32

0 C

61

PFN

62 3738

31 0

0 C

29

PFN

30 56

108109

717276

3435

23

D

D

33

1

V

V

0

0

(b) 64-bit addressing mode

255 192

0 0

222

MASK

223

128

R ASID0G

127 64

0 C

93

PFN

94 6970

63 0

0 C

29

PFN

30 56

204205

6667

23

D

D

65

1

V

V

0

0

189190191 167168

0

140141 135136

VPN2

139

The format of the EntryHi, EntryLo0, EntryLo1, and PageMask registers is almost the same as a TLB entry.

However, the bit at the position corresponding to the TLB G bit is reserved (0) in the EntryHi register.  The bit at the

position corresponding to the G bit of the EntryLo register is reserved (0) in the TLB.  For details of other fields, refer

to the description of the relevant registers.

The contents of the TLB entries can be read or written via the EntryHi, EntryLo0, EntryLo1, and PageMask

registers using a TLB manipulation instruction, as shown in Figure 5-2.  The target entry is either one specified by

the Index register, or a random entry indicated by the Random register.



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM92

Figure 5-2.  Outline of TLB Manipulation

TLB entry selected using
the Index register or
Random register

47

PageMask EntryHi EntryLo1 EntryLo0

0

TLB

0127/255

5.2.2 TLB instructions

The instructions used for TLB control are described below.

(1) TLBP (Translation lookaside buffer probe)

The TLBP instruction loads the Index register with a TLB entry number that matches the contents of the EntryHi

register.  If there is no matching TLB entry, the most significant bit of the Index register is set (1).

(2) TLBR (Translation lookaside buffer read)

The TLBR instruction writes the EntryHi, EntryLo0, EntryLo1, and PageMask registers with the contents of the

TLB entry indicated by the content of the Index register.

(3) TLBWI (Translation lookaside buffer write index)

The TLBWI instruction writes the contents of the EntryHi, EntryLo0, EntryLo1, and PageMask registers to the

TLB entry indicated by the contents of the Index register.

(4) TLBWR (Translation lookaside buffer write random)

The TLBWR instruction writes the contents of the EntryHi, EntryLo0, EntryLo1, and PageMask registers to the

TLB entry indicated by the contents of the Random register.

5.2.3 TLB exception

If there is no TLB entry that matches the virtual address, a TLB Refill exception occurs.  If the access control bits

(D and V) indicate that the access is not valid, a TLB modified or TLB invalid exception occurs.

Refer to CHAPTER 6 EXCEPTION PROCESSING for details of TLB exceptions.



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM 93

5.3  Virtual-to-Physical Address Translation

Translating a virtual address to a physical address begins by comparing the virtual address sent from the

processor with the virtual addresses of all entries in the TLB.  First, one of the following comparisons is made for the

virtual page number (VPN) of the address.

• In 32-bit mode: The higher bitsNote of the virtual address are compared to the contents of the VPN2 (virtual

page number divided by two) of each TLB entry.

• In 64-bit mode: The higher bitsNote of the virtual address are compared to the contents of the R and the VPN2

(virtual page number divided by two) of each TLB entry.

Note The number of bits differs depending on the page size.

The table below shows examples of the higher bits of the virtual address with page sizes of 16 MB and 4

KB.

Page Size

Addressing Mode

16 MB 4 KB

32-bit mode A(31:25) A(31:13)

64-bit mode A63, A62, A(39:25) A63, A62, A(39:13)

When there is an entry which has a field with the same contents in this comparison, if either of the following

applies, a match occurs.

• The Global bit (G) of the TLB entry is set to 1

• The ASID field of the virtual address is the same as the ASID field of the TLB entry.

This match is referred to as a TLB hit.

If the matching entry is in the TLB, the physical address and access control bits (C, D, V) are read out from that

entry.  In order to perform valid address translation, the entry’s V bit must be set (1), but this is unrelated to the

determination of the matching TLB entry.  An offset value is added to the physical address that was read out.  The

offset indicates an address inside the page frame space.  The offset part bypasses the TLB and the lower bits of the

virtual address are output as are.

If there is no match, the processor core generates a TLB refill exception and references the page table in the

memory in which the virtual addresses and physical addresses have been paired, the contents of which are then

written to the TLB via software.

Figure 5-3 shows a summary of address translation, and Figure 5-4 the TLB address translation flowchart.



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM94

Figure 5-3.  Virtual-to-Physical Address Translation

ASID VPN Offset

G ASID VPN

PFN

TLB
entry

PFN Offset

TLB

Physical address

Virtual address
<1> The virtual address page number
       (VPN, higher bits in the address) and
       ASID are compared with the
       corresponding area  in the TLB.

<2> If there is an entry matched, the page
       frame number (PFN) representing the
       higher bits of the physical address is
       output from the TLB.

<3> The offset is then added to the PFN,
       which bypasses the TLB.



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM 95

Figure 5-4.  TLB Address Translation

No

No

Yes

Yes

Address OK?

Virtual address
input

Physical address
output

User mode?

Address error
exception

No

Yes

VPN match?

No

Yes

G bit = 1?

No

Yes

V bit = 1? 

No

Yes

D bit = 1?

No

Yes

Uncached
area?

No

Yes

No

Yes

No

Yes

No

Yes

No write?

No

Yes

No

Yes

ASID match?

TLB invalid
exception

Physical address
output

Address OK?

Supervisor
mode?

Address OK?

Address error
exception

Physical address
output

32-bit
address?

TLB refill exception XTLB refill
exception

TLB modified
exception

Main memory access Cache access

TLB not used

No

Yes

Not a multi
hit?

TS bit of Status
register ← 1



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM96

5.3.1 32-bit addressing mode address translation

Figure 5-5 shows the virtual-to-physical address translation in the 32-bit mode addressing mode.  The page sizes

can be selected from the ten pattern, 4 KB (12 bits) to 1 GB (30 bits) in 4-multiply units.

• Shown at the top of Figure 5-5 is the virtual address space in which the page size is 4 KB and the offset is 12

bits.  The 20 bits excluding the ASID field represent the virtual page number (VPN), enabling selection of a

page table of 1 M entries.

• Shown at the bottom of Figure 5-5 is the virtual address space in which the page size is 16 MB and the offset

is 24 bits.  The 8 bits excluding the ASID field represent the VPN, enabling selection of a page table of 256

entries.

Figure 5-5.  Virtual Address Translation in 32-Bit Addressing Mode

Virtual address for
4 KB page × 1 M (220)

39 32 31 29 28 12   11 0

20 bits = 1 M page

TLB Virtual-to-physical address
translation with the TLB

The offset is used for
the physical address
without being changed.

PFN Offset

35 0

TLB

39 32 31 29 28 0

VPNASID Offset

24   23

8 bits = 256 page

VPN OffsetASID
Virtual address for
16 MB page × 256 (28)

The offset is used for
the physical address
without being changed.

Virtual-to-physical address
translation with the TLB

36-bit physical
address

Note

Note

Note User, supervisor, or kernel address space is selected by bits 31 to 29 of the virtual address.

Remark  Bits 35 to 32 of the physical address are not output in the 32-bit bus mode.



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM 97

5.3.2 64-bit addressing mode address translation

Figure 5-6 shows the virtual-to-physical address translation in the 64-bit mode addressing mode.  The page sizes

can be selected from the ten pattern, 4 KB (12 bits) to 1 GB (30 bits) in 4-multiply units.

• Shown at the top of Figure 5-6 is the virtual address space in which the page size is 4 KB and the offset is 12

bits.  The 28 bits excluding the ASID field represent the virtual page number (VPN), enabling selection of a

page table of 256 M entries.

• Shown at the bottom of Figure 5-6 is the virtual address space in which the page size is 16 MB and the offset

is 24 bits.  The 16 bits excluding the ASID field represent the VPN, enabling selection of a page table of 64 K

entries.

Figure 5-6.  Virtual Address Translation in 64-Bit Addressing Mode

Virtual address for
4 KB page × 256 M (228)

71 64 63 62 61 12   11 0

28 bits = 256 M page

TLB

PFN Offset

35 0

TLB

OffsetASID VPN0 or –1

40  39

36-bit physical
address

71 64 63 62 61 24  23 0

16 bits = 64 K page

OffsetASID VPN0 or –1

40   39

Virtual address for
16 MB page × 64 K (216)

Virtual-to-physical address
translation with the TLB

The offset is used for
the physical address
without being changed.

The offset is used for
the physical address
without being changed.

Virtual-to-physical address
translation with the TLB

Note

Note

Note  User, supervisor, or kernel address space is selected by bits 63 and 62 of the virtual address.

Remark  Bits 35 to 32 of the physical address are not output in the 32-bit bus mode.



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM98

5.4 Virtual Address Space

The address space of the CPU is extended in memory management system, by translating huge virtual memory

addresses into physical addresses.

The VR5500 has three types of virtual address spaces: user, supervisor, and kernel.  The addressing mode of

each of these virtual address spaces can be set to 32-bit or 64-bit mode.  In the 32-bit addressing mode, a virtual

address is 32 bits wide, and the maximum user area is 2 GB (231 bytes).  In the 64-bit addressing mode, the virtual

address width is 64 bits and the maximum user area is 1 TB (240 bytes).

The virtual address is extended with an address space identifier (ASID) (refer to Figures 5-5 and 5-6), which

reduces the frequency of TLB flushing when switching contexts.  This 8-bit ASID is in the CP0 EntryHi register, and

the Global (G) bit is in the EntryLo0 and EntryLo1 registers, described later in this chapter.

When the system interface is in the 32-bit bus mode, the VR5500 uses 32-bit physical addresses.  Consequently,

the physical address space is 4 GB.  In the 64-bit bus mode, the physical address space is 128 GB because the

VR5500 uses 36-bit physical address.

Caution  If the system interface of the VR5500 is in the 32-bit bus mode, an address error exception

does not occur and physical addresses are processed with bits 35 to 32 ignored, even if the

space is referenced so that bits 35 to 32 of the physical address are a value other than 0.



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM 99

5.4.1 User mode virtual address space

In user mode, a 2 GB (231 bytes) virtual address space (useg) can be used in 32-bit addressing mode.  In 64-bit

addressing mode, a 1 TB (240 bytes) virtual address space (xuseg) can be used.

useg and xuseg can be referenced via the TLB.  Whether a cache is used or not is determined for each page by

the TLB entry (depending on the C bit setting in the TLB entry).

The user address space can be accessed in supervisor mode and kernel mode.

The user segment starts at address 0 and the current active user process resides in either useg (in 32-bit

addressing mode) or xuseg (in 64-bit addressing mode).

The VR5500 operates in user mode when the Status register contains the following bit-values.

• KSU field = 10

• EXL bit = 0

• ERL bit = 0

In addition, the UX bit in the Status register selects addressing mode as follows.

• When UX bit = 0: 32-bit useg space is selected.

A TLB mismatch is processed by the 32-bit TLB refill exception handler.

• When UX bit = 1: 64-bit xuseg space is selected.

A TLB mismatch is processed by the 64-bit XTLB refill exception handler.

Figure 5-7 shows user mode address mapping and Table 5-4 lists the characteristics of the user segments.



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM100

Figure 5-7.  User Mode Address Space

0 x F F F F   F F F F

0 x 8 0 0 0   0 0 0 0

0 x 7 F F F   F F F F

0 x 0 0 0 0   0 0 0 0

32-bit mode

Address error

2 GB with TLB

mapping
useg

0 x F F F F   F F F F   F F F F   F F F F

0 x 0 0 0 0   0 1 0 0   0 0 0 0   0 0 0 0

0 x 0 0 0 0   0 0 F F   F F F F   F F F F

0 x 0 0 0 0   0 0 0 0   0 0 0 0   0 0 0 0

64-bit mode

Address error

1 TB with TLB

mapping
xuseg

Remark  When a 2’s complement overflow occurs in the address calculation, the calculated address is invalid

and the result is not defined.

Table 5-4.  32-Bit and 64-Bit User Mode Segments

Status Register Bit Value Segment Address Range SizeAddressing

Mode

Address Bit

Value KSU EXL ERL UX Name

32-bit A31 = 0 Any 0 0 0 useg 0x0000 0000

to

0x7FFF FFFF

2 GB

(231 bytes)

64-bit A(63:40) = 0 0 0 1 xuseg 0x0000 0000 0000 0000

to

0x0000 00FF FFFF FFFF

1 TB

(240 bytes)



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM 101

(1) useg (32-bit mode)

When the UX bit of in the Status register is 0 and the most significant bit of the virtual address is 0, this virtual

address space is labeled useg.  Any attempt to reference an address with the most-significant bit of 1 causes an

address error exception (refer to CHAPTER 6 EXCEPTION PROCESSING).

(2) xuseg (64-bit mode)

When the UX bit of the Status register is 1 and bits 63 to 40 of the virtual address are all 0, this virtual address

space is labeled xuseg, and 1 terabyte (240 bytes) of the user address space can be used.  Any attempt to

reference an address with bits 63 to 40 equal to 1 causes an address error exception (refer to CHAPTER 6

EXCEPTION PROCESSING).

5.4.2 Supervisor mode virtual address space

Supervisor mode layers the execution of operating systems.  Kernel operating systems at the highest layer are

executed in kernel mode, and the rest of the operating system is executed in supervisor mode.

suseg, sseg, xsuseg, xsseg, and csseg (all the spaces) can be referenced via the TLB.  Whether a cache is used

or not is determined for each page by the TLB entry (depending on the C bit setting in the TLB entry).

The supervisor address space can be accessed in kernel mode.

The processor operates in supervisor mode when the Status register contains the following bit-values.

• KSU field = 01

• EXL bit = 0

• ERL bit = 0

In addition, the SX bit in the Status register selects addressing mode as follows.

• When SX bit = 0: 32-bit supervisor space

A TLB mismatch is processed by the 32-bit TLB refill exception handler.

• When SX bit = 1: 64-bit supervisor space

A TLB mismatch is processed by the 64-bit XTLB refill exception handler.

Figure 5-8 shows supervisor mode address mapping and Table 5-5 lists the characteristics of the segments in

supervisor mode.



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM102

Figure 5-8.  Supervisor Mode Address Space

0 x F F F F   F F F F   F F F F   F F F F

0 x F F F F   F F F F   E 0 0 0   0 0 0 0

0 x F F F F   F F F F   D F F F   F F F F

0 x F F F F   F F F F   C 0 0 0   0 0 0 0

0 x F F F F   F F F F   B F F F   F F F F

0 x 4 0 0 0   0 1 0 0   0 0 0 0   0 0 0 0

0 x 3 F F F   F F F F   F F F F   F F F F

0 x 0 0 0 0   0 1 0 0   0 0 0 0   0 0 0 0

0 x 3 F F F   F F F F   F F F F   F F F F

0 x 0 0 0 0   0 1 0 0   0 0 0 0   0 0 0 0

0 x 0 0 0 0   0 0 F F   F F F F   F F F F

0 x 0 0 0 0   0 0 0 0   0 0 0 0   0 0 0 0

64-bit mode

Address error

0.5 GB with TLB

mapping

Address error

1 TB with TLB

mapping

Address error

1 TB with TLB

mapping

xsseg

csseg

xsuseg

0 x F F F F   F F F F

0 x E 0 0 0   0 0 0 0

0 x D F F F   F F F F

0 x C 0 0 0   0 0 0 0

0 x B F F F   F F F F

0 x 0 0 0 0   0 0 0 0

32-bit mode

Address error

Address error

2 GB with TLB

mapping

sseg

suseg

0.5 GB with TLB

mapping

0 x 8 0 0 0   0 0 0 0

0 x 7 F F F   F F F F

Remark  When a 2’s complement overflow occurs in the address calculation, the calculated address is invalid

and the result is not defined.



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM 103

Table 5-5.  32-Bit and 64-Bit Supervisor Mode Segments

Status Register Bit Value Segment Address Range SizeAddressing

Mode

Address Bit

Value KSU EXL ERL SX Name

32-bit A31 = 0 01

or

00

0 0 0 suseg 0x0000 0000

to

0x7FFF FFFF

2 GB

(231 bytes)

A(31:29) =

110

01

or

00

0 0 0 sseg 0xC000 0000

to

0xDFFF FFFF

512 MB

(229 bytes)

64-bit A(63:62) =

00

01

or

00

0 0 1 xsuseg 0x0000 0000 0000 0000

to

0x0000 00FF FFFF FFFF

1 TB

(240 bytes)

A(63:62) =

01

01

or

00

0 0 1 xsseg 0x4000 0000 0000 0000

to

0x4000 00FF FFFF FFFF

1 TB

(240 bytes)

A(63:62) =

11

01

or

00

0 0 1 csseg 0xFFFF FFFF C000 0000

to

0xFFFF FFFF DFFF FFFF

512 MB

(229 bytes)

(1) suseg (32-bit supervisor mode, user space)

When the SX bit of the Status register is 0 and the most-significant bit of the virtual address space is 0, the

suseg virtual address space is selected; it covers 2 GB (231 bytes) of the current user address space.  The

virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

(2) sseg (32-bit supervisor mode, supervisor space)

When the SX bit of the Status register is 0 and the higher 3 bits of the virtual address space are 110, the sseg

virtual address space is selected; it covers 512 MB (229 bytes) of the current supervisor virtual address space.

The virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

(3) xsuseg (64-bit supervisor mode, user space)

When the SX bit of the Status register is 1 and bits 63 and 62 of the virtual address space are 00, the xsuseg

virtual address space is selected; it covers 1 TB (240 bytes) of the current user address space.  The virtual

address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

(4) xsseg (64-bit supervisor mode, current supervisor space)

When the SX bit of the Status register is 1 and bits 63 and 62 of the virtual address space are 01, the xsseg

virtual address space is selected; it covers 1 TB (240 bytes) of the current supervisor virtual address space.  The

virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

(5) csseg (64-bit supervisor mode, separate supervisor space)

When the SX bit of the Status register is 1 and bits 63 and 62 of the virtual address space are 11, the csseg

virtual address space is selected; it covers 512 MB (229 bytes) of the separate supervisor virtual address space.

The virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address.



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM104

5.4.3 Kernel mode virtual address space

If the Status register satisfies any of the following conditions, the processor runs in kernel mode.

• KSU = 00

• EXL = 1

• ERL = 1

The addressing width in kernel mode varies according to the state of the KX bit of the Status register, as follows.

• When KX = 0: 32-bit kernel space is selected.

A TLB mismatch is processed by the 32-bit TLB refill exception handler.

• When KX = 1: 64-bit kernel space is selected.

A TLB mismatch is processed by the 32-bit XTLB refill exception handler.

The processor enters kernel mode whenever an exception is detected and it remains in kernel mode until an

exception return (ERET) instruction is executed and results in ERL and/or EXL = 0.  The ERET instruction restores

the processor to the mode existing prior to the exception.

Kernel mode virtual address space is divided into regions differentiated by the higher bits of the virtual address,

as shown in Figure 5-9.  Table 5-6 lists the characteristics of the 32-bit kernel mode segments, and Table 5-7 lists

the characteristics of the 64-bit kernel mode segments.



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM 105

Figure 5-9.  Kernel Mode Address Space

64-bit mode

0.5 GB with TLB
mapping

0.5 GB with TLB
mapping

0.5 GB without TLB
mapping,
uncached

0.5 GB without TLB
mapping,
cacheable

Address error

With TLB mapping

Address error

1 TB with TLB
mapping

Address error

1 TB with TLB
mapping

ckseg3

cksseg

ckseg1

ckseg0

xkseg

xkuseg

xksseg

32-bit mode

0.5 GB with TLB
mapping

0.5 GB without TLB
mapping,
cacheable

2 GB with TLB
mapping

kseg3

ksseg

kuseg

0.5 GB with TLB
mapping

kseg1

kseg0

0.5 GB without TLB
mapping,
uncached

Without TLB mapping
(see Figure 5-10)

xkphys

0 x F F F F   F F F F

0 x E 0 0 0   0 0 0 0

0 x 0 F F F   F F F F

0 x C 0 0 0   0 0 0 0

0 x B F F F   F F F F

0 x A 0 0 0   0 0 0 0

0 x 9 F F F   F F F F

0 x 8 0 0 0   0 0 0 0

0 x 7 F F F F   F F F F

0 x 0 0 0 0   0 0 0 0

0 x F F F F   F F F F   F F F F   F F F F

0 x F F F F   F F F F   E 0 0 0   0 0 0 0

0 x F F F F   F F F F   D F F F   F F F F

0 x F F F F   F F F F   C 0 0 0   0 0 0 0

0 x F F F F   F F F F   B F F F   F F F F

0 x F F F F   F F F F   A 0 0 0   0 0 0 0

0 x F F F F   F F F F   9 F F F   F F F F

0 x F F F F   F F F F   8 0 0 0   0 0 0 0

0 x F F F F   F F F F   7 F F F   F F F F

0 x C 0 0 0   0 0 F F   8 0 0 0   0 0 0 0

0 x C 0 0 0   0 0 F F   7 F F F   F F F F

0 x C 0 0 0   0 0 0 0   0 0 0 0   0 0 0 0

0 x B F F F   F F F F   F F F F   F F F F

0 x 8 0 0 0   0 0 0 0   0 0 0 0   0 0 0 0

0 x 7 F F F   F F F F   F F F F   F F F F

0 x 4 0 0 0   0 1 0 0   0 0 0 0   0 0 0 0

0 x 4 0 0 0   0 0 F F   F F F F   F F F F

0 x 4 0 0 0   0 0 0 0   0 0 0 0   0 0 0 0

0 x 3 F F F   F F F F   F F F F   F F F F

0 x 0 0 0 0   0 1 0 0   0 0 0 0   0 0 0 0

0 x 0 0 0 0   0 0 F F   F F F F   F F F F

0 x 0 0 0 0   0 0 0 0   0 0 0 0   0 0 0 0

Remark  When a 2’s complement overflow occurs in the address calculation, the calculated address is invalid

and the result is not defined.



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM106

Figure 5-10.  xkphys Area Address Space

Address error

64 GB without TLB
mapping, cacheable,

writeback

Address error

64 GB without TLB
mapping, uncached

Address error

64 GB without TLB
mapping, cacheable,

write-through

Address error

Address error

64 GB without TLB
mapping, uncached,

accelerated

64 GB without TLB
mapping, cacheable,

writeback

Address error

64 GB without TLB
mapping, cacheable,

write-through

Address error

Address error

Reserved

Reserved

0 x B F F F   F F F F   F F F F   F F F F

0 x B 8 0 0   0 0 1 0   0 0 0 0   0 0 0 0

0 x B 8 0 0   0 0 0 F   F F F F   F F F F

0 x B 8 0 0   0 0 0 0   0 0 0 0   0 0 0 0

0 x B 7 F F   F F F F   F F F F   F F F F

0 x B 0 0 0   0 0 1 0   0 0 0 0   0 0 0 0

0 x B 0 0 0   0 0 0 F   F F F F   F F F F

0 x B 0 0 0   0 0 0 0   0 0 0 0   0 0 0 0

0 x A F F F   F F F F   F F F F   F F F F

0 x A 8 0 0   0 0 1 0   0 0 0 0   0 0 0 0

0 x A 8 0 0   0 0 0 F   F F F F   F F F F

0 x A 8 0 0   0 0 0 0   0 0 0 0   0 0 0 0

0 x A 7 F F   F F F F   F F F F   F F F F

0 x A 0 0 0   0 0 1 0   0 0 0 0   0 0 0 0

0 x A 0 0 0   0 0 0 F   F F F F   F F F F

0 x A 0 0 0   0 0 0 0   0 0 0 0   0 0 0 0

0 x 9 F F F   F F F F   F F F F   F F F F

0 x 9 8 0 0   0 0 1 0   0 0 0 0   0 0 0 0

0 x 9 8 0 0   0 0 0 F   F F F F   F F F F

0 x 9 8 0 0   0 0 0 0   0 0 0 0   0 0 0 0

0 x 9 7 F F   F F F F   F F F F   F F F F

0 x 9 0 0 0   0 0 1 0   0 0 0 0   0 0 0 0

0 x 9 0 0 0   0 0 0 F   F F F F   F F F F

0 x 9 0 0 0   0 0 0 0   0 0 0 0   0 0 0 0

0 x 8 F F F   F F F F   F F F F   F F F F

0 x 8 8 0 0   0 0 1 0   0 0 0 0   0 0 0 0

0 x 8 8 0 0   0 0 0 F   F F F F   F F F F

0 x 8 8 0 0   0 0 0 0   0 0 0 0   0 0 0 0

0 x 8 7 F F   F F F F   F F F F   F F F F

0 x 8 0 0 0   0 0 1 0   0 0 0 0   0 0 0 0

0 x 8 0 0 0   0 0 0 F   F F F F   F F F F

0 x 8 0 0 0   0 0 0 0   0 0 0 0   0 0 0 0



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM 107

Table 5-6.  32-Bit Kernel Mode Segments

Status Register Bit ValueAddress Bit

Value KSU EXL ERL KX

Segment

Name

Virtual Address Physical

Address

Size

A31 = 0 0 kuseg 0x0000 0000

to

0x7FFF FFFF

TLB map 2 GB

(231 bytes)

A(31:29) = 100 0 kseg0 0x8000 0000

to

0x9FFF FFFF

0x0000 0000

to

0x1FFF FFFF

512 MB

(229 bytes)

A(31:29) = 101 0 kseg1 0xA000 0000

to

0xBFFF FFFF

0x0000 0000

to

0x1FFF FFFF

512 MB

(229 bytes)

A(31:29) = 110 0 ksseg 0xC000 0000

to

0xDFFF FFFF

TLB map 512 MB

(229 bytes)

A(31:29) = 111

KSU = 00

or

EXL = 1

or

ERL = 1

0 kseg3 0xE000 0000

to

0xFFFF FFFF

TLB map 512 MB

(229 bytes)

(1) kuseg (32-bit kernel mode, user space)

When the KX bit of the Status register is 0 and the most-significant bit of the virtual address space is 0, the

kuseg virtual address space is selected; it is the current 2 GB (231 bytes) user address space.  The virtual

address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

References to kuseg are mapped through TLB.  Whether cache can be used or not is determined by bit C of

each page’s TLB entry.

If the ERL bit of the Status register is 1, the user address space is assigned 2 GB (231 bytes) without TLB

mapping and becomes unmapped (with virtual addresses being used as physical addresses) and uncached.

(2) kseg0 (32-bit kernel mode, kernel space 0)

When the KX bit of the Status register is 0 and the higher 3 bits of the virtual address space are 100, the kseg0

virtual address space is selected; it is the current 512 MB (229 bytes) physical space.

References to kseg0 are not mapped through TLB; the physical address selected is defined by subtracting

0x8000 0000 from the virtual address.  The K0 field of the Config register controls cacheability (see 5.5.8

Config register (16)).

(3) kseg1 (32-bit kernel mode, kernel space 1)

When the KX bit of the Status register is 0 and the higher 3 bits of the virtual address space are 101, the kseg1

virtual address space is selected; it is the current 512 MB (229 bytes) physical space.

References to kseg1 are not mapped through TLB; the physical address selected is defined by subtracting

0xA000 0000 from the virtual address.  Caches are disabled for accesses to these addresses, and main

memory (or memory-mapped I/O device registers) is accessed directly.



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM108

(4) ksseg (32-bit kernel mode, supervisor space)

When the KX bit of the Status register is 0 and the higher 3 bits of the virtual address space are 110, the ksseg

virtual address space is selected; it is the current 512 MB (229 bytes) virtual address space.  The virtual address

is extended with the contents of the 8-bit ASID field to form a unique virtual address.

References to ksseg are mapped through TLB.  Whether cache can be used or not is determined by bit C of

each page’s TLB entry.

(5) kseg3 (32-bit kernel mode, kernel space 3)

When the KX bit of the Status register is 0 and the higher 3 bits of the virtual address space are 111, the kseg3

virtual address space is selected; it is the current 512 MB (229 bytes) kernel virtual space.  The virtual address is

extended with the contents of the 8-bit ASID field to form a unique virtual address.

References to kseg3 are mapped through TLB. Whether cache can be used or not is determined by bit C of

each page’s TLB entry.

Table 5-7.  64-Bit Kernel Mode Segments

Status Register Bit Value Segment Virtual Address Physical Address SizeAddress Bit Value

KSU EXL ERL KX Name

A(63:62) = 00 1 xkuseg 0x0000 0000 0000 0000

to

0x0000 00FF FFFF FFFF

TLB map 1 TB (240 bytes)

A(63:62) = 01 1 xksseg 0x4000 0000 0000 0000

to

0x4000 00FF FFFF FFFF

TLB map 1 TB (240 bytes)

A(63:62) = 10 1 xkphys 0x8000 0000 0000 0000

to

0xBFFF FFFF FFFF FFFF

0x0000 0000 0000

to

0x000F FFFF FFFF

236 bytes

(see (8))

A(63:62) = 11 1 xkseg 0xC000 0000 0000 0000

to

0xC000 00FF 7FFF FFFF

TLB map 240 to 231 bytes

A(63:62) = 11,

A(63:31) = −1

1 ckseg0 0xFFFF FFFF 8000 0000

to

0xFFFF FFFF 9FFF FFFF

0x0000 0000

to

0x1FFF FFFF

512 MB

(229 bytes)

A(63:62) = 11,

A(63:31) = −1

1 ckseg1 0xFFFF FFFFA000 0000

to

0xFFFF FFFF BFFF FFFF

0x0000 0000

to

0x1FFF FFFF

512 MB

(229 bytes)

A(63:62) = 11,

A(63:31) = −1

1 cksseg 0xFFFF FFFF C000 0000

to

0xFFFF FFFF DFFF FFFF

TLB map 512 MB

(229 bytes)

A(63:62) = 11,

A(63:31) = −1

KSU = 00

or

EXL = 1

or

ERL = 1

1 ckseg3 0xFFFF FFFF E000 0000

to

0xFFFF FFFF FFFF FFFF

TLB map 512 MB

(229 bytes)



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM 109

(6) xkuseg (64-bit kernel mode, user space)

When the KX bit of the Status register is 1 and bits 63 and 62 of the virtual address space are 00, the xkuseg

virtual address space is selected; it is the 1 TB (240 bytes) current user address space.  The virtual address is

extended with the contents of the 8-bit ASID field to form a unique virtual address.

References to xkuseg are mapped through TLB.  Whether cache can be used or not is determined by bit C of

each page’s TLB entry.

If the ERL bit of the Status register is 1, the user address space is assigned 2 GB (231 bytes) without TLB

mapping and becomes unmapped (with virtual addresses being used as physical addresses) and uncached.

(7) xksseg (64-bit kernel mode, normal supervisor space)

When the KX bit of the Status register is 1 and bits 63 and 62 of the virtual address space are 01, the xksseg

address space is selected; it is the 1 TB (240 bytes) normal supervisor address space.  The virtual address is

extended with the contents of the 8-bit ASID field to form a unique virtual address.

References to xksseg are mapped through TLB. Whether cache can be used or not is determined by bit C of

each page’s TLB entry.

(8) xkphys (64-bit kernel mode, physical spaces)

When the KX bit of the Status register is 1and bits 63 and 62 of the virtual address space are 10, the virtual

address space is called xkphys and one of the 8 spaces of the unmapped area is selected.  Internally, bits 35 to

0 of the virtual address are used for the physical address as is.  If any of bits 58 to 32 of the address is 1, an

attempt to access that address results in an address error.

Bits 61 to 59 of the virtual address indicate the cache usability of each space and its attribute (algorithm).  Table

5-8 shows cache algorithm corresponding to 8 address spaces.

Table 5-8.  Cache Algorithm and xkphys Address Space

Bits 61 to 59 Cache Usability and Algorithm Address

0 Reserved 0x8000 0000 0000 0000 to 0x8000 000F FFFF FFFF

1 Cacheable, write-through, write-allocated 0x8800 0000 0000 0000 to 0x8800 000F FFFF FFFF

2 Uncached 0x9000 0000 0000 0000 to 0x9000 000F FFFF FFFF

3 Cacheable, writeback 0x9800 0000 0000 0000 to 0x9800 000F FFFF FFFF

4 Cacheable, write-through, write-allocated 0xA000 0000 0000 0000 to 0xA000 000F FFFF FFFF

5 Cacheable, writeback 0xA800 0000 0000 0000 to 0xA800 000F FFFF FFFF

6 Reserved 0xB000 0000 0000 0000 to 0xB000 000F FFFF FFFF

7 Uncached, accelerated 0xB800 0000 0000 0000 to 0xB800 000F FFFF FFFF



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM110

(9) xkseg (64-bit Kernel mode, physical spaces)

When the KX bit of the Status register is 1 and bits 63 and 62 of the virtual address space are 11, the virtual

address space is called xkseg and selected as either of the following.

• Kernel virtual space xkseg, the current kernel virtual space; the virtual address is extended with the contents

of the 8-bit ASID field to form a unique virtual address

References to xkseg are mapped through TLB.  Whether cache can be used or not is determined by bit C of

each page’s TLB entry.

• One of the four 32-bit kernel compatibility spaces, as described in the next section.

(10) 64-bit kernel mode compatible spaces (ckseg0, ckseg1, cksseg, and ckseg3)

If the conditions listed below are satisfied in kernel mode, ckseg0, ckseg1, cksseg, or ckseg3 (each having 512

MB) is selected as a compatible space according to the state of the bits 30 and 29 (lower 2 bits) of the address.

• The KX bit of the Status register is 1.

• Bits 63 and 62 of the 64-bit virtual address are 11.

• Bits 61 to 31 of the virtual address are 0xFFF FFFF.

(a) ckseg0

This space is an unmapped area, compatible with the 32-bit mode kseg0 space.  The K0 field of the Config

register controls cacheability and coherency. (Refer to 5.5.8 Config register (16)).

(b) ckseg1

This space is an unmapped and uncached area, compatible with the 32-bit mode kseg1 space.

(c) cksseg

This space is the ordinaty supervisor virtual space, compatible with the 32-bit mode ksseg space.

References to cksseg are mapped through TLB.  Whether cache can be used or not is determined by bit C

of each page’s TLB entry.

(d) ckseg3

This space is the kernel virtual space, compatible with the 32-bit mode kseg3 space.

References to ckseg3 are mapped through TLB.  Whether cache can be used or not is determined by bit C

of each page’s TLB entry.



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM 111

5.5 Memory Management Registers

The CP0 registers used for managing the memory are described below.  The memory management registers are

listed in Table 5-9.  Each register has a unique identification number that is referred to as its register number.  CP0

registers not listed below are used for exception processing (refer to CHAPTER 6 EXCEPTION PROCESSING for

details).

Table 5-9.  CP0 Memory Management Registers

Register Name Register No.

Index register 0

Random register 1

EntryLo0 register 2

EntryLo1 register 3

PageMask register 5

Wired register 6

EntryHi register 10

PRId register 15

Config register 16

LLAddr registerNote 17

TagLo register 28

TagHi register 29

Note This register is defined to preserve compatibility with other

VR Series products and has no actual operation.

With the VR5500, the hardware automatically avoids a hazard that occurs when a TLB or CP0 register is changed,

except when settings related to instruction fetch are made.  For the hazards related to instruction fetch, refer to

CHAPTER 19 INSTRUCTION HAZARDS.



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM112

5.5.1 Index register (0)

The Index register is a 32-bit, readable/writable register containing five lower bits to index an entry in the TLB.

The most-significant bit of the register shows the success or failure of a TLB probe (TLBP) instruction.

The Index field also specifies the TLB entry affected by TLB read (TLBR) or TLB write index (TLBWI) instructions.

If the TLBP instruction has been successful, the index of the TLB entry that matches the contents of the EntryHi

register is set to the Index field.

Since the contents of the Index register after reset are undefined, initialize this register via software.

Figure 5-11.  Index Register

31 0

P Index

5

0

630

P: Indicates whether probing is successful or not. It is set (1) if the latest TLBP instruction fails.  It is

cleared (0) when the TLBP instruction is successful.

Index: Specifies an index to a TLB entry that is a target of the TLBR or TLBWI instruction.

0: Reserved.  Write 0 to these bits.  Zero is returned when these bits are read.

5.5.2 Random register (1)

The Random register is a read-only register. The lower 6 bits are used in referencing a TLB entry. This register is

decremented each time an instruction is executed. The values that can be set in the register are as follows.

• The lower bound is the content of the Wired register.

• The upper bound is 47.

The Random register specifies the entry in the TLB that is affected by the TLB write random (TLBWR) instruction.

The register can be read to verify proper operation of the processor.

The Random register is set to the value of the upper boundary upon Cold Reset. This register is also set to the

upper boundary when the Wired register is written.

Figure 5-12.  Random Register

31 0

Random

5

0

6

Random: TLB random index

0: Reserved.  Write 0 to these bits.  Zero is returned when these bits are read.



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM 113

5.5.3 EntryLo0 (2) and EntryLo1 (3) registers

The EntryLo register consists of two registers that have identical formats: the EntryLo0 register, used for even

pages and the EntryLo1 register, used for odd pages.  The EntryLo0 and EntryLo1 registers are both read-/write-

accessible.  They are used to access the lower bits of the on-chip TLB.  When a TLB read/write operation is carried

out, the EntryLo0 and EntryLo1 registers accesses the contents of the lower bits of TLB entries at even and odd

addresses, respectively.

Since the contents of these registers after reset are undefined, initialize these registers via software.

Figure 5-13.  EntryLo0 and EntryLo1 Registers

0 PFN C D V G

01236 530 2931
EntryLo0
32-bit mode

0 PFN C D V G

01236 530 2931
EntryLo1
32-bit mode

0 PFN C D V G

01236 530 2963
EntryLo0
64-bit mode

0 PFN C D V G

01236 530 2963
EntryLo1
64-bit mode

PFN: Page frame number; higher bits of the physical address.

C: Specifies the page attribute of the TLB entry (refer to Table 5-10).

D: Dirty. If this bit is set to 1, the page is writable. This bit is actually a write-protect bit that software can

use to prevent alteration of data.

V: Valid. If this bit is set to 1, it indicates that the TLB entry is valid; if an entry with this bit 0 is hit, a TLB

Invalid exception (TLBL or TLBS) occurs.

G: Global.  If this bit is set in both the EntryLo0 and EntryLo1 registers, then the processor ignores the

ASID during TLB lookup.

0: Reserved.  Write 0 to these bits.  Zero is returned when these bits are read.

Caution  If the system interface of the VR5500 is in the 32-bit bus mode, an address error exception

does not occur and physical addresses are processed with bits 35 to 32 ignored, even if the

space is referenced so that bits 35 to 32 of the physical address are a value other than 0.



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM114

The C bit specifies whether the cache is used when a page is referenced.  To use the cache, select an algorithm

from “writeback” or “write-through, write-allocated”.  Table 5-10 shows the page attributes selected by the C bit.

Table 5-10.  Cache Algorithm

Value of C Bit Cache Algorithm

0 Reserved

1 Cacheable, write-through, write-allocated

2 Uncached

3 Cacheable, writeback

4 Cacheable, write-through, write-allocated, unguarded

5 Cacheable, writeback, unguarded

6 Reserved

7 Uncached, accelerated

 “Unguarded” means enabling a speculative refill operation to the external memory before a speculatively issued

load/store instruction is committed if a data cache miss occurs because of the instruction.  Therefore, the unguarded

attribute is valid only for the data cache.



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM 115

5.5.4 PageMask register (5)

The PageMask register is a readable/writable register used for reading from or writing to the TLB; it holds a

comparison mask that sets the page size for each TLB entry, as shown in Table 5-11.  Page sizes can be set from 1

KB to 256 KB in five ways.

TLB read/write operation uses this register as either a source or a destination; bits 30 to 13 that are targets of

comparison are masked during address translation.

Since the contents of the PageMask register after reset are undefined, initialize this register via software.

Table 5-11 lists the mask pattern for each page size.  If the mask pattern is one not listed below, the TLB

operates unexpectedly.

Figure 5-14.  PageMask Register

31

0 0MASK

30 01213

MASK: Page comparison mask, which determines the virtual page size for the corresponding entry.

0: Reserved. Write 0 to these bits.  Zero is returned when these bits are read.

Table 5-11.  Mask Values and Page Sizes

BitPage Size

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13

4 KB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 KB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

64 KB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

256 KB 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

1 MB 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

4 MB 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

16 MB 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

64 MB 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

256 MB 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 GB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM116

5.5.5 Wired register (6)

The Wired register is a readable/writable register that specifies the lower boundary of the random entry of the

TLB.  Wired entries cannot be overwritten by a TLBWR instruction.  They can, however, be overwritten by a TLBWI

instruction. Random entries can be overwritten by both instructions.

Figure 5-15.  Positions Indicated by Wired Register

TLB

47

0

Range of random

entries

Value specified by

the Wired register

Range of wired entries 

The Wired register is cleared to 0 after reset.  Writing this register also sets the Random register to the value of its

upper boundary (see 5.5.2 Random register (1)).

Figure 5-16.  Wired Register

31 0

Wired

5

0

6

Wired: Specifies TLB wired boundary

0: Reserved.  Write 0 to these bits.  Zero is returned when these bits are read.



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM 117

5.5.6 EntryHi register (10)

The EntryHi register is a writable register and is used to access the higher bits of the TLB.  The EntryHi register

holds the higher bits of a TLB entry for TLB read/write operations.  If a TLB refill, TLB invalid, or TLB modified

exception occurs, the EntryHi register is set with the virtual page number (VPN2) and the ASID for a virtual address

where an exception occurred.  See CHAPTER 6 EXCEPTION PROCESSING for details of TLB exceptions.

The ASID is used to read from or write to the ASID field of the TLB entry.  It is also checked with the ASID of the

TLB entry as the ASID of the virtual address during address translation.

The EntryHi register is accessed by the TLBP, TLBWR, TLBWI, and TLBR instructions.

Figure 5-17.  EntryHi Register

31

VPN2 ASID0

1213 078
32-bit
mode

63

FiII ASIDVPN2

6162 0
64-bit
mode

3940 1213 78

R 0

VPN2: Virtual page number divided by two (mapping to two pages)

ASID: 8-bit address space ID field. This field enables the TLB to be shared by several processes. The virtual

address of each process may be duplicated.

R: Space type (00 → User, 01 → Supervisor, 11 → Kernel).  Matches bits 63 and 62 of the virtual address.

Fill: Reserved.  Ignored on write.   Zero is returned when these bits are read.

0: Reserved.  Write 0 to these bits.  Zero is returned when these bits are read.



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM118

5.5.7 PRId (processor revision ID) register (15)

The 32-bit, read-only processor revision ID (PRId) register contains information identifying the implementation

and revision level of the CPU and CP0.

Figure 5-18.  PRId Register

31 0

Rev0

1516 78

Imp

Imp: CPU processor ID number (0x55 for the VR5500)

Rev: CPU processor revision number

0: Reserved.  Write 0 to these bits.  Zero is returned when these bits are read.

The processor revision number is stored as a value in the form yx, where y is a major revision number in bits 7 to

4 and x is a minor revision number in bits 3 to 0.

The processor revision number can distinguish some revisions of the chip, however there is no guarantee that

changes to the chip will necessarily be reflected in the PRId register, or that changes to the revision number

necessarily reflect real chip changes.  Therefore, create a program that does not depend on the processor revision

number field.

5.5.8 Config register (16)

The Config register indicates/sets various statuses of processors on the VR5500.

Bits 31 to 28 and 21 to 3 are set by hardware after reset.  These are read-only bits, and their status when

accessed by software can be checked.

Bits 27 to 22 and 2 to 0 are readable/writable and can be manipulated by software.  Since these bits are

undefined after reset, initialize these bits via software.



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM 119

Figure 5-19.  Config Register (1/2)

31

0 EC EP EM 11 EW 0 BE 1 1 0 011 011 1 1 0 K01

30 2728 2324 2122 1920 17 16 15 14 13 12 11 9 8 6 5 4 3 2 018

EC: Sets the division ratio of the system clock to PClock.

000 → Divided by 2

001 → Divided by 2.5

010 → Divided by 3

011 → Divided by 3.5

100 → Divided by 4

101 → Divided by 4.5

110 → Divided by 5

111 → Divided by 5.5

EP: Sets the transfer rate of block write data.  The number of data words differs depending on the bus mode

of the system interface (the transfer pattern is the same).

• 32-bit bus mode

0000 → DDDDDDDD (1 word/1 cycle)

0001 → DDxDDxDDxDDx (2 words/3 cycles)

0010 → DDxxDDxxDDxxDDxx (2 words/4 cycles)

0011 → DxDxDxDxDxDxDxDx (2 words/4 cycles)

0100 → DDxxxDDxxxDDxxxDDxxx (2 words/5 cycles)

0101 → DDxxxxDDxxxxDDxxxxDDxxxx (2 words/6 cycles)

0110 → DxxDxxDxxDxxDxxDxxDxxDxx (2 words/6 cycles)

0111 → DDxxxxxxDDxxxxxxDDxxxxxxDDxxxxxx (2 words/8 cycles)

1000 → DxxxDxxxDxxxDxxxDxxxDxxxDxxxDxxx (2 words/8 cycles)

Other → Reserved

• 64-bit bus mode

0000 → DDDD (1 doubleword/1 cycle)

0001 → DDxDDx (2 doublewords/3 cycles)

0010 → DDxxDDxx (2 doublewords/4 cycles)

0011 → DxDxDxDx (2 doublewords/4 cycles)

0100 → DDxxxDDxxx (2 doublewords/5 cycles)

0101 → DDxxxxDDxxxx (2 doublewords/6 cycles)

0110 → DxxDxxDxxDxx (2 doublewords/6 cycles)

0111 → DDxxxxxxDDxxxxxx (2 doublewords/8 cycles)

1000 → DxxxDxxxDxxxDxxx (2 doublewords/8 cycles)

Other → Reserved



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM120

Figure 5-19.  Config Register (2/2)

EM: Sets SysAD bus timing mode.  The mode that can be selected differs depending on the bus mode of the

system interface.

• In normal mode

00 → VR4000 compatible mode

01 → Reserved

10 → Pipeline write mode

11 → Write re-issuance mode

• In out-of-order return mode

00, 10 → Pipeline mode

01, 11 → Re-issuance mode

EW: Sets SysAD bus mode (bus width).

00 → 64-bit bus mode

01 → 32-bit bus mode

Other → Reserved

BE: Sets big-endian mode.

0 → Little endian

1 → Big endian

K0: Sets cache algorithm of kseg0.

001 → Cacheable, write-through, write-allocated

010 → Uncached

011 → Cacheable, writeback

100 → Cacheable, write-through, write-allocated, unguarded

101 → Cacheable, writeback, unguarded

111 → Uncached, accelerated

Other → Reserved

1: 1 is returned when read.

0: 0 is returned when read.



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM 121

5.5.9 LLAddr (load linked address) register (17)

The LLAddr register is a read/write register and indicates the physical address that was read by the last LL

instruction.

This register is used only for diagnostic purposes.

The PAddr field indicates the physical address PA(35:4) that is read when the LL instruction is executed.

The contents of the LLAddr register after reset are undefined.

Figure 5-20.  LLAddr Register

31

PAddr

0

Paddr: Bits 35 to 4 of physical address read by last LL instruction



CHAPTER 5   MEMORY MANAGEMENT SYSTEM

Preliminary User’s Manual  U16044EJ1V0UM122

5.5.10  TagLo (28) and TagHi (29) registers

The TagLo and TagHi registers are 32-bit readable/writable registers that hold the cache tag during cache

initialization, cache diagnostics, or cache error processing.  The Tag registers are written by the CACHE and MTC0

instructions.

The contents of these registers after reset are undefined.

Figure 5-21.  TagLo and TagLo Registers

31

PTagLo

015

TagLo

31

0

0

TagHi

678

PState P

4

R

3

L 0

PTagLo: Specifies physical address bits 31 to 10.

Pstate: Indicates the status of the cache.

00 → Invalid

10 → Clean

11 → Dirty

Other → Reserved

L: Sets the cache line lock.

0 → Not locked

1 → Locked

R: Specifies the way of the cache that is a candidate for replacement.  The candidate for replacement is

determined by the LRU algorithm.

0 → Way 0

1 → Way 1

P: Even parity bit for the cache tag

0: Reserved.  Write 0 to these bits.  Zero is returned when these bits are read.

The Index_Store_Tag operation of the CACHE instruction writes the value of the P bit of the TagLo register to the

P bit of the cache tag as is (parity is not calculated).  An operation other than the Index_Store_Tag operation that

changes the contents of the cache writes the value of the parity calculated by the processor to the P bit of the cache

tag.

The Index_Load_Tag operation of the CACHE instruction writes the value of the P bit of the target cache tag to

the P bit of the TagLo register.



Preliminary User’s Manual  U16044EJ1V0UM 123

CHAPTER  6   EXCEPTION  PROCESSING

This chapter describes CPU exception processing, including an explanation of the hardware that processes

exceptions.  For details of FPU exceptions, see CHAPTER 8 FLOATING-POINT EXCEPTIONS.

6.1  Exception Processing Operation

The processor receives exceptions from a number of sources, including translation lookaside buffer (TLB) misses,

arithmetic overflows, I/O interrupts, and system calls.  When the CPU detects an exception, the normal sequence of

instruction execution is suspended and the processor enters kernel mode (refer to CHAPTER 5 MEMORY

MANAGEMENT SYSTEM for a description of system operating modes).  The processor then disables interrupts and

moves control for execution to the exception handler (fixed at a specific address as an exception processing routine

implemented by software).  For the exception handler, save the state of the processor, including the contents of the

program counter, the current operating mode (user or supervisor), statuses, and interrupt enable.  These can be

restored when the exception has been processed.

When an exception occurs, the CPU loads the exception program counter (EPC) register with an address where

execution can restart after the exception has been processed.  The restart address in the EPC register is the

address of the instruction that caused the exception or, if the instruction was being executed in a branch delay slot,

the address of the branch instruction preceding the delay slot.

In addition, registers that hold address, cause, and status information during exception processing are also

available.  For details, refer to 6.2 Exception Processing Registers.  For details of exception processing, refer to

6.4 Details of Exceptions.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM124

6.2  Exception Processing Registers

This section explains the CP0 registers that are used in exception processing.  Table 6-1 lists these registers,

along with their number-each register has a unique identification number that is referred to as its register number.

The CP0 registers not listed in the table are used in memory management (for details, see CHAPTER 5  MEMORY

MANAGEMENT SYSTEM).

The exception handler examines the CP0 registers during exception processing to determine the cause of the

exception and the state of the CPU at the time the exception occurred.

Table 6-1.  CP0 Exception Processing Registers

Register Name Register No.

Context register 4

BadVAddr register 8

Count register 9

Compare register 11

Status register 12

Cause register 13

EPC register 14

WatchLo register 18

WatchHi register 19

XContext register 20

Performance Counter register 25

Parity Error register 26

Cache Error register 27

ErrorEPC register 30

With the VR5500, the hardware automatically avoids a hazard that occurs when a TLB or CP0 register is changed,

except when settings related to instruction fetch are made.  For the hazards related to instruction fetch, refer to

CHAPTER 19 INSTRUCTION HAZARDS.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM 125

6.2.1  Context register (4)

The Context register is a read-/write-accessible register and indicates an entry in the page table entry (PTE) array

in the memory.  This array shows the operating system structure, and stores the virtual-to-physical address table.

When a TLB miss occurs, the operating system loads the unsuccessfully translated entry from the PTE to the TLB.

The Context register is used by the TLB refill exception handler for loading TLB entries.

The Context register duplicates some of the information provided in the BadVAddr register, but the information is

arranged in a form that is more useful for a TLB exception handler.

The contents of the Context register after reset are undefined.

Figure 6-1.  Context Register

31

PTEBase 0BadVPN2

2223 034

32-bit mode

63

PTEBase 0

0

64-bit mode

2223 34

BadVPN2

PTEBase: Base address of the page table entry.

BadVPN2: This field holds the value obtained by halving the virtual page number of the most recent virtual

address for which translation failed.

0: Reserved.  Write 0 to these bits.  Zero is returned when these bits are read.

The PTEBase field is used only by the operating system as the pointer to the current PTE array on the memory.

The 19-bit BadVPN2 field contains bits 31 to 11 of the virtual address that caused the TLB miss; bit 10 is

excluded because a single TLB entry maps to an even-odd page pair.  For a 4 KB page size, this format can directly

address the pair-table of 8-byte PTEs.  When the page size is 16 KB or more, shifting or masking this value

produces the correct PTE reference address.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM126

6.2.2  BadVAddr register (8)

The Bad Virtual Address (BadVAddr) register is a read-only register that saves the most recent virtual address

that failed to have a valid translation, or that had an addressing error.  Figure 7-2 shows the format of the BadVAddr

register.

If an address error occurs as a result of an instruction fetch in the 64-bit mode and a virtual address is stored in

the BadVAddr register, all of bits 58 to 40 are 0 or 1.

The contents of the BadVAddr register after reset are undefined.

Caution This register saves no information after a bus error exception, because it is not an address

error exception.

Figure 6-2. BadVAddr Register

31

BadVAddr

0

32-bit mode

63 0

64-bit mode BadVAddr

BadVAddr: Most recent virtual address for which an addressing error occurred, or for which address

translation failed.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM 127

6.2.3  Count register (9)

The readable/writable Count register acts as a timer.  It is incremented in synchronization with the frequency of

1/2 PClock, regardless of the instruction execution or pipeline progress status.

This register is a free-running type.  When the register reaches all 1, it rolls over to 0 at the next event and

continues incrementing.  This register is used for self-diagnostic test, system initialization, or the establishment of

inter-process synchronization.

The contents of the Count register after reset are undefined.

Figure 6-3.  Count Register

31 0

Count

Count: Most recent count value.

6.2.4  Compare register (11)

The Compare register causes a timer interrupt; it holds a value but does not change on its own.  When the value

of the Count register (see 6.2.3 Count register (9)) equals the value of the Compare register, the IP7 bit in the

Cause register is set.  When the IP7 bit is set, this causes an interrupt as soon as the interrupt is enabled.

Writing a value to the Compare register, as a side effect, clears the timer interrupt request.

For diagnostic purposes, the Compare register is a read/write register. Normally, this register should be only used

for a write.

The contents of the Compare register after reset are undefined.

Figure 6-4.  Compare Register Format

31 0

Compare

Compare: Value that is compared with the count value of the Count register.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM128

6.2.5  Status register (12)

The Status register is a readable/writable register that contains the operating mode, the interrupt enabling, and

diagnostic states of the processor.

Figure 6-5.  Status Register

31 027

DS

28 26 25 24 1516 78 6 5 4 23 1

CU(2:0) 0 FR 0 KX SX UX IEKSU ERL EXLIM(7:0)

30

XX

XX: Enables use of the MIPS IV instruction set in the user mode (0 → Disables use, 1 → Enables use).

CU: Enables use of three coprocessors (0 → Disables use, 1 → Enables use).

In the kernel mode, CP0 can be always used regardless of the CU0 bit.

CP2 is reserved for future expansion.

FR: Number of floating-point registers usable (0 → 16, 1 → 32)

DS: Self-diagnosis status field (See Figure 6-6.)

IM: Interrupt mask.  Enables external, internal, coprocessor, and software interrupts (0 → Disables, 1 →
Enables).  This field consists of 8 bits and controls eight interrupts.

Each interrupt is allocated to the corresponding bit of this field as follows.

IM7: Masks timer interrupts or Int5# and external write requests.

IM(6:2): Masks ordinary external interrupts (Int(4:0)# and external write request).

IM(1:0): Masks software interrupts.

KX: Enables 64-bit addressing in kernel mode (0 → 32-bit, 1 → 64-bit). If this bit is set, an XTLB refill

exception occurs if a TLB miss occurs in the kernel mode address space.

In addition, 64-bit operations are always valid in kernel mode.

SX: Enables 64-bit addressing and operation in supervisor mode (0 → 32-bit, 1 → 64-bit).  If this bit is

set, an XTLB refill exception occurs if a TLB miss occurs in the supervisor mode address space.

UX: Enables 64-bit addressing and operation in user mode (0 → 32-bit, 1 → 64-bit).  If this bit is set, an

XTLB refill exception occurs if a TLB miss occurs in the user mode address space.

KSU: Sets and indicates the operating mode (10 → User, 01 → Supervisor, 00 → Kernel).

ERL: Sets and indicates the error level (0 → Normal, 1 → Error).

EXL: Sets and indicates the exception level (0 → Normal, 1 → Exception).

IE: Sets and indicates interrupt enabling/disabling (0 → Disabled, 1 → Enabled).

0: RFU.  Write 0 to this bit.  Zero is returned when this bit is read.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM 129

Figure 6-6 shows the details of the Diagnostic Status (DS) field.

Figure 6-6.  Status Register Diagnostic Status Field

0 TS SR 0 CH CE DEBEVDME

23 21 20 19 18 17 162224

DME: Enables setting of debug mode (0 → Disables, 1 → Enables).

BEV: Specifies base address of TLB refill exception vector and general-purpose exception vector (0 →
Normal, 1 → Bootstrap).

TS: Occurrence of TLB shutdown (0 → Does not occur, 1 → Occurs)

This bit is used to avoid an adverse effect if two or more TLB entries match the same virtual address.

When this bit is set (1), a TLB refill exception occurs.

TLB shutdown also occurs if the TLB entry that matches a virtual address is invalidated (by clearing the

V bit of the entry).

SR: Occurrence of soft reset or NMI (0 → Does not occur, 1 → Occurs)

CH: Condition bit of CP0 (0 → False, 1 → True).  This bit can be read or written only by software and is not

affected by hardware.

CE: When this bit is 1, the contents of the Parity Error register are used to set or change the check bit of the

cache (see 6.2.4).

DE: Enables exception occurrence in case of cache parity error (0 → Enables, 1 → Disables).

0: Reserved.  Write 0 to this bit.  0 is returned if this bit is read.

The field of the Status register that sets the mode and access status is explained next.

(1) Interrupt enable

Interrupts are enabled when all of the following conditions are true:

• IE is set to 1.

• EXL is cleared to 0.

• ERL is cleared to 0.

• The appropriate bit of the IM is set to 1.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM130

(2) Operating modes

The following Status register bit settings are required for user, kernel, and supervisor modes.

• The processor is in the user mode when the KSU field is 10, the EXL bit is 0, and the ERL bit is 0.

• The processor is in the supervisor mode when the KSU field is 01, the EXL bit is 0, and the ERL bit is 0.

• The processor is in the kernel mode when the KSU field is 00, the EXL bit is 1, or the ERL bit is 1.

Accessing the kernel address space is enabled only in the kernel mode.

Accessing the supervisor address space is enabled in the supervisor mode and kernel mode.

Accessing the user address space is enabled in all modes.

(3) Addressing mode

The following Status register bit settings select 32- or 64-bit operation for user, kernel, and supervisor operating

modes.  Enabling 64-bit operation permits the execution of 64-bit opcodes and translation of 64-bit addresses.

64-bit operation for user, kernel and supervisor modes can be set independently.

• 64-bit addressing for the kernel mode is enabled when the KX bit is 1.  64-bit operations are always valid in

the kernel mode.

If a TLB miss occurs in the kernel mode address space when this bit is set, an XTLB refill exception occurs.

• 64-bit addressing and operations are enabled for the supervisor mode when the SX bit = 1.

If a TLB miss occurs in the supervisor mode address space when this bit is set, an XTLB refill exception

occurs.

• 64-bit addressing and operations are enabled for the user mode when the UX bit = 1.

If a TLB miss occurs in the user mode address space when this bit is set, an XTLB refill exception occurs.

(4) Status at reset

At reset, the contents of the Status register are undefined except for the following bits.

• The SR bit is 0 when a cold reset is executed and is 1 when a soft reset is executed or an NMI occurs.

• ERL bit = 1 and BEV bit = 1



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM 131

6.2.6  Cause register (13)

The 32-bit readable/writable Cause register holds the cause of the most recent exception.  A 5-bit in the exception

code field indicates one of the exception causes (see Table 6-2).  Other bits hold the detailed information of the

specific exception.  All bits in the Cause register, excepting the IP1 and IP0 bits, are read-only; IP1 and IP0 are used

for software interrupts.

The contents of the Cause register after reset are undefined.

Figure 6-7.  Cause Register

31 0

0

30

0

29 1516 8 67 12

ExcCode0IP(7:0)

2728

CEBD 0

BD: Indicates whether the most recent exception occurred in the branch delay slot (1 → In delay slot, 0

→ Normal).

CE: Indicates the coprocessor number in which a coprocessor unusable exception occurred.

This field will remain undefined for as long as no coprocessor unusable exception occurs.

IP: Indicates whether an interrupt is pending (1 → No interrupt pending, 0 → No interrupt).

Interrupt requests are assigned to the bits as follows.

IP7: Timer interrupt request (INT5#  and external write request)

IP(6:2): Normal interrupt requests (INT(4:0)#  and external write request)

IP(1:0): Software interrupt requests. These bits generate a software interrupt when they are set to

1 by software.

ExcCode: Exception code field (see Table 6-2 for details).

0: Reserved.  Write 0 to these bits.  Zero is returned when these bits are read.

Eight interrupt requests are provided in the VR5500, and requests states are reflected in IP(7:0).  For details of

interrupt function, refer to CHAPTER 16 INTERRUPTS.

•••• IP7

This bit indicates a timer interrupt request, assertion of the interrupt request pin Int5#, and the occurrence of

an interrupt due to an external write request.  It is set when the contents of the count register are equal to

those of the compare register, when the Performance Counter overflows, when the Int#5 signal is asserted, or

when data is written to an internal register by an external write request.

Whether the timer interrupt request, Int5# signal, or interrupt request generated by the external write request

is used is specified by the TIntSel signal at reset.

•••• IP(6:2)

Bits IP(6:2) reflect the logical sum of two internal registers.  One of the registers latches the status of interrupt

request pins Int(4:0)# in each cycle.  Data is written to the other register by the external write request of the

system interface.

•••• IP1, IP0

A software interrupt request can be set or cleared by manipulating bits IP1 and IP0.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM132

The following table describes the exception codes.

Table 6-2.  Exception Codes

ExcCode Mnemonic Description

0 Int Interrupt exception

1 Mod TLB modified exception

2 TLBL TLB refill exception (load or instruction fetch)

3 TLBS TLB refill exception (store)

4 AdEL Address error exception (load or instruction fetch)

5 AdES Address error exception (store)

6 IBE Bus error exception (instruction fetch)

7 DBE Bus error exception (data load or store)

8 Sys System call exception

9 Bp Breakpoint exception

10 RI Reserved instruction exception

11 CpU Coprocessor unusable exception

12 Ov Operation overflow exception

13 Tr Trap exception

14 − Reserved

15 FPE Floating-point exception

16-22 − Reserved

23 Watch Watch exception

24-31 − Reserved

To indicate the cause of the floating-point exception in detail, the exception code included in the floating-point

Control/Status register is used (refer to CHAPTER 8 FLOATING-POINT EXCEPTIONS).



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM 133

6.2.7  EPC (exception program counter) register (14)

The EPC (exception program counter) register is a readable/writable register that contains the address at which

processing resumes after an exception has been processed, as shown below.

• Virtual address of the instruction that directly caused the exception.

• Virtual address of the preceding branch or jump instruction (when the instruction associated with the

exception is in a branch delay slot, and the BD bit in the Cause register is set (1)).

• Virtual address of the instruction immediately after the WAIT instruction when the standby mode is released

by an interrupt exception immediately after execution of the WAIT instruction

If an address error exception due to instruction fetch occurs and a virtual address is stored in the EPC register in

the 64-bit mode, all of bits 58 to 40 are cleared to 0 or set to 1.

The EXL bit in the Status register is set (1) to keep the processor from overwriting the address of the exception-

causing instruction contained in the EPC register in the event of another exception.

The contents of the EPC register after reset are undefined.

Figure 6-8.  EPC Register

31

EPC

0

32-bit mode

63 0

64-bit mode EPC

EPC: Address for a program to be restarted after exception processing.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM134

6.2.8  WatchLo (18) and WatchHi (19) registers

The VR5500 can detect a request to reference the physical address specified by the WatchLo and WatchHi

registers. This function can also be used as a debugging function to generate a watch exception at the execution of

a load/store instruction.

Since the contents of these registers after reset are undefined, initialize these registers via software.

Figure 6-9.  WatchLo and WatchHi Registers

31 0

PAddr0

23

0

1

R W

31

0 PAddr1

4 3 0

WatchLo

WatchHi

Paddr1: Bits 35 to 32 of physical address.

PAddr0: Bits 31 to 3 of physical address.

R: Enables an exception occurrence when a load instruction is executed (0 → Enables, 1 → Disables).

W: Enables an exception occurrence when a store instruction is executed (0 → Enables, 1 → Disables).

0: Reserved.  Write 0 to these bits.  Zero is returned when these bits are read.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM 135

6.2.9  XContext register (20)

The readable/writable XContext register indicates an entry in the page table entry (PTE), an operating system

data structure that stores virtual-to-physical address translations.  If a TLB miss occurs, the operating system loads

the untranslated data from the PTE into the TLB to handle the software error.

The XContext register is used by the XTLB Refill exception handler to load TLB entries in 64-bit addressing

mode.

The XContext register duplicates some of the information provided in the BadVAddr register, and puts it in a form

useful for the XTLB exception handler.

This register is included solely for operating system use.  The operating system sets the PTEBase field in this

register, as needed.

The contents of the XContext register after reset are undefined.

Figure 6-10.  XContext Register

63 0

PTEBase 0

343233 3031

BadVPN2R

PTEBase: The PTEBase field is a base address of the page table entry.

R: Address space type (00 → user, 01 → supervisor, 11 → kernel). The setting of this field matches

virtual address bits 63 and 62.

BadVPN2: Virtual address for which translation is invalid (bits 39 to 13).

0: Reserved.  Write 0 to these bits.  Zero is returned when these bits are read.

Only the operating system uses the PTEBase field as a pointer to the current PTE array on memory.

The R field is written by hardware in case of a TLB miss.

The 27-bit BadVPN2 field has bits 39 to 11 of the virtual address that caused the TLB refill; bit 12 is excluded

because a single TLB entry maps to an even-odd page pair.  For a 4 KB page size, this register format can be used

as a pointer that references the pair-table of 8-byte PTEs.  When the page size is 16 KB or more, shifting or masking

this value produces the appropriate PTE reference address.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM136

6.2.10  Performance Counter register (25)

The Performance Counter register consists of four registers: two counter registers and two control registers.

Each register is a 32-bit read/write register.  The VR5500 uses the Performance Counter register to count the number

of events that have occurred in the processor, and can generate a timer interrupt request when the Performance

Counter register overflows.

A counter register is incremented when an event specified by a control register occurs.  The two counter registers

correspond to the two control registers, and each counter register operates independently of each other.

The control register specifies an event to count, the mode at that time, and enables occurrence of an interrupt

request.

When a counter register overflows, the IP7 bit of the Cause register is set if the control register enables

occurrence of an interrupt.  Even after the counter register overflows, it continues counting regardless of whether an

interrupt request is reported.

When a cold reset is executed, the contents of all these registers are initialized to 0.  The contents of these

registers are retained after a warm reset.

Figure 6-11.  Performance Counter Register

31 0

Count

23

S

1

K EXL

31

0

0

Counter
register

Control
register

45

IE U

61011

Event IP

9

CE

Count: Performance count value

CE: Enables performance count.

Event: Sets an event to count (refer to Table 6-3).

IP: Indicates occurrence of an interrupt.  This bit is set (1) if the counter register overflows.  Writing 0 to

this bit clears the interrupt request.

IE: Enables occurrence of an interrupt.  When this bit is set (1), the IP7 bit of the Cause register is set (1)

if the counter register overflows.

U: When this bit is set (1), counting is performed if an event occurs in the user mode.

S: When this bit is set (1), counting is performed if an event occurs in the supervisor mode.

K: When this bit is set (1), counting is performed if an event occurs in the kernel mode and if the ERL

and EXL bits are 0.

EXL: When this bit is set (1), counting is performed if an event occurs in the kernel mode and if the EXL bit

is 0.

0: Reserved.  Write 0 to these bits.  0 is returned if these bits are read.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM 137

Table 6-3 shows the setting of the Event field.

Table 6-3.  Events to Count

Event Field Event

0 Processor clock cycle

1 Instruction execution

2 Execution of load/prefetch/cache instruction

3 Execution of store instruction

4 Execution of branch instruction

5 Execution of floating-point instruction

6 Doubleword flush to main memory

7 TLB refill

8 Data cache miss

9 Instruction cache miss

10 Branch prediction miss

11-15 Reserved

Remark If execution of an instruction is set as an event, it is

assumed that the instruction is executed when it

causes an exception, and the instruction is counted as

an event.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM138

6.2.11  Parity Error register (26)

The Parity Error register reads/writes the data parity bit of the cache for initializing the cache, self-diagnosis, and

error processing.

The parity is read to the Parity Error register by the CACHE instruction Index_Load_Tag.

If the CE bit of the Status register is set, the contents of the Parity Error register are written instead of the parity to

the data cache by a store instruction and to the instruction cache by the Fill operation of the CACHE instruction.

The contents of the Parity Error register are undefined at reset.

Figure 6-12.  Parity Error Register

31 0

0 Parity

78

Parity: Parity bit of cache data.

• For data cache

Bit 0: Even parity for the least significant byte

Bit 1: Even parity for the second least significant byte

Bit 2: Even parity for the third least significant byte

Bit 3: Even parity for the fourth least significant byte

Bit 4: Even parity for the fourth most significant byte

Bit 5: Even parity for the third most significant byte

Bit 6: Even parity for the second most significant byte

Bit 7: Even parity for the most significant byte

• For instruction cache

Bit 0: Even parity for the lower word

Bit 1: Even parity for the higher word

0: Reserved.  Write 0 to these bits.  Zero is returned when these bits are read.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM 139

6.2.12  Cache Error register (27)

The Cache Error register is a 32-bit read-only register and indicates the status of a parity error in the cache.  The

parity error cannot be corrected.

The Cache Error register has cache index bits that indicate the cause of an error, and status bits.

The contents of the Cache Error register after reset are undefined.

Figure 6-13.  Cache Error Register

030 29

EC ED

28 27

ET ES

26 25

EE EB

24

0

31

ER

ER: Type of cache (0 → Instruction, 1 → Data)

EC: Cache level of error (0 → Internal, 1 → Reserved)

ED: Indicates whether a data area error has occurred (0 → No error, 1 → Error).

ET: Indicates whether a tag area error has occurred (0 → No error, 1 → Error).

ES: Set if an error occurs in the first doubleword.

EE: Set if an error occurs on the SysAD bus.

EB: Set if a data error occurs in addition to an instruction error (indicated by other bit).  If this bit is set, it

indicates that flushing is required for the data cache after the instruction error has been processed.

0: Reserved.  Write 0 to these bits.  Zero is returned when these bits are read.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM140

6.2.13  ErrorEPC register (30)

The ErrorEPC (error exception program counter) register is similar to the EPC register.  It is used to store the

program counter value at which the reset, soft reset, NMI, or cache error exception has been processed.  The

readable/writable ErrorEPC register holds any of the following virtual address at which instruction execution can

resume after servicing an error.

• Virtual address of the instruction that directly caused the exception.

• Virtual address of the preceding branch or jump instruction (when the instruction associated with the

exception is in a branch delay slot, and the BD bit in the Cause register is set (1)).

• Virtual address of the instruction immediately after the WAIT instruction when the standby mode is released

by a reset, soft reset, NMI, or cache error exception immediately after execution of the WAIT instruction

There is no branch delay slot indication for the ErrorEPC register.

Figure 6-14.  ErrorEPC Register

31

ErrorEPC

0

32-bit mode

63

ErrorEPC

0

64-bit mode

ErrorEPC: Program counter that indicates the restart address after a reset, soft reset, NMI, or cache error

exception.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM 141

6.3  Details of Exceptions

If an exception occurs in the processor, the EXL bit of the Status register is set to 1, and the system enters the

kernel mode.  Usually, the KSU field of the Status register is reset to 00 and the EXL bit is reset to 0 by an exception

handler to enable occurrence of an exception in the exception handler after information has been saved.  Re-set the

EXL bit to 1 using the exception handler so that the saved information is not lost by any other exception while it is

being restored.

When the exception processing has been completed, the setting of the KSU field before the occurrence of the

exception is restored and the EXL bit is reset to 0.  For details, refer to the description of the ERET instruction in

CHAPTER 17 CPU INSTRUCTION SET.

Remark If both the EXL and ERL bits of the Status register are 0, the user mode, supervisor mode, or kernel

mode is selected as the operating mode, depending on the value of the KSU field of the Status register.

If either of the EXL or ERL bit is 1, the processor enters the kernel mode.

6.3.1  Exception types

Exceptions are classified as the following types, according to the internal status of the processor retained when

an exception occurs.

• Reset exceptions

• Soft reset exceptions (NMI exception)

• Cache error exceptions

• Processor exceptions other than above (general exceptions)

When an exception occurs, the registers in the processor are set as follows

(1) Reset exceptions

T: undefined

Random ← TLBENTRIES − 1

Wired ← 0

Config ← 0 || EC || undefined6 || 110110 || BE || 110011011110 || undefined3

ErrorEPC ← PC

SR ← undefined9 || 1 || undefined19 || 1 || undefined2

PerformanceCounter ← 0

PC ← 0xFFFF FFFF BFC0 0000

(2) Soft reset and NMI exceptions

T: ErrorEPC ← PC

SR ← SR31:23 || 1 || SR21 || 1 || SR19:3 || 1 || SR1:0

PC ← 0xFFFF FFFF BFC0 0000



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM142

(3) Cache error exceptions

T: ErrorEPC ← PC

CacheErr ← ER || EC || ED || ET || ES || EE || EB || 025

SR ← SR31:3 || 1 || SR1:0

if SR22 = 1 then  /* When the BEV bit is set to 1 */

  PC ← 0xFFFF FFFF BFC0 0200 + 0x100  /* Access to the ROM area   */

else

  PC ← 0xFFFF FFFF A000 0000 + 0x100  /* Access to the main memory area */

endif

(4) General exceptions

T: Cause ← BD || 0 || CE || 012 || Cause15:8 || ExcCode || 02

if SR1 = 0 then  /* User or supervisor mode when exception processing is not in progress  */

  EPC ← PC

endif

SR ← SR31:2 || 1 || SR0

if SR22 = 1 then  /* When the BEV bit is set to 1 */

  PC ← 0xFFFF FFFF BFC0 0200 + vector  /* Access to the uncached area */

else

  PC←0xFFFF FFFF 8000 0000 + vector  /* Access to the cache area */

endif



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM 143

6.3.2  Exception vector address

If an exception occurs, an exception vector address is set to the program counter, and processor’s processing

branches from the main program.  Locate a program that processes the exception (exception handler) at the position

of the exception vector address.

The vector address is the sum of a base address and a vector offset.  The vector address differs depending on

the type of exception.

64-/32-bit mode exception vectors and their offset values are shown below.

Table 6-4.  32-Bit Mode Exception Vector Addresses

Exception Vector Base Address (Virtual Address) Vector Offset

Reset, soft reset, NMI 0xBFC0 0000

(BEV bit is automatically set to 1)

0x0000

Cache error 0xA000 0000 (BEV = 0)

0xBFC0 0200 (BEV = 1)

0x0100

TLB mismatch, EXL = 0 0x0000

XTLB mismatch, EXL = 0 0x0080

Other

0x8000 0000 (BEV = 0)

0xBFC0 0200 (BEV = 1)

0x0180

Table 6-5.  64-Bit Mode Exception Vector Addresses

Exception Vector Base Address (Virtual Address) Vector Offset

Reset, soft reset, NMI 0xFFFF FFFF BFC0 0000

(BEV bit is automatically set to 1)

0x0000

Cache error 0xFFFF FFFF A000 0000 (BEV = 0)

0xFFFF FFFF BFC0 0200 (BEV = 1)

0x0100

TLB mismatch, EXL = 0 0x0000

XTLB mismatch, EXL = 0 0x0080

Other

0xFFFF FFFF 8000 0000 (BEV = 0)

0xFFFF FFFF BFC0 0200 (BEV = 1)

0x0180

•••• Vector of reset, soft reset, and NMI exception

The vector address (virtual) of each of the reset, soft reset, and NMI exceptions is in the kseg1 (uncached,

non-TLB mapping) area.

•••• Vector of cache error exception

The vector address (virtual) of the cache error exception is in the kseg1 (uncached, non-TLB mapping) area.

•••• Vector of TLB refill exception (EXL = 0)

When the BEV bit is 0, the vector address (virtual) of this exception is in the kseg0 (cacheable, non-TLB

mapping) area.

When the BEV bit is 1, the vector address (virtual) of this exception is in kseg1 (uncached, non-TLB mapping)

area.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM144

•••• Vector of general exception

When the BEV bit is 0, the vector address (virtual) of this exception is in the kseg0 (cacheable, non-TLB

mapping) area.

When the BEV bit is 1, the vector address (virtual) of this exception is in kseg1 (uncached, non-TLB mapping)

area.

(1) Selecting TLB refill exception vector

The ISA of MIPS III or later has the following two TLB refill exception vectors.

• For referencing 32-bit address space (TLB mismatch)

• For referencing 64-bit address space (XTLB mismatch)

The TLB mismatch vector is selected in accordance with the addressing space (user, supervisor, or kernel) of

the address that has generated a TLB miss, and the value of the corresponding extension addressing bits (UX,

SX, or KX) of the Status register.  Except when it has something to do with specifying the address space in

which the address exists, the current operating mode of the processor is not important.  The Context register

and XContext register are completely different page table pointer registers.  Each indicates a different page

table and is used for refilling.  No matter which TLB exception (refill exception, invalid exception, TLBL

exception, or TLBS exception) occurs, the address is loaded to the BadVPN2 field of both the registers in the

same way as the VR4000.

Remark Unlike the VR5500, the VR4000 selects a vector in accordance with the current operating mode of the

processor (user, supervisor, or kernel) and the value of the corresponding extension addressing bit

(UX, SX, or KX) of the Status register.  The Context register and XContext register are provided not

as completely separate registers, but share the PTEBase field.  If a mismatch occurs at a specific

address, a TLB refill exception or XTLB refill exception occurs, depending on the source of reference.

Unless a mismatch handler decodes the address and selects a page table, only one page table can

be used.

Table 6-6 shows the addresses that generate TLB mismatches and the position of the TLB refill exception vector

according to the corresponding mode bit.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM 145

Table 6-6.  TLB Refill Exception Vector

Space Virtual Address Range Area Exception Vector

Kernel 0xFFFF FFFF E000 0000

to

0xFFFF FFFF FFFF FFFF

kseg3 TLB mismatch (KX = 0) or

XTLB mismatch (KX = 1)

Supervisor 0xFFFF FFFF C000 0000

to

0xFFFF FFFF DFFF FFFF

sseg, ksseg TLB mismatch (SX = 0) or

XTLB mismatch (SX = 1)

Kernel 0xC000 0000 0000 0000

to

0xC000 0FFE FFFF FFFF

xkseg XTLB mismatch (KX = 1)

Supervisor 0x4000 0000 0000 0000

to

0x4000 0FFF FFFF FFFF

xsseg, xksseg XTLB mismatch (SX = 1)

User 0x0000 0000 8000 0000

to

0x0000 0FFF FFFF FFFF

xsuseg, xuseg, xkuseg XTLB mismatch (UX = 1)

User 0x0000 0000 0000 0000

to

0x0000 0000 7FFF FFFF

useg, xuseg, suseg, xsuseg,

kuseg, xkuseg

TLB mismatch (UX = 0) or

XTLB mismatch (UX = 1)



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM146

6.3.3  Priority of exceptions

When more than one exception occurs for a single instruction, only the exception with the highest priority is

selected for processing.  Table 6-7 lists the priorities.

Table 6-7.  Exception Priority Order

Priority Exception

High

Low

Cold reset

Soft reset

NMI

Debug break (instruction fetch)

Address error (instruction fetch)

TLB/XTLB refill (instruction fetch)

TLB invalid (instruction fetch)

Cache error (instruction fetch)

Bus error (instruction fetch)

System call

Breakpoint

Coprocessor unusable

Reserved instruction

Trap

Integer overflow

Floating-point

Debug break (data access)

Address error (data access)

TLB/XTLB refill (data access)

TLB invalid (data access)

TLB modified (data write)

Cache error (data access)

Bus error (data access)

Watch

Interrupt (other than NMI)

Hereafter, handling exceptions by hardware is referred to as “process”, and handling exception by software is

referred to as “service”.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM 147

6.4  Details of Exceptions

6.4.1  Reset exception

(1) Cause

The reset exception occurs when the ColdReset# signal goes from active to inactive.  This exception is not

maskable.

(2) Processing

The special interrupt vector for reset exception is used.

