NEC

Preliminary User’s Manual

VR5500™

64/32-Bit Microprocessor

1PD30550

Document No. U16044EJ1VOUMOO (1st edition)
Date Published August 2002 N CP(K)

© NEC Corporation 2002
© MIPS Technologies, Inc. 2001
Printed in Japan

[MEMO]

2 Preliminary User’'s Manual U16044EJ1VOUM

NOTES FOR CMOS DEVICES

@ PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using
insulators that easily build static electricity. Semiconductor devices must be stored and transported
in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work bench and floor should be grounded. The operator should be grounded using
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need
to be taken for PW boards with semiconductor devices on it.

@ HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
to the input pins, itis possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Inputlevels
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused
pin should be connected to Vop or GND with a resistor, if it is considered to have a possibility of
being an output pin. All handling related to the unused pins must be judged device by device and
related specifications governing the devices.

(® STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, /O settings or contents of registers. Device is not initialized until the
reset signal is received. Reset operation must be executed immediately after power-on for devices
having reset function.

Vr Series, VrR4000, Vr4000 Series, Vr4100 Series, Vr4200, Vr4300 Series, Vr4400, VrR5000, Vr5000
Series, VR5000A, Vr5432, Vr5500, and Vr10000 are trademarks of NEC Corporation.

MIPS is a registered trademark of MIPS Technologies, Inc. in the United States.

MC68000 is a trademark of Motorola Inc.

IBM370 is a trademark of IBM Corp.

Pentium is a trademark of Intel Corp.

DEC VAX is a trademark of Digital Equipment Corporation.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company Ltd.

Preliminary User’'s Manual U16044EJ1VOUM

Exporting this product or equipment that includes this product may require a governmental license from the U.S.A. for some
countries because this product utilizes technologies limited by the export control regulations of the U.S.A.

The information contained in this document is being issued in advance of the production cycle for the
device. The parameters for the device may change before final production or NEC Corporation, at its own
discretion, may withdraw the device prior to its production.

Not all devices/types available in every country. Please check with local NEC representative for availability
and additional information.

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.

Descriptions of circuits, software, and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these circuits,
software, and information in the design of the customer's equipment shall be done under the full responsibility
of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third
parties arising from the use of these circuits, software, and information.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated "quality assurance program" for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.

M5D 98.12

Preliminary User’'s Manual U16044EJ1VOUM

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized

representatives and distributors. They will verify:
» Device availability

« Ordering information

» Product release schedule

« Availability of related technical literature

« Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

« Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.) e Filiale Italiana

Santa Clara, California Milano, Italy

Tel: 408-588-6000 Tel: 02-66 75 41
800-366-9782 Fax: 02-66 75 42 99

Fax: 408-588-6130

800-729-9288 ¢ Branch The Netherlands

Eindhoven, The Netherlands
NEC do Brasil S.A. Tel: 040-244 58 45
Electron Devices Division Fax: 040-244 45 80
Guarulhos-SP, Brasil
Tel: 11-6462-6810
Fax: 11-6462-6829

e Branch Sweden
Taeby, Sweden
Tel: 08-63 80 820

NEC Electronics (Europe) GmbH Fax: 08-63 80 388
Duesseldorf, Germany
Tel: 0211-65 03 01

Fax: 0211-65 03 327

¢ United Kingdom Branch
Milton Keynes, UK
Tel: 01908-691-133

« Sucursal en Espaiia Fax: 01908-670-290

Madrid, Spain
Tel: 091-504 27 87
Fax: 091-504 28 60

e Succursale Francaise
Vélizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

Preliminary User’'s Manual U16044EJ1VOUM

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Shanghai, Ltd.
Shanghai, P.R. China

Tel: 021-6841-1138

Fax: 021-6841-1137

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-2719-2377

Fax: 02-2719-5951

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore

Tel: 253-8311

Fax: 250-3583

J02.4

Readers

Purpose

Organization

How to read this manual

Conventions

INTRODUCTION

This manual is intended for users who wish to understand the functions of the
Vr5500 (uPD30550) and to develop application systems using this microprocessor.

This manual introduces the architecture and hardware functions of the Vr5500 to
users, following the organization described below.

This manual consists of the following contents.

* Introduction

* Pipeline operation

» Cache organization and memory management system
* Exception processing

* Floating-point unit operation

* Hardware

* Instruction set details

It is assumed that the reader of this manual has general knowledge in the fields of
electrical engineering, logic circuits, and microcontrollers.

The Vr4400™ in this manual includes the VrR4000™.
The Vr4000 Series™ in this document indicates the Vr4100 Series™, Vr4200™,
VRr4300 Series™, and Vr4400.

To learn in detail about the function of a specific instruction,
— Read CHAPTER 3 OUTLINE OF INSTRUCTION SET, CHAPTER 7
FLOATING-POINT UNIT, CHAPTER 17 CPU INSTRUCTION SET, and
CHAPTER 18 FPU INSTRUCTION SET.

To know about the overall functions of the Vr5500:
— Read this manual in the order of the contents.

To know about electrical specifications of the Vr5500:
— Refer to Data Sheet which is separately available.

Data significance: Higher digits on the left and lower digits on the right
Active low representation: XXX# (trailing # after pin and signal names)
Note: Footnote for item marked with Note in the text
Caution: Information requiring particular attention
Remark: Supplementary information
Numerical representation: Binary... XXXX or XXXX2

Decimal...XXXX

Hexadecimal ... OxXXXX
Prefix indicating the power of 2 (address space, memory capacity):
K (kilo) 2"°=1,024
M (mega) 2% =1,024°
G (giga) 2% =1,024°
T (tera) 2% =1,024*
peta) 2%=1,024°
exa) 2% =1,024°

Preliminary User’'s Manual U16044EJ1VOUM

Related Documents The related documents indicated in this publication may include preliminary versions.
However preliminary versions are not marked as such.

Documents Related to Devices

Document Name Document No.
uPD30550 (Vr5500) Data Sheet To be prepared
VR5500 User's Manual This Manual
Vr5432™ User's Manual Volume 1 U13751E
VR5432 User's Manual Volume 2 U15397E
VR5000™, VR5000A™ User's Manual U11761E
VR5000, VR10000™ Instruction User's Manual U12754E

Application Note

Document Name Document No.

Vr Series™ Programming Guide Application Note U10710E

Preliminary User’'s Manual U16044EJ1VOUM 7

CONTENTS

CHAPTER 1 GENERAL........eocoeecercrccerensecersssssme s ssssmme s ess s s s esssmme s esssmme s eassamsnesssmmeneassamnssassnmnssassnmnnessannnns 25
LI T = 1 (U= 25
1.2 Ordering INfOrmMationcccciciiiicniii s s s e e n e s 26
1.3 VR5500 PrOCESSOrcciiiiiiememerrriiiiissnmsss s rrssa s s s s e s s s s s s e s s Ee e e e mm s R R e £ Ee e e amm R R e e e Eeaa s anmmnnnnnis 26

1.3.1 Internal block CONfIQUIAtIONccoiuiiiiiiiiie e e 28
LR T2 O e U I = To 1] (=1 = PP TPPPP TR 30
LIS RC T 07T o (o o= T T Yo £ T PSPPSR PPPRPRO 31
1.3.4 System control COProCESSOrsS (CPO).......uuiiiiuiieeiiiiie ettt et e et e s ebe e s ane e e e seneeeean 32
1.3.5 Floating-point UNItcooiei e e e s e e e s ee s 33
LR TG I 07 Vo o = 4 =T 0 o] Y PO TPPPP TR 33
1.4 Outline of INSIrUCtion Seto e e e 34
1.5 Data Format and AddresSSingccccuucecmriiimmninimsrinmsr s ssms s s s ssmn s s mnn s 35
1.6 Memory Management SyStem........cccucoiiiminimmiissins s sssms s s sas s s san s s s s mne s 38
1.6.1 High-speed translation lookaside buffer (TLB).........cocuiiiiiiiiiiiiiee e 38
T2 o (oY= T 1o g 4o o [PR RRRR 38
1.7 INStruction PipeliNe........ceiiiiiiciciccccirin s s s s s e s s sssm s s s e s s s s sssm s s e s s e s s s s ssnmmn e e e e e e s nnsmnmmnennnes 38
L% T = =V a e o o =T [o o TSR 38

CHAPTER 2 PIN FUNCTIONS ... eiiicccerrssscerrsssmessssssme s s ssssmmssesssmms s esssmmssesssmmssesssmmesesssnmessassamsnessnnnes 39
2.1 Pin Configuration ... s s s s s 39
P28 13 T ¥ T T o T 43

2.2.1 System iNterface SIgNEAIScoo i 43
2.2.2 |Initialization iNterface SIgNaAISccoiiiii e 44
2.2.3 Interrupt iNterface SIGNAIS......cooiuiiii i 46
2.2.4 CloCK iNterface SIGNAIScoiiiiiiiiiiie et a e bt b e sr e ean e 46
P2 S I e o= =TT o] o] OO P S PPPIPUPPTPRRTOE 46
2.2.6 Testinterface SIgNaAl.........ooo i e 47
2.3 Handling of UNUSEd PiNS.......ccciiiimiiiiimiiinimss s s s issssss s sssssss s ssssssss s sssssss s sssssss s snssamssnssans 48
2.3.1 SySteM INTEIACE PIN..ccetiiiiiiiiii ettt sa e et ae e e bt e san e nar e en e nans 48
2.3.2 TeSTINIEITACE PINS...ciiii ittt e e e e e e e e e s b e e e e e e e e s sasaaaeeeaeesaensnraeeeaaeeaaannre 49
CHAPTER 3 OUTLINE OF INSTRUCTION SET.......cccctiiimmninmmnnisemsnisssmsssssssssssssssssssssssmsssassamssssssnssns 50
3.1 Instruction Set Archit@CtUre..... ... e s s e 50
3.1.1 INSIIUCHON FOMMAL ... e et 51
R T 0~ e ¥ To £y (o] YN 1= {0 T 1o TS 52
3.1.3 Operation INSITUCHIONSuiiiiiiii e e e e e e e e e e st a e e e e e e e s s snraeeeaeesaannnees 55
3.1.4 JUuMP/DranCh iNSIUCTIONSceiiiiiiiiie ittt et e e b e ae e e sre e e eeeeanee s 55
3.1.5 SPECIAl INSIIUCHONS ... e e e e e e e e e e e e e st aaeeeaeeeseasssbeeeaeesennsnnres 56
3.1.6 COProCESSOr INSIIUCTIONSeeiitiieieietie ettt sttt ettt e b e sae e sabeesab e e sabeeeabeesbeeeaneesbeeennee s 56
3.2 Addition and Modification of VR5500 INStructions...........cccceccrriiiscmrinisnninsssninssssssssessssnsaes 57
3.2.1 Integer rotate iNSITUCHONSoooiiii e s 57
3.2.2 SUM-Of-products INSTIUCHIONS ... e e e e e e e e e e s e e ssanraeea e e s eenannees 58
3.2.3 Register SCAN INSIIUCTIONSc.oouiiiiieiiii e e s e e e e e e e e nneees 59
3.2.4 Floating-point 10ad/Store iNSIIUCHIONScoiiiiiiiiii e 59
3.2.5 Other additional iINSTTUCHIONSoiiiiiiiei et e e e e e e e e e e e s sneeeeenneeeeeeneeas 59
8 Preliminary User’'s Manual U16044EJ1VOUM