• In 32-bit mode: 0xBFC0 0000 (virtual address)

• In 64-bit mode: 0xFFFF FFFF BFC0 0000 (virtual address)

The reset exception vector resides in unmapped and uncached areas, so the hardware need not initialize the

TLB or the cache to process this exception.  It also means the processor can fetch and execute instructions

while the caches and virtual memory are in an undefined state.

When this exception occurs, the contents of all registers are undefined except for the following registers.

• SR bit of the Status register is cleared (0).

• ERL and BEV bits of the Status register are set (1).

• The Random register is set to the value of its upper bound (47).

• The Wired register is initialized to 0.

• The Performance Counter register is initialized to 0.

 • Some bits of the Config register are set in accordance with the input status of the initialization interface

signal.

(3) Servicing

The reset exception is serviced by:

• Initializing all processor registers, coprocessor registers, TLB, caches, and the memory system

• Performing diagnostic tests

• Bootstrapping the operating system



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM148

6.4.2  Soft reset exception

(1) Cause

A soft reset occurs inactive while the Reset# signal goes from active to inactive when the ColdReset# signal

remains.

This exception is not maskable.

(2) Processing

The special interrupt vector for reset exception (same location as reset) is used.

• In 32-bit mode: 0xBFC0 0000 (virtual address)

• In 64-bit mode: 0xFFFF FFFF BFC0 0000 (virtual address)

This vector is located within unmapped and uncached areas, so that the hardware need not initialize the TLB or

the cache to process this exception.  The SR bit of the Status register is set to 1 to distinguish this exception

from a reset exception.

When this exception occurs, the contents of all registers are saved except for the following registers.

• The program counter value at which an exception occurs is set to the ErrorEPC register.

• ERL, SR, and BEV bits of the Status register are set (1).

During a soft reset, access to the cache or system interface may be aborted.  This means that the contents of

the cache and memory will be undefined if a soft reset occurs.

(3) Servicing

The soft reset exception is serviced by:

• Saving the current processor states for diagnostic tests

• Reinitializing the system in the same way as for a reset exception



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM 149

6.4.3  NMI exception

(1) Cause

The NMI (non-maskable interrupt) exception occurs when the signal input to the NMI# pin becomes active.  It

can also be generated by writing 1 to bit 6 of the internal interrupt register from an external source via SysAD6.

This exception is not maskable; it occurs regardless of the settings of the EXL, ERL, and IE bits of the Status

register

(2) Processing

The special interrupt vector for NMI exception is used.

• In 32-bit mode: 0xBFC0 0000 (virtual address)

• In 64-bit mode: 0xFFFF FFFF BFC0 0000 (virtual address)

This vector is located within unmapped and uncached areas so that the hardware need not initialize an NMI

exception.  The SR bit of the Status register is set (1) to distinguish this exception from a reset exception.

Because the NMI exception can occur even while another exception is being processed, program execution

cannot be continued after the NMI exception has been processed.

NMI occurs only at instruction boundaries.  The states of the caches and memory system are saved by this

exception.

When this exception occurs, the contents of all registers are saved except for the following registers.

• The program counter value at which an exception occurs is set to the ErrorEPC register.

• The ERL, SR, and BEV bits of the Status register are set (1).

(3) Servicing

The NMI exception is serviced by:

• Saving the current processor states for diagnostic tests

• Reinitializing the system in the same way as for a reset exception



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM150

6.4.4  Address error exception

(1) Cause

The address error exception occurs when an attempt is made to execute one of the following.  This exception is

not maskable.

• Execution of the LW or SW instruction for word data that is not located on a word boundary

• Execution of the LH or SH instruction for halfword data that is not located on a halfword boundary

• Execution of the LD or SD instruction for doubleword data that is not located on a doubleword boundary

• Referencing the kernel address space in user or supervisor mode

• Referencing the supervisor space in user mode

• Fetching an instruction that does not located on a word boundary

• Referencing the address error space

• Referencing the supervisor or kernel address space in supervisor or kernel mode using an address whose

bit 31 is not sign-extended to bits 32 to 63 in 32-bit mode

(2) Processing

The general exception vector is used for this exception. The AdEL or AdES code in the Cause register is set.  If

this exception has been caused by an instruction reference or load operation, AdEL is set.  If it has been caused

by a store operation, AdES is set.

When this exception occurs, the BadVAddr register stores the virtual address that was not properly aligned or

was referenced in protected address space.  The contents of the VPN field of the Context and EntryHi registers

are undefined, as are the contents of the EntryLo register.

The EPC register contains the address of the instruction that caused the exception.  However, if this instruction

is in a branch delay slot, the EPC register contains the address of the preceding branch instruction, and the BD

bit of the Cause register is set (1).

(3) Servicing

The kernel reports the UNIXTM SIGSEGV (segmentation violation) signal to the current process, and this

exception is usually fatal.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM 151

(4) Restrictions

(a) With VR5500 Ver. 1.x, when the return address (contents of the EPC register) to which execution is to

return from an exception handler by executing the ERET instruction is in the address error area, a value

different from the contents of the program counter is stored in the EPC register if an interrupt occurs

immediately after execution of the ERET instruction.

This restriction does not apply to Ver. 2.0 or later.

(b) With VR5500 Ver. 2.0 or later, if a jump/branch instruction is located two instructions before the boundary

with the address error space and if a branch prediction miss (including RAS miss), ERET instruction

commitment, exception (except the address error exception mentioned) does not occur (is not committed)

between execution of the above jump/branch instruction and occurrence (commitment) of an address error

exception due to a specific cause (refer below), the address stored in the BadVAddr register by the

processing of the above address error exception is the address at the position (boundary with the address

space) two instructions after the jump/branch instruction.  However, the correct address is stored in the

EPC register.

Therefore, do not locate a jump/branch instruction at the position two instructions before the boundary with

the address space.

This restriction applies to the following causes of the address error exception.

• If an attempt is made to fetch an instruction in the kernel address space in the user or supervisor mode

• If an attempt is made to fetch an instruction in the supervisor address space in the user mode

• If an attempt is made to fetch an instruction not located at the word boundary

• If an attempt is made to reference the address error space in the kernel mode

This restriction is included in the specifications of the VR5500.

Caution With the VR5500, bits 58 to 40 of an address that is different from the actual value of the

program counter are stored in the BadVAddr register and EPC register if an address

error exception occurs as a result of an execution jump to the address error space in the

64-bit mode.  If an address error exception occurs, therefore, do not reference the

BadVAddr and EPC registers.

However, if an address error exception occurs because execution is made to jump to the

address error space by the JR or JALR instruction, an incorrect address is stored in the

EPC register as mentioned above, but the same value as the program counter is stored

in the BadVAddr register.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM152

6.4.5  TLB exceptions

Three types of TLB exceptions can occur.

• TLB refill exception

• TLB invalid exception

• TLB modified exception

The following three sections describe these TLB exceptions.

(1) TLB refill exception (32-bit mode)/XTLB refill exception (64-bit mode)

(a) Cause

The TLB refill exception occurs when there is no TLB entry matching the address to be referenced, or when

there are multiple TLB entries to matching the address to be referenced.  This exception is not maskable.

(b) Processing

There are two special exception vectors for this exception; one for 32-bit addressing mode, and one for 64-

bit addressing mode.  The UX, SX, and KX bits of the Status register determine which vector to use,

depending on either 32-bit or 64-bit space is used for the user, supervisor or kernel mode.  When the EXL

bit of the Status register is set to 0, either of these two special vectors is referenced. When the EXL bit is

set to 1, the general exception vector is referenced.

This exception sets the TLBL or TLBS code in the ExcCode field of the Cause register.  If this exception

has been caused by an instruction reference or load operation, TLBL is set.  If it has been caused by a

store operation, TLBS is set.

When this exception occurs, the BadVAddr, Context, XContext, and EntryHi registers hold the virtual

address that failed address translation.  The EntryHi register also contains the ASID from which the

translation fault occurred. The Random register normally contains a valid location in which to place the

replacement TLB entry.  The contents of the EntryLo register are undefined.

The EPC register contains the address of the instruction that caused the exception.  However, if this

instruction is in a branch delay slot, the EPC register contains the address of the preceding branch

instruction, and the BD bit of the Cause register is set (1).

(c) Servicing

To service this exception, the contents of the Context or XContext register are used as a virtual address to

load memory words containing the physical page frame and access control bits for a pair of TLB entries.

The memory word is written into the TLB entry by using the EntryLo0, EntryLo1, or EntryHi register.

If the address to be referenced matches two or more entries (TLB shutdown), also clear the TS bit of the

Status register to 0.

It is possible that the physical page frame and access control bits are placed in a page where the virtual

address is not resident in the TLB.  This condition is processed by allowing a TLB Refill exception in the

TLB refill exception handler. In this case, the general exception vector is used because the EXL bit of the

Status register is set (1).



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM 153

(2) TLB Invalid exception

(a) Cause

The TLB invalid exception occurs when the TLB entry that matches with the virtual address to be

referenced is invalid (V bit is 0). This exception is not maskable.

(b) Processing

The general exception vector is used for this exception.  The TLBL or TLBS code in the ExcCode field of

the Cause register is set.  If this exception has been caused by an instruction reference or load operation,

TLBL is set.  If it has been caused by a store operation, TLBS is set.

When this exception occurs, the BadVAddr, Context, XContext, and EntryHi registers contain the virtual

address that failed address translation.  The EntryHi register also contains the ASID from which the

translation fault occurred.  The Random register normally stores a valid location in which to place the

replacement TLB entry.  The contents of the EntryLo register are undefined.

The EPC register contains the address of the instruction that caused the exception.  However, if this

instruction is in a branch delay slot, the EPC register contains the address of the preceding branch

instruction, and the BD bit of the Cause register is set (1).

(c) Servicing

Usually, the V bit of a TLB entry is cleared in the following cases.

• When a virtual address does not exist

• When the virtual address exists, but is not in main memory (a page fault)

• When a trap is required on any reference to the page (for example, to maintain a reference bit)

After servicing the cause of a TLB invalid exception, the TLB entry location is identified with a TLBP (TLB

Probe) instruction, and replaced by another entry with setting (1) its V bit.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM154

(3) TLB modified exception

(a) Cause

The TLB modified exception occurs when the TLB entry that matches with the virtual address referenced by

the store instruction is valid (V bit is 1) but is not writable (D bit is 0).  This exception is not maskable.

(b) Processing

The general exception vector is used for this exception, and the Mod code in the ExcCode field of the

Cause register is set.

When this exception occurs, the BadVAddr, Context, XContext, and EntryHi registers hold the virtual

address that failed address translation.  The EntryHi register also contains the ASID from which the

translation fault occurred. The contents of the EntryLo register are undefined.

The EPC register contains the address of the instruction that caused the exception.  However, if this

instruction is in a branch delay slot, the EPC register contains the address of the preceding branch

instruction, and the BD bit of the Cause register is set (1).

(c) Servicing

The kernel uses the failed virtual address or virtual page number to identify the corresponding access

control bits. The page identified may or may not permit write accesses; if writes are not permitted, a write

protection violation occurs.

If write accesses are permitted, the page frame is marked Dirty (writable) by the kernel in its own data

structures.

The TLBP instruction places the index of the TLB entry that must be altered into the Index register.  The

word data containing the physical page frame and access control bits (with setting (1) the D bit) is loaded to

the EntryLo register, and the contents of the EntryHi and EntryLo registers are written into the TLB.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM 155

6.4.6  Cache error exception

(1) Cause

If a parity error of the cache is detected, a cache error exception occurs.  This exception can be masked by the

DE bit of the Status register.

When an instruction or data is read from an external source, the timing of the cache error exception differs

depending on the data transfer format.  When a block is transferred, only an error in the first word is checked.  If

an error is found in the first word, therefore, the exception immediately occurs.  If an error is in the other words,

however, the exception occurs when the processor uses that data.  During single transfer, the exception occurs

as soon as an error is found in the data.

(2) Processing

The processor sets the ERL bit of the Status register to 1, saves the exception restart address of the ErrorEPC

register, and transfers information to the following special vector in a space where the cache cannot be used.

• When BEV bit = 0, the vector is 0xFFFF FFFF A000 0100

• When BEV bit = 1, the vector is 0xFFFF FFFF BFC0 0300

(3) Servicing

All errors must be logged.  To correct a parity error, the system makes the cache block invalid by using the

CACHE instruction, overwrites old data via a cache miss, and resumes execution by using the ERET instruction.

Any other data is uncorrectable and may be fatal to the current process.

Caution Because the data cache of the VR5500 has a non-blocking structure, a cache error exception

occurs asynchronously.  Even if a cache miss occurs, the subsequent instructions can be

executed as long as they are not dependent upon the line where the miss occurred.

Therefore, the value of the program counter when the cache error exception occurs is not

always the address of the instruction that has caused the exception.  Consequently,

resuming execution from the instruction responsible for the exception is not guaranteed

even if the system restores from the exception by using the ERET instruction.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM156

6.4.7  Bus error exception

(1) Cause

A bus error exception is raised by board-level circuitry for events such as bus time-out, local bus parity errors,

and invalid physical memory addresses or access types.  This exception is not maskable.

When an instruction or data is read from an external source, the timing of the bus error exception differs

depending on the data transfer format.  When a block is transferred, only an error in the first word is checked.  If

an error is found in the first word, therefore, the exception immediately occurs.  If an error is in the other words,

however, the exception occurs when the processor uses that data.  During single transfer, the exception occurs

as soon as an error is found in the data.

(2) Processing

The general interrupt vector is used for a bus error exception.  The IBE or DBE code in the ExcCode field of the

Cause register is set.  If the cause of the exception is an instruction reference (instruction fetch), IBE is set.  If it

is a data reference (load/store instruction), DBE is set.

The EPC register contains the address of the instruction that caused the exception.  However, if this instruction

is in a branch delay slot, the EPC register contains the address of the preceding branch instruction, and the BD

bit of the Cause register is set (1).

(3) Servicing

The physical address at which the fault occurred can be computed from information available in the system

control coprocessor (CP0) register.

• If the IBE code in the Cause register is set (indicating an instruction fetch), the virtual address is stored in

the EPC register.  (4 is added to the contents of the EPC register if the BD bit of the Cause register is set to

1.)

• If the DBE code is set (indicating a load or store), the virtual address (address of the preceding branch

instruction if the BD bit of the Cause register is set to 1) of the instruction that caused the exception is

stored in the EPC register. (4 is added to the contents of the EPC register if the BD bit of the Cause register

is set to 1.)

The virtual address of the load and store instruction can then be obtained by interpreting the instruction. The

physical address can be obtained by using the TLBP instruction and reading the EntryLo register to compute the

physical page number.

At the time of this exception, the kernel reports the UNIX SIGBUS (bus error) signal to the current process, but

the exception is usually fatal.

Caution Because the data cache of the VR5500 has a non-blocking structure, a bus error exception

occurs asynchronously.  Even if a cache miss occurs, the subsequent instructions can be

executed as long as they are not dependent upon the line where the miss occurred.

Therefore, the value of the program counter when the bus error exception occurs is not

always the address of the instruction that has caused the exception.  Consequently,

resuming execution from the instruction responsible for the exception is not guaranteed

even if the system restores from the exception by using the ERET instruction.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM 157

6.4.8  System call exception

(1) Cause

A system call exception occurs during an attempt to execute the SYSCALL instruction.  This exception is not

maskable.

(2) Processing

The general exception vector is used for this exception, and the Sys code in the ExcCode field of the Cause

register is set.

The EPC register contains the address of the SYSCALL instruction.  However, if this instruction is in a branch

delay slot, the EPC register contains the address of the preceding branch instruction, and the BD bit of the

Cause register is set (1).

(3) Servicing

When this exception occurs, control is moved to the applicable system routine.

To resume execution, the EPC register must be altered so that the SYSCALL instruction does not re-execute;

this is accomplished by adding a value of 4 to the EPC register before returning.

If a SYSCALL instruction is in a branch delay slot, decoding of the jump or branch instruction for identifying the

branch destination is required to resume execution.

6.4.9  Breakpoint exception

(1) Cause

A Breakpoint exception occurs when an attempt is made to execute the BREAK instruction.  This exception is

not maskable.

(2) Processing

The general exception vector is used for this exception, and the Bp code in the ExcCode field of the Cause

register is set.

The EPC register contains the address of the BREAK instruction.  However, if this instruction is in a branch

delay slot, the EPC register contains the address of the preceding branch instruction, and the BD bit of the

Cause register is set (1).

(3) Servicing

When the Breakpoint exception occurs, control is moved to the applicable system routine.  Additional

distinctions can be made by analyzing the unused bits of the BREAK instruction (bits 25 to 6), and loading the

contents of the instruction whose address the EPC register contains (the address at which 4 is added to the

contents of the EPC register if the BREAK instruction is in a branch delay slot).

To resume execution, the EPC register must be altered so that the BREAK instruction does not re-execute; this

is accomplished by adding a value of 4 to the EPC register before returning.

If a BREAK instruction is in a branch delay slot, decoding of the branch instruction for identifying the branch

destination is required to resume execution.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM158

6.4.10  Coprocessor unusable exception

(1) Cause

The coprocessor unusable exception occurs when an attempt is made to execute a coprocessor instruction for

either of the following.

• A corresponding coprocessor unit that has not been marked usable (CU0 bit of Status register = 0)

• CP0 instructions are executed in user or supervisor mode when the use of CP0 is disabled (the CU0 bit of

the Status register = 0).

This exception is not maskable.

(2) Processing

The general exception vector is used for this exception, and the CpU code in the ExcCode field of the Cause

register is set.  The CE bit of the Cause register indicates which of the four coprocessors was referenced.

The EPC register contains the address of the instruction that caused the exception.  However, if this instruction

is in a branch delay slot, the EPC register contains the address of the preceding branch instruction, and the BD

bit of the Cause register is set (1).

(3) Servicing

The coprocessor unit to which an attempted reference was made is identified by the CE bit of the Cause

register.

One of the following processing is performed by the handler.

(a) If the process is entitled access to the coprocessor, the coprocessor is marked usable and execution is

resumed.

(b) If the process is entitled access to the coprocessor, but the coprocessor does not exist or has failed,

decoding of the coprocessor instruction is possible.

(c) If the BD bit in the Cause register is set (1), the branch instruction must be decoded; then the coprocessor

instruction can be emulated and execution resumed with the EPC register advanced passing the

coprocessor instruction.

(d) If the process is not entitled access to the coprocessor, the kernel reports UNIX SIGILL/ILL_PRIVIN_FAULT

(illegal instruction/privileged instruction fault) signal to the current process, and this exception is fatal.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM 159

6.4.11  Reserved instruction exception

(1) Cause

The reserved instruction exception occurs when an attempt is made to execute one of the following instructions.

• Instruction with an undefined opcode (bits 31 to 26)

• SPECIAL instruction with an undefined sub opcode (bits 5 to 0)

• REGIMM instruction with an undefined sub opcode (bits 20 to 16)

• 64-bit instructions in 32-bit user or supervisor mode

64-bit operations are always valid in kernel mode regardless of the value of the KX bit in the Status register.

This exception is not maskable.

(2) Processing

The general exception vector is used for this exception, and the RI code in the ExcCode field of the Cause

register is set.

The EPC register contains the address of the instruction that caused the exception.  However, if this instruction

is in a branch delay slot, the EPC register contains the address of the preceding branch instruction, and the BD

bit of the Cause register is set (1).

(3) Servicing

All currently defined MIPS ISA instructions can be executed.

The process executing at the time of this exception is handled by a UNIX SIGILL/ILL_RESOP_FAULT (illegal

instruction/reserved operand fault) signal. This exception is usually fatal.

6.4.12  Trap exception

(1) Cause

The trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEUI, TLTI, TLTUI, TEQI, or

TNEI instruction results in a true condition.  This exception is not maskable.

(2) Processing

The general exception vector is used for this exception, and the Tr code in the ExcCode field of the Cause

register is set.

The EPC register contains the address of the instruction that caused the exception.  However, if this instruction

is in a branch delay slot, the EPC register contains the address of the preceding branch instruction, and the BD

bit of the Cause register is set (1).

(3) Servicing

At the time of a Trap exception, the kernel reports the UNIX SIGFPE/FPE_INTOVF_TRAP (floating-point

exception/integer overflow) signal to the current process, and this exception is usually fatal.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM160

6.4.13  Integer overflow exception

(1) Cause

An integer overflow exception occurs when an ADD, ADDI, SUB, DADD, DADDI, or DSUB instruction results in

a two’s complement overflow.  This exception is not maskable.

(2) Processing

The general exception vector is used for this exception, and the Ov code in the ExcCode field of the Cause

register is set.

The EPC register contains the address of the instruction that caused the exception.  However, if this instruction

is in a branch delay slot, the EPC register contains the address of the preceding branch instruction, and the BD

bit of the Cause register is set (1).

(3) Servicing

At the time of the exception, the kernel reports the UNIX SIGFPE/FPE_INTOVF_TRAP (floating-point

exception/integer overflow) signal to the current process, and this exception is usually fatal for current process.

6.4.14  Floating-point operation exception

(1) Cause

The floating-point exception occurs as a result of an operation of the floating-point coprocessor.  This exception

cannot be masked.

(2) Processing

This vector uses an ordinary exception vector and the FPE code is set to the ExcCode field of the Cause

register.

The contents of the floating-point Control/Status register indicate the cause of this exception.

(3) Servicing

This exception is cleared by clearing the corresponding bit of the floating-point Control/Status register.

If an unimplemented operation exception occurs, the kernel must emulate that instruction.  If any other

exception occurs, the kernel passes the exception to the user program that has caused the exception.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM 161

6.4.15  Watch exception

(1) Cause

A watch exception occurs when a load or store instruction references the physical address specified by the

WatchLo and WatchHi registers.  The WatchLo and WatchHi registers specify whether a load or store or both

could initiate this exception.

• When the R bit of the WatchLo register is set to 1: Load instruction

• When the W bit of the WatchLo register is set to 1: Store instruction

• When both the R bit and W bit of the WatchLo register are set to 1: Load instruction or store instruction

The CACHE instruction never causes a Watch exception.

The watch exception is held pending while the EXL bit of the Status register is set (1).  The watch exception can

be masked by either setting (1) the EXL bit of the Status register, or clearing (0) the R and W bits of the

WatchLo register.

(2) Processing

The general exception vector is used for this exception, and the WATCH code in the ExcCode field of the Cause

register is set.

The EPC register contains the address of the instruction that caused the exception.  However, if this instruction

is in a branch delay slot, the EPC register contains the address of the preceding branch instruction, and the BD

bit of the Cause register is set (1).

(3) Servicing

The watch exception is a debugging aid; typically the exception handler moves control to a debugger, allowing

the user to examine the situation.  To continue, mask the watch exception to execute the faulting instruction.

The watch exception must then be re-enabled. The faulting instruction can be executed either by the debugger

for each instruction or by setting breakpoints.

Because the contents of the WatchLo and WatchHi registers become undefined after reset, initialize these

registers via software (it is particularly important to clear (0) the R and W bits). If the registers are not initialized,

a watch exception may occur.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM162

6.4.16  Interrupt exception

(1) Cause

The interrupt exception occurs when one of the eight interrupt sourcesNote is made active.

The application of these interrupts differs depending on the system.  An interrupt request signal from a pin is

detected by the level.

Each of the eight interrupts can be masked by clearing the corresponding bit in the IM field of the Status

register, and all of the eight interrupts can be masked by clearing the IE bit of the Status register.

Note They are 1 timer interrupt, 5 ordinary interrupts, and 2 software interrupts.

Remark The timer interrupt request signal is generated if the count register matches the compare register, or if

the performance counter overflows.

A timer interrupt request, or an interrupt request resulting from asserting the Int5# pin or an external

write request (SysAD5) can be selected as the interrupt source reflected on the IP7 bit of the Cause

register, depending on the status of the TIntSel pin after reset.

(2) Processing

The general exception vector is used for this exception, and the Int code is set in the ExcCode field of the

Cause register.

The IP field of the Cause register indicates current interrupt requests.  It is possible that more than one of the

bits can be simultaneously set (or cleared) if the interrupt request signal is active (inactive) before this register is

read.

The EPC register contains the address of the instruction that caused the exception.  However, if this instruction

is in a branch delay slot, the EPC register contains the address of the preceding branch instruction, and the BD

bit of the Cause register is set (1).

(3) Servicing

If a timer interrupt request occurs, check the contents of the performance counter to identify whether a match

between the count register and compare register or an overflow of the performance counter has caused the

interrupt.

If the interrupt is caused by one of the two software sources, the interrupt request is cleared by setting the

corresponding Cause register bit to 0.

If the interrupt is caused by hardware, the interrupt source is cleared by deactivating the corresponding interrupt

request signal.

Data may not be stored in an external device until execution of the other instructions in the pipeline is completed

because an internal write buffer is provided.  Therefore, make sure that the data is stored correctly before the

instruction that returns execution from the interrupt (ERET) is executed.  If the data is not stored, the interrupt

request processing may be performed again even if there is actually no pending interrupt.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM 163

6.5  Exception Processing Flowcharts

The remainder of this chapter contains flowcharts for the following exceptions and servicing for their handlers.

• General exception processing and their exception handlers

• TLB/XTLB refill exception processing and their exception handlers

• Cache error exception processing and their exception handlers

• Processing of reset, soft reset and NMI exceptions, and their exception handlers



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM164

Figure 6-15.  General Exception Processing (1/2)

(a)  Hardware processing

EXL bit ← 1

BEV bit

A

Set FP Control/
Status register
EntryHi ← VPN2, ASID
Context/XContext ← VPN2
Set Cause register
(ExcCode, CE)

Set BadVAddr register
EPC ← (PC – 4)

No

; FP Control/Status register is set only when 
  a floating-point exception occurs.
  EntryHi and Context/XContext registers are 
  set only when a TLB invalid, TLB modified, 
  TLB refill, or address error exception occurs.

; Kernel mode is set and 
  interrupts are disabled.

PC ← 0xFFFF FFFF BFC0 0200 + 180
(Unmapped, uncached)

PC ← 0xFFFF FFFF 8000 0000 + 180
(Unmapped, cacheable)

= 0 (normal)

= 1 (bootstrap)

BD bit ← 1

No

Yes

Yes

No

Yes

Start

 EXL bit = 0?  EXL bit = 0?

Set BadVAddr register
EPC ← PC

BD bit ← 0

Instruction
is in branch delay

slot?

Remark The interrupts can be masked by setting the IE or IM bit.  The watch exception can be held pending

by setting the EXL bit to 1.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM 165

Figure 6-15.  General Exception Processing (2/2)

(b)  Software processing

Execute MFC0 instruction
    Context/XContext 
    EPC 
    Status 
    Cause

Execute MTC0 instruction
  (Set Status register)
  KSU bit ← 00
  EXL bit ← 0
  IE bit ← 1

Servicing of 
exception routine

EXL bit ← 1

Execute MTC0 instruction
     EPC 
     Status

Execute ERET instruction

; Prevent a TLB modified, TLB invalid, or TLB refill 
  exception from occurring by using unmapped area.

; Watch and interrupt exceptions are disabled by 
  setting EXL bit to 1.

; OS/system avoids all other exceptions.

; Only reset, soft reset, and NMI exceptions are enabled.

; Option: Interrupts are enabled in kernel mode.

; After EXL bit = 0 is set, all exceptions are enabled 
  (except the Interrupt exception masked by the IE and IM bit.)

; The register files are saved.

; The execution of the ERET instruction is disabled in 
  the branch delay slots for the other jump instructions.
; The processor does not execute an instruction n the 
  branch delay slot for the ERET instruction.
; PC ← EPC, EXL bit ← 0, LL bit ← 0

Check the Cause register, 
and jump to each routine

A

End



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM166

Figure 6-16.  TLB/XTLB Refill Exception Processing (1/2)

(a)  Hardware processing

Instruction 
is in branch delay 

slot?

Set BadVAddr register
EPC ← PC

EXL bit ← 1

BEV bit

EXL bit = 0?

Set BadVAddr register
EPC ← (PC – 4)

Yes

; Check for multiple exceptions

PC ← 0xFFFF FFFF BFC0 0200 + Vec. Off.
(Unmapped, uncached)

PC ← 0xFFFF FFFF 8000 0000 + Vec. Off.
(Unmapped, cacheable)

XTLB 
exception?

Vec.Off. = 0x080 Vec. Off. = 0x000 Set BadVAddr register
Vec.Off. = 0x180

; Kernel mode is set and 
  interrupts are disabled.

= 0 (normal)

= 1 (bootstrap)

Yes

No

No

EXL bit = 0?
No

Yes

No

Yes

Start

EntryHi ← VPN2, ASID
Context/XContext ← VPN2
Set Cause register
    ExcCode field
    CE bit 
    BD bit ← 1

EntryHi ← VPN2, ASID
Context/XContext ← VPN2
Set Cause register
     ExcCode field
     CE bit 
     BD bit ← 0

B



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM 167

Figure 6-16.  TLB/XTLB Refill Exception Processing (2/2)

(b)  Software processing

Execute MFC0 instruction
Context/XContext

Execute ERET instruction

; Prevent a TLB modified, TLB invalid, or TLB refill exception from 
  occurring by using unmapped area.

; Watch and interrupt exceptions are disabled by setting EXL bit to 1.

; OS/system avoids all other exceptions.

; Only reset, soft reset, and NMI exceptions are enabled.

; The physical address for a virtual address that is loaded into the 
  Context register is loaded into the EntryLo register and written to the TLB.

; TS bit is cleared upon TLB shutdown.

; The execution of the ERET is disabled in the branch delay slots for the 
  other jump instructions.

; The processor does not execute an instruction n the branch delay slot for 
  the ERET instruction.

; PC ← EPC, EXL bit ← 0, LL bit ← 0

Servicing of exception routineNote

B

End

Note A TLB refill exception may reoccur while the data/instruction addresses are in the mapping area.  If an

exception reoccurs, servicing will jump to the general exception vector because the EXL bit is 1.  In this

case, service the TLB miss in the general exception handler, return to the user program using the

ERET instruction, and generate the TLB refill exception again.



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM168

Figure 6-17.  Processing of Cache Error Exception

Set Cache Error register

ERL bit ← 1

Instruction is
in branch delay

slot?

Yes

BEV bit

No

= 0 (normal)

PC ← 0xFFFF FFFF A000 0000 + 100
(unmapped, uncached)

Servicing of 
exception routine

ErrorEPC ← (PC – 4)

= 1 (bootstrap)

; Prevent exceptions related to TLB and the cache error 
  exception from occurring by using unmapped and 
  uncached area.

; Interrupt exceptions are disabled because ERL bit = 1.

; OS/system avoids all other exceptions.

; Only reset, soft reset, and NMI exceptions are enabled.

 Software

Hardware

ErrorEPC ← PC

End

Start

Execute ERET instruction

PC ← 0xFFFF FFFF BFC0 0200 + 100
(unmapped, uncached)

; ERET is not enabled in branch delay slot of other jump 
  instructions.

; Processor does not execute the instruction in the branch 
  delay slot of the ERET instruction.

; PC ← ErrorEPC, ERL bit ← 0, LL bit ← 0



CHAPTER  6   EXCEPTION  PROCESSING

Preliminary User’s Manual  U16044EJ1V0UM 169

Figure 6-18.  Processing of Reset/Soft Reset/NMI Exceptions

Status register setting
    BEV bit ← 1
    SR bit ← 1
    ERL bit ← 1

Random ← 47
Wired ← 0
Update bits 31 to 6 of 
Config register.
Set Status register 
    BEV bit ← 1
    SR bit ← 0
    ERL bit ← 1

Soft reset or
NMI exception

Reset exception

PC ←0xFFFF FFFF BFC0 0000

NMI?
Yes

SR bit

No

= 1

Servicing of soft 
reset exception routine

Servicing of reset 
exception routine

Servicing of 
NMI exception routine

ERET instruction execution

= 0

(Option)

Processor does not make indication to 
distinguish between NMI and soft reset.  
Indication at the system level is necessary.

;

Software

Hardware

ErrorEPC ← PC

End



Preliminary User’s Manual  U16044EJ1V0UM170

CHAPTER 7   FLOATING-POINT UNIT

7.1 Overview

The floating-point unit (FPU) operates as coprocessor CP1 of the CPU and executes floating-point operation

instructions.  It can use both single-precision (32-bit) and double-precision (64-bit) data, and can also convert a

floating-point value into a fixed-point value or vice versa.

The FPU of the VR5500 conforms to ANSI/IEEE Standard 754-1985, “IEEE2 Floating-Point Operation Standard”.

7.2 FPU Registers

The FPU has 32 general-purpose registers and 32 control registers.

Figure 7-1.  Registers of FPU (1/2)

(a) Floating-point general-purpose registers

FGR0

FGR1

FGR2

FGR3

.

.

.

FGR28

FGR29

FGR30

FGR31

FPR0

FPR2

.

.

.

FPR28

FPR30

(Lower)

(Higher)

(Lower)

(Higher)

(Lower)

(Higher)

(Lower)

(Higher)

31 0

Floating-point
general-purpose register (FGR)

Floating-point register
(FPR)

FGR0

FGR1

FGR2

FGR3

.

.

.

FGR28

FGR29

FGR30

FGR31

63 0

Floating-point
general-purpose register (FGR)

FPR0

FPR1

FPR2

FPR3

.

.

.

FPR28

FPR29

FPR30

FPR31

Floating-point register
(FPR)

(i) When FR bit = 0 (ii) When FR bit = 1



CHAPTER 7   FLOATING-POINT UNIT

Preliminary User’s Manual  U16044EJ1V0UM 171

Figure 7-1.  Registers of FPU (2/2)

(b) Floating-point control registers

FCR0 (Implementation/Revision)

Reserved

FCR25 (Condition Code)

FCR26 (Cause/Flag)

Reserved

FCR28 (Enable/Mode)

Reserved

Reserved

FCR31 (Control/Status)

31 0

7.2.1 Floating-point general-purpose registers (FGRs)

The FPU has one set (32) of floating-point general-purpose registers (FGRs).  The register length is 32 bits if the

FR bit of the Status register in CP0 is 0; it is 64 bits if the FR bit is 1.  The CPU accesses an FGR by using a load,

store, or transfer instruction.

(1) If the FR bit of the Status register is 0, the general-purpose registers are used as sixteen 64-bit registers

(FPRs) that hold single-precision or double-precision floating-point data.  Each FPR corresponds to a pair of

FGRs each having a serial number, as shown in Figure 7-1.

(2) If the FR bit of the Status register is 1, the general-purpose registers are used as thirty-two 64-bit registers

(FPRs) that hold single-precision or double-precision floating-point data.  In this case, each FPR corresponds to

one FGR as shown in Figure 7-1.



CHAPTER 7   FLOATING-POINT UNIT

Preliminary User’s Manual  U16044EJ1V0UM172

7.2.2 Floating-point registers (FPRs)

If the FR bit of the Status register in CP0 is 0, sixteen floating-point registers (FPRs) can be used.  If the FR bit is

1, thirty-two FPRs can be used.  An FPR is a 64-bit logical register and holds a floating-point value when a floating-

point operation has been executed.  Physically, an FPR consists of one or two general-purpose registers (FGRs).  If

the FR bit of the Status register is 0, the FPR consists of two 32-bit FGRs.  If the FR bit is 1, the FPR consists of one

64-bit FGR.

An FPR holds a single-precision or double-precision floating-point value.  If the FR bit of the Status register is 0,

only an even number is used to specify an FPR.  If the FR bit is 1, all the FPR register numbers are valid.  If the FR

bit is 0 when double-precision floating-point operation is executed, a pair of FGRs is used as a doubleword.  If FPR0

is selected for a double-precision floating-point operation, for example, two FGRs adjoining each other, FGR0 and

FGR1, are used.

7.2.3 Floating-point control registers (FCRs)

The FPU has 32 control registers.  The VR5500 can use the following five FCRs.

• The Control/Status register (FCR31) controls and monitors exceptions.  This register also holds the result of a

comparison operation and sets the rounding mode.

• The Enable/Mode register (FCR28), Cause/Flag register (FCR26), and Condition Code register (FCR25)

respectively hold part of the area of FCR31, and set/hold the same contents.

• The Implementation/Revision register (FCR0) holds revision information on the FPU.

Table 7-1 shows the assignment of the FCRs.

Table 7-1.  FCR

FCR No. Usage

FCR0 Implementation/revision of coprocessor

FCR1 to FCR24 Reserved

FCR25 Condition code

FCR26 Cause, flag

FCR27 Reserved

FCR28 Exception enable, rounding mode

FCR29, FCR30 Reserved

FCR31 Condition code, rounding mode, cause, exception enable, flag

When FCR0, FCR25, FCR26, FCR28, or FCR31 is read by the CFC1 instruction, the contents of the register are

transferred to the main processor after execution of all the instructions in the pipeline has been completed.

Each bit of FCR25, FCR26, FCR28, and FCR31 can be set or cleared by using the CTC1 instruction.  Data is

written to these registers after execution of all the instructions in the pipeline has been completed.



CHAPTER 7   FLOATING-POINT UNIT

Preliminary User’s Manual  U16044EJ1V0UM 173

7.3 Floating-point Control Register

7.3.1 Control/Status register (FCR31)

The Control/Status register (FCR31) is a read/write register, and holds control data and status data.  This register

controls the rounding mode and enables the occurrence of a floating-point exception. It also indicates information on

an exception that has occurred in the instruction executed last, and information on exceptions that have been

accumulated thus far without being treated as such because they are masked.  Figure 7-2 shows the configuration of

FCR31.  This figure shows the configuration of the cause, enable, and flag bits in FCR31.

Figure 7-2.  FCR31

31 25 22 18 17 12 11 7 6 2 1 024 23

CC(7:1) FS CC0 0 Cause
E  V  Z  O  U  I

Enable
V  Z  O  U  I

Flag
V  Z  O  U  I

RM

Figure 7-3.  Cause/Enable/Flag Bits of FCR31

E V Z O U I

Bit 17 16 15 14 13 12

V Z O U I

10 9 8 7

V Z O U I

5 4 3 2

Invalid operation 
Division by zero

Overflow
Underflow

Inexact operation

Unimplemented
operation

Cause bit

Enable bit

Flag bit

Bit 11

Bit 6

IEEE754 defines how an exception is detected during a floating-point operation, how flags are set, and how an

exception handler is called if an exception occurs.  The MIPS architecture implements this specification by using the

cause, enable, and flag bits of the Control/Status register.  The flag bit conforms to the exception status flag of

IEEE754, and the cause and enable bits conform to the exception handler of IEEE754.

Each bit of FCR31 is explained next.



CHAPTER 7   FLOATING-POINT UNIT

Preliminary User’s Manual  U16044EJ1V0UM174

(1) FS bit

The FS bit enables flushing a value that cannot be normalized (denormalized number).  If this bit is set and if the

enable bit of the underflow exception and illegal exception is not set, the result of a denormalized number does

not cause an unimplemented operation exception to occur, but rather is flushed.  Whether the denormalized

number that has been flushed is 0 or the minimum normalized value depends on the rounding mode (refer to

Table 7-2).  However, the MADD.fmt, NMADD.fmt, MSUB.fmt, and NMSUB.fmt instructions cause the

unimplemented operation exception to occur, regardless of the value of the FS bit.

Table 7-2.  Flush Value of Denormalized Number Result

Rounding Mode of Result FlushedResult of Denormalized

Number RN RZ RP RM

Positive +0 +0 +2Emin +0

Negative −0 −0 −0 −2Emin

(2) CC bits

Bits 31 to 25 and 23 of FCR31 are CC (condition) bits.  These bits store the result of a floating-point comparison

instruction.  If the result is true, they are set to 1; if the result is false, they are cleared to 0.  The CC bits are not

affected by any instruction other than the comparison instruction and CTC1 instruction.

(3) Cause bits

Bits 17 to 12 of FCR31 are cause bits and reflect the result of the instruction executed last.  The cause bits are

logical extensions of the CP0 Cause register and indicate occurrence of an exception resulting from the last

floating-point operation exception and its cause.  If the corresponding enable bit is set, an exception occurs.  If

one instruction causes two or more exceptions, the corresponding bits are set.

The cause bits are rewritten by a floating-point operation (except the load, store, and transfer instructions).  The

E bit is set to 1 if emulation of software is necessary; otherwise it will remain 0.  The other bits are cleared to 0 if

an IEEE754 exception occurs, and remain set to 1 if the exception does not occur.

If a floating-point operation exception occurs, the operation result is not stored, and only the cause bits are

affected.



CHAPTER 7   FLOATING-POINT UNIT

Preliminary User’s Manual  U16044EJ1V0UM 175

(4) Enable bits

A floating-point operation exception occurs when both the cause bit and corresponding enable bit are set.  The

exception occurs as soon as a cause bit enabled for a floating-point operation has been set.  The exception also

occurs when the cause bit and enable bit are set by the CTC1 instruction.

No enable bit corresponding to the unimplemented operation exception is available.  When the unimplemented

operation exception occurs, a floating-point operation exception always occurs.

To restore from the floating-point operation exception, the cause bit that is enabled to cause the exception to

occur must be cleared by software to prevent recurrence of the exception.  Therefore, a cause bit that has been

set cannot be seen from the program in the user mode.  When using information on the cause bit via a handler

in the user mode, copy the value of the Status register to another location.

Even if a cause bit is set, an exception does not occur if the corresponding enable bit is not set, and the default

result defined by IEEE754 is stored.  In this case, the exception caused by the floating-point operation

immediately before can be identified by reading the cause bit.

(5) Flag bits

The flag bits accumulate and indicate exceptions that have occurred after reset.  If an exception defined by

IEEE754 occurs, the flag bit is set to 1; otherwise it will remain unchanged.  The flag bit is not cleared by a

floating-point operation.  However, it can be set/cleared by software if a new value is written to FCR31 by using

the CTC1 instruction.

If a floating-point operation exception occurs, the hardware does not set the flag bit.  Therefore, set the flag bit

by software before processing is transferred to the user handler.

(6) Rounding mode control bits

Bits 1 and 0 of FCR31 are RM (rounding mode control) bits.  These bits define the rounding mode the FPU uses

for all the floating-point instructions.

Table 7-3.  Rounding Mode Control Bits

RM Bit

Bit 1 Bit 0

Mnemonic Description

0 0 RN Rounds the result to the closest value that can be expressed.  If the value is

in between two values that can be expressed, the result is rounded toward

the value whose least significant bit is 0.

0 1 RZ Rounds the result toward 0.  The result is the closest to the value that does

not exceed the absolute value of the result with infinite accuracy.

1 0 RP Rounds the result toward + ∞.  The result is closest to a value greater than

the accurate result with infinite accuracy.

1 1 RM Rounds the result toward − ∞.  The result is closest to a value less than the

accurate result with infinite accuracy.



CHAPTER 7   FLOATING-POINT UNIT

Preliminary User’s Manual  U16044EJ1V0UM176

7.3.2 Enable/Mode register (FCR28)

The Enable/Mode register (FCR28) accesses only the enable, FS, and rounding mode control bits of FCR31.  For

details of each bit, refer to 7.3.1 Control/Status register (FCR31).

Figure 7-4.  FCR28

31 312 11 7 6 2 1 0

FS0 Enable
V   Z   O   U   I

RM0

7.3.3 Cause/Flag register (FCR26)

The Cause/Flag register (FCR26) accesses only the cause and flag bits of FCR31.  For details of each bit, refer

to 7.3.1 Control/Status register (FCR31).

Figure 7-5.  FCR26

31 18 17 12 11 7 6 2 1 0

0 Cause
E   V   Z   O   U   I

Flag
V   Z   O   U   I

00

7.3.4 Condition Code register (FCR25)

The Condition Code register (FCR25) accesses only the CC bits of FCR31.  This register can treat the CC bit as

eight consecutive bits.  For details of the CC bits, refer to 7.3.1 Control/Status register (FCR31).

Figure 7-6.  FCR25

31 0

CC

78

0



CHAPTER 7   FLOATING-POINT UNIT

Preliminary User’s Manual  U16044EJ1V0UM 177

7.3.5 Implementation/Revision register (FCR0)

The Implementation/Revision register (FCR0) is a read-only register and holds the implementation identification

number and implementation revision number of the FPU, status of the supported floating-point functions.  This

information can be used for revising the coprocessor, determining the performance level, and self-diagnosis.

Figure 7-7 shows the configuration of the Implementation/Revision register.

Figure 7-7.  FCR0

31 0

Rev

1516 78

Imp0 S

1719 1820

DPS3D

3D: Support of three-dimensional graphics (0)

PS: Support of single-precision data pair (0)

D: Support of double-precision data pair (1)

S: Support of single-precision data (1)

Imp: Implementation identification number (0x55)

Rev: Implementation revision number

0: Reserved.  Write 0 to these bits.  Zero is returned when these bits are read.

Bits 19 to 16 indicate which functions are implemented in the VR5500.  If a given function is not implemented, the

corresponding bit is 0; if the function is implemented, the bit is 1.

The implementation revision number is a value in the form of x.y, where y is the major revision number stored in

bits 7 to 4 and x is the minor revision number stored in bits 3 to 0.  The implementation revision number can be used

to identify revision of the chip.  However, modification of the chip is not always reflected on the revision number.

Conversely, modification of the revision number does not always reflect the actual modification of the chip.

Therefore, develop a program so that it does not depend upon the revision number of this register.



CHAPTER 7   FLOATING-POINT UNIT

Preliminary User’s Manual  U16044EJ1V0UM178

7.4 Data Format

7.4.1 Floating-point format

The FPU supports 32-bit (single-precision) and 64-bit (double-precision) IEEE754 floating-point operations.  The

single-precision floating-point format consists of a 24-bit signed mantissa (s + f) and an 8-bit exponent (e), as shown

in Figure 7-8.

Figure 7-8.  Single-Precision Floating-Point Format

3031

s
Sign

02223

e
Exponent

f
Mantissa

1 8 23

The double-precision floating-point format consists of a 53-bit signed mantissa (s + f) and an 11-bit exponent (e),

as shown in Figure 7-9.

Figure 7-9.  Double-Precision Floating-Point Format

6263

s
Sign

05152

e
Exponent

f
Mantissa

1 11 52

A numeric value in the floating-point format consists of the following three areas.

• Sign bit: s

• Exponent: e = E + bias value

• Mantissa: f = .b1b2…bP−1 (value lower than the first place below the decimal point)

The range of unbiased exponent E covers all integer values from Emin to Emax, two reserved values, Emin – 1 (±0 or

denormalized number), and Emax + 1 (±∞ or NaN: Not a Number).  A numeric value other than 0 is expressed in one

format, depending on the single-precision and double-precision formats.

The numeric value (v) expressed in this format can be calculated by the expression shown in Table 7-4.



CHAPTER 7   FLOATING-POINT UNIT

Preliminary User’s Manual  U16044EJ1V0UM 179

Table 7-4.  Calculation Expression of Floating-Point Value

Type Calculation Expression

NaN (Not a Number) If E = Emax + 1 and f ≠ 0, v is NaN regardless of s.

±∞ (infinite number) If E = Emax + 1 and f = 0, v = (−1)s∞

Normalized number If Emin ≤ E ≤ Emax, v = (−1)s2E (1.f)

Denormalized number If E = Emin – 1 and f ≠ 0, v = (−1)s2Emin (0.f)

±0 (zero) If E = Emin – 1 and f = 0, v = (−1)s0

• NaN (Not a Number)

IEEE754 defines a floating-point value called NaN (Not a Number).  Because it is not a numeric value, it

does not have a relationship of greater than or less than.

If v is NaN in all the floating-point formats, it may be either SignalingNaN or QuietNaN, depending on the

value of the most significant bit of f.  If the most significant bit of f is set, v is SignalingNaN; if the most

significant bit is cleared, it is QuietNaN.

Table 7-5 shows the value of each parameter defined in the floating-point format.

Table 7-5.  Floating-Point Format and Parameter Value

FormatParameter

Single precision Double precision

Emax +127 +1023

Emin −126 −1022

Bias value of exponent +127 +1023

Length of exponent (number of bits) 8 11

Integer bit Cannot be seen Cannot be seen

Length of mantissa (number of bits) 24 53

Length of format (number of bits) 32 64

Table 7-6 shows the minimum value and maximum value that can be expressed in this floating-point format.

Table 7-6.  Maximum and Minimum Values of Floating Point

Type Value

Minimum value of single-precision floating point 1.40129846e − 45

Minimum value of single-precision floating point (normal) 1.17549435e − 38

Maximum value of single-precision floating point 3.40282347e + 38

Minimum value of double-precision floating point 4.9406564584124654e − 324

Minimum value of double-precision floating point (normal) 2.2250738585072014e − 308

Maximum value of double-precision floating point 1.7976931348623157e + 308



CHAPTER 7   FLOATING-POINT UNIT

Preliminary User’s Manual  U16044EJ1V0UM180

7.4.2 Fixed-point format

The value of a fixed point is held in the format of 2’s complement.  Operation instructions that handle data in the

unsigned fixed-point format are not provided in the floating-point instruction set.  Figure 7-10 shows a 32-bit fixed-

point format and Figure 7-11 shows a 64-bit fixed-point format.

Figure 7-10.  32-Bit Fixed-Point Format

3031

s
Sign

0

i
Integer

311

s: Sign bit

i: Integer value (2’s complement)

Figure 7-11.  64-Bit Fixed-Point Format

s
Sign

i
Integer

63 62 0

1 63

s: Sign bit

i: Integer value (2’s complement)



CHAPTER 7   FLOATING-POINT UNIT

Preliminary User’s Manual  U16044EJ1V0UM 181

7.5 Outline of FPU Instruction Set

All the FPU instructions are 32 bits long and aligned at the word boundary.  These instructions are classified as

follows.

• Load/store/transfer instructions that transfer data between the general-purpose register or control register of

the FPU and the CPU or memory

• Conversion instructions that convert the data format

• Arithmetic operation instructions that execute an operation on a floating-point value in an FPU register

• Comparison instructions that compares FPU registers and set the result to the CC bits of FCR31 and FCR25

• FPU branch instructions that branch execution to a specified target if the specified coprocessor condition is

satisfied

fmt appended to the instruction opcode of an operation or comparison instruction indicates the data type.  S

indicates single-precision floating point, D indicates double-precision floating point, L indicates 64-bit fixed point, and

W indicates 32-bit fixed point.  For example, “ADD.D” indicates that the operand of the addition instruction is a

double-precision floating-point value.

If the FR bit of the Status register in CP0 is 0, an odd-numbered register cannot be specified.

For details of each instruction, refer to CHAPTER 18 FPU INSTRUCTION SET.



CHAPTER 7   FLOATING-POINT UNIT

Preliminary User’s Manual  U16044EJ1V0UM182

7.5.1 Floating-point load/store/transfer instructions

(1) Load/store between FPU and memory

Loading/storing between the FPU and memory is performed by the following instructions.

• LWC1, LWXC1, SWC1, and SWXC1 instructions, which access FGR in word (32-bit) units

• LCD1, LDXC1, LUXC1, SDC1, SDXC1, and SUXC1 instructions, which access FGR in doubleword (64-bit)

units

These load/store instructions are independent of the numeric value format, and format conversion is not

executed.  Nor does the floating-point operation exception occur.

(2) Data transfer between FPU and CPU

Data is transferred between a general-purpose register of the FPU and the CPU by the MTC1, MFC1, DMTC1,

or DMFC1 instruction.  Like the load/store instructions, these transfer instructions do not convert the numeric

value format and the floating-point operation exception does not occur.

The CTC1 and CFC1 instructions of the CPU instruction transfer data between a control register of the FPU and

the CPU.

(3) Load delay and hardware interlock

The register that is to be loaded can be used in the instruction immediately after a load instruction.  In this case,

however, interlocking occurs and a cycle is appended.  To avoid interlocking, therefore, scheduling of the load

delay slot is necessary.

With the VR5500, however, the load delay is eliminated, unless the pipeline is congested, because instructions

are executed by an out-of-order mechanism.  Therefore, it seems that instructions were executed without delay.

(4) Aligning data

All the load/store instructions except LUXC1 and SUXC1 reference the following aligned data.

• The access type for a word load/store instruction is always a word, and the lower 2 bits of the address must

be 0.

• The access type for a doubleword load/store instruction is always a doubleword, and the lower 3 bits of the

address must be 0.

(5) Byte arrangement

Regardless of the byte arrangement (endianness), an address is specified by the lowest byte address in an

address area.  In a big-endian system, the leftmost byte address is specified.  In a little-endian system, the

rightmost byte address is specified.

Table 7-7 lists the load/store/transfer instructions.



CHAPTER 7   FLOATING-POINT UNIT

Preliminary User’s Manual  U16044EJ1V0UM 183

Table 7-7.  Load/Store/Transfer Instructions (1/2)

Instruction Format and Description

Load Word to FPU

LWC1 ft, offset (base)

Sign-extends and adds a 16-bit offset to the contents of CPU register base to generate an address.  Loads

the contents of the word specified by the address to FPU general-purpose register ft.

Store Word from FPU

SWC1 ft, offset (base)

Sign-extends and adds a 16-bit offset to the contents of CPU register base to generate an address.

Stores the contents of FPU general-purpose register ft in the memory position specified by the address.

Load Doubleword to

FPU

LDC1 ft, offset (base)

Sign-extends and adds a 16-bit offset to the contents of CPU register base to generate an address.  Loads

the contents of the doubleword specified by the address to FPU general-purpose registers ft and ft + 1

when FR = 0.  When FR = 1, loads the contents of the doubleword to FPU general-purpose register ft.

Store Doubleword from

FPU

SDC1 ft, offset (base)

Sign-extends and adds a 16-bit offset to the contents of CPU register base to generate an address.

Stores the contents of FPU general-purpose registers ft and ft + 1 in the memory location specified by the

address when FR = 0.  When FR = 1, stores the contents of FPU general-purpose register ft in the same

memory location.

Instruction Format and Description

Load Word Indexed to

FPU

LWXC1  fd, index (base)

Adds the contents of CPU register base to CPU register index to generate an address.  Loads the

contents of the word specified by the address to FPU general-purpose register fd.

Load Doubleword

Indexed to FPU

LDXC1  fd, index (base)

Adds the contents of CPU register base to the contents of CPU register index to generate an address.

Loads the contents of the doubleword specified by the address to FPU general-purpose registers fd and fd

+ 1 when FR = 0, and to FPU general-purpose register fd when FR = 1.

Load Doubleword

Indexed Unaligned to

FPU

LUXC1  fd, index (base)

Adds the contents of CPU register base to the contents of CPU register index to generate an address.

Loads the contents of the doubleword specified by the address to FPU general-purpose registers fd and fd

+ 1 when FR = 0, and to FPU general-purpose register fd when FR = 1.

Instruction Format and Description

Store Word Indexed

from FPU

SWXC1 fs, index (base)

Adds the contents of CPU register base to the contents of CPU register index to generate an address.

Stores the contents of FPU general-purpose register fs in the memory location specified by the address.

Store Doubleword

Indexed from FPU

SDXC1 fs, index (base)

Adds the contents of CPU register base to the contents of CPU register index to generate an address.

Stores the contents of FPU general-purpose registers fs and fs + 1 in the memory location specified by the

address when FR = 0, and FPU general-purpose register fs in the same memory location when FR = 1.

Store Doubleword

Indexed Unaligned from

FPU

SUXC1  fs, index (base)

Adds the contents of CPU register base to the contents of CPU register index to generate an address.

Stores the contents of FPU general-purpose registers fs and fs + 1 in the memory location specified by the

address when FR = 0, and FPU general-purpose register fs in the same memory location when FR = 1.

op base ft offset

COP1 base index function0 fd

COP1 base index functionfs 0



CHAPTER 7   FLOATING-POINT UNIT

Preliminary User’s Manual  U16044EJ1V0UM184

Table 7-7.  Load/Store/Transfer Instructions (2/2)

Instruction Format and Description

Move Word to FPU
MTC1 rt, fs

Transfers the contents of CPU general-purpose register rt to FPU general-purpose register fs.

Move Word from FPU
MFC1 rt, fs

Transfers the contents of FPU general-purpose register fs to CPU general-purpose register rt.

Move Control Word to

FPU

CTC1 rt, fs

Transfers the contents of CPU general-purpose register rt to FPU control register fs.

Move Control Word from

FPU

CFC1 rt, fs

Transfers the contents of FPU control register fs to CPU general-purpose register rt.

Doubleword Move to

FPU

DMTC1 rt, fs

Transfers the contents of CPU general-purpose register rt to FPU general-purpose register fs.

Doubleword Move from

FPU

DMFC1 rt, fs

Transfers the contents of FPU general-purpose register fs to CPU general-purpose register rt.

Instruction Format and Description

Floating-point

Move Conditional on

FPU True

MOVT.fmt  fd, fs, cc

Transfers the contents of FPU register fs in the specified format (fmt) to FPU register fd if the cc bit is

true.

Floating-point

Move Conditional on

FPU False

MOVF.fmt  fd, fs, cc

Transfers the contents of FPU register fs in the specified format (fmt) to FPU register fd if the cc bit is

false.

Instruction Format and Description

Floating-point

Move Conditional on

Zero

MOVZ.fmt  fd, fs, rt

Transfers the contents of FPU register fs in the specified format (fmt) to FPU register fd if CPU register rt

is 0.

Floating-point

Move Conditional on Not

Zero

MOVN.fmt  fd, fs, rt

Transfers the contents of FPU register fs in the specified format (fmt) to FPU register fd if CPU register rt

is other than 0.

COP1 sub rt fs 0

COP1 fmt cc functionfs fd

COP1 fmt rt functionfs fd



CHAPTER 7   FLOATING-POINT UNIT

Preliminary User’s Manual  U16044EJ1V0UM 185

7.5.2 Conversion instructions

The conversion instructions execute format conversion between single precision and double precision, or

between fixed point and floating point.

Table 7-8 lists the conversion instructions.

Table 7-8.  Conversion Instructions

Instruction Format and Description

Floating-point Convert to

Single Floating-point

Format

CVT.S.fmt  fd, fs

Converts the contents of FPU register fs from the specified format (fmt) into a single-precision floating-

point format.  Stores the result rounded in accordance with the setting of FCR31 and FCR28 in FPU

register fd.

Floating-point Convert to

Double Floating-point

Format

CVT.D.fmt  fd, fs

Converts the contents of FPU register fs from the specified format (fmt) into a double-precision floating-

point format.  Stores the result rounded in accordance with the setting of FCR31 and FCR28 in FPU

register fd.

Floating-point Convert to

Long Fixed-point Format

CVT.L.fmt  fd, fs

Converts the contents of FPU register fs from the specified format (fmt) into a 64-bit fixed-point format.

Stores the result rounded in accordance with the setting of FCR31 and FCR28 in FPU register fd.

Floating-point Convert to

Single Fixed-point

Format

CVT.W.fmt  fd, fs

Converts the contents of FPU register fs from the specified format (fmt) into a 32-bit fixed-point format.

Stores the result rounded in accordance with the setting of FCR31 and FCR28 in FPU register fd.

Floating-point Round to

Long Fixed-point Format

ROUND.L.fmt  fd, fs

Rounds and converts the contents of FPU register fs from the specified format (fmt) to a value closest to a

64-bit fixed-point format.  Stores the result in FPU register fd.

Floating-point Round to

Single Fixed-point

Format

ROUND.W.fmt  fd, fs

Rounds and converts the contents of FPU register fs from the specified format (fmt) to a value closest to a

32-bit fixed-point format.  Stores the result in FPU register fd.

Floating-point Truncate

to Long Fixed-point

Format

TRUNC.L.fmt  fd, fs

Rounds the contents of FPU register fs toward 0 and converts the contents from the specified format (fmt)

into a 64-bit fixed-point format.  Stores the result in FPU register fd.

Floating-point Truncate

to Single Fixed-point

Format

TRUNC.W.fmt  fd, fs

Rounds the contents of FPU register fs toward 0 and converts the contents from the specified format (fmt)

into a 32-bit fixed-point format.  Stores the result in FPU register fd.

Floating-point Ceiling to

Long Fixed-point Format

CEIL.L.fmt  fd, fs

Rounds the contents of FPU register fs toward +∞ and converts the contents from the specified format

(fmt) into a 64-bit fixed-point format.  Stores the result in FPU register fd.

Floating-point Ceiling to

Single Fixed-point

Format

CEIL.W.fmt  fd, fs

Rounds the contents of FPU register fs toward +∞ and converts the contents from the specified format

(fmt) into a 32-bit fixed-point format.  Stores the result in FPU register fd.

Floating-point Floor to

Long Fixed-point Format

FLOOR.L.fmt  fd, fs

Rounds the contents of FPU register fs toward −∞ and converts the contents from the specified format

(fmt) into a 64-bit fixed-point format.  Stores the result in FPU register fd.

Floating-point Floor to

Single Fixed-point

Format

FLOOR.W.fmt  fd, fs

Rounds the contents of FPU register fs toward −∞ and converts the contents from the specified format

(fmt) into a 32-bit fixed-point format.  Stores the result in FPU register fd.

COP1 fmt 0 functionfs fd



CHAPTER 7   FLOATING-POINT UNIT

Preliminary User’s Manual  U16044EJ1V0UM186

When converting a floating-point format into a fixed-point format, make sure that the result is a value in a range of

253 – 1 to –253.  If the result cannot be correctly expressed because it exceeds the range of 253 – 1 to –253 as a result

of rounding the value of the source, an unimplemented operation exception occurs and the result of the operation is

discarded.  The instructions that cause the unimplemented operation exception under these conditions are listed

below.

CEIL.L.S CEIL.L.D

CVT.L.S CVT.L.D

FLOOR.L.S FLOOR.L.D

ROUND.L.S ROUND.L.D

TRUNC.L.S TRUNC.L.D

An unimplemented operation exception may also occur when converting a fixed-point format into a floating-point

format.  For details, refer to 8.3.6 Unimplemented operation exception (E).



CHAPTER 7   FLOATING-POINT UNIT

Preliminary User’s Manual  U16044EJ1V0UM 187

7.5.3 Operation instructions

The operation instructions execute an operation on a floating-point value in a register.  Table 7-9 lists the

operation instructions.

Three-operand instructions execute addition, subtraction, multiplication, or division of floating-point values.

Two-operand instructions execute absolute value, transfer, square root, and arithmetic negation of a floating-point

value.

Table 7-9.  Operation Instructions (1/2)

Instruction Format and Description

Floating-point Add

ADD. fmt  fd, fs, ft

Arithmetically adds the contents of FPU registers fs and ft in the specified format (fmt), and stores the

rounded result in FPU register fd.

Floating-point Subtract

SUB. fmt  fd, fs, ft

Arithmetically subtracts the contents of FPU registers fs and ft in the specified format (fmt), and stores the

rounded result in FPU register fd.

Floating-point Multiply

MUL. fmt  fd, fs, ft

Arithmetically multiplies the contents of FPU registers fs and ft in the specified format (fmt), and stores the

rounded result in FPU register fd.

Floating-point Divide

DIV. fmt  fd, fs, ft

Arithmetically divides the contents of FPU register fs by the contents of FPU register ft in the specified

format (fmt), and stores the rounded result in FPU register fd.

Floating-point Absolute

Value

ABS. fmt  fd, fs

Calculates an arithmetic absolute value of the contents of FPU register fs in the specified format (fmt),

and stores the result in FPU register fd.

Floating-point Move
MOV. fmt  fd, fs

Copies the contents of FPU register fs in the specified format (fmt) to FPU register fd.

Floating-point Negate

NEG. fmt  fd, fs

Calculates arithmetic negation of the contents of FPU register fs in the specified format (fmt), and stores

the result in FPU register fd.

Floating-point Square

Root

SQRT. fmt  fd, fs

Calculates an arithmetic positive square root of the contents of FPU register fs in the specified format

(fmt), and stores the rounded result in FPU register fd.

COP1 fmt ft functionfs fd



CHAPTER 7   FLOATING-POINT UNIT

Preliminary User’s Manual  U16044EJ1V0UM188

Table 7-9.  Operation Instructions (2/2)

Instruction Format and Description

Floating-point Multiply-

Add

MADD.fmt  fd, fr, fs, ft

Multiplies the contents of FPU registers fs and ft in the specified format (fmt), and adds the result to the

contents of FPU register fr in a specified format (fmt).  Then stores the rounded result in FPU register fd.

Floating-point Multiply-

Subtract

MSUB.fmt  fd, fr, fs, ft

Multiplies the contents of FPU registers fs and ft in the specified format (fmt), and subtracts the contents

of FPU register fr from the result in the specified format (fmt).  Then stores the rounded result in FPU

register fd.

Floating-point Negate

Multiply-Add

NMADD.fmt  fd, fr, fs, ft

Multiplies the contents of FPU registers fs and ft in the specified format (fmt), and adds the result to the

contents of FPU register fr in the specified format (fmt).  Rounds the result and calculates arithmetic

negation, and then stores that result in FPU register fd.

Floating-point Negate

Multiply-Subtract

NMSUB.fmt  fd, fr, fs, ft

Multiplies the contents of FPU registers fs and ft in the specified format (fmt), and subtracts the contents

of FPU register fr from the result in the specified format (fmt).  Rounds the result and calculates arithmetic

negation, and then stores that result in FPU register fd.

Instruction Format and Description

Floating-point

Reciprocal

RECIP.fmt  fd, fs

Calculates the approximate value of the inverse number of the contents of FPU register fs in the specified

format, and stores the result in FPU register fd.

Floating-point

Reciprocal Square Root

RSQRT.fmt  fd, fs

Calculates the square root of the contents of FPU register fs and then the approximate value of the

inverse number of that value in the specified format.  Then stores the result in FPU register fd.

COP1X fr ft functionfs fd fmt

COP1 fmt 0 functionfs fd



CHAPTER 7   FLOATING-POINT UNIT

Preliminary User’s Manual  U16044EJ1V0UM 189

7.5.4 Comparison instruction

The comparison instruction (C.cond.fmt) converts the contents of two FPU registers (fs and ft) in the specified

format (fmt) for comparison.  The result is determined based on the comparison condition (cond) included in the

code.  Table 7-10 lists the comparison instruction, and Table 7-11 lists the conditions of the comparison instruction.

Table 7-10.  Comparison Instruction

Instruction Format and Description

Floating-point Compare

C.cond.fmt  fs, ft

Interprets the contents of FPU register fs and ft in the specified format (fmt), and arithmetically compares

them.  The result is identified by comparison and the specified condition (cond).  The result of the

comparison can be used for the FPU branch instructions of the CPU.

Table 7-11.  Conditions for Comparison Instruction

Nmemonic Definition Nmemonic Definition

F Always false T Always true

UN Unordered OR Ordered

EQ Equal NEQ Not equal

UEQ Unordered or equal OLG Ordered and less than or greater than

OLT Ordered and less than UGE Unordered or greater than or equal to

ULT Ordered or less than OGE Ordered and greater than or equal to

OLE Ordered and less than or equal to UGT Unordered or greater than

ULE Unordered or less than or equal to OGT Ordered and greater than

SF Signaling and false ST Signaling and true

NGLE Not greater than, not less than, and not

equal to

GLE Greater than, less than, or equal to

SEQ Signaling and equal to SNE Signaling and not equal to

NGL Not greater than and not less than GL Greater than or less than

LT Less than NLT Not less than

NGE Not greater than and not equal to GE Greater than or equal to

LE Less than or equal to NLE Not less than and not equal to

NGT Not greater than GT Greater than

COP1 fmt ft functionfs 0



CHAPTER 7   FLOATING-POINT UNIT

Preliminary User’s Manual  U16044EJ1V0UM190

7.5.5 FPU branch instructions

Table 7-12 lists the FPU branch instructions.  These instructions can be used to test the result of the comparison

instruction (C.cond.fmt).  “Delay slot” in this table means the instruction immediately following a branch instruction.

For details, refer to CHAPTER 4 PIPELINE.

Table 7-12.  FPU Branch Instructions

Instruction Format and Description

Branch on FPU True

BC1T  offset

Calculates the branch target address by adding the instruction address in the delay slot and a 16-bit offset

(shifts the address 2 bits to the left and sign-extends it).

If the FPU condition line is true, execution branches to the target address (delay of 1 instruction).

Branch on FPU False

BC1F  offset

Calculates the branch target address by adding the instruction address in the delay slot and a 16-bit offset

(shifts the address 2 bits to the left and sign-extends it).

If the FPU condition line is false, execution branches to the target address (delay of 1 instruction).

Branch on FPU True

Likely

BC1TL  offset

Calculates the branch target address by adding the instruction address in the delay slot and a 16-bit offset

(shifts the address 2 bits to the left and sign-extends it).

If the FPU condition line is true, execution branches to the target address (delay of 1 instruction).  If a

conditional branch does not take place, the instruction in the delay slot is invalid.

Branch on FPU False

Likely

BC1FL  offset

Calculates the branch target address by adding the instruction address in the delay slot and a 16-bit offset

(shifts the address 2 bits to the left and sign-extends it).

If the FPU condition line is false, execution branches to the target address (delay of 1 instruction).  If a

conditional branch does not take place, the instruction in the delay slot is invalid.

7.5.6 Other instructions

Table 7-13.  Prefetch Instruction

Instruction Format and Description

Prefetch Indexed

PREFX  hint, index (base)

Adds the contents of CPU register base to the contents of CPU register index to generate an address.

How the data specified by the address is treated is specified by the hint area.

Table 7-14.  Conditional Transfer Instructions

Instruction Format and Description

Move Conditional on

FPU True

MOVT  rd, rs, cc

Transfers the contents of CPU register rs to CPU register rd if the cc bit is true.

Move Conditional on

FPU False

MOVF  rd, rs, cc

Transfers the contents of CPU register rs to CPU register rd if the cc bit is false.

COP1 BC br offset

COP1 base index functionhint 0

SPECIAL rs cc functrd 0



CHAPTER 7   FLOATING-POINT UNIT

Preliminary User’s Manual  U16044EJ1V0UM 191

7.6 Execution Time of FPU Instruction

Unlike the CPU, which executes almost all instructions in 1 cycle, the FPU instructions take a long time to

execute.

Table 7-15 shows the minimum execution time of each floating-point instruction in the number of PCycles.  This

execution time is calculated on the assumption that the result of execution of each instruction is used by the

instruction immediately after.

Table 7-15.  Number of Execution Cycles of Floating-Point Instructions (1/2)

Number of PCycles (When Executed Singly/Repeatedly)Instruction

Single Double Word Long Word

ADD.fmt 4/4 4/4 − −

SUB.fmt 4/4 4/4 − −

MUL.fmt 5/5 6/6 − −

MADD.fmt 9/9 10/10 − −

MSUB.fmt 9/9 10/10 − −

NMADD.fmt 9/9 10/10 − −

NMSUB.fmt 9/9 10/10 − −

DIV.fmt 30/30 59/59 − −

SQRT.fmt 30/30 59/59 − −

RECIP.fmt 30/30 59/59 − −

RSQRT.fmt 60/60 118/118 − −

ABS.fmt 2/2 2/2 − −

NEG.fmt 2/2 2/2 − −

ROUND.W.fmt 6/6 6/6 − −

ROUND.L.fmt 6/6 6/6 − −

TRUNC.W.fmt 6/6 6/6 − −

TRUNC.L.fmt 6/6 6/6 − −

CEIL.W.fmt 6/6 6/6 − −

CEIL.L.fmt 6/6 6/6 − −

FLOOR.W.fmt 6/6 6/6 − −

FLOOR.L.fmt 6/6 6/6 − −

CVT.D.fmt 2/2 − 6/6 6/6

CVT.S.fmt − 4/4 6/6 6/6

CVT.W.fmt 6/6 6/6 − −

CVT.L.fmt 6/6 6/6 − −

C.cond.fmt 2/2 2/2 − −



CHAPTER 7   FLOATING-POINT UNIT

Preliminary User’s Manual  U16044EJ1V0UM192

Table 7-15.  Number of Execution Cycles of Floating-Point Instructions (2/2)

Number of PCycles (When Executed Singly/Repeatedly)Instruction

Single Double Word Long Word

BC1T 2/2 (hit), 6/6 (miss) 2/2 (hit), 6/6 (miss) − −

BC1F 2/2 (hit), 6/6 (miss) 2/2 (hit), 6/6 (miss) − −

BC1TL 2/2 (hit), 6/6 (miss) 2/2 (hit), 6/6 (miss) − −

BC1FL 2/2 (hit), 6/6 (miss) 2/2 (hit), 6/6 (miss) − −

LWC1 4/3 4/3 − −

SWC1 NA/1 NA/1 − −

LDC1 4/3 4/3 − −

SDC1 NA/1 NA/1 − −

LWXC1 4/3 4/3 − −

SWXC1 NA/1 NA/1 − −

LDXC1 4/3 4/3 − −

SDXC1 NA/1 NA/1 − −

LUXC1 4/3 4/3 − −

SUXC1 NA/1 NA/1 − −

MOV.fmt 2/2 2/2 − −

MOVZ.fmt 7/7 7/7 − −

MOVN.fmt 7/7 7/7 − −

MOVF.fmt 7/7 7/7 − −

MOVT.fmt 7/7 7/7 − −

MTC1 2/2 2/2 − −

MFC1 1/1 1/1 − −

DMTC1 2/2 2/2 − −

DMFC1 1/1 1/1 − −

CTC1Note 10/12 10/12 − −

CFC1Note 10/12 10/12 − −

Note  This instruction is executed serially.  No other instructions are executed at the same time.

Remark  NA: Under evaluation



Preliminary User’s Manual  U16044EJ1V0UM 193

CHAPTER 8   FLOATING-POINT EXCEPTIONS

This chapter explains how the FPU processes floating-point exceptions.

8.1 Types of Exceptions

A floating-point exception occurs if a floating-point operation or an operation result cannot be processed by the

ordinary method.

The FPU may perform either of the following operations if an exception occurs.

• When exceptions are enabled

The FPU sets the cause bit of the Control/Status register (FCR31) or Cause/Flag register (FCR26) and

transfers processing to an exception handler routine (software processing).

• When exceptions are disabled

The FPU stores an appropriate value (default value) in the destination register and continues execution.

The FPU supports the following five types of IEEE754 exceptions by using the cause bit, enable bit, and flag bit

(status flag).

• Inexact operation  (I)

• Overflow (O)

• Underflow (U)

• Division-by-zero (Z)

• Invalid operation (V)

As the sixth exception cause, the FPU has an unimplemented operation (E) that is used if a floating-point

operation cannot be executed with the standard architecture of MIPS (including when the FPU cannot correctly

process an exception).  This exception must be processed by software. An E bit is not provided in the enable or flag

bits.  If this exception occurs, unimplemented exception processing is executed (if interrupts input by the FPU to the

CPU are enabled).

Figure 8-1 shows the bits of FCR31 that are used to support exceptions.  The same enable bits is also provided in

FCR28, and the same cause and flag bits are also provided in FCR26.



CHAPTER 8   FLOATING-POINT EXCEPTIONS

Preliminary User’s Manual  U16044EJ1V0UM194

Figure 8-1.  Cause/Enable/Flag Bits of FCR31

E V Z O U I

Bit 17 16 15 14 13 12

V Z O U I

Bit 11 10 9 8 7

V Z O U I

Bit 6 5 4 3 2

Invalid operation 
Division by zero

Overflow
Underflow

Inexact operation

Unimplemented operation 

Cause bit

Enable bit

Flag bit

The five exceptions of IEEE754 (V, Z, O, U, and I) are enabled by setting the corresponding bit.  When an

exception occurs, the corresponding cause bit is set.  If the corresponding enable bit is set, the FPU generates an

interrupt to the CPU, and starts exception processing.  If occurrence of the exception is disabled, the cause bit and

flag bit corresponding to that exception are set.

8.2 Exception Processing

If a floating-point operation exception occurs, the Cause register of CP0 indicates that the cause of the exception

lies in the FPU.  The code of the floating-point exception (FPE) is used, and the cause bits of FCR31 and FCR26

indicate the cause of the floating-point operation exception.  These bits function as an extension of the Cause

register of CP0.

8.2.1 Flag

A flag bit is available for each IEEE754 exception.  The flag bit is set if occurrence of the corresponding exception

is disabled and if the condition of the exception is detected.  The flag bit can be set/reset by writing a new value to

FCR31 or FCR26 using the CTC1 instruction.

If an exception is disabled by the corresponding enable bit, the FPU performs predetermined processing.  This

processing gives a default value instead of the result of the floating-point operation.  This default value is determined

by the type of the exception.  If an overflow or underflow exception occurs, the default value differs depending on the

rounding mode at that time.  Table 8-1 shows the default values given by each IEEE754 exception of the FPU.



CHAPTER 8   FLOATING-POINT EXCEPTIONS

Preliminary User’s Manual  U16044EJ1V0UM 195

Table 8-1.  Default Values of IEEE754 Exceptions in FPU

Area Description Rounding Mode Default Value

V Invalid operation − Uses Quiet Not a Number (Q-NaN).

Z Division-by-zero − Uses correctly signed ∞.

O Overflow RN ∞ with sign of intermediate result

RZ Maximum normalized number with sign of intermediate result

RP Negative overflow: Maximum negative normalized number

Positive overflow: +∞

RM Positive overflow: Maximum positive normalized number

Negative overflow: −∞

U Underflow RN 0 with sign of intermediate result

RZ 0 with sign of intermediate result

RP Positive underflow: Minimum positive normalized number

Negative underflow: 0

RM Negative underflow: Minimum negative normalized number

Positive underflow: 0

I Inexact operation − Uses rounded result.

The FPU internally detects nine types of statuses that may trigger an exception.  When the FPU detects these

abnormal statuses, an IEEE754 exception or the unimplemented operation exception (E) occurs.  Table 8-2 shows

the statuses that trigger exceptions, and a comparison of the contents of the corresponding cause bits of the FPU

and the IEEE754 standard.

Table 8-2.  FPU Internal Result and Flag Status

FPU Internal Result IEEE754 Exception

Enabled

Exception

Disabled

Remark

Inexact operation I I I Result is not accurate.

Exponent overflow O, I
Note

O, I O, I Normalized exponent > Emax

Division-by-zero Z Z Z Zero (exponent = Emin – 1, mantissa = 0)

Overflow during conversion V E E Source is outside integer range

Signaling NaN (S-NaN) source V V V

Invalid operation V V V 0 ÷ 0, etc.

Exponent underflow U E E Normalized exponent < Emin

Denormalized source None E E Exponent = Emin – 1 and mantissa ≠ 0

Q-NaN None E E

Note  IEEE754 allows an Inexact operation  exception to occur in the case of an overflow only when the

overflow exception is disabled, but the VR5500 always allows an overflow exception and an inexact

operation exception to occur in the case of an overflow.



CHAPTER 8   FLOATING-POINT EXCEPTIONS

Preliminary User’s Manual  U16044EJ1V0UM196

8.3 Details of Exceptions

This section explains the conditions under which each exception occurs and the action taken by the FPU.

8.3.1 Inexact operation exception (I)

The FPU generates an inexact operation exception in the following cases.

• If the accuracy of the rounded result drops

• If the rounded result overflows

• If the rounded result underflows and if an underflow exception and an inexact operation exception are

disabled and the FS bit of FCR31 and FCR28 is set

Usually, the FPU checks the operands of an instruction before executing the instruction.  Based on the exponent

value of the operand, the FPU judges whether an exception may occur as a result of executing this instruction.  If an

exception may occur, the FPU uses a stall when executing this instruction.

However, the FPU cannot predict whether executing a certain instruction results in an illegal value.  If the inexact

operation exception is enabled, the FPU uses a stall for executing all instructions, and thus the execution time

increases by 1 cycle.  This substantially affects the performance.  Therefore, enable the inexact operation instruction

only when it is necessary.

(1) If exception is enabled

The contents of the destination register are not changed, the contents of the source register are saved, and the

inexact operation exception occurs.

(2) If exception is not enabled

If no other exception occurs, the rounded result or the result that underflows/overflows is stored in the

destination register.



CHAPTER 8   FLOATING-POINT EXCEPTIONS

Preliminary User’s Manual  U16044EJ1V0UM 197

8.3.2 Invalid operation exception (V)

An invalid operation exception occurs if one of or both the operands are invalid.  If the exception is not enabled,

the result is Not a Number (Q-NaN).  The invalid operations include the following operations.

• Addition/subtraction: Addition/subtraction between infinities (+∞) + (−∞) or (−∞) – (−∞)

• Multiplication: ±0 × ±∞
• Division: ±0 ÷ ±0 or ±∞ ÷ ±∞
• Comparison of “<” or “>” with an Unordered operand and without “?”

• Arithmetic operation with S-NaN included in the operand.  The transfer instruction (MOV) is not treated as an

arithmetic operation, but the absolute value (ABS) and arithmetic negation (NEG) are treated as arithmetic

operations.

• Comparison with S-NaN as operand and conversion into floating point

• Square root: If operand is less than 0

In addition to the above, an exception can be simulated by software if an invalid operation is performed on the

specified source operand.  Examples of this operation include IEEE754-specified functions that can be executed by

software, such as the remainder mentioned below.