3.2.6 Instructions for which functions and operations were changed...........cccoooiiiiiiien i 60

3.3 Outline of CPU INStruction Set ... s s s s ssms s ssssssnsas 60
3.3.1 Load and Store iNSIIUCHIONScceiiiiiiiii i e 60

3.3.2 Computational INSTIUCHIONSeiiiiiiiii ettt b e s e e enee e 63

3.3.3 Jump and branCh iNSIrUCHIONS.........ooo oottt e e aeeeeeeee 72

3.3.4 SPECIAI INSIIUCTIONS......ceitiiiitiieitii ettt ettt sa bt e st e e eab e e et e e e b e e e sbeeeabeesbeeanreeans 75

3.3.5 COopProCesSOr iNSTIUCHONS ...t e e e e e s e e e e e e s s b eaeeeaeessannnaeeeaaeean 77

3.3.6 System control coprocessor (CPO) INSIUCHIONScceeiiuiiiiiie ettt 78
CHAPTER 4 PIPELINEoeeeeeceecrcccerrrsssmessssssms s sssssms s eesssms s sesssms s sesssmsssessamsssassnmsesessmsssessnsnsessamsnsessnns 80
R T © 1= V1= N 80
L T B [0 T= 1 1= =T 1= PSPPSR 81

4.1.2 Configuration Of PIPEIINEcooiiiiiiiiiii e s e e e e 82

. = - 14 Lo 3TN 0 1= 85
T C T 1o T Vo =Y - 86
4.3.1 NON-DIOCKING 108Geeiiiiiieie ittt e e e et e e s e e e e nnre e e e annn e e e nnees 86

4.4 EXCEPLiON ProCESSING ...icceerriiirmriinismrsiissmssrssssssssssssssssssssssssssssssesssasssssssansssssssssssnssanssnnssansnsass 87
T oY =T =TT (T 87
4.6 Write Transaction BUFfer ... s s s s s s ssnssnns 87
CHAPTER 5 MEMORY MANAGEMENT SYSTEMccciiiiieiriniemnninemssssssess s sssssssssssssssssssssssssnssanes 88
LT T o o T =TT o T 1 o Yo = 88
L I B @ o T=Y =1 10T J g4 T Lo [PP PPOTI 88

5.1.2 INSrUCHON SEE MOAES ..ottt e e et e e e e e e e e e e e e e e e s e e nnnneeaaaaean 89

5.1.3 AdAreSSiNG MOUTESuuiiiiieiiieiiii ettt e e e e et e e e e e s e e e e e e e e s s n e e e e e e e e e e sser e e et e e s e nnnneeeeeeean 89

5.2 Translation Lookaside BUffer (TLB)c.c.ccuucommsssrsssnissmsssssssssmssssssssssmssssssssssmsssssmssssssssssnssasas 90
5.2.1 FOrMAt Of TLB BNIY .. .eeiiiiiiiieeeeiie ettt ettt e e e sa e e s ab e e s abe e e e e bt e e e e snteeeesaneee s 91

5.2.2 TLB INSITUCHIONS ...ttt e e ettt e e e e e st e et e e e e e e e nbseeeeeaeeeaaannneeeeaaaean 92

L2 T I = =Y o= o 1o o F PP PPPPPPPPPPPPPPR 92

5.3 Virtual-to-Physical Address Translationccccucmrmmnnemmmnnsssmms s 93
5.3.1 32-bit addressing mode address translation..............coooooiiiiiier e 96

5.3.2 64-bit addressing mode address translation............ccooceeiriiie e 97

5.4 Virtual AddreSs SPaCe......cccccremmmrrriiississsmmenrrrsssssssssmsesssessssssssnmsesseessssssssnmsssssessssssnnnnsssssesssssannnns 98
5.4.1 User mode virtual addreSS SPACEcueieiiiriiieiiieeee et e eenree e e s e s e s e e e s anree e s snnee e s nnneee s 929

5.4.2 Supervisor mode Virtual addreSS SPACEceeiieiiiiiiiiiiiiee et e e e 101

5.4.3 Kernel mode virtual addreSS SPACEeeiiiciriieiiieeee e e e e s 104

5.5 Memory Management RegiSters........cccuimminnismmmninmnnnnsss s s samen s 111
LT I 4T [Q=T 1151 (=T () TP SPR ST PPPURRT 112

Lo T2 S - 1ol (o] ol (=T 11 (=Y o (1) PR PR 112

5.5.3 EntryLo0 (2) and ENtryLo1 (3) rEQISTErScoiuuiiiiiiiieeeie ettt 113

5.5.4 PageMask rEQISTEI (5) ..eeiiuuieeiiiiiieiiiiee ittt ettt e et e e e e e e be e 115

LN I L =To I (Yo 1) (=Y g () T T TP PPPRUPRTI 116

5.5.6 ENIryHi regiSter (10).....eeiiiieiieeiiiiie ettt st e et e e e et e sae e e e e b b e e e be e nanees 117

5.5.7 PRId (processor revision ID) re@iSter (15)cciuiiiiieiiie ettt 118

LRI I @70) q) ol (=T 13 (= (L) PP 118

5.5.9 LLAddr (load linked address) register (17)ooeeiieeerieiieeree ettt 121
5.5.10 TaglLo (28) and TagHi (29) rEQISTEISueiiiiiiii et e e e 122

Preliminary User’'s Manual U16044EJ1VOUM 9

CHAPTER 6 EXCEPTION PROCESSINGcccoomimmimminnianisnmsnmsssmssssssssssssssssssssssssssssasssasssasssassns 123

6.1 Exception Processing Operation.........ccuucmiimmrnssmmnisssinssnssmssssesssssss s ssssmssssssssssms snssssssssssss 123
6.2 Exception Processing RegiStersccccocmrminimmmminsmmnnnnninsssss s sssssss s sssss s sssmss s 124
L B 7001 (o) A (=T [151 (T -) ST 125

6.2.2 BadVAAAr FEQISTEN (8) ..veeiiieeieeiiiiie ettt ettt ettt e st e s et e e sba e e e aabe e e s e ne e e e sane e e e e bneeennes 126

L B 0o 10 o | =T |53 1 g () I TSP 127

2 O7e) 0] oF- 1 (=Y (= To 1] (=T 4 i 1 T U PP PPPPRROE 127

B.2.5 StAUS MEGISTEI (12)...eiuiie ittt ettt b et st e e bt e she e e sa b e e sat e e sab e e sareesabeesareenares 128

L2 T 07 10 L= (=o [) C=Y g (1 1) IO TP PPPPRROE 131

6.2.7 EPC (exception program counter) register (14)c.oouuiiiieeriee i s 133

6.2.8 WatchLo (18) and WatChHi (19) reQiSTErS....ccoouuiii i 134

B.2.9 XCONEXE rEGISIEN (20) ...eeuveeiurieitieetee ettt ettt ettt ste e bt sae e e b et e ss e e e abe e e san e e sae e e sareenar e e sareenares 135
6.2.10 Performance Counter regiStEr (25)cuiiiuiiiiiiiiee et s e e e e e e 136
6.2.11 Parity Error r€giSTEr (26)......cccueiiiueieiiiiiiieitit ettt ettt ettt et st se e s e e sb e sab e sr e e sare e saneenans 138
6.2.12 Cache ErrOr r@QISTEI (27) ..oueeieiiiiiee ettt et e et e s ebe e e sbe e e e sbneeeenes 139
6.2.13 ErrOrEPC regiSter (B0) ...eeiieiiiieiiieitiee ittt ettt ettt ettt e st e e st e et e e st e s s e e st e e eneenab e e saneenars 140

LR T 0 T £ 11 E-3 o = (= o1 o o = 141
LR e B = o= o] (o] £/ 1= PSPPSR PP 141

(CRRC TP =5 (ot=Y o] i{o] g IRV /=Tox (o] G- To [o | (=11 J 143

6.3.3 Priority Of @XCEPHONS.eii it e e e e e e 146

L0 N T ¢ 11 E-3 o == o1] o = 147
6.4.1 RESEE EXCEPLONeeiiiiii e e e e e e nnne 147

(SR 2 Yo 1 (= T1=) A=) (oY= o) o) o [P TP PUPRRNE 148

LG T\ 1V 1 =Y (=T o) o o PP UPRRR PP 149

(SR 3 S Vo (o [(oY TSR =Y g o T =) (o1 =Y o] (o] o [150

6.4.5 TLB XCEPHONSeeieiiiiii ettt e e e e e e s e e e e e nnne 152

(SR G I @7 Tod g TN =14 (o T = (oY o] (o] o PSPPI 155

L A = TV T o = (o= o] (T o ORI 156

6.4.8 SyStEM Call EXCEPLION ..ottt ettt et e e e sa bt e e e e nt e e e s sane e e e s bneeeeaes 157

6.4.9 Breakpoint @XCEPHONcoiiiiii e e e 157
6.4.10 Coprocessor UNUSADIE EXCEPLON.ciiii ittt e e e e e e e e e e s rrraeeeaeeeeannnnes 158
6.4.11 Reserved iNStruCtion @XCEPLIONcviii i e e 159

L o 2 I = o = (o =Y o] 1o o 159
6.4.13 Integer overflow @XCEPIIONc.eiii e 160
6.4.14 Floating-point operation EXCEPHIONooiiiiiiiiii e e e e e 160
6.4.15 WatCh @XCEPHONeeiiiiii et e e e e s s e e s nnr e e e e nre e e nnee 161
(SR o LT LY (=Y (B o A= (o =Y o] 1o o 162

6.5 Exception Processing FIOWCharts.........ccccouimmmninmmmnnssrmnssss s samse s 163
CHAPTER 7 FLOATING-POINT UNITcccoiriececerrnssmeresssmsesssssmsesessssmssssssnmsssssssmsssesssmsesessansesessenmessnsans 170
70 T © =T V1= 170
A% o 2 U (=T T (] 170
7.2.1 Floating-point general-purpose registers (FGRS).........occuiiiiiiiii i 171

7.2.2 Floating-point registers (FPRS)iiiiiiii ettt bbb se e 172

7.2.3 Floating-point control registers (FCRS)oiiiiiiii e 172

7.3 Floating-Point Control Register ... s s s s s s s snsas 173
7.3.1 Control/Status register (FCR3ST) ..ottt sbe e e s bne e e enes 173