• Remainder xREMy if y is 0 or if x is infinity

• Conversion of a floating-point value of infinity or NaN that triggers overflow into a decimal number

• Transcendental functions such as In(−5) and cos − 1(3)

(1) If exception is enabled

The contents of the destination register are not changed, the contents of the source register are saved, and the

inexact operation exception occurs.

(2) If exception is not enabled

If no other exception occurs, Q-NaN is stored in the destination register.

8.3.3 Division-by-zero exception (Z)

A division-by-zero exception occurs if a finite number with a divisor of 0 and a dividend of other than 0 is used.

This exception also occurs if an operation that produces signed infinity as the result, such as In(0), sec(π/2), csc(0),

and 0 – 1, is performed.

(1) If exception is enabled

The contents of the destination register are not changed, the contents of the source register are saved, and the

division-by-zero exception occurs.

(2) If exception is not enabled

If no other exception occurs, a correctly signed infinite number (±∞) is stored in the destination register.



CHAPTER 8   FLOATING-POINT EXCEPTIONS

Preliminary User’s Manual  U16044EJ1V0UM198

8.3.4 Overflow exception (O)

An overflow exception occurs if the exponent range is infinite and if the size of the result of the rounded floating

point is greater than the maximum finite number in the destination format (an inexact operation exception occurs and

the flag bit is set).

(1) If exception is enabled

The contents of the destination register are not changed, the contents of the source register are saved, and the

overflow exception occurs.

(2) If exception is not enabled

If no other exception occurs, the default value that is determined by the rounding mode and the sign of the

intermediate result is stored in the destination register (refer to Table 8-1 Default Values of IEEE754

Exceptions in FPU).

8.3.5 Underflow exception (U)

An underflow exception occurs in the following two cases.

• If the operation result is –2Emin to +2Emin (but other than 0)

• If the accuracy drops as a result of an operation between not normalized small numbers.

IEEE754 defines many methods for detecting an underflow.  However, be sure to detect an underflow by the

same method whatever processing may be performed.

The following two methods may be used to detect an underflow.

• If the result calculated after rounding and with an infinite exponent range is other than 0 and within ±2Emin

• If the result calculated before rounding and with an infinite exponent range and accuracy is other than 0 and

within ±2Emin

The MIPS architecture detects an underflow after rounding the result.

The following two methods may be used to detect a drop in accuracy.

• Denormalized loss (if a given result and the result calculated when the exponent range is infinite differ)

• Illegal result (if a given result and the result calculated when the exponent range and accuracy are infinite

differ)

The MIPS architecture detects a drop in accuracy as an illegal result.

(1) If exception is enabled

If the underflow exception/inexact operation exception is enabled or if the FS bit of FCR31 and FCR28 is not

set, an unimplemented operation exception (E) occurs.  At this time, the contents of the destination register are

not changed.

(2) If exception is not enabled

If the underflow exception and inexact operation exception are disabled and if the FS bit of FCR31 and FCR28

is set, the default value determined by the rounding mode and the sign of the intermediate result is stored in the

destination register (refer to Table 8-1 Default Values of IEEE754 Exceptions in FPU).



CHAPTER 8   FLOATING-POINT EXCEPTIONS

Preliminary User’s Manual  U16044EJ1V0UM 199

8.3.6 Unimplemented operation exception (E)

The E bit is set and an exception occurs if an attempt is made to execute an instruction with an operation code

reserved for future expansion or an invalid format code.  The operand and the contents of the destination register

are not changed.  Usually, the instruction is emulated by software.  If an IEEE754 exception occurs from an

emulated operation, simulate that exception.

The unimplemented operation exception also occurs in the following cases, in which an abnormal operand or

abnormal result that cannot be correctly processed by hardware is detected.

• If the operand is a denormalized number (except a compare instruction)

• If the operand is a Q-NaN (except compare instruction)

• If the result is a denormalized number or underflows when the underflow/inexact operation exception is

enabled or when the FS bit of FCR31 and FCR28 is not set

• If a reserved instruction is executed

• If an unimplemented format is used

• If a format whose operation is invalid is used (e.g., CVT.S.S)

Caution  If the instruction is a format conversion or arithmetic operation instruction, the exception

occurs only when the operand is a denormalized number or NaN.  The exception occurs even if

the operand is a denormalized number or NaN when a transfer instruction is executed.

The VR5500 also generates the unimplemented operation exception in the following cases.

• If the result of multiplication by the MADD, MSUB, NMADD, or NMSUB instruction is a denormalized number,

underflows, or overflows

• If a MIPS IV floating-point instruction is executed when the MIPS IV instruction set is not enabled

• If the value of the result is outside the range of 253 – 1 (0x001F FFFF FFFF FFFF) to –253 (0xFFE0 0000 0000

0000) when the format is converted from a floating-point format to a 64-bit fixed-point format

Instruction: CEIL.L.fmt, CVT.L.fmt, FLOOR.L.fmt, ROUND.L.fmt, TRUNC.L.fmt

• If the value of the result is outside the range of 231 – 1 (0x7FFF FFFF) to –231 (0x8000 0000) when the format

is converted from a floating-point format to a 32-bit fixed-point format

Instruction: CEIL.W.fmt, CVT.W.fmt, FLOOR.W.fmt, ROUND.W.fmt, TRUNC.W.fmt

• If the value of the source operand is outside the range of 255 – 1 (0x007F FFFF FFFF FFFF) to –255 (0xFF80

0000 0000 0000) when the format is converted from a 64-bit fixed-point format to a floating-point format

Instruction: CVT.D.fmt, CVT.S.fmt

The unimplemented operation exception can be used in any way by the system.  To maintain complete

compatibility with IEEE754, the unimplemented operation exception can be handled by software if it occurs.

(1) If exception is enabled

The contents of the destination register are not changed, the contents of the source register are saved, and the

unimplemented operation exception occurs.

(2) If exception is not enabled

This exception cannot be disabled because there is no corresponding enable bit.



CHAPTER 8   FLOATING-POINT EXCEPTIONS

Preliminary User’s Manual  U16044EJ1V0UM200

8.4 Saving and Restoring Status

The LDC1 or SDC1 instruction is executed for 16 doublewordsNote to save or restore the status of a floating-point

register to or from memory.  Information on FCR31, FCR28, FCR26, and FCR25 is saved to or restored from a CPU

register by the CFC1 or CTC1 instruction.  Usually, FCR31 is saved first and restored last.

If the FPU is executing a floating-point instruction when FCR31, FCR28, FCR26, or FCR25 is read, the instruction

may be completely executed or reported as an exception.  Because the architecture does not allow a pending

instruction to cause an exception, if execution of the pending instruction cannot be completed, that instruction is

transferred to an exception register (if any).  Information such as the type of the exception is stored in FCR31,

FCR28, FCR26, or FCR25.  When the status is restored, FCR31 indicates that an exception is pending.

By writing a value of 0 to the Cause bits of FCR31 or FCR26, all pending exceptions can be cleared, and

resumption of the normal processing is enabled after the status of the floating-point register has been restored.

The Cause bits of FCR31 and FCR21 hold the result of only one instruction.  The FPU checks the operand before

executing an instruction to judge whether an exception may occur.  If an exception may occur, the FPU executes this

instruction by using a stall, so that two or more instructions (that may cause an exception) are not executed at the

same time.

Note  Thirty-two doublewords if the FR bit of the Status register in CP0 is set to 1

8.5 Handler for IEEE754 Exceptions

IEEE754 recommends an exception handler that can store calculation results in the destination register

regardless of which of the five standard exceptions occurs.

The exception handler can identify the following by using the EPC register to search for an instruction.

• Occurrence of exception during instruction execution

• Instruction under execution

• Format of destination

To obtain the correctly rounded result if an overflow, underflow (except the conversion instruction), or inexact

operation exception occurs, the exception handler must have software that checks the source register and simulates

instructions.

If an invalid operation exception or division-by-zero exception occurs or if an overflow exception or underflow

exception occurs during floating-point conversion, the exception handler must have software that can obtain the

value of the operand by checking the source register of the instruction.

IEEE754 recommends that, if possible, the overflow and underflow exceptions have a priority higher than the

inexact operation exception.  This priority is set by software.  The hardware sets the bits of both the overflow and the

underflow exceptions, and inexact operation exception.



Preliminary User’s Manual  U16044EJ1V0UM 201

CHAPTER 9   INITIALIZATION INTERFACE

9.1 Functional Outline

The VR5500 can be reset in three ways by using the ColdReset# and Reset# signals.

• Power-on reset

When the power supply has been stabilized after power application, all clocks are started.  A power-on reset

completely initializes the internal information of the processor without saving any status information.

• Cold reset

If the ColdReset# signal is asserted while the processor is operating, all clocks are restarted and the test

interface circuit is also initialized.  A cold reset completely initializes the internal statuses of the processor

without saving any status information.

• Warm reset

Although the processor is restarted, the clock and test interface circuits are not affected.  By using a warm

reset, most of the internal statuses of the processor can be retained.  However, the contents of registers are

undefined.

After reset, the processor serves as the bus master and drives the SysAD bus.

When adjusting a system reset with other system elements, the following must be noted: Generally, the operation

is undefined if a bus error occurs immediately before, during, and immediately after reset.  In addition, reset

initializes only a part of the internal status.  Therefore, completely initialize the processor by software.

The statuses of the registers, control signals, and current are undefined from when power is applied to when reset

is completed.



CHAPTER 9   INITIALIZATION INTERFACE

Preliminary User’s Manual  U16044EJ1V0UM202

9.2 Reset Sequence

The following two signals are used during reset.

(1) ColdReset#

Assert this signal to execute a power-on reset or cold reset.  Synchronize it with SysClock to deassert it.

(2) Reset#

Assert this signal to execute all reset operations.  This signal does not have to be synchronized with the

ColdReset# signal when it is asserted.  When only the Reset# signal is asserted, a warm reset is started.  To

deassert this signal, synchronize it with SysClock.

9.2.1 Power-on reset

The sequence of a power-on reset is as follows.

1. Confirm that stable VDD and VDDIO are supplied within the specified voltage range.  Also confirm that the

system clock of the specified frequency is stable and continues operating.

2. After power supply has been stabilized, assert the ColdReset# signal for the duration of at least 64 K

SysClock cycles.  Deassert the ColdReset# signal in synchronization with SysClock.

3. The processor starts operating when the Reset# signal is asserted after the ColdReset# signal has been

deasserted.  Keep the Reset# signal active for the duration of at least 16 SysClock cycles after the

ColdReset# signal has been deasserted.  Deassert the Reset# signal in synchronization with SysClock.

The status of the initialization signal (refer to 9.3) is latched 1 SysClock cycle after the ColdReset# signal has

been deasserted.  Set the input level of the initialization signal before starting a power-on reset.  Keep the level from

changing during operation.

At reset, the processor serves as the bus master and drives the SysAD bus.

When the Reset# signal is deasserted, the processor branches to the reset exception vector and starts execution

of the reset exception handler.

Figure 9-1 shows the timing of a power-on reset.



CHAPTER 9   INITIALIZATION INTERFACE

Preliminary User’s Manual  U16044EJ1V0UM 203

Figure 9-1.  Power-on Reset Timing

VDDIO

VDD

≥ 64 K SysClock

SysClock
(input)

≥ 100 ms

ColdReset#
(input)

Reset#
(input)

tDS

≥ 16 SysClocktDS

1.425 V

3.135 V

9.2.2 Cold reset

The sequence of a cold reset is the same as that of a power-on reset except that the power supply must be

stabilized before the reset signal is asserted.

Figure 9-2 shows the timing of a cold reset.

Figure 9-2.  Cold Reset Timing

VDDIO

≥ 64 K SysClock

SysClock
(input)

ColdReset#
(input)

Reset#
(input)

tDS

≥ 16 SysClock

tDS

tDS

tDS

H

VDD H



CHAPTER 9   INITIALIZATION INTERFACE

Preliminary User’s Manual  U16044EJ1V0UM204

9.2.3 Warm reset

A warm reset is started if the Reset# signal is asserted in synchronization with SysClock.  Keep the Reset# signal

active for the duration of at least 16 SysClock cycles before deasserting it in synchronization with SysClock.  A warm

reset causes the processor to generate a soft reset exception.

Because a warm reset is started as soon as the Reset# signal has been asserted, multiple-cycle operations such

as processing of a cache miss and floating-point instructions are stopped, and the data and results may be lost.

At reset, the processor serves as the bus master and drives the SysAD bus.  When executing a warm reset while

a SysAD bus transaction is in progress, also reset the external agent so that a conflict does not occur on the SysAD

bus.

When the Reset# signal is deasserted, the processor branches to the reset exception vector and starts executing

the soft reset exception handler.

Figure 9-3 shows the timing of a warm reset.

Figure 9-3.  Warm Reset Timing

HVDDIO

≥ 16 SysClock

SysClock
(input)

ColdReset#
(input)

Reset#
(input)

tDS
tDS

H

H

VDD

9.2.4 Processor status at reset

After a power-on reset, cold reset, and warm reset, all the internal statuses of the processor are reset and the

processor starts program execution from the reset vector.

The internal settings of the processor are retained after a warm reset has been executed.  However, the status of

the cache may be retained or not depending on whether processing of a cache miss has been aborted by resetting

the processor.  In addition, because the VR5500 has a non-blocking structure, updating registers is canceled if

execution of a load instruction is not complete when a reset is executed.

The branch history table is initialized by a power-on reset and cold reset.

The statuses of the registers, control signals, and current are undefined from when power is applied to when reset

is completed.



CHAPTER 9   INITIALIZATION INTERFACE

Preliminary User’s Manual  U16044EJ1V0UM 205

9.3 Initialization Signals

The VR5500 has eight types of input signals that are sampled during initialization.  These signals are used to set

the division ratio of the clock, the byte configuration of memory, and the protocol of the system interface.

Set the level of these signals before starting a power-on reset.  Keep the level unchanged during operation.

(1) DivMode(2:0)

These signals specify the division ratio of the internal processor clock (PClock) and external system clock

(SysClock).  Eight types of division ratios can be set: 2, 2.5, 3, 3.5, 4, 4.5, 5, and 5.5.

(2) BigEndian

This signal specifies the byte order used by the processor during operation.  When it is high, big endian is

specified; when it is low, little endian is specified.

(3) BusMode

This signal specifies the bus width of the system interface.  When this signal is high, the bus width is 64 bits;

when it is low, the bus width is 32 bits.

(4) TIntSel

This signal specifies the interrupt source allocated to the IP7 bit of the Cause register.  When it is high, the timer

interrupt is selected, and an interrupt request executed by asserting the Int5# pin or an external write request

(SysAD5) is ignored.  When this signal is low, the interrupt request executed by the Int5# pin or an external write

request (SysAD5) is selected, and the timer interrupt request is ignored.

(5) DisDValidO#

This signal specifies the operation of the ValidOut# signal.  When this signal is low, the ValidOut# signal is

asserted only during the address issuance cycle; when it is low, the ValidOut# signal is asserted even if address

issuance is stalled due to ready control.

(6) DWBTrans#

This signal specifies expansion of the data transfer size when the system interface is 32 bits wide.  If this signal

is low, doubleword block transfer is enabled; it is disabled when this signal is high.

(7) O3Return#

This signal specifies the protocol of the system interface.  When it is low, the out-of-order return mode is

specified; when it is high, the normal mode is specified.

(8) DrvCon

This signal specifies the impedance control level of the output driver.  When it is high, the level is weak; when it

is low, the level is normal.  It is recommended to set this signal to the low level (normal) with the VR5500.



Preliminary User’s Manual  U16044EJ1V0UM206

CHAPTER 10   CLOCK INTERFACE

This chapter explains the clock interface used in the VR5500.

10.1  Term Definitions

This manual uses the following terms when describing signals.

• “Rising edge” indicates the point of transition from low level to high level.

• “Falling edge” indicates the point of transition from high level to low level.

• “Clock-Q delay” indicates the time required between when a signal inputs data to a device (clock) and when it

outputs data from a device (Q).

Figures 10-1 and 10-2 illustrate the meanings of these terms.

Figure 10-1.  Signal’s Transition Points

1 clock cycle

1 2 3 4

Point of transition from
high level to low level

Point of transition from
low level to high level

Figure 10-2.  Clock-Q Delay

Q
Data input

Clock input

Clock-Q
delay

Data output



CHAPTER 10   CLOCK INTERFACE

Preliminary User’s Manual  U16044EJ1V0UM 207

10.2  Basic System Clock

The VR5500 uses the following clock signals.

(1) SysClock

The internal clock of the VR5500 is generated based on SysClock.  The interface with the external device also

operates based on SysClock.

(2) PClock

The frequency ratio of PClock to SysClock can be selected from 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 4.5:1, 5:1, and 5.5:1.

This ratio is set by the signals input from the DivMode(2:0) pins at reset.

All the internal registers and latches use PClock.

Figure 10-3.  When Frequency Ratio of SysClock to PClock Is 1:2

1 2 3 4Cycle

SysClock
(input)

PClock
(internal)

Note (output)

Note (input)

tDS

tDH

Data Data Data Data

DataDataData

tDO

tDM

tDO

Data

Note  SysAD(63:0), SysADC(7:0), SysCmd(8:0), SysID(2:0)



CHAPTER 10   CLOCK INTERFACE

Preliminary User’s Manual  U16044EJ1V0UM208

10.2.1  Synchronization with SysClock

The processor data changes when tDM has elapsed after the rising edge of SysClock was detected, and is in the

stable output status when tDO has elapsed.  This time is the sum of the maximum value of the Clock-Q delay of the

processor output register and the maximum value of the delay when the data passes through the processor output

driver.

Keep the data supplied to the processor stable for the duration of at least tDS before SysClock rises, and for the

duration of tDH after the rising edge of SysClock, as shown in Figure 10-3.

10.3  Phase Lock Loop (PLL)

The processor has an internal PLL circuit that is used to synchronize SysClock with PClock.  Because of the

nature of the PLL circuit, however, a clock synchronized with the frequency of SysClock can be generated in a

limited range.

The clock generated by using the PLL circuit has specific uncertainty called jitter.  The clock synchronized with

SysClock by the PLL circuit leads or lags behind SysClock, up to the maximum permissible value tJ of jitter.

To obtain accurate I/O timing parameters, therefore, add tJ to tDS, tDH, and tDO, and subtract tJ from tDM.



Preliminary User’s Manual  U16044EJ1V0UM 209

CHAPTER 11   CACHE MEMORY

This chapter explains the cache memory: its place in the VR5500 core memory organization, and the individual

organization of the caches.

11.1  Memory Organization

Figure 11-1 shows the VR5500 core system memory hierarchy.  In the logical memory hierarchy, the caches are

located between the CPU and main memory.  They are designed to make the speedup of memory accesses

transparent to the user.

Each functional block in Figure 11-1 has the capacity to hold more data than the block above it.  For example,

main memory (physical memory) has a larger capacity than the caches.  At the same time, each functional block

takes longer to access than any block above it.  For example, it takes longer to access data in the main memory

than in the CPU on-chip registers.

Figure 11-1.  Logical Hierarchy of Memory

Register Register

Cache

VR5500 CPU

Cache

Register

Main memory Memory

Disc, CD-ROM,
tape, etc.

Peripheral
devices

Faster access
time

Increasing data
capacity

Instruction
cache Data cache



CHAPTER 11   CACHE MEMORY

Preliminary User’s Manual  U16044EJ1V0UM210

11.1.1  Internal cache

The VR5500 has two caches.  One of them is an instruction cache that holds instructions (program).  The other is

a data cache that holds data.

When writing data to the data cache, translation of the store address and tag check are performed in the first

phase, and then the data is written to RAM in the next phase.

Figure 11-2 shows the relationship between the cache and memory.

Figure 11-2.  Internal Cache and Main Memory

Main memory

VR5500

Cache controller

Instruction
cache

Data cache

The features of the internal cache are as follows.

• Index using virtual address

• Physical address held by tag

• Coherency with memory maintained by writeback or write through

• Data management by two-way set associative method

• Line lock can be specified

• Cache line replacement by LRU (Least Recently Used) algorithm

• Non-blocking structure (data cache only)

The size of both the instruction and data caches of the VR5500 is 32 KB.



CHAPTER 11  CACHE MEMORY

Preliminary User’s Manual  U16044EJ1V0UM 211

11.2  Configuration of Cache

This section explains the configuration of the internal data and instruction caches of the VR5500.

A cache consists of blocks called cache lines.  A cache line is the minimum unit of information that can be fetched

from the main memory to the cache, and is divided into a tag and data.  The size of a cache line of both the

instruction cache and data cache is 8 words (32 bytes).

11.2.1  Configuration of instruction cache

Figure 11-3 shows the format of an 8-word (32-byte) instruction cache line.

Figure 11-3.  Format of Instruction Cache Line

28

PITag

65

DataP DataP DataP DataPData Data Data Data

64 63

0

R

1

State

2

L

34

0131 130 129 66197 196 195 132263 262 261 198

Tag

Data

27

ITag: Instruction tag

L: Lock bit (line lock status)

State: Status bit (line status)

R: LRU bit (way indication of candidate for replacement)

P: Parity bit (even parity for ITag)

DataP: Even parity for Data (in word units)

Data: Data of instruction cache



CHAPTER 11   CACHE MEMORY

Preliminary User’s Manual  U16044EJ1V0UM212

11.2.2  Configuration of data cache

Figure 11-4 shows the format of an 8-word (32-byte) data cache line.

Figure 11-4.  Line Format of Data Cache

28

PDTag

71

DataP DataP DataP DataPData Data Data Data

64 63

01

State

2

L

34

0143 136 135 72215 208 207 144287 280 279 216

Tag

Data

R

27

DTag: Data tag

L: Lock bit (line lock status)

State: Status bit (line status)

R: LRU bit (way indication of candidate for replacement)

P: Parity bit (even parity for DTag)

DataP: Even parity for Data (in byte units)

Data: Data of data cache

11.2.3  Location of data cache

The VR5500 manages cache data by a two-way set associative method.  This method divides the cache into two

blocks of memory spaces (ways), and allocates two cache lines to the same index (refer to 11.3.5 Accessing

cache).



CHAPTER 11  CACHE MEMORY

Preliminary User’s Manual  U16044EJ1V0UM 213

11.3  Cache Operations

As described earlier, caches provide temporary data storage, and they speed up memory accesses as seen by

the user.  In general, the processor accesses cache-resident instructions or data using the following procedure.

(1) The processor attempts to access the instruction used next or data in the appropriate cache via the on-chip

cache controller.

(2) The cache controller checks to see if this instruction or data is present in the cache.

• If the instruction/data is present, the CPU retrieves it.  This is called a cache hit.

• If the instruction/data is not present in the cache, the cache controller retrieves it from the main memory.  This

is called a cache miss.

(3) When the required data or instruction is found, the cache controller passes it to the processor. The processor

then continues operating.

If a cache miss occurs, data is read from the main memory and one of the cache line is overwritten.  This is called

replacing a cache line.

The VR5500 manages the cache by a two-way set associative method, with two cache lines allocated to one

index.  If a cache miss occurs, which of the two lines is to be replaced is determined by the LRU (Least Recently

Used) method.  The way that is a candidate for replacement is indicated by the LRU bit of the cache tag.

The cache of the VR5500 has a line lock function.  If a cache line is locked when it is allocated, that line is not

replaced even if a cache miss occurs.  If a cache miss occurs while the line of both the ways is locked, however, one

of the cache lines is unlocked in accordance with the LRU bit.  A cache line is locked or unlocked by the CACHE

instruction.  The setting status of locking is indicated by the lock bit of the cache tag.

11.3.1  Coherency of cache data

It is possible for the same data to be in two places simultaneously: the main memory and a cache.  This

coherency of this data is maintained by using the writeback or write-through method.

With the VR5500, the data cache management technique can be selected from writeback and write through,

depending on the setting of the EntryLo register or Config register of CP0.

The writeback method stores write data only in the cache, without writing it directly to the main memoryNote.  Some

time later the data written to the cache is independently transferred to the main memory.  In the VR5500, a modified

cache line is not written back to the memory until the cache line is to be replaced either in the course of satisfying a

cache miss, or during the execution of a writeback CACHE instruction.

With the write-through method, data written to the memory is also written to the cache simultaneously.



CHAPTER 11   CACHE MEMORY

Preliminary User’s Manual  U16044EJ1V0UM214

11.3.2  Replacing instruction cache line

If a miss occurs in the instruction cache, the cache line is replaced by using sub-block ordering.

If a miss occurs in the instruction cache, the processor issues a memory read request.  This means that the

processor reads the cache line it requests from the main memory and writes it to the instruction cache.  At this time,

execution of the pipeline is resumed and the instruction cache is accessed again.

11.3.3  Replacing data cache line

If a miss occurs while data is being loaded from or stored in a cache, the cache line is replaced in compliance

with the following rules.

(1) Data load miss

If the cache line on which a miss has occurred is not dirty, that cache line is replaced with a new cache line.

If the cache line is dirty, the cache line is first transferred to the write transaction buffer.  Then the cache line on

which a miss occurred is replaced with a new cache line, and the data transferred to the write transaction buffer

is written to memory.

(2) Data store miss

(a) With writeback cache

If the cache line on which a miss has occurred is not dirty, that cache line is replaced by store data merged

with a new cache line.

If the cache line is dirty, that cache line is first transferred to the write transaction buffer.  Then store data

merged with a new cache line is written to the cache, and the data transferred to the write transaction buffer

is written to memory.

(b) With write-through cache

If the cache line on which a miss has occurred is not dirty, that cache line and memory contents are

replaced by store data merged with a new cache line.  If the cache line is dirty, that cache line is first

transferred to the write transaction buffer.  Then store data merged with a new cache line is written to the

cache and memory.



CHAPTER 11  CACHE MEMORY

Preliminary User’s Manual  U16044EJ1V0UM 215

11.3.4  Speculative replacement of data cache line

The VR5500 adds an unguarded attribute to the algorithm of the data cache.  This attribute can be selected

according to the setting of the EntryLo register or Config register of CP0, when the data cache is used (refer to

CHAPTER 5 MEMORY MANAGEMENT SYSTEM).

The VR5500 speculatively executes instructions by using branch prediction and an out-of-order mechanism.  If a

data load miss or data store miss occurs as a result of speculative execution of an instruction, the refill buffer once

holds data to replace cache lines.  If the conventional algorithm is selected for the data cache, replacement is not

started until this instruction is committed, even if the refill buffer becomes full.

By contrast, replacement can be started even before this instruction is committed if the unguarded attribute is

selected.  Speculative replacement like this cannot be stopped once it has been started, regardless of whether its

result is necessary or not.

Caution  Make sure that the following conditions are satisfied in the area where the unguarded attribute

is specified.

•••• The OS uses the virtual address space and all spaces are contiguous.

•••• If I/O is connected, a device whose status is not changed even if read must be used.

If the address space is not contiguous, the result cannot be discarded when a load instruction

is speculatively executed because a bus error exception occurs, and the system hangs up.

If an I/O whose status may be changed when read is connected, the result cannot be discarded

because the status on the I/O side is changed when a load instruction is speculatively

executed.

Remarks 1. Speculative processing using the unguarded attribute is only executed for the data cache.

2. Of the accesses to the area of the unguarded attribute, a read request is speculatively output from

the system interface before the instruction is committed, but a write request is output after the

instruction has been committed.  By contrast, if an access is made to the uncached area, a read

request is also output to the system interface after the instruction has been committed.



CHAPTER 11   CACHE MEMORY

Preliminary User’s Manual  U16044EJ1V0UM216

11.3.5  Accessing cache

The CACHE instruction is used to change the status of the cache line or to write back cache data (for details,

refer to CHAPTER 17 CPU INSTRUCTION SET).

Part of the virtual address (VA) is used to index the instruction cache and data cache.  Because the cache size of

the VR5500 is 32 KB and has a two-way set, the most significant bit is VA13.  In addition, because the line size is 8

words (32 bytes), the least significant bit is VA5.  The way to be accessed is specified by the LRU method for Hit,

Fill, and Fetch_and_Lock operations, and by VA0 for other operations.

Figure 11-5 shows the relationship between index and data output of the cache.

Figure 11-5.  Index and Data Output of Cache

Tag line

P T
ag

Way 0

Data line

D
at

a
64

D
at

aP
8

L R

S
ta

te

Internal address bus

Tag line

Way 1

Data line

VA(13:5)
VA0

Internal data bus

P T
ag

D
at

a
64

D
at

aP
8

L R

S
ta

te



CHAPTER 11  CACHE MEMORY

Preliminary User’s Manual  U16044EJ1V0UM 217

11.4  Status of Cache

The cache line may be in the following three states, which indicate the validity of data and coherency with the

main memory.

The status of the cache line is undefined after reset.  Initialize it by software.

(1) Instruction cache

The instruction cache may be in either of the following two states.

• Invalid: State in which the cache line does not have valid information.

A cache line in this state cannot be used.  Set all the cache lines after a warm reset to Invalid by 

software.  A cache line not in the Invalid status is assumed to have valid information.

Neither a cold reset nor a warm reset makes the cache status Invalid.  The cache is invalidated by 

software.

• Clean: State in which the cache line has valid information that has been fetched from the main memory.  It 

can be specified by software whether the cache line is locked or not.

(2) Data cache

The data cache may be in any of the following three states.

• Invalid: State in which the cache line does not have valid information.

The cache line in this state cannot be used.  Set all the cache lines after a warm reset to Invalid by 

software.  A cache line not in the Invalid status is assumed to have valid information.

Neither a cold reset nor a warm reset makes the cache status Invalid.  The cache is invalidated by 

software.

• Clean: State in which the cache line has valid information that has not been changed after being fetched 

from the main memory.  It can be specified by software whether the cache line is locked or not.

• Dirty: State in which the cache line has valid information that has been changed after being loaded from the

main memory.  It can be specified by software whether the cache line is locked or not.

A cache line in the Clean or Dirty status may be changed when the processor executes a certain type of CACHE

instruction operation.  For the operations of the CACHE instruction, refer to CHAPTER 17 CPU INSTRUCTION SET.

11.5  Manipulating Cache by External Agent

The VR5500 does not allow an external agent to check or manipulate the statuses and contents of either of the

caches.



Preliminary User’s Manual  U16044EJ1V0UM218

CHAPTER 12   OVERVIEW OF SYSTEM INTERFACE

The processor uses the system interface to access the external resources necessary for processing a cache miss

and in the uncached area, and the external agent uses the system interface to access the internal resources of the

processor.

The system interface of the VR5500 has several mode, including a mode in which another read request can be

issued even if the first read operation is not complete and a read response can be separated and returned, and a

mode that is compatible with the VR5000.  These modes can be selected by a combination of the levels input to the

initialization pins at reset.

This chapter explains the bus modes and basic operations of the system interface of the VR5500.

12.1  Definition of Terms

The following terms are used in CHAPTERS 13, 14, and 15.

• External agent

A device connected to the processor via the system interface which processes requests issued by the

processor

• System event

An event that is generated in the processor and requests access to the external resources.  For example, the

following events are included.

• Occurrence of a miss in the instruction cache when an instruction is fetched

• Occurrence of a miss in the data cache when a load/store instruction is executed

• Execution of a load/store instruction to the uncached area.

• Sequence

Requests successively generated by the processor to process a system event

• Protocol

Signal transition in each cycle of the system interface pins by which the processor or external agent issues

requests

• Syntax

Definition of the bit pattern of a code bus such as a command bus



CHAPTER 12   OVERVIEW OF SYSTEM INTERFACE

Preliminary User’s Manual  U16044EJ1V0UM 219

12.2  Bus Modes

The VR5500 has the following five types of bus modes.  For details of the operation, refer to the corresponding

chapter.

• 64-bit R5000 mode

→ Refer to CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE).

• 64-bit out-of-order return mode

→ Refer to CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE).

• 32-bit R5000 mode (compatible with PMC-Sierra’s RM523x)

→ Refer to CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE).

• 32-bit VR5432 native mode

→ Refer to CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE).

• 32-bit out-of-order return mode

→ Refer to CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE).

The bus modes other than the out-of-order return mode are collectively called the normal mode.

These modes are selected by using the BusMode, O3Return#, DWBTrans#, and DisDValidO# signals at reset.

The figure below shows the relationship between the setting of each signal and the mode to be selected.

Figure 12-1.  Bus Modes of VR5500

VR5500
bus mode

64-bit
bus mode

VR5432
native mode

BusMode = H

O3Return# = L O3Return# = H,
DWBTrans# = H,
DisDValidO# = H

O3Return# = H,
DWBTrans# = H,
DisDValidO# = H

O3Return# = L
O3Return# = H,
DWBTrans# = L,
DisDValidO# = L

BusMode = L

32-bit 
bus mode

Out-of-order
return mode R5000 mode

Out-of-order
return mode

R5000 mode
(compatible with

RM523x)

Remarks 1. H: high level, L: low level

2. When the O3Return# signal is low, the DWBTrans# and DisDValidO# signals can be set to any

level, but keep the level from changing during operation.



CHAPTER 12   OVERVIEW OF SYSTEM INTERFACE

Preliminary User’s Manual  U16044EJ1V0UM220

12.3  Outline of System Interface

12.3.1  Interface bus

The SysAD bus (address/data bus) and SysCmd bus (command bus) are the main communication buses of the

system interface.  Because the both the buses are bidirectional buses, they can be driven by a processor that issues

processor requests or an external device that issues external requests (for details, refer to 12.4.4 Processor

request and external request).

A request that passes through the system interface consists of the following.

• Address

• Response data to read request or write data to write request

• Command specifying type of request/data

Figure 12-2 shows the interface bus in the 64-bit bus mode, and Figure 12-3 shows the interface bus in the 32-bit

bus mode.

Figure 12-2.  System Interface Bus (64-Bit Bus Mode)

SysCmd(8:0)

VR5500 External agent

SysAD(63:0)

Figure 12-3.  System Interface Bus (32-Bit Bus Mode)

SysCmd(8:0)

VR5500 External agent

SysAD(31:0)



CHAPTER 12   OVERVIEW OF SYSTEM INTERFACE

Preliminary User’s Manual  U16044EJ1V0UM 221

12.3.2  Address cycle and data cycle

A cycle in which a valid address is on the SysAD bus is called an address cycle.  A cycle in which valid data is on

the SysAD bus is called a data cycle.  The VR5500 uses the ValidOut# signal to indicate that the address/data output

to the system bus is valid.  The external agent uses the ValidIn# signal to indicate that the address/data output to the

system bus is valid.  The SysCmd bus identifies the contents of the SysAD bus cycle in a valid cycle.  The most

significant bit of the SysCmd bus always indicates whether the current cycle is an address cycle or a data cycle.

The SysCmd bus indicates the following contents when the ValidOut# or ValidIn# signal is active.

• In an address cycle (SysCmd8 = 0), SysCmd(7:0) on the SysCmd bus is a system interface command.

• In a data cycle (SysCmd8 = 1), SysCmd(7:0) on the SysCmd bus is a data identifier.

For details of the command and data identifier codes, refer to the descriptions on system interface commands

and data identifiers in CHAPTERS 13, 14, and 15.

12.3.3  Issuance cycle

(1) Processor request

The processor issues two types of requests: a processor read request and a processor write request.

The issuance cycle of the processor read request is determined by the status of the RdRdy# signal, and that of

the processor write request is determined by the status of the WrRdy# signal.  The issuance cycle is a cycle that

is valid in the address cycle of each processor request.  Only one issuance cycle exists per processor request.

To define the issuance cycle of an address cycle, assert the Rdy#/WrRdy# signal on the external agent side up

to two cycles before the address cycle of a processor read/write request, as shown in Figure 12-4.

To set an address cycle as the issuance cycle, do not deassert the RdRdy#/WrRdy# signal until that address

cycle is started.

Figure 12-4.  Status of RdRdy#/WrRdy# Signal of Processor Request

1 2 3 4 5 6SysCycle

SysClock 
(internal)

SysAD(63:0) 
(I/O)

RdRdy#/WrRdy#  
(input)

Addr

Issuance cycle



CHAPTER 12   OVERVIEW OF SYSTEM INTERFACE

Preliminary User’s Manual  U16044EJ1V0UM222

(2) Processor request and external request

The processor releases the system interface to the slave status and receives an external request in response to

the ExtRqst# signal from the external agent even when it is about to issue a processor request.

If issuance of a processor request conflicts with issuance of an external request, the processor takes either of

the following actions.

• Completes issuance of the processor request before receiving the external request.

• Releases the system interface to the slave status without completing issuance of the processor request.

In the latter case, the processor issues the processor request after the external request has been completed (if

the processor request is still necessary).

12.3.4  Handshake signal

The processor manages the flow of requests by using the following seven control signals.

(1) RdRdy# and WrRdy# signals

The external agent uses these signals to indicate whether it is ready to receive a new read transaction or a new

write transaction.

(2) ExtRqst#, Release#, and PReq# signals

These signals are used to control transfer between the SysAD bus and SysCmd bus.  The ExtRqst# signal is

used by the external agent to indicate that it needs the right to control the interface.  The Release# signal is

asserted by the processor when the processor grants the external agent the right to control the system

interface.  The PReq# signal is used by the processor to indicate that it needs the right to control the interface.

(3) ValidOut# and ValidIn# signal

The processor uses the ValidOut# signal and the external agent uses the ValidIn# signal to indicate valid

command/data on the SysCmd or SysAD bus.



CHAPTER 12   OVERVIEW OF SYSTEM INTERFACE

Preliminary User’s Manual  U16044EJ1V0UM 223

12.3.5  System interface bus data

The data shown in Table 12-1 is driven on the SysAD and SysCmd buses.  The symbols in this table are used in

the timing charts shown in the latter part of this chapter.

Table 12-1.  System Interface Bus Data

Range Symbol Meaning

Common Unsd Unused

SysAD(63:0) Addr Physical address

Data<n> (Element n + 1 of) data

SysCmd(8:0) Cmd Unspecific system interface command

Read Read request command of processor or external agent

Write Write request command of processor or external agent

SINull External null request command for releasing system interface

NEOD Data identifier of last data element

NData Data identifier of data element other than last



CHAPTER 12   OVERVIEW OF SYSTEM INTERFACE

Preliminary User’s Manual  U16044EJ1V0UM224

12.4  System Interface Protocol

Figure 12-5 shows an operation between registers that is performed via the system interface.  The output signal

of the processor is directly output from an output register and changes at the rising edge of SysClock.

The signal input to the processor is directly latched to an input register at the rising edge of SysClock.

Figure 12-5.  Operation of System Interface Between Registers

Input data

VR5500

SysClock

Output data

Input
latch

Output
latch

12.4.1  Master status and slave status

The system interface is in the master status while the VR5500 is driving the SysAD bus or SysCmd bus.  While

the external agent is driving these buses, the system interface is in the slave status.

In the master status, the processor always asserts the ValidOut# signal if the SysAD bus and SysCmd bus are

valid.

In the slave status, always assert the ValidIn# signal of the external agent if the SysAD bus and SysCmd bus are

valid.

The default bus master of the system interface is the processor.  The external agent serves as the master of the

system interface after the result of external arbitration has been obtained or it has issued a processor read request.

The external agent returns the right to control the bus to the processor when the external request has been

completed.

The system interface remains in the master status unless either of the following occurs.

• The external agent requests and is granted the right to control the system interface (external arbitration).

• The processor issues a read request (compelled transition to slave status).

These two cases are explained below.



CHAPTER 12   OVERVIEW OF SYSTEM INTERFACE

Preliminary User’s Manual  U16044EJ1V0UM 225

12.4.2  External arbitration

The system interface must be in the slave status when the external agent issues an external request via the

system interface.  So that the system interface changes its status from master to slave, the processor performs

arbitration by using the handshake signals of the system interface, ExtRqst# and Release#, in the following

procedure.

<1> The external agent asserts the ExtRqst# signal to transmit a request to issue an external request to the

processor.

<2> When the processor is ready to receive the external request, it asserts the Release# signal to change the

status of the system interface from master to slave, and releases the system interface.

<3> The system interface returns to the master status as soon as the external request has been issued.

12.4.3  Uncompelled transition to slave status

Uncompelled transition of the system interface to the slave status is performed by the processor, and the system

interface changes its status from master to slave when a processor read request is held pending.  The Release#

signal is automatically asserted when a read request is issued.  Uncompelled transition to the slave status takes

place in the cycle next to that of the processor read request.

If an external request is issued after uncompelled transition to the slave status, the system interface returns to the

master status.  If there is a pending processor read request or if the external agent issues another external request,

the processor asserts the Release# signal for one cycle, and puts the system interface in the uncompelled slaved

status.

The external agent should confirm that the processor has put the system interface in the uncompelled slave

status, and start driving the SysCmd and SysAD buses.  While the system interface is in the slave status, the

external agent can start an external request without arbitrating the system interface, i.e., without asserting the

ExtRqst# signal.

If the ExtRqst# signal is active when the external request is completed, the system interface automatically returns

to the master status.



CHAPTER 12   OVERVIEW OF SYSTEM INTERFACE

Preliminary User’s Manual  U16044EJ1V0UM226

12.4.4  Processor requests and external requests

There are two types of requests: processor requests and external requests.

When a system event occurs, the processor issues a request via the system interface and accesses the external

resources needed to process the event.  Accordingly, the system interface should be connected to the external

agent that is used to control access to system resources.  To request access to the processor’s internal resources,

the external agent issues an external request.

Processor requests include the following.

• Read request: Supplies the read address to the external agent

• Write request: Supplies the write address and either single data or block data to the external agent

External requests include the following.

• Write request: Supplies an address and word data to be written to the processor resources

• Null request: Returns the system interface to the master status without affecting the processor

These system events and requests are illustrated in Figure 12-6 below.

Figure 12-6.  Requests and System Events

VR5500

Processor requests
• Read
• Write

External agent

External requests
• Write
• Null

System events
• Load miss
• Store miss
• Store hit
• Load/store to uncached area
• Accelerated store to uncached area
• Instruction fetch from uncached area
• Fetch miss



CHAPTER 12   OVERVIEW OF SYSTEM INTERFACE

Preliminary User’s Manual  U16044EJ1V0UM 227

12.5  Processor Requests

A processor request is a request for access to external resources via the system interface.  Processor requests

include read requests and write requests.

(1) Summary of requests

A read request is a request for data of a block, a doubleword, an unaligned doubleword, a word, or an unaligned

word to be retrieved from the main memory or other system resources.

A write request is a request which provides data of a block, a doubleword, an unaligned doubleword, a word, or

an unaligned word to be written to the main memory or other system resources.

(2) Issuing requests

The processor issues requests using a completely sequential method.  This means that the processor handles

only one pending request at a time.  For example, after the processor issues a read request it waits for a read

response before issuing the next request (except for the out-of-order return mode).  The processor issues write

requests only when there are no pending read requests.

(3) Control of requests

The RdRdy# and WrRdy# signals, which are input signals for the processor, are used by the external agent to

control the flow of processor requests.  The RdRdy# signal controls the flow of processor read requests, and the

WrRdy# signal controls the flow of processor write requests.

Figure 12-7 shows the sequence of processor request cycles.

Figure 12-7.  Flow of Processor Requests

VR5500 External agent 

<2>

Processor issues read or write 
request

<1>

By setting RdRdy# and 
WrRdy# signals as active, 
the external system 
controls acknowledgement 



CHAPTER 12   OVERVIEW OF SYSTEM INTERFACE

Preliminary User’s Manual  U16044EJ1V0UM228

12.5.1  Processor read request

Once the processor has issued a read request, the external agent should access the specified resource and

return the request data.

A processor read request can be separated from the response data of the external agent.  In other words, the

external agent can start an unrelated external request before returning response data in response to a processor

read request.  A processor read request ends when the last word of the response data has been received from the

external agent.

The response data’s data identifier may indicate whether or not any errors exist in the response data.  This

enables the processor to generate a bus error exception.

In the VR5500, the external agent must be able to receive a new processor read request at any time if the

following condition is satisfied.

• The RdRdy# signal is active at least two cycles before issuance of the address cycle.

In the normal mode, the external agent must be able to receive a new processor read request at any time if the

following condition is satisfied.

• There is currently no pending processor read request.

In the out-of-order return mode, up to five read requests can be held pending.

12.5.2  Processor write request

Once the processor has issued a write request, the specified resource is accessed and the specified data is

written.

A processor write request ends when the last word of the data has been sent to the external agent.

The write requests of the VR5500 support VR4000-compatible, write re-issuance, and pipeline write timing modes.

The external agent must be able to receive a new processor write request at any time if the following two

conditions are satisfied.

• There is currently no pending processor read request.

• The WrRdy# signal is active at least two cycles before issuance of the address cycle and conforms to the

requirements of the timing mode set by the Config register.

In the out-of-order return mode, a write request may be issued after a read request.



CHAPTER 12   OVERVIEW OF SYSTEM INTERFACE

Preliminary User’s Manual  U16044EJ1V0UM 229

12.6  External Requests

External requests include write requests and null requests.

(1) Outline of request

A write request supplies data to be written to the internal resources (interrupt register) of the processor.  A null

request returns the system interface to the master status without affecting the processor.

(2) Controlling requests

As shown in Figure 12-8, the processor controls the flow of external requests via the arbitration signals

ExtRqst# and Release#.  The external agent cannot issue an external request unless it is granted the right to

control the system interface.  The external agent acquires the right to control the system interface by asserting

the ExtRsqt# signal and waiting until the processor asserts the Release# signal for the duration of 1 cycle.

When the external agent issues an external request, the right to control the system interface is returned to the

processor.

Figure 12-8.  Flow of External Request

<1> 

<2> 

VR5500 External agent

Right of control is returned
to processor.

External system requests right 
of control by asserting ExtRqst# 
signal.

<4> 
External system issues 
external request.

Processor grants right of control
by asserting Release# signal

<3> 

The right to control the system interface is always returned to the processor when the ValidIn# signal has been

asserted after an external request was issued.  The processor does not acknowledge the subsequent external

requests until it completes the current request.

(3) Issuing request

If there is no pending processor request, the processor determines whether it receives an external request or

issues a new processor request, depending on its internal status.  The processor can issue a new processor

request even while the external agent is requesting access to the system interface.

The external agent asserts the ExtRqst# signal to indicate that it wants to start an external request.  In

response, the processor asserts the Release# signal to release the right to control the system interface.  The

processor can acknowledge an external request in the following cases.

• When the processor has completed the processor request under execution

• When the ExtRqst# signal is input to the processor one or more cycles before the RdRdy#/WrRdy# signal is

asserted while the processor is waiting for assertion of the RdRdy#/WrRdy signal to issue a processor

read/write request

• When the processor puts the system interface in the uncompelled slave status and waits for a response to a

read request (the external agent can issue an external request before supplying the read response data)



CHAPTER 12   OVERVIEW OF SYSTEM INTERFACE

Preliminary User’s Manual  U16044EJ1V0UM230

12.6.1  External write request

When the external agent issues a write request, it accesses a specified external resource and writes data to it.

The external write request is completed when word data has been transferred to the processor.

The only resource of the processor that can be accessed by an external write request is the Interrupt register.

12.6.2  Read response

A read response is used by the external agent to return data in response to a processor read request.

Unlike the other external requests, a read response does not execute system interface arbitration (requesting the

right to control the system interface by using the ExtRqst# signal).  Therefore, a read response is treated as

something different from an external request.

The data identifier of response data can also indicate that the response data contains an error, so that the

processor can generate a bus error exception.

Figure 12-9.  Read Response

VR5500 External agent

<1> Read request

<2> Read response



CHAPTER 12   OVERVIEW OF SYSTEM INTERFACE

Preliminary User’s Manual  U16044EJ1V0UM 231

12.7  Event Processing

This section explains the following system events.

• Load miss

• Store miss

• Store hit

• Load/store in uncached area

• Accelerated store in uncached area

• Instruction fetch from uncached area

• Fetch miss

12.7.1  Load miss

If the processor misses the data cache when loading data, it issues a read request to obtain a cache line.  The

external agent returns data as a read response.

If the cache data to be replaced is dirty, the processor writes back this data to memory.  After writing back the

data, the processor requests the external agent for clean data, and performs a write operation to the cache.

The operation when a load miss occurs is shown in Table 12-2.

Table 12-2.  Operation in Case of Load Miss

Page Attribute Status of Data Cache Line to Be Replaced

Clean/Invalid Dirty

Cache BR BR/BW

BR: Processor block read request

BW: Processor block write request

If it is necessary to write back the current cache line, the processor issues a block write request to save the dirty

cache line to memory.



CHAPTER 12   OVERVIEW OF SYSTEM INTERFACE

Preliminary User’s Manual  U16044EJ1V0UM232

12.7.2  Store miss

If a processor store miss occurs in the cache, the processor requests the external agent for the cache line that

holds the target store location.

Table 12-3 shows the operation in case of a store miss.

Table 12-3.  Operation in Case of Store Miss

Page Attribute Status of Data Cache Line to Be Replaced

Clean/Invalid Dirty

Writeback BR BR/BW

Write through BR/W −

BR: Processor block read request

BW: Processor block write request

W: Processor non-block write request

The processor issues a block read request to the cache line that holds the data element to be loaded, and waits

until the external agent supplies read data in response to this read request.  If it is necessary to write back the

current cache line, the processor issues a request to write the current cache line.  If the page attribute is write

through, the processor issues a non-block write request.

12.7.3  Store hit

The operation in the system bus is determined by whether the cache line in question is writeback or write through.

If the line uses the writeback policy, a processor request is not generated by a store hit.  If the line uses the write-

through policy, a non-block write request of store data is generated by a store hit.

12.7.4  Load/store in uncached area

When the processor executes loading from an uncached area, it issues a read request for a doubleword, an

unaligned doubleword, a word, or an unaligned word.  If the processor executes storing in an uncached area, it

issues a write request for a doubleword, an unaligned doubleword, a word, or an unaligned word.  All the write

requests by the processor are buffered in a 4-stage write transaction buffer, and output to the system interface.

Because this buffer is a FIFO, if the buffer has an entry when a read request is issued, processing of the read

request is started after the buffer has become completely empty.

12.7.5  Accelerated store in uncached area

An accelerated operation to an uncached area is used to access a page with an uncached accelerated cache

algorithm.  When the processor executes an accelerated store operation to an uncached area, it can issue a block

write request or a write request for one or more doublewords, an unaligned doubleword, a word, or an unaligned

word.  All the write requests by the processor are buffered in a 4-stage write transaction buffer and output to the

system interface.  Because this buffer is a FIFO, if the buffer has an entry when a read request is issued, processing

of the read request is started after the buffer has become completely empty.

By an accelerated operation to an uncached area, several sequential uncached word/doubleword accesses can

be combined into one 32-byte block write operation that can be processed by one external SysAD bus transaction.

When organizing a system, utmost care must be exercised in locating data that is used to access an uncached

accelerated page, so that this transaction is effectively performed.

An accelerated write operation to an uncached area is buffered in the write transaction buffer on a FIFO basis, in

the same way as the other transactions.  If the data used for an accelerated write operation on an uncached area is



CHAPTER 12   OVERVIEW OF SYSTEM INTERFACE

Preliminary User’s Manual  U16044EJ1V0UM 233

located in accordance with the following rules, however, two or more consecutive transactions are combined on a

FIFO basis and processed as a 4-doubleword access.

• If the first target of the accelerated operation to the uncached area is located at a 32-byte boundary

• If all the accelerated operations to the uncached area to be processed are word or doubleword accesses

• If the target of the word or doubleword access to be processed is located at a word boundary or doubleword

boundary

• In the case of word access, if the targets are located consecutively at a doubleword boundary

• If the address value is incremented sequentially

A write transaction to an uncached area that is not in compliance with these rules is not treated as an accelerated

operation.  If the transactions for an accelerated operation include a transaction that does not comply with the above

rules, all the transactions are processed as an ordinary uncached word/doubleword access.

An accelerated operation to an uncached area is aborted when the processor enters the debug mode.  In the

debug mode, the contents of the write transaction buffer are cleared.  If an exception occurs, the accelerated

operation to the uncached area is also aborted.

12.7.6  Instruction fetch from uncached area

The processor issues a word read to fetch an instruction in an uncached area.  Therefore, the system ROM

address space that is accessed while booting of the processor is being resumed must support an aligned 32-bit read

operation.

12.7.7  Fetch miss

If a miss occurs in the instruction cache while an instruction is being fetched, the processor issues a read request

to obtain a cache line.  The external agent returns data as a read response.



CHAPTER 12   OVERVIEW OF SYSTEM INTERFACE

Preliminary User’s Manual  U16044EJ1V0UM234

12.8  Error Check Function

12.8.1  Parity error check

The VR5500 performs error detection only, using an even parity.

Parity error detection is the most simple error detection method.  By suffixing 1 bit called a parity bit to the end of

data, an error of 1 bit can be detected.  However, the error cannot be corrected.

Parity comes in the following two types.

• Odd parity is used to append a bit of 1 to data when the number of 1s in the data is even, making the total

number of 1s, including that of the parity bit, odd.

• Even parity is used to append a bit of 1 to data when the number of 1s in the data is odd, making the total

number of 1s, including that of the parity bit, even.

Here is an example of odd parity and even parity.

Data(3:0) Odd Parity Bit Even Parity Bit

0010 0 1

In this example, only one bit that is 1, Data1, is in Data(3:0).

• Even parity sets the parity bit to 1.  As a result, the number of bits that are 1 is two (even).

• Odd parity sets the parity bit to 0.  As a result, the number of bits that are 1 remains odd (only the one bit of

Data1).

Here is an example of odd parity and even parity for various data values.

Data(3:0) Odd Parity Bit Even Parity Bit

0110 1 0

0000 1 0

1111 1 0

1101 0 1

Parity can detect an error of 1 bit but cannot identify the bit that has the error.  For example, if a value 00011 is

received as odd parity, this data has an error because the last bit is the parity bit and the number of 1s, which should

be odd, is even.  However, which bit has the error is unknown.



CHAPTER 12   OVERVIEW OF SYSTEM INTERFACE

Preliminary User’s Manual  U16044EJ1V0UM 235

12.8.2  Error check operation

The processor uses parity to check the accuracy of data when it transfers data between the system interface and

cache.

(1) System interface bus

The processor generates an accurate check bit for the data of a word or an unaligned word that is to be

transferred to the system interface.  It does not change the data check bit of the cache and directly passes it to

the system interface because only the accuracy of the data is to be checked.

The processor does not check the data of an external write operation it receives from the system interface.  The

processor can also be set to not check the data of a read response it received from the system interface by

setting the SysCmd4 bit of a data identifier.

The processor does not check an address it has received from the system interface, and does not generate a

check bit for the address to be transferred to the system interface.

The VR5500 does not have a circuit that corrects data.  If an error is detected in accordance with the data check

bit, a cache error exception occurs.  Perform error processing by software.

(2) System interface command bus

The VR5500 does not have a function to check the data of the system interface command bus.



CHAPTER 12   OVERVIEW OF SYSTEM INTERFACE

Preliminary User’s Manual  U16044EJ1V0UM236

(3) Outline of error check operation

Tables 12-4 and 12-5 outline the error check operation.

Table 12-4.  Error Check for Internal Transaction

Transaction

Bus

Uncached Load Uncached Store Cache Load from

System Interface

System Interface

Write from Cache

CACHE

Instruction

Processor data From system Not checked Not changed, from

system interface

Checked, and trap

occurs in case of

error

Checked when

cache is written

back, and trap

occurs in case of

error

System address,

command, check

bit during transfer

Not generated Not generated Not generated Not generated Not generated

System address,

command, check

bit during

reception

Not checked Not checked Not checked Not checked Not checked

System interface

data

Checked, and trap

occurs in case of

error

From processor Specified word is

checked, and trap

occurs in case of

error

From cache From cache

System interface

data check bit

Checked, and trap

occurs in case of

error

Generated Specified word is

checked, and trap

occurs in case of

error

From cache From cache

Table 12-5.  Error Check for External Transaction

Transaction

Bus

External Write

Processor data Disabled

System address, command, check bit during transfer Disabled

System address, command, check bit during reception Not checked

System interface data Not checked

System interface data check bit Not checked



Preliminary User’s Manual  U16044EJ1V0UM 237

CHAPTER  13   SYSTEM  INTERFACE  (64-BIT  BUS  MODE)

This chapter explains the request protocol of the system interface in the 64-bit bus normal mode.  The system

interface of the VR5500 can be set in the 64-bit bus mode by inputting a high level to the BusMode pin before a

power-on reset.  It can also be set in the normal mode by inputting a high level to the O3Return# pin before a power-

on reset, and in the out-of-order return mode by inputting a low level to the same pin.

The 64-bit bus normal mode is also called the R5000 mode, in which the VR5500 is compatible with the bus

protocol of the VR5000 Series.  To set this mode, input a high level to the DWBTrans# and DisDValidO# pins before

a power-on reset.

VR5500 bus mode

64-bit bus mode

VR5432 
native mode

BusMode = H

O3Return# = L O3Return# = H,
DWBTrans# = H,
DisDValidO# = H

O3Return# = H,
DWBTrans# = H,
DisDValidO# = H

O3Return# = L
O3Return# = H,
DWBTrans# = L,
DisDValidO# = L

BusMode = L

32-bit bus mode

Out-of-order 
return mode R5000 mode

Out-of-order 
return mode

R5000 mode 
(compatible 

with RM523x)

For the protocol in the 32-bit bus normal modes (operation mode compatible with native mode of the VR5432 and

the RM523x), refer to CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE).  For the protocol in the out-of-

order return mode, refer to CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE).



CHAPTER  13   SYSTEM  INTERFACE  (64-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM238

13.1  Protocol of Processor Requests

This section explains the following two processor request protocols.

• Read

• Write

13.1.1  Processor read request protocol

The following sequence explains the protocol of a processor read request for a doubleword, unaligned

doubleword, word, and unaligned word (the numbers correspond to the numbers in Figure 13-1).

<1> The external agent makes the RdRdy# signal is low and is ready to acknowledge a read request.

<2> When the system interface is in the master status, the processor issues a processor read request by driving

a read command onto the SysCmd bus and a read address onto the SysAD bus.  A physical address is

driven onto SysAD(35:0).  All the other bits are driven to 0.

<3> At the same time, the processor asserts the ValidOut# signal for the duration of 1 cycle.  This signal

indicates that valid data is on the SysCmd and SysAD buses.

<4> The processor puts the system interface in the uncompelled slave status.  The external agent must wait

without asserting the ExtRqst# signal in an attempt to return a read response, until transition of the system

interface to the uncompelled slave status is completed.

<5> The processor releases the SysCmd and SysAD buses 1 cycle after the Release# signal has been asserted.

<6> The external agent drives the SysCmd and SysAD buses 2 cycles after the Release# signal has been

asserted.

When the system interface has been put in the slave status, the external agent can return the requested data by

using a read response.  The read response can also return an indication that an error has occurred in the data if the

requested data could not be searched correctly, as well as the requested data.  If the returned data contains an

error, the processor generates a bus error exception.

Figure 13-1 shows the processor read request, and uncompelled transition to the slave status that takes place

when the read request is issued.

The timing of the SysADC bus is the same as that of the SysAD bus.



CHAPTER  13   SYSTEM  INTERFACE  (64-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 239

Figure 13-1.  Processor Read Request

1 2 3 4 5 6 7 8 9 10 11 12

Addr

L

Read

SysCycle

SysClock
(Input)

SysAD(63:0)
(I/O)

SysCmd(8:0)
(I/O)

RdRdy#
(Input)

ValidOut#
(Output)

Release#
(Output)

<5>

<1>

<2>

<3>

<6>

<4>

Master Slave

Remark The dotted line indicates high impedance.

After the Release# signal has been asserted (<6> and later in the figure), the processor can acknowledge both a

read response (if the read request is pending) and an external request.

13.1.2  Processor write request protocol

The processor write request is issued by using either of the following two protocols.

• A write request for a doubleword, word, or unaligned word uses a single write request protocol.

• Cache block write and uncached accelerated write uses a block write request protocol.

A processor write request is issued when the system interface is in the master status.

Figure 13-2 shows the processor single write request cycle and Figure 13-3 shows the processor block write

request cycle (the numbers in the explanation below correspond to the numbers in the figures).

<1> The external agent makes the WrRdy# signal low and is ready to acknowledge a write request.

<2> The processor issues a processor write request by driving a write command onto the SysCmd bus and a

write address onto the SysAD bus.  A physical address is driven onto SysAD(35:0).  All the other bits are

driven to 0.

<3> The processor asserts the ValidOut# signal.

<4> The processor drives a data identifier onto the SysCmd bus and data onto the SysAD bus.

<5> The data identifier corresponding to the data cycle must include an indication of the last data cycle.  At the

end of the cycle, the ValidOut# signal is deasserted.

Remark The timing of the SysADC bus is the same as that of the SysAD bus.



CHAPTER  13   SYSTEM  INTERFACE  (64-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM240

Figure 13-2.  Processor Non-Block Write Request Protocol

SysCycle

SysClock
(Input)

SysAD(63:0)
(I/O)

SysCmd(8:0)
(I/O)

ValidOut#
(Output)

WrRdy#
(Input)

1 2 3 4 5 6 7 8 9 10 11 12

Addr Data0

Write

L

NEOD

<1>

<4>

<5>

<2>

<3>

Master

Figure 13-3.  Processor Block Write Request

1 2 3 4 5 6 7 8 9 10 11 12

Addr Data0 Data3

Write

L

NData

Data2Data1

NData NData

SysCycle

SysClock
(Input)

SysAD(63:0)
(I/O)

SysCmd(8:0)
(I/O)

ValidOut#
(Output)
WrRdy#

(Input)
<1>

<4>

<5>

<2>

<3>

Master

NEOD



CHAPTER  13   SYSTEM  INTERFACE  (64-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 241

13.1.3  Control of processor request flow

The external agent uses the RdRdy# signal to control the flow of processor read requests.

Figure 13-4 shows the control of the read request flow (the numbers in the explanation below correspond to the

numbers in the figure).

<1> The processor samples the RdRdy# signal and determines whether the external agent can acknowledge a

read request.

<2> The processor issues a read request to the external agent.

<3> The external agent deasserts the RdRdy# signal.  This signal indicates that no more read requests can be

acknowledged.

<4> Because the RdRdy# signal is deasserted two cycles before, issuance of the read request is stalled.

<5> The read request is issued again to the external agent.

Figure 13-4.  Control of Processor Request Flow

SysCycle

SysClock
(Input)

SysAD(63:0)
(I/O)

SysCmd(8:0)
(I/O)

ValidOut#
(Output)

ValidIn#
(Input)

RdRdy#
(Input)

Release#
(Output)

1 2 3 4 5 6 7 8 9 10

Addr Addr

Read Read

Master MasterSlave Slave

Data

NEOD

<3>

<2>

<4>

<5>

<1>

Unsd

Unsd

11

Data

NEOD

12 13

Remark The dotted line indicates high impedance.



CHAPTER  13   SYSTEM  INTERFACE  (64-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM242

Figure 13-5 shows an example in which two processor write requests are issued but issuance of the second

request is delayed because of the condition of the WrRdy# signal (the numbers in the explanation below correspond

to the numbers in the figure).

<1> The external agent asserts the WrRdy# signal to indicate that it is ready to acknowledge a write request.

<2> The processor asserts the ValidOut# signal, and drives a write command onto the SysCmd bus and a write

address onto the SysAD bus.

<3> The second write request is delayed until the WrRdy# signal is asserted again.

<4> If the WrRdy# signal is active two cycles before, an address cycle is issued in response to the processor

write request.  This completes the issuance of the write request.

Remark The timing of the SysADC bus is the same as that of the SysAD bus.

Figure 13-5.  Timing When Second Processor Write Request Is Delayed

1 2 3 4 5 6 7 8 9 10 11 12

Addr

Write

Data

NEOD

Data

Write NEOD

Addr

<1>

<2>

Master

<4><3>

SysCycle

SysClock
(Input)

SysAD(63:0)
(I/O)

SysCmd(8:0)
(I/O)

ValidOut#
(Output)
WrRdy#

(Input)

13.1.4  Timing mode of processor request

The VR5500 has three timing modes: VR4000-compatible mode, write re-issuance mode, and pipeline write mode.

• VR4000-compatible mode

If single write requests are successively issued, the processor inserts two unused cycles after the data cycle

so that an address cycle is issued once every 4 system cycles.

• Write re-issuance mode

If the WrRdy# signal is deasserted in the address cycle of a write request, that request is discarded, but the

processor issues the same write request again.

• Pipeline write mode

Even if the WrRdy# signal is deasserted in the address cycle of a write request, the processor assumes that it

has issued that request.



CHAPTER  13   SYSTEM  INTERFACE  (64-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 243

(1) VR4000-compatible mode

With the VR5500 processor interface, the WrRdy# signal must be asserted two system clocks before issuance of

a write cycle.  If the WrRdy# signal is deasserted immediately after the external agent has received a write

request that fills the buffer, the subsequent write requests are kept waiting for the duration of 4 system cycles.

The processor inserts at least two unused system cycles after a write address/data pair, giving the external

agent the time to keep the next write request waiting.

Figure 13-6 shows a back-to-back write cycle in the VR4000-compatible mode (the numbers in the explanation

below correspond to the numbers in the figure).

<1> The external agent asserts the WrRdy# signal to indicate that it is ready to issue a write cycle.

<2> The WrRdy# signal remains active.  This indicates that the external agent can acknowledge another write

request.

<3> The WrRdy# signal is deasserted.  This indicates that the external agent cannot acknowledge any more

write requests, and that issuance of the next write request is stalled.

Figure 13-6.  Timing of VR4000-Compatible Back-to-Back Write Cycle

SysCycle

SysClock
(Input)

SysAD(63:0)
(I/O)

ValidOut#
(Output)

WrRdy#
(Input)

1 2 3 4

1Cycle 2 3 4

5 6 7 8 9 10 11 12 13 14

Addr Data Unsd Unsd Unsd UnsdAddr Data Addr Data

Write#1 Write#2 Write#3

<1> <2> <3>

Master



CHAPTER  13   SYSTEM  INTERFACE  (64-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM244

(2) Write re-issuance mode

Figure 13-7 shows the write re-issuance protocol (the numbers in the explanation below correspond to the

numbers in the figure).

A write request is issued when the WrRdy# signal is asserted two cycles before the address cycle and in the

address cycle.

<1> The external agent asserts the WrRdy# signal to indicate that it is ready to acknowledge a write request.

<2> The WrRdy# signal remains active even when the write request has been issued.  This indicates that the

external agent can acknowledge another write request.

<3> The WrRdy# signal is deasserted in the address cycle.  This write cycle is aborted.

<4> The external agent asserts the WrRdy# signal, indicating that it is ready to acknowledge a write request.

In response, the write request aborted in <3> is re-issued.

<5> Even if a write request is issued, the WrRdy# signal remains active.  This indicates that the external agent

can acknowledge another write request.

Figure 13-7.  Write Re-Issuance

SysCycle

SysClock
(Input)

SysAD(63:0)
(I/O)

SysCmd(8:0)
(I/O)

ValidOut#
(Output)

WrRdy#
(Output)

1 2 3

Issued
Re-

issued
Not

issued
Not

issued
Not

issued
Not

issued

4 5 6 7 8 9 10 11

Addr0 Data0 Addr1 Data1 Addr1Unsd

Write NEOD Write NEOD WriteUnsd

<1> <4> <5><2> <3>

Master

12 13 14

Data1

NEOD



CHAPTER  13   SYSTEM  INTERFACE  (64-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 245

(3) Pipeline write mode

Figure 13-8 shows the pipeline write protocol (the numbers in the explanation below correspond to the numbers

in the figure).  If the WrRdy# signal is issued two cycles before the address cycle, a write request is issued.

After the WrRdy# signal has been deasserted, the external agent must acknowledge one more write request.

<1> The external agent asserts the WrRdy# signal to indicate that it is ready to acknowledge a write request.

<2> Even when the write request has been issued, the WrRdy# signal remains active.  This indicates that the

external agent can acknowledge one more write request.

<3> The WrRdy# signal is deasserted.  This indicates that the external agent can acknowledge no more write

requests.  However, this write request is acknowledged.

<4> The external agent asserts the WrRdy# signal, indicating that it can acknowledge a write request.

Figure 13-8.  Pipeline Write

SysCycle

SysClock
(Input)

SysAD(63:0)
(I/O)

SysCmd(8:0)
(I/O)

ValidOut#
(Output)

WrRdy#
(Input)

1 2 3

Issued Issued
Not

issued
Not

issued
Not

issued

4 5 6 7 8 9 10 11

Addr0 Data0 Addr1 Data1 Addr2Unsd

Write NEOD Write NEOD WriteUnsd

<1> <4><2> <3>

Master

12 13 14

Data2

NEOD

Issued



CHAPTER  13   SYSTEM  INTERFACE  (64-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM246

13.2  Protocol of External Request

An external request can be issued only when the system interface is in the slave status.  Arbitration that changes

the status of the system interface from master to slave is realized by using the handshake signals of the system

interface (ExtRqst# and Release#).

This section explains the following external request protocols, as well as the arbitration protocol.

• Null

• Write

• Read response

13.2.1  External arbitration protocol

To issue an external request, assert the ExtRqst# signal to arbitrate the system interface.  Then wait until the

processor asserts the Release# signal and releases the system interface to the slave status.  When the system

interface is already in the slave status, i.e., when the processor previously executed an uncompelled transition of the

system interface to the slave status, the external agent can immediately start issuing an external request.

After issuing an external request, the external agent must return the right to control the system interface to the

processor.

If the external agent does not have any more external requests that must be processed, it must deassert the

ExtRqst# signal two cycles after the Release# signal was asserted.  To issue two or more requests in a row, the

ExtRqst# signal must be kept active until the last request cycle.  If the last request cycle lasts for two cycles or more

after the Release# signal was asserted, deassert the ExtRqst# signal.

While the ExtRqst# signal is active, the processor continues processing the external request.  However, the

processor cannot release the system interface to process the next external request until processing of the current

request is finished.  While the ExtRqst# signal is active, two or more successive external requests cannot be

interrupted by a processor request.



CHAPTER  13   SYSTEM  INTERFACE  (64-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 247

Figure 13-9 shows the arbitration protocol of an external request issued by the external agent.  The following

sequence explains the arbitration protocol (the numbers in the explanation below correspond to the numbers in the

figure).

<1> The external agent continues asserting the ExtRqst# signal to issue an external request.

<2> The processor asserts the Release# signal for 1 cycle when it is ready to process the external request.

<3> The processor makes the SysAD and SysCmd buses go into a high-impedance state.

<4> The external agent must drive the SysAD and SysCmd buses at least two cycles after the Release# signal

was asserted.

<5> The external agent must deassert the ExtRqst# signal two cycles after the Release# signal was asserted,

except when it executes another external request.

<6> The external agent must make the SysAD and SysCmd buses go into a high-impedance state on

completion of the external request.

Remark The timing of the SysADC bus is the same as that of the SysAD bus.

Figure 13-9.  External Request Arbitration Protocol

1 2 3 4SysCycle  

SysClock
(Input)

SysAD(63:0)
(I/O)

5 6 7 8 9 10 11 12

SysCmd(8:0)
(I/O)

Validln#
(Input)

<3>
Addr

ExtRqst#
(Input)

Release#
(Output)

Master Slave Master

Data0

Cmd NEOD

<2>

<4>

<5><1>

<6>

Remark The dotted line indicates high impedance.



CHAPTER  13   SYSTEM  INTERFACE  (64-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM248

13.2.2  External null request protocol

The processor supports an external null request.  This request only returns the system interface from the slave

status to the master status, and does not have any other influence on the processor.

Figure 13-10 shows the timing of the external null request (the numbers in the explanation below correspond to

the numbers in the figure).

<1> The external agent drives an external null request command onto the SysCmd bus and asserts the ValidIn#

signal for one cycle.  This returns the right to control the system interface to the processor.

<2> The SysAD bus is not used in the address cycle corresponding to the external null request (the bus does

not hold valid data).

<3> When the address cycle is issued, the null request is completed.

The external null request returns the system interface to the master status when the external agent has released

the SysCmd and SysAD buses.

Figure 13-10.  External Null Request Protocol

1 2 3 4SysCycle  

SysClock
(Input)

SysAD(63:0)
(I/O)

5 6 7 8 9 10 11 12

SysCmd(8:0)
(I/O)

ValidOut#
(Output)

Validln#
(Input)

ExtRqst#
(Input)

Slave Master

Unsd

SINull

Release#
(Output)

H

H

H

<1>

<2>

<3>

<1>

Remark  The dotted line indicates high impedance.



CHAPTER  13   SYSTEM  INTERFACE  (64-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 249

13.2.3  External write request protocol

The external write request performs an operation close to the processor single write request, except that it asserts

the ValidIn# signal, instead of the ValidOut# signal.

Figure 13-11 shows the timing of the external write request (the numbers in the explanation below correspond to

the numbers in the figure).

<1> The external agent asserts the ExtRqst# signal to arbitrate the system interface.

<2> The processor asserts the Release# signal to release the system interface to the slave status.

<3> The external agent asserts the ValidIn# signal and drives a write command onto the SysCmd bus and a

write address onto the SysAD bus.

<4> The external agent asserts the ValidIn# signal and drives a data identifier onto the SysCmd bus and data

onto the SysAD bus.

<5> The data identifier corresponding to the data cycle must contain an indication of the last data cycle.

<6> When the data cycle is issued, the write request is completed.  The external agent makes the SysCmd and

SysAD buses go into a high-impedance state, and returns the system interface to the master status.

Remark The timing of the SysADC bus is the same as that of the SysAD bus.

The external write request can only write word data to the processor.  If a data element other than a word is

specified for the external write request, the operation of the processor is undefined.

Figure 13-11.  External Write Request Protocol

1 2 3 4SysCycle  

SysClock
(Input)

SysAD(63:0)
(I/O)

5 6 7 8 9 10 11 12

SysCmd(8:0)
(I/O)

Validln#
(Input)

Addr

ExtRqst#
(Input)

Release#
(Output)

Master Slave Master

Data0

Write NEOD

ValidOut#
(Output)

H

<1>

<2>

<3>

<5>

<6>

<4><3>

<4>

Remark The dotted line indicates high impedance.



CHAPTER  13   SYSTEM  INTERFACE  (64-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM250

13.2.4  Read response protocol

The external agent must return data to the processor by using a read response protocol, in response to a

processor read request.  The following sequence explains the read response protocol (the numbers in the

explanation below correspond to the numbers in Figures 13-12 and 13-13).

<1> The external agent waits until the processor puts the system interface in the uncompelled slave status.

<2> The processor returns data via a single data cycle or a series of data cycles.

<3> When the last data cycle is issued, the read response is completed, and the external agent makes the

SysCmd and SysAD buses go into a high-impedance state.

<4> The system interface returns to the master status.

Remark When the read request is issued, the processor always puts the system interface in the

uncompelled slave status.

<5> The data identifier of the data cycle must indicate that this data is response data.

<6> The data identifier corresponding to the last data cycle must contain an indication of the last data cycle.

If the read response is for a block read request, the response data does not have to identify the initial cache

status.  The processor automatically allocates the cache to the clean status.

The data identifier corresponding to the data cycle can indicate that the data transferred in that cycle has an error.

Even if data may have an error, however, the external agent must return a data block of the correct size.  The

processor checks the error bit of only the first doubleword of the block, and ignores the rest of the error bits of that

block (refer to 13.2.5 SysADC(7:0) protocol for block read response).

Only when there is a pending processor read request, read response data is passed to the processor.  The

operation of the processor is undefined if there is no pending processor read request when a read response is

received.

Figure 13-12 shows a processor word request and the word read response that follows.  Figure 13-13 shows the

read response to a processor block read request when the system interface is already in the slave status.

Remark The timing of the SysADC bus is the same as that of the SysAD bus.



CHAPTER  13   SYSTEM  INTERFACE  (64-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 251

Figure 13-12.  Protocol of Read Request and Read Response

1 2 3 4 5 6 7 8 9 10 11 12

Addr

Read

Data0

NEOD

H

Master Slave Master

<1>

<2> <3>

<6>

<4>

SysCycle  

SysClock
(Input)

SysAD(63:0)
(I/O)

SysCmd(8:0)
(I/O)

Validln#
(Input)

ExtRqst#
(Input)

Release#
(Output)

ValidOut#
(Output)

Remark The dotted line indicates high impedance.

Figure 13-13.  Block Read Response in Slave Status

1 2 3 4 5 6 7 8 9 10 11 12

NData NEODNData NData

Data0 Data1 Data2 Data3

H

SysCycle

SysClock
(Input)

SysAD(63:0)
(I/O)

SysCmd(8:0)
(I/O)

ValidIn#
(Input)

ValidOut#
(Output)

Release#
(Output)

MasterSlave

<5>

<2> <3>

<6>

<4>

H

H

ExtRqst#
(Input)

<5> <5>

Remark The dotted line indicates high impedance.



CHAPTER  13   SYSTEM  INTERFACE  (64-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM252

13.2.5  SysADC(7:0) protocol for block read response

When a block read response is issued, SysADC(7:0) must be used in compliance with the following rules.

• Only the first doubleword of transfer data is checked.  If the data has an error (SysCmd5 = 1), the cache line

is invalidated, and a bus error exception occurs in the processor.

• A parity error of the first doubleword is detected when a request is issues, and a cache error exception

occurs.  At this time, the cache line is in the Invalid status.  A parity error of a subsequent doubleword is

detected again when that data is used.

• The error bits in three subsequent doublewords of data are ignored.  The parity of each doubleword is written

to the cache, but is not checked until the data is referenced.

• If a memory error occurs during a block read operation, the SysADC bit must be changed to an illegal parity

during a read response operation for all the bytes that are affected by the memory error.  However, even if

SysCmd5 is set to 1 during data transfer other than the first doubleword, a bus error exception does not

occur.  If the SysADC bit has been changed to an illegal parity, a cache error exception occurs when any of

the remaining three doublewords is referenced.

13.3  Data Flow Control

The system interface supports a data rate of 1 doubleword per cycle.

13.3.1  Data rate control

The external agent can send data to the processor at the maximum data rate of the system interface.

The rate at which data is to be sent to the processor can be controlled on the external agent side.  The transfer

rate from the external agent is not limited.  The external agent asserts the ValidIn# signal in the cycle in which it

transfers data.

When the ValidIn# signal has been asserted and as long as a data identifier is on the SysCmd bus, the processor

acknowledges the cycle as valid.  It then goes on acknowledging data until it receives a data word with NEOD.

The operation of the processor is undefined if data is sent in a pattern of other than 1 cycle for single data, and

other than 4 cycles for block data.

Figure 13-14 shows the timing of the read response where the data rate pattern is DDx.



CHAPTER  13   SYSTEM  INTERFACE  (64-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 253

Figure 13-14.  Read Response with Data Rate Pattern DDx

SysCycle

SysClock
(Input)

SysAD(63:0)
(I/O)

SysCmd(8:0)
(I/O)

ValidOut#
(Output)

ValidIn#
(Input)

Release#
(Output)

1 2 3 4 5 6 7 8 9 10

Data0

NData

Slave

11 12

H

ExtRqst#
(Input)

H

Data2

NData

Data3

H

Data1

NData NData

Master

Remark The dotted line indicates high impedance.

13.3.2  Block write data transfer pattern

The rate at which the processor transfers block write data to the external agent can be set by the EP bit of the

Config register after reset.  The data pattern is indicated by characters D and x that indicate the array of data cycle

and unused cycle at each data rate.  D indicates a data cycle, and x indicates an unused cycle.  For example, Dxx

data pattern indicates a data rate of 1 doubleword in every 3 cycles.

Table 13-1 shows the maximum data rate that can be set after reset.

Table 13-1.  Transfer Data Rate and Data Pattern

Maximum Data Rate Data Pattern

1 doubleword/1 cycle DDDD

2 doublewords/3 cycles DDxDDx

2 doublewords/4 cycles DDxxDDxx

1 doubleword/2 cycles DxDxDxDx

2 doublewords/5 cycles DDxxxDDxxx

2 doublewords/6 cycles DDxxxxDDxxxx

1 doubleword/3 cycles DxxDxxDxxDxx

2 doublewords/8 cycles DDxxxxxxDDxxxxxx

1 doubleword/4 cycles DxxxDxxxDxxxDxxx

13.3.3  System endianness

The endianness of the system is set by the BigEndian pin after reset.  The set endianness is indicated by the BE

bit of the Config register.



CHAPTER  13   SYSTEM  INTERFACE  (64-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM254

13.4  Independent Transfer with SysAD Bus

For general applications, the SysAD bus connects the processor and a bidirectional register type transceiver in

the external agent between two points.  For such applications, only the processor and external agent can be

connected to the SysAD bus.

For specific applications, other drivers and receivers are connected to the SysAD bus so that transfer can be

performed independently of the processor on the SysAD bus.  This is called independent transfer.  To execute

independent transfer, the external agent must adjust the right to control the SysAD bus by using the arbitration

handshake signals and external null request.

The procedure of independent transfer of the SysAD bus is as follows.

<1> The external agent requests the right to control the SysAD bus by asserting the ExtRqst# signal to issue an

external request.

<2> The processor releases the system interface to the slave status by asserting the Release# signal.

<3> In this way, the external agent can execute independent transfer on the SysAD bus.  The ValidIn# signal

must not be asserted during transfer.

<4> When transfer is completed, the external agent releases and returns the system interface to the master

status by issuing an external null request.

13.5  System Interface Cycle Time

Because processor requests are restricted by the system interface protocol, the number of request cycles is

checked by the protocol.  Because external requests have the following two types of wait times, the number of

request cycles differs depending on these wait times.

• Standby time until the processor releases the system interface to the slave status in response to an external

request (release wait time)

• Response time of the external request that requires a response (external response wait time)

While an external request is being issued, the release wait time differs depending on the status of the system

interface.  When the external request is detected, the system interface is released to the external agent after the

cycle under processing.

The external response time of the VR5500 is kept to the minimum.  Data that is written is immediately loaded.



CHAPTER  13   SYSTEM  INTERFACE  (64-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 255

13.6  System Interface Commands and Data Identifiers

A system interface command defines the type and attribute of a system interface request.  This definition is

indicated in the address cycle of a request.

The system interface data identifier defines the attribute of the data transferred in the system interface data cycle.

This section explains the syntax of the commands and data identifiers of the system interface, i.e., coding in bit

units.

Set the reserved bits and reserved area in the commands and data identifiers of the system interface related to

external requests to 1.

The reserved bits and reserved area in the commands and data identifiers of the system interface related to

processor requests are undefined.

13.6.1  Syntax of commands and data identifiers

The commands and data identifiers of the system interface are coded in 9-bit units, and transferred from the

processor to the external agent, or vice versa, via the SysCmd bus in the address cycle and data cycle.

SysCmd8 (most significant bit) determines whether the current contents of the SysCmd bus are a command

(address cycle) or data identifier (data cycle).  If they are a command, clear SysCmd8 to 0; if they are a data

identifier, set it to 1.

13.6.2  Syntax of command

This section explains the coding of the SysCmd bus when a system interface command is used.  Figure 13-15

shows the common code used for all the system interface commands.

Figure 13-15.  Bit Definition of System Interface Command

7

0 Request type Details of request

4 058

Be sure to clear SysCmd8 to 0 when a system interface command is used.

SysCmd(7:5) define the types of system interface requests such as read, write, and null.

Table 13-2.  Code of System Interface Command SysCmd(7:5)

Bit Contents

SysCmd(7:5) Command

0:  Read request

1:  Reserved

2:  Write request

3:  Null request

4 to 7:  Reserved

SysCmd(4:0) are determined according to the type of request.  A definition of each request is given below.



CHAPTER  13   SYSTEM  INTERFACE  (64-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM256

(1) Read request

The code of the SysCmd bus related to a read request is shown below.

Figure 13-16 shows the format of the command when a read request is issued.

Tables 13-3 to 13-5 show the code of the read attribute of the SysCmd(4:0) bits related to the read request.

Figure 13-16.  Bit Definition of SysCmd Bus During Read Request

8

0 000 Details of read request 
(refer to the tables below)

7 45 0

Table 13-3.  Code of SysCmd(4:3) During Read Request

Bit Contents

SysCmd(4:3) Read attribute

0, 1:  Reserved

2:  Block read

3:  Single read

Table 13-4.  Code of SysCmd(2:0) During Block Read Request

Bit Contents

SysCmd2 Reserved

SysCmd(1:0) Size of read block

0:  Reserved

1:  8 words

2,  3: Reserved

Table 13-5.  Code of SysCmd(2:0) During Single Read Request

Bit Contents

SysCmd(2:0) Read data size

0:  1 byte is valid (byte).

1:  2 bytes are valid (halfword).

2:  3 bytes are valid.

3:  4 bytes are valid (word).

4:  5 bytes are valid.

5:  6 bytes are valid.

6:  7 bytes are valid.

7:  8 bytes are valid (doubleword).



CHAPTER  13   SYSTEM  INTERFACE  (64-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 257

(2) Write request

The code of the SysCmd bus related to a write request is shown below.

Figure 13-17 shows the format of the command when a write request is issued.

Tables 13-6 to 13-8 show the code of the write attribute of the SysCmd(4:0) bits related to the write request.

Figure 13-17.  Bit Definition of SysCmd Bus During Write Request

8

0 010 Details of write request 
(refer to the tables below)

7 45 0

Table 13-6.  Code of SysCmd(4:3) During Write Request

Bit Contents

SysCmd(4:3) Write attribute

0, 1:  Reserved

2:  Block write

3:  Single write

Table 13-7.  Code of SysCmd(2:0) During Block Write Request

Bit Contents

SysCmd2 Update of cache line

0:  Replaced

1:  Retained

SysCmd(1:0) Size of write block

0:  Reserved

1:  8 words

2, 3:  Reserved

Table 13-8.  Code of SysCmd(2:0) During Single Write Request

Bit Contents

SysCmd(2:0) Write data size

0:  1 byte is valid (byte).

1:  2 bytes are valid (halfword).

2:  3 bytes are valid.

3:  4 bytes are valid (word).

4:  5 bytes are valid.

5:  6 bytes are valid.

6:  7 bytes are valid.

7:  8 bytes are valid (doubleword).



CHAPTER  13   SYSTEM  INTERFACE  (64-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM258

(3) Null request

Figure 13-18 shows the format of the command when a null request is used.

Figure 13-18.  Bit Definition of SysCmd Bus During Null Request

8

0 011 Details of null request 
(refer to the table below)

7 45 0

Table 13-9 shows the code of the SysCmd(4:3) bits related to the null request.

For the null request, the SysCmd(2:0) bits are reserved.

Table 13-9.  Code of SysCmd(4:3) During Null Request

Bit Contents

SysCmd(4:3) Null attribute

0:  Released

1 to 3:  Reserved

13.6.3  Syntax of data identifier

This section explains coding of the SysCmd bus when a system interface data identifier is used.

Figure 13-19 shows the common code used for all system interface data identifiers.

Figure 13-19.  Bit Definition of System Interface Data Identifier

8 3 0

1 Indication 
of last data

Indication 
of response 
data

Indication of 
error data

Data check 
enable

Reserved

4567

Be sure to set SysCmd8 of the system interface data identifier to 1.



CHAPTER  13   SYSTEM  INTERFACE  (64-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 259

A definition of the SysCmd(7:0) bits is given below.

SysCmd7: Indicates whether the data element is the last one.

SysCmd6: Indicates whether the data is response data.  Response data is returned in response to a read

request.

SysCmd5: Indicates whether the data element contains an error.  The error indicated in the data cannot be

corrected.  If this data is returned to the processor, a bus error exception occurs.  In the case of

a response block, send the entire line to the processor regardless of the degree of error.  The

processor checks SysCmd5 of the first doubleword of the block response data.  The external

agent should ignore this bit in a processor data identifier because no error is indicated.

SysCmd4: This bit in an external data identifier indicates whether the data of the data element and check

bit are checked.  This bit in a processor data identifier is reserved.

SysCmd(3:0): These bits are reserved.

Table 13-10 indicates the codes of SysCmd(7:5) of a processor data identifier, and Table 13-11 shows the codes

of SysCmd(7:4) of an external data identifier.

Table 13-10.  Codes of SysCmd(7:5) of Processor Data Identifier

Bit Contents

SysCmd7 Indication of last data element

0:  Last data element

1:  Not last data element

SysCmd6 Indication of response data

0:  Response data

1:  Not response data

SysCmd5 Indication of error data

0:  Error occurred

1:  No error occurred

Table 13-11. Codes of SysCmd(7:4) of External Data Identifier

Bit Contents

SysCmd7 Indication of last data element

0:  Last data element

1:  Not last data element

SysCmd6 Indication of response data

0:  Response data

1:  Not response data

SysCmd5 Indication of error data

0:  Error occurred

1:  No error occurred

SysCmd4 Data check enables

0:  Data and check bit checked

1:  Data and check bit not checked



CHAPTER  13   SYSTEM  INTERFACE  (64-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM260

13.7  System Interface Address

The system interface address is a 36-bit physical address and is output to SysAD(35:0) in the address cycle.  The

other bits of the SysAD bus are not used in the address cycle.

13.7.1  Address specification rules

An address related to transferring data such as a word and an unaligned word is aligned in accordance with the

size of the data element.  The system uses the following address rules.

• An address related to the request of a block is aligned at the requested doubleword boundary.  Therefore, the

lower 3 bits of the address are 0.

• The lower 3 bits of an address for a doubleword request are cleared to 0.

• The lower 2 bits of an address for a word request are cleared to 0.

• The least significant bit of an address for a halfword request cleared to 0.

• Each request of 1, 3, 5, 6, and 7 bytes uses a byte address.

13.7.2  Sub-block ordering

The order of the data returned in response to a processor block read request is sub-block ordering.  With sub-

block ordering, the processor outputs the address of the doubleword required in a block.  The external agent must

return a block that starts with the specified doubleword, by using sub-block ordering (for details, refer to APPENDIX

A SUB-BLOCK ORDER).

For a block write request, the processor always outputs the address of the first doubleword in the block.  It

sequentially outputs the doublewords in the block, starting from the first doubleword of the block.

In the data cycle, whether the byte line of an aligned doubleword (or byte, halfword, 3 bytes, word, 6 bytes, or 7

bytes) is valid or not depends on the position of the data.  In the little-endian mode, for example, SysAD(7:0) of a

byte request where lower 3 address bits are 0 are valid in the data cycle.

For the byte lane that is used when an unaligned word in big endian and little endian is transferred, refer to

Figure 3-3 Byte Specification Related to Load/Store Instruction.

13.7.3  Processor internal address map

For an external write, the external agent accesses the internal resources of the processor.  When an external

write request is made, the processor decodes the SysAD(6:4) bits of the address that is output, to determine which

of the resources of the processor is to be accessed.  The only internal resource of the processor that can be

accessed by an external write request is the interrupt register.  Access the interrupt register by an external write

access, by specifying an address that clears SysAD(6:4) to 000.



Preliminary User’s Manual  U16044EJ1V0UM 261

CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

This chapter explains the request protocol of the system interface in the 32-bit bus normal mode.  The system

interface of the VR5500 can be set in the 32-bit bus mode by inputting a low level to the BusMode pin before a

power-on reset.  It can also be set in the normal mode by inputting a high level to the O3Return# pin before a power-

on reset, and in the out-of-order return mode by inputting a low level to the same pin.

The 32-bit bus normal mode includes two protocol modes: R5000 mode and VR5432 native mode.  These modes

can be selected according to the combination of levels input to the DWBTrans# and DisDValidO# pins before a

power-on reset.

• R5000 mode

The R5000 mode is selected when a high level is input to both the DWBTrans# and DisDValidO# pins.  This

mode is compatible with the bus protocol of the RM523x (a product of PMC-Sierra).

• VR5432 native mode

The VR5432 native mode is selected when a low level is input to both the DWBTrans# and DisDValidO# pins.

This mode is compatible with the bus protocol of the native mode of the VR5432.

VR5500 bus mode

64-bit bus mode

VR5432 
native mode

BusMode = H

O3Return# = L O3Return# = H,
DWBTrans# = H,
DisDValidO# = H

O3Return# = H,
DWBTrans# = H,
DisDValidO# = H

O3Return# = L
O3Return# = H,
DWBTrans# = L,
DisDValidO# = L

BusMode = L

32-bit bus mode

Out-of-order 
return mode R5000 mode

Out-of-order 
return mode

R5000 mode
(compatible 
with RM523x)

For the protocol in the 64-bit bus normal modes (operation mode compatible with the VR5000), refer to CHAPTER

13 SYSTEM INTERFACE (64-BIT BUS MODE).  For the protocol in the out-of-order return mode, refer to CHAPTER

15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE).



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM262

14.1  Protocol of Processor Requests

This section explains the following two processor request protocols.

• Read

• Write

14.1.1  Processor read request protocol

The following sequence explains the protocol of a processor read request for a doubleword, unaligned

doubleword, word, and unaligned word (the numbers correspond to the numbers in Figure 14-1).

<1> The external agent makes the RdRdy# signal is low and is ready to acknowledge a read request.

<2> When the system interface is in the master status, the processor issues a processor read request by driving

a read command onto the SysCmd bus and a read address (physical address) onto the SysAD bus.

<3> At the same time, the processor asserts the ValidOut# signal for the duration of 1 cycle.  This signal

indicates that valid data is on the SysCmd and SysAD buses.

<4> The processor puts the system interface in the uncompelled slave status.  The external agent must wait

without asserting the ExtRqst# signal in an attempt to return a read response, until transition of the system

interface to the uncompelled slave status is completed.

<5> The processor releases the SysCmd and SysAD buses 1 cycle after the Release# signal has been

asserted.

<6> The external agent drives the SysCmd and SysAD buses 2 cycles after the Release# signal has been

asserted.

When the system interface has been put in the slave status, the external agent can return the requested data by

using a read response.  The read response can also return an indication that an error has occurred in the data if the

requested data could not be searched correctly, as well as the requested data.  If the returned data contains an

error, the processor generates a bus error exception.

Figure 14-1 shows the processor read request, and uncompelled transition to the slave status that takes place

when the read request is issued.

The timing of the SysADC bus is the same as that of the SysAD bus.



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 263

Figure 14-1.  Processor Read Request

1 2 3 4 5 6 7 8 9 10 11 12

Addr

L

Read

SysCycle

SysClock
(Input)

SysAD(31:0)
(I/O)

SysCmd(8:0)
(I/O)

RdRdy#
(Input)

ValidOut#
(Output)

Release#
(Output)

<5>

<1>

<2>

<3>

<6>

<4>

Master Slave

Remark The dotted line indicates high impedance.

After the Release# signal has been asserted (<6> and later in the figure), the processor can acknowledge both a

read response (if the read request is pending) and an external request.

14.1.2  Processor write request protocol

The processor write request is issued by using either of the following two protocols.

• A write request for a word or unaligned word uses a single write request protocol.

• Cache block write and uncached accelerated write uses a block write request protocol.

A processor write request is issued when the system interface is in the master status.

Figure 14-2 shows the processor single write request cycle and Figure 14-3 shows the processor block write

request cycle (the numbers in the explanation below correspond to the numbers in the figures).

<1> The external agent makes the WrRdy# signal low and is ready to acknowledge a write request.

<2> The processor issues a processor write request by driving a write command onto the SysCmd bus and a

write address onto the SysAD bus.

<3> The processor asserts the ValidOut# signal.

<4> The processor drives a data identifier onto the SysCmd bus and data onto the SysAD bus.

<5> The data identifier corresponding to the data cycle must include an indication of the last data cycle.  At the

end of the cycle, the ValidOut# signal is deasserted.

Remark The timing of the SysADC bus is the same as that of the SysAD bus.



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM264

Figure 14-2.  Processor Non-Block Write Request Protocol

SysCycle

SysClock
(Input)

SysAD(31:0)
(I/O)

SysCmd(8:0)
(I/O)

ValidOut#
(Output)

WrRdy#
(Input)

1 2 3 4 5 6 7 8 9 10 11 12

Addr Data0

Write

L

NEOD

<1>

<4>

<5>

<2>

<3>

Master

Figure 14-3.  Processor Block Write Request

1 2 3 4 5 6 7 8 9 10 11 12

Addr Data0 Data3

Write

L

NData NData

Data2Data1

NData NData

SysCycle

SysClock
(Input)

SysAD(31:0)
(I/O)

SysCmd(8:0)
(I/O)

ValidOut#
(Output)
WrRdy#

(Input)
<1>

<4>

<5>

<2>

<3>

Master

NData NData NData NEOD

Data4 Data5 Data6 Data7



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 265

14.1.3  Control of processor request flow

The external agent uses the RdRdy# signal to control the flow of processor read requests.

Figure 14-4 shows the control of the read request flow (the numbers in the explanation below correspond to the

numbers in the figure).

<1> The processor samples the RdRdy# signal and determines whether the external agent can acknowledge a

read request.

<2> The processor issues a read request to the external agent.

<3> The external agent deasserts the RdRdy# signal.  This signal indicates that no more read requests can be

acknowledged.

<4> Because the RdRdy# signal is deasserted two cycles before, issuance of the read request is stalled.

<5> The read request is issued again to the external agent.

Figure 14-4.  Control of Processor Request Flow (1/2)

(a)  R5000 mode

SysCycle

SysClock
(Input)

SysAD(31:0)
(I/O)

SysCmd(8:0)
(I/O)

ValidOut#
(Output)

ValidIn#
(Input)

RdRdy#
(Input)

Release#
(Output)

1 2 3 4 5 6 7 8 9 10

Addr Data Addr Data

Read NEOD Read NEOD

Master MasterSlave Slave

11 12

<3><2> <4>

<5>

<1>

Unsd

Unsd

Remark The dotted line indicates high impedance.



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM266

Figure 14-4.  Control of Processor Request Flow (2/2)

(b)  VR5432 native mode

SysCycle

SysClock
(Input)

SysAD(31:0)
(I/O)

SysCmd(8:0)
(I/O)

ValidOut#
(Output)

ValidIn#
(Input)

RdRdy#
(Input)

Release#
(Output)

1 2 3 4 5 6 7 8 9 10

Addr Data Addr Data

Read NEOD Read NEOD

Master MasterSlave Slave

11 12

<3><2> <4>

<5>

<1>

Unsd

Unsd

Remark The dotted line indicates high impedance.

Figure 14-5 shows an example in which two processor write requests are issued but issuance of the second

request is delayed because of the condition of the WrRdy# signal (the numbers in the explanation below correspond

to the numbers in the figure).

<1> The external agent asserts the WrRdy# signal to indicate that it is ready to acknowledge a write request.

<2> The processor asserts the ValidOut# signal, and drives a write command onto the SysCmd bus and a write

address onto the SysAD bus.

<3> The second write request is delayed until the WrRdy# signal is asserted again.

<4> If the WrRdy# signal is active two cycles before, an address cycle is issued in response to the processor

write request.  This completes the issuance of the write request.

Remark The timing of the SysADC bus is the same as that of the SysAD bus.



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 267

Figure 14-5.  Timing When Second Processor Write Request Is Delayed

(a)  R5000 mode

1 2 3 4 5 6 7 8 9 10 11 12

Addr

Write

Data

NEOD

Data

Write NEOD

Addr

<1>

<2>

Master

<4>

<3>

SysCycle

SysClock
(Input)

SysAD(31:0)
(I/O)

SysCmd(8:0)
(I/O)

ValidOut#
(Output)
WrRdy#

(Input)

(b)  VR5432 native mode

1 2 3 4 5 6 7 8 9 10 11 12

Addr

Write

Data

NEOD

Data

Write NEOD

Addr

<1>

<2>

Master

<4>

<3>

SysCycle

SysClock
(Input)

SysAD(31:0)
(I/O)

SysCmd(8:0)
(I/O)

ValidOut#
(Output)
WrRdy#

(Input)

14.1.4  Timing mode of processor request

The VR5500 has three timing modes: VR4000-compatible mode, write re-issuance mode, and pipeline write mode.

• VR4000-compatible mode

If single write requests are successively issued, the processor inserts two unused cycles after the data cycle

so that an address cycle is issued once every 4 system cycles.

• Write re-issuance mode

If the WrRdy# signal is deasserted in the address cycle of a write request, that request is discarded, but the

processor issues the same write request again.

• Pipeline write mode

Even if the WrRdy# signal is deasserted in the address cycle of a write request, the processor assumes that it

has issued that request.



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM268

(1) VR4000-compatible mode

With the VR5500 processor interface, the WrRdy# signal must be asserted two system clocks before issuance of

a write cycle.  If the WrRdy# signal is deasserted immediately after the external agent has received a write

request that fills the buffer, the subsequent write requests are kept waiting for the duration of 4 system cycles in

the VR4000 non-block-write-compatible mode.  The processor inserts at least two unused system cycles after a

write address/data pair, giving the external agent the time to keep the next write request waiting.

Figure 14-6 shows a back-to-back write cycle in the VR4000-compatible mode (the numbers in the explanation

below correspond to the numbers in the figure).

<1> The external agent asserts the WrRdy# signal to indicate that it is ready to issue a write cycle.

<2> The WrRdy# signal remains active.  This indicates that the external agent can acknowledge another write

request.

<3> The WrRdy# signal is deasserted.  This indicates that the external agent cannot acknowledge any more

write requests, and that issuance of the next write request is stalled.

Figure 14-6.  Timing of VR4000-Compatible Back-to-Back Write Cycle

(a)  R5000 mode

SysCycle

SysClock
(Input)

SysAD(31:0)
(I/O)

ValidOut#
(Output)

WrRdy#
(Input)

1 2 3 4

1Cycle 2 3 4

5 6 7 8 9 10 11 12 13 14

Addr Data Unsd Unsd Unsd UnsdAddr Data Addr Data

Write#1 Write#2 Write#3

<1> <2> <3>

Master

(b)  VR5432 native mode

SysCycle

SysClock
(Input)

SysAD(31:0)
(I/O)

ValidOut#
(Output)

WrRdy#
(Input)

1 2 3 4

1Cycle 2 3 4

5 6 7 8 9 10 11 12 13 14

Addr Data Unsd Unsd Unsd UnsdAddr Data Addr Data

Write#1 Write#2 Write#3

<1> <2> <3>

Master



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 269

(2) Write re-issuance mode

Figure 14-7 shows the write re-issuance protocol (the numbers in the explanation below correspond to the

numbers in the figure).

A write request is issued when the WrRdy# signal is asserted two cycles before the address cycle and in the

address cycle.

<1> The external agent asserts the WrRdy# signal to indicate that it is ready to acknowledge a write request.

<2> The WrRdy# signal remains active even when the write request has been issued.  This indicates that the

external agent can acknowledge another write request.

<3> The WrRdy# signal is deasserted in the address cycle.  This write cycle is aborted.

<4> The external agent asserts the WrRdy# signal, indicating that it is ready to acknowledge a write request.

In response, the write request aborted in <3> is re-issued.

<5> Even if a write request is issued, the WrRdy# signal remains active.  This indicates that the external agent

can acknowledge another write request.

Figure 14-7.  Write Re-Issuance

(a)  R5000 mode

SysCycle

SysClock
(Input)

SysAD(31:0)
(I/O)

SysCmd(8:0)
(I/O)

ValidOut#
(Output)

WrRdy#
(Input)

1 2 3

Issued
Re-

issued
Not

issued
Not

issued
Not

issued
Not

issued

4 5 6 7 8 9 10 11

Addr0 Data0 Addr1 Data1 Addr1Unsd

Write NEOD Write NEOD WriteUnsd

<1> <4> <5><2> <3>

Master

12 13 14

Data1

NEOD

(b)  VR5432 native mode

SysCycle

SysClock
(Input)

SysAD(31:0)
(I/O)

SysCmd(8:0)
(I/O)

ValidOut#
(Output)

WrRdy#
(Input)

1 2 3

Issued
Re-

issued
Not

issued
Not

issued
Not

issued
Not

issued

4 5 6 7 8 9 10 11

Addr0 Data0 Addr1 Data1 Addr1Unsd

Write NEOD Write NEOD WriteUnsd

<1> <4> <5><2> <3>

Master

12 13 14

Data1

NEOD



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM270

(3) Pipeline write mode

Figure 14-8 shows the pipeline write protocol (the numbers in the explanation below correspond to the numbers

in the figure).  If the WrRdy# signal is issued two cycles before the address cycle, a write request is issued.

After the WrRdy# signal has been deasserted, the external agent must acknowledge one more write request.

<1> The external agent asserts the WrRdy# signal to indicate that it is ready to acknowledge a write request.

<2> Even when the write request has been issued, the WrRdy# signal remains active.  This indicates that the

external agent can acknowledge one more write request.

<3> The WrRdy# signal is deasserted.  This indicates that the external agent can acknowledge no more write

requests.  However, this write request is acknowledged.

<4> The external agent asserts the WrRdy# signal, indicating that it can acknowledge a write request.

Figure 14-8.  Pipeline Write

(a)  R5000 mode

SysCycle

SysClock
(Input)

SysAD(31:0)
(I/O)

SysCmd(8:0)
(I/O)

ValidOut#
(Output)

WrRdy#
(Input)

1 2 3

Issued Issued
Not

issued
Not

issued
Not

issued

4 5 6 7 8 9 10 11

Addr0 Data0 Addr1 Data1 Addr2Unsd

Write NEOD Write NEOD WriteUnsd

<1> <4><2> <3>

Master

12 13 14

Data2

NEOD

Issued

(b)  VR5432 native mode

SysCycle

SysClock
(Input)

SysAD(31:0)
(I/O)

SysCmd(8:0)
(I/O)

ValidOut#
(Output)

WrRdy#
(Input)

1 2 3

Issued Issued
Not

issued
Not

issued
Not

issued

4 5 6 7 8 9 10 11

Addr0 Data0 Addr1 Data1 Addr2Unsd

Write NEOD Write NEOD WriteUnsd

<1> <4><2> <3>

Master

12 13 14

Data2

NEOD

Issued



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 271

14.2  Protocol of External Request

An external request can be issued only when the system interface is in the slave status.  Arbitration that changes

the status of the system interface from master to slave is realized by using the handshake signals of the system

interface (ExtRqst# and Release#).

This section explains the following external request protocols, as well as the arbitration protocol.

• Null

• Write

• Read response

14.2.1  External arbitration protocol

To issue an external request, assert the ExtRqst# signal to arbitrate the system interface.  Then wait until the

processor asserts the Release# signal and releases the system interface to the slave status.  When the system

interface is already in the slave status, i.e., when the processor previously executed an uncompelled transition of the

system interface to the slave status, the external agent can immediately start issuing an external request.

After issuing an external request, the external agent must return the right to control the system interface to the

processor.

If the external agent does not have any more external requests that must be processed, it must deassert the

ExtRqst# signal two cycles after the Release# signal was asserted.  To issue two or more requests in a row, the

ExtRqst# signal must be kept active until the last request cycle.  If the last request cycle lasts for two cycles or more

after the Release# signal was asserted, deassert the ExtRqst# signal.

While the ExtRqst# signal is active, the processor continues processing the external request.  However, the

processor cannot release the system interface to process the next external request until processing of the current

request is finished.  While the ExtRqst# signal is active, two or more successive external requests cannot be

interrupted by a processor request.



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM272

Figure 14-9 shows the arbitration protocol of an external request issued by the external agent.  The following

sequence explains the arbitration protocol (the numbers in the explanation below correspond to the numbers in the

figure).

<1> The external agent continues asserting the ExtRqst# signal to issue an external request.

<2> The processor asserts the Release# signal for 1 cycle when it is ready to process the external request.

<3> The processor makes the SysAD and SysCmd buses go into a high-impedance state.

<4> The external agent must drive the SysAD and SysCmd buses at least two cycles after the Release# signal

was asserted.

<5> The external agent must deassert the ExtRqst# signal two cycles after the Release# signal was asserted,

except when it executes another external request.

<6> The external agent must make the SysAD and SysCmd buses go into a high-impedance state on

completion of the external request.

Remarks 1. The processor can issue a request one cycle after the external agent has set the system interface

to a high-impedance state.

2. The timing of the SysADC bus is the same as that of the SysAD bus.

Figure 14-9.  External Request Arbitration Protocol

1 2 3 4SysCycle  

SysClock
(Input)

SysAD(31:0)
(I/O)

5 6 7 8 9 10 11 12

SysCmd(8:0)
(I/O)

Validln#
(Input)

<3>
Addr

ExtRqst#
(Input)

Release#
(Output)

Master Slave Master

Data0

Cmd NEOD

<2>

<4>

<5><1>

<6>

Remark The dotted line indicates high impedance.



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 273

14.2.2  External null request protocol

The processor supports an external null request.  This request only returns the system interface from the slave

status to the master status, and does not have any other influence on the processor.

Figure 14-10 shows the timing of the external null request (the numbers in the explanation below correspond to

the numbers in the figure).

<1> The external agent drives an external null request command onto the SysCmd bus and asserts the ValidIn#

signal for one cycle.  This returns the right to control the system interface to the processor.

<2> The SysAD bus is not used in the address cycle corresponding to the external null request (the bus does

not hold valid data).

<3> When the address cycle is issued, the null request is completed.

The external null request returns the system interface to the master status when the external agent has released

the SysCmd and SysAD buses.

Figure 14-10.  External Null Request Protocol

1 2 3 4SysCycle

SysClock
(Input)

SysAD(31:0)
(I/O)

5 6 7 8 9 10 11 12

SysCmd(8:0)
(I/O)

ValidOut#
(Output)

Validln#
(Input)

ExtRqst#
(Input)

Slave Master

Unsd

SINull

Release#
(Output)

H

H

H

<1>

<2>

<3>

<1>

Remark The dotted line indicates high impedance.



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM274

14.2.3  External write request protocol

The external write request performs an operation close to the processor single write request, except that it asserts

the ValidIn# signal, instead of the ValidOut# signal.

Figure 14-11 shows the timing of the external write request (the numbers in the explanation below correspond to

the numbers in the figure).

<1> The external agent asserts the ExtRqst# signal to arbitrate the system interface.

<2> The processor asserts the Release# signal to release the system interface to the slave status.

<3> The external agent asserts the ValidIn# signal and drives a write command onto the SysCmd bus and a

write address onto the SysAD bus.

<4> The external agent asserts the ValidIn# signal and drives a data identifier onto the SysCmd bus and data

onto the SysAD bus.

<5> The data identifier corresponding to the data cycle must contain an indication of the last data cycle.

<6> When the data cycle is issued, the write request is completed.  The external agent makes the SysCmd and

SysAD buses go into a high-impedance state, and returns the system interface to the master status.

The external write request can only write word data to the processor.  If a data element other than a word is

specified for the external write request, the operation of the processor is undefined.

Figure 14-11.  External Write Request Protocol

1 2 3 4SysCycle  

SysClock
(Input)

SysAD(31:0)
(I/O)

5 6 7 8 9 10 11 12

SysCmd(8:0)
(I/O)

Validln#
(Input)

Addr

ExtRqst#
(Input)

Release#
(Output)

Master Slave Master

Data0

Write NEOD

ValidOut#
(Output)

H

<1>

<2>

<3>

<5>

<6>

<4><3>

<4>

Remark The dotted line indicates high impedance.



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 275

14.2.4  Read response protocol

The external agent must return data to the processor by using a read response protocol, in response to a

processor read request.  The following sequence explains the read response protocol (the numbers in the

explanation below correspond to the numbers in Figures 14-12 and 14-13).

<1> The external agent waits until the processor puts the system interface in the uncompelled slave status.

<2> The processor returns data via a single data cycle or a series of data cycles.

<3> When the last data cycle is issued, the read response is completed, and the external agent makes the

SysCmd and SysAD buses go into a high-impedance state.

<4> The system interface returns to the master status.

Remark When the read request is issued, the processor always puts the system interface in the

uncompelled slave status.

<5> The data identifier of the data cycle must indicate that this data is response data.

<6> The data identifier corresponding to the last data cycle must contain an indication of the last data cycle.

If the read response is for a block read request, the response data does not have to identify the initial cache

status.  The processor automatically allocates the cache to the clean status.

The data identifier corresponding to the data cycle can indicate that the data transferred in that cycle has an error.

Even if data may have an error, however, the external agent must return a data block of the correct size.

Only when there is a pending processor read request, read response data is passed to the processor.  The

operation of the processor is undefined if there is no pending processor read request when a read response is

received.

Figure 14-12 shows a processor word request and the word read response that follows.  Figure 14-13 shows the

read response to a processor block read request when the system interface is already in the slave status.

Remark The timing of the SysADC bus is the same as that of the SysAD bus.



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM276

Figure 14-12.  Protocol of Read Request and Read Response

1 2 3 4 5 6 7 8 9 10 11 12

Addr

Read

Data0

NEOD

H

Master Slave Master

<1>

<2> <3>

<6>

<4>

SysCycle  

SysClock
(Input)

SysAD(31:0)
(I/O)

SysCmd(8:0)
(I/O)

Validln#
(Input)

ExtRqst#
(Input)

Release#
(Output)

ValidOut#
(Output)

Remark The dotted line indicates high impedance.

Figure 14-13.  Block Read Response in Slave Status

1 2 3 4 5 6 7 8 9 10 11 12

NData NDataNData NData

Data0 Data1 Data2 Data3

H

SysCycle

SysClock
(Input)

SysAD(31:0)
(I/O)

SysCmd(8:0)
(I/O)

ValidIn#
(Input)

ValidOut#
(Output)

Release#
(Output)

MasterSlave

<5>

<2> <3>

<6>

<4>

H

H

ExtRqst#
(Input)

<5> <5>

NDataNData

Data4 Data5

NEODNData

Data6 Data7

<5> <5> <5> <5>

Remark The dotted line indicates high impedance.



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 277

14.2.5  SysADC(3:0) protocol for block read response

When a block read response is issued, SysADC(3:0) must be used in compliance with the following rules.

• Only the first two words of transfer data are checked.  If the data has an error (SysCmd5 = 1), the cache line

is invalidated, and a bus error exception occurs in the processor.

• A parity error of the first two words is detected when a request is issues, and a cache error exception occurs.

At this time, the cache line is in the Invalid status.  A parity error of a subsequent word is detected again when

that data is used.

• The error bits in six subsequent words of data are ignored.  The parity of each word is written to the cache,

but is not checked until the data is referenced.

• If a memory error occurs during a block read operation, the SysADC bit must be changed to an illegal parity

during a read response operation for all the bytes that are affected by the memory error.  However, even if

SysCmd5 is set to 1 during data transfer other than the first two words, a bus error exception does not occur.

If the SysADC bit has been changed to an illegal parity, a cache error exception occurs when any of the

remaining six words is referenced.

14.3  Data Flow Control

The system interface supports a data rate of 1 word per cycle.

14.3.1  Data rate control

The external agent can send data to the processor at the maximum data rate of the system interface.

The rate at which data is to be sent to the processor can be controlled on the external agent side.  The transfer

rate from the external agent is not limited.  The external agent asserts the ValidIn# signal in the cycle in which it

transfers data.

When the ValidIn# signal has been asserted and as long as a data identifier is on the SysCmd bus, the processor

acknowledges the cycle as valid.  It then goes on acknowledging data until it receives a data word with NEOD.

The operation of the processor is undefined if data is sent in a pattern of other than 1 cycle for single data, and

other than 2 or 8 cycles for block data.

Figure 14-14 shows the timing of the read response where the data rate pattern is DDx.



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM278

Figure 14-14.  Read Response with Data Rate Pattern DDx

SysCycle

SysClock
(Input)

SysAD(31:0)
(I/O)

SysCmd(8:0)
(I/O)

ValidOut#
(Output)

ValidIn#
(Input)

Release#
(Output)

1 2 3 4 5 6 7 8 9 10

Data0

NData

Slave

11 12

H

ExtRqst#
(Input)

H

Data2

NData

Data3

H

13

Data6Data4

NData

Data5

NData

Data7

NEOD

Data1

NData NData NData

Remark The dotted line indicates high impedance.

14.3.2  Block write data transfer pattern

The rate at which the processor transfers block write data to the external agent can be set by the EP bit of the

Config register after reset.  The data pattern is indicated by characters D and x that indicate the array of data cycle

and unused cycle at each data rate.  D indicates a data cycle, and x indicates an unused cycle.  For example, Dxx

data pattern indicates a data rate of 1 word in every 3 cycles.

Table 14-1 shows the maximum data rate that can be set after reset.

Table 14-1.  Transfer Data Rate and Data Pattern

Maximum Data Rate Data Pattern

1 word/1 cycle DDDDDDDD

2 words/3 cycles DDxDDxDDxDDx

2 words/4 cycles DDxxDDxxDDxxDDxx

1 word/2 cycles DxDxDxDxDxDxDxDx

2 words/5 cycles DDxxxDDxxxDDxxxDDxxx

2 words/6 cycles DDxxxxDDxxxxDDxxxxDDxxxx

1 word/3 cycles DxxDxxDxxDxxDxxDxxDxxDxx

2 words/8 cycles DDxxxxxxDDxxxxxxDDxxxxxxDDxxxxxx

1 word/4 cycles DxxxDxxxDxxxDxxxDxxxDxxxDxxxDxxx



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 279

14.3.3  Word transfer sequence

The VR5500 transfers a 32-bit address in one address cycle and 32-bit data in one data cycle.  It takes two

system cycles to transfer each doubleword as a block.  Data is transferred in these two cycles in the following

sequence.

• The lower 4 bytes (lower word) are transferred in the first data cycle in the little-endian mode, and in the

second data cycle in the big-endian mode.

• The higher 4 bytes (higher word) are transferred in the second data cycle in the little-endian mode, and in the

first data cycle in the big-endian mode.

The VR5500 can transfer a word or an unaligned word in one system cycle.

The table below shows the transfer sequence in both the little-endian and big-endian modes to write a block,

doubleword, unaligned doubleword, word, and unaligned word.

Table 14-2.  Data Write Sequence

Transfer Type Little Endian Big Endian

Block 1. A(31:0)

2. D0(31:0)

3. D0(63:32)

4. D1(31:0)

5. D1(63:32)

6. D2(31:0)

7. D2(63:32)

8. D3(31:0)

9. D3(63:32)

1. A(31:0)

2. D0(63:32)

3. D0(31:0)

4. D1(63:32)

5. D1(31:0)

6. D2(63:32)

7. D2(31:0)

8. D3(63:32)

9. D3(31:0)

Doubleword

(in R5000 mode)

1. A(31:0)

2. D(31:0)

3. A(31:0)

4. D(63:32)

1. A(31:0)

2. D(63:32)

3. A(31:0)

4. D(31:0)

Doubleword

(in VR5432 native mode)

1. A(31:0)

2. D(31:0)

3. D(63:32)

1. A(31:0)

2. D(63:32)

3. D(31:0)

Word or unaligned word 1. A(31:0)

2. W(31:0)

1. A(31:0)

2. W(31:0)

Remark A:  Address, D:  Doubleword, W:  Word

Dn:  n+1th doubleword in block data (n = 0 to 3)

Dn(31:0):  Lower word of doubleword data Dn(63:0)

Dn(63:32):  Higher word of doubleword data Dn(63:0)



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM280

With the VR5500, a doubleword is read in accordance with the sub-block order (refer to APPENDIX A SUB-

BLOCK ORDER) when a cache line is obtained from the external agent and replaced.  Doubleword transfer in this

case is treated as 2-word transfer in sub-block order.  The other doublewords, unaligned doublewords, words, and

unaligned words are read in the same sequence as when they are written.

The table below shows the transfer sequence in both the little-endian and big-endian modes to read a block,

doubleword, unaligned doubleword, word, and unaligned word.

Table 14-3.  Data Read Sequence (1/2)

Transfer Type Little Endian Big Endian

Block (when A(4:3) = 00) 1. D0(31:0)

2. D0(63:32)

3. D1(31:0)

4. D1(63:32)

5. D2(31:0)

6. D2(63:32)

7. D3(31:0)

8. D3(63:32)

1. D0(63:32)

2. D0(31:0)

3. D1(63:32)

4. D1(31:0)

5. D2(63:32)

6. D2(31:0)

7. D3(63:32)

8. D3(31:0)

Block (when A(4:3) = 01) 1. D1(31:0)

2. D1(63:32)

3. D0(31:0)

4. D0(63:32)

5. D3(31:0)

6. D3(63:32)

7. D2(31:0)

8. D2(63:32)

1. D1(63:32)

2. D1(31:0)

3. D0(63:32)

4. D0(31:0)

5. D3(63:32)

6. D3(31:0)

7. D2(63:32)

8. D2(31:0)

Block (when A(4:3) = 10) 1. D2(31:0)

2. D2(63:32)

3. D3(31:0)

4. D3(63:32)

5. D0(31:0)

6. D0(63:32)

7. D1(31:0)

8. D1(63:32)

1. D2(63:32)

2. D2(31:0)

3. D3(63:32)

4. D3(31:0)

5. D0(63:32)

6. D0(31:0)

7. D1(63:32)

8. D1(31:0)

Remark A:  Address, D:  Doubleword, W:  Word

Dn:  n+1th doubleword in block data (n = 0 to 3)

Dn(31:0):  Lower word of doubleword data Dn(63:0)

Dn(63:32):  Higher word of doubleword data Dn(63:0)



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 281

Table 14-3.  Data Read Sequence (2/2)

Transfer Type Little Endian Big Endian

Block (when A(4:3) = 11) 1. D3(31:0)

2. D3(63:32)

3. D2(31:0)

4. D2(63:32)

5. D1(31:0)

6. D1(63:32)

7. D0(31:0)

8. D0(63:32)

1. D3(63:32)

2. D3(31:0)

3. D2(63:32)

4. D2(31:0)

5. D1(63:32)

6. D1(31:0)

7. D0(63:32)

8. D0(31:0)

Doubleword (VR5432

native mode)

1. D(31:0)

2. D(63:32)

1. D(63:32)

2. D(31:0)

Word, unaligned word 1. W(31:0) 1. W(31:0)

Remarks 1. Doubleword read requests are not supported in R5000 mode.

2. A:  Address, D:  Doubleword, W: Word

Dn:  n+1th doubleword in block data (n = 0 to 3)

Dn(31:0):  Lower word of doubleword data Dn(63:0)

Dn(63:32):  Higher word of doubleword data Dn(63:0)

The external agent can write 1 word of data to the VR5500 at a time (refer to Figure 14-11).  Therefore, it takes

the external agent 1 system cycle to transfer a word to the VR5500.

14.3.4  System endianness

The endianness of the system is set by the BigEndian pin after reset.  The set endianness is indicated by the BE

bit of the Config register.



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM282

14.4  Independent Transfer with SysAD Bus

For general applications, the SysAD bus connects the processor and a bidirectional register type transceiver in

the external agent between two points.  For such applications, only the processor and external agent can be

connected to the SysAD bus.

For specific applications, other drivers and receivers are connected to the SysAD bus so that transfer can be

performed independently of the processor on the SysAD bus.  This is called independent transfer.  To execute

independent transfer, the external agent must adjust the right to control the SysAD bus by using the arbitration

handshake signals and external null request.

The procedure of independent transfer of the SysAD bus is as follows.

<1> The external agent requests the right to control the SysAD bus by asserting the ExtRqst# signal to issue an

external request.

<2> The processor releases the system interface to the slave status by asserting the Release# signal.

<3> In this way, the external agent can execute independent transfer on the SysAD bus.  The ValidIn# signal

must not be asserted during transfer.

<4> When transfer is completed, the external agent releases and returns the system interface to the master

status by issuing an external null request.

14.5  System Interface Cycle Time

Because processor requests are restricted by the system interface protocol, the number of request cycles is

checked by the protocol.  Because external requests have the following two types of wait times, the number of

request cycles differs depending on these wait times.

• Standby time until the processor releases the system interface to the slave status in response to an external

request (release wait time)

• Response time of the external request that requires a response (external response wait time)

While an external request is being issued, the release wait time differs depending on the status of the system

interface.  When the external request is detected, the system interface is released to the external agent after the

cycle under processing.

The external response time of the VR5500 is kept to the minimum.  Data that is written is immediately loaded.



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 283

14.6  System Interface Commands and Data Identifiers

A system interface command defines the type and attribute of a system interface request.  This definition is

indicated in the address cycle of a request.

The system interface data identifier defines the attribute of the data transferred in the system interface data cycle.

This section explains the syntax of the commands and data identifiers of the system interface, i.e., coding in bit

units.

Set the reserved bits and reserved area in the commands and data identifiers of the system interface related to

external requests to 1.

The reserved bits and reserved area in the commands and data identifiers of the system interface related to

processor requests are undefined.

14.6.1  Syntax of commands and data identifiers

The commands and data identifiers of the system interface are coded in 9-bit units, and transferred from the

processor to the external agent, or vice versa, via the SysCmd bus in the address cycle and data cycle.

SysCmd8 (most significant bit) determines whether the current contents of the SysCmd bus are a command

(address cycle) or data identifier (data cycle).  If they are a command, clear SysCmd8 to 0; if they are a data

identifier, set it to 1.

14.6.2  Syntax of command

This section explains the coding of the SysCmd bus when a system interface command is used.  Figure 14-15

shows the common code used for all the system interface commands.

Figure 14-15.  Bit Definition of System Interface Command

7

0 Request type Details of request

4 058

Be sure to clear SysCmd8 to 0 when a system interface command is used.

SysCmd(7:5) define the types of system interface requests such as read, write, and null.

Table 14-4.  Code of System Interface Command SysCmd(7:5)

Bit Contents

SysCmd(7:5) Command

0:  Read request

1:  Reserved

2:  Write request

3:  Null request

4 to 7:  Reserved

SysCmd(4:0) are determined according to the type of request.  A definition of each request is given below.



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM284

(1) Read request

The code of the SysCmd bus related to a read request is shown below.

Figure 14-16 shows the format of the command when a read request is issued.

Tables 14-5 to 14-7 show the code of the read attribute of the SysCmd(4:0) bits related to the read request.

Figure 14-16.  Bit Definition of SysCmd Bus During Read Request

8

0 000 Details of read request 
(refer to the tables below)

7 45 0

Table 14-5.  Code of SysCmd(4:3) During Read Request

Bit Contents

SysCmd(4:3) Read attribute

0, 1:  Reserved

2:  Block read

3:  Single read

Table 14-6.  Code of SysCmd(2:0) During Block Read Request

Bit Contents

SysCmd2 Reserved

SysCmd(1:0) Size of read block

0:  2 words (in VR5432 native mode only)

1:  8 words

2, 3:  Reserved

Table 14-7.  Code of SysCmd(2:0) During Single Read Request

Bit Contents

SysCmd2 Reserved

SysCmd(1:0) Read data size

0:  1 byte is valid (byte).

1:  2 bytes are valid (halfword).

2:  3 bytes are valid.

3:  4 bytes are valid (word).



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 285

(2) Write request

The code of the SysCmd bus related to a write request is shown below.

Figure 14-17 shows the format of the command when a write request is issued.

Tables 14-8 to 14-10 show the code of the write attribute of the SysCmd(4:0) bits related to the write request.

Figure 14-17.  Bit Definition of SysCmd Bus During Write Request

8

0 010
Details of write request 

(refer to the tables below)

7 45 0

Table 14-8.  Code of SysCmd(4:3) During Write Request

Bit Contents

SysCmd(4:3) Write attribute

0, 1:  Reserved

2:  Block write

3:  Single write

Table 14-9.  Code of SysCmd(2:0) During Block Write Request

Bit Contents

SysCmd2 Update of cache line

0:  Replaced

1:  Retained

SysCmd(1:0) Size of write block

0:  2 words (in VR5432 native mode only)

1:  8 words

2, 3:  Reserved

Table 14-10.  Code of SysCmd(2:0) During Single Write Request

Bit Contents

SysCmd2 Reserved

SysCmd(1:0) Write data size

0:  1 byte is valid (byte).

1:  2 bytes are valid (halfword).

2:  3 bytes are valid.

3:  4 bytes are valid (word).



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM286

(3) Null request

Figure 14-18 shows the format of the command when a null request is used.

Figure 14-18.  Bit Definition of SysCmd Bus During Null Request

8

0 011 Details of null request 
(refer to the table below)

7 45 0

Table 14-11 shows the code of the SysCmd(4:3) bits related to the null request.

For the null request, the SysCmd(2:0) bits are reserved.

Table 14-11.  Code of SysCmd(4:3) During Null Request

Bit Contents

SysCmd(4:3) Null attribute

0:  Released

1 to 3:  Reserved

14.6.3  Syntax of data identifier

This section explains coding of the SysCmd bus when a system interface data identifier is used.

Figure 14-19 shows the common code used for all system interface data identifiers.

Figure 14-19.  Bit Definition of System Interface Data Identifier

8 3 0

1 Indication 
of last data

Indication 
of response 
data

Indication 
of error data

Data check 
enable

Reserved

4567

Be sure to set SysCmd8 of the system interface data identifier to 1.



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 287

A definition of the SysCmd(7:0) bits is given below.

SysCmd7: Indicates whether the data element is the last one.

SysCmd6: Indicates whether the data is response data.  Response data is returned in response to a read

request.

SysCmd5: Indicates whether the data element contains an error.  The error indicated in the data cannot

be corrected.  If this data is returned to the processor, a bus error exception occurs.  In the

case of a response block, send the entire line to the processor regardless of the degree of

error.  The external agent should ignore this bit in a processor data identifier because no error

is indicated.

SysCmd4: This bit in an external data identifier indicates whether the data of the data element and check

bit are checked.  This bit in a processor data identifier is reserved.

SysCmd(3:0): These bits are reserved.

Table 14-12 indicates the codes of SysCmd(7:5) of a processor data identifier, and Table 14-13 shows the codes

of SysCmd(7:4) of an external data identifier.

Table 14-12.  Codes of SysCmd(7:5) of Processor Data Identifier

Bit Contents

SysCmd7 Indication of last data element

0:  Last data element

1:  Not last data element

SysCmd6 Indication of response data

0:  Response data

1:  Not response data

SysCmd5 Indication of error data

0:  Error occurred

1:  No error occurred

Table 14-13.  Codes of SysCmd(7:4) of External Data Identifier

Bit Contents

SysCmd7 Indication of last data element

0:  Last data element

1:  Not last data element

SysCmd6 Indication of response data

0:  Response data

1:  Not response data

SysCmd5 Indication of error data

0:  Error occurred

1:  No error occurred

SysCmd4 Data check enables

0:  Data and check bit checked

1:  Data and check bit not checked



CHAPTER  14   SYSTEM  INTERFACE  (32-BIT  BUS  MODE)

Preliminary User’s Manual  U16044EJ1V0UM288

14.7  System Interface Address

The system interface address is a 32-bit physical address and is output in the address cycle, using all the bits of

the SysAD bus.

14.7.1  Address specification rules

An address related to transferring data such as a word and an unaligned word is aligned in accordance with the

size of the data element.  The system uses the following address rules.

• An address related to the request of a block is aligned at the requested doubleword boundary.  Therefore, the

lower 3 bits of the address are 0.

• The lower 3 bits of an address for a doubleword request are cleared to 0.

• The lower 2 bits of an address for a word request are cleared to 0.

• The least significant bit of an address for a halfword request cleared to 0.

• Each request of 1 and 3 bytes uses a byte address.

14.7.2  Sub-block ordering

The order of the data returned in response to a processor block read request is sub-block ordering.  With sub-

block ordering, the processor outputs the address of the doubleword required in a block.  The external agent must

return a block that starts with the specified doubleword, by using sub-block ordering (for details, refer to APPENDIX

A SUB-BLOCK ORDER).

For a block write request, the processor always outputs the address of the first doubleword in the block.  It

sequentially outputs the doublewords in the block, starting from the first doubleword of the block.

Remark The sequence of the data in a doubleword differs depending on the endianness (refer to Tables 14-2

and 14-3).

In the data cycle, whether the byte line of an aligned doubleword (or byte, halfword, 3 bytes, or word) is valid or

not depends on the position of the data.  In the little-endian mode, for example, SysAD(7:0) of a byte request where

lower 3 address bits are 0 are valid in the data cycle.

For the byte lane that is used when an unaligned word in big endian and little endian is transferred, refer to Figure

3-3 Byte Specification Related to Load/Store Instruction.

14.7.3  Processor internal address map

For an external write, the external agent accesses the internal resources of the processor.  When an external

write request is made, the processor decodes the SysAD(6:4) bits of the address that is output, to determine which

of the resources of the processor is to be accessed.  The only internal resource of the processor that can be

accessed by an external write request is the interrupt register.  Access the interrupt register by an external write

access, by specifying an address that clears SysAD(6:4) to 000.



Preliminary User’s Manual  U16044EJ1V0UM 289

CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE)

This chapter explains the request protocol of the system interface in the 64-/32-bit out-of-order return mode.

The system interface of the VR5500 enters the out-of-order return mode when a low level is input to the

O3Return# pin before a power-on reset.

VR5500 bus mode

64-bit bus mode

VR5432 
native mode

BusMode = H

O3Return# = L O3Return# = H,
DWBTrans# = H,
DisDValidO# = H

O3Return# = H,
DWBTrans# = H,
DisDValidO# = H

O3Return# = L
O3Return# = H,
DWBTrans# = L,
DisDValidO# = L

BusMode = L

32-bit bus mode

Out-of-order 
return mode R5000 mode

Out-of-order 
return mode

R5000 mode 
(compatible 

with RM523x)

For the protocol in the normal mode (R5000 mode (operation mode compatible with the VR5000 Series and

RM523x) and VR5432 native mode), refer to CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE) and

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE).



CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE)

Preliminary User’s Manual  U16044EJ1V0UM290

15.1  Overview

In the out-of-order return mode, the external agent can return a response to a processor read request regardless

of the order in which the request has been issued.  Each request is issued with an identification number attached.  If

the external agent returns response data along with this identification number, the processor verifies the returned

data and request.

The out-of-order return mode supports the following functions.

• Two timing modes

Select either pipeline mode or re-issuance mode.

• Response queue of up to five entries

Up to one instruction and four data entries can be managed.

The request cycles, basic operation of the protocol, and events that generate requests in the out-of-order return

mode are the same as those in the normal mode.  For details of these, refer to CHAPTER 13 SYSTEM INTERFACE

(64-BIT BUS MODE) and CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE).

15.1.1  Timing mode

The out-of-order return mode has two timing modes: re-issuance mode and pipeline mode.  These modes can be

selected by using the EM0 bit of the Config register in CP0.  In the out-of-order return mode, the setting of the EM1

bit of the Config register is ignored.

• Pipeline mode

The pipeline mode is selected when the EM0 bit of the Config register is cleared to 0.

In this mode, even if the RdRdy#/WrRdy# signal is deasserted in the address cycle of a request, it is

assumed that the request has been acknowledged.

• Re-issuance mode

The re-issuance mode is selected when the EM0 bit of the Config register is set to 1.

In this mode, a request is discarded if the RdRdy#/WrRdy# signal is deasserted in the address cycle of the

request, and the same request is re-issued when the RdRdy#/WrRdy# signal is asserted.



CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 291

15.1.2  Master status and slave status

In the out-of-order return mode, the system interface changes its status from master to slave in the following

cases.

• When the maximum five requests are stored in the response queue and the processor has no write request to

issue.

• The processor has no requests after it has issued a read request.

Remark The processor cannot issue a request in the following cases.

• When the processor has no requests.

• When the processor has a read request but the RdRdy# signal is inactive.

• When the processor has a write request but the WrRdy# signal is inactive.

When the system interface enters the slave status, the Release# signal is asserted.  Therefore, the external

agent must wait until the Release# signal is asserted, and then obrain the right to control the system interface to

start driving response data.

Even when the system interface is in the slave status, the processor can request the right to control the system

interface by asserting the PReq# signal.

When the active level of the PReq# signal is detected, the external agent can return the right to control the

system interface to the processor by issuing a null request.  At this time, the RdRdy#/WrRdy# signal must also be

asserted, so that the processor can issue the subsequent request.  If the RdRdy#/WrRdy# signal remains inactive,

the system interface enters the slave status again even if it has entered the master status when the external agent

issues the null request, without the processor issuing a request.

Even if the maximum five requests are stored in the response queue, the PReq# signal is asserted if read/write

requests are accumulated in the processor.  The external agent must process the processor requests by issuing a

null request before the number of requests waiting for a request reaches five.  Even if the external agent issues a

null request when five requests are waiting for a response, processing of the requests does not proceed, and only

the right to control the system interface is transferred.

15.1.3  Identifying request

The VR5500 uses the SysID(2:0) signals to identify the contents of a read request issued in the out-of-order return

mode.  The SysID0 signal indicates whether reading an instruction or data is requested, and the SysID(2:1) signals

indicate the request sequence (number).  When reading an instruction is requested, the SysID(2:1) signals are

always 00 (for details, refer to 15.4 Request Identifier).

The status of the SysID(2:0) signals is undefined when a write request is made.



CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE)

Preliminary User’s Manual  U16044EJ1V0UM292

15.2  Protocol of Out-of-Order Return Mode

This section explains the protocol of out-of-order return in the 64-bit bus mode.  When using the 32-bit bus mode,

read the SysAD bus width as 32 bits.

The data shown in Table 15-1 is driven onto the SysAD, SysCmd, and SysID buses.  The symbols in this table

are used in the timing chart shown later.

Table 15-1.  System Interface Bus Data

Range Symbol Meaning

Common Unsd Unused

Addr<n> Physical address of ID<n> requestSysAD(64:0)

Data<n><m> (m+1th element of) data of request of ID<n>

Read Read request command of processor or external agent

Write Write request command of processor or external agent

Null External null request command

EOD Data identifier of last data element

SysCmd(8:0)

Data Data identifier of data element other than last data element

SysID(2:0) ID<n> Read request identifier



CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 293

15.2.1  Successive read requests

This section explains the protocol used in each mode when three processor read requests are issued in a row.

(1) When processor read/write request follows in pipeline mode

In the pipeline mode, the external agent must acknowledge a request even if the RdRdy# signal goes high in the

address cycle.

<1> to <3> in Figure 15-1 indicate that the external agent makes the RdRdy# signal low, indicating that it is

ready to acknowledge a read request.

In response, the processor successively issues read requests in <2> to <4>.  At this time, request identifiers are

also driven onto the SysID bus.

In <4>, the external agent makes the RdRdy#/WrRdy# signal high, indicating that it can acknowledge no more

read/write requests.  However, the processor assumes that the request in the address cycle <4> has been

acknowledged.

The external agent can return a response from a request for which data has been prepared.  When driving

response data, also drive the corresponding request identifier onto the SysID bus.

Figure 15-1.  Successive Read Requests (in Pipeline Mode, with Subsequent Request)

Hi-Z Hi-Z
Unsd Unsd

SysAD(63:0)
(I/O)

SysClock 

SysCmd(8:0)
(I/O)

SysID(2:0)
(I/O)

ValidIn#
(Input)

ValidOut#
(Output)

Release#
(Output)

RdRdy#
(Input)

Master

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Addr0 Unsd Addr1 Unsd Data1 Data2 Data0Addr2

Hi-Z Hi-Z
Unsd

<1> <2> <3> <4>

UnsdRead Unsd Read Unsd EOD EOD EODRead

Hi-Z Hi-Z
UnsdID0 Unsd ID1 Unsd ID1 ID2 ID0ID2 Unsd

Slave Master

SysCycle 

WrRdy#
(Input) <4>



CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE)

Preliminary User’s Manual  U16044EJ1V0UM294

(2) When processor read/write request does not follow in pipeline mode

In the pipeline mode, the external agent must acknowledge a request even if the RdRdy# signal goes high in the

address cycle.

<1> to <3> in Figure 15-2 indicate that the external agent makes the RdRdy# signal low, indicating that it is

ready to acknowledge a read request.

In response, the processor successively issues read requests in <2> to <4>.  At this time, request identifiers are

also driven onto the SysID bus.

Even if the external agent makes the RdRdy# signal high in the address cycle <4>, indicating that it cannot

acknowledge a read request, the processor assumes that this request has been acknowledged.

The external agent can return a response from a request for which data has been prepared.  When driving

response data, also drive the corresponding request identifier onto the SysID bus.

Figure 15-2.  Successive Read Requests (in Pipeline Mode, Without Subsequent Request)

Hi-Z Hi-Z

SysClock 

1 2 3 4 5 6 7 8 9 10 11 12 13

Addr0 Unsd Addr1 Unsd Data1 Data2 Data0Addr2

Hi-Z Hi-Z
Read Unsd Read Unsd EOD EOD EODRead

Hi-Z Hi-Z
ID0 Unsd ID1 Unsd ID1 ID2 ID0ID2

Unsd

Unsd

Unsd

SysAD(63:0)
(I/O)

SysCmd(8:0)
(I/O)

SysID(2:0)
(I/O)

ValidIn#
(Input)

ValidOut#
(Output)

Release#
(Output)
RdRdy#

(Input)

Master Slave Master

<1> <2> <3> <4>

SysCycle 14 15 16



CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 295

(3) In re-issuance mode

If the RdRdy# signal goes high in the address cycle in the re-issuance mode, the processor discards the

request and re-issues it when it returns to the master status.

<1> to <3> in Figure 15-3 indicate that the external agent makes the RdRdy# signal low, indicating that it is

ready to acknowledge a read request.

In response, the processor successively issues read requests in <2> to <4>.  At this time, request identifiers are

also driven onto the SysID bus.

If the external agent makes the RdRdy# signal high in the address cycle <4>, indicating that it cannot

acknowledge a read request, the processor discards this request.  When the processor later returns to the

master status, it re-issues the request.

The external agent can return a response from a request for which data has been prepared.  When driving

response data, also drive the corresponding request identifier onto the SysID bus.

Figure 15-3.  Successive Read Requests (in Re-Issuance Mode)

Hi-Z Hi-Z
Unsd Unsd

SysClock 

Addr0 Unsd Addr1 Unsd Data1 Data0Addr2

Hi-Z Hi-Z
Unsd

<1> <2> <3> <4>

UnsdRead Unsd Read Unsd EOD EODRead

Hi-Z Hi-Z
UnsdID0 Unsd ID1 Unsd ID1 ID0ID2 Unsd

SysAD(63:0)
(I/O)

SysCmd(8:0)
(I/O)

SysID(2:0)
(I/O)

ValidIn#
(Input)

ValidOut#
(Output)

Release#
(Output)
RdRdy#

(Input)

Master Slave Master

1 2 3 4 5 6 7 8 9 10 11 12 13SysCycle 14 15 16



CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE)

Preliminary User’s Manual  U16044EJ1V0UM296

15.2.2  Successive write requests

This section explains the protocol used in each mode when processor write requests are issued in a row.

(1) In pipeline mode

In the pipeline mode, the external agent must acknowledge a request even if the WrRdy# signal goes high in the

address cycle.

<1> to <3> in Figure 15-4 indicate that the external agent makes the WrRdy# signal low, indicating that it is

ready to acknowledge a write request.

In response, the processor successively issues write requests in <2> to <4>.  At this time, the status of the

SysID bus is undefined.

Even if the external agent makes the WrRdy# signal high in the address cycle <4>, indicating that it cannot

acknowledge a write request, the processor assumes that this request has been acknowledged.

When the external agent makes the WrRdy# signal low in <5>, the processor completes issuance of the write

request in <6>.

Figure 15-4.  Successive Write Requests (in Pipeline Mode)

Unsd

SysClock 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Addr0 Data0 Addr1 Data1 Data3Addr2

Unsd

Addr3

Write

<1>

H

<2> <3> <4>

Write EOD Write EOD EODWrite

Unsd

Note

Unsd

Unsd

Unsd

Data2

EOD

SysAD(63:0)
(I/O)

SysCmd(8:0)
(I/O)

SysID(2:0)
(I/O)

ValidIn#
(Input)

ValidOut#
(Output)

WrRdy#
(Input)

Master

<5> <6>

SysCycle 

Note When the DisDValidO# signal is low level



CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 297

(2) In re-issuance mode

If the WrRdy# signal goes high in the address cycle in the re-issuance mode, the processor discards the

request and re-issues it when the WrRdy# signal goes low.

<1> to <3> in Figure 15-5 indicate that the external agent makes the WrRdy# signal low, indicating that it is

ready to acknowledge a write request.

In response, the processor successively issues write requests in <2> to <4>.  At this time, the status of the

SysID bus is undefined.

If the external agent makes the WdRdy# signal high in the address cycle <4>, indicating that it cannot

acknowledge a write request, the processor discards this request.

When the external agent makes the WrRdy# signal low in <5>, the processor re-issues in <6> the request

discarded in <4>, and completes issuance of the write request.

Figure 15-5.  Successive Write Requests (in Re-Issuance Mode)

Unsd

SysClock 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Addr0 Data0 Addr1 Data1 Data2Addr2

Unsd

Addr2

Write

<1> <2> <3> <4>

Write EOD Write EOD EODWrite

Unsd

Unsd

Unsd

Unsd

Data2

EOD

H

Note

SysAD(63:0)
(I/O)

SysCmd(8:0)
(I/O)

SysID(2:0)
(I/O)

ValidIn#
(Input)

ValidOut#
(Output)

WrRdy#
(Input)

Master

<5> <6>

SysCycle 

Note When the DisDValidO# signal is low level



CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE)

Preliminary User’s Manual  U16044EJ1V0UM298

15.2.3  Write request following read request

This section explains the protocol when a processor write request is issued immediately after a processor read

request.

<1> and <2> in Figure 15-6 indicate that the external agent makes the RdRdy# signal low, indicating that it is

ready to acknowledge a read request.

In response, the processor successively issues read requests in <2> and <3>.  At this time, the request identifier

is also driven onto the SysID bus.

In <4>, the external agent makes the WrRdy# signal low, indicating that it is ready to acknowledge a write

request.

In response, the processor issues a write request in <5>.  At this time, the status of the SysID bus is undefined.

Figure 15-6.  Write Request Following Read Request

Hi-Z Hi-Z

SysClock 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Addr0 Unsd Addr1 Unsd Data0 Data1Addr2

Hi-Z Hi-Z
Read Unsd Read Unsd EOD EODWrite

Hi-Z Hi-Z
ID0 Unsd ID1 Unsd

Unsd

Unsd

Unsd ID0 ID1

Data

EOD

SysAD(63:0)
(I/O)

SysCmd(8:0)
(I/O)

SysID(2:0)
(I/O)

ValidIn#
(Input)

ValidOut#
(Output)

Release#
(Output)

RdRdy#
(Input)

Master Slave Master

WrRdy#
(Input)

<1> <2> <3>

<4> <5>

SysCycle 



CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 299

15.2.4  Bus arbitration of processor

This section explains the protocol in each mode when an external read response is aborted by asserting the

PReq# signal.

(1) When processor read/write request follows in pipeline mode

In the pipeline mode, the external agent must acknowledge a request even if the RdRdy# signal goes high in the

address cycle.

<1> and <2> in Figure 15-7 indicate that the external agent makes the RdRdy# signal low, indicating that it is

ready to acknowledge a read request.

In response, the processor successively issues read requests in <2> and <3>.  At this time, request identifiers

are also driven onto the SysID bus.

In <3>, the external agent makes the RdRdy#/WrRdy# signal high, indicating that it can acknowledge no more

read/write requests.  However, the processor assumes that the request in the address cycle <3> has been

acknowledged.

If the processor makes the PReq# signal low while a response cycle is delayed because it takes time to prepare

response data, the external agent can issue a null request (<4>) and return the right to control the system

interface to the processor.  By transferring the right of control in this way before the number of requests waiting

for a response reaches five, requests can be efficiently processed.

When the external agent makes the RdRdy#/WrRdy# signal low in <5>, the processor completes issuance of

the read/write request in <6>.

Figure 15-7.  Bus Arbitration of Processor (in Pipeline Mode, with Subsequent Request)

Unsd Unsd

SysClock 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Addr0 Addr2Data0Addr1 Unsd UnsdHi-Z Hi-Z

Unsd NullRead ReadEODRead Unsd UnsdHi-Z Hi-Z

UnsdID0 ID2ID0ID1 Unsd UnsdHi-Z Hi-Z

SysAD(63:0)
(I/O)

SysCmd(8:0)
(I/O)

SysID(2:0)
(I/O)

ValidIn#
(Input)

ValidOut#
(Output)

Release#
(Output)

RdRdy#
(Input)

Master Slave Master

PReq#
(Output)

<1> <2> <3>

<4>

<5> <6>

SysCycle 

WrRdy#
(Input) <5> <6><3>



CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE)

Preliminary User’s Manual  U16044EJ1V0UM300

(2) When processor read/write request does not follow in pipeline mode

In the pipeline mode, the external agent must acknowledge a request even if the RdRdy# signal goes high in the

address cycle.

<1> and <2> in Figure 15-8 indicate that the external agent makes the RdRdy# signal low, indicating that it is

ready to acknowledge a read request.

In response, the processor successively issues read requests in <2> and <3>.  At this time, request identifiers

are also driven onto the SysID bus.

Even if the external agent makes the RdRdy#/WrRdy# signal high in the address cycle <3>, indicating that it

cannot acknowledge a read/write request, the processor assumes that this request has been acknowledged.

If the processor makes the PReq# signal low while a response cycle is delayed because it takes time to prepare

response data, the external agent can issue a null request (<4>) and return the right to control the system

interface to the processor.  By transferring the right of control in this way before the number of requests waiting

for a response reaches five, requests can be efficiently processed.

When the external agent makes the RdRdy#/WrRdy# signal low in <5>, the processor completes issuance of

the read/write request in <6>.

Figure 15-8.  Bus Arbitration of Processor (in Pipeline Mode, Without Subsequent Request)

UnsdID0 ID1

Unsd Unsd

SysClock 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Addr0 Addr1 Data1Hi-Z Addr2Hi-Z Hi-ZUnsd

Unsd NullRead Read EODHi-Z ReadHi-Z Hi-ZUnsd

ID1Hi-Z ID2Hi-Z Hi-ZUnsd

SysAD(63:0)
(I/O)

SysCmd(8:0)
(I/O)

SysID(2:0)
(I/O)

ValidIn#
(Input)

ValidOut#
(Output)

Release#
(Output)

RdRdy#
(Input)

PReq#
(Output)

Master Slave Master Slave

<1> <2> <3>

<4>

<5> <6>

SysCycle 

WrRdy#
(Input)

<5> <6>



CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 301

(3) In re-issuance mode

If the RdRdy# signal goes high in the address cycle in the re-issuance mode, the processor discards the

request and re-issues it when it returns to the master status.

<1> and <2> in Figure 15-9 indicate that the external agent makes the RdRdy# signal low, indicating that it is

ready to acknowledge a read request.

In response, the processor successively issues read requests in <2> and <3>.  At this time, request identifiers

are also driven onto the SysID bus.

If the external agent makes the RdRdy# signal high in the address cycle <3>, indicating that it cannot

acknowledge a read request, the processor discards this request.

If the processor makes the PReq# signal low while a response cycle is delayed because it takes time to prepare

response data, the external agent can issue a null request (<4>) and return the right to control the system

interface to the processor.  By transferring the right of control in this way before the number of requests waiting

for a response reaches five, requests can be efficiently processed.

When the external agent makes the RdRdy# signal low in <5>, the processor completes issuance of the read

request in <6>.

Figure 15-9.  Bus Arbitration of Processor (in Re-Issuance Mode)

Unsd Unsd

SysClock 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Addr0 Addr1Addr1 Unsd UnsdHi-Z Hi-Z

Unsd NullRead ReadRead Unsd UnsdHi-Z Hi-Z

UnsdID0 ID1ID1 Unsd UnsdHi-Z Hi-Z

SysAD(63:0)
(I/O)

SysCmd(8:0)
(I/O)

SysID(2:0)
(I/O)

ValidIn#
(Input)

ValidOut#
(Output)

Release#
(Output)

RdRdy#
(Input)

Master Slave Master

PReq#
(Output)

<1> <2> <3>

<4>

<5> <6>

SysCycle 



CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE)

Preliminary User’s Manual  U16044EJ1V0UM302

15.2.5  Single read request following block read request

This section explains the protocol in each mode when a processor single read request is issued immediately after

a processor block read request.

(1) When processor read/write request follows in pipeline mode

In the pipeline mode, the external agent must acknowledge a request even if the RdRdy# signal goes high in the

address cycle.

<1> and <2> in Figure 15-10 indicate that the external agent makes the RdRdy# signal low, indicating that it is

ready to acknowledge a read request.

In response, the processor successively issues read requests in <2> and <3>.  At this time, request identifiers

are also driven onto the SysID bus.

Even if the external agent makes the RdRdy# signal high in the address cycle <3>, indicating that it cannot

acknowledge a read request, the processor assumes that this request has been acknowledged.

The external agent can return a response from a request for which data has been prepared.  When driving

response data, also drive the corresponding request identifier onto the SysID bus.

Figure 15-10.  Single Read Request Following Block Read Request

(in Pipeline Mode, with Subsequent Request)

UnsdID0 ID1

Unsd

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Addr0 Addr1 Data02Hi-Z Hi-Z

Unsd

Unsd

Unsd

UnsdRead Read DataHi-Z Hi-Z

ID1 ID0

Data00Data1 Data01

DataEOD EODData

Data03

Hi-Z Hi-Z

SysAD(63:0)
(I/O)

SysClock 

SysCmd(8:0)
(I/O)

SysID(2:0)
(I/O)

ValidIn#
(Input)

ValidOut#
(Output)

Release#
(Output)

RdRdy#
(Input)

Master

<1> <2> <3>

Slave Master

SysCycle 



CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 303

(2) When processor read/write request does not follow in pipeline mode

In the pipeline mode, the external agent must acknowledge a request even if the RdRdy# signal goes high in the

address cycle.

<1> and <2> in Figure 15-11 indicate that the external agent makes the RdRdy# signal low, indicating that it is

ready to acknowledge a read request.

In response, the processor successively issues read requests in <2> and <3>.  At this time, request identifiers

are also driven onto the SysID bus.

Even if the external agent makes the RdRdy# signal high in the address cycle <3>, indicating that it cannot

acknowledge a read request, the processor assumes that this request has been acknowledged.

The external agent can return a response from a request for which data has been prepared.  When driving

response data, also drive the corresponding request identifier onto the SysID bus.

Figure 15-11.  Single Read Request Following Block Read Request

(in Pipeline Mode, Without Subsequent Request)

UnsdID0 ID1

Unsd

1 2 3 4 5 6 7 8 9 10 11 12

Addr0 Addr1 Data02Hi-Z Hi-Z

UnsdRead Read DataHi-Z Hi-Z

ID1 ID0

Data00Data1 Data01

DataEOD EODData

Data03

Hi-Z Hi-Z

SysAD(63:0)
(I/O)

SysClock 

SysCmd(8:0)
(I/O)

SysID(2:0)
(I/O)

ValidIn#
(Input)

ValidOut#
(Output)

Release#
(Output)

RdRdy#
(Input)

Master

<1> <2> <3>

Slave Master

SysCycle 



CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE)

Preliminary User’s Manual  U16044EJ1V0UM304

(3) In re-issuance mode

If the RdRdy# signal goes high in the address cycle in the re-issuance mode, the processor discards the

request and re-issues it when it returns to the master status.

<1> and <2> in Figure 15-12 indicate that the external agent makes the RdRdy# signal low, indicating that it is

ready to acknowledge a read request.

In response, the processor successively issues read requests in <2> and <3>.  At this time, request identifiers

are also driven onto the SysID bus.

If the external agent makes the RdRdy# signal high in the address cycle <4>, indicating that it cannot

acknowledge a read request, the processor discards this request.

Figure 15-12.  Single Read Request Following Block Read Request (in Re-Issuance Mode)

UnsdID0 ID1

Unsd

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Addr0 Addr1 Data02Hi-Z Hi-Z

Unsd

Unsd

Unsd

UnsdRead Read DataHi-Z Hi-Z

ID0

Data00 Data01

Data EODData

Data03

Hi-Z Hi-Z

SysAD(63:0)
(I/O)

SysClock 

SysCmd(8:0)
(I/O)

SysID(2:0)
(I/O)

ValidIn#
(Input)

ValidOut#
(Output)

Release#
(Output)

RdRdy#
(Input)

Master

<1> <2> <3>

Slave Master

SysCycle 



CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 305

15.2.6  Unaligned 2-word read request

This section explains the protocol when a read request of unaligned 2-word data is issued in the 32-bit bus mode.

Remark Unaligned 2-word data is data of 5 to 8 bytes that is divided into 1 word and 1 to 4 bytes when

processed.

To read unaligned 2-word data, two read requests are successively issued, and the same request identifier is

driven onto the SysID bus.  The external agent must return response data in the same sequence as the

corresponding request.

In <1> and <2> in Figure 15-13, the external agent makes the RdRdy# signal low, indicating that it is ready to

acknowledge a read request.

In response, the processor successively issues read requests in <2> and <3>.  At this time, the same request

identifier is driven twice onto the SysID bus.

In <4> and <5>, the external agent must return the response data for which data has been prepared in the same

sequence as the requests.  When the response data is driven, the corresponding request identifier must also be

driven onto the SysID bus.

Figure 15-13.  Unaligned 2-Word Read (in Pipeline Mode, with Subsequent Request)

Hi-Z Hi-Z

SysClock 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Addr0 Unsd Addr1 Unsd Data0 Data1

Hi-Z Hi-Z
Read Unsd Read Unsd EOD EOD

Hi-Z Hi-Z
ID0 Unsd ID0 Unsd ID0 ID0

SysAD(31:0)
(I/O)

SysCmd(8:0)
(I/O)

SysID(2:0)
(I/O)

ValidIn#
(Input)

ValidOut#
(Output)

Release#
(Output)

RdRdy#
(Input)

Master Slave Master

<1> <2> <3>

SysCycle 

<4> <5>



CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE)

Preliminary User’s Manual  U16044EJ1V0UM306

15.3  System Interface Commands and Data Identifiers

A system interface command defines the type and attribute of a system interface request.  This definition is

indicated in the address cycle of a request.

The system interface data identifier defines the attribute of the data transferred in the system interface data cycle.

This section explains the syntax of the commands and data identifiers of the system interface (coding in bit units)

in the out-of-order return mode.

Set the reserved bits and reserved area in the commands and data identifiers of the system interface related to

external requests to 1.

The reserved bits and reserved area in the commands and data identifiers of the system interface related to

processor requests are undefined.

15.3.1  Syntax of commands and data identifiers

The commands and data identifiers of the system interface are coded in 9-bit units, and transferred from the

processor to the external agent, or vice versa, via the SysCmd bus in the address cycle and data cycle.

SysCmd8 (most significant bit) determines whether the current contents of the SysCmd bus are a command

(address cycle) or data identifier (data cycle).  If they are a command, clear SysCmd8 to 0; if they are a data

identifier, set it to 1.

15.3.2  Syntax of command

This section explains the coding of the SysCmd bus when a system interface command is used.  Figure 15-14

shows the common code used for all the system interface commands.

Figure 15-14.  Bit Definition of System Interface Command

7

0 Request type Details of request

4 058

Be sure to clear SysCmd8 to 0 when a system interface command is used.

SysCmd(7:5) define the types of system interface requests such as read, write, and null.

Table 15-2.  Code of System Interface Command SysCmd(7:5)

Bit Contents

SysCmd(7:5) Command

0:  Read request

1:  Reserved

2:  Write request

3:  Null request

4 to 7:  Reserved

SysCmd(4:0) are determined according to the type of request.  A definition of each request is given below.



CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 307

(1) Read request

The code of the SysCmd bus related to a read request is shown below.

Figure 15-15 shows the format of the command when a read request is issued.

Tables 15-3 to 15-5 show the code of the read attribute of the SysCmd(4:0) bits related to the read request.

Figure 15-15.  Bit Definition of SysCmd Bus During Read Request

8

0 000 Details of read request 
(refer to the tables below)

7 45 0

Table 15-3.  Code of SysCmd(4:3) During Read Request

(a)  In 64-bit bus mode

Bit Contents

SysCmd(4:3) Read attribute

0:  Reserved

1:  Reserved

2:  Block read

3:  Single read

(b)  In 32-bit bus mode

Bit Contents

SysCmd(4:3) Read attribute

0:  Reserved

1:  Unaligned 2-word readNote

2:  Block read

3:  Single read

Note When an unaligned 2-word read request is issued, the processor drives the

same request identifier twice onto the SysID bus.  The external agent must

return the response data to the unaligned 2-word read request in the same

sequence as the request.



CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE)

Preliminary User’s Manual  U16044EJ1V0UM308

Table 15-4.  Code of SysCmd(2:0) During Block Read Request

(a)  In 64-bit bus mode

Bit Contents

SysCmd2 Reserved

SysCmd(1:0) Size of read block

0:  Reserved

1:  8 words

2, 3:  Reserved

(b)  In 32-bit bus mode

Bit Contents

SysCmd2 Reserved

SysCmd(1:0) Size of read block

0:  2 words (only when the DWBTrans# signal is low level)

1:  8 words

2, 3:  Reserved

Table 15-5.  Code of SysCmd(2:0) During Single Read Request

(a)  In 64-bit bus mode

Bit Contents

SysCmd(2:0) Read data size

0:  1 byte is valid (byte).

1:  2 bytes are valid (halfword).

2:  3 bytes are valid.

3:  4 bytes are valid (word).

4:  5 bytes are valid.

5:  6 bytes are valid.

6:  7 bytes are valid.

7:  8 bytes are valid (doubleword).

(b)  In 32-bit bus mode

Bit Contents

SysCmd2 Reserved

SysCmd(1:0) Read data size

0:  1 byte is valid (byte).