7.3.2 Enable/Mode register (FCR28)coiiii ittt ettt sie e sne e e snre e 176

10

Preliminary User’'s Manual U16044EJ1VOUM

7.3.3 Cause/Flag register (FCR26)........couuuiii ettt ettt st e sttt e e sbae e s e ntee e e sanes 176

7.3.4 Condition Code register (FCR25)oiiiiiiieiiie ettt 176

7.3.5 Implementation/Revision register (FCRO).........uiiiiieriiiie e 177

4 T 0 -\ - T o 4 0 - 178
7.4.1 Floating-point fOrMAL..........ueiiiiiii e e e b e b e 178

7.4.2 FiXed-point fOMAL........cooiiiiiieie e e s 180

7.5 Outline of FPU INStruction Setccciiimmininmninirrnssnnsssss s s sssssssssanens 181
7.5.1 Floating-point load/store/transfer INStrUCHONS.ooiiiiiiiiie e 182

7.5.2 COoNVErSION INSIIUCHIONSeiiiiiiiii ittt e e e a et e s et e e e s nsbe e e e enbe e e e sanes 185

7.5.3 Operation INSIUCTIONS.......coiuiiiitiieiie ettt ettt e et e e sbe e e sbe e e sae e e aab e e saneesaneesareesaneas 187

7.5.4 CompariSON iNSTIUCHONcciiiiiiiiiie e e e e e e e s e e e e e e s esbrraeeeaeeeeennnsranes 189

7.5.5 FPUDBranch iNSITUCLIONSooi it e e e e e e e e e enneeeeas 190

7.5.6 Other iNSITUCTIONSeeiiii ittt ettt st e s bt e e s e bt e e e s abe e e e sabbeeeeaabeeeesanes 190

7.6 Execution Time of FPU INSIrUCHiON ... 191
CHAPTER 8 FLOATING-POINT EXCEPTIONS.......cccccoerresccerressmmeressssmensssssmenessssmessnssmmsnesssmmsnesssnmnneas 193
< 20 N 7o Y=Y o1 ==Y 4 o 4 - 193
8.2 EXCeption ProCeSSING -..ccucorrrrirsmrrrmsssnsrrmsssnssrmssssssrnsssssssssssssssesssasssssssssssssssamsssssssnssnssssnssnsasannnns 194
T2 B - Vo T ST ST PRSP U PSP 194

8.3 Details Of EXCEPHIONScovcuerrrrirmmrrrissssrnissssrrsssss s s s s s s s e sam s s e m s e samne s 196
8.3.1 Inexact operation EXCEPTION (1)uveiieieiiiiiiieiie e e e e e e s e e e e e s e b e e e e e e eenansreees 196

8.3.2 Invalid operation EXCEPHION (V) ..eiiueiiiii ettt ettt ettt se e s e e e b e e enneesane s 197

8.3.3 DiviSioN-DY-ZEro @XCEPLION (Z) ...eeiiuieeiiiiiieeeieee ettt e e nnb e s be e e 197

8.3.4 OVerflow €XCEPHON (O)eiiiuiiiiiiiiiiie ittt ettt ettt e bt e e b ee e e n b e sr e naneas 198

8.3.5 UNAEerflow XCEPLON (U) ..uiiiiiiiieiiiiiie ettt e e e e e e e e st e e e e e e e s e snnraeeeaeeeeenannraeees 198

8.3.6 Unimplemented operation @XCeption (E)coceeiuiiiiieiieieiee ettt 199

8.4 Saving and Restoring Status..........ccccciiimmiinimminnrrs s 200
8.5 Handler for IEEE754 EXCEPLIONSccceriiiummrrissmmrrnsssmssmssssmsssssssmss s ssmss s smms s s smms s snssmms s snssmmeneas 200
CHAPTER 9 INITIALIZATION INTERFACE.........oo oo oceiererccerrssscerrssssme s snsssmsssesssssesessssmessessamssenssansenenss 201
9.1 FUuNnctional OULIINEcoccciiiiiir s n e e mm e n e amnn s 201
9.2 BRESEl SEQUENCEciiieeiiiairiisiissrssss s sas s s smsra s s as e sam s e msEaa e e S me £ anEeERRe R nE R s e ameEamnn R annean 202
9.2.1 POWET=0N FESEeeiiiiiiiiie ettt ettt e e e et e e e e e st e et e e e e e e s b e e e e e e e e e e nnenreeeeeeeannnnnnees 202

LS 202 7o [I 1T SR 203

e I BT =T T =T PP U PP PUPPPP PR 204

9.2.4 ProcesSOr Status At rESET ... e e 204

9.3 Initialization SigNalsccccciiiiriiriinnir i ————— 205
CHAPTER 10 CLOCK INTERFAGCEccoociiiiieiriisenr s ssssssss s s sssssss s s ssss s snssssss snssssssnnsssnssnnnns 206
10.1 Term DefiNitioNS ... s e e mmmnns 206
10.2 Basic SYStem CIOCK.......cccciiemerrriiiississscmnenrrsssssssssmse s s e sssssssssmmsssssssssssssmmssssssssssssnnnnssnsssssssssnnnns 207
10.2.1 Synchronization With SYSCIOCK.........cccueiiiiiiiiieii ettt sae e 208

10.3 Phase LOCK LOOP (PLL)....cooiiiiiiiiiieccienriisssssssssmssessesssssssssmssssssnssssssssssssssssssessssssnnsmssnsssessnssnnnns 208
CHAPTER 11 CACHE MEMORYoiiiiitiiiismnsimsssnssissssssssssssssasssssssasssssssasssssssasssssssasssnsssasssnsssnsssnssnsans 209
11.1 MemOory Organizationc.ccuciiisinisniis s sssss s s sas s sam s ms s san s s ms s mn e s nmn s sns 209
T1.1.7 INEINAI CACNE ...t e e e st e e e e e e e e e e e e e e e nanns 210

11.2 Configuration of CaChe........occciiiceiiiinicr s s s mn e 211

Preliminary User’'s Manual U16044EJ1VOUM 11

11.2.1 Configuration of INStrUCtiON CAChE..........uiiiiiii s 211

11.2.2 Configuration of dat@ CACNEocuuiiiiii e et 212
11.2.3 Location of data CaChE ..o e e 212

T 0 T L= T 0 o 1T = o) T 213
11.3.1 Coherency Of CACHE daAtAeeiiiiiiii e 213
11.3.2 Replacing insStruction Cache liNEoooiiiii e 214
11.3.3 Replacing data Cache lINE.........oooo i e e 214
11.3.4 Speculative replacement of data cache lINecoouiiiiiiiiiii e 215
11.3.5 ACCESSING CACKE ...ttt e e e e e e e e e e et e e e s e e e e e e e e easnnneneeeeeeean 216

B = = (D= o 0 Vo T 217
11.5 Manipulating Cache by External Agent...........cccoociiiiiemminismninesr s sssssss s ssssans 217
CHAPTER 12 OVERVIEW OF SYSTEM INTERFACEciiiiinrr s sssass s sssssss s snssans 218
12.1 Definition Of TEIMS.. ... e e e e 218
P28 = U T 11 T = 219
12.3 Outline of System INterface........ccccuirmiiiminicimncrrcr s s 220
12.3.1 INEEITACE DUS ...ttt 220
12.3.2 Address cycle and data CYCIEoooiiiiiiiiiiiie e 221
12.3.3 ISSUANCE CYCIE ...ttt e e e e e e e s e e et e e e e e e anb e e e e e e e e e aanbneeeeeeeeean 221
12.3.4 HaNAShaKe SigNalcooiiiiiiiiiee et e e e e e nnnes 222
12.3.5 System interface DUS Aata..........coouiiiiiiiiii e 223

12.4 System Interface ProtoCol...... ... s s s s e 224
12.4.1 Master status and slave Statuscccciiiiiiiiiii 224
12.4.2 External arbitrationottt e e e e e e e e naneeeaa e e an 225
12.4.3 Uncompelled transition to slave Status ..o 225
12.4.4 Processor requests and external FEQUESTSc.eeviiiriiiiriiere e 226

12.5 ProCesSOr REQUESTS......ciuiiiiimimimiiisisnssssssssssssssssssssssssssss 227
12.5.1 ProCessor read rEQUEST.........cueiiiiiiie ettt e s e s 228
12.5.2 Processor WHEE FEQUESTcooe i 228

12.6 EXternal ReqUESTScccociriiimiriniems s rssems s rnies s s sss s s s s s s e m e e nn e e nmn e e 229
12.6.1 EXternal WHte reqUEST ..o 230

P G ST oT: To =TT oo 1 PP PRR P 230

12.7 EVENE PrOCESSING ..uuuiiiiiieriiiismnsisssmnsisssmsssssssssssasssms s sssssms s sassass s sassams s e samss sasssnsssassansssassansssassans 231
B T o= Vo I 4RO 231
T2.7.2 STOTB MISS ...ttt ettt et b et e bt s b et e b et e sbe e e b et e ebe e e abe e e abe e e sneeeeaeeesrneeannee e 232
B2 A T (o 4 o 1 S 232
12.7.4 Load/store in UNCACNEM @rEaccceeiiiiiiiiii ittt et s 232
12.7.5 Accelerated store in UNCACNEA @reacooiiiiiiieiiiiiie ettt ee e 232
12.7.6 Instruction fetch from UNCAChed @rea...........ccocuiiiiiiiiiiiii e 233
L =Y (o o T 4T RPN 233

12.8 Error CheCk FUNCLION........iiciiiisr s s s s s s s s s s s s amn s s amn s s 234
12.8.1 Parity ©TOF CRECK ... eeeeeie et s e e s n e e nnn e nnneas 234
12.8.2 Error CheCK OPEratioN.....cccoo i 235
CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE).....c..ccooocuriisemsrissesssisssasssssssasssssssnssssssans 237
13.1 Protocol of Processor REQUESTS.........ccccuriirmmrrinimmsrmssssss s sssssss s s ssssss s sssssss s snssmss s snssnms s snsnns 238
13.1.1 Processor read request ProtOCOL......coie i 238
13.1.2 Processor write request ProtOCOL.........ccuuii i e 239

12 Preliminary User’'s Manual U16044EJ1VOUM

13.1.3 Control of proCesSOr rEQUESTE FIOWoiiiiiiiiiiiiiii it e et e e e e e e e st ree e e e e e e e sanes 241

13.1.4 Timing mode Of ProCeSSOr FEQUESTcoiiiiiieieirie e e e 242

13.2 Protocol of External ReqUESTccccccmiiiiiciiiecccerr s sr s n s s s sssss s s s e e s ssmms s s s e e ssssssnsmmnns 246
13.2.1 External arbitration ProtOCOL.........c.eviiiiiei e e 246
13.2.2 External NUIl reqQUEST PrOtOCOLuuuuiiiiiiiiiiiiiiiiiiieiitiiii bbb s 248
13.2.3 External write request ProtOCOLoociiiiiiieie e 249
13.2.4 Read reSPONSE PrOTOCOIuuuiuiiiriiiiiiiiitiiititiiare s 250
13.2.5 SysADC(7:0) protocol for block read reSPONSEccccueiriiiriiiiiiie e 252

13.3 Data FIOW CONIOL.......cciiiiiieiiiiinries s s s s s s s s e m e s e nm e s me s 252
18.3.1 Data rate CONTION ...ttt e e e ettt e e e e e e e et e e e e e e e e e s nnrneeeaaeaeaannns 252
13.3.2 Block write data transfer Pattern............ooii oo 253
13.3.3 SYSIEM ENAIANNESSeeiiiii ettt st b e e bt e st e e bt e e be e e nnee e abeeenneeeneee 253