1:  2 bytes are valid (halfword).

2:  3 bytes are valid.

3:  4 bytes are valid (word).



CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 309

(2) Write request

The code of the SysCmd bus related to a write request is shown below.

Figure 15-16 shows the format of the command when a write request is issued.

Tables 15-6 to 15-8 show the code of the write attribute of the SysCmd(4:0) bits related to the write request.

Figure 15-16.  Bit Definition of SysCmd Bus During Write Request

8

0 010 Details of write request 
(refer to the tables below)

7 45 0

Table 15-6.  Code of SysCmd(4:3) During Write Request

(a)  In 64-bit bus mode

Bit Contents

SysCmd(4:3) Write attribute

0:  Reserved

1:  Reserved

2:  Block write

3:  Single write

(b)  In 32-bit bus mode

Bit Contents

SysCmd(4:3) Write attribute

0:  Reserved

1:  Unaligned 2-word write

2:  Block write

3:  Single write



CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE)

Preliminary User’s Manual  U16044EJ1V0UM310

Table 15-7.  Code of SysCmd(2:0) During Block Write Request

(a)  In 64-bit bus mode

Bit Contents

SysCmd2 Update of cache line

0:  Replaced

1:  Retained

SysCmd(1:0) Size of write block

0:  Reserved

1:  8 words

2, 3:  Reserved

(b)  In 32-bit bus mode

Bit Contents

SysCmd2 Update of cache line

0:  Replaced

1:  Retained

SysCmd(1:0) Size of write block

0:  2 words (only when the DWBTrans# signal is low level)

1:  8 words

2, 3:  Reserved

Table 15-8.  Code of SysCmd(2:0) During Single Write Request

(a)  In 64-bit bus mode

Bit Contents

SysCmd(2:0) Write data size

0:  1 byte is valid (byte).

1:  2 bytes are valid (halfword).

2:  3 bytes are valid.

3:  4 bytes are valid (word).

4:  5 bytes are valid.

5:  6 bytes are valid.

6:  7 bytes are valid.

7:  8 bytes are valid (doubleword).

(b)  In 32-bit bus mode

Bit Contents

SysCmd2 Reserved

SysCmd(1:0) Write data size

0:  1 byte is valid (byte).

1:  2 bytes are valid (halfword).

2:  3 bytes are valid.

3:  4 bytes are valid (word).



CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 311

(3) Null request

Figure 15-17 shows the format of the command when a null request is used.

Table 15-9 shows the code of the SysCmd(4:3) bits related to the null request.

For the null request, the SysCmd(2:0) bits are reserved.

Figure 15-17.  Bit Definition of SysCmd Bus During Null Request

8

0 011 Details of null request 
(refer to the table below)

7 45 0

Table 15-9.  Code of SysCmd(4:3) During Null Request

Bit Contents

SysCmd(4:3) Null attribute

0:  Released

1 to 3:  Reserved

15.3.3  Syntax of data identifier

This section explains coding of the SysCmd bus when a system interface data identifier is used.

Figure 15-18 shows the common code used for all system interface data identifiers.

Figure 15-18.  Bit Definition of System Interface Data Identifier

8 3 0

1 Indication 
of last data

Indication 
of response 
data

Indication 
of error data

Data check 
enable

Reserved

4567

Be sure to set SysCmd8 of the system interface data identifier to 1.



CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE)

Preliminary User’s Manual  U16044EJ1V0UM312

A definition of the SysCmd(7:0) bits is given below.

SysCmd7: Indicates whether the data element is the last one.

SysCmd6: Indicates whether the data is response data.  Response data is returned in response to a read

request.

SysCmd5: Indicates whether the data element contains an error.  The error indicated in the data cannot be

corrected.  If this data is returned to the processor, a bus error exception occurs.  In the case of

a response block, send the entire line to the processor regardless of the degree of error.  The

external agent should ignore this bit in a processor data identifier because no error is indicated.

SysCmd4: This bit in an external data identifier indicates whether the data of the data element and check

bit are checked.  This bit in a processor data identifier is reserved.

SysCmd(3:0): These bits are reserved.

Table 15-10 indicates the codes of SysCmd(7:5) of a processor data identifier, and Table 15-11 shows the codes

of SysCmd(7:4) of an external data identifier.

Table 15-10.  Codes of SysCmd(7:5) of Processor Data Identifier

Bit Contents

SysCmd7 Indication of last data element

0:  Last data element

1:  Not last data element

SysCmd6 Indication of response data

0:  Response data

1:  Not response data

SysCmd5 Indication of error data

0:  Error occurred

1:  No error occurred

Table 15-11.  Codes of SysCmd(7:4) of External Data Identifier

Bit Contents

SysCmd7 Indication of last data element

0:  Last data element

1:  Not last data element

SysCmd6 Indication of response data

0:  Response data

1:  Not response data

SysCmd5 Indication of error data

0:  Error occurred

1:  No error occurred

SysCmd4 Data check enables

0:  Data and check bit checked

1:  Data and check bit not checked

Remark To enable data check, clear the DE bit of the Status register in CP0 to 0.



CHAPTER  15   SYSTEM  INTERFACE  (OUT-OF-ORDER  RETURN  MODE)

Preliminary User’s Manual  U16044EJ1V0UM 313

15.4  Request Identifier

In the out-of-order return mode, the processor drives a request identifier onto the SysID bus.

The request identifier defines the target of the read request and sequence of issuance (ID number).  This

definition is indicated in the address cycle of the request.  The SysID bus is in an undefined state when a write

request is issued.

SysID0 (least significant bit) determines whether the data targeted to the current request is an instruction or data.

SysID(2:1) defines the ID number of the read request.

Tables 15-12 to 15-14 show the code of the request identifier.

Table 15-12.  Code of Request Identifier SysID0

Bit Contents

SysID0 Request target

0:  Instruction

1:  Data

Table 15-13.  Code of SysID(2:1) During Instruction Read

Bit Contents

SysID(2:1) Request issuance sequence

0:  ID0 (first)

1 to 3:  Reserved

Table 15-14.  Code of SysID(2:1) During Data Read

Bit Contents

SysID(2:1) Request issuance sequence

0:  ID0 (first)

1:  ID1 (second)

2:  ID2 (third)

3:  ID3 (fourth)



Preliminary User’s Manual  U16044EJ1V0UM314

CHAPTER  16   INTERRUPTS

This chapter explains the following four types of interrupts in the VR5500.

(1) Non-maskable interrupt (NMI): 1 source

(2) External ordinary interrupt: 6 sources (of which one is exclusive with a timer interrupt)

(3) Software interrupt: 2 sources

(4) Timer interrupt: 1 source (which is exclusive with one external ordinary interrupt)

16.1  Interrupt Request Type

16.1.1  Non-maskable interrupt (NMI)

The NMI request is acknowledged when the NMI# signal is asserted, and execution branches to the reset

exception vector.  The NMI# signal is latched by an internal register at the rising edge of the SysClock signal as

shown in Figure 16-1.  This signal is edge-triggered.

This interrupt request can also be set by an external write request via the SysAD bus.  In the data cycle, SysAD6

serves as an NMI request bit (1: Request), and SysAD22 serves as the write enable bit (1: Enable) corresponding to

SysAD6.

An NMI cannot be masked.

Figure 16-1 shows the internal processing of the NMI# signal.  A low-level signal input to the NMI# pin is latched

to an internal register at the rising edge of SysClock.  The latched NMI# signal is inverted and ORed with bit 6 of the

internal register, and transmitted to the internal units as an NMI request.

Figure 16-1.  NMI# Signal

6

Interrupt register (internal)

NMI interrupt

NMI#

(Internal register)

SysClock

External write request



CHAPTER  16   INTERRUPTS

Preliminary User’s Manual  U16044EJ1V0UM 315

16.1.2  External ordinary interrupt

This interrupt is acknowledged when the Int(5:0)# signals are made low, which sets the IP(7:2) bits of the Cause

register.  The Int(5:0)# signals are level-triggered.  Keep these signals low until an interrupt exception occurs.  After

the interrupt exception has occurred, make high the signals that were low by the time execution returns to the normal

routine, or before multiple interrupts are enabled.

An external ordinary interrupt request can also be set by an external write request via the SysAD bus.  In the data

cycle, SysAD(5:0) serve as external interrupt request bits (1: Request), and SysAD(21:16) serve as write enable bits

(1: Enable) corresponding to SysAD(5:0).  After an interrupt exception has occurred, issue the external write request

again before execution returns to the ordinary routine or multiple interrupts are enabled, and clear the corresponding

bit of the interrupt register to 0.

The interrupt request executed by Int5# signal or SysAD5 is acknowledged exclusively to the timer interrupt.  If a

low level is input to TIntSel pin before a power-on reset, the interrupt request by Int5# or SysAD5 becomes valid.

An external ordinary interrupt request can be masked by the IM(7:2), IE, EXL, and ERL bits of the Status register.

16.1.3  Software interrupts

Software interrupt requests are acknowledged when bits 1 and 0 of the IP (interrupt pending) field in the Cause

register are set.  These must be written by software; there is no hardware mechanism to set or clear these bits.

After the occurrence of an interrupt exception, the corresponding bit of the IP field in the Cause register must be

cleared (0) before returning to the ordinary routine or before multiple interrupts are enabled.

A software interrupt request can be masked by the IM(1:0), IE, EXL, and ERL bits of the Status register.

16.1.4  Timer interrupt

This interrupt request uses bit 7 in the IP (interrupt pending) area of the Cause register.  The IP7 bit is

automatically set and the interrupt request is acknowledged if the value of the Count register becomes equal to that

of the Compare register or if the performance counter overflows.

The timer interrupt is acknowledged exclusively to the interrupt request executed by the Int5# signal or SysAD5.

If a high level is input to TIntSel pin before power-on reset, the timer interrupt request becomes valid.

An timer interrupt request can be masked by the IM7, IE, EXL, and ERL bits of the Status register.

16.2  Acknowledging Interrupt Request Signal

If the external agent issues an external write request that makes SysAD(6:4) = 000, it is written to the interrupt

register.  This register can be used in the external write cycle but cannot be used in the external read cycle.  When a

request is written to the interrupt register, the processor ignores the address issued by the external agent.  This

register cannot be read or written by software, unlike the CP0 registers.

In the data cycle, each bit of SysAD(22:16) enables a write access to the corresponding bit of the interrupt

register, allowing the values of SysAD(6:0) to be written to the bits of the interrupt register.  Therefore, bits 0 to 6 of

the interrupt register can be set or cleared by issuing an external write request only once.  This mechanism is

illustrated in Figure 16-2, along with the NMI described above.



CHAPTER  16   INTERRUPTS

Preliminary User’s Manual  U16044EJ1V0UM316

Figure 16-2.  Bits of Interrupt Register and Enable Bits

4

SysAD(5:0)
write enable bit

3 2 1 0

20 19 18 17 16

0

1

2

3

4

6

Interrupt register (internal)

Refer to Figures 16-3 
and 16-4.

Refer to Figure 16-1.

22

SysAD6 
write enable bit

External interrupt request
Non-maskable 

interrupt request

6 5

21

5

SysAD(6:0)

SysAD(22:16)

Bit Function Setting

SysAD(5:0) External interrupt request For each bit 1:  Request

0:  No request

SysAD(21:16) Write enable bits of SysAD(5:0) For each bit 1:  Enabled

0:  Disabled

SysAD6 Non-maskable interrupt request 1:  Request

0:  No request

SysAD22 Write enable bit of SysAD6 1:  Enabled

0:  Disabled



CHAPTER  16   INTERRUPTS

Preliminary User’s Manual  U16044EJ1V0UM 317

16.2.1  Detecting hardware interrupt

Figure 16-3 illustrates how a hardware interrupt request is detected by using the Cause register.

• Bit 15 (IP7) of the Cause register is directly checked for the timer interrupt request.

• Bits 15 to 10 (IP(7:2)) of the Cause register are directly checked for external ordinary interrupt requests

(Int(5:0)# and SysAD(5:0)).

• Whether IP7 indicates the timer interrupt request or interrupt request executed by Int5# or SysAD5 is

determined according to the status of the TIntSel pin before a power-on reset.  If this pin is high, it indicates

the timer interrupt.  If it is low, it indicates the interrupt request executed by Int5# or SysAD5.

IP0 and IP1 of the Cause register are used for software interrupt requests (for details, refer to CHAPTER 6

EXCEPTION PROCESSING).  Software interrupts cannot be set or cleared by hardware.

Figure 16-3.  Hardware Interrupt Request Signal

4 3 2 1 0

IP2

IP3

IP4

IP5

IP6

Interrupt register (internal)

Bits 15 to 10 of 
Cause register

4 3 2 1 0

IP7

Timer interrupt

Refer to Figure 16-4.

(Internal register)

Int4#
Int3#

Int2#
Int1#

Int0#

TIntSel

10

11

12

13

14

15

5

5

Int5#

S
el

ec
to

r



CHAPTER  16   INTERRUPTS

Preliminary User’s Manual  U16044EJ1V0UM318

16.2.2  Masking interrupt signal

Figure 16-4 illustrates how an interrupt signal is masked.

• Bits 15 to 8 (IP(7:0)) of the Cause register are connected to the interrupt mask bits (bits 15 to 8, i.e., IM(7:0))

of the Status register by an AND-OR logic block, masking each interrupt request signal.

• Bit 0 of the Status register is a global interrupt enable (IE) bit.  The output of this bit is ANDed with the output

of the AND-OR logic block to generate the interrupt request signals of the VR5500.  In addition, these

interrupts are enabled by the EXL and ERL bits of the Status register.

Figure 16-4.  Masking Interrupt Signal

Timer interrupt or 
external ordinary interrupt

IM0

IE

Software interrupt

Status register
Bit 0

IM1
IM2
IM3
IM4

IM5
IM6
IM7

IP0
IP1
IP2
IP3
IP4
IP5
IP6
IP7

External ordinary interrupt

Status register
Bits 15 to 8

Cause register
Bits 15 to 8

8

AND-OR
block

AND
block

1

1
Interrupt of VR5500

8

8
9
10
11
12
13
14
15

8
9
10
11
12
13
14
15

Bit Function Setting

IE Enables all interrupts. 1:  Enables

0:  Disables

IM(7:0) Interrupt mask For each bit 1:  Enabled

0:  Disabled

IP(7:0) Interrupt request For each bit 1:  Request pending

0:  Not pending



Preliminary User’s Manual  U16044EJ1V0UM 319

CHAPTER  17   CPU  INSTRUCTION  SET

This chapter provides a detailed description of the operation of the CPU instruction in both 32- and 64-bit modes.

The instructions are listed in alphabetical order.

For details of the FPU instruction set, refer to CHAPTER 18 FPU INSTRUCTION SET.

17.1  Instruction  Notation  Conventions

In this chapter, all variable subfields in an instruction format (such as rs, rt, immediate, etc.) are shown in

lowercase names.  The instruction names (e.g. ADD and SUB) are indicated by upper-case characters.  For the sake

of clarity, we sometimes use an alias for a variable subfield in the formats of specific instructions.  For example, we

use base instead of rs in the format for load and store instructions.  Such an alias is always lower case, since it

refers to a variable subfield.

The architecture level at which the instruction was defined first is indicated on the right of the instruction format.

The product name is also shown for instructions that may be incorporated differently depending on the product.

Figures with the actual bit encoding for all the mnemonics are located at the end of this chapter (17.4  CPU

Instruction Opcode Bit Encoding), and the bit encoding also accompanies each instruction.

In the instruction descriptions that follow, the operation section describes the operation performed by each

instruction using a high-level language notation.  The VR5500 can operate as either a 32- or 64-bit microprocessor

and the operation for both modes is included with the instruction description.

Special symbols used in the notation are described in Table 17-1.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM320

Table 17-1.  CPU Instruction Operation Notations

Symbol Meaning

← Assignment

|| Bit string concatenation

xy Replication of bit value x into a y-bit string.  x is always a single-bit value

xy..z Selection of bits y to z of bit string x.  Little-endian bit notation is always used.  If y is less than z, this

expression is an empty (zero length) bit string

+ 2’s complement or floating-point addition

− 2’s complement or floating-point subtraction

* 2’s complement or floating-point multiplication

div 2’s complement integer division

mod 2’s complement modulo

/ Floating-point division

< 2’s complement less than comparison

and Bit-wise logical AND

or Bit-wise logical OR

xor Bit-wise logical XOR

nor Bit-wise logical NOR

GPR[x] General-purpose register x.  The content of GPR[0] is always zero.  Attempts to alter the content of

GPR[0] have no effect.

CPR[z, x] Coprocessor unit z, general-purpose register x.

CCR[z, x] Coprocessor unit z, control register x.

COC[z] Coprocessor unit z condition signal.

BigEndianMem Big-endian mode as configured at reset (0 → Little, 1 → Big).  Specifies the endianness of the memory

interface (see Table 17-2 Load and Store Common Functions), and the endianness in kernel and

supervisor mode.  The status of the BE bit of the Config register is reflected.

ReverseEndian Signal to reverse the endianness of load and store instructions.

The status of bit 25 of the Status register is reflected.  This value is always 0 in the VR5500.

BigEndianCPU The endianness for load and store instructions (0 → Little, 1 → Big).

This variable is computed as BigEndianMem XOR ReverseEndian.

T + i: Indicates the time steps between operations.  Each of the statements within a time step are defined to be

executed in sequential order (as modified by conditional and loop constructs).  Operations which are

marked T + i: are executed at instruction cycle i relative to the start of execution of the instruction.  Thus,

an instruction which starts at time j executes operations marked T + i: at time i + j.  The interpretation of

the order of execution between two instructions or two operations that execute at the same time should be

pessimistic; the order is not defined.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 321

The following examples illustrate the application of some of the instruction notation conventions:

Example 1:

GPR [rt]  ←  immediate || 016

Sixteen zero bits are concatenated with an immediate value (typically 16 bits), and the 32-bit string is

assigned to general-purpose register rt.

Example 2:

(immediate15)16 || immediate15...0

Bit 15 (the sign bit) of an immediate value is extended for 16-bit positions, and the result is concatenated

with bits 15 to 0 of the immediate value to form a 32-bit sign extended value.

17.2  Cautions on Using CPU Instructions

17.2.1  Load  and  store  instructions

The instruction immediately after a load instruction can use the contents of a register that has been loaded, but

execution of that instruction may be delayed.  The VR5500 can cover the load delay using an out-of-order

mechanism, but it is recommended to schedule the load delay slot to improve the performance.

With the VR5500, two special instructions, a load link instruction and a conditional store instruction, can be used.

However, these instructions are used in a carefully programmed sequence when one of the synchronous primitives

(such as test & set, lock of bit level, semaphore, and sequencer/event counter) is executed. These instructions are

defined in the VR5500 to maintain compatibility with the other processors.

In the load and store descriptions, the functions listed below are used to summarize the handling of virtual

addresses and physical memory.

Table 17-2.  Load and Store Common Functions

Function Meaning

AddressTranslation Uses the TLB to find the physical address given the virtual address.  The function fails and a TLB

refill exception occurs if the required translation is not present in the TLB.

LoadMemory Uses the cache and main memory to find the contents of the word containing the specified

physical address.  The lower 6 bits of the address and the Access Type field indicate which of

each of the four bytes within the data word need to be returned.  If the cache is enabled for this

access, the entire word is returned and loaded to the cache.  If the specified data is short of word

length, the data position to which the contents of the specified data is stored is determined

considering the endian mode and reverse-endian mode.

StoreMemory Uses the cache, write buffer, and main memory to store the word or part of word specified as data

in the word containing the specified physical address.  The lower 3 bits of the address and the

Access Type field indicate which of each of the four bytes within the data word should be stored.  If

the specified data is short of word length, the data position to which the contents of the specified

data is stored is determined considering the endian mode and reverse-endian mode.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM322

The Access Type field indicates the size of the data item to be loaded or stored.  Regardless of access type or

byte-numbering order (endian), the address specifies the byte that has the smallest byte address in the addressed

field.  The access type field is the leftmost byte in a big-endian system, and includes a 2’s complement sign value.

This field is the rightmost byte in a little-endian system.

Table 17-3.  Access Type Specifications for Loads/Stores

Access Type SysCmd(2:0) Meaning

DOUBLEWORD 7 8 bytes (64 bits)

SEPTIBYTE 6 7 bytes (56 bits)

SEXTIBYTE 5 6 bytes (48 bits)

QUINTIBYTE 4 5 bytes (40 bits)

WORD 3 4 bytes (32 bits)

TRIPLEBYTE 2 3 bytes (24 bits)

HALFWORD 1 2 bytes (16 bits)

BYTE 0 1 byte (8 bits)

The bytes within the addressed doubleword that are used can be determined directly from the access type and

the lower 3 bits of the address.

17.2.2  Jump and branch instructions

The jump and branch instructions have a branch delay slot.  A jump or branch instruction cannot be used in a

delay slot.  If used, the error is not detected and the results of such an operation are undefined.

If an exception or interrupt prevents the completion of a legal instruction during a delay slot, the hardware sets the

EPC register to point at the jump or branch instruction that precedes it.  When the code is restarted, both the jump or

branch instructions and the instruction in the delay slot are reexecuted.

Because jump and branch instructions may be restarted after exceptions or interrupts, they must be restartable.

Therefore, when a jump or branch instruction stores a return link value, CPU general-purpose register r31 (the

register in which the link is stored) may not be used as a source register.

Since instructions must be word-aligned, a Jump Register or Jump and Link Register instruction must use a

register which contains a content (address) whose lower 2 bits are zero.  If the lower 2 bits are not zero, an address

error exception will occur when the jump target instruction is subsequently fetched.

17.2.3  Coprocessor instructions

The coprocessor is an alternate execution unit and has a register file independent of that of the CPU.  The MIPS

architecture allows four coprocessor units to be defined.  Each of these coprocessors has two register spaces, and

each register space has thirty-two 32-bit registers.  The coprocessor instructions modify the registers in either of the

spaces.

• Coprocessor general-purpose registers are allocated in the first space.  These registers directly load/store data

from/in the main memory.  They can also be used to transfer data between coprocessors.

• Coprocessor control registers are allocated in the second space. These registers can transfer their contents

only between coprocessors.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 323

17.2.4  System control coprocessor (CP0) instructions

There are some special limitations imposed on operations involving CP0 that is incorporated within the CPU.

Although load and store instructions to transfer data to/from coprocessors and to move control to/from coprocessor

instructions are generally permitted by the MIPS architecture, CP0 is given a somewhat protected status since it has

responsibility for exception handling and memory management.  Therefore, the move to/from coprocessor

instructions are the only valid mechanism for writing to and reading from the CP0 registers.

Several CP0 instructions are defined to directly read, write, and probe TLB entries and to modify the operating

modes in preparation for returning to User mode or interrupt-enabled states.

17.3  CPU  Instruction

This section describes the functions of CPU instructions in detail for both 32-bit address mode and 64-bit address

mode.

The exception that may occur by executing each instruction is shown in the last of each instruction's description.

For details of exceptions and their processes, see CHAPTER 6  EXCEPTION PROCESSING.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM324

ADD Add

2631
SPECIAL
000000

0

rd

25

rs rt

21 20 16 15 11 10
0

00000

6 5
ADD

100000

Format:

ADD rd, rs, rt MIPS I

Purpose:

Adds 32-bit integers.  A trap is performed if an overflow occurs.

Description:

The contents of general-purpose register rs and the contents of general-purpose register rt are added and the

result is stored in general-purpose register rd.  In 64-bit mode, the operands must be valid sign-extended, 32-bit

values.

An integer overflow exception occurs if the carries out of bits 30 and 31 differ (2's complement overflow).  The

destination register rd is not modified when an integer overflow exception occurs.

Operation:

32 T: GPR[rd] ← GPR[rs] + GPR[rt]

64 T: temp ← GPR[rs] + GPR[rt]

GPR[rd] ← (temp31)
32 || temp31..0

Exceptions:

Integer overflow exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 325

ADDI Add Immediate

2631
ADDI

001000

025

rs rt

21 20 16 15

immediate

Format:

ADDI rt, rs, immediate MIPS I

Purpose:

Adds a 32-bit integer to a constant.  A trap is performed if an overflow occurs.

Description:

The 16-bit immediate is sign-extended and added to the contents of general-purpose register rs and the result is

stored in general-purpose register rt.  In 64-bit mode, the operand must be valid sign-extended, 32-bit values.

An integer overflow exception occurs if carries out of bits 30 and 31 differ (2’s complement overflow).  The

destination register rt is not modified when an integer overflow exception occurs.

Operation:

32 T: GPR[rt] ← GPR[rs] + (immediate15)
16

 || immediate15..0

64 T: temp ← GPR[rs] + (immediate15)
48

 || immediate15..0

GPR[rt] ← (temp31)
32

 || temp31..0

Exceptions:

Integer overflow exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM326

ADDIU Add Immediate Unsigned

2631
ADDIU
001001

025

rs rt

21 20 16 15

immediate

Format:

ADDIU rt, rs, immediate MIPS I

Purpose:

Adds a 32-bit integer to a constant.

Description:

The 16-bit immediate is sign-extended and added to the contents of general-purpose register rs and the result is

stored in general-purpose register rt.  No integer overflow exception occurs under any circumstances.  In 64-bit

mode, the operand must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADDI instruction is that ADDIU never causes an integer

overflow exception.

Operation:

32 T: GPR[rt] ← GPR[rs] + (immediate15)
16

 || immediate15..0

64 T: temp ← GPR[rs] + (immediate15)
48

 || immediate15..0

GPR[rt] ← (temp31)
32

 || temp31..0

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 327

ADDU Add Unsigned

2631
SPECIAL
000000

0

rd

25

rs rt

21 20 16 15 11 10
0

00000

6 5
ADDU
100001

Format:

ADDU rd, rs, rt  MIPS I

Purpose:

Adds 32-bit integers.

Description:

The contents of general-purpose register rs and the contents of general-purpose register rt are added and The

result is stored in general-purpose register rd.  No integer overflow exception occurs under any circumstances.  In

64-bit mode, the operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADD instruction is that ADDU never causes an integer

overflow exception.

Operation:

32 T: GPR[rd] ← GPR[rs] + GPR[rt]

64 T: temp ← GPR[rs] + GPR[rt]

GPR[rd] ← (temp31)
32

 || temp31..0

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM328

AND AND

2631
SPECIAL
000000

0

rd

25

rs rt

21 20 16 15 11 10
0

00000

6 5
AND

100100

Format:

AND rd, rs, rt MIPS I

Purpose:

Performs a bit-wise logical AND operation.

Description:

The contents of general-purpose register rs are combined with the contents of general-purpose register rt in a bit-

wise logical AND operation.  The result is stored in general-purpose register rd.

Operation:

32 T: GPR[rd] ← GPR[rs] and GPR[rt]

64 T: GPR[rd] ← GPR[rs] and GPR[rt]

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 329

ANDI AND Immediate

2631
ANDI

001100

025

rs rt

21 20 16 15

immediate

Format:

ANDI rt, rs, immediate  MIPS I

Purpose:

Performs a bit-wise logical AND operation with a constant.

Description:

The 16-bit immediate is zero-extended and combined with the contents of general-purpose register rs in a bit-wise

logical AND operation.  The result is stored in general-purpose register rt.

Operation:

32 T: GPR[rt] ← 0
16

 ||  (immediate and GPR[rs]15..0)

64 T: GPR[rt] ← 0
48

 ||  (immediate and GPR[rs]15..0)

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM330

BC0F Branch on Coprocessor 0 False

2631
COP0

010000

025 21 20 16 15

offsetBC
01000

BCF
00000

Format:

BC0F offset MIPS I

Purpose:

Tests the CP0 condition code and executes a PC relative condition branch.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit

offset, shifted left two bits and sign-extended.  If contents of CP0's condition signal (CpCond), as sampled during

the previous instruction, is false, then the program branches to the target address with a delay of one instruction.

Because the condition line is sampled during the previous instruction, there must be at least one instruction

between this instruction and a coprocessor instruction that changes the condition line.

Remark The condition branch range of this instruction is ±128 KB because an 18-bit signed offset is used.  To

branch to an address outside this range, use the J or JR instruction.

Operation:

32 T − 1: condition ← not COP0

T: target ← (offset15)
14

 || offset || 02

T + 1: if condition then

  PC ← PC + target

endif

64 T − 1: condition ← not COP0

T: target ← (offset15)
46

 || offset || 02

T + 1: if condition then

  PC ← PC + target

endif

Exceptions:

Coprocessor unusable exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 331

BC0FL Branch on Coprocessor 0 False Likely

2631
COP0

010000

025 21 20 16 15

offsetBC
01000

BCFL
00010

Format:

BC0FL offset MIPS II

Purpose:

Tests the CP0 condition code and executes a PC relative condition branch.  Executes a delay slot only when a

given branch condition is satisfied.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit

offset, shifted left two bits and sign-extended.  If the contents of CP0's condition (CpCond) line, as sampled during

the previous instruction, is false, the target address is branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is discarded.

Remarks 1. The condition branch range of this instruction is ±128 KB because an 18-bit signed offset is used.

To branch to an address outside this range, use the J or JR instruction.

2. Use this instruction only when it is expected with a high probability (98% or higher) that a given

branch condition is satisfied.  If the branch condition is not satisfied or if the branch destination is

not known, use the BC0F instruction.

Operation:

32 T − 1: condition ← not COP0

T: target ← (offset15)
14

 || offset || 02

T + 1: if condition then

  PC ← PC + target

else

  NullifyCurrentInstruction

endif

64 T − 1: condition ← not COP0

T: target ← (offset15)
46

 || offset || 02

T + 1: if condition then

  PC ← PC + target

else

  NullifyCurrentInstruction

endif

Exceptions:

Coprocessor unusable exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM332

BC0T Branch on Coprocessor 0 True

2631
COP0

010000

025 21 20 16 15

offsetBC
01000

BCT
00001

Format:

BC0T offset  MIPS I

Purpose:

Tests the CP0 condition code and executes a PC relative condition branch.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit

offset, shifted left two bits and sign-extended.  If the contents of CP0's condition signal (CpCond) that is sampled

during the previous instruction is true, then the program branches to the target address, with a delay of one

instruction.

Remark The condition branch range of this instruction is ±128 KB because an 18-bit signed offset is used.  To

branch to an address outside this range, use the J or JR instruction.

Operation:

32 T − 1: condition ← COP0

T: target ← (offset15)
14

 || offset || 0
2

T + 1: if condition then

  PC ← PC + target

endif

64 T − 1: condition ← COP0

T: target ← (offset15)
46

 || offset || 02

T + 1: if condition then

  PC ← PC + target

endif

Exceptions:

Coprocessor unusable exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 333

BC0TL Branch on Coprocessor 0 True Likely

2631
COP0

010000

025 21 20 16 15

offsetBC
01000

BCTL
00011

Format:

BC0TL offset MIPS II

Purpose:

Tests the CP0 condition code and executes a PC relative condition branch.  Executes a delay slot only when a

given branch condition is satisfied.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit

offset, shifted left two bits and sign-extended.  If the contents of CP0's condition (CpCond) line, as sampled during

the previous instruction, is true, the target address is branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is discarded.

Remarks 1. The condition branch range of this instruction is ±128 KB because an 18-bit signed offset is used.

To branch to an address outside this range, use the J or JR instruction.

2. Use this instruction only when it is expected with a high probability (98% or higher) that a given

branch condition is satisfied.  If the branch condition is not satisfied or if the branch destination is

not known, use the BC0T instruction.

Operation:

32 T − 1: condition ← COP0
T: target ← (offset15)

14
 || offset || 02

T + 1: if condition then

  PC ← PC + target

else

  NullifyCurrentInstruction

endif

64 T − 1: condition ← COP0
T: target ← (offset15)

46
 || offset || 02

T + 1: if condition then

  PC ← PC + target

else

  NullifyCurrentInstruction

endif

Exceptions:

Coprocessor unusable exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM334

BEQ Branch on Equal

2631
BEQ

000100

025

rs rt

21 20 16 15

offset

Format:

BEQ rs, rt, offset MIPS I

Purpose:

Compares general-purpose registers and executes a PC relative condition branch.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit

offset, shifted left two bits and sign-extended.  The contents of general-purpose register rs and the contents of

general-purpose register rt are compared.  If the two registers are equal, then the program branches to the target

address, with a delay of one instruction.

Remark The condition branch range of this instruction is ±128 KB because an 18-bit signed offset is used.  To

branch to an address outside this range, use the J or JR instruction.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR[rs] = GPR[rt])

T + 1: if condition then

  PC ← PC + target

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR[rs] = GPR[rt])

T + 1: if condition then

  PC ← PC + target

endif

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 335

BEQL Branch on Equal Likely

2631
BEQL

010100

025

rs rt

21 20 16 15

offset

Format:

BEQL rs, rt, offset MIPS II

Purpose:

Compares general-purpose registers and executes a PC relative condition branch.  Executes a delay slot only

when a given branch condition is satisfied.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit

offset, shifted left two bits and sign-extended.  The contents of general-purpose register rs and the contents of

general-purpose register rt are compared.  If the two registers are equal, the target address is branched to, with a

delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is discarded.

Remarks 1. The condition branch range of this instruction is ±128 KB because an 18-bit signed offset is used.

To branch to an address outside this range, use the J or JR instruction.

2. Use this instruction only when it is expected with a high probability (98% or higher) that a given

branch condition is satisfied.  If the branch condition is not satisfied or if the branch destination is

not known, use the BEQ instruction.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR[rs] = GPR[rt])

T + 1: if condition then

  PC ← PC + target

else

  NullifyCurrentInstruction

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR[rs] = GPR[rt])

T + 1: if condition then

  PC ← PC + target

else

  NullifyCurrentInstruction

endif

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM336

BGEZ Branch on Greater Than or Equal to Zero

2631
REGIMM
000001

025

rs

21 20 16 15

offsetBGEZ
00001

Format:

BGEZ rs, offset MIPS I

Purpose:

Tests a general-purpose register and executes a PC relative condition branch.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit

offset, shifted left two bits and sign-extended.  If the contents of general-purpose register rs are zero or greater

when compared to zero, then the program branches to the target address, with a delay of one instruction.

Remark The condition branch range of this instruction is ±128 KB because an 18-bit signed offset is used.  To

branch to an address outside this range, use the J or JR instruction.

Operation:

32 T: target ← (offset15)
14 

|| offset || 0
2

condition ← (GPR[rs]31 = 0)

T + 1: if condition then

  PC ← PC + target

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR[rs]63 = 0)

T + 1: if condition then

  PC ← PC + target

endif

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 337

BGEZAL Branch on Greater Than or Equal to Zero and Link

2631
REGIMM
000001

025

rs

21 20 16 15

offsetBGEZAL
10001

Format:

BGEZAL rs, offset MIPS I

Purpose:

Tests a general-purpose register and executes a PC relative condition procedure call.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit

offset, shifted left two bits and sign-extended.  Unconditionally, the address of the instruction after the delay slot is

stored in the link register, r31.  If the contents of general-purpose register rs are zero or greater when compared

to zero, then the program branches to the target address, with a delay of one instruction.

General-purpose register r31 should not be specified as general-purpose register rs.  If register r31 is specified,

restarting may be impossible due to the destruction of rs contents caused by storing a link address.  Even such

instructions are executed, an exception does not result.

Remark The condition branch range of this instruction is ±128 KB because an 18-bit signed offset is used.  To

branch to an address outside this range, use the J or JR instruction.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR[rs]31 = 0)

GPR[31] ← PC + 8

T + 1: if condition then

  PC ← PC + target

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR[rs]63 = 0)

GPR[31] ← PC + 8

T + 1: if condition then

  PC ← PC + target

endif

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM338

BGEZALL Branch on Greater Than or Equal to Zero and Link Likely

(1/2)

2631
REGIMM
000001

025

rs

21 20 16 15

offsetBGEZALL
10011

Format:

BGEZALL rs, offset MIPS II

Purpose:

Tests a general-purpose register and executes a PC relative condition procedure call.  Executes a delay slot only

when a given branch condition is satisfied.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit

offset, shifted left two bits and sign-extended.  Unconditionally, the address of the instruction after the delay slot is

stored in the link register, r31.  If the contents of general-purpose register rs are zero or greater when compared

to zero, then the program branches to the target address, with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is discarded.

General-purpose register r31 should not be specified as general-purpose register rs.  If register r31 is specified,

restarting may be impossible due to the destruction of rs contents caused by storing a link address.  Even such

instructions are executed, an exception does not result.

Remarks 1. The condition branch range of this instruction is ±128 KB because an 18-bit signed offset is used.

To branch to an address outside this range, use the J or JR instruction.

2. Use this instruction only when it is expected with a high probability (98% or higher) that a given

branch condition is satisfied.  If the branch condition is not satisfied or if the branch destination is

not known, use the BGEZAL instruction.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 339

BGEZALL Branch on Greater Than or Equal to Zero and Link Likely

(2/2)

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR[rs]31 = 0)

GPR[31] ← PC + 8

T + 1: if condition then

  PC ← PC + target

else

  NullifyCurrentInstruction

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR[rs]63 = 0)

GPR[31] ← PC + 8

T + 1: if condition then

  PC ← PC + target

else

  NullifyCurrentInstruction

endif

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM340

BGEZL Branch on Greater Than or Equal to Zero Likely

2631
REGIMM
000001

025

rs

21 20 16 15

offsetBGEZL
00011

Format:

BGEZL rs, offset MIPS II

Purpose:

Tests a general-purpose register and executes a PC relative condition branch.  Executes a delay slot only when a

given branch condition is satisfied.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit

offset, shifted left two bits and sign-extended.  If the contents of general-purpose register rs are zero or greater

when compared to zero, then the program branches to the target address, with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is discarded.

Remarks 1. The condition branch range of this instruction is ±128 KB because an 18-bit signed offset is used.

To branch to an address outside this range, use the J or JR instruction.

2. Use this instruction only when it is expected with a high probability (98% or higher) that a given

branch condition is satisfied.  If the branch condition is not satisfied or if the branch destination is

not known, use the BGEZ instruction.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR[rs]31 = 0)

T + 1: if condition then

  PC ← PC + target

else

  NullifyCurrentInstruction

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR[rs]63 = 0)

T + 1: if condition then

  PC ← PC + target

else

  NullifyCurrentInstruction

endif

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 341

BGTZ Branch on Greater Than Zero

2631
BGTZ

000111

025

rs

21 20 16 15

offset0
00000

Format:

BGTZ rs, offset  MIPS I

Purpose:

Tests a general-purpose register and executes a PC relative condition branch.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit

offset, shifted left two bits and sign-extended.  If the contents of general-purpose register rs are zero or greater

when compared to zero, then the program branches to the target address, with a delay of one instruction.

Remark The condition branch range of this instruction is ±128 KB because an 18-bit signed offset is used.  To

branch to an address outside this range, use the J or JR instruction.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR[rs]31 = 0) and (GPR[rs] ≠ 0
32

)

T + 1: if condition then

  PC ← PC + target

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR[rs]63 = 0) and (GPR[rs] ≠ 0
64

)

T + 1: if condition then

  PC ← PC + target

endif

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM342

BGTZL Branch on Greater Than Zero Likely

2631
BGTZL
010111

025

rs

21 20 16 15

offset0
00000

Format:

BGTZL rs, offset MIPS II

Purpose:

Tests a general-purpose register and executes a PC relative condition branch.  Executes a delay slot only when a

given branch condition is satisfied.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit

offset, shifted left two bits and sign-extended.  The contents of general-purpose register rs are compared to zero.

If the contents of general-purpose register rs are greater than zero, then the program branches to the target

address, with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is discarded.

Remarks 1. The condition branch range of this instruction is ±128 KB because an 18-bit signed offset is used.

To branch to an address outside this range, use the J or JR instruction.

2. Use this instruction only when it is expected with a high probability (98% or higher) that a given

branch condition is satisfied.  If the branch condition is not satisfied or if the branch destination is

not known, use the BGTZ instruction.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR[rs]31 = 0) and (GPR[rs] ≠ 0
32

)

T + 1: if condition then

  PC ← PC + target

else

  NullifyCurrentInstruction

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR[rs]63 = 0) and (GPR[rs] ≠ 0
64

)

T + 1: if condition then

  PC ← PC + target

else

  NullifyCurrentInstruction

endif

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 343

BLEZ Branch on Less Than or Equal to Zero

2631
BLEZ

000110

025

rs

21 20 16 15

offset0
00000

Format:

BLEZ rs, offset MIPS I

Purpose:

Tests a general-purpose register and executes a PC relative condition branch.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit

offset, shifted left two bits and sign-extended.  The contents of general-purpose register rs are compared to zero.

If the contents of general-purpose register rs are zero or smaller than zero, then the program branches to the

target address, with a delay of one instruction.

Remark The condition branch range of this instruction is ±128 KB because an 18-bit signed offset is used.  To

branch to an address outside this range, use the J or JR instruction.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR[rs]31 = 1) or (GPR[rs] = 0
32

)

T + 1: if condition then

  PC ← PC + target

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR[rs]63 = 1) or (GPR[rs] = 0
64

)

T + 1: if condition then

  PC ← PC + target

endif

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM344

BLEZL Branch on Less Than or Equal to Zero Likely

2631
BLEZL
010110

025

rs

21 20 16 15

offset0
00000

Format:

BLEZL rs, offset MIPS II

Purpose:

Tests a general-purpose register and executes a PC relative condition branch.  Executes a delay slot only when a

given branch condition is satisfied.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit

offset, shifted left two bits and sign-extended.  The contents of general-purpose register rs is compared to zero.  If

the contents of general-purpose register rs are zero or smaller than zero, then the program branches to the target

address, with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is discarded.

Remarks 1. The condition branch range of this instruction is ±128 KB because an 18-bit signed offset is used.

To branch to an address outside this range, use the J or JR instruction.

2. Use this instruction only when it is expected with a high probability (98% or higher) that a given

branch condition is satisfied.  If the branch condition is not satisfied or if the branch destination is

not known, use the BLEZ instruction.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR[rs]31 = 1) or (GPR[rs] = 0
32

)

T + 1: if condition then

  PC ← PC + target

else

  NullifyCurrentInstruction

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR[rs]63 = 1) or (GPR[rs] = 0
64

)

T + 1: if condition then

  PC ← PC + target

else

  NullifyCurrentInstruction

endif

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 345

BLTZ Branch on Less Than Zero

2631
REGIMM
000001

025

rs

21 20 16 15

offset
BLTZ
00000

Format:

BLTZ rs, offset MIPS I

Purpose:

Tests a general-purpose register and executes a PC relative condition branch.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit

offset, shifted left two bits and sign-extended.  If the contents of general-purpose register rs are smaller than zero,

then the program branches to the target address, with a delay of one instruction.

Remark The condition branch range of this instruction is ±128 KB because an 18-bit signed offset is used.  To

branch to an address outside this range, use the J or JR instruction.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR[rs]31 = 1)

T + 1: if condition then

  PC ← PC + target

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR[rs]63 = 1)

T + 1: if condition then

  PC ← PC + target

endif

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM346

BLTZAL Branch on Less Than Zero and Link

2631
REGIMM
000001

025

rs

21 20 16 15

offsetBLTZAL
10000

Format:

BLTZAL rs, offset MIPS I

Purpose:

Tests a general-purpose register and executes a PC relative condition procedure call.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit

offset, shifted left two bits and sign-extended.  Unconditionally, the address of the instruction after the delay slot is

stored in the link register, r31.  If the contents of general-purpose register rs are smaller than zero when

compared to zero, then the program branches to the target address, with a delay of one instruction.

General-purpose register r31 should not be specified as general-purpose register rs.  If register r31 is specified,

restarting may be impossible due to the destruction of rs contents caused by storing a link address.  Even such

instructions are executed, an exception does not result.

Remark The condition branch range of this instruction is ±128 KB because an 18-bit signed offset is used.  To

branch to an address outside this range, use the J or JR instruction.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR[rs]31 = 1)

GPR[31] ← PC + 8

T + 1: if condition then

  PC ← PC + target

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR[rs]63 = 1)

GPR[31] ← PC + 8

T + 1: if condition then

  PC ← PC + target

endif

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 347

BLTZALL Branch on Less Than Zero and Link Likely

(1/2)

2631
REGIMM
000001

025

rs

21 20 16 15

offsetBLTZALL
10010

Format:

BLTZALL rs, offset MIPS II

Purpose:

Tests a general-purpose register and executes a PC relative condition procedure call.  Executes a delay slot only

when a given branch condition is satisfied.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit

offset, shifted left two bits and sign-extended.  Unconditionally, the address of the instruction after the delay slot is

stored in the link register, r31.  If the contents of general-purpose register rs are smaller than zero when

compared to zero, then the program branches to the target address, with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is discarded.

General-purpose register r31 should not be specified as general-purpose register rs.  If register r31 is specified,

restarting may be impossible due to the destruction of rs contents caused by storing a link address.  Even such

instructions are executed, an exception does not result.

Remarks 1. The condition branch range of this instruction is ±128 KB because an 18-bit signed offset is used.

To branch to an address outside this range, use the J or JR instruction.

2. Use this instruction only when it is expected with a high probability (98% or higher) that a given

branch condition is satisfied.  If the branch condition is not satisfied or if the branch destination is

not known, use the BLTZAL instruction.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM348

BLTZALL Branch on Less Than Zero and Link Likely

(2/2)

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR[rs]31 = 1)

GPR[31] ← PC + 8

T + 1: if condition then

  PC ← PC + target

else

  NullifyCurrentInstruction

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR[rs]63 = 1)

GPR[31] ← PC + 8

T + 1: if condition then

  PC ← PC + target

else

  NullifyCurrentInstruction

endif

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 349

BLTZL Branch on Less Than Zero Likely

2631
REGIMM
000001

025

rs

21 20 16 15

offsetBLTZL
00010

Format:

BLTZ rs, offset MIPS II

Purpose:

Tests a general-purpose register and executes a PC relative condition procedure call.  Executes a delay slot only

when a given branch condition is satisfied.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit

offset, shifted left two bits and sign-extended.  If the contents of general-purpose register rs are smaller than zero

when compared to zero, then the program branches to the target address, with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is discarded.

Remarks 1. The condition branch range of this instruction is ±128 KB because an 18-bit signed offset is used.

To branch to an address outside this range, use the J or JR instruction.

2. Use this instruction only when it is expected with a high probability (98% or higher) that a given

branch condition is satisfied.  If the branch condition is not satisfied or if the branch destination is

not known, use the BLTZ instruction.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR[rs]31 = 1)

T + 1: if condition then

  PC ← PC + target

else

  NullifyCurrentInstruction

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR[rs]63 = 1)

T + 1: if condition then

  PC ← PC + target

else

  NullifyCurrentInstruction

endif

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM350

BNE Branch on Not Equal

2631
BNE

000101

025

rs rt

21 20 16 15

offset

Format:

BNE rs, rt, offset MIPS I

Purpose:

Tests a general-purpose register and executes a PC relative condition branch.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit

offset, shifted left two bits and sign-extended.  The contents of general-purpose register rs and the contents of

general-purpose register rt are compared.  If the two registers are not equal, then the program branches to the

target address, with a delay of one instruction.

Remark The condition branch range of this instruction is ±128 KB because an 18-bit signed offset is used.  To

branch to an address outside this range, use the J or JR instruction.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR[rs] ≠ GPR[rt])

T + 1: if condition then

  PC ← PC + target

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR[rs] ≠ GPR[rt])

T + 1: if condition then

  PC ← PC + target

endif

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 351

BNEL Branch on Not Equal Likely

2631
BNEL

010101

025

rs rt

21 20 16 15

offset

Format:

BNEL rs, rt, offset MIPS II

Purpose:

Tests a general-purpose register and executes a PC relative condition branch.  Executes a delay slot only when a

given branch condition is satisfied.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit

offset, shifted left two bits and sign-extended.  The contents of general-purpose register rs and the contents of

general-purpose register rt are compared.  If the two registers are not equal, then the program branches to the

target address, with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is discarded.

Remarks 1. The condition branch range of this instruction is ±128 KB because an 18-bit signed offset is used.

To branch to an address outside this range, use the J or JR instruction.

2. Use this instruction only when it is expected with a high probability (98% or higher) that a given

branch condition is satisfied.  If the branch condition is not satisfied or if the branch destination is

not known, use the BNE instruction.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR[rs] ≠ GPR[rt])

T + 1: if condition then

  PC ← PC + target

else

  NullifyCurrentInstruction

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR[rs] ≠ GPR[rt])

T + 1: if condition then

  PC ← PC + target

else

  NullifyCurrentInstruction

endif

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM352

BREAK Breakpoint

2631
SPECIAL
000000

0

code

25 6 5
BREAK
001101

Format:

BREAK MIPS I

Purpose:

Generates a breakpoint exception.

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler.

The code field is available for use as software parameters, but is retrieved by the exception handler only by

loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: BreakpointException

Exceptions:

Breakpoint exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 353

CACHE Cache Operation

(1/4)

2631
CACHE
101111

025

base op

21 20 16 15

offset

Format:

CACHE op, offset (base) MIPS III

Description:

The 16-bit offset is sign-extended and added to the contents of general-purpose register base to generate a

virtual address.  The virtual address is translated to a physical address using the TLB, and the 5-bit sub-opcode

specifies a cache operation for that address.

If CP0 is not usable (user or supervisor mode) and the CP0 enable bit in the Status register is clear, a

coprocessor unusable exception is taken.  The operation of this instruction on any operation/cache combination

not listed below, or on a secondary cache that is not incorporated in VR5500, is undefined.  The operation of this

instruction on uncached addresses is also undefined.

The Index operation uses part of the virtual address to specify a cache block.  For a cache of 2CACHEBITS bytes with

2LINEBITS bytes per tag, vAddrCACHEBITS...LINEBITS specifies the block.  The way of the cache is specified by using bit 0

of the virtual address.

In Hit, Fill, and Fetch_and_Lock operations, the way of the cache is specified by using the LRU bit of the cache

tag.

Index_Load_Tag also uses vAddrLINEBITS...3 to select the doubleword for reading parity.  If the CE bit of the Status

register is set, vAddrLINEBITS..3 is used for Hit_Write_Back_Invalidate, Index_Write_Back_Invalidate, and Fill

operations to select the doubleword that includes the modified parity.  This operation is unconditionally executed.

The Hit operation accesses the specified cache as normal data references, and performs the specified operation

if the cache block contains valid data with the specified physical address (a hit).  If the cache block is invalid or

contains a different address (a miss), no operation is performed.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM354

CACHE Cache Operation

(2/4)

Write back from a cache goes to main memory.  The main memory address to be written is specified by the cache

tag and not the physical address translated using TLB.

TLB refill and TLB invalid exceptions can occur on any operation.  For Index operationsNote for addresses in the

unmapped areas, unmapped addresses may be used to avoid TLB exceptions.  Index operations never cause a

TLB modified exception.

Note Physical addresses here are used to index the cache, and they do not need to match the cache tag.

Bits 17 and 16 of the instruction code specify the cache for which the operation is to be performed as follows.

op1..0 Name Cache

0

1

2

3

I

D

−
−

Instruction cache

Data cache

Reserved

Reserved

Bits 20 to 18 of this instruction specify the contents of cache operation.  Details are provided from the next page.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 355

CACHE Cache Operation

(3/4)

op4..2 Cache Name Operation

0 I Index_Invalidate Set the cache state of the cache block to Invalid.

0 D Index_Write_

Back_Invalidate

Examine the cache state of the data cache block at the index specified by the

virtual address.  If the state is Dirty and not Invalid, then write back the block to

memory.  The address to write is taken from the cache tag.  Set cache state of

cache block to Invalid.

1 I, D Index_Load_Tag Read the tag for the cache block at the specified index and place it into the TagLo

CP0 registers.  At this time, a parity error is ignored.  In addition, data is loaded

from the doubleword for which the data parity was specified to the Parity Error

register.

2 I, D Index_Store_

Tag

Write the tag for the cache block at the specified index from the TagLo CP0

register.

3 D Create_Dirty This operation is used to avoid loading data needlessly from memory when writing

new contents to an entire cache block.  If the cache block does not contain the

specified address, and the block is dirty, write it back to the memory.  In all cases,

set the cache state to Dirty.  The specified physical address is set to the cache

block tag in all cases and the cache status is set to Dirty.

4 I, D Hit_Invalidate If the cache block contains the specified address, mark the cache block Invalid.

5 I Fill Fill the instruction cache block from memory.  If the CE bit of the Status register is

set, the contents of the ECC register is used instead of the computed parity bits for

addressed doubleword when written to the instruction cache.

5 D Hit_Write_Back

Invalidate

If the cache block contains the specified address, write back the data if it is Dirty,

and mark the cache block Invalid.

6 D Hit_Write_Back If the cache block includes the specified address and if the cache status is Dirty,

data is written back to the main memory and the cache status of that cache block is

set to Clean.

7 I Fetch_and_Lock If the specified address is not included in the cache block, that block is filled with

data from the main memory.  In all cases, the specified physical address is set to

the cache block tag and the cache status is locked.

7 D Fetch_and_Lock If the specified address is not included in the cache block and if that block is Dirty,

the data is written back and the block is filled with data from the main memory.  In

all cases, the specified physical address is set to the cache block tag and the

cache status is locked.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM356

CACHE Cache Operation

(4/4)

Operation:

32, 64 T: vAddr ← ((offset15)
48

 || offset15..0)+GPR[base]

(pAddr,uncached) ← AddressTranslation (vAddr, DATA)

CacheOp (op, vAddr, pAddr)

Exceptions:

Coprocessor unusable exception

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Cache error exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 357

CLO Count Leading Ones in Word

2631
SPECIAL2

011100

0

rd

25

rs

21 20 16 15 11 10
0

00000

6 5
CLO

100001rt

Format:

CLO rd, rs VR5500

Purpose:

Counts the number of 1s in 32-bit data.

Description:

This instruction scans the 32-bit contents of general-purpose register rs from the most significant bit toward the

least significant bit, and stores the number of 1s in general-purpose register rd.  If the value of register rs is all 1,

32 is stored in rd.

In the 64-bit mode, the operand must be a sign-extended 32-bit value; otherwise the result will be undefined.

Specify the same register as general-purpose register rd for general-purpose register rt.

Operation:

32, 64 T: temp ← 32

for i in 31..0

  if GPR[rs]i = 0 then

temp ← 31 – i

break

  endif

endfor

GPR[rd] ← (temp31)32 || temp

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM358

CLZ Count Leading Zeros in Word

2631
SPECIAL2

011100

0

rd

25

rs

21 20 16 15 11 10
0

00000

6 5
CLZ

100000rt

Format:

CLZ rd, rs VR5500

Purpose:

Counts the number of 0s in 32-bit data.

Description:

This instruction scans the 32-bit contents of general-purpose register rs from the most significant bit toward the

least significant bit, and stores the number of 0s in general-purpose register rd.  If the value of register rs is all 0,

32 is stored in rd.

In the 64-bit mode, the operand must be a sign-extended 32-bit value; otherwise the result will be undefined.

Specify the same register as general-purpose register rd for general-purpose register rt.

Operation:

32, 64 T: temp ← 32

for i in 31..0

  if GPR[rs]i = 1 then

temp ← 31 – i

break

  endif

endfor

GPR[rd] ← (temp31)32 || temp

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 359

COPz Coprocessor z Operation

2631
COPz

0100XXNote

025 24

cofunCO
1

Format:

COPz  cofun MIPS I

Purpose:

Executes a coprocessor instruction.

Description:

This instruction executes a coprocessor instruction.  This instruction can specify and reference an internal

coprocessor register and can modify the status of the coprocessor.  However, the status of the processor, cache,

and main memory remains unchanged.  For details of the coprocessor instructions, refer to CHAPTER 18 FPU

INSTRUCTION SET.

Operation:

32, 64 T: CoprocessorOperation (z, cofun)

Exceptions:

Coprocessor unusable exception

Floating-point operation exception (CP1 only)

Note  See the opcode table below, or 17.4 CPU Instruction Opcode Bit Encoding.

Opcode Table:

31

0

30

1

29

0

28

0

27

1

26

0

25

1

0

COP2

Opcode

Coprocessor No.

Coprocessor sub-opcode

31

0

30

1

29

0

28

0

27

0

26

1

25

1

0

COP1

31

0

30

1

29

0

28

0

27

0

26

0

25

1

0

COP0

Remark  Coprocessor 2 is reserved in the VR5500.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM360

DADD Doubleword Add

2631
SPECIAL
000000

0

rd

25

rs rt

21 20 16 15 11 10
0

00000

6 5
DADD
101100

Format:

DADD rd, rs, rt MIPS III

Purpose:

Adds 64-bit integers.  A trap is performed if an overflow occurs.

Description:

The contents of general-purpose register rs and the contents of general-purpose register rt are added and the

result is stored in general-purpose register rd.  An integer overflow exception occurs if the carries out of bits 62

and 63 differ (2’s complement overflow).  The destination register rd is not modified when an integer overflow

exception occurs.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: GPR[rd] ← GPR[rs] + GPR[rt]

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Integer overflow exception

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 361

DADDI Doubleword Add Immediate

2631
DADDI
011000

025

rs rt

21 20 16 15

immediate

Format:

DADDI rt, rs, immediate  MIPS III

Purpose:

Adds a 64-bit integer to a constant.  A trap is performed if an overflow occurs.

Description:

The 16-bit immediate is sign-extended and added to the contents of general-purpose register rs and the result is

stored in general-purpose register rt.  An integer overflow exception occurs if carries out of bits 62 and 63 differ

(2’s complement overflow).  The destination register rt is not modified when an integer overflow exception occurs.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: GPR[rt] ← GPR[rs] + (immediate15)
48

 || immediate15..0

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Integer overflow exception

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM362

DADDIU Doubleword Add Immediate Unsigned

2631
DADDIU
011001

025

rs rt

21 20 16 15

immediate

Format:

DADDIU rt, rs, immediate MIPS III

Purpose:

Adds a 64-bit integer to a constant.

Description:

The 16-bit immediate is sign-extended and added to the contents of general-purpose register rs and the result is

stored in general-purpose register rt.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

The only difference between this instruction and the DADDI instruction is that DADDIU never causes an integer

overflow exception.

Operation:

64 T: GPR[rt] ← GPR[rs] + (immediate15)
48

 || immediate15..0

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 363

DADDU Doubleword Add Unsigned

2631
SPECIAL
000000

0

rd

25

rs rt

21 20 16 15 11 10
0

00000

6 5
DADDU
101101

Format:

DADDU rd, rs, rt MIPS III

Purpose:

Adds 64-bit integers.

Description:

The contents of general-purpose register rs and the contents of general-purpose register rt are added and the

result is stored in general-purpose register rd.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

The only difference between this instruction and the DADD instruction is that DADDU never causes an integer

overflow exception.

Operation:

64 T: GPR[rd] ← GPR[rs] + GPR[rt]

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM364

DCLO Count Leading Ones in Doubleword

2631
SPECIAL2

011100

0

rd

25

rs

21 20 16 15 11 10
0

00000

6 5
DCLO

100101rt

Format:

DCLO rd, rs VR5500

Purpose:

Counts the number of 1s in 64-bit data.

Description:

This instruction scans the 64-bit contents of general-purpose register rs from the most significant bit toward the

least significant bit, and stores the number of 1s in general-purpose register rd.  If the value of register rs is all 1,

64 is stored in rd.

Specify the same register as general-purpose register rd for general-purpose register rt.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: temp ← 64

for i in 63..0

  if GPR[rs]i = 0 then

temp ← 63 – i

break

  endif

endfor

GPR[rd] ← (temp31)32 || temp

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 365

DCLZ Count Leading Zeros in Doubleword

2631
SPECIAL2

011100

0

rd

25

rs

21 20 16 15 11 10
0

00000

6 5
DCLZ
100100rt

Format:

DCLZ rd, rs VR5500

Purpose:

Counts the number of 0s in 64-bit data.

Description:

This instruction scans the 64-bit contents of general-purpose register rs from the most significant bit toward the

least significant bit, and stores the number of 0s in general-purpose register rd.  If the value of register rs is all 0,

64 is stored in rd.

Specify the same register as general-purpose register rd for general-purpose register rt.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: temp ← 64

for i in 63..0

  if GPR[rs]i = 1 then

temp ← 63 – i

break

  endif

endfor

GPR[rd] ← (temp31)32 || temp

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM366

DDIV Doubleword Divide

2631
SPECIAL
000000

025

rs rt

21 20 16 15
0

0000000000

6 5
DDIV

011110

Format:

DDIV rs, rt MIPS III

Purpose:

Divides a 64-bit signed integer.

Description:

The contents of general-purpose register rs are divided by the contents of general-purpose register rt, treating

both operands as signed values.  No integer overflow exception occurs under any circumstances, and the result

of this operation is undefined when the divisor is zero.

This instruction is typically followed by additional instructions to check for a zero divisor and for overflow.

When the operation completes, the quotient word of the double result is loaded to special register LO, and the

remainder word of the double result is loaded to special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are undefined.  To

obtain the correct result, insert two or more instructions between the MFHI or MFLO instruction and the DDIV

instruction.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T − 2: LO ← undefined

HI ← undefined

T − 1: LO ← undefined

HI ← undefined

T: LO ← GPR[rs] div GPR[rt]

HI ← GPR[rs] mod GPR[rt]

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 367

DDIVU Doubleword Divide Unsigned

2631
SPECIAL
000000

025

rs rt

21 20 16 15
0

0000000000

6 5
DDIVU
011111

Format:

DDIVU rs, rt  MIPS III

Purpose:

Divides a 64-bit unsigned integer.

Description:

The contents of general-purpose register rs are divided by the contents of general-purpose register rt, treating

both operands as unsigned values.  No integer overflow exception occurs under any circumstances, and the

result of this operation is undefined when the divisor is zero.

This instruction may be followed by additional instructions to check for a zero divisor, inserted by the programmer.

When the operation completes, the quotient word of the double result is loaded to special register LO, and the

remainder word of the double result is loaded to special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are undefined. To

obtain the correct result, insert two or more instructions between the MFHI or MFLO instruction and the DDIVU

instruction.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T − 2: LO ← undefined

HI ← undefined

T − 1: LO ← undefined

HI ← undefined

T: LO ← (0 || GPR[rs]) div (0 || GPR[rt])

HI ← (0 || GPR[rs]) mod (0 || GPR[rt])

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM368

DIV Divide

2631
SPECIAL
000000

025

rs rt

21 20 16 15
0

0000000000

6 5
DIV

011010

Format:

DIV rs, rt MIPS I

Purpose:

Divides a 32-bit signed integer.

Description:

The contents of general-purpose register rs are divided by the contents of general-purpose register rt, treating

both operands as signed values.  No integer overflow exception occurs under any circumstances, and the result

of this operation is undefined when the divisor is zero.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

This instruction is typically followed by additional instructions to check for a zero divisor and for overflow.

When the operation completes, the quotient word of the double result is loaded to special register LO, and the

remainder word of the double result is loaded to special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are undefined. To

obtain the correct result, insert two or more instructions between the MFHI or MFLO instruction and the DDIV

instruction.

Operation:

32 T − 2: LO ← undefined

HI ← undefined

T − 1: LO ← undefined

HI ← undefined

T: LO ← GPR[rs] div GPR[rt]

HI ← GPR[rs] mod GPR[rt]

64 T − 2: LO ← undefined

HI ← undefined

T − 1: LO ← undefined

HI ← undefined

T: q ← GPR[rs]31..0 div GPR[rt]31..0

r ← GPR[rs]31..0 mod GPR[rt]31..0

LO ← (q31)
32

 || q31..0

HI ← (r31)
32

 || r31..0

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 369

DIVU Divide Unsigned

2631
SPECIAL
000000

025

rs rt

21 20 16 15
0

0000000000

6 5
DIVU

011011

Format:

DIVU rs, rt  MIPS I

Purpose:

Divides a 32-bit unsigned integer.

Description:

The contents of general-purpose register rs are divided by the contents of general-purpose register rt, treating

both operands as unsigned values.  No integer overflow exception occurs under any circumstances, and the

result of this operation is undefined when the divisor is zero.  In 64-bit mode, the operands must be valid sign-

extended, 32-bit values.

This instruction is typically followed by additional instructions to check for a zero divisor.

When the operation completes, the quotient word of the double result is loaded to special register LO, and the

remainder word of the double result is loaded to special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are undefined. To

obtain the correct result, insert two or more instructions between the MFHI or MFLO instruction and the DDIV

instruction.

Operation:

32 T − 2: LO ← undefined

HI ← undefined

T − 1: LO ← undefined

HI ← undefined

T: LO ← (0 || GPR[rs]) div (0 || GPR[rt])

HI ← (0 || GPR[rs]) mod (0 || GPR[rt])

64 T − 2: LO ← undefined

HI ← undefined

T − 1: LO ← undefined

HI ← undefined

T: q ← (0 || GPR[rs]31..0) div (0 || GPR[rt]31..0)

r ← (0 || GPR[rs]31..0) mod (0 || GPR[rt]31..0)

LO ← (q31)
32

 || q31..0

HI ← (r31)
32

 || r31..0

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM370

DMFC0 Doubleword Move from System Control Coprocessor

2631
COP0

010000

0

rd

25

rt

21 20 16 15 11 10
0

00000000000
DMF

00001

Format:

DMFC0 rt, rd MIPS III

Description:

The contents of coprocessor register rd of the CP0 are loaded to general-purpose register rt.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.  The contents of the coprocessor register

rd source are written to the 64-bit general-purpose register rt destination.  The operation of DMFC0 on a 32-bit

coprocessor 0 register is undefined.

Operation:

64 T: data ← CPR[0, rd]

T + 1: GPR[rt] ← data

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Coprocessor unusable exception (64-/32-bit user/supervisor mode if CP0 is disabled)

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 371

DMTC0 Doubleword Move to System Control Coprocessor

2631
COP0

010000

0

rd

25

rt

21 20 16 15 11 10
0

00000000000
DMT

00101

Format:

DMTC0 rt, rd MIPS III

Description:

The contents of general-purpose register rt are loaded to coprocessor register rd of the CP0.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

The contents of the general-purpose register rd source are written to the 64-bit coprocessor register rt destination.

The operation of DMTC0 on a 32-bit coprocessor 0 register is undefined.

Because the state of the virtual address translation system may be altered by this instruction, the operation of

load instructions, store instructions, and TLB operations immediately prior to and after this instruction are

undefined.

Operation:

64 T: data ← GPR[rt]

T + 1: CPR[0, rd] ← data

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Coprocessor unusable exception (64-/32-bit user/supervisor mode if CP0 is disabled)

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM372

DMULT Doubleword Multiply

2631
SPECIAL
000000

025

rs rt

21 20 16 15
0

0000000000

6 5
DMULT
011100

Format:

DMULT rs, rt MIPS III

Purpose:

Multiply 64-bit signed integers.

Description:

The contents of general-purpose registers rs and rt are multiplied, treating both operands as signed values.  No

integer overflow exception occurs under any circumstances.

When the operation completes, the lower word of the double result is loaded to special register LO, and the higher

word of the double result is loaded to special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these instructions are undefined.  To

obtain the correct result, insert two or more instructions between the MFHI or MFLO instruction and the DMULT

instruction.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T − 2: LO ← undefined

HI ← undefined

T − 1: LO ← undefined

HI ← undefined

T: t ← GPR[rs] * GPR[rt]

LO ← t63..0

HI ← t127..64

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 373

DMULTU Doubleword Multiply Unsigned

2631
SPECIAL
000000

025

rs rt

21 20 16 15
0

0000000000

6 5
DMULTU
011101

Format:

DMULTU rs, rt  MIPS III

Purpose:

Multiply 64-bit unsigned integers.

Description:

The contents of general-purpose registers rs and rt are multiplied, treating both operands as unsigned values.  No

integer overflow exception occurs under any circumstances.

When the operation completes, the lower word of the double result is loaded to special register LO, and the higher

word of the double result is loaded to special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these instructions are undefined.  To

obtain the correct result, insert two or more instructions between the MFHI or MFLO instruction and the DMULTU

instruction.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T − 2: LO ← undefined

HI ← undefined

T − 1: LO ← undefined

HI ← undefined

T: t ← (0 || GPR[rs]) * (0 || GPR[rt])

LO ← t63..0

HI ← t127..64

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM374

DROR Doubleword Rotate Right

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10 6 5
DROR

111010
1

00001 sa

Format:

DROR rd, rt, sa VR5500

Purpose:

Arithmetically shifts a doubleword to the right by the specific number of bits (0 to 31 bits).

Description:

This instruction shifts the contents of general-purpose register rt to the right by the number of bits specified by sa.

The lower bit that is shifted out is inserted in the higher bit.  The result is stored in general-purpose register rd.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: GPR[rd] ← GPR[rt]sa−1..0 || GPR[rt]63..sa

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 375

DROR32 Doubleword Rotate Right + 32

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10 6 5
DROR32
111110

1
00001 sa

Format:

DROR32 rd, rt, sa VR5500

Purpose:

Arithmetically shifts a doubleword to the right by the specific number of bits (32 to 63 bits).

Description:

This instruction shifts the contents of general-purpose register rt 32 + sa bits to the right.  The lower bit that is

shifted out is inserted in the higher bit.  The result is stored in general-purpose register rd.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

32, 64 T: s ← sa + 32

GPR[rd] ← GPR[rt]s−1..0 || GPR[rt]63..s

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM376

DRORV Doubleword Rotate Right Variable

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10 6 5
DRORV
010110

1
00001rs

Format:

DRORV rd, rt, rs VR5500

Purpose:

Arithmetically shifts a doubleword to the right by the specified number of bits.

Description:

This instruction shifts the contents of general-purpose register rt to the right by the number of bits specified by the

lower 5 bits of general-purpose register rs.  The lower bit that is shifted out is inserted in the higher bit.  The result

is stored in general-purpose register rd.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

32, 64 T: s ← GPR[rs]4..0

GPR[rd] ← GPR[rt]s−1..0 || GPR[rt]63..s

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 377

DSLL Doubleword Shift Left Logical

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10
0

00000

6 5
DSLL

111000sa

Format:

DSLL rd, rt, sa MIPS III

Purpose:

Shifts a doubleword to the left by the specific number of bits (0 to 31 bits).

Description:

The contents of general-purpose register rt are shifted left by the number of bits specified by sa, inserting zeros

into the lower bits.  The result is stored in general-purpose register rd.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: s ← 0 || sa

GPR[rd] ← GPR[rt] (63−s)..0 || 0
s

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM378

DSLL32 Doubleword Shift Left Logical + 32

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10
0

00000

6 5
DSLL32
111100sa

Format:

DSLL32 rd, rt, sa MIPS III

Purpose:

Shifts a doubleword to the left by the specific number of bits (32 to 63 bits).

Description:

The contents of general-purpose register rt are shifted left by 32 + sa bits, inserting zeros into the lower bits.  The

result is stored in general-purpose register rd.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: s ← 1 || sa

GPR[rd] ← GPR[rt] (63−s)..0 || 0
s

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 379

DSLLV Doubleword Shift Left Logical Variable

2631
SPECIAL
000000

0

rd

25

rs rt

21 20 16 15 11 10
0

00000

6 5
DSLLV
010100

Format:

DSLLV rd, rt, rs MIPS III

Purpose:

Shifts a doubleword to the left by the specified number of bits.

Description:

The contents of general-purpose register rt are shifted left by the number of bits specified by the lower 6 bits

contained in general-purpose register rs, inserting zeros into the lower bits.  The result is stored in general-

purpose register rd.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: s ← GPR[rs]5..0

GPR[rd] ← GPR[rt] (63−s)..0 || 0
s

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM380

DSRA Doubleword Shift Right Arithmetic

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10
0

00000

6 5
DSRA

111011sa

Format:

DSRA rd, rt, sa MIPS III

Purpose:

Arithmetically shifts a doubleword to the right by the specific number of bits (0 to 31 bits).

Description:

The contents of general-purpose register rt are shifted right by sa bits, sign-extending the higher bits.  The result

is stored in general-purpose register rd.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: s ← 0 || sa

GPR[rd] ← (GPR[rt]63)
s
 || GPR[rt]63..s

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 381

DSRA32 Doubleword Shift Right Arithmetic + 32

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10
0

00000

6 5
DSRA32
111111sa

Format:

DSRA32 rd, rt, sa MIPS III

Purpose:

Arithmetically shifts a doubleword to the right by the specific number of bits (32 to 63 bits).

Description:

The contents of general-purpose register rt are shifted right by 32 + sa bits, sign-extending the higher bits.  The

result is stored in general-purpose register rd.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: s ← 1 || sa

GPR[rd] ← (GPR[rt]63)
s
 || GPR[rt]63..s

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM382

DSRAV Doubleword Shift Right Arithmetic Variable

2631
SPECIAL
000000

0

rd

25

rs rt

21 20 16 15 11 10
0

00000

6 5
DSRAV
010111

Format:

DSRAV rd, rt, rs  MIPS III

Purpose:

Arithmetically shifts a doubleword to the right by the specified number of bits.

Description:

The contents of general-purpose register rt are shifted right by the number of bits specified by the lower 6 bits of

general-purpose register rs, sign-extending the higher bits.  The result is stored in general-purpose register rd.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: s ← GPR[rs]5..0

GPR[rd] ← (GPR[rt]63)
s
 || GPR[rt]63..s

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 383

DSRL Doubleword Shift Right Logical

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10
0

00000

6 5
DSRL

111010sa

Format:

DSRL rd, rt, sa  MIPS III

Purpose:

Logically shifts a doubleword to the right by the specific number of bits (0 to 31 bits).

Description:

The contents of general-purpose register rt are shifted right by sa bits, inserting zeros into the higher bits.  The

result is stored in general-purpose register rd.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: s ← 0 || sa

GPR[rd] ← 0
s
 || GPR[rt]63..s

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM384

DSRL32 Doubleword Shift Right Logical + 32

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10
0

00000

6 5
DSRL32
111110sa

Format:

DSRL32 rd, rt, sa  MIPS III

Purpose:

Logically shifts a doubleword to the right by the specific number of bits (32 to 63 bits).

Description:

The contents of general-purpose register rt are shifted right by 32 + sa bits, inserting zeros into the higher bits.

The result is stored in general-purpose register rd.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: s ← 1 || sa

GPR[rd] ← 0
s
 || GPR[rt]63..s

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 385

DSRLV Doubleword Shift Right Logical Variable

2631
SPECIAL
000000

0

rd

25

rs rt

21 20 16 15 11 10
0

00000

6 5
DSRLV
010110

Format:

DSRLV rd, rt, rs  MIPS III

Purpose:

Logically shifts a doubleword to the right by the specified number of bits.

Description:

The contents of general-purpose register rt are shifted right by the number of bits specified by the lower 6 bits of

general-purpose register rs, inserting zeros into the higher bits.  The result is stored in general-purpose register

rd.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: s ← GPR[rs]5..0

GPR[rd] ← 0
s
 || GPR[rt]63..s

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM386

DSUB Doubleword Subtract

2631
SPECIAL
000000

0

rd

25

rs rt

21 20 16 15 11 10
0

00000

6 5
DSUB

101110

Format:

DSUB rd, rs, rt MIPS III

Purpose:

Subtract a 64-bit integer.  A trap is performed if an overflow occurs.

Description:

The contents of general-purpose register rt are subtracted from the contents of general-purpose register rs and

the result is stored in general-purpose register rd.

An integer overflow exception takes place if the carries out of bits 62 and 63 differ (2's complement overflow).

The destination register rd is not modified when an integer overflow exception occurs.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: GPR[rd] ← GPR[rs] − GPR[rt]

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Integer overflow exception

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 387

DSUBU Doubleword Subtract Unsigned

2631
SPECIAL
000000

0

rd

25

rs rt

21 20 16 15 11 10
0

00000

6 5
DSUBU
101111

Format:

DSUBU rd, rs, rt  MIPS III

Purpose:

Subtract a 64-bit integer.

Description:

The contents of general-purpose register rt are subtracted from the contents of general-purpose register rs and

the result is stored in general-purpose register rd.

The only difference between this instruction and the DSUB instruction is that DSUBU never causes an integer

overflow.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: GPR[rd] ← GPR[rs] − GPR[rt]

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM388

ERET Return from Exception

2631
COP0

010000

025
CO
1

24 6 5
ERET

011000
0

0000000000000000000

Format:

ERET MIPS III

Description:

The ERET instruction is the instruction for returning from an interrupt, exception, or error exception.  Unlike a

branch or jump instruction, ERET does not execute the next instruction.

The ERET instruction must not be placed in a branch delay slot.

If the ERL bit of the Status register is set (SR2 = 1), the contents of the ErrorEPC register are loaded to the PC

and the ERL bit is cleared (SR2).  Otherwise (SR2 = 0), the contents of the PC are loaded from the EPC register,

and the EXL bit of the Status register is cleared (SR1 = 0).

Because the LL bit is cleared by the ERET instruction, an execution of ERET between the LL, LLD instructions

and SC, SD instructions causes the SC instruction to fail.

Operation:

32, 64 T: if SR2 = 1 then

  PC ← ErrorEPC

  SR ← SR31..3 || 0 || SR1..0

else

  PC ← EPC

  SR ← SR31..2 || 0 || SR0

endif

LLbit ← 0

Exceptions:

Coprocessor unusable exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 389

J Jump

2631
J

000010

0

target

25

Format:

J target  MIPS I

Purpose:

Executes a branch in the area (256 MB) currently aligned.

Description:

The 26-bit target address is shifted left two bits and combined with the higher 4 bits of the address of the delay

slot.  The program unconditionally jumps to this calculated address with a delay of one instruction.

Operation:

32 T: temp ← target

T + 1: PC ← PC31..28 || temp || 0
2

64 T: temp ← target

T + 1: PC ← PC63..28 || temp || 0
2

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM390

JAL Jump and Link

2631
JAL

000011

0

target

25

Format:

JAL target MIPS I

Purpose:

Executes a procedure call in the area (256 MB) currently aligned.

Description:

The 26-bit target address is shifted left two bits and combined with the higher 4 bits of the address of the delay

slot.  The program unconditionally jumps to this calculated address with a delay of one instruction.  The address

of the instruction immediately after a delay slot is placed in the link register (r31).

Operation:

32 T: temp ← target

GPR[31] ← PC + 8

T + 1: PC ← PC31..28 || temp || 0
2

64 T: temp ← target

GPR[31] ← PC + 8

T + 1: PC ← PC63..28 || temp || 0
2

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 391

JALR Jump and Link Register

2631
SPECIAL
000000

0

rd

25

rs

21 20 16 15 11 10
0

00000

6 5
JALR

001001
0

00000

Format:

JALR rs

JALR rd, rs MIPS I

Purpose:

Executes a procedure call to an instruction address in a register.

Description:

The program unconditionally jumps to the address contained in general-purpose register rs with a delay of one

instruction.  The address of the instruction immediately after the delay slot is placed in general-purpose register

rd.  The default value of rd, if omitted in the assembly language instruction, is 31.

Register numbers rs and rd may not be equal, because such an instruction does not have the same effect when

re-executed.  Because storing a link address destroys the contents of rs if they are equal.  Even such instructions

are execute, an exception does not result, and the result of executing such an instruction is undefined.

The effective target address of general-purpose register rs must be aligned.  If the lower 2 bits are not zero, an

address error exception will occur when the jump target instruction is subsequently fetched.

Operation:

32, 64 T: temp ← GPR[rs]

GPR[rd] ← PC + 8

T + 1: PC ← temp

Exceptions:

Address error exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM392

JR Jump Register

2631
SPECIAL
000000

025

rs

21 20
0

000000000000000

6 5
JR

001000

Format:

JR rs MIPS I

Description:

The program unconditionally jumps to the address contained in general-purpose register rs with a delay of one

instruction.

The effective target address of general-purpose register rs must be aligned.   If the lower 2 bits are not zero, an

address error exception will occur when the jump target instruction is subsequently fetched.

Operation:

32, 64 T: temp ← GPR[rs]

T + 1: PC ← temp

Exceptions:

Address error exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 393

LB Load Byte

2631

LB
100000

025

base rt

21 20 16 15

offset

Format:

LB rt, offset (base) MIPS I

Purpose:

Loads 1 byte from memory as a signed value.

Description:

The 16-bit offset is sign-extended and added to the contents of general-purpose register base to generate a

virtual address.  The contents of the byte at the memory location specified by the effective address are sign-

extended and loaded to general-purpose register rt.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor ReverseEndian
3
)

mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

byte ← vAddr2..0 xor BigEndianCPU
3

GPR[rt] ← (mem7+8*byte)
24

 || mem7+8*byte..8*byte

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr,DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor ReverseEndian
3
)

mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

byte ← vAddr2..0 xor BigEndianCPU
3

GPR[rt] ← (mem7+8*byte)
56

 || mem7+8*byte..8*byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM394

LBU Load Byte Unsigned

2631

LBU
100100

025

base rt

21 20 16 15

offset

Format:

LBU rt, offset (base) MIPS I

Purpose:

Loads 1 byte from memory as an unsigned value.