13.4 Independent Transfer With SYSAD BUScccccciiiiiiisisscmssnrinssssssssmssss s sssssssssssssssssssssssssssmssnes 254
13.5 System Interface Cycle TiMe ... s s s s s samn s 254
13.6 System Interface Commands and Data Identifiers.........ccccoiieeiciiccmmninissscscceeer s ssnceees 255
13.6.1 Syntax of commands and data identifiers............ccouuiiiiiiiiii e 255
13.6.2 Syntax Of COMMEANToiiiiiiiii it e ettt e e s bb e e e s ab e e e e sneeeesnnbeee s 255
13.6.3 Syntax of data IdENTIfIErcc.eiiii e 258

13.7 System Interface AdAress........ccciiiiicmininiiissssssserr e sssssss e s s s s e s s s ssmss s s s e e sessssssmmnessnesanssssnnnnns 260
13.7.1 Address SpecCifiCation FUIESc.evii e 260
13.7.2 SUD-DIOCK OFUEIING ..eeiiiieeiii ittt et e e e bt e e st e e e bbe e e s e nbb e e e sne e e e s anreeeas 260
13.7.3 Processor internal @ddreSS MEAPccueeeeiirireeeiriie e e e e e s e e e e s e s e e e sannr e e sanneee s 260
CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)ccccoeeoerrerscerrnssmerrssssmesssssmessesssssenenss 261
14.1 Protocol of Processor REQUESESccccciiiiiiiissmemmmnriiissssssssssssnesssssssssssssssessssssssmsssssnsssssssssnnnes 262
14.1.1 Processor read reqUeST ProtOCOIeeviiiiiiiiiiiie e s 262
14.1.2 Processor Wrte reqUEST PrOtOCO]uuuuuiiiiiiiiiiiiitiiiiitiiie s 263
14.1.3 Control of processor reqUEST fIOWiiiuiiiiiiiie e 265
14.1.4 Timing Mode Of ProCESSOr FEQUESTeiiiiiiiieiiitie ettt e e s 267

14.2 Protocol of External ReqUEStcccciriirmrmnismmrmnnssms s s s sesssmss s 271
14.2.1 External arbitration ProtOCOL...........uuuiuuriiiiiiiii s 271
14.2.2 External null reqUEST ProtOCOLooiuiiiiiiiiie e 273
14.2.3 External Write reqUEST PrOtOCOLuuuuiiiiiiiiiiiiiiiiiiiiiit s 274
14.2.4 Read reSPONSE PrOtOCOIuueeiiiiiieeieiee et e e et e e s e e s et e s e e s s anre e e senne e e sanneeesanneeens 275
14.2.5 SysADC(3:0) protocol for block read reSPONSEc.eeeiiiuiieiiiiiie et 277

14.3 Data FIOW CONIOL......cocicoiiiiiiiiinins s isms s s s sssms s s s s s ms s ann s amn s mn e sns 277
14.3.1 Data rate CONTIOL........oiieiiii i e e e 277
14.3.2 Block write data transfer Patterno s 278
14.3.3 WOrd tranSfer SEQUENCEuiiiii ittt e ettt e e e e e e te e e e e e e e e aantaeeeaaeeeasnsraeeeaaeeesnnnes 279
14.3.4 SYSTEM ENAIANNESSeeiiiiiiiii ettt ettt e et s bt e e b e e bt e st e e e bt e e be e e aaeeesbeeenaneenene 281

14.4 Independent Transfer With SYSAD BUSccccciiiiiiiiisscmmsnrinssssssssmsssssssssssssssssssssssssssssnssmssnns 282
14.5 System Interface Cycle TiMe ...t s s s s e snmn s 282
14.6 System Interface Commands and Data Identifiers........cccccciieiiiiiccmmmniinssscsccceer e 283
14.6.1 Syntax of commands and data identifiers............ccoouiiiiiiiiiii e 283
14.6.2 Syntax Of COMMEANGoiiiiiiiii et e et e s raae e e e s bbe e e et e e e e sneeeesanneee s 283
14.6.3 Syntax of data IdENTIfIEroc.ei i 286

14.7 System Interface AdAress......c.cciciiiiicmiriiiiisssssssne s sssssssses s s e s s s s ssssmsses s e e sessssssmmsessnesasssssnnnnns 288
14.7.1 Address SpecCifiCation FUIESc.evii i 288

Preliminary User’'s Manual U16044EJ1VOUM 13

32BN o B o] [o o] Qo T o (=Y o o o [PPSO 288

14.7.3 Processor internal addreSS MAPccoocueieiiieieeiiiee e e e e e e e s e e e e nanneas 288
CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE).......ccccocmrrrecerrnnsamenennnas 289
T T 0 = 290
80 I T2 o T I T Yo = ST PPRR T 290
15.1.2 Master status and slave Status ... 291
15.1.3 1dentifying FEQUEST......coi et e s 291

15.2 Protocol of Out-of-Order Return MoOdecccccmnimmrisrminesmiss s sssss s s snssssssssssasans 292
15.2.1 SUCCESSIVE AT MBAUESTSeeiitiiiiie ittt ettt ettt ettt e sae e s abeesab e e st e e sab e e sbeesabeeaneeesbeeenneee e 293
15.2.2 SUCCESSIVE WIIE FEQUESESuiiiiiiiiii ittt ettt e e e et e e e e e e et e e e e e e e s e asntaeeeeaeeeasnsaaneeaaeeesan 296
15.2.3 Write request following read reQUEST.........cooiiii i 298
15.2.4 Bus arbitration Of PrOCESSONuiiii i it e e e e e e e s e s e e e e e e e e e e sataaaeeaaeeeaas 299
15.2.5 Single read request following block read reqUEeSTccoiiiiiiii i 302
15.2.6 Unaligned 2-word read rEQUEST..........c.uiiiiiiei ittt e e e e e e e e e 305

15.3 System Interface Commands and Data Identifierscccucomniscrinisminscnnnccsnnss s 306
15.3.1 Syntax of commands and data identifiers ... 306
15.3.2 Syntax Of COMMANGooiiiiiiiie ettt e b et e sae e et e e e sae e e sabeenaeeesbeeeaneee e 306
15.3.83 Syntax of data identifiereeiiiiiii s 311

15.4 Request Identifierccocciriiieiriniss s s s s s e 313
CHAPTER 16 INTERRUPTScooiiicccrrircmcerrssmme s esssme s snsssme s snssmms s essssms s enssmme s sessnmesesssnmessessnmsssessamsnsessnns 314
16.1 Interrupt ReqUEST TYPE .. i s s s s s s s e e e e e e e e e e e e e e e e e e e nnnnnn s 314
16.1.1 Non-maskable interrupt (NIMI)oo i sre e e 314
16.1.2 External ordinary INTErTUPT.........oooi i e e s e e e e e e 315
16.1.3 SOFtWAIE INEITUDESee ettt b et e rae e e be e e sae e e be e e nae e e sbneennnee e 315

S I T L= T T) (=14 U] o PPN 315

16.2 Acknowledging Interrupt Request Signal.........cccccociiiicimiiicnincsnncs s 315
16.2.1 Detecting hardware iNTEITUPDL.........cooi e e e e e e e e e 317
16.2.2 Masking interrupt SIGNAIeeeiiiiii e 318
CHAPTER 17 CPU INSTRUCTION SETcoiiccccerissemerrnssemersssssmessssssmsssssssmsssssssmsssssssmssssssamsssesssmsssessnns 319
17.1 Instruction Notation Conventionsccciiimiiss s 319
17.2 Cautions on Using CPU INStructionsccccucmiicmmnimninismnnmsssssssses s ssssss s ssssmssnsens 321
17.2.1 Load and store iNStrUCIONScocueiiiiiiii 321
17.2.2 Jump and branch INSTIUCIONSeiiiiiiii e e 322
17.2.3 COProCESSOr INSIIUCTIONSuvviiiiiiiieieiiiii it e e e e cese e e e e e e st e e e e e e e se b abeeeaeeesaasntaeeeeaeeeaassssneeaaeeesan 322
17.2.4 System control coprocessor (CPO) iNSTIUCHIONSeiiieiiiiieiie ettt 323

17.3 CPU INSIFUCTION ...ttt nrs s s s s s s e s s e n e e e 323
17.4 CPU Instruction Opcode Bit ENCOAINGcccurirmmrirminimninssmssmssssmsssssss s ssssss s ssssmssssmsssssnas 523
CHAPTER 18 FPU INSTRUCTION SETccccocirircmerrnsmmerssssmssssssssmsssssssmessssssmsssssssmssssssnmsssessnmssssssnns 526
L 20 T 8/ T 1 T3 £ U T T T o 526
B 70 O T B T - I (o] 14 F= L PO 529

18.2 Instruction Notation Conventionscccciriimiissmnnsr s 530
18.3 Cautions on Using FPU INStructions.........cccciiiminrsmmncsninisnisssssss s s ssssssssss snsssssnsmsssans 532
18.3.1 Load and store inStrUCIONSccueiiiiiii 532
18.3.2 Floating-point operation iNSTUCTIONSocceeiiiiieie e 533

14 Preliminary User’'s Manual U16044EJ1VOUM

18.3.3 FPU branCh iNSIIUCHIONuee et e et e e e e e e e e a e e e e e e e ea s e e eeeeeennan 534

18.4 FPU INSTIUCTION ...t s m s e e e mmmn e s e e e e mmmnns 534
18.5 FPU Instruction Opcode Bit ENCOAINGccccurriirmmmimismmnimissnsrsssans 613
CHAPTER 19 INSTRUCTION HAZARDScccoctiiimmrmninmsnnnssmssnssssssssssssssssssssssssssssamsssnssamsssnsssmnnnsas 615
L TR O 1Yo = 615
19.2 Details of Instruction Hazard...........ccccceciiiniimminiininrr s sssssss s 615
CHAPTER 20 PLL PASSIVE ELEMENTS.......cccciomtrinemrmmisnnnnsssnsnsssssssnsssssssssssssssssssssmssssssanssssssamsnsas 616
CHAPTER 21 DEBUGGING AND TESTING.....ccccciiismrrrinamnrinsssssssssssssssssass s sssssss s sssssssssnsssssssnsssssssnss 617
P2 T B0 Y= V= 617
21.2 Test Interface SIgNalS.........ccciiiimiriisnirinrr s e e amnn s 619

P2 I = T TU T E T = o T 621
21.4 Connecting Debugging TOO!ccccurrinsmmmminssmnmmisennrrsssss s ssss s sms s sssssmnsssassanns 623
21.4.1 Connecting in-circuit emulator and target board.............ccoceeriiiiiiiiiii e 623