Description:

The 16-bit offset is sign-extended and added to the contents of general-purpose register base to generate a

virtual address.  The contents of the byte at the memory location specified by the effective address are zero-

extended and loaded to general-purpose register rt.

Operation:

32 T: vAddr ←((offset15)
16

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr,DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor ReverseEndian
3
)

mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

byte ← vAddr2..0 xor BigEndianCPU
3

GPR[rt] ← 0
24

 || mem7+8*byte..8*byte

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr,DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor ReverseEndian
3
)

mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

byte ← vAddr2..0 xor BigEndianCPU
3

GPR[rt] ← 0
56

 || mem7+8*byte..8*byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 395

LD Load Doubleword

2631

LD
110111

025

base rt

21 20 16 15

offset

Format:

LD rt, offset (base) MIPS III

Purpose:

Loads a doubleword from memory.

Description:

The 16-bit offset is sign-extended and added to the contents of general-purpose register base to generate a

virtual address.  The contents of the 64-bit doubleword at the memory location specified by the effective address

are loaded to general-purpose register rt.

An address error exception occurs if the lower 3 bits of the effective address are not 0.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

GPR[rt] ← mem

Remark  The higher 32 bits are ignored when a virtual address is generated in the 32-bit kernel mode.

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM396

LDCz Load Doubleword to Coprocessor z

(1/2)

2631

LDCz
1101XXNote

025

base rt

21 20 16 15

offset

Format:

LDCz rt, offset (base) MIPS II

Purpose:

Loads a doubleword from memory to the coprocessor general-purpose register.

Description:

The 16-bit offset is sign-extended and added to the contents of general-purpose register base to generate a

virtual address.  The contents of the doubleword at the memory location specified by the effective address are

loaded to CPz register rt.   How to use data is defined for each processor.

An address error exception occurs if the lower 3 bits of the address are not 0.

This instruction set to CP0 is invalid.

If CP1 is specified and the FR bit of the status register is 0, only an even register number can be specified

because a pair of even and odd numbers adjoining each other is used as the register number of a general-

purpose register.  If an odd number is specified, the operation is undefined.  If the FR bit of the status bit is 1, both

odd and even register numbers are valid.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

COPzLD (rt, mem)

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

COPzLD (rt, mem)

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Coprocessor unusable exception

Note  See the opcode table below, or 17.4 CPU Instruction Opcode Bit Encoding.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 397

LDCz Load Doubleword to Coprocessor z

(2/2)

Opcode Table:

31

1

30

1

29

0

28

1

27

1

26

0

0

LDC2

Opcode Coprocessor No.

31

1

30

1

29

0

28

1

27

0

26

1

0

LDC1

Remark  Coprocessor 2 is reserved in the VR5500.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM398

LDL Load Doubleword Left

(1/3)

31 2526 2021 1516 0

LDL
011010 base rt offset

Format:

LDL rt, offset (base) MIPS III

Purpose:

Loads the most significant part of a doubleword from unaligned memory.

Description:

This instruction can be used in combination with the LDR instruction when loading a doubleword data in the

memory that does not exist at a doubleword boundary to general-purpose register rt.  The LDL instruction loads

the higher word of the data, and the LDR instruction loads the lower word of the data to the register.

The 16-bit offset is sign-extended and added to the contents of general-purpose register base to generate a

virtual address that can specify an arbitrary byte.  Among the doubleword data in the memory whose most

significant byte is the byte specified by the virtual address, only data at the same doubleword boundary as the

target address is loaded and stored in the higher portion of general-purpose register rt.  Other bits in general-

purpose register rt will not be changed.  The number of bytes to be loaded varies from one to eight depending on

the byte specified.

In other words, the byte specified by the virtual address is stored in the most significant byte of general-purpose

register rt.  As long as there are lower bytes among the bytes at the same doubleword boundary, the operation to

store the byte in the next byte of general-purpose register rt will be continued.

The lower byte of the register will not be changed.

15

7

14

6

13

5

12

4

11

3

10

2

9

1

8

0

Address 8

Address 0

Memory
(Little endian)

Before load A B C D E F G H $24

After load 12 11 10 9 8 F G H $24

Register

LDL $24,12 ($0)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 399

LDL Load Doubleword Left

(2/3)

The contents of general-purpose register rt are internally bypassed within the processor so that no NOP is

needed between an immediately preceding load instruction which specifies register rt and a following LDL (or

LDR) instruction which also specifies register rt.

An address error exception caused by the specified address not being aligned at a doubleword boundary does

not occur.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor ReverseEndian
3
)

if BigEndianMem = 0 then

  pAddr ← pAddrPSIZE−1..3 || 0
3

endif

byte ← vAddr2..0 xor BigEndianCPU
3

mem ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)

GPR[rt] ← mem7+8*byte..0 || GPR[rt]55−8*byte..0

Remark  The higher 32 bits are ignored when a virtual address is generated in the 32-bit kernel mode.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM400

LDL Load Doubleword Left

(3/3)

The relationship between the address assigned to the LDL instruction and its result (each byte of the register) is

shown below.

A B C D E F G HRegister

I J K L M N O PMemory

BigEndianCPU = 0 BigEndianCPU = 1

vAddr2..0 Offset Offset
Destination Type

LEM BEM
Destination Type

LEM BEM

0

1

2

3

4

5

6

7

P B C D E F G H

O P C D E F G H

N O P D E F G H

M N O P E F G H

L M N O P F G H

K L M N O P G H

J K L M N O P H

I J K L M N O P

0

1

2

3

4

5

6

7

0

0

0

0

0

0

0

0

7

6

5

4

3

2

1

0

I J K L M N O P

J K L M N O P H

K L M N O P G H

L M N O P F G H

M N O P E F G H

N O P D E F G H

O P C D E F G H

P B C D E F G H

7

6

5

4

3

2

1

0

0

0

0

0

0

0

0

0

0

1

2

3

4

5

6

7

Remark Type AccessType (see Figure 3-3  Byte Specification Related to Load and Store Instruction)

output to memory

Offset pAddr2..0 output to memory

LEM Little-endian memory (BigEndianMem = 0)

BEM Big-endian memory (BigEndianMem = 1)

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 401

LDR Load Doubleword Right

(1/3)

31 2526 2021 1516 0

LDR
011011 base rt offset

Format:

LDR rt, offset (base) MIPS III

Purpose:

Loads the least significant part of a doubleword from unaligned memory.

Description:

This instruction can be used in combination with the LDL instruction when loading a doubleword data in the

memory that does not exist at a doubleword boundary to general-purpose register rt.  The LDL instruction loads

the higher word of the data, and the LDR instruction loads the lower word of the data to the register.

The 16-bit offset is sign-extended and added to the contents of general-purpose register base to generate a

virtual address that can specify an arbitrary byte.  Among the doubleword data in the memory whose least

significant byte is the byte specified by the virtual address, only data at the same doubleword boundary as the

target address is loaded and stored in the lower portion of general-purpose register rt.  Other bits in general-

purpose register rt will not be changed.  The number of bytes to be loaded varies from one to eight depending on

the byte specified.

In other words, the byte specified by the virtual address is stored in the least significant byte of general-purpose

register rt.  As long as there are higher bytes among the bytes at the same doubleword boundary, the operation to

store the byte in the next byte of general-purpose register rt will be continued.

The higher byte of the register will not be changed.

15

7

14

6

13

5

12

4

11

3

10

2

9

1

8

0

Address 8

Address 0

Memory
(Little endian)

Before load A B C D E F G H $24

After load A B C D E 7 6 5 $24

Register

LDR $24,5 ($0)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM402

LDR Load Doubleword Right

(2/3)

The contents of general-purpose register rt are internally bypassed within the processor so that no NOP is

needed between an immediately preceding load instruction which specifies register rt and a following LDR (or

LDL) instruction which also specifies register rt.

An address error exception caused by the specified address not being aligned at a doubleword boundary does

not occur.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor ReverseEndian
3
)

if BigEndianMem = 1 then

  pAddr ← pAddrPSIZE−1..3 || 0
3

endif

byte ← vAddr2..0 xor BigEndianCPU
3

mem ← LoadMemory (uncached, DOUBLEWORD - byte, pAddr, vAddr, DATA)

GPR[rt] ← GPR[rt]63..64−8*byte || mem63..8*byte

Remark  The higher 32 bits are ignored when a virtual address is generated in the 32-bit kernel mode.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 403

LDR Load Doubleword Right

(3/3)

The relationship between the address assigned to the LDR instruction and its result (each byte of the register) is

shown below.

A B C D E F G HRegister

I J K L M N O PMemory

BigEndianCPU = 0 BigEndianCPU = 1

vAddr2..0 Offset Offset
Destination Type

LEM BEM
Destination Type

LEM BEM

0

1

2

3

4

5

6

7

I J K L M N O P

A I J K L M N O

A B I J K L M N

A B C I J K L M

A B C D I J K L

A B C D E I J K

A B C D E F I J

A B C D E F G I

7

6

5

4

3

2

1

0

0

1

2

3

4

5

6

7

0

0

0

0

0

0

0

0

A B C D E F G I

A B C D E F I J

A B C D E I J K

A B C D I J K L

A B C I J K L M

A B I J K L M N

A I J K L M N O

I J K L M N O P

0

1

2

3

4

5

6

7

7

6

5

4

3

2

1

0

0

0

0

0

0

0

0

0

Remark Type AccessType (see Figure 3-3  Byte Specification Related to Load and Store Instruction)

output to memory

Offset pAddr2..0 output to memory

LEM Little-endian memory (BigEndianMem = 0)

BEM Big-endian memory (BigEndianMem = 1)

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM404

LH Load Halfword

2631

LH
100001

025

base rt

21 20 16 15

offset

Format:

LH rt, offset (base) MIPS I

Purpose:

Loads a halfword from memory as a signed value.

Description:

The 16-bit offset is sign-extended and added to the contents of general-purpose register base to generate a

virtual address.  The contents of the halfword at the memory location specified by the effective address are sign-

extended and loaded to general-purpose register rt.

An address error exception occurs if the least-significant bit of the address is not 0.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor (ReverseEndian
2
 || 0 ))

mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

byte ← vAddr2..0 xor (BigEndianCPU
2
 || 0)

GPR[rt] ← (mem15+8*byte)
16

 || mem15+8*byte..8*byte

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor (ReverseEndian
2
 || 0 ))

mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

byte ← vAddr2..0 xor (BigEndianCPU
2
 || 0)

GPR[rt] ← (mem15+8*byte)
48

 || mem15+8*byte..8*byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 405

LHU Load Halfword Unsigned

2631

LHU
100101

025

base rt

21 20 16 15

offset

Format:

LHU rt, offset (base) MIPS I

Purpose:

Loads a halfword from memory as an unsigned value.

Description:

The 16-bit offset is sign-extended and added to the contents of general-purpose register base to generate a

virtual address.  The contents of the halfword at the memory location specified by the effective address are zero-

extended and loaded to general-purpose register rt.

An address error exception occurs if the least-significant bit of the address is not 0.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor (ReverseEndian2 || 0))

mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

byte ← vAddr2..0 xor (BigEndianCPU
2
 || 0)

GPR[rt] ← 0
16

 || mem15+8*byte..8*byte

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor (ReverseEndian
2
 || 0))

mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

byte ← vAddr2..0 xor (BigEndianCPU
2
 || 0)

GPR[rt] ← 0
48

 || mem15+8*byte..8*byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM406

LL Load Linked

(1/2)

2631

LL
110000

025

base rt

21 20 16 15

offset

Format:

LL rt, offset (base) MIPS II

Purpose:

Loads a word from memory for atomic read-modify-write.

Description:

This instruction sign-extends a 16-bit offset and adds the result to the contents of general-purpose register base

to generate a virtual address.  It loads the contents of a word from the memory at a specified address to general-

purpose register rt.  In the 64-bit mode, the loaded word is sign-extended.  In addition, the physical address of the

specified memory is stored in the LLAddr register and the LL bit is set to 1.  After that, the processor checks if the

address stored in the LLAddr register has been rewritten by another processor or device.

Updating memory in a multi-processor system can be accurately performed by using the LL and SC instructions.

These instructions are used as shown in the following example.

L1:

LL T1, (T0)

ADDI T2, T1, 1

SC T2, (T0)

BEQ T2, 0, L1

NOP

In this example, the word addressed by T0 is automatically incremented.  By replacing the ADDI instruction with

the ORI instruction, the bit is automatically set.

This instruction can be used in all the modes and it is not necessary to enable CP0.

This instruction is defined to maintain compatibility with the other VR Series processors.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 407

LL Load Linked

(2/2)

The operation of the LL instruction is undefined if the specified address is in an uncached area.  A cache miss

that may occur between the LL and SC instructions prevents execution of the SC instruction.  Therefore, do not

use a load or store instruction between the LL and SC instructions.  Otherwise, the operation of the SC instruction

will not be guaranteed.  If exceptions often occur, exceptions must be temporarily disabled because they also

prevent execution of the SC instruction.

An address error exception occurs if the lower 2 bits of the address are not 0.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

GPR[rt] ← mem

LLbit ← 1

LLAddr ← pAddr

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

GPR[rt] ← mem

LLbit ← 1

LLAddr ← pAddr

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM408

LLD Load Linked Doubleword

(1/2)

2631

LLD
110100

025

base rt

21 20 16 15

offset

Format:

LLD rt, offset (base) MIPS III

Purpose:

Loads a doubleword from memory for atomic read-modify-write.

Description:

This instruction sign-extends a 16-bit offset and adds the result to the contents of general-purpose register base

to generate a virtual address.  It loads the contents of a doubleword from the memory at a specified address to

general-purpose register rt. In addition, the physical address of the specified memory is stored in the LLAddr

register and the LL bit is set to 1.  After that, the processor checks if the address stored in the LLAddr register has

been rewritten by another processor or device.

Updating memory in a multi-processor system can be accurately performed by using the LLD and SCD

instructions.  These instructions are used as shown in the following example.

L1:

LLD T1, (T0)

DADDI T2, T1, 1

SCD T2, (T0)

BEQ T2, 0, L1

NOP

In this example, the doubleword addressed by T0 is automatically incremented.  By replacing the DADDI

instruction with the ORI instruction, the bit is automatically set.

This instruction is defined to maintain compatibility with the other VR Series processors.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 409

LLD Load Linked Doubleword

 (2/2)

The operation of the LLD instruction is undefined if the specified address is in an uncached area.  A cache miss

that may occur between the LLD and SCD instructions prevents execution of the SCD instruction.  Therefore, do

not use a load or store instruction between the LLD and SCD instructions.  Otherwise, the operation of the SCD

instruction will not be guaranteed.  If exceptions often occur, exceptions must be temporarily disabled because

they also prevent execution of the SCD instruction.

An address error exception occurs if the lower 3 bits of the address are not 0.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

GPR[rt] ← mem

LLbit ← 1

LLAddr ← pAddr

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

GPR[rt] ← mem

LLbit ← 1

LLAddr ← pAddr

Remark  The higher 32 bits are ignored when a virtual address is generated in the 32-bit kernel mode.

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM410

LUI Load Upper Immediate

2631

LUI
001111

025

rt

21 20 16 15

immediate0
00000

Format:

LUI rt, immediate MIPS I

Purpose:

Loads a constant to the upper half of a word.

Description:

The 16-bit immediate is shifted left 16 bits and concatenated to 16 bits of zeros.  The result is stored in general-

purpose register rt.  In 64-bit mode, the loaded word is sign-extended.

Operation:

32 T: GPR[rt] ← immediate || 0
16

64 T: GPR[rt] ← (immediate15)
32

 || immediate || 0
16

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 411

LW Load Word

2631

LW
100011

025

base rt

21 20 16 15

offset

Format:

LW rt, offset (base) MIPS I

Purpose:

Loads a word from memory as a signed value.

Description:

The 16-bit offset is sign-extended and added to the contents of general-purpose register base to generate a

virtual address.  The contents of the word at the memory location specified by the effective address are loaded to

general-purpose register rt.  In 64-bit mode, the loaded word is sign-extended.

An address error exception occurs if the lower 2 bits of the address are not 0.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

GPR[rt] ← mem

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

GPR[rt] ← mem

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM412

LWCz Load Word to Coprocessor z

(1/2)

2631

LWCz
1100XXNote

025

base rt

21 20 16 15

offset

Format:

LWCz rt, offset (base) MIPS I

Purpose:

Loads a word from memory to the coprocessor general-purpose register.

Description:

The 16-bit offset is sign-extended and added to the contents of general-purpose register base to generate a

virtual address.  The contents of the word at the memory location specified by the effective address are loaded to

CPz register rt.   How to use data is defined for each processor.

An address error exception occurs if the lower 2 bits of the address are not 0.

This instruction set to CP0 is invalid.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor (ReverseEndian || 0
2
))

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

byte ← vAddr2..0 xor (BigEndianCPU || 0
2
)

COPzLW (byte, rt, mem)

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor (ReverseEndian || 0
2
))

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

byte ← vAddr2..0 xor (BigEndianCPU || 0
2
)

COPzLW (byte, rt, mem)

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Coprocessor unusable exception

Note  See the opcode table below, or 17.4 CPU Instruction Opcode Bit Encoding.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 413

LWCz Load Word to Coprocessor z

 (2/2)

Opcode Table:

31

1

30

1

29

0

28

0

27

1

26

0

0

LWC2

Opcode Coprocessor No.

31

1

30

1

29

0

28

0

27

0

26

1

0

LWC1

Remark  Coprocessor 2 is reserved in the VR5500.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM414

LWL Load Word Left

(1/3)

31 2526 2021 1516 0

LWL
100010 base rt offset

Format:

LWL rt, offset (base) MIPS I

Purpose:

Loads the most significant part of a word from unaligned memory.

Description:

This instruction can be used in combination with the LWR instruction when loading a word data in the memory

that does not exist at a word boundary to general-purpose register rt.  The LWL instruction loads the higher word

of the data, and the LWR instruction loads the lower word of the data to the register.

The 16-bit offset is sign-extended and added to the contents of general-purpose register base to generate a

virtual address that can specify an arbitrary byte.  Among the word data in the memory whose most significant

byte is the byte specified by the virtual address, only data at the same word boundary as the target address is

loaded and stored in the higher portion of general-purpose register rt.  Other bits in general-purpose register rt will

not be changed.  The number of bytes to be loaded varies from one to four depending on the byte specified.

In other words, the byte specified by the virtual address is stored in the most significant byte of general-purpose

register rt.  As long as there are lower bytes among the bytes at the same word boundary, the operation to store

the byte in the next byte of general-purpose register rt will be continued.

The lower byte of the register will not be changed.

7

3

6

2

5

1

4

0

Address 4

Address 0

Memory
(Little endian)

Before load A B C D $24

After load $24

Register

LWL $24,4 ($0)

4 B C D



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 415

LWL Load Word Left

(2/3)

The contents of general-purpose register rt are internally bypassed within the processor so that no NOP is

needed between an immediately preceding load instruction which specifies register rt and a following LWL (or

LWR) instruction which also specifies register rt.

An address error exception caused by the specified address not being aligned at a word boundary does not

occur.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor ReverseEndian
3
)

if BigEndianMem = 0 then

  pAddr ← pAddrPSIZE−1..2 || 0
2

endif

byte ← vAddr1..0 xor BigEndianCPU
2

word ← vAddr2 xor BigEndianCPU

mem ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)

temp ← mem32*word+8*byte+7..32*word || GPR[rt]23−8*byte..0

GPR[rt] ← temp

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor ReverseEndian
3
)

if BigEndianMem = 0 then

  pAddr ← pAddrPSIZE−1..2 || 0
2

endif

byte ← vAddr1..0 xor BigEndianCPU
2

word ← vAddr2 xor BigEndianCPU

mem ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)

temp ← mem32*word+8*byte+7..32*word || GPR[rt]23−8*byte..0

GPR[rt] ← (temp31)
32

 || temp



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM416

LWL Load Word Left

(3/3)

The relationship between the address assigned to the LWL instruction and its result (each byte of the register) is

shown below.

A B C D E F G HRegister

I J K L M N O PMemory

BigEndianCPU = 0 BigEndianCPU = 1

vAddr2..0 Offset Offset
Destination Type

LEM BEM
Destination Type

LEM BEM

0

1

2

3

4

5

6

7

S S S S P F G H

S S S S O P G H

S S S S N O P H

S S S S M N O P

S S S S L F G H

S S S S K L G H

S S S S J K L H

S S S S I J K L

0

1

2

3

0

1

2

3

0

0

0

0

4

4

4

4

7

6

5

4

3

2

1

0

S S S S I J K L

S S S S J K L H

S S S S K L G H

S S S S L F G H

S S S S M N O P

S S S S N O P H

S S S S O P G H

S S S S P F G H

3

2

1

0

3

2

1

0

4

4

4

4

0

0

0

0

0

1

2

3

4

5

6

7

Remark Type AccessType (see Figure 3-3  Byte Specification Related to Load and Store Instruction)

output to memory

Offset pAddr2..0 output to memory

LEM Little-endian memory (BigEndianMem = 0)

BEM Big-endian memory (BigEndianMem = 1)

S Bit 31 of destination sign-extended

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 417

LWR Load Word Right

(1/3)

31 2526 2021 1516 0

LWR
100110 base rt offset

Format:

LWR rt, offset (base) MIPS I

Purpose:

Loads the least significant part of a word from unaligned memory.

Description:

This instruction can be used in combination with the LWL instruction when loading a word data in the memory that

does not exist at a word boundary to general-purpose register rt.  The LWL instruction loads the higher word of

the data, and the LWR instruction loads the lower word of the data to the register.

The 16-bit offset is sign-extended and added to the contents of general-purpose register base to generate a

virtual address that can specify an arbitrary byte.  Among the word data in the memory whose least significant

byte is the byte specified by the virtual address, only data at the same word boundary as the target address is

loaded and stored in the lower portion of general-purpose register rt.  Other bits in general-purpose register rt will

not be changed.  The number of bytes to be loaded varies from one to four depending on the byte specified.

In other words, the byte specified by the virtual address is stored in the least significant byte of general-purpose

register rt.  As long as there are higher bytes among the bytes at the same word boundary, the operation to store

the byte in the next byte of general-purpose register rt will be continued.

7

3

6

2

5

1

4

0

Address 4

Address 0

Memory
(Little endian)

Before load A B C D $24

After load $24

Register

LWR $24,1 ($0)

A 3 2 1



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM418

LWR Load Word Right

(2/3)

The contents of general-purpose register rt are internally bypassed within the processor so that no NOP is

needed between an immediately preceding load instruction which specifies register rt and a following LWR (or

LWL) instruction which also specifies register rt.

An address error exception caused by the specified address not being aligned at a word boundary does not

occur.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor ReverseEndian
3
)

if BigEndianMem = 1 then

  pAddr ← pAddrPSIZE−1..3 || 0
3

endif

byte ← vAddr1..0 xor BigEndianCPU
2

word ← vAddr2 xor BigEndianCPU

mem ← LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)

temp ← GPR[rt]31..32−8*byte || mem31+32*word ..32*word+ 8*byte

GPR[rt] ← temp

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor ReverseEndian
3
)

if BigEndianMem = 1 then

  pAddr ← pAddrPSIZE−1..3 || 0
3

endif

byte ← vAddr1..0 xor BigEndianCPU
2

word ← vAddr2 xor BigEndianCPU

mem ← LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)

temp ← GPR[rt]31..32−8*byte || mem31+32*word ..32*word+ 8*byte

GPR[rt] ← (temp31)
32

 || temp



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 419

LWR Load Word Right

(3/3)

The relationship between the address assigned to the LWR instruction and its result (each byte of the register) is

shown below.

A B C D E F G HRegister

I J K L M N O PMemory

BigEndianCPU = 0 BigEndianCPU = 1

vAddr2..0 Offset Offset
Destination Type

LEM BEM
Destination Type

LEM BEM

0

1

2

3

4

5

6

7

S S S S M N O P

X X X X E M N O

X X X X E F M N

X X X X E F G M

S S S S I J K L

X X X X E I J K

X X X X E F I J

X X X X E F G I

3

2

1

0

3

2

1

0

0

1

2

3

4

5

6

7

4

4

4

4

0

0

0

0

X X X X E F G I

X X X X E F I J

X X X X E I J K

S S S S I J K L

X X X X E F G M

X X X X E F M N

X X X X E M N O

S S S S M N O P

0

1

2

3

0

1

2

3

7

6

5

4

3

2

1

0

0

0

0

0

4

4

4

4

Remark Type AccessType (see Figure 3-3  Byte Specification Related to Load and Store Instruction)

output to memory

Offset pAddr2..0 output to memory

LEM Little-endian memory (BigEndianMem = 0)

BEM Big-endian memory (BigEndianMem = 1)

S Bit 31 of destination sign-extended

X No change (32-bit mode)

Bit 31 of destination sign-extended (64-bit mode)

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM420

LWU Load Word Unsigned

2631

LWU
100111

025

base rt

21 20 16 15

offset

Format:

LWU rt, offset (base) MIPS III

Purpose:

Loads a word from memory as an unsigned value.

Description:

The 16-bit offset is sign-extended and added to the contents of general-purpose register base to generate a

virtual address.  The contents of the word at the memory location specified by the effective address are loaded to

general-purpose register rt.  The loaded word is zero-extended.

An address error exception occurs if the lower 2 bits of the address are not 0.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

GPR[rt] ← 0
32

 || mem

Remark  The higher 32 bits are ignored when a virtual address is generated in the 32-bit kernel mode.

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 421

MACC Multiply, Accumulate, and Move LO

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10
MACC

00101011000rs

Format:

MACC rd, rs, rt VR5500

Purpose:

Combines multiplication and addition of 32-bit signed integers for execution.

Description:

This instruction multiplies the contents of general-purpose register rs by the contents of general-purpose register

rt.  It treats both the operands as 32-bit signed integers.

The lower 32 bits of special register HI and the lower 32 bits of special register LO are combined and used as an

accumulator.

The contents of this accumulator are added to the result of the multiplication as a 64-bit signed integer, and the

result is stored in the accumulator.  The lower 32 bits of the result are also stored in general-purpose register rd.

An integer overflow exception does not occur.

Operation:

32, 64 T: HI31..0 || LO31..0 ← (HI31..0 || LO31..0) + (GPR[rs] * GPR[rt])

GPR[rd]31..0 ← ((HI31..0 || LO31..0) + (GPR[rs] * GPR[rt]))31..0

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM422

MACCHI Multiply, Accumulate, and Move HI

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10
MACCHI

01101011000rs

Format:

MACCHI rd, rs, rt VR5500

Purpose:

Combines multiplication and addition of 32-bit signed integers for execution.

Description:

This instruction multiplies the contents of general-purpose register rs by the contents of general-purpose register

rt.  It treats both the operands as 32-bit signed integers.

The lower 32 bits of special register HI and the lower 32 bits of special register LO are combined and used as an

accumulator.

The contents of this accumulator are added to the result of the multiplication as a 64-bit signed integer, and the

result is stored in the accumulator.  The higher 32 bits of the result are also stored in general-purpose register rd.

An integer overflow exception does not occur.

Operation:

32, 64 T: HI31..0 || LO31..0 ← (HI31..0 || LO31..0) + (GPR[rs] * GPR[rt])

GPR[rd]31..0 ← ((HI31..0 || LO31..0) + (GPR[rs] * GPR[rt]))63..32

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 423

MACCHIU Unsigned Multiply, Accumulate, and Move HI

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10
MACCHIU

01101011001rs

Format:

MACCHIU rd, rs, rt VR5500

Purpose:

Combines multiplication and addition of 32-bit unsigned integers for execution.

Description:

This instruction multiplies the contents of general-purpose register rs by the contents of general-purpose register

rt.  It treats both the operands as 32-bit unsigned integers.

The lower 32 bits of special register HI and the lower 32 bits of special register LO are combined and used as an

accumulator.

The contents of this accumulator are added to the result of the multiplication as a 64-bit unsigned integer, and the

result is stored in the accumulator.  The higher 32 bits of the result are also stored in general-purpose register rd.

An integer overflow exception does not occur.

Operation:

32, 64 T: HI31..0 || LO31..0 ← (HI31..0 || LO31..0) + (GPR[rs] * GPR[rt])

GPR[rd]31..0 ← ((HI31..0 || LO31..0) + (GPR[rs] * GPR[rt]))63..32

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM424

MACCU Unsigned Multiply, Accumulate, and Move LO

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10
MACCU

00101011001rs

Format:

MACCU rd, rs, rt VR5500

Purpose:

Combines multiplication and addition of 32-bit unsigned integers for execution.

Description:

This instruction multiplies the contents of general-purpose register rs by the contents of general-purpose register

rt.  It treats both the operands as 32-bit unsigned integers.

The lower 32 bits of special register HI and the lower 32 bits of special register LO are combined and used as an

accumulator.

The contents of this accumulator are added to the result of the multiplication as a 64-bit unsigned integer, and the

result is stored in the accumulator.  The lower 32 bits of the result are also stored in general-purpose register rd.

An integer overflow exception does not occur.

Operation:

32, 64 T: HI31..0 || LO31..0 ← (HI31..0 || LO31..0) + (GPR[rs] * GPR[rt])

GPR[rd]31..0 ← ((HI31..0 || LO31..0) + (GPR[rs] * GPR[rt]))31..0

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 425

MADD Multiply and Add Word

2631
SPECIAL2
011100

025

rs rt

21 20 16 15
0

0000000000

6 5
MADD
000000

Format:

MADD rs, rt VR5500

Purpose:

Combines multiplication and addition of 32-bit signed integers for execution.

Description:

This instruction multiplies the contents of general-purpose register rs by the contents of general-purpose register

rt.  It treats both the operands as signed integers.  The result of this multiplication is added to a 64-bit value that

combined special register HI and LO.  The lower word of the 64-bit sum from this add operation is sign-extended

and loaded to special register LO and the higher word is sign-extended and loaded to special register HI.

An integer overflow exception does not occur.

Operation:

32, 64 T: temp1 ← GPR[rs] * GPR[rt]

temp2 ← temp1 + (HI31..0 || LO31..0)

LO ← (temp231)
32

 || temp231..0

HI ← (temp263)
32

 || temp263..32

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM426

MADDU Multiply and Add Word Unsigned

2631
SPECIAL2
011100

025

rs rt

21 20 16 15
0

0000000000

6 5
MADDU
000001

Format:

MADDU rs, rt VR5500

Purpose:

Combines multiplication and addition of 32-bit unsigned integers for execution.

Description:

This instruction multiplies the contents of general-purpose register rs by the contents of general-purpose register

rt.  It treats both the operands as unsigned integers.  The result of this multiplication is added to a 64-bit value that

combined special register HI and LO.  The lower word of the 64-bit sum from this add operation is sign-extended

and loaded to special register LO and the higher word is sign-extended and loaded to special register HI.

An integer overflow exception does not occur.

Operation:

32, 64 T: temp1 ← (0
32

 || GPR[rs] ) * (0
32

 || GPR[rt] )

temp2 ← temp1 + (HI31..0 || LO31..0)

LO ← (temp231)
32

 || temp231..0

HI ← (temp263)
32

 || temp263..32

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 427

MFC0 Move from System Control Coprocessor

2631
COP0

010000

0

rd

25

rt

21 20 16 15 11 10
0

00000000000
MF

00000

Format:

MFC0 rt, rd MIPS I

Description:

The contents of coprocessor register rd of the CP0 are loaded to general-purpose register rt.

Operation:

32 T: data ← CPR[0, rd]

T + 1: GPR[rt] ← data

64 T: data ← CPR[0, rd]

T + 1: GPR[rt] ← (data31)
32

 || data31..0

Exceptions:

Coprocessor unusable exception (64/32-bit user/supervisor mode if CP0 is disabled)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM428

MFCz Move from Coprocessor z

2631

COPz
0100XXNote

025

rt

21 20 16 15

MF
00000

rd

11 10

0
00000000000

Format:

MFCz  rt, rd MIPS I

Description:

The contents of general-purpose register rd of the CPz are loaded to general-purpose register rt.

Operation:

32 T: data ← CPR[z, rd]

T + 1: GPR[rt] ← data

64 T: if rd0 = 0 then

  data ← CPR[z, rd4..1 || 0]31..0

else

  data ← CPR[z, rd4..1 || 0]63..32

endif

T + 1: GPR[rt] ← (data31)
32

 || data

Exceptions:

Coprocessor unusable exception

Note  See the opcode table below, or 17.4 CPU Instruction Opcode Bit Encoding.

Opcode Table:

31

0

30

1

29

0

28

0

27

1

26

0

25

0

0

MFC2

Opcode

Coprocessor No.

Coprocessor sub-opcode

31

0

30

1

29

0

28

0

27

0

26

1

25

0

0

MFC1

31

0

30

1

29

0

28

0

27

0

26

0

25

0

0

MFC0

24

0

23

0

22

0

21

0

24

0

23

0

22

0

21   

0

24

0

23

0

22

0

21

0

Remark  Coprocessor 2 is reserved in the VR5500.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 429

MFHI Move from HI

2631
SPECIAL
000000

0

rd

25 16 15 11 10
0

00000

6 5
MFHI

010000
0

0000000000

Format:

MFHI rd MIPS I

Description:

The contents of special register HI are loaded to general-purpose register rd.

Operation:

32, 64 T: GPR[rd] ← HI

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM430

MFLO Move from LO

2631
SPECIAL
000000

0

rd

25 16 15 11 10
0

00000

6 5
MFLO

010010
0

0000000000

Format:

MFLO rd MIPS I

Description:

The contents of special register LO are loaded to general-purpose register rd.

Operation:

32, 64 T: GPR[rd] ← LO

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 431

MFPC Move from Performance Counter

2631
COP0

010000

025

rt

21 20 16 15 11 10
0

00000
MF

00000
CP0 25
11001

1
1
1reg

6 5

Format:

MFPC rt, reg VR5500

Description:

This instruction loads the contents of performance counter reg of CP0 to general-purpose register rt.  With the

VR5500, only 0 and 1 are valid as reg.

Operation:

32 T: data ← CPR[0, reg]

T + 1: GPR[rt] ← data

64 T: data ← CPR[0, reg]

T + 1: GPR[rt] ← (data31)
32

 || data31..0

Exceptions:

Coprocessor unusable exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM432

MFPS Move from Performance Event Specifier

2631
COP0

010000

025

rt

21 20 16 15 11 10
0

00000
MF

00000
CP0 25
11001

1
0
0reg

6 5

Format:

MFPS rt, reg VR5500

Description:

This instruction loads the contents of performance event specifier reg of CP0 to general-purpose register rt.  With

the VR5500, only 0 and 1 are valid as reg.

Operation:

32 T: data ← CPR[0, reg]

T + 1: GPR[rt] ← data

64 T: data ← CPR[0, reg]

T + 1: GPR[rt] ← (data31)
32

 || data31..0

Exceptions:

Coprocessor unusable exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 433

MOVN Move Conditional on Not Zero

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10 6 5
MOVN
001011

0
00000rs

Format:

MOVN rd, rs, rt MIPS IV

Purpose:

Tests the value of a general-purpose register and then conditionally moves the contents of a general-purpose

register.

Description:

If the contents of general-purpose register rt are not 0, this instruction moves the contents of general-purpose

register rs to general-purpose register rd.

Operation:

32, 64 T: if GPR[rt] ≠ 0 then

  GPR[rd] ← GPR[rs]

endif

Exceptions:

Reserved instruction exception

Remark  The value tested by this instruction is the result of comparison by the SLT, SLTI, SLTU, or SLTIU

instruction with the condition established as true.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM434

MOVZ Move Conditional on Zero

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10 6 5
MOVZ
001010

0
00000rs

Format:

MOVZ rd, rs, rt MIPS IV

Purpose:

Tests the value of a general-purpose register and then conditionally moves the contents of a general-purpose

register.

Description:

If the contents of general-purpose register rt are 0, this instruction moves the contents of general-purpose register

rs to general-purpose register rd.

Operation:

32, 64 T: if GPR[rt] = 0 then

  GPR[rd] ← GPR[rs]

endif

Exceptions:

Reserved instruction exception

Remark  The value tested by this instruction is the result of comparison by the SLT, SLTI, SLTU, or SLTIU

instruction with the condition established as false.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 435

MSAC Multiply, Negate, Accumulate, and Move LO

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10
MSAC

00111011000rs

Format:

MSAC rd, rs, rt VR5500

Purpose:

Combines multiplication and subtraction of 32-bit signed integers for execution.

Description:

This instruction multiplies the contents of general-purpose register rs by the contents of general-purpose register

rt.  It treats both the operands as 32-bit signed integers.

The lower 32 bits of special register HI and the lower 32 bits of special register LO are combined and used as an

accumulator.

The result of multiplication is subtracted from the contents of the accumulator and the result of this subtraction is

stored in the accumulator.  The contents of the accumulator are treated as a 64-bit signed integer.  The lower 32

bits of the result are also stored in general-purpose register rd.

An integer overflow exception does not occur.

Operation:

32, 64 T: HI31..0 || LO31..0 ← (HI31..0 || LO31..0) – (GPR[rs] * GPR[rt])

GPR[rd]31..0 ← ((HI31..0 || LO31..0) – (GPR[rs] * GPR[rt]))31..0

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM436

MSACHI Multiply, Negate, Accumulate, and Move HI

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10
MSACHI

01111011000rs

Format:

MSACHI rd, rs, rt VR5500

Purpose:

Combines multiplication and subtraction of 32-bit signed integers for execution.

Description:

This instruction multiplies the contents of general-purpose register rs by the contents of general-purpose register

rt.  It treats both the operands as 32-bit signed integers.

The lower 32 bits of special register HI and the lower 32 bits of special register LO are combined and used as an

accumulator.

The result of multiplication is subtracted from the contents of the accumulator and the result of this subtraction is

stored in the accumulator.  The contents of the accumulator are treated as a 64-bit signed integer.  The higher 32

bits of the result are also stored in general-purpose register rd.

An integer overflow exception does not occur.

Operation:

32, 64 T: HI31..0 || LO31..0 ← (HI31..0 || LO31..0) – (GPR[rs] * GPR[rt])

GPR[rd]31..0 ← ((HI31..0 || LO31..0) – (GPR[rs] * GPR[rt]))63..32

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 437

MSACHIU Unsigned Multiply, Negate, Accumulate, and Move HI

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10
MSACHIU

01111011001rs

Format:

MSACHIU rd, rs, rt VR5500

Purpose:

Combines multiplication and subtraction of 32-bit unsigned integers for execution.

Description:

This instruction multiplies the contents of general-purpose register rs by the contents of general-purpose register

rt.  It treats both the operands as 32-bit unsigned integers.

The lower 32 bits of special register HI and the lower 32 bits of special register LO are combined and used as an

accumulator.

The result of multiplication is subtracted from the contents of the accumulator and the result of this subtraction is

stored in the accumulator.  The contents of the accumulator are treated as a 64-bit unsigned integer.  The higher

32 bits of the result are also stored in general-purpose register rd.

An integer overflow exception does not occur.

Operation:

32, 64 T: HI31..0 || LO31..0 ← (HI31..0 || LO31..0) – (GPR[rs] * GPR[rt])

GPR[rd]31..0 ← ((HI31..0 || LO31..0) – (GPR[rs] * GPR[rt]))63..32

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM438

MSACU Unsigned Multiply, Negate, Accumulate, and Move LO

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10
MSACU

00111011001rs

Format:

MSACU rd, rs, rt VR5500

Purpose:

Combines multiplication and subtraction of 32-bit unsigned integers for execution.

Description:

This instruction multiplies the contents of general-purpose register rs by the contents of general-purpose register

rt.  It treats both the operands as 32-bit unsigned integers.

The lower 32 bits of special register HI and the lower 32 bits of special register LO are combined and used as an

accumulator.

The result of multiplication is subtracted from the contents of the accumulator and the result of this subtraction is

stored in the accumulator.  The contents of the accumulator are treated as a 64-bit unsigned integer.  The lower

32 bits of the result are also stored in general-purpose register rd.

An integer overflow exception does not occur.

Operation:

32, 64 T: HI31..0 || LO31..0 ← (HI31..0 || LO31..0) – (GPR[rs] * GPR[rt])

GPR[rd]31..0 ← ((HI31..0 || LO31..0) – (GPR[rs] * GPR[rt]))31..0

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 439

MSUB Multiply and Subtract Word

2631
SPECIAL2
011100

025

rs rt

21 20 16 15
0

0000000000

6 5
MSUB
000100

Format:

MSUB rs, rt VR5500

Purpose:

Combines multiplication and subtraction of 32-bit signed integers for execution.

Description:

This instruction multiplies the contents of general-purpose register rs by the contents of general-purpose register

rt.  It treats both the operands as signed integers.  The result of this multiplication is subtracted from a 64-bit value

that combined special register HI and LO.  The lower word of the 64-bit sum from this add operation is sign-

extended and loaded to special register LO and the higher word is sign-extended and loaded to special register

HI.

An integer overflow exception does not occur.

Operation:

32, 64 T: temp1 ← GPR[rs] * GPR[rt]

temp2 ← (HI31..0 || LO31..0) – temp1

LO ← (temp231)
32

 || temp231..0

HI ← (temp263)
32

 || temp263..32

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM440

MSUBU Multiply and Subtract Word Unsigned

2631
SPECIAL2
011100

025

rs rt

21 20 16 15
0

0000000000

6 5
MSUBU
000101

Format:

MSUBU rs, rt VR5500

Purpose:

Combines multiplication and subtraction of 32-bit unsigned integers for execution.

Description:

This instruction multiplies the contents of general-purpose register rs by the contents of general-purpose register

rt.  It treats both the operands as unsigned integers.  The result of this multiplication is subtracted from a 64-bit

value that combined special register HI and LO.  The lower word of the 64-bit sum from this add operation is sign-

extended and loaded to special register LO and the higher word is sign-extended and loaded to special register

HI.

An integer overflow exception does not occur.

Operation:

32, 64 T: temp1 ← (0
32

 || GPR[rs] ) * (0
32

 || GPR[rt] )

temp2 ← (HI31..0 || LO31..0) – temp1

LO ← (temp231)
32

 || temp231..0

HI ← (temp263)
32

 || temp263..32

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 441

MTC0 Move to System Control Coprocessor

2631
COP0

010000

0

rd

25

rt

21 20 16 15 11 10
0

00000000000
MT

00100

Format:

MTC0 rt, rd MIPS I

Description:

The contents of general-purpose register rt are loaded to coprocessor register rd of coprocessor 0.

Because the state of the virtual address translation system may be altered by this instruction, the operation of

load instructions, store instructions, and TLB operations immediately prior to and after this instruction are

undefined.

When using a register used by the MTC0 by means of instructions before and after it, refer to CHAPTER 19

INSTRUCTION HAZARDS and place the instructions in the appropriate location.

Operation:

32, 64 T: data ← GPR[rt]

T + 1: CPR[0, rd] ← data

Exceptions:

Coprocessor unusable exception (64/32-bit user/supervisor mode if CP0 is disabled)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM442

MTCz Move to Coprocessor z

2631

COPz
0100XXNote

025

rt

21 20 16 15

MT
00100

rd

11 10

0
00000000000

Format:

MTCz  rt, rd MIPS I

Description:

The contents of general-purpose register rd is loaded to CPz general-purpose register rd.

Operation:

32 T: data ← GPR[rt]

T + 1: CPR[z, rd] ← data

64 T: data ← GPR[rt]

T + 1: if rd0 = 0 then

  CPR[z, rd4..1 || 0] ← CPR[z, rd4..1 || 0]63..32 || data

else

  CPR[z, rd4..1 || 0] ← data || CPR[z, rd4..1 || 0]31..0

endif

Exceptions:

Coprocessor unusable exception

Note  See the opcode table below, or 17.4 CPU Instruction Opcode Bit Encoding.

Opcode Table:

31

0

30

1

29

0

28

0

27

1

26

0

25

0

0

MTC2

Opcode

Coprocessor No.

Coprocessor sub-opcode

31

0

30

1

29

0

28

0

27

0

26

1

25

0

0

MTC1

31

0

30

1

29

0

28

0

27

0

26

0

25

0

0

MTC0

24

0

23

1

22

0

21

0

24

0

23

1

22

0

21   

0

24

0

23

1

22

0

21

0

Remark  Coprocessor 2 is reserved in the VR5500.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 443

MTHI Move to HI

2631
SPECIAL
000000

025

rs

21 20
0

000000000000000

6 5
MTHI

010001

Format:

MTHI rs MIPS I

Description:

The contents of general-purpose register rs are loaded to special register HI.

If a MTHI operation is executed following a MULT, MULTU, DIV, or DIVU instruction, but before any MFLO, MFHI,

MTLO, or MTHI instructions, the contents of special register LO are undefined.

Operation:

32, 64 T−2: HI ← undefined

T−1: HI ← undefined

T: HI ← GPR[rs]

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM444

MTLO Move to LO

2631
SPECIAL
000000

025

rs

21 20
0

000000000000000

6 5
MTLO

010011

Format:

MTLO rs MIPS I

Description:

The contents of general-purpose register rs are loaded to special register LO.

If an MTLO operation is executed following a MULT, MULTU, DIV, or DIVU instruction, but before any MFLO,

MFHI, MTLO, or MTHI instructions, the contents of special register HI are undefined.

Operation:

32, 64 T−2: LO ← undefined

T−1: LO ← undefined

T: LO ← GPR[rs]

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 445

MTPC Move to Performance Counter

2631
COP0

010000

025

rt

21 20 16 15 11 10
0

00000
MT

00100
CP0 25
11001

1
1
1reg

6 5

Format:

MTPC rt, reg VR5500

Description:

This instruction loads the contents of general-purpose register rt to performance counter reg of CP0. With the

VR5500, only 0 and 1 are valid as reg.

Operation:

32, 64 T: data ← GPR[rt]

T + 1: CPR[0, reg] ← data

Exceptions:

Coprocessor unusable exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM446

MTPS Move to Performance Event Specifier

2631
COP0

010000

025

rt

21 20 16 15 11 10
0

00000
MT

00100
CP0 25
11001

1
0
0reg

6 5

Format:

MTPS rt, reg VR5500

Description:

This instruction loads the contents of general-purpose register rt to performance event specifier reg of CP0.  With

the VR5500, only 0 and 1 are valid as reg.

Operation:

32, 64 T: data ← GPR[rt]

T + 1: CPR[0, reg] ← data

Exceptions:

Coprocessor unusable exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 447

MUL Multiply and Move LO

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10
MUL

00001011000rs

Format:

MUL rd, rs, rt VR5500

Purpose:

Combines multiplication and transfer of 32-bit signed integers for execution.

Description:

This instruction multiplies the contents of general-purpose register rs by the contents of general-purpose register

rt.  It treats both the operands as 32-bit signed integers.

The lower 32 bits of special register HI and the lower 32 bits of special register LO are combined and used as an

accumulator.

The result of multiplication is subtracted from the contents of the accumulator and the result of this multiplication

is stored in the accumulator.  The lower 32 bits of the result are also stored in general-purpose register rd.

An integer overflow exception does not occur.

Operation:

32, 64 T: HI31..0 || LO31..0 ← GPR[rs] * GPR[rt]

GPR[rd]31..0 ← (GPR[rs] * GPR[rt])31..0

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM448

MUL64 Multiply and Move

2631
SPECIAL2
011100

0

rd

25

rt

21 20 16 15 11 10
MUL64
000010rs

6 5
0

00000

Format:

MUL64 rd, rs, rt VR5500

Purpose:

Combines multiplication and transfer of 32-bit signed integers for execution.

Description:

This instruction multiplies the contents of general-purpose register rs by the contents of general-purpose register

rt.  It treats both the operands as 32-bit signed integers.

The result is also stored in general-purpose register rd.

An integer overflow exception does not occur.

The contents of special registers HI and LO are undefined after execution of this instruction.

Operation:

32, 64 T: GPR[rd]31..0 ← (GPR[rs] * GPR[rt])31..0

HI ← undefined

LO ← undefined

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 449

MULHI Multiply and Move HI

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10
MULHI

01001011000rs

Format:

MULHI rd, rs, rt VR5500

Purpose:

Combines multiplication and transfer of 32-bit signed integers for execution.

Description:

This instruction multiplies the contents of general-purpose register rs by the contents of general-purpose register

rt.  It treats both the operands as 32-bit signed integers.

The lower 32 bits of special register HI and the lower 32 bits of special register LO are combined and used as an

accumulator.  The result of multiplication is stored in the accumulator.  The higher 32 bits of the result are also

stored in general-purpose register rd.

An integer overflow exception does not occur.

Operation:

32, 64 T: HI31..0 || LO31..0 ← GPR[rs] * GPR[rt]

GPR[rd]31..0 ← (GPR[rs] * GPR[rt])63..32

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM450

MULHIU Unsigned Multiply and Move HI

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10
MULHIU

01001011001rs

Format:

MULHIU rd, rs, rt VR5500

Purpose:

Combines multiplication and transfer of 32-bit unsigned integers for execution.

Description:

This instruction multiplies the contents of general-purpose register rs by the contents of general-purpose register

rt.  It treats both the operands as 32-bit unsigned integers.

The lower 32 bits of special register HI and the lower 32 bits of special register LO are combined and used as an

accumulator.  The result of multiplication is stored in the accumulator.  The higher 32 bits of the result are also

stored in general-purpose register rd.

An integer overflow exception does not occur.

Operation:

32, 64 T: HI31..0 || LO31..0 ← GPR[rs] * GPR[rt]

GPR[rd]31..0 ← (GPR[rs] * GPR[rt])63..32

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 451

MULS Multiply, Negate, and Move LO

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10
MULS

00011011000rs

Format:

MULS rd, rs, rt VR5500

Purpose:

Combines multiplication and inversion of 32-bit signed integers for execution.

Description:

This instruction multiplies the contents of general-purpose register rs by the contents of general-purpose register

rt and inverts the result.  It treats both the operands as 32-bit signed integers.

The lower 32 bits of special register HI and the lower 32 bits of special register LO are combined and used as an

accumulator, and the result of this inversion is stored in the accumulator.  The lower 32 bits of the result are also

stored in general-purpose register rd.

An integer overflow exception does not occur.

Operation:

32, 64 T: HI31..0 || LO31..0 ← 0 – (GPR[rs] * GPR[rt])

GPR[rd]31..0 ← (0 – (GPR[rs] * GPR[rt]))31..0

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM452

MULSHI Multiply, Negate, and Move HI

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10
MULSHI

01011011000rs

Format:

MULSHI rd, rs, rt VR5500

Purpose:

Combines multiplication and inversion of 32-bit signed integers for execution.

Description:

This instruction multiplies the contents of general-purpose register rs by the contents of general-purpose register

rt and inverts the result.  It treats both the operands as 32-bit signed integers.

The lower 32 bits of special register HI and the lower 32 bits of special register LO are combined and used as an

accumulator, and the result of this inversion is stored in the accumulator.  The higher 32 bits of the result are also

stored in general-purpose register rd.

An integer overflow exception does not occur.

Operation:

32, 64 T: HI31..0 || LO31..0 ← 0 – (GPR[rs] * GPR[rt])

GPR[rd]31..0 ← (0 – (GPR[rs] * GPR[rt]))63..32

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 453

MULSHIU Unsigned Multiply, Negate, and Move HI

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10
MULSHIU

01011011001rs

Format:

MULSHIU rd, rs, rt VR5500

Purpose:

Combines multiplication and inversion of 32-bit unsigned integers for execution.

Description:

This instruction multiplies the contents of general-purpose register rs by the contents of general-purpose register

rt and inverts the result.  It treats both the operands as 32-bit unsigned integers.

The lower 32 bits of special register HI and the lower 32 bits of special register LO are combined and used as an

accumulator, and the result of this inversion is stored in the accumulator.  The higher 32 bits of the result are also

stored in general-purpose register rd.

An integer overflow exception does not occur.

Operation:

32, 64 T: HI31..0 || LO31..0 ← 0 – (GPR[rs] * GPR[rt])

GPR[rd]31..0 ← (0 – (GPR[rs] * GPR[rt]))63..32

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM454

MULSU Unsigned Multiply, Negate, and Move LO

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10
MULSU

00011011001rs

Format:

MULSU rd, rs, rt VR5500

Purpose:

Combines multiplication and inversion of 32-bit unsigned integers for execution.

Description:

This instruction multiplies the contents of general-purpose register rs by the contents of general-purpose register

rt and inverts the result.  It treats both the operands as 32-bit unsigned integers.

The lower 32 bits of special register HI and the lower 32 bits of special register LO are combined and used as an

accumulator, and the result of this inversion is stored in the accumulator.  The lower 32 bits of the result are also

stored in general-purpose register rd.

An integer overflow exception does not occur.

Operation:

32, 64 T: HI31..0 || LO31..0 ← 0 – (GPR[rs] * GPR[rt])

GPR[rd]31..0 ← (0 – (GPR[rs] * GPR[rt]))31..0

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 455

MULT Multiply

2631
SPECIAL
000000

025

rs rt

21 20 16 15
0

0000000000

6 5
MULT

011000

Format:

MULT rs, rt MIPS I

Purpose:

Multiplies 32-bit signed integers.

Description:

The contents of general-purpose registers rs and rt are multiplied, treating both operands as signed 32-bit integer.

No integer overflow exception occurs under any circumstances.

In 64-bit mode, the operands must be valid 32-bit, sign-extended values.

When the operation completes, the lower word of the double result is loaded to special register LO, and the higher

word of the double result is loaded to special register HI.  In 64-bit mode, the results will be sign-extended and

stored.

Operation:

32 T−2: LO ← undefined

HI ← undefined

T−1: LO ← undefined

HI ← undefined

T: t ← GPR[rs] * GPR[rt]

LO ← t31..0

HI ← t63..32

64 T−2: LO ← undefined

HI ← undefined

T−1: LO ← undefined

HI ← undefined

T: t ← GPR[rs]31..0 * GPR[rt]31..0

LO ← (t31)
32

 || t31..0

HI ← (t63)
32

 || t63..32

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM456

MULTU Multiply Unsigned

2631
SPECIAL
000000

025

rs rt

21 20 16 15
0

0000000000

6 5
MULTU
011001

Format:

MULTU rs, rt  MIPS I

Purpose:

Multiplies 32-bit unsigned integers.

Description:

The contents of general-purpose register rs and the contents of general-purpose register rt are multiplied, treating

both operands as unsigned values.  No overflow exception occurs under any circumstances.

In 64-bit mode, the operands must be valid 32-bit, sign-extended values.

When the operation completes, the lower word of the double result is loaded to special register LO, and the higher

word of the double result is loaded to special register HI.  In 64-bit mode, the results will be sign-extended and

stored.

Operation:

32 T−2: LO ← undefined

HI ← undefined

T−1: LO ← undefined

HI ← undefined

T: t ← (0 || GPR[rs]) * (0 || GPR[rt])

LO ← t31..0

HI ← t63..32

64 T−2: LO ← undefined

HI ← undefined

T−1: LO ← undefined

HI ← undefined

T: t ← (0 || GPR[rs]31..0) * (0 || GPR[rt]31..0)

LO ← (t31)
32

 || t31..0

HI ← (t63)
32

 || t63..32

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 457

MULU Unsigned Multiply and Move LO

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10
MULU

00001011001rs

Format:

MULU rd, rs, rt VR5500

Purpose:

Combines multiplication and transfer of 32-bit unsigned integers for execution.

Description:

This instruction multiplies the contents of general-purpose register rs by the contents of general-purpose register

rt.  It treats both the operands as 32-bit unsigned integers.

The lower 32 bits of special register HI and the lower 32 bits of special register LO are combined and used as an

accumulator.  The result of multiplication is stored in the accumulator.  The lower 32 bits of the result are also

stored in general-purpose register rd.

An integer overflow exception does not occur.

Operation:

32, 64 T: HI31..0 || LO31..0 ← GPR[rs] * GPR[rt]

GPR[rd]31..0 ← (GPR[rs] * GPR[rt])31..0

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM458

NOR NOR

2631
SPECIAL
000000

0

rd

25

rs rt

21 20 16 15 11 10
0

00000

6 5
NOR

100111

Format:

NOR rd, rs, rt  MIPS I

Purpose:

Performs a bit-wise logical NOR operation.

Description:

The contents of general-purpose register rs are combined with the contents of general-purpose register rt in a bit-

wise logical NOR operation.  The result is stored in general-purpose register rd.

Operation:

32, 64 T: GPR[rd] ← GPR[rs] nor GPR[rt]

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 459

OR OR

2631
SPECIAL
000000

0

rd

25

rs rt

21 20 16 15 11 10
0

00000

6 5
OR

100101

Format:

OR rd, rs, rt MIPS I

Purpose:

Performs a bit-wise logical OR operation.

Description:

The contents of general-purpose register rs are combined with the contents of general-purpose register rt in a bit-

wise logical OR operation.  The result is stored in general-purpose register rd.

Operation:

32, 64 T: GPR[rd] ← GPR[rs] or GPR[rt]

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM460

ORI OR Immediate

2631

ORI
001101

025

rs rt

21 20 16 15

immediate

Format:

ORI rt, rs, immediate MIPS I

Purpose:

Performs a bit-wise logical OR operation with a constant.

Description:

The 16-bit immediate is zero-extended and combined with the contents of general-purpose register rs in a bit-wise

logical OR operation.  The result is stored in general-purpose register rt.

Operation:

32 T: GPR[rt] ← GPR[rs] 31..16 || (immediate or GPR[rs]15..0)

64 T: GPR[rt] ← GPR[rs] 63..16 || (immediate or GPR[rs]15..0)

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 461

PREF Prefetch

(1/2)

2631
PREF
110011

0

offset

25

hint

21 20 16 15

base

Format:

PREF hint, offset (base) MIPS IV

Purpose:

Prefetches data from memory.

Description:

This instruction sign-extends a 16-bit offset and adds the result to the contents of general-purpose register base

to generate a virtual address.  It then loads the contents at the specified address position to the data cache.

Bits 20 to 16 (hint) of this instruction indicate how the loaded data is used.  Note, however, that the contents of

hint are only used for the processor to judge if prefetching by this instruction is valid or not, and do not affect the

actual operation.  hint indicates the following operations.

hint Operation Description

0 Load Predicts that data is loaded (without modification).

Fetches data as if it were loaded.

 1 to 31 − Reserved

This is an auxiliary instruction that improves the program performance.  The generated address or the contents of

hint do not change the status of the processor or system, or the meaning (purpose) of the program.

If this instruction causes a memory access to occur, the access type to be used is determined by the generated

address.  In other words, the access type used to load/store the generated address is also used for this

instruction.  However, an access to an uncached area does not occur.

If a translation entry to the specified memory position is not in the TLB, data cannot be prefetched from the map

area.  This is because no translation entry exists in TLB, it means that no access was made to the memory

position recently, therefore, no effect can be expected even if data at such a memory position is prefetched.

Exceptions related to addressing do not occur as a result of executing this instruction.  If the condition of an

exception is detected, it is ignored, but the prefetch is not executed either.  However, even if nothing is

prefetched, processing that does not appear, such as writing back a dirty cache line, may be performed.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM462

PREF Prefetch

(2/2)

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15..0) + GPR[base]

(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)

Prefetch (CCA, pAddr, vAddr, DATA, hint)

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)

Prefetch (CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Reserved instruction exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 463

ROR Rotate Right

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10 6 5
ROR

000010
1

00001 sa

Format:

ROR rd, rt, sa VR5500

Purpose:

Arithmetically shifts a word to the right by the fixed number of bits.

Description:

This instruction shifts the contents of general-purpose register rt to the right by the number of bits specified by sa.

The lower bit that is shifted out is inserted in the higher bit.  The result is stored in general-purpose register rd.

Operation:

32, 64 T: GPR[rd] ← GPR[rt]sa−1..0 || GPR[rt]31..sa

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM464

RORV Rotate Right Variable

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10 6 5
RORV

000110
1

00001rs

Format:

RORV rd, rt, sa VR5500

Purpose:

Arithmetically shifts a word to the right by the specified number of bits.

Description:

This instruction shifts the contents of general-purpose register rt to the right by the number of bits specified by the

lower 5 bits of general-purpose register rs.  The lower bit that is shifted out is inserted in the higher bit.  The result

is stored in general-purpose register rd.

Operation:

32, 64 T: s ← GPR[rs]4..0

GPR[rd] ← GPR[rt]s−1..0 || GPR[rt]31..s

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 465

SB Store Byte

2631

SB
101000

025

base rt

21 20 16 15

offset

Format:

SB rt, offset (base) MIPS I

Purpose:

Stores a byte in memory.

Description:

The 16-bit offset is sign-extended and added to the contents of general-purpose register base to generate a

virtual address.  The least-significant byte of register rt is stored at the effective address.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15..0 ) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor ReverseEndian
3
)

byte ← vAddr2..0 xor BigEndianCPU
3

data ← GPR[rt]63−8*byte..0 || 0
8*byte

StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor ReverseEndian
3
)

byte ← vAddr2..0 xor BigEndianCPU
3

data ← GPR[rt]63−8*byte..0 || 0
8*byte

StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modified exception

Bus error exception

Address error exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM466

SC Store Conditional

(1/2)

2631

SC
111000

025

base rt

21 20 16 15

offset

Format:

SC rt, offset (base)  MIPS II

Purpose:

Stores a word in memory and completes atomic read-modify-write.

Description:

This instruction sign-extends a 16-bit offset, adds it to the contents of general-purpose register base, and

generates a virtual address.  The contents of general-purpose register rt are stored in the memory position of the

specified address only when the LL bit is set.

If another processor or device has changed the target address after the previous LL instruction, or if the ERET

instruction is executed between the LL and SC instructions, the contents of register rt are not stored in memory,

and the SC instruction fails.

Whether the SC instruction has been successful or not is indicated by the contents of general-purpose register rt

after this instruction has been executed.  If the SC instruction is successful, the contents of general-purpose

register rt are set to 1; they are cleared to 0 if the SC instruction has failed.

The operation of the SC instruction is undefined if the address is different from the address used for the last LL

instruction.

This instruction can be used in the user mode.  It is not necessary that CP0 be enabled.

An address error exception occurs if the lower 2 bits of the address are not 0.

If this instruction has failed and an exception occurs, the exception takes precedence.

This instruction is defined to maintain software compatibility with the other VR Series processors.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 467

SC Store Conditional

(2/2)

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15..0 ) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

data ← GPR[rt]31..0

if LLbit then

  StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

endif

GPR[rt] ← 0
31

 || LLbit

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

data ← GPR[rt]31..0

if LLbit then

  StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

endif

GPR[rt] ← 0
63

 || LLbit

Exceptions:

TLB refill exception

TLB invalid exception

TLB modified exception

Bus error exception

Address error exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM468

SCD Store Conditional Doubleword

(1/2)

2631

SCD
111100

025

base rt

21 20 16 15

offset

Format:

SCD rt, offset (base)  MIPS III

Purpose:

Stores a doubleword in memory and completes atomic read-modify-write.

Description:

This instruction sign-extends a 16-bit offset, adds it to the contents of general-purpose register base, and

generates a virtual address.  The contents of general-purpose register rt are stored in the memory position of the

specified address only when the LL bit is set.

If another processor or device has changed the target address after the previous LLD instruction, or if the ERET

instruction is executed between the LLD and SCD instructions, the contents of register rt are not stored in

memory, and the SCD instruction fails.

Whether the SCD instruction has been successful or not is indicated by the contents of general-purpose register

rt after this instruction has been executed.  If the SCD instruction is successful, the contents of general-purpose

register rt are set to 1; they are cleared to 0 if the SCD instruction has failed.

The operation of the SCD instruction is undefined if the address is different from the address used for the last LLD

instruction.

This instruction can be used in the user mode.  It is not necessary that CP0 be enabled.

An address error exception occurs if the lower 3 bits of the address are not 0.

If this instruction has failed and an exception occurs, the exception takes precedence.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

This instruction is defined to maintain software compatibility with the other VR Series processors.

Operation:

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

data ← GPR[rt]

if LLbit then

  StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

endif

GPR[rt] ← 0
63

 || LLbit

Remark  The higher 32 bits are ignored when a virtual address is generated in the 32-bit kernel mode.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 469

SCD Store Conditional Doubleword

(2/2)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modified exception

Bus error exception

Address error exception

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM470

SD Store Doubleword

2631

SD
111111

025

base rt

21 20 16 15

offset

Format:

SD rt, offset (base) MIPS III

Purpose:

Stores a doubleword in memory.

Description:

The 16-bit offset is sign-extended and added to the contents of general-purpose register base to generate a

virtual address.  The contents of general-purpose register rt are stored at the memory location specified by the

effective address.

An address error exception occurs if the lower 3 bits of the address are not 0.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

data ← GPR[rt]

StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Remark  The higher 32 bits are ignored when a virtual address is generated in the 32-bit kernel mode.

Exceptions:

TLB refill exception

TLB invalid exception

TLB modified exception

Bus error exception

Address error exception

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 471

SDCz Store Doubleword from Coprocessor z

(1/2)

2631

SDCz
1111XXNote

025

base rt

21 20 16 15

offset

Format:

SDCz rt, offset (base) MIPS II

Purpose:

Stores a doubleword in memory from the coprocessor general-purpose register.

Description:

The 16-bit offset is sign-extended and added to the contents of general-purpose register base to generate a

virtual address.  The contents of the doubleword at CPz register rt are stored in the memory location specified by

the effective address.   Data to be stored is defined for each processor.

An address error exception occurs if the lower 3 bits of the address are not 0.

This instruction set to CP0 is invalid.

If CP1 is specified and if the FR bit of the status register is 0 and the least significant bit of the rt field is not 0, the

operation of this instruction is undefined.  If the FR bit is 1, an odd or even register is specified by rt.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

data ← GPR[rt]

StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

data ← GPR[rt]

StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Coprocessor unusable exception

Note  See the opcode table below, or 17.4 CPU Instruction Opcode Bit Encoding.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM472

SDCz Store Doubleword from Coprocessor z

(2/2)

Opcode Table:

31

1

30

1

29

1

28

1

27

1

26

0

0

SDC2

Opcode Coprocessor No.

31

1

30

1

29

1

28

1

27

0

26

1

0

SDC1

Remark  Coprocessor 2 is reserved in the VR5500.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 473

SDL Store Doubleword Left

(1/3)

31 2526 2021 1516 0

SDL
101100 base rt offset

Format:

SDL rt, offset (base) MIPS III

Purpose:

Stores the most significant part of a doubleword in unaligned memory.

Description:

This instruction can be used in combination with the SDR instruction when storing a doubleword data in the

register in a doubleword that does not exist at a doubleword boundary in the memory.  The SDL instruction stores

the higher word of the data, and the SDR instruction stores the lower word of the data in the memory.

The 16-bit offset is sign-extended and added to the contents of general-purpose register base to generate a

virtual address.  Among the doubleword data in the memory whose most significant byte is the byte specified by

the virtual address, the higher portion of general-purpose register rt is stored in the memory at the same

doubleword boundary as the target address.

The number of bytes to be stored varies from one to eight depending on the byte specified.

In other words, the most significant byte of general-purpose register rt is stored in the memory specified by the

virtual address.  As long as there are lower bytes among the bytes at the same doubleword boundary, the

operation to store the byte in the next byte of the memory will be continued.

15

7

14

6

13

5

12

4

11

3

10

2

9

1

8

0

Address 8

Address 0

Memory
(Little endian)

Before storing
A B C D E F G H $24

Register

SDL $24,8 ($0)

15

7

14

6

13

5

12

4

11

3

10

2

9

1

A

0

Address 8

Address 0

After storing



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM474

SDL Store Doubleword Left

 (2/3)

An address error exception caused by the specified address not being aligned at a doubleword boundary does

not occur.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor ReverseEndian
3
)

if BigEndianMem = 0 then

  pAddr ← pAddr31..3 || 0
3

endif

byte ← vAddr2..0 xor BigEndianCPU
3

data ← 0
56−8*byte

 || GPR[rt]63..56−8*byte

StoreMemory (uncached, byte, data, pAddr, vAddr, DATA)

Remark  The higher 32 bits are ignored when a virtual address is generated in the 32-bit kernel mode.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 475

SDL Store Doubleword Left

 (3/3)

The relationship between the address assigned to the SDL instruction and its result (each byte of the register) is

shown below.

A B C D E F G HRegister

I J K L M N O PMemory

BigEndianCPU = 0 BigEndianCPU = 1

vAddr2..0 Offset Offset
Destination Type

LEM BEM
Destination Type

LEM BEM

0

1

2

3

4

5

6

7

I J K L M N O A

I J K L M N A B

I J K L M A B C

I J K L A B C D

I J K A B C D E

I J A B C D E F

I A B C D E F G

A B C D E F G H

0

1

2

3

4

5

6

7

0

0

0

0

0

0

0

0

7

6

5

4

3

2

1

0

A B C D E F G H

I A B C D E F G

I J A B C D E F

I J K A B C D E

I J K L A B C D

I J K L M A B C

I J K L M N A B

I J K L M N O A

7

6

5

4

3

2

1

0

0

0

0

0

0

0

0

0

0

1

2

3

4

5

6

7

Remark Type AccessType (see Figure 3-3  Byte Specification Related to Load and Store Instruction)

output to memory

Offset pAddr2..0 output to memory

LEM Little-endian memory (BigEndianMem = 0)

BEM Big-endian memory (BigEndianMem = 1)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modified exception

Bus error exception

Address error exception

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM476

SDR Store Doubleword Right

(1/3)

31 2526 2021 1516 0

SDR
101101 base rt offset

Format:

SDR rt, offset (base) MIPS III

Purpose:

Stores the least significant part of a doubleword in unaligned memory.

Description:

This instruction can be used in combination with the SDL instruction when storing a doubleword data in the

register in a doubleword that does not exist at a doubleword boundary in the memory.  The SDL instruction stores

the higher word of the data, and the SDR instruction stores the lower word of the data in the memory.

The 16-bit offset is sign-extended and added to the contents of general-purpose register base to generate a

virtual address.  Among the doubleword data in the memory whose least significant byte is the byte specified by

the virtual address, the lower portion of general-purpose register rt is stored in the memory at the same

doubleword boundary as the target address.

The number of bytes to be stored varies from one to eight depending on the byte specified.

In other words, the least significant byte of general-purpose register rt is stored in the memory specified by the

virtual address.  As long as there are higher bytes among the bytes at the same doubleword boundary, the

operation to store the byte in the next byte of the memory will be continued.

15

7

14

6

13

5

12

4

11

3

10

2

9

1

8

0

Address 8

Address 0

Memory
(Little endian)

Before storing
A B C D E F G H $24

Register

SDR $24,1 ($0)

15

B

14

C

13

D

12

E

11

F

10

G

9

H

8

0

Address 8

Address 0

After storing



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 477

SDR Store Doubleword Right

(2/3)

An address error exception caused by the specified address not being aligned at a doubleword boundary does

not occur.

This operation is defined in the 64-bit mode and 32-bit kernel mode.  A reserved instruction exception occurs if

this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor ReverseEndian
3
)

if BigEndianMem = 0 then

  pAddr ← pAddrPSIZE−1..3 || 0
3

endif

byte ← vAddr2..0 xor BigEndianCPU
3

data ← GPR[rt]63−8*byte || 0
8*byte

StoreMemory (uncached, DOUBLEWORD-byte, data, pAddr, vAddr, DATA)

Remark  The higher 32 bits are ignored when a virtual address is generated in the 32-bit kernel mode.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM478

SDR Store Doubleword Right

(3/3)

The relationship between the address assigned to the SDR instruction and its result (each byte of the register) is

shown below.

A B C D E F G HRegister

I J K L M N O PMemory

BigEndianCPU = 0 BigEndianCPU = 1

vAddr2..0 Offset Offset
Destination Type

LEM BEM
Destination Type

LEM BEM

0

1

2

3

4

5

6

7

A B C D E F G H

B C D E F G H P

C D E F G H O P

D E F G H N O P

E F G H M N O P

F G H L M N O P

G H K L M N O P

H J K L M N O P

7

6

5

4

3

2

1

0

0

1

2

3

4

5

6

7

0

0

0

0

0

0

0

0

H J K L M N O P

G H K L M N O P

F G H L M N O P

E F G H M N O P

D E F G H N O P

C D E F G H O P

B C D E F G H P

A B C D E F G H

0

1

2

3

4

5

6

7

7

6

5

4

3

2

1

0

0

0

0

0

0

0

0

0

Remark Type AccessType (see Figure 3-3  Byte Specification Related Load and Store Instruction)

output to memory

Offset pAddr2..0 output to memory

LEM Little-endian memory (BigEndianMem = 0)

BEM Big-endian memory (BigEndianMem = 1)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modified exception

Bus error exception

Address error exception

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 479

SH Store Halfword

2631

SH
101001

025

base rt

21 20 16 15

offset

Format:

SH rt, offset (base) MIPS I

Purpose:

Stores a halfword in memory.

Description:

The 16-bit offset is sign-extended and added to the contents of general-purpose register base to generate an

unsigned effective address.  The least-significant halfword of register rt is stored at the effective address.

An address error exception occurs if the least-significant bit of the address is not 0.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor(ReverseEndian
2
 || 0))

byte ← vAddr2..0 xor(BigEndianCPU
2
 || 0)

data ← GPR[rt]63−8*byte..0 || 0
8*byte

StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor(ReverseEndian
2
 || 0))

byte ← vAddr2..0 xor(BigEndianCPU
2
 || 0)

data ← GPR[rt]63−8*byte..0 || 0
8*byte

StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modified exception

Bus error exception

Address error exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM480

SLL Shift Left Logical

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10
0

00000

6 5
SLL

000000sa

Format:

SLL rd, rt, sa MIPS I

Purpose:

Logically shifts a word to the left by the fixed number of bits.

Description:

The contents of general-purpose register rt are shifted left by sa bits, inserting zeros into the lower bits.

The result is stored in general-purpose register rd.  In 64-bit mode, the shifted 32-bit value is sign-extended and

stored.  When the shift amount is set to zero, SLL sign-extends lower 32 bits of a 64-bit value.  Using this

instruction, the 64-bit value can be generated from a 32-bit value.

Operation:

32 T: GPR[rd] ← GPR[rt]31−sa..0 || 0
sa

64 T: s ← 0 || sa

temp ← GPR[rt]31−s..0 || 0
s

GPR[rd] ← (temp31)
32

 || temp

Exceptions:

None

Caution SLL with a shift amount of zero may be treated as a NOP by some assemblers, at some

optimization levels.  If using SLL with a purpose of sign-extension, check the assembler

specification.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 481

SLLV Shift Left Logical Variable

2631
SPECIAL
000000

0

rd

25

rs rt

21 20 16 15 11 10
0

00000

6 5
SLLV

000100

Format:

SLLV rd, rt, rs MIPS I

Purpose:

Logically shifts a word to the left by the specified number of bits.

Description:

The contents of general-purpose register rt are shifted left the number of bits specified by the lower 5 bits

contained in general-purpose register rs, inserting zeros into the lower bits. The result is stored in general-

purpose register rd. In 64-bit mode, the shifted 32-bit value is sign-extended and stored.  When the shift amount

is set to zero, SLLV sign-extends lower 32 bits of a 64-bit value.  Using this instruction, the 64-bit value can be

generated from a 32-bit value.

Operation:

32 T: s ← GPR[rs]4..0

GPR[rd] ← GPR[rt](31−s)..0 || 0
s

64 T: s ← 0 || GPR[rs]4..0

temp ← GPR[rt](31−s)..0 || 0
s

GPR[rd] ← (temp31)
32

 || temp

Exceptions:

None

Caution SLLV with a shift amount of zero may be treated as a NOP by some assemblers, at some

optimization levels.  If using SLLV with a purpose of sign-extension, check the assembler

specification.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM482

SLT Set on Less Than

2631
SPECIAL
000000

0

rd

25

rs rt

21 20 16 15 11 10
0

00000

6 5
SLT

101010

Format:

SLT rd, rs, rt MIPS I

Purpose:

Stores the result of unequal comparison.

Description:

The contents of general-purpose register rt are subtracted from the contents of general-purpose register rs.

Considering both quantities as signed integers, if the contents of general-purpose register rs are less than the

contents of general-purpose register rt, the result is set to one; otherwise the result is set to zero.

No integer overflow exception occurs under any circumstances.  The comparison is valid even if the subtraction

used during the comparison overflows.

Operation:

32 T: if GPR[rs] < GPR[rt] then

  GPR[rd] ← 0
31

 || 1

else

  GPR[rd] ← 0
32

endif

64 T: if GPR[rs] < GPR[rt] then

  GPR[rd] ← 0
63

 || 1

else

  GPR[rd] ← 0
64

endif

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 483

SLTI Set on Less Than Immediate

2631

SLTI
001010

025

rs rt

21 20 16 15

immediate

Format:

SLTI rt, rs, immediate MIPS I

Purpose:

Stores the result of unequal comparison with a constant.

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of general-purpose register rs.

Considering both quantities as signed integers, if rs is less than the sign-extended immediate, the result is set to

1; otherwise the result is set to 0.

No integer overflow exception occurs under any circumstances.  The comparison is valid even if the subtraction

used during the comparison overflows.

Operation:

32 T: if GPR[rs] < (immediate15)
16

 || immediate15..0 then

  GPR[rt] ← 0
31

 || 1

else

  GPR[rt] ← 0
32

endif

64 T: if GPR[rs] < (immediate15)
48

 || immediate15..0 then

  GPR[rt] ← 0
63

 || 1

else

  GPR[rt] ← 0
64

endif

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM484

SLTIU Set on Less Than Immediate Unsigned

2631

SLTIU
001011

025

rs rt

21 20 16 15

immediate

Format:

SLTIU rt, rs, immediate MIPS I

Purpose:

Stores the result of unsigned unequal comparison with a constant.

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of general-purpose register rs.

Considering both quantities as unsigned integers, if rs is less than the sign-extended immediate, the result is set

to 1; otherwise the result is set to 0.

No integer overflow exception occurs under any circumstances.  The comparison is valid even if the subtraction

used during the comparison overflows.

Operation:

32 T: if (0 || GPR[rs] ) < (immediate15)
16

 || immediate15..0 then

  GPR[rt] ← 0
31

 || 1

else

  GPR[rt] ← 0
32

endif

64 T: if (0 || GPR[rs] ) < (immediate15)
48

 || immediate15..0 then

  GPR[rt] ← 0
63

 || 1

else

  GPR[rt] ← 0
64

endif

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 485

SLTU Set on Less Than Unsigned

2631
SPECIAL
000000

0

rd

25

rs rt

21 20 16 15 11 10
0

00000

6 5
SLTU

101011

Format:

SLTU rd, rs, rt  MIPS I

Purpose:

Stores the result of unsigned unequal comparison.

Description:

The contents of general-purpose register rt are subtracted from the contents of general-purpose register rs.

Considering both quantities as unsigned integers, if the contents of general-purpose register rs are less than the

contents of general-purpose register rt, the result is set to 1; otherwise the result is set to 0.

No integer overflow exception occurs under any circumstances.  The comparison is valid even if the subtraction

used during the comparison overflows.

Operation:

32 T: if (0 || GPR[rs] ) < 0 || GPR[rt] then

  GPR[rd] ← 0
31

 || 1

else

  GPR[rd] ← 0
32

endif

64 T: if (0 || GPR[rs] ) < 0 || GPR[rt] then

  GPR[rd] ← 0
63

 || 1

else

  GPR[rd] ← 0
64

endif

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM486

SRA Shift Right Arithmetic

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10
0

00000

6 5
SRA

000011sa

Format:

SRA rd, rt, sa MIPS I

Purpose:

Arithmetically shifts a word to the right by the fixed number of bits.

Description:

The contents of general-purpose register rt are shifted right by the number of bits specified by sa, sign-extending

the higher bits.  The result is stored in general-purpose register rd.  In 64-bit mode, the operand must be a valid

sign-extended, 32-bit value.

Operation:

32 T: GPR[rd] ← (GPR[rt]31)
sa

 || GPR[rt]31..sa

64 T: s ← 0 || sa

temp ← (GPR[rt]31)
s
 || GPR[rt]31..s

GPR[rd] ← (temp31)
32

 || temp

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 487

SRAV Shift Right Arithmetic Variable

2631
SPECIAL
000000

0

rd

25

rs rt

21 20 16 15 11 10
0

00000

6 5
SRAV

000111

Format:

SRAV rd, rt, rs  MIPS I

Purpose:

Arithmetically shifts a word to the right by the specified number of bits.