21.4.2 ConNNECtioN CIrCUIT EXAMPIEuuiiiiiii e e e e e e e s e e e e e s easnrbeeeeeaeeannnsrnnees 625
APPENDIX A SUB-BLOCK ORDERcccooottimiumtrinssnssissasssssssnsssnsssnsssnsssnsns 626
APPENDIX B RECOMMENDED POWER SUPPLY CIRCUITccccoiimimiemrmnsesssssssss s snsssssssns 629
APPENDIX C RESTRICTIONS ON VR5500.......ccccurrmssummrrsssannrssssssrssssassmssssnsssssssasssssssnsssssssnsssssssnssnnsss 630
C.1 ReStrCHONS ON VOI.1.X . iieecerrrscrrrnsscerrss e s rs s e s ee s s e s e e s s e e eesssmm e nessmmnnesssmmenenssmmenensamnnes 630
(7% I B 0101 o To W o] 00 E= 1] o =1 =i o] o U PRSPPI 630

C.1.2 When debug fUNCHON IS USEAcueiiiiiiiiieiie ettt ettt sr e s 631

C.2 ResStrictions 0N Ver. 2.0.......cciiiiiiiiiriniisrnssssss s s s ssss s smsssssssmsssssssams s sasamnnes 633
C.2.1 DUING NOIMAI OPEIALION ...ccuuteiitieeiiee ittt ettt ettt ettt be e sae e e bt e e sae e e sae e e saeeesabeesaneesabeesnreesaneas 633

C.2.2 When using debug fFUNCHIONcooiiiii e 634

C.3 Restrictions on Ver. 2.1 or Later ... ceiercemrrrrceressscesssssscesssssmessssssmsssesssmessesssmesssssnnns 635
(OFC 70 B 9101 o To W o] 00 E= 1 o] o =1 =i o] o U PR 635

C.3.2 When using debuUg fUNCLIONciiuiiiiiieieie ettt n e s esar e sane s 635

Preliminary User’'s Manual U16044EJ1VOUM 15

LIST OF FIGURES (1/5)

Figure No. Title Page
1-1 INternal BIOCK DIAGIAM ...ttt e e e e et e e e e et e et e e e e e e nb e e e e e e e e e snnnnneeeeeeeas 27
1-2 CPU REISTEIS .ttt ettt e b e et ettt b e ettt e bt e e et et e be e e be e en e e ea b e e smneesnbeeenneenaneas 31
1-3 | e U = To] (=T £ TSP PP PPP R SOPPPPRRP 33
1-4 LTS (0o L] o T Y] = ST UTRPPTI 34
1-5 Byte AAdress of Big ENAIANccooiiiiiiiiii ettt e s s e e e ne e e 35
1-6 Byte Address of Little ENGAIANcc.vii it 36
1-7 Byte Address (UNaligned WOTA)ooceieiiiiiieieiiie ettt sttt ettt e et e e e bt e e snne e e s sanes 37
3-1 EXxpansion Of MIPS ArChIECIUIEuviiiiiii ittt e e e e e e e e et e e e e e e e e e seanraeeeaaaean 50
3-2 1013 (0 To1 (o] I o] 4 F- L PR R 51
3-3 Byte Specification Related to Load and Store INStruCtionScooviiiiiiiiiiiii e 54
4-1 Pipeline Stages of VR5500 and INSTrUCHION FIOW..........cooiiiiiiiiiiiii it 81
4-2 Combination of Instructions That Can Be Packedcoocuiiiiiiiiiiiiiieiie e 83
4-3 Instruction FIOW in EXECULION PIPEIINEuuii e e e e e 84
4-4 BranCh DEIAYcoeiiiiiieiiee ettt e e e e e e e e n e 85
4-5 o= o [B 11 =P P PP PUPPPPPTOPPP 86
4-6 oy (eT=T o) o] g T B =Y (=T o7 1 (o] o PSPPI 87
5-1 FOrmMat Of TLB ENTIY ...cooeiiiiiieie et e e e et e s e e e s ne e e e ann e e e e ennee e s nnnnee s 91
5-2 Outline of TLB Manipulation............ueiiiiiiiiiiiiiiiie ettt e e e e e e e e e s e e e e e e e e s antaeeeaaeesassnsaaeeeeeseaansreeees 92
5-3 Virtual-to-Physical Address TransIationoooieeioiiiieii e e 94
5-4 TLB Address TranSIationccooiiiiiiiiiiii e 95
5-5 Virtual Address Translation in 32-Bit Addressing MOde............oooiieiiiiiiie e 96
5-6 Virtual Address Translation in 64-Bit Addressing MOE............ooeiiiiiiiiiiiiiiee e 97
5-7 USEr MOAE AAIESS SPACEeeiutiiitiiiteieite ettt ettt st et sae ettt e sae e e it e e sab e e st e e sab e e st e e sabe e eabee st e e ebeesnbeesnneesareas 100
5-8 SUpPErviSOr MOde AdAIrESS SPACEceiiiiiiiiiiiiiiee et ittt ee e e e e e et e e e e e e se e e e e eeesessntbaeeeeaseesanssaneeaeeeesnnnes 102
5-9 Kernel MOde AJArESS SPACEeeiuiiiiiiaieietie ettt ettt ettt ettt sae et e it s bt e sas e e sabe e sabe e sabeesabeesbeesabeesaneenareas 105
5-10 XKPNYS Area AQArESS SPACEcuiiiiuiiiee ittt ettt ettt ettt ettt e e e b e e e e e sttt e e e be e e e s asbe e e e abbeeesnreeeeaaneeeas 106
5-11 [To oy =TT T TP 112
5-12 RANAOM REGISIEN ...ceiiiiiiiiiiiii ettt e e et e e e e e e e e e e e e s e b ne e e e e e e e e b nrneeeeeeeaaane 112
5-13 EntryLo0 and EntryLoT ReQISIErSoviiiiiiieieii e 113
5-14 PageMask RegiSTer. ittt e e e e e e e e e s e e e e e e n e e e e e e e aan 115
5-15 Positions Indicated by Wired REGISIErcooiiiiiiiee e 116
Lo L T (=To l aT=To] (=T PP PP PP P SPPPPPPPPPN 116
Lo A = o1 (Y] [= 1=) (=Y OO PPEOTRRP 117
L R T o o1 [0 I S T=To] (=] SO PPPOPOPPPPPPPPRN 118
L I 07141 o o T=T 1 (=1 O PP P PP UPROPPTOPROPIN 119
L2 O B I I o [g o T To 1< =Y PP POP O PPPPPPPPRN 121
5-21 TaglLo and TagLo REGISIEISviiiiieie e e s e e e e s s 122
6-1 (070101 (=)l 1T o) (Y TP ST RTUSRTR 125
6-2 BadV AdAr REGISTEN ...t e e e e e e e e e e et e e e e e 126

16 Preliminary User’'s Manual U16044EJ1VOUM

LIST OF FIGURES (2/5)

Figure No. Title Page
6-3 (07010 a1 1T o 1] (=] PRSP PUPTPPRRN 127
6-4 Compare ReGISTEr FOIMALcoiiiiiiiiiie ettt st et s n e st eear e e sab e e eaneesans 127
6-5 e UL LR R T=To 1] (= PRSP PUPTPPRRN 128
6-6 Status Register Diagnostic Status FIeldcooiiiiiiiiiie e e s 129
6-7 (0= 1 LTI T 11 (=T PRSP PUPTPPRRIN 131
6-8 S O S (=T 11 (=] TP U ST PR T PUURPRTRN 133
6-9 WatchLo and WatChHi REQISTEIS.......ccoiiiiiiiiei e e e e e e e 134
B-10 XCONIEXE REGISTEottt ettt b e ae e b et e sae e e sh b e e aas e e sateeeaeeesbeeenneeesabeennnee e 135
6-11 Performance CouNter REGISTENoiuuiii ittt e e e e as 136
B-12 Parity ErrOr REGISIEN ..ottt e e e e e e e ean 138
(oo FC T 07 Tod o T-J = ¢ (o gl S T=Y o 11 T USSR PPR TR 139
[I S Y (o] 4 = O R T=To [(] G TSSO PRTTRTOPPOTPRTN 140
6-15 General EXCEPLioN PrOCESSINGuiiiiiiiiii ittt st e e sb e e et e e e s sanee e e s nnneeeeas 164
6-16 TLB/XTLB Refill EXCEPiON ProCESSINGcc.uiiiiiiiiiiiiie ettt sttt et 166
6-17 Processing of Cache Error EXCEPION.......coii ittt e e 168
6-18 Processing of Reset/Soft ReSet/NMI EXCEPLIONScoiiuiiiiiiiiiieiie ettt ettt 169
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8 Single-Precision Floating-Point FOMALooiiiiiiiiii et 178
7-9 Double-Precision Floating-Point FOrMaL...........coooiii e 178
7-10 32-Bit Fixed-Point FOrMat...........cooiiiii e 180
7-11 64-Bit FIXed-POINt FOMMAL........ooiiiieie e e e e e s e s enre e e e 180
8-1 Cause/Enable/Flag Bits Of FOR3Tuiiiiiiiieee ettt e sar e e 194
9-1 POWEr-0N RESEE TIMING ..ot e e e e e s s e e e snr e e e nnr e e e s nnnneeean 203
9-2 (070] (o [l 2 T=T=1=) B 10 11 T PRSP PUPTPPRTN 203
9-3 Warm RESET TiMING ... eeeeiiieie ettt e e e e et e e e e e e s s e e e e anne e e e annneessnneeeean 204
10-1 SigNal's TranSItIoN POINScoiitiiiiiieiie ettt sb bt e st e sab e e s neesab e e snreesaneesnneenanis 206
10-2 ClOCK=Q DEIAYeoutieieieeiie ettt et et st e e a e st e et s r e e e b e re e s b b e s 206
10-3 When Frequency Ratio of SysCIoCk t0 PCIOCK IS 1:2.....c.uiiiiiiiiiieiieeiiceeee e 207
11-1 Logical Hierarchy of MEMOIYoii et e s nr e e e e e nnnees 209
11-2 Internal Cache and Main IMEMOIY........uuiiiuuiee ettt et e e e e st e e s eabe e e e s bb e e e sanbee e e snneas 210
11-3 Format of INStruction Cache LINEcooiiiiiii ettt 211
11-4 Line Format of Data CaChecocuiiiiiiiiie et 212

Preliminary User’'s Manual U16044EJ1VOUM 17

LIST OF FIGURES (3/5)

Figure No. Title Page
11-5 Index and Data Output Of CACREuiiiiiiiiic e e e e s e e e e e e e areeaaaeas 216
12-1 BUS MOES Of VRE500........eieieieitie ettt sttt sttt sttt s e bt e s e e e bt e sar e e e n e e s r e e e neenareas 219
12-2 System Interface Bus (64-Bit BUS MOGE)c.eiiiiiiiiiiiiieiee e e 220
12-3 System Interface Bus (32-Bit BUS MOTE)ccoiuiiiiiiiiii it 220
12-4 Status of RARdy#/WrRdy# Signal of Processor REQUESTcociiiiiiiiiiiiiiie e 221
12-5 Operation of System Interface Between REGISIErSoouuiiiiiiiiiiiiiii e 224
12-6 Requests and SYSIEM EVENTS ..ottt sttt ae e sbb e e sae e nbe e e nae e e 226
12-7 FIOW Of ProCeSSOr REQUESTSciiiiiiiiiiiiiee ettt e e e e e e e et e e e e e e e e st a e e e e aaeeeeasssaeeeaaaean 227
12-8 Flow of EXtErnal REQUEST........oooi e e e e 229
12-9 REAA RESPONSE .. i 230
13-1 Processor REAd REQUESTccoo i 239
13-2 Processor Non-Block Write Request ProtoCOc.uiiiiiieiiiiiiie e 240
13-3 Processor BIOCK WHEE REQUEST ... 240
13-4 Control of Processor REQUEST FIOWcoo.uiiiiiiiiiiiiie ettt et 241
13-5 Timing When Second Processor Write Request IS Delayed...........cccoovieiiiiiiiiiiiiii e 242
13-6 Timing of VR4000-Compatible Back-to-Back Write CyClecooveiiiiiiiiiiriieee e 243
13-7 WIItE RE-ISSUANCE ..ot e e e s 244
13-8 PiIPEIINE WO ...t e et e e e e e e e s e e e e e n et e s s e e e e e anre e e e enne e e nnnes 245
13-9 External Request Arbitration ProtOCOL........coooe oo 247
13-10 External Null ReQUESE PrOtOCOLccoiiiiiiiiiiee ettt 248
13-11 External Write ReqUESt ProtOCOI......cccoo i 249
13-12 Protocol of Read Request and Read RESPONSEoiiiiiiiiiiiiiieieee e 251
13-13 Block Read Response in SIAVe STAtUScccuiiiiiiiii it e e e e e e e e anraeeeeeaeas 251
13-14 Read Response with Data Rate Pattern DDXcoociiiiiiiiiiieieen e e 253
13-15 Bit Definition of System Interface COMMANGcoooiiiiiiiiiiii e 255
13-16 Bit Definition of SysCmd Bus During Read REQUEST..........ccceiiiiiiiiiiiiiieie e 256
13-17 Bit Definition of SysCmd Bus During Writ€ REQUEST...........eoiiiiiiiiiiiie e 257
13-18 Bit Definition of SysCmd Bus During NUll REQUESLciiiuiiiiiiiiiiieiiceee et 258
13-19 Bit Definition of System Interface Data [dentifier ..o 258
14-1 Processor REAd REQUESTcccoo i 263
14-2 Processor Non-Block Write Request ProtOCOc.uiiiiiiieiiiiiieeeee e 264
14-3 Processor BIOCK WHEE REQUEST ... 264
14-4 Control of Processor REQUEST FIOWcoouiiiiiiiiiiiiie ettt 265
14-5 Timing When Second Processor Write Request IS Delayed...........ccoooiieiiiiiiiiiniiei e 267
14-6 Timing of VR4000-Compatible Back-to-Back Write CyClecooieiiiiiiiiiiiriieeee e 268
14-7 WIItE RE-ISSUANCEccoiiiiiiieii e e e 269
14-8 PiIPEIINE WO ...t e et e s e e e e s e e e e e nr e e e asnn e e e e anre e e s anre e e nnnes 270
14-9 External Request Arbitration ProtOCOL........coooiie i, 272
14-10 External Null ReQUESE PrOtOCOLccoiiiiiiiiieee ettt 273
14-11 External Write ReqUESt ProtOCOI......cccooie i 274

18 Preliminary User’'s Manual U16044EJ1VOUM

LIST OF FIGURES (4/5)

Figure No. Title Page
14-12 Protocol of Read Request and Read RESPONSE.......c.c.uuviiiiiiiiiiiiieiie ettt e e e 276
14-13 Block Read Response in SIave STAtUScc.eiiiiiiiiiiii e 276
14-14 Read Response with Data Rate Pattern DDX.......ccooioiiiiiii e 278
14-15 Bit Definition of System Interface ComMMAaNd............ooiiiiiiiiiiie e 283
14-16 Bit Definition of SysCmd Bus During Read REQUESTcooiiiiiiiiiiiiie e 284
14-17 Bit Definition of SysCmd Bus During Write REQUESEciiiiiiiiiiieeiee e 285
14-18 Bit Definition of SysCmd Bus During NUIl REQUEST...........eeiiiiiiiiiiii e 286
14-19 Bit Definition of System Interface Data [dentifier............oooei i 286
15-1 Successive Read Requests (in Pipeline Mode, with Subsequent Request)..........cccceeveiiiiiiiiinieennenne 293
15-2 Successive Read Requests (in Pipeline Mode, Without Subsequent Request).........cccoovviciiiiiiieeeiinnnns 294
15-3 Successive Read Requests (in Re-1SSUANCE MOGE)c.eiiiiiiiiiiiiieiiee ettt e 295
15-4 Successive Write Requests (in PIipeling MOTE)uuviiiiiiiiiiiiiieeee ettt e e e e e e e 296
15-5 Successive Write Requests (in Re-1SSuance MOde)coouiiiiiiiieiniie e 297
15-6 Write Request Following Read REQUEST...........ooiiiiiiii et 298
15-7 Bus Arbitration of Processor (in Pipeline Mode, with Subsequent Request).........ccccoveiiiniiinieeiieeeienn, 299
15-8 Bus Arbitration of Processor (in Pipeline Mode, Without Subsequent Request)ccccceeeviiiiiiieneneeenn. 300
15-9 Bus Arbitration of Processor (in Re-1SSuance MOdE)cocueiiiiiiiiiiiiiiiiie e 301
15-10 Single Read Request Following Block Read Request (in Pipeline Mode, with Subsequent Request).... 302
15-11 Single Read Request Following Block Read Request

(in Pipeline Mode, Without Subsequent REQUEST)c..uviiiiiii i 303
15-12 Single Read Request Following Block Read Request (in Re-Issuance Mode)ccccceevieieiereneennnnen. 304
15-13 Unaligned 2-Word Read (in Pipeline Mode, with Subsequent Request)cccccociiiieiiiiiiieeeiiece e, 305
15-14 Bit Definition of System Interface COmMMAaNG.........ccoiiiiiiiiiiiiie e e 306
15-15 Bit Definition of SysCmd Bus During Read REQUESTccooiiiiiiiiiiiiiiieeee e e 307
15-16 Bit Definition of SysCmd Bus During Write REQUESEc.eiiiiiiiiieiiieeee e 309
15-17 Bit Definition of SysCmd Bus During NUIl REQUEST...........eeiiiiiiiiiiiie e 311
15-18 Bit Definition of System Interface Data [dentifier...........coooiiiiiiiiiii e 311
16-1 N LT To o - OO PP PP PP 314
16-2 Bits of Interrupt Register and Enable Bits............oooiiiiiiiii e 316
16-3 Hardware Interrupt REQUESE SIGNQlccoouiiiiiiiiiiiiie e s 317
16-4 Masking INtErrUPE SIGNQAL........ooi ittt e e s b e e e e aabe e e e sneeas 318
17-1 CPU Instruction Opcode Bit ENCOTING.......ocuuiiiiiiiiiiiiiie ettt e e e sbb e e 523
18-1 Load/Store INStruCtion FOIMAL..........ooiuiiiiiiiii et 527
18-2 Operation INStrUCION FOIMAL........ocueiiiiiiiie ettt b e b e be e sare e e beesnee s 528
18-3 FPU Instruction Opcode Bit ENCOAINGuueeiiiiiiiieiiiie ettt ettt e e e e sneeas 613
20-1 Example of Connection of PLL Passive EIEMENTSccoiiiiiiiiiiiiiec et 616
21-1 Access to Processor Resources in Debug MOdEooooiiiiiiiiiiiiie e 618

Preliminary User’'s Manual U16044EJ1VOUM 19

LIST OF FIGURES (5/5)

Figure No. Title Page
21-2 BoUuNdary SCaAN REGISTENiii i et e et ae e e e e s 621
21-3 IE Connection ConNeCtOr PiN LAYOUL.......c.ciiiiiiiiiiiiiesiee ittt ettt snn e sn e saneas 623
21-4 Debugging Tool Connection Circuit Example (When Trace Function Is Used)ccceviveiiniieeneiiineenn. 625
A-1 Extracting Data Blocks in Sequential Order..........ooueiiiiiiiiii e e 626
A-2 Extracting Data in SUD-BIOCK OFTENcccuiiiiiiiiiieiieeeie ettt ettt ettt e n e snn e s aneenareas 627
B-1 Example of Recommended Power Supply Circuit CONNECLIONcciiiiiriiieiiieeiee e 629

20 Preliminary User’'s Manual U16044EJ1VOUM

LIST OF TABLES (1/4)