Description:

The contents of general-purpose register rt are shifted right by the number of bits specified by the lower 5 bits of

general-purpose register rs, sign-extending the higher bits.  The result is stored in general-purpose register rd.  In

64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

32 T: s ← GPR[rs]4..0

GPR[rd] ← (GPR[rt]31)
s
 || GPR[rt]31..s

64 T: s ← GPR[rs]4..0

temp ← (GPR[rt]31)
s
 || GPR[rt]31..s

GPR[rd] ← (temp31)
32

 || temp

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM488

SRL Shift Right Logical

2631
SPECIAL
000000

0

rd

25

rt

21 20 16 15 11 10
0

00000

6 5
SRL

000010sa

Format:

SRL rd, rt, sa  MIPS I

Purpose:

Logically shifts a word to the right by the fixed number of bits.

Description:

The contents of general-purpose register rt are shifted right by the number of bits specified by sa, inserting zeros

into the higher bits.  The result is stored in general-purpose register rd.  In 64-bit mode, the operand must be a

valid sign-extended, 32-bit value.

Operation:

32 T: GPR[rd] ← 0
sa

 || GPR[rt]31..sa

64 T: s ← 0 || sa

temp ← 0
s
 || GPR[rt]31..s

GPR[rd] ← (temp31)
32

 || temp

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 489

SRLV Shift Right Logical Variable

2631
SPECIAL
000000

0

rd

25

rs rt

21 20 16 15 11 10
0

00000

6 5
SRLV

000110

Format:

SRLV rd, rt, rs  MIPS I

Purpose:

Logically shifts a word to the right by the specified number of bits.

Description:

The contents of general-purpose register rt are shifted right by the number of bits specified by the lower 5 bits of

general-purpose register rs, inserting zeros into the higher bits.  The result is stored in general-purpose register

rd.  In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

32 T: s ← GPR[rs]4..0

GPR[rd] ← 0
s
 || GPR[rt]31..s

64 T: s ← GPR[rs]4..0

temp ← 0
s
 || GPR[rt]31..s

GPR[rd] ← (temp31)
32

 || temp

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM490

SSNOP Superscalar NOP

0
00000

1
00001

0
00000

2631
SPECIAL
000000

025 21 20 16 15 11 10
0

00000

6 5
SLL

000000

Format:

SSNOP  VR5500

Description:

This instruction consumes the execution time of one instruction without affecting the status of the processor or

data.

Actually, execution of the next instruction is postponed until all the instructions executed before this instruction

pass through the commit stage.  If this instruction is in the branch delay slot, the CPU waits until all the

instructions executed before the branch instruction immediately before pass through the commit stage.

Execution of the next instruction is also postponed until all writeback to memory by the load instruction that is

executed to the non-blocking area before this instruction is completed.

Operation:

32, 64 T: GPR0 ← GPR030..0 || 0

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 491

SUB Subtract

2631
SPECIAL
000000

0

rd

25

rs rt

21 20 16 15 11 10
0

00000

6 5
SUB

100010

Format:

SUB rd, rs, rt MIPS I

Purpose:

Subtracts a 32-bit integer.  A trap is performed if an overflow occurs.

Description:

The contents of general-purpose register rt are subtracted from the contents of general-purpose register rs, and

the result is stored in general-purpose register rd.  In 64-bit mode, the operands must be valid sign-extended, 32-

bit values.

An integer overflow exception occurs if the carries out of bits 30 and 31 differ (2's complement overflow).  The

destination register rd is not modified when an integer overflow exception occurs.

Operation:

32 T: GPR[rd] ← GPR[rs] − GPR[rt]

64 T: temp ← GPR[rs] − GPR[rt]

GPR[rd] ← (temp31)
32

 || temp31..0

Exceptions:

Integer overflow exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM492

SUBU Subtract Unsigned

2631
SPECIAL
000000

0

rd

25

rs rt

21 20 16 15 11 10
0

00000

6 5
SUBU

100011

Format:

SUBU rd, rs, rt  MIPS I

Purpose:

Subtracts a 32-bit integer.

Description:

The contents of general-purpose register rt are subtracted from the contents of general-purpose register rs, and

the result is stored in general-purpose register rd.  In 64-bit mode, the operands must be valid sign-extended, 32-

bit values.

The only difference between this instruction and the SUB instruction is that SUBU never causes an integer

overflow exception.

Operation:

32 T: GPR[rd] ← GPR[rs] − GPR[rt]

64 T: temp ← GPR[rs] − GPR[rt]

GPR[rd] ← (temp31)
32

 || temp31..0

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 493

SW Store Word

2631

SW
101011

025

base rt

21 20 16 15

offset

Format:

SW rt, offset (base) MIPS I

Purpose:

Stores a word in memory.

Description:

The 16-bit offset is sign-extended and added to the contents of general-purpose register base to generate a

virtual address.  The contents of general-purpose register rt are stored at the memory location specified by the

effective address.  An address error exception occurs if the lower 2 bits of the address are not 0.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

data ← GPR[rt]31..0

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

data ← GPR[rt]31..0

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modified exception

Bus error exception

Address error exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM494

SWCz Store Word from Coprocessor z

(1/2)

2631

SWCz
1110XXNote

025

base rt

21 20 16 15

offset

Format:

SWCz rt, offset (base) MIPS I

Purpose:

Stores a word in memory from the coprocessor general-purpose register.

Description:

The 16-bit offset is sign-extended and added to the contents of general-purpose register base to generate a

virtual address.  The contents of the CPz register rt are stored in the memory location specified by the effective

address.   Data to be stored is defined for each processor.

If the lower 2 bits of the address are not 0, an address error exception occurs.

This instruction set to CP0 is invalid.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor (ReverseEndian || 0
2
))

byte ← vAddr2..0 xor (BigEndianCPU || 0
2
)

data ← COPzSW (byte, rt)

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor (ReverseEndian || 0
2
))

byte ← vAddr2..0 xor (BigEndianCPU || 0
2
)

data ← COPzSW (byte, rt)

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Coprocessor unusable exception

Note  See the opcode table below, or 17.4 CPU Instruction Opcode Bit Encoding.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 495

SWCz Store Word from Coprocessor z

 (2/2)

Opcode Table:

31

1

30

1

29

1

28

0

27

1

26

0

0

SWC2

Opcode Coprocessor No.

31

1

30

1

29

1

28

0

27

0

26

1

0

SWC1

Remark  Coprocessor 2 is reserved in the VR5500.



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM496

SWL Store Word Left

(1/3)

31 2526 2021 1516 0

SWL
101010 base rt offset

Format:

SWL rt, offset (base) MIPS I

Purpose:

Stores the most significant part of a word in unaligned memory.

Description:

This instruction can be used in combination with the SWR instruction when storing a word data in the register in a

word that does not exist at a word boundary in the memory.  The SWL instruction stores the higher word of the

data, and the SWR instruction stores the lower word of the data in the memory.

The 16-bit offset is sign-extended and added to the contents of general-purpose register base to generate a

virtual address.  Among the word data in the memory whose most significant byte is the byte specified by the

virtual address, the higher portion of general-purpose register rt is stored in the memory at the same word

boundary as the target address.

The number of bytes to be stored varies from one to four depending on the byte specified.

In other words, the most significant byte of general-purpose register rt is stored in the memory specified by the

virtual address.  As long as there are lower bytes among the bytes at the same word boundary, the operation to

store the byte in the next byte of the memory will be continued.

An address error exception caused by the specified address not being aligned at a word boundary does not

occur.

After
storing

7

3

6

2

5

1

4

0

Address 4

Address 0

Memory
(Little endian)

Before storing
A B C D $24

Register

SWL $24,4 ($0)

7   

3

6

2

5

1

A

0

Address 4

Address 0



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 497

SWL Store Word Left

(2/3)

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor ReverseEndian
3
)

if BigEndianMem = 0 then

  pAddr ← pAddr31..2 || 0
2

endif

byte ← vAddr1..0 xor BigEndianCPU
2

if (vAddr2 xor BigEndianCPU) = 0 then

  data ← 0
32

 || 0
24−8*byte

 || GPR[rt]31..24−8*byte

else

  data ← 0
24−8*byte

 || GPR[rt]31..24−8*byte || 0
32

endif

StoreMemory (uncached, byte, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor ReverseEndian
3
)

if BigEndianMem = 0 then

  pAddr ← pAddr31..2 || 0
2

endif

byte ← vAddr1..0 xor BigEndianCPU
2

if (vAddr2 xor BigEndianCPU) = 0 then

  data ← 0
32

 || 0
24−8*byte

 || GPR[rt]31..24−8*byte

else

  data ← 0
24−8*byte

 || GPR[rt]31..24−8*byte || 0
32

endif

StoreMemory (uncached, byte, data, pAddr, vAddr, DATA)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM498

SWL Store Word Left

(3/3)

The relationship between the address assigned to the SWL instruction and its result (each byte of the register) is

shown below.

A B C D E F G HRegister

I J K L M N O PMemory

BigEndianCPU = 0 BigEndianCPU = 1

vAddr2..0 Offset Offset
Destination Type

LEM BEM
Destination Type

LEM BEM

0

1

2

3

4

5

6

7

I J K L M N O E

I J K L M N E F

I J K L M E F G

I J K L E F G H

I J K E M N O P

I J E F M N O P

I E F G M N O P

E F G H M N O P

0

1

2

3

0

1

2

3

0

0

0

0

4

4

4

4

7

6

5

4

3

2

1

0

E F G H M N O P

I E F G M N O P

I J E F M N O P

I J K E M N O P

I J K L E F G H

I J K L M E F G

I J K L M N E F

I J K L M N O E

3

2

1

0

3

2

1

0

4

4

4

4

0

0

0

0

0

1

2

3

4

5

6

7

Remark Type AccessType (see Figure 3-3  Byte Specification Related Load and Store Instruction)

output to memory

Offset pAddr2..0 output to memory

LEM Little-endian memory (BigEndianMem = 0)

BEM Big-endian memory (BigEndianMem = 1)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modified exception

Bus error exception

Address error exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 499

SWR Store Word Right

(1/3)

31 2526 2021 1516 0

SWR
101110 base rt offset

Format:

SWR rt, offset (base) MIPS I

Purpose:

Stores the least significant part of a word in unaligned memory.

Description:

This instruction can be used in combination with the SWL instruction when storing a word data in the register in a

word that does not exist at a word boundary in the memory.  The SWL instruction stores the higher word of the

data, and the SWR instruction stores the lower word of the data in the memory.

The 16-bit offset is sign-extended and added to the contents of general-purpose register base to generate a

virtual address.  Among the word data in the memory whose least significant byte is the byte specified by the

virtual address, the lower portion of general-purpose register rt is stored in the memory at the same word

boundary as the target address.

The number of bytes to be stored varies from one to four depending on the byte specified.

In other words, the least significant byte of general-purpose register rt is stored in the memory specified by the

virtual address.  As long as there are higher bytes among the bytes at the same word boundary, the operation to

store the byte in the next byte of the memory will be continued.

An address error exception caused by the specified address not being aligned at a word boundary does not

occur.

After
storing

7

3

6

2

5

1

4

0

Address 4

Address 0

Memory
(Little endian)

Before storing
A B C D $24

Register

SWR $24,1 ($0)

7   

B

6

C

5

D

4

0

Address 4

Address 0



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM500

SWR Store Word Right

(2/3)

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor ReverseEndian
3
)

if BigEndianMem = 0 then

  pAddr ← pAddr31..2 || 0
2

endif

byte ← vAddr1..0 xor BigEndianCPU
2

if (vAddr2 xor BigEndianCPU) = 0 then

  data ← 0
32

 || GPR[rt]31−8*byte..0 || 0
8*byte

else

  data ← GPR[rt]31−8*byte || 0
8*byte

 || 0
32

endif

StoreMemory (uncached, WORD – byte, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)
48

 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1..3 || (pAddr2..0 xor ReverseEndian
3
)

if BigEndianMem = 0 then

  pAddr ← pAddr31..2 || 0
2

endif

byte ← vAddr1..0 xor BigEndianCPU
2

if (vAddr2 xor BigEndianCPU) = 0 then

  data ← 0
32

 || GPR[rt]31−8*byte..0 || 0
8*byte

else

  data ← GPR[rt]31−8*byte || 0
8*byte

 || 0
32

endif

StoreMemory (uncached, WORD – byte, data, pAddr, vAddr, DATA)



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 501

SWR Store Word Right

(3/3)

The relationship between the address assigned to the SWR instruction and its result (each byte of the register) is

shown below.

A B C D E F G HRegister

I J K L M N O PMemory

BigEndianCPU = 0 BigEndianCPU = 1

vAddr2..0 Offset Offset
Destination Type

LEM BEM
Destination Type

LEM BEM

0

1

2

3

4

5

6

7

I J K L E F G H

I J K L F G H P

I J K L G H O P

I J K L H N O P

E F G H M N O P

F G H L M N O P

G H K L M N O P

H J K L M N O P

3

2

1

0

3

2

1

0

0

1

2

3

4

5

6

7

4

4

4

4

0

0

0

0

H J K L M N O P

G H K L M N O P

F G H L M N O P

E F G H M N O P

I J K L H N O P

I J K L G H O P

I J K L F G H P

I J K L E F G H

0

1

2

3

0

1

2

3

7

6

5

4

3

2

1

0

0

0

0

0

4

4

4

4

Remark Type AccessType (see Figure 3-3  Byte Specification Related Load and Store Instruction)

output to memory

Offset pAddr2..0 output to memory

LEM Little-endian memory (BigEndianMem = 0)

BEM Big-endian memory (BigEndianMem = 1)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modified exception

Bus error exception

Address error exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM502

SYNC Synchronize

2631
SPECIAL
000000

025 6 5
SYNC
001111

0
000000000000000 stype

11 10

Format:

SYNC MIPS II

Purpose:

Determines the order in which the common memory is referenced by a load/store instruction in a multi-processor

environment.

Description:

The SYNC instruction is executed as a NOP on the VR5500.

This instruction is defined to maintain software compatibility with the other VR Series processors.

Actually, execution of the next instruction is postponed until all the instructions executed before this instruction

pass through the commit stage.  If this instruction is in the branch delay slot, the CPU waits until all the

instructions executed before the branch instruction immediately before pass through the commit stage.

Execution of the next instruction is postponed until all the system interface requests by the load/store instruction

executed before this instruction are issued.  In this way, external access or writeback to memory can be

processed in the same sequence as the load/store instructions that are executed before or after the SYNC

instruction.  The CPU does not wait for issuance of a system interface request by an instruction other than a

load/store instruction, or issuance of instruction fetch.

The processor treats stype field as 0 regardless of the value of this field.

Operation:

32, 64 T: SyncOperation ()

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 503

SYSCALL System Call

2631
SPECIAL
000000

0

code

25 6 5
SYSCALL

001100

Format:

SYSCALL MIPS I

Purpose:

Generates a system call exception.

Description:

A system call exception occurs, immediately and unconditionally transferring control to the exception handler.

The code field is available for use as software parameters, but is retrieved by the exception handler only by

loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: SystemCallException

Exceptions:

System call exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM504

TEQ Trap if Equal

2631
SPECIAL
000000

0

code

25

rs rt

21 20 16 15 6 5
TEQ

110100

Format:

TEQ rs, rt  MIPS II

Purpose:

Compares general-purpose registers and executes a conditional trap.

Description:

The contents of general-purpose register rt are compared to general-purpose register rs.  If the contents of

general-purpose register rs are equal to the contents of general-purpose register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by

loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: if GPR[rs] = GPR[rt] then

  TrapException

endif

Exceptions:

Trap exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 505

TEQI Trap if Equal Immediate

2631

REGIMM
000001

025

rs

21 20 16 15

immediateTEQI
01100

Format:

TEQI rs, immediate MIPS II

Purpose:

Compares a general-purpose register and a constant and executes a conditional trap.

Description:

The 16-bit immediate is sign-extended and compared to the contents of general-purpose register rs.  If the

contents of general-purpose register rs are equal to the sign-extended immediate, a trap exception occurs.

Operation:

32 T: if GPR[rs] = (immediate15)
16

 || immediate15..0 then

  TrapException

endif

64 T: if GPR[rs] = (immediate15)
48

 || immediate15..0 then

  TrapException

endif

Exceptions:

Trap exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM506

TGE Trap if Greater Than or Equal

2631
SPECIAL
000000

0

code

25

rs rt

21 20 16 15 6 5
TGE

110000

Format:

TGE rs, rt MIPS II

Purpose:

Compares general-purpose registers and executes a conditional trap.

Description:

The contents of general-purpose register rt are compared to the contents of general-purpose register rs.

Considering both quantities as signed integers, if the contents of general-purpose register rs are greater than or

equal to the contents of general-purpose register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by

loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: if GPR[rs] ≥ GPR[rt] then

  TrapException

endif

Exceptions:

Trap exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 507

TGEI Trap if Greater Than or Equal Immediate

2631

REGIMM
000001

025

rs

21 20 16 15

immediateTGEI
01000

Format:

TGEI rs, immediate MIPS II

Purpose:

Compares a general-purpose register and a constant and executes a conditional trap.

Description:

The 16-bit immediate is sign-extended and compared to the contents of general-purpose register rs.  Considering

both quantities as signed integers, if the contents of general-purpose register rs are greater than or equal to the

sign-extended immediate, a trap exception occurs.

Operation:

32 T: if GPR[rs] ≥ (immediate15)
16

 || immediate15..0 then

  TrapException

endif

64 T: if GPR[rs] ≥ (immediate15)
48

 || immediate15..0 then

  TrapException

endif

Exceptions:

Trap exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM508

TGEIU Trap if Greater Than or Equal Immediate Unsigned

2631

REGIMM
000001

025

rs

21 20 16 15

immediateTGEIU
01001

Format:

TGEIU rs, immediate MIPS II

Purpose:

Compares a general-purpose register and a constant and executes a conditional trap.

Description:

The 16-bit immediate is sign-extended and compared to the contents of general-purpose register rs.  Considering

both quantities as unsigned integers, if the contents of general-purpose register rs are greater than or equal to the

sign-extended immediate, a trap exception occurs.

Operation:

32 T: if (0 || GPR[rs] ) ≥ (0 || (immediate15)
16

 || immediate15..0) then

  TrapException

endif

64 T: if (0 || GPR[rs] ) ≥ (0 || (immediate15)
48

 || immediate15..0) then

  TrapException

endif

Exceptions:

Trap exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 509

TGEU Trap if Greater Than or Equal Unsigned

2631
SPECIAL
000000

0

code

25

rs rt

21 20 16 15 6 5
TGEU

110001

Format:

TGEU rs, rt   MIPS II

Purpose:

Compares general-purpose registers and executes a conditional trap.

Description:

The contents of general-purpose register rt are compared to the contents of general-purpose register rs.

Considering both quantities as unsigned integers, if the contents of general-purpose register rs are greater than

or equal to the contents of general-purpose register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by

loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: if (0 || GPR[rs] ) ≥ (0 || GPR[rt] ) then

  TrapException

endif

Exceptions:

Trap exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM510

TLBP Probe TLB for Matching Entry

2631
COP0

010000

025
CO
1

24 6 5
TLBP

001000
0

0000000000000000000

Format:

TLBP MIPS I

Description:

The Index register is loaded with the address of the TLB entry whose contents match the contents of the EntryHi

register.  If no TLB entry matches, the higher bit of the Index register is set.  If two or more TLB entries that match

the contents of the EntryHi register have been found, the TS bit of the Status register is set to 1, and a TLB refill

exception occurs.

The operation is undefined if this instruction is executed immediately after the TLBP instruction and if an

operation related to memory referencing takes place.

This operation is defined in kernel mode or when CP0 is enabled.  Execution of this instruction in user/supervisor

mode or when CP0 is not enabled causes a coprocessor unusable exception.

Operation:

32 T: Index ← 1 || 0
25

 || Undefined
6

for i in 0..TLBEntries − 1

  if ((TLB[i]95..77 and not TLB[I]120..109)

  = (EntryHi31..12 and not TLB[i]120..109)) and

  (TLB[i]76 or (TLB[i]71..64 = EntryHi7..0)) then

Index ← 0
26

 || i5..0

  endif

endfor

64 T: Index ← 1 || 0
25

 || Undefined
6

for i in 0..TLBEntries − 1

  if (TLB[i]171..141 and not (0
15

 || TLB[i]216..205))

  = (EntryHi43..13 and not (0
15

 || TLB[i]216..205)) and

  (TLB[i]140 or (TLB[i]135..128 = EntryHi7..0)) then

Index ← 0
26

 || i5..0

  endif

endfor

Exceptions:

Coprocessor unusable exception

TLB refill exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 511

TLBR Read Indexed TLB Entry

2631
COP0

010000

025
CO
1

24 6 5
TLBR

000001
0

0000000000000000000

Format:

TLBR MIPS I

Description:

The EntryHi and EntryLo registers are loaded with the contents of the TLB entry pointed at by the contents of the

TLB Index register.  The G bit (which controls ASID matching) read from the TLB is written to both of the EntryLo0

and EntryLo1 registers.  The G bit of the TLB is written with the logical AND of the G bits in the EntryLo0 and

EntryLo1 registers.

The operation is invalid if the contents of the TLB Index register are greater than the number of TLB entries in the

processor.

This operation is defined in kernel mode or when CP0 is enabled.  Execution of this instruction in user/supervisor

mode or when CP0 is not enabled causes a coprocessor unusable exception.

Operation:

32 T: PageMask ← TLB[Index5..0]127..96

EntryHi ← TLB[Index5..0]95..64 and not TLB[Index5..0]127..96

EntryLo1 ← TLB[Index5..0]63..32

EntryLo0 ← TLB[Index5..0]31..0

64 T: PageMask ← TLB[Index5..0]255..192

EntryHi ← TLB[Index5..0]191..128 and not TLB[Index5..0]255..192

EntryLo1 ← TLB[Index5..0]127..65 || TLB[Index5..0]140

EntryLo0 ← TLB[Index5..0]63..1 || TLB[Index5..0]140

Exceptions:

Coprocessor unusable exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM512

TLBWI Write Indexed TLB Entry

2631
COP0

010000

025

CO
1

24 6 5
TLBWI
000010

0
0000000000000000000

Format:

TLBWI MIPS I

Description:

The TLB entry pointed at by the contents of the TLB Index register is loaded with the contents of the EntryHi and

EntryLo registers.  The G bit of the TLB is written with the logical AND of the G bits in the EntryLo0 and EntryLo1

registers.

The operation is invalid if the contents of the TLB Index register are greater than the number of TLB entries in the

processor.

Operation:

32, 64 T: TLB[Index5..0] ← PageMask || (EntryHi and not PageMask) || EntryLo1 || EntryLo0

Exceptions:

Coprocessor unusable exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 513

TLBWR Write Random TLB Entry

2631
COP0

010000

025
CO
1

24 6 5
TLBWR
000110

0
0000000000000000000

Format:

TLBWR MIPS I

Description:

The TLB entry pointed at by the contents of the TLB Random register is loaded with the contents of the EntryHi

and EntryLo registers.  The G bit of the TLB is written with the logical AND of the G bits in the EntryLo0 and

EntryLo1 registers.

Operation:

32, 64 T: TLB[Random5..0] ← PageMask || (EntryHi and not PageMask) || EntryLo1 || EntryLo0

Exceptions:

Coprocessor unusable exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM514

TLT Trap if Less Than

2631
SPECIAL
000000

0

code

25

rs rt

21 20 16 15 6 5
TLT

110010

Format:

TLT rs, rt MIPS II

Purpose:

Compares general-purpose registers and executes a conditional trap.

Description:

The contents of general-purpose register rt are compared to general-purpose register rs.  Considering both

quantities as signed integers, if the contents of general-purpose register rs are less than the contents of general-

purpose register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by

loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: if GPR[rs] < GPR[rt] then

  TrapException

endif

Exceptions:

Trap exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 515

TLTI Trap if Less Than Immediate

2631

REGIMM
000001

025

rs

21 20 16 15

immediateTLTI
01010

Format:

TLTI rs, immediate  MIPS II

Purpose:

Compares a general-purpose register and a constant and executes a conditional trap.

Description:

The 16-bit immediate is sign-extended and compared to the contents of general-purpose register rs.  Considering

both quantities as signed integers, if the contents of general-purpose register rs are less than the sign-extended

immediate, a trap exception occurs.

Operation:

32 T: if GPR[rs] < (immediate15)
16

 || immediate15..0 then

  TrapException

endif

64 T: if GPR[rs] < (immediate15)
48

 || immediate15..0 then

  TrapException

endif

Exceptions:

Trap exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM516

TLTIU Trap if Less Than Immediate Unsigned

2631

REGIMM
000001

025

rs

21 20 16 15

immediateTLTIU
01011

Format:

TLTIU rs, immediate MIPS II

Purpose:

Compares a general-purpose register and a constant and executes a conditional trap.

Description:

The 16-bit immediate is sign-extended and compared to the contents of general-purpose register rs.  Considering

both quantities as unsigned integers, if the contents of general-purpose register rs are less than the sign-

extended immediate, a trap exception occurs.

Operation:

32 T: if (0 || GPR[rs] ) < (0 || (immediate15)
16

 || immediate15..0) then

  TrapException

endif

64 T: if (0 || GPR[rs] ) < (0 || (immediate15)
48

 || immediate15..0) then

  TrapException

endif

Exceptions:

Trap exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 517

TLTU Trap if Less Than Unsigned

2631
SPECIAL
000000

0

code

25

rs rt

21 20 16 15 6 5
TLTU

110011

Format:

TLTU rs, rt MIPS II

Purpose:

Compares general-purpose registers and executes a conditional trap.

Description:

The contents of general-purpose register rt are compared to general-purpose register rs.  Considering both

quantities as unsigned integers, if the contents of general-purpose register rs are less than the contents of

general-purpose register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by

loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: if (0 || GPR[rs] ) < (0 || GPR[rt] ) then

  TrapException

endif

Exceptions:

Trap exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM518

TNE Trap if Not Equal

2631
SPECIAL
000000

0

code

25

rs rt

21 20 16 15 6 5
TNE

110110

Format:

TNE rs, rt MIPS II

Purpose:

Compares general-purpose registers and executes a conditional trap.

Description:

The contents of general-purpose register rt are compared to general-purpose register rs.  If the contents of

general-purpose register rs are not equal to the contents of general-purpose register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by

loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: if GPR[rs] ≠ GPR[rt] then

  TrapException

endif

Exceptions:

Trap exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 519

TNEI Trap if Not Equal Immediate

2631

REGIMM
000001

025

rs

21 20 16 15

immediateTNEI
01110

Format:

TNEI rs, immediate MIPS II

Purpose:

Compares a general-purpose register and a constant and executes a conditional trap.

Description:

The 16-bit immediate is sign-extended and compared to the contents of general-purpose register rs.  If the

contents of general-purpose register rs are not equal to the sign-extended immediate, a trap exception occurs.

Operation:

32 T: if GPR[rs] ≠ (immediate15)
16

 || immediate15..0 then

  TrapException

endif

64 T: if GPR[rs] ≠ (immediate15)
48

 || immediate15..0 then

  TrapException

endif

Exceptions:

Trap exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM520

WAIT Wait

2631
COP0

010000

025

CO
1

24 6 5
WAIT

100000Implementation-dependent Information

Format:

WAIT VR5500

Purpose:

Sets the CPU in the standby mode.

Description:

This instruction places the processor in the standby mode.

The processor is kept waiting by this instruction until all the instructions executed before pass through the commit

stage.  It stops the operation of the pipeline after all the system interface requests, instruction fetch, and writeback

to memory have been completed.  If all the bits 10 to 6 of the instruction code are cleared to 0, the processor also

stops the clock supply.  If these bits are not cleared, the clock continued to be supplied.

To release from the standby mode, execute either a reset, NMI request, or all of the enabled interrupts.  When the

processor has been released from the standby mode, an exception occurs, and the address of the instruction

next to the WAIT instruction is stored in the EPC/ErrorEPC register.

The operation of the processor is undefined if this instruction is in the branch delay slot.  The operation is also

undefined if this instruction is executed when the EXL and ERL bits of the Status register are set to 1.

This operation is defined in kernel mode or when CP0 is enabled.  Execution of this instruction in user/supervisor

mode or when CP0 is not enabled causes a coprocessor unusable exception.

Operation:

32, 64 T: Standby Operation ()

if Implementation-dependent Information4..0 = 0 then

pipeline clock stop

else

pipeline clock not stop

endif

Exceptions:

Coprocessor unusable exception



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 521

XOR Exclusive OR

2631
SPECIAL
000000

0

rd

25

rs rt

21 20 16 15 11 10
0

00000

6 5
XOR

100110

Format:

XOR rd, rs, rt MIPS I

Purpose:

Performs a bit-wise logical XOR operation.

Description:

The contents of general-purpose register rs are combined with the contents of general-purpose register rt in a bit-

wise logical exclusive OR operation.

The result is stored in general-purpose register rd.

Operation:

32, 64 T: GPR[rd] ← GPR[rs] xor GPR[rt]

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM522

XORI Exclusive OR Immediate

2631

XORI
001110

025

rs rt

21 20 16 15

immediate

Format:

XORI rt, rs, immediate MIPS I

Purpose:

Performs a bit-wise logical XOR operation with a constant.

Description:

The 16-bit immediate is zero-extended and combined with the contents of general-purpose register rs in a bit-wise

logical exclusive OR operation.

The result is stored in general-purpose register rt.

Operation:

32 T: GPR[rt] ← GPR[rs] xor (0
16

 || immediate)

64 T: GPR[rt] ← GPR[rs] xor (0
48

 || immediate)

Exceptions:

None



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 523

17.4  CPU  Instruction  Opcode  Bit  Encoding

Figure 17-1 lists the VR5500 opcode (ISA and extended ISA) encoding.

Figure 17-1.  CPU Instruction Opcode Bit Encoding (1/2)

28...26 Opcode
31...29 0 1 2 3 4 5 6 7

0 SPECIAL REGIMM J JAL BEQ BNE BLEZ BGTZ

1 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 COP0 COP1 COP2 COP1X BEQL BNEL BLEZL BGTZL

3 DADDIε DADDIUε LDLε LDRε SPECIAL2 * * *

4 LB LH LWL LW LBU LHU LWR LWUε

5 SB SH SWL SW SDLε SDRε SWR CACHEδ

6 LL LWC1 * PREF LLDε LDC1 * LDε

7 SC SWC1 * * SCDε SDC1 * SDε

2...0 SPECIAL function
5...3 0 1 2 3 4 5 6 7

0 SLL/SSNOP * SRLπ SRA SLLV * SRLVπ SRAV

1 JR JALR MOVZ MOVN SYSCALL BREAK * SYNC

2 MFHI MTHI MFLO MTLO DSLLVε * DSRLVπ DSRAVε

3 MULTπ MULTUπ DIV DIVU DMULTε DMULTUε DDIVε DDIVUε

4 ADD ADDU SUB SUBU AND OR XOR NOR

5 * * SLT SLTU DADDε DADDUε DSUBε DSUBUε

6 TGE TGEU TLT TLTU TEQ * TNE *

7 DSLLε * DSRLπ DSRAε DSLL32ε * DSRL32π DSRA32ε

18...16 REGIMM rt
20...19 0 1 2 3 4 5 6 7

0 BLTZ BGEZ BLTZL BGEZL * * * *

1 TGEI TGEIU TLTI TLTIU TEQI * TNEI *

2 BLTZAL BGEZAL BLTZALL BGEZALL * * * *

3 * * * * * * * *



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM524

Figure 17-1.  CPU Instruction Opcode Bit Encoding (2/2)

23...21 COPz rs
25, 24 0 1 2 3 4 5 6 7

0 MFπ DMFε CF γ MTπ DMTε CT γ

1 BC γ γ γ γ γ γ γ

2 CO

3

18...16 COPz rt
20...19 0 1 2 3 4 5 6 7

0 BCF BCT BCFL BCTL γ γ γ γ

1 γ γ γ γ γ γ γ γ

2 γ γ γ γ γ γ γ γ

3 γ γ γ γ γ γ γ γ

2...0 CP0 Function
5...3 0 1 2 3 4 5 6 7

0 γ TLBRρ TLBWIρ γ γ γ TLBWRρ γ

1 TLBP γ γ γ γ γ γ γ

2 γ γ γ γ γ γ γ γ

3 ERETχ γ γ γ γ γ γ γ

4 WAITξρ γ γ γ γ γ γ γ

5 γ γ γ γ γ γ γ γ

6 γ γ γ γ γ γ γ γ

7 γ γ γ γ γ γ γ γ

2...0 SPECIAL2 Function
5...3 0 1 2 3 4 5 6 7

0 MADD MADDU MUL64 γ MSUB MSUBU γ γ

1 γ γ γ γ γ γ γ γ

2 γ γ γ γ γ γ γ γ

3 γ γ γ γ γ γ γ γ

4 CLZ CLO γ γ DCLZ DCLO γ γ

5 γ γ γ γ γ γ γ γ

6 γ γ γ γ γ γ γ γ

7 γ γ γ γ γ γ γ γ



CHAPTER  17   CPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 525

Remark The meanings of the symbols in the above figures are as follows.

*: Operation codes marked with an asterisk cause reserved instruction exceptions in current VR5500

implementations and are reserved for future versions of the architecture.

γ: Operation codes marked with a gamma cause a reserved instruction exception.  They are reserved

for future versions of the architecture.

δ: Operation codes marked with a delta are valid only for processors in which CP0 is enabled, and

cause a reserved instruction exception in other processors.

χ: Operation codes marked with a chi are valid only in the VR4000 and VR5000 Series.

ε: Operation codes marked with an epsilon are valid when the processor operates in 64-bit mode or

32-bit kernel mode.  These instructions will cause a reserved instruction exception when the

processor operates in 32-bit user/supervisor mode.

π: Operation codes marked with a pi are also used in instructions that were added to the VR5500,

such as the sum-of-products operation and rotate instructions.

ξ: Operation codes marked with a xi are valid only in the VR5500.

ρ: Operation codes marked with a rho are valid only for operation in kernel mode or for processors in

which CP0 is enabled.  These instructions will cause a coprocessor unusable exception when the

processor operates in 32-bit user/supervisor mode or in processors in which CP0 is disabled.



Preliminary User’s Manual  U16044EJ1V0UM526

CHAPTER  18   FPU  INSTRUCTION  SET

This chapter outlines the floating-point instructions (FPU instructions) and explains the function of each instruction.

18.1  Type of Instruction

The FPU instructions are classified into the following three basic types.

• I type (immediate type) instructions, such as load and store instructions

• R type (register type) instructions, such as floating-point operation instructions using two or three registers

• Other instructions, such as branch and transfer instructions

The floating-point instructions are mapped to the MIPS coprocessor instructions.  The MIPS architecture defines

coprocessor 1 (CP1) as a floating-point unit.



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 527

The instruction types used for the load/store instructions are shown in Figure 18-1.

Figure 18-1. Load/Store Instruction Format

I type (immediate)

31 26 20 16 15 025 21

op base ft

6 5 5 16

offset

R type (register)

31 26 20 16 15 11 10 6 5 025 21

COP1X base index

6 5 5 655

0 fd function

31 26 20 16 15 11 10 6 5 025 21

COP1X base index

6 5 5 655

fs 0 function

op, COP1X 6-bit opcode

base 5-bit base register specifier

index 5-bit index register specifier

ft 5-bit source (for store) or destination (for load) FPU register specifier

fs 5-bit source FPU register specifier

fd 5-bit destination FPU register specifier

offset 16-bit offset of signed immediate

function 6-bit function field

The R type load/store instructions (register + register addressing mode) have been added to the MIPS IV

instruction set.

All the load/store instructions of the coprocessor reference data aligned at the word boundary.  Therefore, the

access type area of a word load/store instruction is always WORD, and the lower 2 bits of the address are always 0.

The access type area of a doubleword load/store instruction is always DOUBLEWORD and the lower 3 bits of the

address are always 0.

The byte in the accessed field that has the lowest byte address is specified as the address regardless of the byte

order (endian).  In a big-endian system, this byte is the leftmost byte.  It is the rightmost byte in a little-endian

system.



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM528

Figure 18-2 shows the instruction format of R type instructions used for operation instructions.

Figure 18-2. Operation Instruction Format

R type (register)

31 26 20 16 15 11 10 6 5 025 21

COP1 fmt ft

6 5 5 655

fs fd function

31 26 20 16 15 11 10 6 5 025 21

COP1X fr ft

6 5 5 355

fs fd function

3 2

3

fmt

COP1, COP1X 6-bit opcode

fmt 5-bit or 3-bit format specifier

fs 5-bit source 1 register

ft 5-bit source 2 register

fr 5-bit source 3 register

fd 5-bit destination register

function 6-bit or 3-bit function field

Many formats can be applied to the floating-point instructions.  The operand format of an instruction is specified

by a 5-bit or 3-bit fmt field.  The code of this field is shown in Table 18-1.

Table 18-1. Format Field Code

fmt(4:0) fmt(2:0) Mnemonic Size Format

0 to 15 − Reserved

16 0 S Single precision (32 bits) Binary floating point

17 1 D Double precision (64 bits) Binary floating point

18 2 Reserved

19 3 Reserved

20 4 W 32 bits Binary fixed point

21 5 L 64 bits Binary fixed point

22 to 31 6, 7 Reserved

The function field indicates the floating-point operation to be executed.



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 529

18.1.1  Data format

Each operation is valid only in a specific data format. For execution, these formats and several operations are

supported by emulation.  However, valid combinations (those marked “V” in Table 18-2) must be supported.

Combinations marked “R” in Table 18-2 are not defined by this architecture at present and cause an unimplemented

operation exception.  These combinations are reserved for future expansion of the architecture.

Table 18-2. Valid Format of FPU Instruction

Source FormatOperation

Single Double Word Long Word

ADD V V R R

SUB V V R R

MUL V V R R

DIV V V R R

SQRT V V R R

ABS V V R R

MOV V V

NEG V V R R

TRUNC.L V V

ROUND.L V V

CEIL.L V V

FLOOR.L V V

TRUNC.W V V

ROUND.W V V

CEIL.W V V

FLOOR.W V V

CVT.S V V V

CVT.D V V V

CVT.W V V

CVT.L V V

C V V R R

Remark  V: Valid

R: Reserved



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM530

18.2  Instruction Notation Conventions

In this chapter, all variable subfields in an instruction format (such as fs, ft, immediate, etc.) are shown in

lowercase names.  The instruction names (e.g. ADD and SUB) are indicated by upper-case characters.  For the sake

of clarity, we sometimes use an alias for a variable subfield in the formats of specific instructions.  For example, we

use base instead of fs in the format for load and store instructions.  Such an alias is always lower case, since it

refers to a variable subfield.

The two subfields op and function of some instructions are 6-bit fixed values.  These subfields are indicated by

upper-case mnemonics.  For example, the floating-point ADD instruction uses op = COP1 and function = ADD.  In

the other cases, both uppercase and lowercase characters are used because a constant area and a variable area

exist in one area together.

The architecture level at which the instruction was defined first is indicated on the right of the instruction format.

The product name is also shown for instructions that may be incorporated differently depending on the product.

Figures with the actual bit encoding for all the mnemonics and the function field are located at the end of this

chapter (18.5  FPU Instruction Opcode Bit Encoding), and the bit encoding also accompanies each instruction.

In the instruction descriptions that follow, the operation section describes the operation performed by each

instruction using a high-level language notation.  Special symbols used in the notation are described in Table 17-1

CPU Instruction Operation Notaions.

The following examples illustrate the application of some of the instruction notation conventions.

Example 1: GPR [rt]  ←  immediate || 016

Sixteen zero bits are concatenated with an immediate value (typically 16 bits), and the 32-bit string is

assigned to general-purpose register rt.

Example 2: (immediate15)16 || immediate15...0

Bit 15 (the sign bit) of an immediate value is extended for 16-bit positions, and the result is concatenated

with bits 15 to 0 of the immediate value to form a 32-bit sign extended value.

Example 3: CPR [1, ft] ← data

Assign data to general-purpose register ft of CP1, i.e., floating-point general-purpose register FGR.

The terms FGR and FPR are used in the explanation of each instruction.  FGR means 32 FPU floating-point

general-purpose registers FGR0 to FGR31, and FPR means the floating-point registers of FPUs.

The load/store instructions, and instructions that transfer data with the CPU use FGRs (may be described as CPR

in some cases).

The transfer instructions, operation instructions, and conversion instructions in CP1 use the FPR.

• When the FR bit (bit 26) of the Status register is 0, only even FPRs are valid, and all the 32 FGRs are 32 bits

wide.

• When the FR bit (bit 26) of the Status register is 1, both odd and even FPRs are valid, and all the 32 FGRs are

64 bits wide.



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 531

To get an FPR value, or to change the value of an FGR, the following routine is used in the description of a

floating-point operation.

(1) 32-bit mode

value <- ValueFPR (fpr, fmt)

  /* undefined for odd fpr */

  case fmt of

S, W:

value <- FGR[fpr+0]

D:

value <- FGR[fpr+1] II FGR[fpr+0]

  end

StoreFPR (fpr, fmt, value):

  /* undefined for odd fpr */

  case fmt of

S, W:

FGR[fpr+1] <- undefined

FGR[fpr+0] <- value

D:

FGR[fpr+1] <- value 63...32

FGR[fpr+0] <- value 31...0

  end

(2) 64-bit mode

value <- ValueFPR (fpr, fmt)

  case fmt of

S, W:

value <- FGR[fpr]31...0

D, L:

value <- FGR[fpr]

  end

StoreFPR (fpr, fmt, value):

  case fmt of

S, W:

FGR[fpr] <- undefined32 II value

D, L:

FGR[fpr] <- value

  end



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM532

18.3  Cautions on Using FPU Instructions

18.3.1  Load  and  store  instructions

All data transfers between the floating-point unit (FPU) and memory are executed by coprocessor load/store

instructions.  These instructions reference the general-purpose registers of the FPU.  These instructions do not

convert formats as they are independent of data formats.  Therefore, a floating-point exception does not occur even

if these instructions are executed.

Data can be directly transferred between the FPU and processor by using the MTC or MFC instruction. Like the

floating-point load/store instructions, these instructions do not convert formats; therefore, a floating-point exception

does not occur.

Five floating-point control registers can be used as the registers of the FPU.  Only the CTC1 and CFC1

instructions are supported for these registers.

An instruction immediately after the load instruction can reference the contents of the register that has been

loaded, but execution of that instruction may be delayed.  Although the VR5500 can cover the load delay with an out-

of-order mechanism, scheduling the load delay slot is recommended to improve the performance.

The operation of the load/store instruction differs depending on the bit width of the floating-point general-purpose

register (FGR), as follows.

• When the FR bit of the Status register is 0

The FGR is 32 bits wide.  The sixteen even registers of the 32 FGRs can be accessed to hold single-precision

floating-point data.

To hold double-precision floating-point data, sixteen data items can be held by using an even register to hold

the lower bits of the data and an odd register to hold the higher bits.

• When the FR bit of the Status register is 1

The FGR is 64 bits wide.  The lower bits of the 32 FGRs are accessed to hold single-precision floating-point

data.

To hold double-precision floating-point data, the 32 FGRs are accessed.

In the load and store descriptions, the functions listed below are used to summarize the handling of virtual

addresses and physical memory.

Table 18-3.  Load and Store Common Functions

Function Meaning

AddressTranslation Uses the TLB to find the physical address given the virtual address.  The function fails and a TLB

refill exception occurs if the required translation is not present in the TLB.

LoadMemory Searches the specified data length (doubleword, word) containing the specified physical address in

the cache and main memory and loads the contents.  If the cache is enabled for this access, the

contents are loaded to the cache.

StoreMemory Searches the contents of the specified data length (doubleword, word) in the cache, write buffer,

and main memory and stores the contents in the specified physical address.



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 533

18.3.2  Floating-point operation instructions

The operation instructions include all the floating-point operations executed by the FPU.

The instruction set of the FPU includes the following instructions.

• Floating-point addition

• Floating-point subtraction

• Floating-point multiplication

• Floating-point division

• Floating-point square root

• Floating-point reciprocal

• Reciprocal of floating-point square root

• Conversion between fixed-point and floating-point formats

• Conversion between floating-point formats

• Floating-point comparison

These instructions conform to IEEE Standard 754 to ensure accuracy. The result of an operation is the same as

the result of infinite accuracy that is rounded in a specific format by using the rounding mode at that time.

The operand format must be specified for an instruction.  All the instructions, except the conversion instructions,

cannot execute operations in different formats.



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM534

18.3.3  FPU branch instruction

The FPU branch instruction can be used with the logic of its conditions inverted.  Therefore, only 16 comparisons

are necessary for all 32 conditions, as shown in Table 18-4.

The 4-bit condition code of a floating-point comparison instruction specifies a condition in the “True” column of

this table.  To invert the logic of the condition for the FPU branch instruction, the condition in the “False” column of

this table is applied.  If Not a Number (NaN) is specified as an operand, the result of comparing a numeric value

other NaN is “Unordered” because the numeric great-and-small relationship cannot be established.

Table 18-4. Logical Inversion of Term Depending on True/False of Condition

Condition Relationship

Mnemonic

True Faulse Code Greater than Less than Equal to Unordered

Occurrence of
Invalid

Operation
Exception in

Case of
Unordered

F T 0 F F F F Does not occur

UN OR 1 F F F T Does not occur

EQ NEQ 2 F F T F Does not occur

UEQ OGL 3 F F T T Does not occur

OLT UGE 4 F T F F Does not occur

ULT OGE 5 F T F T Does not occur

OLE UGT 6 F T T F Does not occur

ULE OGT 7 F T T T Does not occur

SF ST 8 F F F F Occurs

NGLE GLE 9 F F F T Occurs

SEQ SNE 10 F F T F Occurs

NGL GL 11 F F T T Occurs

LT NLT 12 F T F F Occurs

NGE GE 13 F T F T Occurs

LE NLE 14 F T T F Occurs

NGT GT 15 F T T T Occurs

Remark  F: False

T: True

18.4  FPU  Instruction

This section describes the functions of FPU instructions in detail in alphabetical order.

The exception that may occur by executing each instruction is shown in the last of each instruction's description.

For details of exceptions and their processes, see CHAPTER 8  FLOATING-POINT EXCEPTIONS.



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 535

ABS.fmt Floating-point Absolute Value

2631
COP1

0

fd

25

0

21 20 16 15 11 10 6 5
ABSfsfmt010001 00000 000101

Format:

ABS.S fd, fs MIPS I
ABS.D fd, fs

Purpose:

Calculates the absolute value of a floating-point value.

Description:

This instruction calculates the absolute value of the contents of floating-point register fs and stores the result in

floating-point register fd.  The operand is processed as floating-point format fmt.

The absolute value is arithmetically calculated.  If the operand is NaN, therefore, an invalid operation exception

occurs.

This instruction is valid only in single-/double-precision floating-point formats.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, AbsoluteValue (ValueFPR (fs, fmt)))

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exception:

Unimplemented operation exception

Invalid operation exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM536

ADD.fmt Floating-point Add

2631
COP1

0

fd

25 21 20 16 15 11 10 6 5
ADDfsfmt010001 000000ft

Format:

ADD.S fd, fs, ft MIPS I
ADD.D fd, fs, ft

Purpose:

Adds floating-point values.

Description:

This instruction adds the contents of floating-point register fs to the contents of floating-point register ft, and stores

the result in floating-point register fd.  The operands are processed as floating-point format fmt.  The operation is

executed as if it were of infinite accuracy, and the result is rounded in accordance with the current rounding

mode.

This instruction is valid only in single-/double-precision floating-point formats.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, ValueFPR (fs, fmt) + ValueFPR (ft, fmt))

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exception:

Unimplemented operation exception

Invalid operation exception

Inexact operation exception

Overflow exception

Underflow exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 537

BC1F Branch on FPU False (Coprocessor 1)

(1/2)

2631
COP1

025
BC

21 20 16 1517
ndcc010001 01000 0

18
tf
0 offset

Format:

BC1F offset MIPS I
BC1F cc, offset MIPS IV

Purpose:

Tests the floating-point condition code and executes a PC relative condition branch.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit

offset, shifted left two bits and sign-extended.  If the condition code bit (cc bit) of the floating-point control register

(FCR31 or FCR25) specified by cc is false (0), execution branches to a branch address with a delay of one

instruction.  The cc bit of FCR31 and FCR25 is set by a floating-point comparison instruction (C.cond.fmt).

nd specifies whether the instruction in the branch delay slot is discarded if the branch condition is not satisfied.  tf

specifies which is used as the branch condition, True or False.  The values of nd and tf are fixed for each

instruction.

The MIPS I instruction set architecture provides only 1 bit of a floating-point condition code: the C bit in FCR31.

Therefore, the cc field of the MIPS I, II, and III instruction set architectures must be 0.  The MIPS IV instruction set

architecture has seven additional condition code bits.  The floating-point comparison instruction and conditional

branch instruction specify the condition code bits to be set or tested.  Both the assembler formats are valid with

the MIPS IV instruction set architecture.

Remark The condition branch range of this instruction is ±128 KB because an 18-bit signed offset is used.  To

branch to an address outside this range, use the J or JR instruction.



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM538

BC1F Branch on FPU False (Coprocessor 1)

(2/2)

Operation:

MIPS I, II, III

  32 T – 1: condition ← FPConditionCode(0) = 0

T: target ← (offset15) 14 || offset || 02

T + 1: if condition then

  PC ← PC + target

endif

  64 T – 1: condition ← FPConditionCode(0) = 0

T: target ← (offset15) 46 || offset || 02

T + 1: if condition then

  PC ← PC + target

endif

MIPS IV

  32 T – 1: condition ← FPConditionCode(cc) = 0

T: target ← (offset15) 14 || offset || 02

T + 1: if condition then

  PC ← PC + target

end if

  64 T – 1: condition ← FPConditionCode(cc) = 0

T: target ← (offset15) 46 || offset || 02

T + 1: if condition then

  PC ← PC + target

end if

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exception:

Unimplemented operation exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 539

BC1FL Branch on FPU False Likely (Coprocessor 1)

(1/2)

2631
COP1

025
BC

21 20 16 1517
ndcc010001 01000 1

18
tf
0 offset

Format:

BC1FL offset MIPS II
BC1FL cc, offset MIPS IV

Purpose:

Tests the floating-point condition code and executes a PC relative condition branch.  Executes a delay slot only

when a given branch condition is satisfied.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit

offset, shifted left two bits and sign-extended.  If the condition code bit (cc bit) of the floating-point control register

(FCR31 or FCR25) specified by cc is false (0), execution branches to a branch address with a delay of one

instruction.  If the conditional branch is not taken, the instruction in the branch delay slot is discarded.  The cc bit

of FCR31 and FCR25 is set by a floating-point comparison instruction (C.cond.fmt).

nd specifies whether the instruction in the branch delay slot is discarded if the branch condition is not satisfied.  tf

specifies which is used as the branch condition, True or False.  The values of nd and tf are fixed for each

instruction.

The MIPS I instruction set architecture provides only 1 bit of a floating-point condition code: the C bit in FCR31.

Therefore, the cc field of the MIPS I, II, and III instruction set architectures must be 0.  The MIPS IV instruction set

architecture has seven additional condition code bits.  The floating-point comparison instruction and conditional

branch instruction specify the condition code bits to be set or tested.  Both the assembler formats are valid with

the MIPS IV instruction set architecture.

Remarks 1. The condition branch range of this instruction is ±128 KB because an 18-bit signed offset is used.

To branch to an address outside this range, use the J or JR instruction.

2. Use this instruction only when it is expected with a high probability (98% or higher) that a given

branch condition is satisfied.  If the branch condition is not satisfied or if the branch destination is

not known, use the BC1F instruction.



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM540

BC1FL Branch on FPU False Likely (Coprocessor 1)

(2/2)

Operation:

MIPS II, III

  32 T – 1: condition ← FPConditionCode(0) = 0

T: target ← (offset15) 14 || offset || 02

T + 1: if condition then

  PC ← PC + target

else

  NulifyCurrentInstruction

endif

  64 T – 1: condition ← FPConditionCode(0) = 0

T: target ← (offset15) 46 || offset || 02

T + 1: if condition then

  PC ← PC + target

else

  NulifyCurrentInstruction

endif

MIPS IV

  32 T – 1: condition ← FPConditionCode(cc) = 0

T: target ← (offset15) 14 || offset || 02

T + 1: if condition then

  PC ← PC + target

else

  NulifyCurrentInstruction

end if

  64 T – 1: condition ← FPConditionCode(cc) = 0

T: target ← (offset15) 46 || offset || 02

T + 1: if condition then

  PC ← PC + target

else

  NulifyCurrentInstruction

end if

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exception:

Unimplemented operation exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 541

BC1T Branch on FPU True (Coprocessor 1)

(1/2)

2631
COP1

025
BC

21 20 16 1517
ndcc010001 01000 0

18
tf
1 offset

Format:

BC1T offset MIPS I
BC1T cc, offset MIPS IV

Purpose:

Tests the floating-point condition code and executes a PC relative condition branch.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit

offset, shifted left two bits and sign-extended.  If the condition code bit (cc bit) of the floating-point control register

(FCR31 or FCR25) specified by cc is true (1), execution branches to a branch address with a delay of one

instruction.  The cc bit of FCR31 and FCR25 is set by a floating-point comparison instruction (C.cond.fmt).

nd specifies whether the instruction in the branch delay slot is discarded if the branch condition is not satisfied.  tf

specifies which is used as the branch condition, True or False.  The values of nd and tf are fixed for each

instruction.

The MIPS I instruction set architecture provides only 1 bit of a floating-point condition code: the C bit in FCR31.

Therefore, the cc field of the MIPS I, II, and III instruction set architectures must be 0.  The MIPS IV instruction set

architecture has seven additional condition code bits.  The floating-point comparison instruction and conditional

branch instruction specify the condition code bits to be set or tested.  Both the assembler formats are valid with

the MIPS IV instruction set architecture.

Remark The condition branch range of this instruction is ±128 KB because an 18-bit signed offset is used.  To

branch to an address outside this range, use the J or JR instruction.



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM542

BC1T Branch on FPU True (Coprocessor 1)

(2/2)

Operation:

MIPS I, II, III

  32 T – 1: condition ← FPConditionCode(0) = 1

T: target ← (offset15) 14 || offset || 02

T + 1: if condition then

  PC ← PC + target

endif

  64 T – 1: condition ← FPConditionCode(0) = 1

T: target ← (offset15) 46 || offset || 02

T + 1: if condition then

  PC ← PC + target

endif

MIPS IV

  32 T – 1: condition ← FPConditionCode(cc) = 1

T: target ← (offset15) 14 || offset || 02

T + 1: if condition then

  PC ← PC + target

end if

  64 T – 1: condition ← FPConditionCode(cc) = 1

T: target ← (offset15) 46 || offset || 02

T + 1: if condition then

  PC ← PC + target

end if

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exception:

Unimplemented operation exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 543

BC1TL Branch on FPU True Likely (Coprocessor 1)

(1/2)

2631
COP1

025
BC

21 20 16 1517
ndcc010001 01000 1

18
tf
1 offset

Format:

BC1TL offset MIPS II
BC1TL cc, offset MIPS IV

Purpose:

Tests the floating-point condition code and executes a PC relative condition branch.  Executes a delay slot only

when a given branch condition is satisfied.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit

offset, shifted left two bits and sign-extended.  If the condition code bit (cc bit) of the floating-point control register

(FCR31 or FCR25) specified by cc is true (1), execution branches to a branch address with a delay of one

instruction.  If the conditional branch is not taken, the instruction in the branch delay slot is discarded.  The cc bit

of FCR31 and FCR25 is set by a floating-point comparison instruction (C.cond.fmt).

nd specifies whether the instruction in the branch delay slot is discarded if the branch condition is not satisfied.  tf

specifies which is used as the branch condition, True or False.  The values of nd and tf are fixed for each

instruction.

The MIPS I instruction set architecture provides only 1 bit of a floating-point condition code: the C bit in FCR31.

Therefore, the cc field of the MIPS I, II, and III instruction set architectures must be 0.  The MIPS IV instruction set

architecture has seven additional condition code bits.  The floating-point comparison instruction and conditional

branch instruction specify the condition code bits to be set or tested.  Both the assembler formats are valid with

the MIPS IV instruction set architecture.

Remarks 1. The condition branch range of this instruction is ±128 KB because an 18-bit signed offset is used.

To branch to an address outside this range, use the J or JR instruction.

2. Use this instruction only when it is expected with a high probability (98% or higher) that a given

branch condition is satisfied.  If the branch condition is not satisfied or if the branch destination is

not known, use the BC1T instruction.



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM544

BC1TL Branch on FPU True Likely (Coprocessor 1)

(2/2)

Operation:

MIPS II, III

  32 T – 1: condition ← FPConditionCode(0) = 1

T: target ← (offset15) 14 || offset || 02

T + 1: if condition then

  PC ← PC + target

else

  NulifyCurrentInstruction

endif

  64 T – 1: condition ← FPConditionCode(0) = 1

T: target ← (offset15) 46 || offset || 02

T + 1: if condition then

  PC ← PC + target

else

  NulifyCurrentInstruction

endif

MIPS IV

  32 T – 1: condition ← FPConditionCode(cc) = 1

T: target ← (offset15) 14 || offset || 02

T + 1: if condition then

  PC ← PC + target

else

  NulifyCurrentInstruction

end if

  64 T – 1: condition ← FPConditionCode(cc) = 1

T: target ← (offset15) 46 || offset || 02

T + 1: if condition then

  PC ← PC + target

else

  NulifyCurrentInstruction

end if

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exception:

Unimplemented operation exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 545

C.cond.fmt Floating-point Compare

(1/3)

2631
COP1

0

cc

25 21 20 16 15 11 10 6 5
FCNote

fsfmt010001 11ft

4 3

condNote
8 7

0
00

Format:

C.cond.S fs, ft MIPS I
C.cond.D fs, ft

C.cond.S cc, fs, ft MIPS IV
C.cond.D cc, fs, ft

Purpose:

Compares floating-point values and records the Boolean result of the comparison in a condition code.

Description:

This instruction compares the contents of floating-point register fs with the contents of floating-point register ft in

accordance with comparison condition cond, and sets the result in the condition code bit (cc bit) of the floating-

point control register (FCR31 or FCR25) specified by cc.  The operands are processed as floating-point format

fmt.  If one of the values is NaN and if the most significant bit of comparison condition cond is set, an invalid

operation exception occurs.  If this exception occurs, the flag bits of FCR31 and FCR26 are set.  If the invalid

operation exception is enabled (if the enable bits of FCR31 and FCR28 are set), the comparison result is not set,

and processing of the exception is started as is.  If the enable bits are not set, only the comparison result is set to

the cc bit, and the exception is not processed.

The comparison result is also used to test the FPU branch instruction.

Comparison is executed accurately, and neither overflow nor underflow occurs.  One of four mutually exclusive

relations, “less than”, “equal to”, “greater than”, and “Unordered (comparison impossible)”, occurs.  If one or both

the operands are NaN, the result of the comparison is always “Unordered”.  For details of comparison condition

cond, refer to Table 18-4 Logical Inversion of Term Depending on True/False of Condition.

The sign of 0 is ignored during comparison (+0 = −0).

This instruction is valid only in single-/double-precision floating-point formats.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

The MIPS I instruction set architecture provides only 1 bit of a floating-point condition code: the C bit in FCR31.

Therefore, the cc field of the MIPS I, II, and III instruction set architectures must be 0.  The MIPS IV instruction set

architecture has seven additional condition code bits.  The floating-point comparison instruction and conditional

branch instruction specify the condition code bits to be set or tested.  Both the assembler formats are valid with

the MIPS IV instruction set architecture.

Note See 18.5 FPU Instruction Opcode Bit Encoding.



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM546

C.cond.fmt Floating-point Compare

(2/3)

If a floating-point operation instruction, including a comparison instruction, receives SignalingNaN (SNaN), it is

regarded as an invalid operation condition.  If comparison that also becomes an invalid operation with QuietNaN

(QNaN), not only with SNaN, is used, a program that generates an error if NaN is used can be made easy.

Consequently, a code that clearly checks QNaN that makes the result Unordered is unnecessary.  Instead, an

exception occurs if an invalid operation is detected, and errors are processed by an exception processing system.

The case of comparison in which two numeric values are checked if they are equal to each other, and an error is

detected if the result is Unordered, is shown below.

# To test QNaN clearly

   C.EQ.D $f2, $f4 # Checks if two values are equal

   NOP

   BC1T L2 # To L2 if not equal

   C.UN.D $f2, $f4 # Checks if result is Unordered if not equal

   BC1T ERROR # To error processing if Unordered

# Describes processing code if not equal

# Describes processing code if equal

L2:

  :

# To use comparison that reports QNaN

   C.SEQ.D $f2, $f4 # Checks if two values are equal

   NOP

   BC1T L2 # To L2 if equal

   NOP

# Describes processing code if result is not Unordered

# Describes processing code if not equal

# Describes processing code if equal

L2:

  :



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 547

C.cond.fmt Floating-point Compare

(3/3)

Operation:

32, 64 T: if NaN (ValueFPR (fs, fmt)) or NaN (ValueFPR (ft, fmt)) then

less ← false

equal ← false

unordered ← true

if cond3 then

signal InvalidOperationException

endif

else

less ← ValueFPR (fs, fmt) < ValueFPR (ft, fmt)

equal ← ValueFPR (fs, fmt) = ValueFPR (ft, fmt)

unordered ← false

endif

condition ← (cond2 and less) or (cond1 and equal) or (cond0 and unordered)

SetFPConditionCode (cc, condition)

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exception:

Unimplemented operation exception

Invalid operation exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM548

CEIL.L.fmt Floating-point Ceiling to Long Fixed-point Format

(1/2)

2631
COP1

0

fd

25

0

21 20 16 15 11 10 6 5
CEIL. Lfsfmt010001 00000 001010

Format:

CEIL.L.S fd, fs MIPS III
CEIL.L.D fd, fs

Purpose:

Rounds up a floating-point value to a 64-bit fixed-point value for conversion.

Description:

This instruction arithmetically converts the contents of floating-point register fs into a 64-bit floating-point format,

and stores the result in floating-point register fd.  The source operand is processed as floating-point format fmt.

The result is rounded toward the direction of +∞ regardless of the current rounding mode.

This instruction is valid only when converting from single-/double-precision floating-point formats.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

If the source operand is infinity or NaN, and if the result of rounding is outside the range of 263 – 1 to – 263, the flag

bits of FCR31 and FCR26 are set to indicate an invalid operation.  If an invalid operation exception is not enabled,

the exception does not occur, and 263 – 1 is returned.

This operation is defined in 64-bit mode or in 32-bit kernel mode.  Execution of this instruction in 32-bit user or

supervisor mode causes a reserved instruction exception.

Operation:

64 T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt), fmt, L))

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Coprocessor unusable exception

Floating-point operation exception

Reserved instruction exception (32-bit user/supervisor mode)

Floating-point operation exception:

Unimplemented operation exception

Invalid operation exception

Inexact operation exception

Overflow exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 549

CEIL.L.fmt Floating-point Ceiling to Long Fixed-point Format

(2/2)

Caution  The unimplemented operation exception occurs in the following cases.

•••• If overflow occurs when the format is converted into a fixed-point format

•••• If the source operand is infinity

•••• If the source operand is NaN

Specifically, the exception occurs if the value stored in floating-point register fd is outside the

range of 253 – 1 (0x001F FFFF FFFF FFFF) to –253 (0xFFE0 0000 0000 0000).



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM550

CEIL.W.fmt Floating-point Ceiling to Single Fixed-point Format

(1/2)

2631
COP1

0

fd

25

0

21 20 16 15 11 10 6 5
CEIL. Wfsfmt010001 00000 001110

Format:

CEIL.W.S fd, fs MIPS II
CEIL.W.D fd, fs

Purpose:

Rounds up a floating-point value to a 32-bit fixed-point value for conversion.

Description:

This instruction arithmetically converts the contents of floating-point register fs into a 64-bit floating-point format,

and stores the result in floating-point register fd.  The source operand is processed as floating-point format fmt.

The result is rounded toward the direction of +∞ regardless of the current rounding mode.

This instruction is valid only when converting from single-/double-precision floating-point formats.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

If the source operand is infinity or NaN, and if the result of rounding is outside the range of 231 – 1 to – 231, the flag

bits of FCR31 and FCR26 are set to indicate an invalid operation.  If an invalid operation exception is not enabled,

the exception does not occur, and 231 – 1 is returned.

Operation:

32, 64 T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception

Floating-point operation exception

Floating-point operation exception:

Unimplemented operation exception

Invalid operation exception

Inexact operation exception

Overflow exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 551

CEIL.W.fmt Floating-point Ceiling to Single Fixed-point Format

(2/2)

Caution  The unimplemented operation exception occurs in the following cases.

•••• If overflow occurs when the format is converted into a fixed-point format

•••• If the source operand is infinity

•••• If the source operand is NaN

Specifically, the exception occurs if the value stored in floating-point register fd is outside the

range of 231 – 1 (0x7FFF FFFF) to – 231 (0x8000 0000).



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM552

CFC1 Move Control Word from FPU (Coprocessor 1)

2631
COP1

010001

0

fs

25

rt

21 20 16 15 11 10
0

00000000000
CF

00010

Format:

CFC1 rt, fs MIPS I

Purpose:

Copies a word from a FPU control register to a general-purpose register.

Description:

This instruction loads the contents of floating-point control register fs to general-purpose register rt of the CPU.

This instruction is defined only if fs is 0, 25, 26, 28, or 31.  Otherwise, the result will be undefined.

Remark  Of the floating-point control registers, FCR25, FCR26, and FCR28 are provided in the VR5500.

Therefore, these registers cannot be specified as fs with the MIPS I, II, III, and IV instruction set

architectures.

Operation:

32 T: temp ← FCR[fs]

T + 1: GPR[rt] ← temp

64 T: temp ← FCR[fs]

T + 1: GPR[rt] ← (temp31)
32

 || temp

Exceptions:

Coprocessor unusable exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 553

CTC1 Move Control Word to FPU (Coprocessor 1)

2631
COP1

010001

0

fs

25

rt

21 20 16 15 11 10
0

00000000000
CT

00110

Format:

CTC1 rt, fs MIPS I

Purpose:

Copies a word from a general-purpose register to a FPU control register.

Description:

This instruction loads the contents of general-purpose register rt of the CPU to floating-point control register fs.

This instruction is defined only if fs is 0, 25, 26, 28, or 31.  Otherwise, the result will be undefined.

If the cause bit of this register and corresponding enable bit are set by writing data to the Control/Status register

(FCR31), a floating-point operation exception occurs.  Write data to the register before the exception occurs.

Remark  Of the floating-point control registers, FCR25, FCR26, and FCR28 are provided in the VR5500.

Therefore, these registers cannot be specified as fs with the MIPS I, II, III, and IV instruction set

architectures.

Operation:

32 T: temp ← GPR[rt]

T + 1: FCR[fs] ← temp

64 T: temp ← GPR[rt]31..0

T + 1: FCR[fs] ← temp

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exception:

Unimplemented operation exception

Invalid operation exception

Inexact operation exception

Division-by-zero exception

Overflow exception

Underflow exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM554

CVT.D.fmt Floating-point Convert to Double Floating-point Format

(1/2)

2631
COP1

0

fd

25

0

21 20 16 15 11 10 6 5
CVT. Dfsfmt010001 00000 100001

Format:

CVT.D.S fd, fs MIPS I
CVT.D.W fd, fs MIPS III
CVT.D.L fd, fs

Purpose:

Converts a floating-point value or fixed-point value into a double-precision floating-point value.

Description:

This instruction arithmetically converts the contents of floating-point register fs into a double-precision floating-

point format in accordance with the current rounding mode, and stores the result in floating-point register fd.  The

source operand is processed as floating-point format fmt.

This instruction is valid only when converting from a single-precision floating-point format or from a 32-bit or 64-bit

fixed-point format.

This conversion operation is executed accurately, without the accuracy affected, in the single-precision floating-

point format and 32-bit fixed-point format.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

Operation:

32, 64 T: StoreFPR (fd, D, ConvertFmt (ValueFPR (fs, fmt), fmt, D))

Exceptions:

Coprocessor unusable exception

Floating-point operation exception

Floating-point operation exception:

Unimplemented operation exception

Invalid operation exception

Inexact operation exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 555

CVT.D.fmt Floating-point Convert to Double Floating-point Format

(2/2)

Caution  The unimplemented operation exception occurs in the following cases.

•••• If overflow occurs when the format is converted into a fixed-point format

•••• If the source operand is infinity

•••• If the source operand is NaN

Specifically, the unimplemented operation exception occurs if conversion is executed when the

format of the source operand is outside the range of 255 – 1 (0x007F FFFF FFFF FFFF) to – 255

(0xFF80 0000 0000 0000).



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM556

CVT.L.fmt Floating-point Convert to Long Fixed-point Format

(1/2)

2631
COP1

0

fd

25

0

21 20 16 15 11 10 6 5
CVT. Lfsfmt010001 00000 100101

Format:

CVT.L.S fd, fs MIPS III
CVT.L.D fd, fs

Purpose:

Converts a floating-point value into a 64-bit fixed-point value.

Description:

This instruction arithmetically converts the contents of floating-point register fs into a 64-bit floating-point format in

accordance with the current rounding mode, and stores the result in floating-point register fd.  The source

operand is processed as floating-point format fmt.

This instruction is valid only when converting from single-/double-precision floating-point formats.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

If the source operand is infinity or NaN, and if the result of rounding is outside the range of 263 – 1 to – 263, the flag

bits of FCR31 and FCR26 are set to indicate an invalid operation.  If an invalid operation exception is not enabled,

the exception does not occur, and 263 – 1 is returned.

This operation is defined in 64-bit mode or in 32-bit kernel mode.  Execution of this instruction in 32-bit user or

supervisor mode causes a reserved instruction exception.

Operation:

64 T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt), fmt, L))

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Coprocessor unusable exception

Floating-point operation exception

Reserved instruction exception (32-bit user/supervisor mode)

Floating-point operation exception:

Unimplemented operation exception

Invalid operation exception

Inexact operation exception

Overflow exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 557

CVT.L.fmt Floating-point Convert to Long Fixed-point Format

(2/2)

Caution  The unimplemented operation exception occurs in the following cases.

•••• If overflow occurs when the format is converted into a fixed-point format

•••• If the source operand is infinity

•••• If the source operand is NaN

Specifically, the exception occurs if the value stored in floating-point register fd is outside the

range of 253 – 1 (0x001F FFFF FFFF FFFF) to –253 (0xFFE0 0000 0000 0000).



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM558

CVT.S.fmt Floating-point Convert to Single Floating-point Format

(1/2)

2631
COP1

0

fd

25

0

21 20 16 15 11 10 6 5
CVT. Sfsfmt010001 00000 100000

Format:

CVT.S.D fd, fs MIPS I
CVT.S.W fd, fs MIPS III
CVT.S.L fd, fs

Purpose:

Converts a floating-point value or fixed-point value into a single-precision floating-point value.

Description:

This instruction arithmetically converts the contents of floating-point register fs into a single-precision floating-

point format in accordance with the current rounding mode, and stores the result in floating-point register fd.  The

source operand is processed as floating-point format fmt.  The result is rounded in accordance with the current

rounding mode.

This instruction is valid only when converting from a double-precision floating-point format or from a 32-bit or 64-

bit fixed-point format.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

Operation:

32, 64 T: StoreFPR (fd, S, ConvertFmt (ValueFPR (fs, fmt), fmt, S))

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exception:

Unimplemented operation exception

Invalid operation exception

Inexact operation exception

Overflow exception

Underflow exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 559

CVT.S.fmt Floating-point Convert to Single Floating-point Format

(2/2)

Caution  The unimplemented operation exception occurs in the following cases.

•••• If overflow occurs when the format is converted into a fixed-point format

•••• If the source operand is infinity

•••• If the source operand is NaN

Specifically, the unimplemented operation exception occurs if conversion is executed when the

format of the source operand is outside the range of 255 – 1 (0x007F FFFF FFFF FFFF) to – 255

(0xFF80 0000 0000 0000).



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM560

CVT.W.fmt Floating-point Convert to Single Fixed-point Format

(1/2)

2631
COP1

0

fd

25

0

21 20 16 15 11 10 6 5
CVT. Wfsfmt010001 00000 100100

Format:

CVT.W.S fd, fs MIPS I
CVT.W.D fd, fs

Purpose:

Converts a floating-point value into a 32-bit fixed-point value.

Description:

This instruction arithmetically converts the contents of floating-point register fs into a 32-bit floating-point format,

and stores the result in floating-point register fd.  The source operand is processed as floating-point format fmt.

This instruction is valid only when converting from single-/double-precision floating-point formats.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

If the source operand is infinity or NaN, and if the result of rounding is outside the range of 231 – 1 to – 231, the flag

bits of FCR31 and FCR26 are set to indicate an invalid operation.  If an invalid operation exception is not enabled,

the exception does not occur, and 231 – 1 is returned.

Operation:

32, 64 T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exception:

Unimplemented operation exception

Invalid operation exception

Inexact operation exception

Overflow exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 561

CVT.W.fmt Floating-point Convert to Single Fixed-point Format

(2/2)

Caution  The unimplemented operation exception occurs in the following cases.

•••• If overflow occurs when the format is converted into a fixed-point format

•••• If the source operand is infinity

•••• If the source operand is NaN

Specifically, the exception occurs if the value stored in floating-point register fd is outside the

range of 231 – 1 (0x7FFF FFFF) to – 231 (0x8000 0000).



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM562

DIV.fmt Floating-point Divide

2631
COP1

0

fd

25 21 20 16 15 11 10 6 5
DIVfsfmt010001 000011ft

Format:

DIV.S fd, fs, ft MIPS I
DIV.D fd, fs, ft

Purpose:

Divides a floating-point value.

Description:

This instruction divides the contents of floating-point register fs by the contents of floating-point register ft, and

stores the result in floating-point register fd.  The operand is processed as floating-point format fmt.  The

operation is executed as if it were of infinite accuracy, and the result is rounded in accordance with the current

rounding mode.

This instruction is valid only in single-/double-precision floating-point formats.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, ValueFPR (fs, fmt) / ValueFPR (ft, fmt))

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exception:

Unimplemented operation exception

Invalid operation exception

Inexact operation exception

Division-by-zero exception

Overflow exception

Underflow exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 563

DMFC1 Doubleword Move from FPU (Coprocessor 1)

2631
COP1

025

DMF

21 20 16 15 11 10
0fsrt010001 00001 00000000000

Format:

DMFC1 rt, fs MIPS III

Purpose:

Copies a doubleword from a floating-point register to a general-purpose register.

Description:

This instruction loads the contents of floating-point general-purpose register fs to general-purpose register rt of

the CPU.

The FR bit of the Status register indicates that all the 32 registers of the processor can be specified or not.  If the

FR bit is 0 and if the least significant bit of fs is 1, this instruction is undefined.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

This operation is defined in 64-bit mode or in 32-bit kernel mode.

Operation:

64 T: if SR26 = 1 then

  data ← FGR [fs]

else

if fs0 = 0 then

  data ← FGR [fs+1] || FGR[fs]

else

  data ← undefined64

endif

T + 1: GPR [rt] ← data

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Coprocessor unusable exception

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM564

DMTC1 Doubleword Move to FPU (Coprocessor 1)

2631
COP1

025

DMT

21 20 16 15 11 10
0fsrt010001 00101 00000000000

Format:

DMTC1 rt, fs MIPS III

Purpose:

Copies a doubleword from a general-purpose register to a floating-point register.

Description:

This instruction loads the contents of general-purpose register rt of the CPU to floating-point general-purpose

register fs.

The FR bit of the Status register indicates that all the 32 registers of the processor can be specified or not.  If the

FR bit is 0 and if the least significant bit of fs is 1, this instruction is undefined.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

This operation is defined in 64-bit mode or in 32-bit kernel mode.

Operation:

64 T: data ← GPR [rt]

T + 1: if SR26 = 1 then

  FGR [fs] ← data

else

if fs0 = 0 then

  FGR [fs+1] ←  data63..32

  FGR [fs] ← data31..0

else

  undefined_result

endif

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Coprocessor unusable exception

Reserved instruction exception (32-bit user/supervisor mode)



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 565

FLOOR.L.fmt Floating-point Floor to Long Fixed-point Format

(1/2)

2631
COP1

0

fd

25

0

21 20 16 15 11 10 6 5
FLOOR. Lfsfmt010001 00000 001011

Format:

FLOOR.L.S fd, fs MIPS III
FLOOR.L.D fd, fs

Purpose:

Rounds down a floating-point value to a 64-bit fixed-point value for conversion.

Description:

This instruction arithmetically converts the contents of floating-point register fs into a 64-bit floating-point format,

and stores the result in floating-point register fd.  The source operand is processed as floating-point format fmt.

The result is rounded toward the direction of −∞ regardless of the current rounding mode.

This instruction is valid only when converting from single-/double-precision floating-point formats.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

If the source operand is infinity or NaN, and if the result of rounding is outside the range of 263 – 1 to – 263, the flag

bits of FCR31 and FCR26 are set to indicate an invalid operation.  If an invalid operation exception is not enabled,

the exception does not occur, and 263 – 1 is returned.

This operation is defined in 64-bit mode or in 32-bit kernel mode.  Execution of this instruction in 32-bit user or

supervisor mode causes a reserved instruction exception.

Operation:

64 T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt), fmt, L))

Remark  The operation is the same in the 32-bit kernel mode.

Exceptions:

Coprocessor unusable exception

Floating-point operation exception

Reserved instruction exception (32-bit user/supervisor mode)

Floating-point operation exception:

Unimplemented operation exception

Invalid operation exception

Inexact operation exception

Overflow exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM566

FLOOR.L.fmt Floating-point Floor to Long Fixed-point Format

(2/2)

Caution  The unimplemented operation exception occurs in the following cases.

•••• If overflow occurs when the format is converted into a fixed-point format

•••• If the source operand is infinity

•••• If the source operand is NaN

Specifically, the exception occurs if the value stored in floating-point register fd is outside the

range of 253 – 1 (0x001F FFFF FFFF FFFF) to – 253 (0xFFE0 0000 0000 0000).



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 567

FLOOR.W.fmt Floating-point Floor to Single Fixed-point Format

(1/2)

2631
COP1

0

fd

25

0

21 20 16 15 11 10 6 5
FLOOR. Wfsfmt010001 00000 001111

Format:

FLOOR.W.S fd, fs MIPS II
FLOOR.W.D fd, fs

Purpose:

Rounds down a floating-point value to a 32-bit fixed-point value for conversion.

Description:

This instruction arithmetically converts the contents of floating-point register fs into a 32-bit floating-point format,

and stores the result in floating-point register fd.  The source operand is processed as floating-point format fmt.

The result is rounded toward the direction of −∞ regardless of the current rounding mode.

This instruction is valid only when converting from single-/double-precision floating-point formats.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

If the source operand is infinity or NaN, and if the result of rounding is outside the range of 231 – 1 to – 231, the flag

bits of FCR31 and FCR26 are set to indicate an invalid operation.  If an invalid operation exception is not enabled,

the exception does not occur, and 231 – 1 is returned.

Operation:

32, 64 T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exception:

Unimplemented operation exception

Invalid operation exception

Inexact operation exception

Overflow exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM568

FLOOR.W.fmt Floating-point Floor to Single Fixed-point Format

(2/2)

Caution  The unimplemented operation exception occurs in the following cases.

•••• If overflow occurs when the format is converted into a fixed-point format

•••• If the source operand is infinity

•••• If the source operand is NaN

Specifically, the exception occurs if the value stored in floating-point register fd is outside the

range of 231 – 1 (0x7FFF FFFF) to – 231 (0x8000 0000).



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 569

LDC1 Load Doubleword to FPU (Coprocessor 1)

(1/2)

2631
LDC1

025 21 20 16 15

ft110101 offsetbase

Format:

LDC1 rt, offset (base) MIPS II

Purpose:

Loads a doubleword from memory to a floating-point register.

Description:

This instruction sign-extends a 16-bit offset and adds the result to the contents of general-purpose register base

to generate a virtual address.

If the FR bit of the Status register is 0, the contents of the doubleword at the memory position specified by the

virtual address are loaded to floating-point registers ft and ft + 1.  At this time, the higher 32 bits of the doubleword

are stored in the odd-numbered register specified by ft + 1, and the lower 32 bits are stored in the even-numbered

register specified by ft.  If the least significant bit of the ft field is not 0, the operation is undefined.

If the FR bit is1, the contents of the doubleword at the memory position specified by the virtual address are

loaded to floating-point register ft.

An address error exception occurs if the lower 3 bits of the address are not 0.