Table No. Title Page
1-1 (0 O R (=T) (=Y £ PSP OTPPR 32
2-1 SyStem INTEITACE SIGNAIS ...ttt e b e e et e e st e e s bb e e e s aabe e e e sneeas 43
2-2 Initialization INterface SIGNAlSooiiiiiiie e sr e sn e e 44
2-3 INterrupt INtErface SIGNAISooueeiiiiee et e et e e et s s e e e ean 46
2-4 ClOCK INtEIfACE SIGNAISeiiieeee ittt st e s ab e st e e sab e e s beesabe e sbeesabeesbeeenneean 46
2-5 Lo U o] o] PP PP PRI 46
2-6 TeSt INEITACE SIGNAIS......ci ettt ettt b e rbe e e b et e sae e e sae e e sareesab e e snneenanes 47
3-1 Load/Store Instructions Using Register + Offset Addressing Modeccoceiiiiiiiiieniiennieeeee e 53
3-2 Load/Store Instructions Using Register + Register Addressing Mode............coovvieiiiiiieiiiiiee e 53
3-3 Definition and Usage of Coprocessors by MIPS ArchiteCtureccceeiiieiiiiiieenee e 56
3-4 Rotate INSIIUCHIONS........ooiiiii e 57
3-5 X @ O [T (BT T TS 58
3-6 SumM-0f-Products INSTTUCIONScccuiiiiiiiii e e e 58
3-7 RegiSter SCAN INSIIUCHIONS.eiiiiiiiiee ettt sa e s e e sab e e san e e sab e e sneesans 59
3-8 Floating-Point Load/Store INSIFUCTIONSoiiuiiiiiiiieee ettt e e e ee s 59
3-9 COProCeSSOr O INSTIUCHIONSccoutiiiiie ettt ettt b e b e e sbe e e sae e e sebeesan e e sbeeeabeeebeeennee s 59
B-10 SPECIAI INSITUCLIONSeeeiiiii it e et e e e s e et e e e e e e e e s st baeeeeaeeesanssaaeeeaeeesassnsneeaas 60
3-11 Instruction Function Changes iN VRE500ciuiiiiieiieeriie ettt sttt st sabe e see e sab e sn e sabe e sneesans 60
3-12 LoAd/StOre INSIIUCHONS.eiiiiii ittt e et e sr e s esne e 61
3-13 Load/Store Instructions (EXTENAEA ISA)ooiiiiiiiiiiiieie ettt e sn e 62
3-14 ALU Immediate INSITUCHIONScoociiiiiiiii e e 63
3-15 ALU Immediate Instructions (EXtENAed ISA)cccueiiiiiiiiie e 64
3-16 Three-Operand TYPe INSITUCTIONS.ccoiuiiiiiiiiee ittt st e e s rbb et e e s bb e e seabe e e e sabeeeeabeeeesnee 64
3-17 Three-Operand Type Instructions (EXtended ISA)ooiiiiiiiiiie e 65
3-18 Shift INSITUCHONS ...ttt sae e sar e sr e e ser e saneenen s 65
3-19 Shift InStructions (EXTENAEA ISA)........eiiiiiiiie ettt sttt et r e e san e san e e e 66
3-20 Rotate Instructions (FOr VR5500)cuiiiiiiiiiiiiiieeeieeiiiteet e e e s esatreeeaaesesataeeeaeaeeasnsaaaeeeasessanssnaeeeaeessansssseeeens 67
3-21 MUItIPly/Divide INSTIUCHIONS ...ttt bttt be e e sb e e sae e e beeeane e e sbeeenane e e 68
3-22 Multiply/Divide Instructions (EXtENAEd ISA)........cuuiiiiiiiiieiee et 68
3-23 MACC InStructions (FOr VRE500).....ccuuteiueeititaiteeeitetesieeesteeesueeesteeesseeessseesseeessseesaseessseesaseesaseesareesareesnneesanes 69
3-24 Sum-of-Products Instructions (FOr VR5500)cccieiuiiiiiieeeieiiiiiier e e e sesiee e e e e e e sssiaee e e e e s e s sstnaaeeeaeessansnnneeeaas 71
3-25 Number of Cycles for Multiply and Divide INStrUCHIONScooiiiiiiiiiiiieie e e 71
3-26 Register Scan INstructions (FOr VRE500)uueiiiuiieiiiiiieiiitee ettt e ettt sieee e s snae e e s sbee e s sseee e s ssneeeeebneeesnee 72
3-27 JUMP INSIFUCTION ..ottt ettt e st e e e s e e e s e e e s ne e e e e mne e e e enn e e e s nmnneeeanneeennee 72
3-28 Branch INSIIUCHIONScocciiii i e e 73
3-29 Branch INstructions (EXtENAEA ISA)c.ueiiiiiiiieei et r e 74
3-30 SPECIAI INSITUCLIONSeeiiiiii et e ettt e e e e e st e et e e e e e s satbaeeeeaeeesnsaeaeeeaeeesnssnsneeans 75
3-31 Special Instructions (EXtENAEA ISA)i it b e sb e b ene s 75
3-32 Special INStructions (FOr VR5500)cccciiiiiiiiiiiie e e ettt e ettt e e e s e st e e e e e e e s sasbaeeeaaseesnssaaeeeaeessassnseeeeas 76
3-33 COProCESSOr INSIIUCHIONSceiuiiiitii ittt ettt et b e e e bt e sae e e b et e sae e e san e e sareesabeesnneennns 77
3-34 Coprocessor INstructions (EXIENAE ISA)ccoiiiiiiiiiee e e e e e e s e e e e e e e s nnnaeeeeas 78
3-35 System Control Coprocessor (CPO) INSrUCHIONSueiiuiieiieeiiie ittt 78

Preliminary User’'s Manual U16044EJ1VOUM 21

LIST OF TABLES (2/4)

Table No. Title Page
3-36 System Control Coprocessor (CPO) Instructions (FOr VR5500)cccoiuiiiiriieieiiiieeeiiieeeeieee s sieee e 79
5-1 (0o T=T =1 (T aTo 1Y, (o To [PSPPSR 88
5-2 LTS (o3 T TS T=T 1Y, oo =Y S 89
5-3 AAAreSSING MOGES ..ottt e e e e e sk e e e e e e s e e e e et e e e e e e st n e et e e e e aaannrrneeaeeeaaaann 89
5-4 32-Bit and 64-Bit User Mode SEOMENTS........cciiuiiiiiiiiieiiie ettt rae e e sbe e e sae e neee 100
5-5 32-Bit and 64-Bit Supervisor Mode SEgMENTSccoiiiiiiiiiiii e 103
5-6 32-Bit Kernel MOde SEGMENTScoiuiiiiiiiiii ettt ettt b et sb e et e seb e e sae e e sbneeaneee e 107
5-7 64-Bit Kernel Mode SEGMENTSueiiiiiiii ettt ettt e e st e e saabe e e e sabeeeesbreeeean 108
5-8 Cache Algorithm and XKphys AdAreSS SPACEceiuuiiruieiiiiaiie ettt ettt sttt sae e e sere e saee e e 109
5-9 CPO Memory Management REGISIEISooiiiiii ittt st e e e 111
B5-10 CaChe AIGOINIM ...ttt bt b et e bt e bt e e s b e e e be e e sseeeabe e s beesane e e rbeeenneeen 114
5-11 Mask Values and Page SIZESeouiiiiiiiiiiiii ettt sttt e et e st 115
6-1 CPO Exception Processing REGISTEIScooiiiiiiiiiiiie ettt s e e seree e 124
6-2 (o= o] ([W O oo [SO USRS UPPRTRRP 132
6-3 EVENES 10 COUNT ...ttt st s it st e s r e s bt e s n e e s r e e sneenareas 137
6-4 32-Bit Mode EXCeption VECtOr AQUIESSEScoiiiuieieiiiiieeeiiee e sreee s e e e e s e snre e s snnn e e e snreeenan 143
6-5 64-Bit Mode EXCePtion VECIOr AQUIESSEScuvuuiriiriiiiiiiiiiiieiiiiinieiaieieisrneerareraeae 143
6-6 TLB Refill EXCEPHON VECION ...ttt e s e e s e s 145
6-7 =y Cet=T o) (o] AT o (o] 142 @ (o 1= PSPPI 146
7-1 O T TP U R PR PP 172
7-2 Flush Value of Denormalized NUumber RESUIL.........ooo i 174
7-3 Rounding Mode CONIIOl BitSueiiiiiiiie ittt s e e sbb e e e e aree e e snnes 175
7-4 Calculation Expression of Floating-Point ValUecccooiiiiiiiie e 179
7-5 Floating-Point Format and Parameter ValUe............ooooi it 179
7-6 Maximum and Minimum Values of Floating POiNt ... 179
7-7 Load/Store/Transfer INSTIUCIONS..........cui it e 183
7-8 (070 01V =Y 7T o I 4T3 (8 Lo (o o TS 185
7-9 (@] 7=Te= 11 (o] o I 1] (0 Tox i o] o -0 RSO UPPPRT 187
7-10 CompPariSON INSTIUCTIONo.uiiiiii ettt ettt ettt e e b e et e e be e e sb e e e beesbeeeaneeebeeeneeens 189
7-11 Conditions for CompariSoN INSIFUCHIONuiiiiiiiiiiee e e e e e e e rae e e e e e e e aanes 189
7-12 FPU Branch INSIIUCHIONS ittt ettt e e e ettt e e e e e e e et e e e e e e e e nnneeeaaaaean 190
7-13 PrefetCh INSIIUCHIONcoiiii ettt st s e e e sre s e sreesnee e 190
7-14 Conditional Transfer INSTIUCHIONSccoiiiiiiie e e e e e e e e e e e s nee e e e enneeeas 190
7-15 Number of Execution Cycles of Floating-Point INStruCtionsccoociiiiiiiiiii e 191
8-1 Default Values of IEEE754 EXCEPLioNS iN FPUoocoiiiiiiiiiiiee ettt a e e e e 195
8-2 FPU Internal Result and FIag STAtUScoiuiiiiiiiiee ettt 195
12-1 System INTErface BUS DAtaoueiiiiiiiieiiii ettt san et e nae e ne e nae e e 223
12-2 Operation in Case Of LOAA IMISS.......cc.uuuiiiiiiiiiiiiiiies ettt e e e st e e e e e e s st ee e e e e e e sesansaeeeeeesennsaeeeeaaean 231
12-3 Operation in Case Of STOrE MISSciiiuiiiiiieie ettt ettt e e sae e e ser e sae e e sbeeenneeenaee 232

22 Preliminary User’'s Manual U16044EJ1VOUM

LIST OF TABLES (3/4)

Table No. Title Page
12-4 Error Check for Internal TranSacCtionccceiiiiiiiiiiiii e e e s 236
12-5 Error Check for EXternal TranSACHIONcceiiiiirieiiiieeiiieeesie e e et e e see e e s eeesnee e e sneeeeesneeeeeenneeeeeanneeenan 236
13-1 Transfer Data Rate and Data Pattern ... e 253
13-2 Code of System Interface Command SYSCMA(7:5)....ccciuuieiiiiiiieiiiee et 255
13-3 Code of SysCmd(4:3) During Read REQUEST.........cc.ueiiiiiiiiiiiie e 256
13-4 Code of SysCmd(2:0) During Block Read REQUESL...........eoiiiiiiiiiiiiie e s 256
13-5 Code of SysCmd(2:0) During Single Read ReqUEST.........c.iiiiiiiiiiiiie e 256
13-6 Code of SysCmd(4:3) During Write REQUEST.......cooiiiiiiiiiiie e 257
13-7 Code of SysCmd(2:0) During Block Write REQUESTcooiiiiiiiiiieeiee e 257
13-8 Code of SysCmd(2:0) During Single Write REQUEST..........ceiiiiiiiiiiiie e 257
13-9 Code of SysCmd(4:3) During NUIl REQUESLcooiiiiiiiiiiie et 258
13-10 Codes of SysCmd(7:5) of Processor Data Identifier...........cooiiiiiiiiiiiiiee e 259
13-11 Codes of SysCmd(7:4) of External Data Identifier............ccooiiiiiiiiiiiii e 259
14-1 Transfer Data Rate and Data Pattern....... ... 278
14-2 Data WIHEE SEOUENCEeeiieiiiii ettt ettt e e e e et e e e e e e s et bteeeeaeeeeasataeeeaaesaassstbaeeaaesaaansbaneaaaenaann 279
14-3 Data REAM SEUUENCEc..ueiiiiieiiie ettt ettt et e bt e b e e e be e e bt e e be e e beeeabe e e beeenee s 280
14-4 Code of System Interface Command SYSCMA(7:5)....ccciuuieiiiiiieiiiiie e 283
14-5 Code of SysCmd(4:3) During Read REQUEST.........ccueeiiiiiiiiiiee e 284
14-6 Code of SysCmd(2:0) During Block Read REQUESL...........eoiiiiiiiiiiiiiie e s 284
14-7 Code of SysCmd(2:0) During Single Read ReqUEST.........c.ioiiiiiiiiiiieriie e 284
14-8 Code of SysCmd(4:3) During Write REQUEST.......coiiiiiiiiiiii e 285
14-9 Code of SysCmd(2:0) During Block Write REQUESTcoouiiiiiiiiieeiee e 285
14-10 Code of SysCmd(2:0) During Single Write€ REQUEST..........coiiiiiiiiiiii e s 285
14-11 Code of SysCmd(4:3) During NUIl REQUESLcoiiiiiiiiiiiie et 286
14-12 Codes of SysCmd(7:5) of Processor Data Identifier...........cooiueiiiiiiiiiiei e 287
14-13 Codes of SysCmd(7:4) of External Data Identifier............ccoiiiiiiiiiiiii e 287
15-1 System INTErface BUS DAta...........eoiuiiiiiiiiii ittt sttt s b e n e st e e s er e 292
15-2 Code of System Interface Command SYSCMA(7:5)....ccciuuieiiiiiieiiiiie e 306
15-3 Code of SysCmd(4:3) During Read REQUEST.........c..uiiiiiiiiiiiiie et 307
15-4 Code of SysCmd(2:0) During Block Read REQUESL...........eoiiiiiiiiiiiiiiie e 308
15-5 Code of SysCmd(2:0) During Single Read ReqUEST.........cc.ioiiiiiiiiiiie e 308
15-6 Code of SysCmd(4:3) During Write REQUEST.......coiiiiiiiiiiiee e 309
15-7 Code of SysCmd(2:0) During Block Write REQUESTcoouiiiiiiiiiieiee e 310
15-8 Code of SysCmd(2:0) During Single Write REQUEST..........ceiiiiiiiiiiiii e e 310
15-9 Code of SysCmd(4:3) During NUIl REQUESLcooiiiiiiieiiie e 311
15-10 Codes of SysCmd(7:5) of Processor Data Identifier...........cooiiieiiiiiiiiiiiie e 312
15-11 Codes of SysCmd(7:4) of External Data Identifier............ccooiiiiiiiiiiiii e 312
15-12 Code of Request Identifier SYSIDOcoiiuuiiiiiiie et e e seb e e s e e snneas 313
15-13 Code of SysID(2:1) During INStruction REAJcuiiiiiiiiiiiiee et 313
15-14 Code of SysID(2:1) During Data REaAAcoiiiiiiiiiiiie et 313