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM570

LDC1 Load Doubleword to FPU (Coprocessor 1)

(2/2)

Operation:

32 T: vAddr ← ((offset15) 16 || offset15..0) + GPR [base]

(pAddr, uncached) ← Address Translation (vAddr, DATA)

data ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

if SR26 = 1 then

  FGR [ft] ← data

elseif ft0 = 0 then

  FGR [ft+1] ← data63..32

  FGR [ft] ← data31..0

else

  undefined_result

endif

64 T: vAddr ← ((offset15) 48 || offset15..0) + GPR [base]

(pAddr, uncached) ← Address Translation (vAddr, DATA)

data ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

if SR26 = 1 then

  FGR [ft] ← data

elseif ft0 = 0 then

  FGR [ft+1] ← data63..32

  FGR [ft] ← data31..0

else

  undefined_result

endif

Exceptions:

Coprocessor unusable exception

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 571

LDXC1 Load Doubleword Indexed to FPU (Coprocessor 1)

2631
COP1X
010011

0

fd

25

index

21 20 16 15 11 10 6 5
LDXC1
000001

0
00000base

Format:

LDXC1 fd, index (base) MIPS IV

Purpose:

Loads a doubleword from memory to a floating-point register (general-purpose register + general-purpose register

addressing).

Description:

This instruction adds the contents of CPU general-purpose register index and the contents of CPU general-

purpose register base to generate a virtual address.

If the FR bit of the Status register is 0, the contents of the doubleword at the memory position specified by the

virtual address are loaded to floating-point registers fd and fd + 1.  At this time, the higher 32 bits of the

doubleword are stored in the odd-numbered register specified by fd + 1, and the lower 32 bits are stored in the

even-numbered register specified by fd.  If the least significant bit of the fd field is not 0, the operation is

undefined.

If the FR bit is1, the contents of the doubleword at the memory position specified by the virtual address are

loaded to floating-point register fd.

The operation is undefined if bits 63 and 62 of the virtual address are not the same as bits 63 and 62 of general-

purpose register base.

An address error exception occurs if the lower 3 bits of the virtual address are not 0.

Operation:

32, 64 T: vAddr ← GPR[base]+GPR[index]

(pAddr, CCA) ← Address Translation (vAddr, DATA)

data ← LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)

if SR26 = 1 then

  FGR[fd] ← data

elseif fd0 = 0 then

  FGR[fd+1] ← data63..32

  FGR[fd] ← data31..0

else

  undefined_result

endif

Exceptions:

Coprocessor unusable exception

TLB refill exception

TLB invalid exception

Address error exception

Reserved instruction exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM572

LUXC1 Load Doubleword Indexed Unaligned to FPU (Coprocessor 1)

(1/2)

2631
COP1X
010011

0

fd

25

index

21 20 16 15 11 10 6 5
LUXC1
000101

0
00000base

Format:

LUXC1 fd, index (base) MIPS V

Purpose:

Loads a doubleword from memory to a floating-point register (general-purpose register + general-purpose register

addressing).

Description:

This instruction adds the contents of CPU general-purpose register index and the contents of CPU general-

purpose register base to generate a virtual address.  The lower 3 bits of the virtual address are masked by 0.

Therefore, an address error exception does not occur even if the lower 3 bits of the virtual address are not 0.

If the FR bit of the Status register is 0, the contents of the doubleword at the memory position specified by the

virtual address are loaded to floating-point registers fd and fd + 1.  At this time, the higher 32 bits of the

doubleword are stored in the odd-numbered register specified by fd + 1, and the lower 32 bits are stored in the

even-numbered register specified by fd.  If the least significant bit of the fd field is not 0, the operation is

undefined.

If the FR bit is1, the contents of the doubleword at the memory position specified by the virtual address are

loaded to floating-point register fd.

The operation is undefined if bits 63 and 62 of the virtual address are not the same as bits 63 and 62 of general-

purpose register base.

Operation:

32, 64 T: vAddr ← (GPR[base]+GPR[index])63..3 || 03

(pAddr, CCA) ← Address Translation (vAddr, DATA)

data ← LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)

if SR26 = 1 then

  FGR[fd] ← data

elseif fd0 = 0 then

  FGR[fd+1] ← data63..32

  FGR[fd] ← data31..0

else

  undefined_result

endif



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 573

LUXC1 Load Doubleword Indexed Unaligned to FPU (Coprocessor 1)

(2/2)

Exceptions:

Coprocessor unusable exception

TLB refill exception

TLB invalid exception

TLB modified exception

Bus error exception

Address error exception

Reserved instruction exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM574

LWC1 Load Word to FPU (Coprocessor 1)

(1/2)

2631
LWC1

025 21 20 16 15

ft110001 offsetbase

Format:

LWC1 ft, offset (base) MIPS I

Purpose:

Loads a word from memory to a floating-point register.

Description:

This instruction sign-extends a 16-bit offset and adds the result to the contents of general-purpose register base

to generate a virtual address.  The contents of the word at the memory position specified by the virtual address

are loaded to floating-point register ft.

If the FR bit of the Status register is 0 and if the least significant bit of the ft field is 0, the contents of the word are

stored in the lower 32 bits of floating-point register ft.  If the least significant bit of the ft field is 1, the contents of

the word are stored in the higher 32 bits of floating-point register ft – 1.

If the FR bit is 1, all the 64-bit floating-point registers can be accessed.  Therefore, the contents of the word are

stored in floating-point register ft.  The values of the higher 32 bits are undefined.

An address error exception occurs if the lower 2 bits of the address are not 0.



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 575

LWC1 Load Word to FPU (Coprocessor 1)

(2/2)

Operation:

32 T: vAddr ← ((offset15) 16 || offset15..0) + GPR [base]

(pAddr, uncached) ← Address Translation (vAddr, DATA)

data ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

if SR26 = 1 then

  FGR [ft] ← undefined32  || data

else

  FGR [ft] ← data

endif

64 T: vAddr ← ((offset15) 48 || offset15..0) + GPR [base]

(pAddr, uncached) ← Address Translation (vAddr, DATA)

data ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

if SR26 = 1 then

  FGR [ft] ← undefined32  || data

else

  FGR [ft] ← data

endif

Exceptions:

Coprocessor unusable exception

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM576

LWXC1 Load Word Indexed to FPU (Coprocessor 1)

2631
COP1X
010011

0

fd

25

index

21 20 16 15 11 10 6 5
LWXC1
000000

0
00000base

Format:

LWXC1  fd, index (base) MIPS IV

Purpose:

Loads a word from memory to a floating-point register (general-purpose register + general-purpose register

addressing).

Description:

This instruction adds the contents of CPU general-purpose register index and the contents of CPU general-

purpose register base to generate a virtual address.  The contents of the word at the memory position specified

by the virtual address are loaded to floating-point register fd.

If the FR bit of the Status register is 0 and if the least significant bit of the fd field is 0, the contents of the word are

stored in the lower 32 bits of floating-point register fd.  If the least significant bit of the fd field is 1, the contents of

the word are stored in the higher 32 bits of floating-point register fd – 1.

If the FR bit is1, the contents of the word at the memory position specified by the virtual address are stored in

floating-point register fd.  The values of the higher 32 bits are undefined.

The operation is undefined if bits 63 and 62 of the virtual address are not the same as bits 63 and 62 of general-

purpose register base.

An address error exception occurs if the lower 2 bits of the virtual address are not 0.

Operation:

32, 64 T: vAddr ← GPR[base] + GPR[index]

(pAddr, CCA) ← Address Translation (vAddr, DATA)

data ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)

if SR26 = 1 then

  FGR[fd] ← undefined
32

 || data

elseif fd0 = 0 then

  FGR[fd] ← FGR[fd]63..32 || data

else

  FGR[fd − 1] ← data || FGR[fd − 1]31..0

endif

Exceptions:

Coprocessor unusable exception

TLB refill exception

TLB invalid exception

Address error exception

Reserved instruction exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 577

MADD.fmt Floating-point Multiply-Add

2631
COP1X
010011

0

fs

25

ft

21 20 16 15 11 10 6 5
MADD
100fr fd fmt

3 2

Format:

MADD.S fd, fr, fs, ft MIPS IV
MADD.D fd, fr, fs, ft

Purpose:

Combines multiplication and addition of floating-point values for execution.

Description:

This instruction multiplies the contents of floating-point register fs by the contents of floating-point register ft, adds

the contents of floating-point register fr to the result, and stores the result of the addition in floating-point register

fd.  The operation is executed as if it were of infinite accuracy, and the result is rounded in accordance with the

current rounding mode.  The operand is processed as floating-point format fmt.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

If the condition of an exception is detected but the exception does not occur, the cause bit and flag bit of a

floating-point control register are ORed and the result is written to the flag bit.

Operation:

32, 64 T: StoreFPR (fd, fmt, ValueFPR (fr, fmt) + ValueFPR (fs, fmt) * ValueFPR (ft, fmt))

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exceptions:

Unimplemented operation exception

Invalid operation exception

Inexact operation exception

Overflow exception

Underflow exception

Caution  If the result of multiplication is a denormalized number, or an underflow or overflow occurs, an

unimplemented operation exception actually occurs.



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM578

MFC1 Move Word from FPU (Coprocessor 1)

2631
COP1

025

MF

21 20 16 15 11 10
0fsrt010001 00000 00000000000

Format:

MFC1 rt, fs MIPS I

Purpose:

Copies a word from a FPU (CP1) general-purpose register to a general-purpose register.

Description:

This instruction loads the contents of floating-point general-purpose register fs to general-purpose register rt of

the CPU.

If the FR bit of the Status register is 0 and if the least significant bit of fs is 0, the lower 32 bits of floating-point

register fs are stored in general-purpose register rt.  If the least significant bit of fs is 1, the higher 32 bits of

floating-point register fs – 1 are stored in general-purpose register rt.

If the FR bit is 1, all the 64-bit floating-point registers can be accessed.  Therefore, the lower 32 bits of floating-

point register fs are stored in general-purpose register rt.

Operation:

32 T: data ← FGR [fs]31..0

T + 1: GPR [rt] ← data

64 T: data ← FGR [fs]31..0

T + 1: GPR [rt] ← (data31)32 || data

Exceptions:

Coprocessor unusable exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 579

MOV.fmt Floating-point Move

2631
COP1

0

fd

25

0

21 20 16 15 11 10 6 5
MOVfsfmt010001 00000 000110

Format:

MOV.S fd, fs MIPS I
MOV.D fd, fs

Purpose:

Transfers a floating-point value between floating-point registers.

Description:

This instruction stores the contents of floating-point register fs in floating-point register fd.  The operand is

processed as floating-point format fmt.

This instruction is non-arithmetically executed and the IEEE754 exception does not occur.

This instruction is valid only in single-/double-precision floating-point formats.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, ValueFPR (fs, fmt))

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exceptions:

Unimplemented operation exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM580

MOVF Move Conditional on FPU False

2631
SPECIAL
000000

0

rd

25

cc

21 20 16 15 11 10 6 5
MOVCI
000001

0rs

18 17

0
tf
0

0
00000

Format:

MOVF rd, rs, cc MIPS IV

Purpose:

Tests a floating-point condition code and conditionally moves the contents of a general-purpose register.

Description:

If the condition code bit (cc bit) of the floating-point control register (FCR31 or FCR25) specified by cc is false (0),

the contents of CPU general-purpose register rs are stored in CPU general-purpose register rd.  The cc bit of

FCR31 and FCR25 is set by a floating-point comparison instruction (C.cond.fmt).

tf specifies which is used as the branch condition, True or False.  The value of tf is fixed for each instruction.

Operation:

32, 64 T: if FPConditionCode(cc) = 0 then

  GPR[rd] ← GPR[rs]

endif

Exceptions:

Coprocessor unusable exception

Reserved instruction exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 581

MOVF.fmt Floating-point Move Conditional on FPU False

2631
COP1

010001

0

fs

25

cc

21 20 16 15 11 10 6 5
MOVCF
010001

0fmt

18 17

0
tf
0 fd

Format:

MOVF.S fd, fs, cc MIPS IV
MOVF.D fd, fs, cc

Purpose:

Tests a floating-point condition code and conditionally moves a floating-point value.

Description:

If the condition code bit (cc bit) of the floating-point control register (FCR31 or FCR25) specified by cc is false (0),

the contents of floating-point register fs are stored in floating-point register fd.  The source and destination

operands are processed as floating-point format fmt.  The cc bit of FCR31 and FCR25 is set by a floating-point

comparison instruction (C.cond.fmt).

tf specifies which is used as the branch condition, True or False.  The value of tf is fixed for each instruction.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

This instruction is non-arithmetically executed and the IEEE754 exception does not occur.

Operation:

32, 64 T: if FPConditionCode(cc) = 0 then

  StoreFPR (fd, fmt, ValueFPR (fs, fmt))

else

  StoreFPR (fd, fmt, ValueFPR (fd, fmt))

endif

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exceptions:

Unimplemented operation exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM582

MOVN.fmt Floating-point Move Conditional on Not Zero

2631
COP1
010001

0

fd

25

rt

21 20 16 15 11 10 6 5
MOVN
010011fmt fs

Format:

MOVN.S fd, fs, rt MIPS IV
MOVN.D fd, fs, rt

Purpose:

Tests the value of a general-purpose register and conditionally moves a floating-point value.

Description:

If the contents of CPU general-purpose register rt are not 0, this instruction stores the contents of floating-point

register fs in floating-point register fd.  The source and destination operands are processed as floating-point

format fmt.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

This instruction is non-arithmetically executed and the IEEE754 exception does not occur.

Operation:

32, 64 T: if GPR[rt] ≠ 0 then

  StoreFPR (fd, fmt, ValueFPR (fs, fmt))

else

  StoreFPR (fd, fmt, ValueFPR (fd, fmt))

endif

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exceptions:

Unimplemented operation exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 583

MOVT Move Conditional on FPU True

2631
SPECIAL
000000

0

rd

25

cc

21 20 16 15 11 10 6 5
MOVCI
000001

0rs

18 17

0
tf
1

0
00000

Format:

MOVT  rd, rs, cc MIPS IV

Purpose:

Tests a floating-point condition code and conditionally moves the contents of a general-purpose register.

Description:

If the condition code bit (cc bit) of the floating-point control register (FCR31 or FCR25) specified by cc is true (1),

the contents of CPU general-purpose register rs are stored in CPU general-purpose register rd.  The cc bit of

FCR31 and FCR25 is set by a floating-point comparison instruction (C.cond.fmt).

tf specifies which is used as the branch condition, True or False.  The value of tf is fixed for each instruction.

Operation:

32, 64 T: if FPConditionCode(cc) = 1 then

  GPR[rd] ← GPR[rs]

endif

Exceptions:

Coprocessor unusable exception

Reserved instruction exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM584

MOVT.fmt Floating-point Move Conditional on FPU True

2631
COP1
010001

0

fs

25

cc

21 20 16 15 11 10 6 5
MOVCF
010001

0fmt

18 17

0
tf
1 fd

Format:

MOVT.S  fd, fs, cc MIPS IV
MOVT.D  fd, fs, cc

Purpose:

Tests a floating-point condition code and conditionally moves a floating-point value.

Description:

If the condition code bit (cc bit) of the floating-point control register (FCR31 or FCR25) specified by cc is true (1),

the contents of floating-point register fs are stored in floating-point register fd.  The source and destination

operands are processed as floating-point format fmt.  The cc bit of FCR31 and FCR25 is set by a floating-point

comparison instruction (C.cond.fmt).

tf specifies which is used as the branch condition, True or False.  The value of tf is fixed for each instruction.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

This instruction is non-arithmetically executed and the IEEE754 exception does not occur.

Operation:

32, 64 T: if FPConditionCode(cc) = 1 then

  StoreFPR (fd, fmt, ValueFPR (fs, fmt))

else

  StoreFPR (fd, fmt, ValueFPR (fd, fmt))

endif

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exceptions:

Unimplemented operation exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 585

MOVZ.fmt Floating-point Move Conditional on Zero

2631
COP1
010001

0

fd

25

rt

21 20 16 15 11 10 6 5
MOVZ
010010fmt fs

Format:

MOVZ.S fd, fs, rt MIPS IV
MOVZ.D fd, fs, rt

Purpose:

Tests the value of a general-purpose register and conditionally moves a floating-point value.

Description:

If the contents of CPU general-purpose register rt are 0, this instruction stores the contents of floating-point

register fs in floating-point register fd.  The source and destination operands are processed as floating-point

format fmt.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

This instruction is non-arithmetically executed and the IEEE754 exception does not occur.

Operation:

32, 64 T: if GPR[rt] = 0 then

  StoreFPR (fd, fmt, ValueFPR (fs, fmt))

else

  StoreFPR (fd, fmt, ValueFPR (fd, fmt))

endif

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exceptions:

Unimplemented operation exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM586

MSUB.fmt Floating-point Multiply-Subtract

2631
COP1X
010011

0

fs

25

ft

21 20 16 15 11 10 6 5
MSUB
101fr fd fmt

3 2

Format:

MSUB.S  fd, fr, fs, ft MIPS IV
MSUB.D  fd, fr, fs, ft

Purpose:

Combines multiplication and subtraction of floating-point values for execution.

Description:

This instruction multiplies the contents of floating-point register fs by the contents of floating-point register ft,

subtracts the contents of floating-point register fr from the result, and stores the result of the subtraction in

floating-point register fd.  The operation is executed as if it were of infinite accuracy, and the result is rounded in

accordance with the current rounding mode.  The operand is processed as floating-point format fmt.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

If the condition of an exception is detected but the exception does not occur, the cause bit and flag bit of a

floating-point control register are ORed and the result is written to the flag bit.

Operation:

32, 64 T: StoreFPR (fd, fmt, ValueFPR (fs, fmt) * ValueFPR (ft, fmt) − ValueFPR (fr, fmt))

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exceptions:

Unimplemented operation exception

Invalid operation exception

Inexact operation exception

Overflow exception

Underflow exception

Caution  If the result of multiplication is a denormalized number, or an underflow or overflow occurs, an

unimplemented operation exception actually occurs.



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 587

MTC1 Move Word to FPU (Coprocessor 1)

2631
COP1

025

MT

21 20 16 15 11 10
0fsrt010001 00100 00000000000

Format:

MTC1 rt, fs MIPS I

Purpose:

Copies a word from a general-purpose register to an FPU (CP1) general-purpose register.

Description:

This instruction stores the contents of CPU general-purpose register rt in floating-point general-purpose register

fs.

How the floating-point general-purpose register is accessed differs depending on the setting of the FR bit of the

Status register.

If the FR bit is 0, all the 32 floating-point general-purpose registers can be accessed.  To transfer double-

precision data, access an odd register for the higher 32 bits and an even register for the lower 32 bits, depending

on the format of the floating-point operation instruction.

If the FR bit is 1, all the 32 floating-point general-purpose registers can be accessed, but the lower 32 bits of the

registers are accessed for data.

Operation:

32, 64 T: data ← GPR [rt]31..0

T + 1: if SR26 = 1 then

  FGR [fs] ← undefined32  || data

else

  FGR [fs] ← data

endif

Exceptions:

Coprocessor unusable exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM588

MUL.fmt Floating-point Multiply

2631
COP1
010001

0

fd

25

ft

21 20 16 15 11 10 6 5
MUL

000010fmt fs

Format:

MUL.S fd, fs, ft MIPS I
MUL.D fd, fs, ft

Purpose:

Multiplies floating-point values.

Description:

This instruction multiplies the contents of floating-point register fs by the contents of floating-point register ft, and

stores the result in floating-point register fd.  The operand is processed as floating-point format fmt.

This instruction is valid only in single-/double-precision floating-point formats.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, ValueFPR (fs, fmt)* ValueFPR (ft, fmt))

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exceptions:

Unimplemented operation exception

Invalid operation exception

Inexact operation exception

Overflow exception

Underflow exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 589

NEG.fmt Floating-point Negate

2631
COP1

0

fd

25

0

21 20 16 15 11 10 6 5
NEGfsfmt010001 00000 000111

Format:

NEG.S fd, fs MIPS I
NEG.D fd, fs

Purpose:

Executes a negation operation of a floating-point value.

Description:

This instruction inverts the sign of the contents of floating-point register fs and stores the result in floating-point

register fd.  The operand is processed as floating-point format fmt.

The sign is arithmetically inverted.  Therefore, an instruction whose operand is NaN is invalid.

This instruction is valid only in single-/double-precision floating-point formats.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, Negate (ValueFPR (fs, fmt)))

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exceptions:

Unimplemented operation exception

Invalid operation exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM590

NMADD.fmt Floating-point Negate Multiply-Add

2631
COP1X
010011

0

fs

25

ft

21 20 16 15 11 10 6 5
NMADD

110fr fd fmt

3 2

Format:

NMADD.S fd, fr, fs, ft MIPS IV
NMADD.D fd, fr, fs, ft

Purpose:

Combines multiplication and addition of floating-point values for execution and executes a negation operation on

the results.

Description:

This instruction multiplies the contents of floating-point register fs by the contents of floating-point register ft,

inverts the sign of the result, and stores the result in floating-point register fd. The operation is executed as if it

were of infinite accuracy, and the result is rounded in accordance with the current rounding mode.  The operand

is processed as floating-point format fmt.

The sign is arithmetically inverted.  Therefore, an instruction whose operand is NaN is invalid.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

If the condition of an exception is detected but the exception does not occur, the cause bit and flag bit of a

floating-point control register are ORed and the result is written to the flag bit.

Operation:

32, 64 T: StoreFPR (fd, fmt, Negate (ValueFPR (fr, fmt) + ValueFPR (fs, fmt) * ValueFPR (ft, fmt)))

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exceptions:

Unimplemented operation exception

Invalid operation exception

Inexact operation exception

Overflow exception

Underflow exception

Caution  If the result of multiplication is a denormalized number, or an underflow or overflow occurs, an

unimplemented operation exception actually occurs.



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 591

NMSUB.fmt Floating-point Negate Multiply-Subtract

2631
COP1X
010011

0

fs

25

ft

21 20 16 15 11 10 6 5
NMSUB

111fr fd fmt

3 2

Format:

NMSUB.S fd, fr, fs, ft MIPS IV
NMSUB.D fd, fr, fs, ft

Purpose:

Combines multiplication and subtraction of floating-point values for execution and executes a negation operation

on the results.

Description:

This instruction multiplies the contents of floating-point register fs by the contents of floating-point register ft,

subtracts the contents of floating-point register fr, inverts the sign of the result, and stores the result in floating-

point register fd. The operation is executed as if it were of infinite accuracy, and the result is rounded in

accordance with the current rounding mode.  The operand is processed as floating-point format fmt.

The sign is arithmetically inverted.  Therefore, an instruction whose operand is NaN is invalid.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

If the condition of an exception is detected but the exception does not occur, the cause bit and flag bit of a

floating-point control register are ORed and the result is written to the flag bit.

Operation:

32, 64 T: StoreFPR (fd, fmt, Negate (ValueFPR (fs, fmt) * ValueFPR (ft, fmt) − ValueFPR (fr, fmt)))

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exceptions:

Unimplemented operation exception

Invalid operation exception

Inexact operation exception

Overflow exception

Underflow exception

Caution  If the result of multiplication is a denormalized number, or an underflow or overflow occurs, an

unimplemented operation exception actually occurs.



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM592

PREFX Prefetch Indexed

(1/2)

2631
COP1X
010011

0

hint

25

index

21 20 16 15 11 10 6 5
PREFX
001111

0
00000base

Format:

PREFX hint, index (base) MIPS IV

Purpose:

Prefetches data from memory (general-purpose register + general-purpose register addressing).

Description:

This instruction adds the contents of CPU general-purpose register base and the contents of CPU general-

purpose register index to generate a virtual address.  It then loads the contents at the specified address position

to the data cache.

Bits 15 to 11 (hint) of this instruction indicate how the loaded data is used.  Note, however, that the contents of

hint are only used for the processor to judge if prefetching by this instruction is valid or not, and do not affect the

actual operation.  hint indicates the following operations.

hint Operation Description

0 Load Predicts that data is loaded (without modification).

Fetches data as if it were loaded.

1 to 31 − Reserved

This is an auxiliary instruction that improves the program performance.  The generated address or the contents of

hint do not change the status of the processor or system, or the meaning (purpose) of the program.

If this instruction causes a memory access to occur, the access type to be used is determined by the generated

address.  In other words, the access type used to load/store the generated address is also used for this

instruction.  However, an access to an uncached area does not occur.

If a translation entry to the specified memory position is not in the TLB, data cannot be prefetched from the map

area.  This is because no translation entry exists in TLB, it means that no access was made to the memory

position recently, therefore, no effect can be expected even if data at such a memory position is prefetched.

Exceptions related to addressing do not occur as a result of executing this instruction.  If the condition of an

exception is detected, it is ignored, but the prefetch is not executed either.  However, even if nothing is

prefetched, processing that does not appear, such as writing back a dirty cache line, may be performed.

The operation is undefined if bits 63 and 62 of the virtual address are not the same as bits 63 and 62 of general-

purpose register base.



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 593

PREFX Prefetch Indexed

(2/2)

Operation:

32, 64 T: vAddr ← GPR[base] + GPR[index]

(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)

Prefetch (CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Coprocessor unusable exception

Reserved instruction exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM594

RECIP.fmt Reciprocal

2631
COP1

010001

0

fs

25

fd

21 20 16 15 11 10 6 5
RECIP
010101

0
00000fmt

Format:

RECIP.S fd, fs MIPS IV
RECIP.D fd, fs

Purpose:

Calculates the approximate value of the reciprocal of a floating-point value (high speed).

Description:

This instruction calculates the reciprocal of the contents of floating-point register fs and stores the result in

floating-point register fd.  The operation is executed as if it were of infinite accuracy, and the result is rounded in

accordance with the current rounding mode.  The operand is processed as floating-point format fmt.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, 1.0 / ValueFPR (fs, fmt))

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exceptions:

Unimplemented operation exception

Invalid operation exception

Inexact operation exception

Division-by-zero exception

Overflow exception

Underflow exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 595

ROUND.L.fmt Floating-point Round to Long Fixed-point Format

(1/2)

2631
COP1

0

fd

25

0

21 20 16 15 11 10 6 5
ROUND. Lfsfmt010001 00000 001000

Format:

ROUND.L.S fd, fs MIPS III
ROUND.L.D fd, fs

Purpose:

Converts a floating-point value into a 64-bit fixed-point value rounded to the closest value.

Description:

This instruction arithmetically converts the contents of floating-point register fs into a 64-bit fixed-point format, and

stores the result in floating-point register fd.  The source operand is processed as floating-point format fmt.

The result is rounded to the closest value or an even number regardless of the current rounding mode.

This instruction is valid only when converting from single-/double-precision floating-point formats.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

If the source operand is infinity or NaN, and if the result of rounding is outside the range of 263 – 1 to – 263, the flag

bits of FCR31 and FCR26 are set to indicate an invalid operation.  If an invalid operation exception is not enabled,

the exception does not occur, and 263 – 1 is returned.

This operation is defined in 64-bit mode or in 32-bit kernel mode.  Execution of this instruction in 32-bit user or

supervisor mode causes a reserved instruction exception.

Operation:

64 T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt), fmt, L))

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Coprocessor unusable exception

Floating-point operation exception

Reserved instruction exception (32-bit user/supervisor mode)

Floating-point operation exceptions:

Unimplemented operation exception

Invalid operation exception

Inexact operation exception

Overflow exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM596

ROUND.L.fmt Floating-point Round to Long Fixed-point Format

(2/2)

Caution  The unimplemented operation exception occurs in the following cases.

•••• If overflow occurs when the format is converted into a fixed-point format

•••• If the source operand is infinity

•••• If the source operand is NaN

Specifically, the exception occurs if the value stored in floating-point register fd is outside the

range of 253 – 1 (0x001F FFFF FFFF FFFF) to –253 (0xFFE0 0000 0000 0000).



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 597

ROUND.W.fmt Floating-point Round to Single Fixed-point Format

(1/2)

2631
COP1

0

fd

25

0

21 20 16 15 11 10 6 5
ROUND. Wfsfmt010001 00000 001100

Format:

ROUND.W.S fd, fs MIPS II
ROUND.W.D fd, fs

Purpose:

Converts a floating-point value into a 32-bit fixed-point value rounded to the closest value.

Description:

This instruction arithmetically converts the contents of floating-point register fs into a 32-bit fixed-point format, and

stores the result in floating-point register fd.  The source operand is processed as floating-point format fmt.

The result is rounded to the closest value or an even number regardless of the current rounding mode.

This instruction is valid only when converting from single-/double-precision floating-point formats.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

If the source operand is infinity or NaN, and if the result of rounding is outside the range of 231 – 1 to – 231, the flag

bits of FCR31 and FCR26 are set to indicate an invalid operation.  If an invalid operation exception is not enabled,

the exception does not occur, and 231 – 1 is returned.

Operation:

32, 64 T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exceptions:

Unimplemented operation exception

Invalid operation exception

Inexact operation exception

Overflow exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM598

ROUND.W.fmt Floating-point Round to Single Fixed-point Format

(2/2)

Caution  The unimplemented operation exception occurs in the following cases.

•••• If overflow occurs when the format is converted into a fixed-point format

•••• If the source operand is infinity

•••• If the source operand is NaN

Specifically, the exception occurs if the value stored in floating-point register fd is outside the

range of 231 – 1 (0x7FFF FFFF) to – 231 (0x8000 0000).



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 599

RSQRT.fmt Reciprocal Square Root

2631
COP1
010001

0

fs

25

fd

21 20 16 15 11 10 6 5
RSQRT
010110

0
00000fmt

Format:

RSQRT.S  fd, fs MIPS IV
RSQRT.D  fd, fs

Purpose:

Calculates the approximate value of the reciprocal of the square root of a floating-point value (high speed).

Description:

This instruction calculates the positive arithmetic square root of the contents of floating-point register fs, inverts

the result, and stores the result in floating-point register fd.  The operation is executed as if it were of infinite

accuracy, and the result is rounded in accordance with the current rounding mode.  The operand is processed as

floating-point format fmt.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, 1.0 / SquareRoot (ValueFPR (fs, fmt)))

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exceptions:

Unimplemented operation exception

Invalid operation exception

Inexact operation exception

Division-by-zero exception

Overflow exception

Underflow exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM600

SDC1 Store Doubleword from FPU (Coprocessor 1)

(1/2)

2631
SDC1

025 21 20 16 15

ft111101 offsetbase

Format:

SDC1 ft, offset (base) MIPS II

Purpose:

Stores a doubleword from a floating-point register to memory.

Description:

This instruction sign-extends a 16-bit offset and adds the result to the contents of general-purpose register base

to generate a virtual address.

If the FR bit of the Status register is 0, this instruction stores the contents of floating-point registers ft and ft + 1 in

the memory specified by the virtual address as a doubleword.  At this time, the contents of the odd-numbered

register specified by ft + 1 correspond to the higher 32 bits of the doubleword, and the contents of the even-

numbered register specified by ft correspond to the lower 32 bits.

The operation is undefined if the least significant bit of the ft field is not 0.

If the FR bit is 1, the contents of floating-point register ft are stored in the memory specified by the virtual address

as a doubleword.

If the lower 3 bits of the address are not 0, an address error exception occurs.



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 601

SDC1 Store Doubleword from FPU (Coprocessor 1)

 (2/2)

Operation:

32 T: vAddr ← ((offset15) 16 || offset15..0) + GPR [base]

(pAddr, uncached) ← Address Translation (vAddr, DATA)

if SR26 = 1 then

  data ← FGR [ft] 63..0

elseif ft0 = 0 then

  data ← FGR [ft + 1] 31..0 || FGR [ft] 31..0

else

  data ← undefined64

endif

StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15) 48 || offset15..0) + GPR [base]

(pAddr, uncached) ← Address Translation (vAddr, DATA)

if SR26 = 1 then

  data ← FGR [ft] 63..0

elseif ft0 = 0 then

  data ← FGR [ft + 1] 31..0 || FGR [ft] 31..0

else

  data ← undefined64

endif

StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:

Coprocessor unusable exception

TLB refill exception

TLB invalid exception

TLB modified exception

Bus error exception

Address error exception

Reserved instruction exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM602

SDXC1 Store Doubleword Indexed to FPU (Coprocessor 1)

2631
COP1X
010011

0

fs

25

index

21 20 16 15 11 10 6 5
SDXC1
001001

0
00000base

Format:

SDXC1 fs, index (base) MIPS IV

Purpose:

Stores a doubleword from a floating-point register to memory (general-purpose register + general-purpose

register addressing).

Description:

This instruction adds the contents of CPU general-purpose register index and the contents of CPU general-

purpose register base to generate a virtual address.

If the FR bit of the Status register is 0, this instruction stores the contents of floating-point registers fs and fs + 1 in

the memory specified by the virtual address as a doubleword.  At this time, the contents of the odd-numbered

register specified by fs + 1 correspond to the higher 32 bits of the doubleword, and the contents of the even-

numbered register specified by fs correspond to the lower 32 bits.

The operation is undefined if the least significant bit of the fs field is not 0.

If the FR bit is 1, the contents of floating-point register fs are stored in the memory specified by the virtual address

as a doubleword.

The operation is undefined if bits 63 and 62 of the virtual address are not the same as bits 63 and 62 of general-

purpose register base.

An address error exception occurs if the lower 3 bits of the virtual address are not 0.

Operation:

32, 64 T: vAddr ← GPR[base] + GPR[index]

(pAddr, CCA) ← Address Translation (vAddr, DATA)

if SR26 = 1 then

  data ← FGR[fs]

elseif fs0 = 0 then

  data ← FGR[fs + 1] || FGR[fs]

else

  data ← undefined64

endif

StoreMemory (CCA, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:

Coprocessor unusable exception

TLB refill exception

TLB invalid exception

TLB modified exception

Address error exception

Reserved instruction exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 603

SQRT.fmt Floating-point Square Root

2631
COP1

010001

0

fs

25

fd

21 20 16 15 11 10 6 5
SQRT
000100

0
00000fmt

Format:

SQRT.S fd, fs MIPS II
SQRT.D fd, fs

Purpose:

Calculates the square root of a floating-point value.

Description:

This instruction calculates the positive arithmetic square root of the contents of floating-point register fs and stores

the result in floating-point register fd.  The operand is processed as floating-point format fmt.  The operation is

executed as if it were of infinite accuracy, and the result is rounded in accordance with the current rounding

mode.  The result is –0 if the value of the source operand is –0.

This instruction is valid only in single-/double-precision floating-point formats.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, SquareRoot (ValueFPR (fs, fmt)))

Exceptions:

Coprocessor unusable exception

Reserved instruction exception

Floating-point operation exception

Floating-point operation exceptions:

Unimplemented operation exception

Invalid operation exception

Inexact operation exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM604

SUB.fmt Floating-point Subtract

2631
COP1
010001

0

fd

25

ft

21 20 16 15 11 10 6 5
SUB

000001fmt fs

Format:

SUB.S fd, fs, ft MIPS I
SUB.D fd, fs, ft

Purpose:

Subtracts a floating-point value.

Description:

This instruction subtracts the contents of floating-point register ft from the contents of floating-point register fs,

and stores the result in floating-point register fd.  The operation is executed as if it were of infinite accuracy, and

the result is rounded in accordance with the current rounding mode.

This instruction is valid only in single-/double-precision floating-point formats.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, ValueFPR (fs, fmt) − ValueFPR (ft, fmt))

Exceptions:

Coprocessor unusable exception

Floating-point operation exception

Floating-point operation exceptions:

Unimplemented operation exception

Invalid operation exception

Inexact operation exception

Overflow exception

Underflow exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 605

SUXC1 Store Doubleword Indexed Unaligned to FPU (Coprocessor 1)

(1/2)

2631
COP1X
010011

0

fs

25

index

21 20 16 15 11 10 6 5
SUXC1
001101

0
00000base

Format:

SUXC1 fs, index (base) MIPS V

Purpose:

Stores a doubleword from a floating-point register to memory (general-purpose register + general-purpose

register addressing).

Description:

This instruction adds the contents of CPU general-purpose register index and the contents of CPU general-

purpose register base to generate a virtual address.  The lower 3 bits of the virtual address are masked by 0.

Therefore, an address error exception does not occur even if the lower 3 bits of the virtual address are not 0.

If the FR bit of the Status register is 0, this instruction stores the contents of floating-point registers fs and fs + 1 in

the memory specified by the virtual address as a doubleword.  At this time, the contents of the odd-numbered

register specified by fs + 1 correspond to the higher 32 bits of the doubleword, and the contents of the even-

numbered register specified by fs correspond to the lower 32 bits.

The operation is undefined if the least significant bit of the fs field is not 0.

The operation is undefined if bits 63 and 62 of the virtual address are not the same as bits 63 and 62 of general-

purpose register base.

Operation:

32, 64 T: vAddr ← (GPR[base] + GPR[index])63..3 || 03

(pAddr, CCA) ← Address Translation (vAddr, DATA)

if SR26 = 1 then

  data ← FGR[fs]

elseif fs0 = 0 then

  data ← FGR[fs + 1] || FGR[fs]

else

  data ← undefined64

endif

StoreMemory (CCA, DOUBLEWORD, data, pAddr, vAddr, DATA)



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM606

SUXC1 Store Doubleword Indexed Unaligned to FPU (Coprocessor 1)

(2/2)

Exceptions:

Coprocessor unusable exception

TLB refill exception

TLB invalid exception

TLB modified exception

Bus error exception

Address error exception

Reserved instruction exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 607

SWC1 Store Word from FPU (Coprocessor 1)

2631
SWC1

025 21 20 16 15

ft111001 offsetbase

Format:

SWC1 ft, offset (base) MIPS I

Purpose:

Stores a word from a floating-point register to memory.

Description:

This instruction sign-extends a 16-bit offset and adds the result to the contents of general-purpose register base

to generate a virtual address.  The contents of floating-point general-purpose register ft are stored in the memory

at the specified address.

If the FR bit of the Status register is 0 and if the least significant bit of the ft field is 0, the contents of the lower 32

bits of floating-point register ft are stored.  If the least significant bit of the ft field is 1, the contents of the higher 32

bits of floating-point register ft – 1 are stored.

If the FR bit is 1, all the 64-bit floating-point registers can be accessed.  Therefore, the contents of the lower 32

bits of the ft field are stored.

If the lower 2 bits of the address are not 0, an address error exception occurs.

Operation:

32 T: vAddr ← ((offset15) 16 || offset15..0) + GPR [base]

(pAddr, uncached) ← Address Translation (vAddr, DATA)

data ← FGR [ft] 31..0

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15) 48 || offset15..0) + GPR [base]

(pAddr, uncached) ← Address Translation (vAddr, DATA)

data ← FGR [ft] 31..0

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:

Coprocessor unusable exception

TLB refill exception

TLB invalid exception

TLB modified exception

Bus error exception

Address error exception

Reserved instruction exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM608

SWXC1 Store Word Indexed from FPU (Coprocessor 1)

2631
COP1X
010011

0

fs

25

index

21 20 16 15 11 10 6 5
SWXC1
001000

0
00000base

Format:

SWXC1 fs, index (base) MIPS IV

Purpose:

Stores a word from a floating-point register to memory (general-purpose register + general-purpose register

addressing).

Description:

This instruction adds the contents of CPU general-purpose register index and the contents of CPU general-

purpose register base to generate a virtual address.  The contents of floating-point register fs are stored in the

memory specified by the virtual address.

If the FR bit of the Status register is 0 and if the least significant bit of the fs field is 0, the contents of the lower 32

bits of floating-point register fs are stored.  If the least significant bit of the fs field is 1, the contents of the higher

32 bits of floating-point register fs – 1 are stored.

If the FR bit is 1, the contents of floating-point register fs are stored in the memory specified by the virtual

address.

The operation is undefined if bits 63 and 62 of the virtual address are not the same as bits 63 and 62 of general-

purpose register base.

If the lower 2 bits of the virtual address are not 0, an address error exception occurs.

Operation:

32, 64 T: vAddr ← GPR[base] + GPR[index]

(pAddr, CCA) ← Address Translation (vAddr, DATA)

if SR26 = 1 then

data ← data63..32 || FGR[fs]31..0

elseif fs0 = 0 then

data ← data63..32 || FGR[fd]31..0

else

data ← FGR[fd−1]63..32 || data31..0

endif

StoreMemory (CCA, WORD, data, pAddr, vAddr, DATA)

Exceptions:

Coprocessor unusable exception

TLB refill exception

TLB invalid exception

TLB modified exception

Address error exception

Reserved instruction exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 609

TRUNC.L.fmt Floating-point Truncate to Long Fixed-point Format

(1/2)

2631
COP1

0

fd

25

0

21 20 16 15 11 10 6 5
TRUNC. Lfsfmt010001 00000 001001

Format:

TRUNC.L.S fd, fs MIPS III
TRUNC.L.D fd, fs

Purpose:

Converts a floating-point value into a 64-bit fixed-point value rounded to the direction of zero.

Description:

This instruction arithmetically converts the contents of floating-point register fs into a 64-bit fixed-point format, and

stores the result in floating-point register fd.  The source operand is processed as floating-point format fmt.

The result is rounded toward the direction of zero regardless of the current rounding mode.

This instruction is valid only when converting from single-/double-precision floating-point formats.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

If the source operand is infinity or NaN, and if the result of rounding is outside the range of 263 – 1 to – 263, the flag

bits of FCR31 and FCR26 are set to indicate an invalid operation.  If an invalid operation exception is not enabled,

the exception does not occur, and 263 – 1 is returned.

This operation is defined in 64-bit mode or in 32-bit kernel mode.  Execution of this instruction in 32-bit user or

supervisor mode causes a reserved instruction exception.

Operation:

64 T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt), fmt, L))

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Coprocessor unusable exception

Floating-point operation exception

Reserved instruction exception (32-bit user/supervisor mode)

Floating-point operation exceptions:

Unimplemented operation exception

Invalid operation exception

Inexact operation exception

Overflow exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM610

TRUNC.L.fmt Floating-point Trancate to Long Fixed-point Format

(2/2)

Caution  The unimplemented operation exception occurs in the following cases.

•••• If overflow occurs when the format is converted into a fixed-point format

•••• If the source operand is infinity

•••• If the source operand is NaN

Specifically, the exception occurs if the value stored in floating-point register fd is outside the

range of 253 – 1 (0x001F FFFF FFFF FFFF) to –253 (0xFFE0 0000 0000 0000).



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 611

TRUNC.W.fmt Floating-point Truncate to Single Fixed-point Format

(1/2)

2631
COP1

0

fd

25

0

21 20 16 15 11 10 6 5
TRUNC. Wfsfmt010001 00000 001101

Format:

TRUNC.W.S fd, fs MIPS II
TRUNC.W.D fd, fs

Purpose:

Converts a floating-point value into a 32-bit fixed-point value rounded to the direction of zero.

Description:

This instruction arithmetically converts the contents of floating-point register fs into a 32-bit fixed-point format, and

stores the result in floating-point register fd.  The source operand is processed as floating-point format fmt.

The result is rounded toward the direction of zero regardless of the current rounding mode.

This instruction is valid only when converting from single-/double-precision floating-point formats.

If the FR bit of the Status register is 0, only an even register number can be specified because a pair of even and

odd numbers adjoining each other is used as the register number of a floating-point register.  If an odd number is

specified, the operation is undefined.  If the FR bit of the Status register is 1, both odd and even register numbers

are valid.

If the source operand is infinity or NaN, and if the result of rounding is outside the range of 231 – 1 to – 231, the flag

bits of FCR31 and FCR26 are set to indicate an invalid operation.  If an invalid operation exception is not enabled,

the exception does not occur, and 231 – 1 is returned.

Operation:

32, 64 T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception

Floating-point operation exception

Floating-point operation exceptions:

Unimplemented operation exception

Invalid operation exception

Inexact operation exception

Overflow exception



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM612

TRUNC.W.fmt Floating-point Truncate to Single Fixed-point Format

(2/2)

Caution  The unimplemented operation exception occurs in the following cases.

•••• If overflow occurs when the format is converted into a fixed-point format

•••• If the source operand is infinity

•••• If the source operand is NaN

Specifically, the exception occurs if the value stored in floating-point register fd is outside the

range of 231 – 1 (0x7FFF FFFF) to – 231 (0x8000 0000).



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM 613

18.5  FPU Instruction Opcode Bit Encoding

Figure 18-3 lists the VR5500 instruction opcode bit encoding.

Figure 18-3.  FPU Instruction Opcode Bit Encoding (1/2)

28...26 Opcode

31...29 0 1 2 3 4 5 6 7

0 SPECIAL

1

2 COP1 COP1X

3

4

5

6 LWC1 LDC1

7 SWC1 SDC1

23...21 sub

25…24 0 1 2 3 4 5 6 7

0 MF DMFη CF γ MT DMTη CT γ

1 BC γ γ γ γ γ γ γ

2 S D γ γ W Lη γ γ

3 γ γ γ γ γ γ γ γ

18...16 br

20...19 0 1 2 3 4 5 6 7

0 BCF BCT BCFL BCTL * * * *

1 * * * * * * * *

2 * * * * * * * *

3 * * * * * * * *

2...0 SPECIAL Function

5...3 0 1 2 3 4 5 6 7

0 * MOVF/MOVT * * * * * *

1 * * * * * * * *

2 * * * * * * * *

3 * * * * * * * *

4 * * * * * * * *

5 * * * * * * * *

6 * * * * * * * *

7 * * * * * * * *



CHAPTER  18   FPU  INSTRUCTION  SET

Preliminary User’s Manual  U16044EJ1V0UM614

Figure 18-3.  FPU Instruction Opcode Bit Encoding (2/2)

2...0 COP1 Function

5...3 0 1 2 3 4 5 6 7

0 ADD SUB MUL DIV SQRT ABS MOV NEG

1 ROUND.Lη TRUNC.Lη CEIL.Lη FLOOR.Lη ROUND.W TRUNC.W CEIL.W FLOOR.W

2 γ γ MOVZ MOVN γ RECIP RSQRT γ

3 γ γ γ γ γ γ γ γ

4 CVT.S CVT.D γ γ CVT.W CVT.Lη γ γ

5 γ γ γ γ γ γ γ γ

6 C.F C.UN C.EQ C.UEQ C.OLT C.ULT C.OLE C.ULE

7 C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT

2...0 COP1X Function

5...3 0 1 2 3 4 5 6 7

0 LWXC1 LDXC1 γ γ γ LUXC1 γ γ

1 SWXC1 SDXC1 γ γ γ SUXC1 γ PREFX

2 γ γ γ γ γ γ γ γ

3 γ γ γ γ γ γ γ γ

4 MADD.S MADD.D γ γ γ γ γ γ

5 MSUB.S MSUB.D γ γ γ γ γ γ

6 NMADD.S NMADD.D γ γ γ γ γ γ

7 NMSUB.S NMSUB.D γ γ γ γ γ γ

Remark The meaning of the symbols in the above figures are as follows.

*: Execution of operation codes marked with an asterisk cause reserved instruction

exceptions. They are reserved for future versions of the architecture.

γ: Execution of operation codes marked with a gamma cause an unimplemented operation

instruction exception.  They are reserved for future versions of the architecture.

η: If the operation code marked with an eta is executed, the result is valid only when the

MIPS III instruction set can be used.  If the operation is executed when the instruction

set cannot be used (32-bit user/supervisor mode), an unimplemented operation

exception occurs.



Preliminary User’s Manual  U16044EJ1V0UM 615

CHAPTER  19   INSTRUCTION  HAZARDS

19.1  Overview

Depending on the combination of instructions, the result cannot be provided if two or more system events such as

a cache miss, interrupt, and exception, occur during execution.  Do not use such instruction combinations.

Many hazards are caused by instructions that change the status or read data in different pipeline stages.  These

hazards are caused by a combination of instructions; no single instruction causes a hazard.  Other hazards occur

when an instruction is re-executed after exception processing.

19.2  Details of Instruction Hazard

With the VR5500, the hardware automatically avoids hazards, except those related to instruction fetch.

The following table shows the combinations of operations and sources that cause hazards related to instruction

fetch which make the operation unstable and prediction of the result impossible.

Table 19-1.  Instruction Hazard of VR5500

Operation Source Number of Hazards

Instruction fetch (during address

translation)

EntryHi.ASID, TLB Note

Instruction fetch (during address error

detection)

Status.KSU, Status.EXL, Status.ERL, Status.KX, Status.SX,

Status.UX

Note

Instruction decode (during detection of

coprocessor and enable privileged

instruction)

Status.XX, Status.CU, Status.KSU, Status.EXL, Status.ERL,

Status.KX, Status.SX, Status.UX

1

Note If a change is made in the exception handler, it is accurately reflected after the ERET instruction has

been executed (compatible with MIPS64).



Preliminary User’s Manual  U16044EJ1V0UM616

CHAPTER  20   PLL  PASSIVE  ELEMENTS

Connect some passive elements externally to the VDDPA1, VDDPA2, VSSPA1 and VSSPA2 pins for proper

operation of the VR5500.  Connect the passive elements as close as possible to each pin.

Figure 20-1 shows a connection diagram of the PLL passive elements.

Figure 20-1.  Example of Connection of PLL Passive Elements

VR5500

L

C3C1

VDD

VDDPA1

VSSPA1

C2

VSS

VDDPA2

VSSPA2

It is essential to isolate the analog power supply (VDDPA1, VDDPA2) and ground (VSSPA1, VSSPA2) for the PLL

circuit from the regular power supply (VDD) and ground (VSS).  Examples of each passive element value are as

follows.

L = 10 µH C1 = 0.1 µF C2 = 100 pF C3 = 10 µF

Since the optimum values for the filter elements depend on the application and the system noise environment,

these values should be considered as starting points for further experimentation within your specific application.



Preliminary User’s Manual  U16044EJ1V0UM 617

CHAPTER  21   DEBUGGING  AND  TESTING

This chapter explains the debug and test functions of the VR5500 when a debugging tool is used.

The debug functions explained in this chapter have nothing to do with debugging using the WatchLo and WatchHi

registers of the CP0, and realize more sophisticated debugging.

The debugging tool is connected via a test interface.

21.1  Overview

If a debug break occurs, the processor transfers control to the debug exception vector, and enters the debug

mode from the normal mode (normal operating status).  In the debug mode, the resources of the processor are

accessed and controlled internally or externally.  Test interfaces (JTAG interface conforming to IEEE1149.1 and

debug intereface conforming to the N-Wire specifications) are used to access the processor’s resources from an

external device.

(1) Internal access

This access is made by the program located at the debug exception vector, using debug instructions.

Of the resources of the processor, all the resources used in the normal mode (such as register files, caches,

external memory, and external I/O) and debug registers can be accessed.

(2) External access

This access is made by the debugging tool externally connected via a test interface.

All the resources of the processor (such as resources used in the normal mode, the debug registers, and the

JTAG registers) can be accessed.



CHAPTER  21   DEBUGGING  AND  TESTING

Preliminary User’s Manual  U16044EJ1V0UM618

Figure 21-1.  Access to Processor Resources in Debug Mode

External 
debugging tool

Debug registers

VR5500

Debug module

JTAG registers

Resources used 
in normal mode

Resources accessible internally

Resources accessible externally

The debug registers can be accessed internally or externally only in the debug mode.  These registers are used

to set breakpoints and their statuses, and change the status of the processor.  These registers can be accessed only

by using debug instructions.  The debug instructions are used to manipulate the debug registers, the resources used

in the normal mode, execute debug break, and restore the normal mode.

The externally accessed debug functions have been expanded by the N-Wire specification debug interface.  By

using this interface, all the resources in the system, including the processor resources, can be monitored from an

external debugging tool.  For example, data can be loaded to the external memory in the debug mode, then the

mode can be changed to the normal mode, and the result of the operation using this data can be monitored.  The N-

Wire specification also allows an access to the JTAG registers.

Because both the debug registers and JTAG registers can be accessed externally, the scope of control of the

processor can be expanded compared with internal access.

Note N of N-Wire indicates the data bus width of the debug interface.  Because NTrcData(3:0) specifies the bus

width of the VR5500, N = 4.



CHAPTER  21   DEBUGGING  AND  TESTING

Preliminary User’s Manual  U16044EJ1V0UM 619

21.2  Test Interface Signals

Table 21-1.  Test Interface Signals

Pin Name I/O Function Recommended

Connection When

Not Used

JTCK Input JTAG clock input

Serial clock input signal for JTAG

Pull up

JTMS Input JTAG mode selection

JTAG test mode selection signal

Pull up

JTDI Input JTAG data input

Serial data input for JTAG

Pull up

JTDO Output JTAG data output

Serial data output for JTAG

Leave open

JTRST# Input JTAG reset input

Signal for initializing JTAG test module (only Ver. 2.0 or later)

Pull down

NTrcData(3:0) Output Trace data

Data output of test interface

Leave open

NTrcEnd Output Trace end

Signal indicating delimiting (end) of trace data packet

Leave open

NTrcClk Output Trace clock

Clock for test interface.  Same clock as SysClock is output.

Leave open

RMode#/BKTGIO# I/O Reset mode/break trigger output

Debug reset input signal while JTRST# signal (ColdReset# signal of

Ver. 1.x) is active.

Break or trigger I/O signal during normal operation

Pull up

Remark # indicates active low.

(1) JTCK (input)

Input a serial clock for JTAG to this pin.  The maximum operating frequency is 33 MHz.  This clock can operate

asynchronously to the system clock (SysClock).

The JTDI and JTMS signals are sampled at the rising edge of JTCK.  The status of the JTDO signal changes at

the falling edge of JTCK.

(2) JTMS (input)

Input a command, such as that for selecting mode, for controling the test operation of JTAG.  The input

command is decoded by the TAP (test access port) controller.

When an external debugging tool is not connected, pull up this signal (this signal is not internally pulled up).

(3) JTDI (input)

Input serial data for scanning to this pin.

When an external debugging tool is not connected, pull up this signal (this signal is not internally pulled up).

(4) JTDO (3-state output)

This pin outputs scanned serial data.

If the data is not correctly scanned, this pin goes into a high-impedance state as defined by IEEE1149.1.



CHAPTER  21   DEBUGGING  AND  TESTING

Preliminary User’s Manual  U16044EJ1V0UM620

(5) JTRST# (input)

Input a low level to this pin to reset the debug module.  This invalidates the debug functions.

• Low level: Initializes the debug module and invalidates the debug functions.

• High level: Clears resetting of the debug module and validates the debug functions.

Remark Because this signal is not provided in VR5500 Ver. 1.x, the function of this signal is implemented by

the ColdReset# signal.

(6) NTrcData(3:0) (output)

These pins output a trace packet that is generated as a result of an operation of the processor.  It takes one or

more cycles to output data of one packet.

(7) NTrcEnd (output)

This signal is asserted when the last data of a trace packet is output to NTrcData(3:0).

(8) NTrcClk (output)

This pin ouptuts a clock of the same frequency as SysClock.  This clock can be used when a reference clock is

necessary for processing trace information, etc.

(9) RMode#/BKTGIO# (input/output)

This pin functions as the RMode# signal while the JTRST# signal (ColdReset# signal with Ver. 1.x) is active,

and as the BKTGIO# signal at other times.

(a) RMode# (input)

Input a signal that sets a debug reset to this pin.  This signal is sampled when the JTRST# signal

(ColdReset# signal with Ver. 1.x) is deasserted.  Setting of a debug reset by the RMode# signal is reflected

in a debug register.

• Low level: Executes a debug reset to the processor.  Actually, the contents of the reset implemented by

asserting the RMode# signal are the same as those implemented by asserting the Reset# signal.  The

reset bit of the debug register is set to 1.

• High level: Does not execute a debug reset to the processor.

(b) BKTGIO# (input/output)

Input a signal that requests generation of a debug break to this pin when it is set in the input mode.

When this pin is set in the output mode, it outputs a signal that indicates occurrence of a debug trigger or

the debug mode status of the processor.

This pin is set in the input mode by default, but the mode can be changed later by setting of debug register.

(i) In input mode

Input a low level to this pin for the duration of only one cycle to generate a debug break.

The processor then enters the debug mode when possible.  If the processor is already in the debug

mode or if a request for occurrence of a debug break has already been made, inputting a low level to

this pin is meaningless.

• Low level: Generates a debug break and places the processor in the debug mode.

• High level: Leaves the processor in the normal mode.



CHAPTER  21   DEBUGGING  AND  TESTING

Preliminary User’s Manual  U16044EJ1V0UM 621

(ii) In output mode

The VR5500 can report detection of a trigger event every 2 SysClock cycles at the fastest.  All the

trigger events that occur after a trigger was output by the previous BKTGIO# signal are combined into

one and output.  A trigger event that is not reported when the processor enters the debug mode will not

be reported later.

• Low level: Indicates that a trigger event is detected inside the processor if the number of cycles

is 1.

If the number of cycles is 2, this signal indicates that the processor is in the debug

mode.

• High level: Indicates that the processor is in the normal mode.

Because the internal circuitry of the VR5500 has superscalar structure and operates at a frequency

higher than that of the system interface, a trigger event may occur much earlier than the BKTGIO#

signal reports its occurrence.

21.3  Boundary Scan

The Boundary Scan register, one of the JTAG registers, is a 125-bit shift register and holds the status of all the

pins of the VR5500.  The least significant bit (jSysADEn) of this register is the JTAG output enable bit.  When this bit

is set to 1, JTAG output is enabled for all the outputs of the processor.

Figure 21-2.  Boundary Scan Register

RFU jSysADEn

124 0123 1• • •

The Boundary Scan register is scanned starting from the least significant bit.  The sequence of scanning the

register bits is shown below.



CHAPTER  21   DEBUGGING  AND  TESTING

Preliminary User’s Manual  U16044EJ1V0UM622

Table 21-2.  Boundary Scan Sequence

No. Signal Name No. Signal Name No. Signal Name No. Signal Name No. Signal Name

1 jSysADEn 26 SysAD11 51 SysAD55 76 SysID0 101 SysCmd7

2 DrvCon 27 SysAD43 52 SysAD24 77 SysID1 102 SysCmd8

3 RFU (Always

input 0.)

28 SysAD12 53 SysAD56 78 SysID2 103 TIntSel

4 SysAD0 29 SysAD44 54 SysAD25 79 RFU (Always

input 0.)

104 Int0#

5 SysAD32 30 SysAD13 55 SysAD57 80 BusMode 105 Int1#

6 SysAD1 31 SysAD45 56 SysAD26 81 ValidOut# 106 Int2#

7 SysAD33 32 SysAD14 57 SysAD58 82 ValidIn# 107 Int3#

8 SysAD2 33 SysAD46 58 SysAD27 83 RdRdy# 108 Int4#

9 SysAD34 34 SysAD15 59 SysAD59 84 WrRdy# 109 Int5#

10 SysAD3 35 SysAD47 60 SysAD28 85 ExtRqst# 110 BKTGIO#

11 SysAD35 36 SysAD16 61 SysAD60 86 PReq# 111 RFU (Always

input 1.)

12 SysAD4 37 SysAD48 62 SysAD29 87 Release# 112 NMI#

13 SysAD36 38 SysAD17 63 SysAD61 88 Reset# 113 RFU (Always

input 1.)

14 SysAD5 39 SysAD49 64 SysAD30 89 ColdReset# 114 BigEndian

15 SysAD37 40 SysAD18 65 SysAD62 90 RFU (Always

input 0.)

115 DivMode0

16 SysAD6 41 SysAD50 66 SysAD31 91 O3Return# 116 DivMode1

17 SysAD38 42 SysAD19 67 SysAD63 92 DWBTrans# 117 DivMode2

18 SysAD7 43 SysAD51 68 SysADC0 93 DisDValidO# 118 RFU (Always

input 1.)

19 SysAD39 44 SysAD20 69 SysADC4 94 SysCmd0 119 NTrcClk

20 SysAD8 45 SysAD52 70 SysADC1 95 SysCmd1 120 NTrcData0

21 SysAD40 46 SysAD21 71 SysADC5 96 SysCmd2 121 NTrcData1

22 SysAD9 47 SysAD53 72 SysADC2 97 SysCmd3 122 NTrcData2

23 SysAD41 48 SysAD22 73 SysADC6 98 SysCmd4 123 NTrcData3

24 SysAD10 49 SysAD54 74 SysADC3 99 SysCmd5 124 NTrcEnd

25 SysAD42 50 SysAD23 75 SysADC7 100 SysCmd6 125 RFU (Always

input 1.)

Remark # indicates active low.



CHAPTER  21   DEBUGGING  AND  TESTING

Preliminary User’s Manual  U16044EJ1V0UM 623

21.4  Connecting Debugging Tool

To use the debug functions of the VR5500, a circuit for connecting an external debugging tool is necessary on the

target board.

This section explains the circuit connection when the Kyoto Microcomputer in-circuit emulator PARTNER-ET II is

used as the debugging tool.

Caution When evaluating connection of an in-circuit emulator with a trace clock of 100 MHz or more,

consult NEC before designing the board.  The frequency of the trace clock (NTrcClk) of the

VR5500 is the same as that of SysClock.

21.4.1  Connecting in-circuit emulator and target board

Use of the following Kell’s connectors is recommended when using the PARTNER-ET II.

• 8830E-026-170S (26-pin, straight-angle type)

• 8830E-026-170L (26-pin, light-angle type)

The pins of these recommended connectors are laid out as follows.

Figure 21-3.  IE Connection Connector Pin Layout

(a)  Signal layout on connector side of target board

A1

A2 A12

A13A3

B1
B2 B12

B13B3

Index 
mark side

Remark The dotted line indicates the approximate outline of the connector.

(b)  Connector appearance

Index mark

A1 pin



CHAPTER  21   DEBUGGING  AND  TESTING

Preliminary User’s Manual  U16044EJ1V0UM624

Allocate functions to the pins of the recommended connectors as follows when using the PARTNER-ET II.

Table 21-3.  IE Connector Pin Functions

Pin No. Signal Name I/O on IE

Connection Side

Function

A1 TRCCLK O Trace clock output

A2 TRCDATA0 O Trace data 0 output

A3 TRCDATA1 O Trace data 1 output

A4 TRCDATA2 O Trace data 2 output

A5 TRCDATA3 O Trace data 3 output

A6 TRCEND O Trace data end output

A7 DDI I Data input for debug serial interface

A8 DCK I Clock input for debug serial interface

A9 DMS I Transfer mode select input for debug serial interface

A10 DDO O Data output for debug serial interface

A11 DRST(−) I Debug control unit reset input (active low)

A12 PORT0 O General-purpose control signal output 0 (3-state output)

A13 PORT1 O General-purpose control signal output 1 (3-state output)

B1 GND − Ground potential

B2 GND − Ground potential

B3 GND − Ground potential

B4 GND − Ground potential

B5 GND − Ground potential

B6 GND − Ground potential

B7 GND − Ground potential

B8 GND − Ground potential

B9 GND − Ground potential

B10 GND − Ground potential

B11 Reserved − Leave this pin open.

B12 Reserved − Leave this pin open.

B13 VDD − 3.3 V (for monitoring target power application)



CHAPTER  21   DEBUGGING  AND  TESTING

Preliminary User’s Manual  U16044EJ1V0UM 625

21.4.2  Connection circuit example

The figure below shows an example of the connection circuit when the Kell’s connector 8830E-026-170S is used.

Figure 21-4.  Debugging Tool Connection Circuit Example (When Trace Function Is Used)

JTDO

8830E-026-170SVR5500

RMode#/BKTGIO#

JTRST#
Note 3

NTrcData1

NTrcData2

NTrcData3

NTrcEnd

NTrcClk

NTrcData0

JTCK

JTDI

JTMS

TRCDATA1

TRCDATA2

TRCDATA3

TRCEND

TRCCLK

TRCDATA0

DDO

DRST(–)

DCK

DDI

DMS

  GND

PORT0

VDD

Note 1

Note 2

Note 2

External event detectorNote 5, 
logic analyzer, etc.

3.3 V

3.3 V

Note 2

Note 1

Note 2

Note 2

Note 2

Note 2

Note 2

22 Ω

4
.7

 k
Ω

4
.7

 k
Ω

4
.7

 k
Ω

4
.7

 k
Ω

4
.7

 k
Ω

5
0

 k
Ω

22 Ω

22 Ω

22 Ω

22 Ω

22 Ω

Note 3

Note 3

Note 3

Note 3

Note 3

Note 3

PORT1Note 5

22 Ω

Note 2

Note 4

Notes 1. Keep the clock pattern length as short as possible, and shield the pattern by enclosing it with

GND.  Keep the pattern length to within 100 mm.

2. Keep the pattern length as short as possible; at least within 100 mm.

3. Use a 3.3 V buffer.

4. Use a clock buffer.

5. When using the BKTGIO function as a debug interrupt input from an external event detector, use

PORT1 as a three-state control signal of the detection output signal of the external event detector

(control the detection output signal so that it goes into a high-impedance state when PORT1 is

high).

Caution Directly connect the JTDO pin only to the in-circuit emulator.  If the JTDO pin is connected

as the boundary scan of the next stage, the system may hang up.

Remark VDD of the connector (B13) is used only to detect power application to the target board.  However, it

may be used as power source for a signal driver, such as DCK, depending on the tool used.

Directly connect it to the power supply of the target board.



Preliminary User’s Manual  U16044EJ1V0UM626

APPENDIX  A   SUB-BLOCK  ORDER

A block of data elements (byte, halfword, word, or doubleword) can be extracted from the memory by two

methods: sequential ordering and sub-block ordering.  This appendix explains these methods, with an emphasis

placed on sub-block ordering.

The minimum data element of block transfer of the VR5500 differs depending on the bus width of the system

interface.  In the 64-bit bus mode, doubleword is the minimum unit.  In the 32-bit bus mode, word is the minimum

unit.  In this appendix, the minimum data element is indicated as D.

(1) Sequential ordering

With sequential ordering, the data elements of a block are extracted serially, i.e., sequentially.

Figure A-1 illustrates the sequential order.  In this example, D0 is extracted first, and D3 last.

Figure A-1.  Extracting Data Blocks in Sequential Order

D0

Extracted first

Extracted second
Extracted third

Extracted fourth

D1 D2 D3



APPENDIX  A   SUB-BLOCK  ORDER

Preliminary User’s Manual  U16044EJ1V0UM 627

(2) Sub-block ordering

With sub-block ordering, the sequence in which the data elements are to be extracted can be defined.

Figure A-2 shows the sequence in which a data block consisting of four elements is extracted.  In this example,

D2 is extracted first.

Figure A-2.  Extracting Data in Sub-Block Order

D0

Sequence of extraction

Extracted third

Extracted fourth Extracted first

Extracted second

D1 D2 D3

2 3 0 1

The sub-block ordering circuit generates this address by XORing each bit of the start block address with the

output of a binary counter that is incremented starting from D0 (002) each time a data element has been extracted.

Tables A-1 to A-3 show sub-block ordering in which data is extracted from a block of four elements using this

method, where the start block address is 102, 112, and 012, respectively.  To generate sub-block ordering, the

address of a sub-block (10, 11, or 01) is XORed with the binary count (002 to 112) of a doubleword.  For example, to

identify the element that is extracted the third from a data block with a start address of 102, XOR address 102 with

binary count 102.  The result is 002, i.e., D0.



APPENDIX  A   SUB-BLOCK  ORDER

Preliminary User’s Manual  U16044EJ1V0UM628

Table A-1.  Transfer Sequence by Sub-Block Ordering: Where Start Address Is 102

Cycle Start Block Address Binary Count Extracted Element

1 10 00 10

2 10 01 11

3 10 10 00

4 10 11 01

Table A-2.  Transfer Sequence by Sub-Block Ordering: Where Start Address Is 112

Cycle Start Block Address Binary Count Extracted Element

1 11 00 11

2 11 01 10

3 11 10 01

4 11 11 00

Table A-3.  Transfer Sequence by Sub-Block Ordering: Where Start Address Is 012

Cycle Start Block Address Binary Count Extracted Element

1 01 00 01

2 01 01 00

3 01 10 11

4 01 11 10



Preliminary User’s Manual  U16044EJ1V0UM 629

APPENDIX  B   RECOMMENDED  POWER  SUPPLY  CIRCUIT

Figure B-1 shows an example of the connection of a power supply circuit.

This figure is for reference only.  For mass production, thoroughly evaluate and select each element (such as

capacitors and regulators).

Figure B-1.  Example of Recommended Power Supply Circuit Connection

VR5500

VDDIO

VDD

(1.5 V)

+
100 Ω

VLV (3.3 V)LT1085CM/CT

20 Ω

0.1   F
x 10 to 20

µ 100   F
/ 25 V

µ 0.1   Fµ 0.1   Fµ
+

100   F/
25 V

µ

+

VCC (5 V)

GND

LT1085CT-3.3 V

0.1   F
x 20

100   F/
25 V

µ 0.1   Fµ 0.1   Fµ
+

100   F/
25 V

µµ



Preliminary User’s Manual  U16044EJ1V0UM630

APPENDIX  C   RESTRICTIONS  ON  VR5500

This appendix explains the restrictions on the VR5500 and action to be taken.

C.1  Restrictions on Ver.1.x

C.1.1  During normal operation

(1) Return address in case of address error exception

With VR5500 Ver. 1.x, when the return address (contents of the EPC register) to which execution is to return

from an exception handler by executing the ERET instruction is in the address error area, a value different from

the contents of the program counter (PC + 0x04 or PC + 0x08) is stored in the EPC register if an interrupt

occurs immediately after execution of the ERET instruction.

Therefore, detect an address error and stop program execution in the exception handler.

This restriction does not apply to Ver. 2.0 or later.

(2) Uncached accelerated store operation

With VR5500 Ver. 1.x, a store operation to the uncached accelerated area is not performed correctly if the

system interface is in the 32-bit mode.

This restriction does not apply to Ver. 2.0 or later.

(3) Instruction fetch in uncached area

With VR5500 Ver. 1.x, when an instruction is fetched from the uncached area while the system interface is in the

64-bit bus mode, the subsequent instruction may not be correctly executed depending on the combination of the

instructions of an even address (lower word) and an odd address (higher word) (mainly combination of

jump/branch instructions).

Remark The VR5500 fetches instructions from the uncached area in word (32-bit) units.  Therefore, of the data

output to the 64-bit bus, the instruction in the lower word (even address) is fetched, and the

instruction in the higher word (odd address) is not used.

Therefore, make sure that the instruction at the odd address is not a jump/branch instruction, or that the code of

the instruction at the even address is identical to that at the odd address.

This restriction does not apply to Ver. 2.0 or later.

The combinations in which the instruction is not correctly executed are shown below.

(a) Branch instruction at even address with condition satisfied and branch instruction at odd address

The branch destination of the branch instruction at the even address is calculated by using the offset (lower

16 bits) of the branch instruction at the odd address.

There is no problem if the offset of the branch instruction at the odd address is the same as that at the even

address.

(b) J or JAL instruction at even address and branch instruction at odd address

The jump destination of the jump instruction at the even address is calculated by using the code (lower 26

bits) of the branch instruction at the odd address.



APPENDIX  C   RESTRICTIONS  ON  VR5500

Preliminary User’s Manual  U16044EJ1V0UM 631

(c) J or JAL instruction at even address and J or JAL instruction at odd address

The jump destination of the jump instruction at the even address is calculated by using the code (lower 26

bits) of the jump instruction at the odd address.

There is no problem if the code (lower 26 bits) of the jump instruction at the odd address is the same as

that at the even address.

(d) Branch instruction at even address with condition satisfied and J or JAL instruction at odd address

The branch destination of the branch instruction at the even address is calculated by using the code (lower

16 bits) of the jump instruction at the odd address.

(4) Operation in low-power mode

VR5500 Ver. 1.x does not stop the internal pipeline clock even when the WAIT instruction is executed (the

power consumption is not reduced).

This restriction does not apply to Ver. 2.0 or later.

(5) Clock output on clearing reset

With VR5500 Ver. 1.x, the clock for the serial interface may not be output if a multiplication rate of 2, 3.5, 4, 4.5,

or 5.5 is selected when generating an internal clock from an external clock.

Therefore, select a multiplication rate of 2.5, 3, or 5.

This restriction does not apply to Ver. 2.1 or later.

C.1.2  When debug function is used

Caution The operation or result produced by the restrictions described below differs depending on the

external debugging tool connected.  For details when using the debug function of the VR5500,

therefore, consult the manufacturer of the debugging tool to be used.

(1) Trace data when JR/JALR instruction is executed

With VR5500 Ver. 1.x, the contents of the internal TPC packet changes before a TPC packet that indicates the

jump destination address of the first jump instruction is output when two or more JR or JALR instructions are

executed within 16 PClocks.  Consequently, the wrong contents are output as the first TPC packet.

This restriction does not apply to Ver. 2.0 or later.

(2) Trace data when branch instruction is executed

With VR5500 Ver. 1.x, contents that indicate that a branch has been satisfied two times are output as an NSEQ

packet if a branch instruction that satisfies a branch and a branch instruction that does not satisfy a branch are

executed consecutively.

This restriction does not apply to Ver. 2.0 or later.

(3) Trace data when exception occurs

With VR5500 Ver. 1.x, a TPC packet or NSEQ packet is output instead of an EXP packet, which indicates

occurrence of an exception, if an exception occurs as a result of executing the instruction in the branch delay

slot.

This restriction does not apply to Ver. 2.0 or later.



APPENDIX  C   RESTRICTIONS  ON  VR5500

Preliminary User’s Manual  U16044EJ1V0UM632

(4) Trace data when EXL bit = 1

With VR5500 Ver. 1.x, a packet indicating occurrence of a TLB exception is output instead of a packet indicating

occurrence of an ordinary exception if a TLB exception occurs while the EXL bit is set to 1.

This restriction does not apply to Ver. 2.0 or later.

(5) Operation of BKTGIO# signal

With VR5500 Ver. 1.x, an event trigger is output from the BKTGIO# pin if an instruction cache miss conflicts with

the match of an instruction address when match of an instruction address is specified as a break trigger.

This restriction does not apply to Ver. 2.0 or later.

(6) Operation when instruction address break occurs

With VR5500 Ver. 1.x, the processor deadlocks if an interrupt or exception conflicts with an instruction address

match when an instruction address match is specified as a break trigger.

This restriction does not apply to Ver. 2.0 or later.

(7) Setting of mask register for read access

With VR5500 Ver. 1.x, a break does not occur if the mask register is set taking endian into consideration when a

data data trap for read access is set.

When setting a data data trap for read access, therefore, set the mask register without taking endian into

consideration.

This restriction does not apply to Ver. 2.0 or later.

(8) Debug reset signal

VR5500 Ver. 1.x does not have a dedicated signal to execute a debug reset and uses the ColdReset# signal

instead.  However, the ColdReset# signal may be asserted during boundary scan, and therefore, an error may

occur during boundary scan.

This restriction does not apply to Ver. 2.0 or later because a dedicated JTRST# signal has been added.

(9) Trace output in debug mode

VR5500 Ver. 1.x ouptuts trace data even in the debug mode.

Therefore, ignore the data output from the NTrcData(3:0) pins from when a debug exception packet is output to

when a DRET packet is output.

This restriction does not affect the data output from the NTrcData(3:0) pins in the debug mode because it is

ignored by the in-circuit emulator.

This restriction does not apply to Ver. 2.0 or later.



APPENDIX  C   RESTRICTIONS  ON  VR5500

Preliminary User’s Manual  U16044EJ1V0UM 633

C.2  Restrictions on Ver. 2.0

C.2.1  During normal operation

(1) Clock output on clearing reset

With VR5500 Ver. 2.0, the clock for the serial interface may not be output if a multiplication rate of 2, 3.5, 4, 4.5,

or 5.5 is selected when generating an internal clock from an external clock.

Therefore, select a multiplication rate of 2.5, 3, or 5.

This restriction does not apply to Ver. 2.1 or later.

(2) Operation of Release# signal in out-of-order return mode

The Release# signal is not asserted (low level) and the right to control the system interface is not released to

the external agent even if the RdRdy# signal is deasserted (high level) in the cycle in which the first request of

the successive read requests is issued when VR5500 Ver. 2.0 is set in the pipeline mode in the out-of-order

return mode.

This restriction does not apply to Ver. 2.1 or later.

(3) Return address in case of address error exception

With VR5500 Ver. 2.0, if a jump/branch instruction is located two instructions before the boundary with the

address error space and if a branch prediction miss (including RAS miss), ERET instruction commitment,

exception (except the address error exception mentioned) does not occur (is not committed) between execution

of the above jump/branch instruction and occurrence (commitment) of an address error exception due to a

specific cause (refer below), the address stored in the BadVAddr register by the processing of the above

address error exception is the address at the position (boundary with the address space) two instructions after

the jump/branch instruction.  However, the correct address is stored in the EPC register.

Therefore, do not locate a jump/branch instruction at the position two instructions before the boundary with the

address space.

This restriction applies to the following causes of the address error exception.

• If an attempt is made to fetch an instruction in the kernel address space in the user or supervisor mode

• If an attempt is made to fetch an instruction in the supervisor address space in the user mode

• If an attempt is made to fetch an instruction not located at the word boundary

• If an attempt is made to reference the address error space in the kernel mode



APPENDIX  C   RESTRICTIONS  ON  VR5500

Preliminary User’s Manual  U16044EJ1V0UM634

C.2.2  When using debug function

Caution The operation or result produced by the restrictions described below differs depending on the

external debugging tool connected.  For details when using the debug function of the VR5500,

therefore, consult the manufacturer of the debugging tool to be used.

(1) Initialization of debug registers

VR5500 Ver. 2.0 initializes the Monitor Data register in the debug module when the RESET# signal is asserted.

However, because the RESET# signal is masked on the emulator side, this restriction has no influence.

(2) Operation when break trigger and exception conflict

With VR5500 Ver. 2.0, if the Data Break Control register in the debug module is set so that only a trigger occurs

and if a break trigger and an address error exception or TLB exception occur in the same load/store instruction,

the address error exception or TLB exception is indicated by the cause code.  However, 0xBFC0 1000 for the

debug exception is used as the exception vector address.

(3) Masking NMI request

With VR5500 Ver. 2.0, an NMI exception occurs even if occurrence of NMI is masked by the Debug Mode

Control register in the debug module when the NMI request is already held pending internally.



APPENDIX  C   RESTRICTIONS  ON  VR5500

Preliminary User’s Manual  U16044EJ1V0UM 635

C.3  Restrictions on Ver. 2.1 or Later

C.3.1  During normal operation

(1) Return address in case of address error exception

With VR5500 Ver. 2.1 or later, if a jump/branch instruction is located two instructions before the boundary with

the address error space and if a branch prediction miss (including RAS miss), ERET instruction commitment,

exception (except the address error exception mentioned) does not occur (is not committed) between execution

of the above jump/branch instruction and occurrence (commitment) of an address error exception due to a

specific cause (refer below), the address stored in the BadVAddr register by the processing of the above

address error exception is the address at the position (boundary with the address space) two instructions after

the jump/branch instruction.  However, the correct address is stored in the EPC register.

Therefore, do not locate a jump/branch instruction at the position two instructions before the boundary with the

address space.

This restriction applies to the following causes of the address error exception.

• If an attempt is made to fetch an instruction in the kernel address space in the user or supervisor mode

• If an attempt is made to fetch an instruction in the supervisor address space in the user mode

• If an attempt is made to fetch an instruction not located at the word boundary

• If an attempt is made to reference the address error space in the kernel mode

C.3.2  When using debug function

Caution The operation or result produced by the restrictions described below differs depending on the

external debugging tool connected.  For details when using the debug function of the VR5500,

therefore, consult the manufacturer of the debugging tool to be used.

(1) Initialization of debug registers

VR5500 Ver. 2.1 or later initializes the Monitor Data register in the debug module when the RESET# signal is

asserted.

However, because the RESET# signal is masked on the emulator side, this restriction has no influence.

(2) Operation when break trigger and exception conflict

With VR5500 Ver. 2.1 or later, if the Data Break Control register in the debug module is set so that only a trigger

occurs and if a break trigger and an address error exception or TLB exception occur in the same load/store

instruction, the address error exception or TLB exception is indicated by the cause code.  However, 0xBFC0

1000 for the debug exception is used as the exception vector address.

(3) Masking NMI request

With VR5500 Ver. 2.1 or later, an NMI exception occurs even if occurrence of NMI is masked by the Debug

Mode Control register in the debug module when the NMI request is already held pending internally.



Preliminary User’s Manual  U16044EJ1V0UM636

[MEMO]



Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur.  Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax:  +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax:  +82-2-528-4411

P.R. China
NEC Electronics Shanghai, Ltd.

NEC Electronics Taiwan Ltd.

Fax:  +86-21-6841-1137

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: +1-800-729-9288

+1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Market Communication Dept.
Fax:  +49-211-6503-274

South America
NEC do Brasil S.A.
Fax:  +55-11-6462-6829

Taiwan 

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.

Fax:  +886-2-2719-5951

Fax: +65-250-3583 

Japan
NEC Semiconductor Technical Hotline
Fax: +81- 44-435-9608

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS  02.3

Name

Company

From:

Tel. FAX

Facsimile  Message