Preliminary User’'s Manual U16044EJ1VOUM 23

LIST OF TABLES (4/4)

Table No. Title Page
17-1 CPU Instruction Operation NOAtIONSuuiiiiiiee e e e e e s e e e e e e e st e e e e e s eessraeeeaaeeesnnnes 320
17-2 Load and Store ComMMON FUNCHONScoouiiieiiieeeeiee e esiiee e ieee e et e e e e eee e e s st e e e e sneeeeeenneeeesneeeennseeeeannnes 321
17-83 Access Type Specifications for LOAdS/SOreS......ccoiuiii i 322
18-1 FOrMAL FIEIA COUE ...ttt et e s be e e e e et e e e e e st e e e s abe e e e ebbe e e sanbeeeesanees 528
18-2 Valid Format of FPU INSTIUCHION ... e e e e e e e e e e e an 529
18-3 Load and Store COmMMON FUNCHONSccoiiiiiiiiiiiee ettt et ettt e et s e e e sbb e e e ranee e e sanes 532
18-4 Logical Inversion of Term Depending on True/False of Condition............ccoceiiiiiiiiienen e 534
19-1 Instruction Hazard Of VRE500.......cou ittt e ettt e e e e e e st e e e e e e e eanneteeeaeeeeaannneneeeaaeas 615
211 TeSt INErfACE SIGNAISeiiiiiiiii ettt ettt e e e b e e be e e bt e s be e eabe e e nbeeeneeaa 619
21-2 BOUNAArY SCAN SEUUEINCE ...cceiuteiiiiiiieeeitiee e ettt ettt e e sttt e e ettt e e s bt e e e s aabe e e e e sttt e s aabeeeesbbeeesanbeeeesneeeeeanreeeas 622
21-3 | S @7 o) g T=Tox (o gl T TN T T oo o T SR 624
A-1 Transfer Sequence by Sub-Block Ordering: Where Start Address IS 102coccevviiiiiiiinieeiee e 628
A-2 Transfer Sequence by Sub-Block Ordering: Where Start Address IS 112oooviiiiiiiiiieiiiiee e, 628
A-3 Transfer Sequence by Sub-Block Ordering: Where Start Address IS 012ooveciiieiiieeenieee e 628

24 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 1 GENERAL

This chapter outlines the RISC 64-/32-bit microprocessor VrR5500 (uPD30550).
1.1 Features

The VR5500 is one of NEC’s VR Series microprocessors. It is a high-performance 64-/32-bit microprocessor
employing the RISC (Reduced Instruction Set Computer) architecture developed by MIPS™.

A bus width of 64 bits or 32 bits can be selected for the system interface of the Vr5500, which operates with a
protocol compatible with the VR5000 Series™ and Vr5432.

The VR5500 has the following features.

e Maximum operating frequency: Internal: 400 MHz, 300 MHz, external: 133 MHz
o Internal operating frequency obtained from the external operating clock (input clock and clock for bus
interface) through multiplication.
The multiplication rate can be selected from 2, 2.5, 3, 3.5, 4, 4.5, or 5.5 at reset.
e 64-bit architecture for 64-bit data processing
e 2-way superscalar pipeline
Parallel processing by six execution units (ALUO, ALU1, FPU, FPU/MAC, BRU, and LSU)
e Employment of out-of-order mechanism
e Branch prediction mechanism
Branch history table with 4K entries reduces branch delay.
¢ Virtual address management by high-speed translation lookaside buffer (TLB) (48 double entries)
o Address space Physical: 36 bits (with 64-bit bus)
32 bits (with 32-bit bus)
Virtual: 40 bits (in 64-bit mode)
31 bits (in 32-bit mode)
e [nternal cache memory
2-way set associative with line lock function
Instruction: 32 KB
Data: 32 KB, non-blocking structure. Write method can be selected from writeback and write through.
e 64-/32-bit address/data multiplexed bus
The bus width is selected at reset. Compatible with the bus protocol of existing products
64-bit bus: Compatible with bus protocol of VR5000 Series
32-bit bus: Compatible with bus protocol of VrR5432 (native mode) or RM523x™*
Out-of-order return mode can be selected for each bus width.

Note Product of PMC-Sierra

Preliminary User’'s Manual U16044EJ1VOUM 25

CHAPTER 1 GENERAL

¢ Internal transaction buffer
¢ Internal floating-point unit
e Hardware debug function (N-Wire)
e Conforms to MIPS |, Il, lll, and IV instruction sets.
Also supports sum-of-products instructions, rotate instructions, register scan instructions, and low-power
mode instructions.
e Support of standby mode to reduce power consumption during standby
¢ Supply voltage Core block: Vop = 1.5V £5% (300 MHz model), 1.6 to 1.7 V (400 MHz model)
I/0 block: VoplO =3.3V 5%, 2.5V t5%

1.2 Ordering Information

Part Number Package Internal Maximum
Operating Frequency
uPD30550F2-300-NN1 272-pin plastic BGA (C/D advanced type) (29 x 29) 300 MHz
UPD30550F2-400-NN1 272-pin plastic BGA (C/D advanced type) (29 x 29) 400 MHz

1.3 Vgr5500 Processor

All the internal structures of the VR5500 such as the operation units, register files, and data bus, are 64 bits wide.
However, the VR5500 can also execute 32-bit applications even when it operates as a 64-bit microprocessor.

The VR5500 manages instruction execution by using a 2-way superscalar, high-performance pipeline, and
realizes out-of-order processing by using six execution units.

“Out-of-order” is a method that executes two or more instructions in a queue according to their execution
readiness, independent of the program sequence. The hardware detects the dependency relationship of registers
and delay due to load/branch, and locates and processes resources so that there is no gap in the pipeline. The
execution result is output (i.e., written back to memory) in the program sequence.

Figure 1-1 shows the internal block diagram of the VR5500. The VRrR5500 consists of 11 main units.

26 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 1 GENERAL

Figure 1-1. Internal Block Diagram

Control signals

SysAD bus
(64/32 bits) <:

SysClock

CPO

H F TLB

Vr5500 IFU
Instruction @ BHT | RAS
cache
IMQ <:
{
SIU
RF ICU
J\
- WTB < RNRF RS
BN Test EXU
/] interface
N
ALUO ALU1 BRU P)
FPU/
Clock
generator
DCU
N Data SB
—] cache <::>
RB

]

Preliminary User’'s Manual U16044EJ1VOUM

27

CHAPTER 1 GENERAL

1.3.1 Internal block configuration

(1)

)

@)

(4)

®)

28

Instruction cache

The instruction cache uses a 2-way set associative, virtual index, physical tag system and enables line-locking.
The capacity is 32 KB. The cache is replaced by the LRU (Least Recently Used) method. The line size is 32
bytes (8 words).

Instruction fetch unit (IFU)

This unit fetches an instruction from the instruction cache, stores it once in an instruction management queue
(IMQ) of 16 entries, and then transfers it to an instruction control unit (ICU). Up to two instructions are fetched
and transferred per cycle.

The IFU also has a branch prediction mechanism and a branch history table (BHT) of 4096 entries so that
instructions can continue to be fetched speculatively. Moreover, one return address stack (RAS) entry is
provided so that exiting from a subroutine is speculatively processed.

Instruction control unit (ICU)

This unit controls out-of-order execution of instructions. It renames registers to reduce the hazards caused by
the dependency relationship of registers, when an instruction is transferred from the IFU. The instruction is then
stored in a reservation station (RS) of 20 entries until it is ready for execution. When execution is ready, up to
two instructions are taken out from the RS and are transferred to the execution unit (EXU).

Register control unit (RCU)

This unit has a register file (RF) and a renaming register file (RNRF). RF consists of sixty-four 64-bit registers,
and RNRF consists of sixteen 64-bit registers. These registers serve as source and destination registers when
an instruction is executed. When instruction execution is complete, the RCU transfers the contents of RNRF to
RF in accordance with the renaming by the ICU, and completes instruction execution (commits). Up to three
instructions can be committed per cycle.

Execution unit (EXU)
This unit consists of the following six sub-units.

e ALUO: 64-bit integer operation unit

e ALU1: 64-bit integer operation unit

e FPU/MAC: 64-/32-bit floating-point operation unit and sum-of-products operation unit (floating-point
multiplication and sum-of-products operations, integer multiplication, sum-of-products, and division
operations)

e FPU: 64-/32-bit floating-point operation unit

e BRU: Branch unit

e LSU: Load/store unit

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 1 GENERAL

(6)

@

(®)

()

Data cache control unit (DCU)

This unit controls transactions to the data cache and replacement of cache lines. It has a refill buffer (RB) and
store buffer (SB) with four entries each, and can process a non-blocking cache operation of up to four accesses.
The DCU also supports functions such as uncached load/store, completion of transaction in the order of
issuance, and data transfer from SB to the data cache by instruction execution commitment.

Data cache

The data cache uses a two-way set associative, virtual index, physical tag system, and enables line-locking.
The capacity is 32 KB. The cache is replaced by the LRU (Least Recently Used) method. Write method can be
selected from writeback and write through. The line size is 32 bytes (8 words).

Coprocessor 0 (CP0)

CP0 manages memory, processes exceptions, and monitors the performance.

For memory management, it protects access to various operation modes (user, supervisor, and kernel), memory
segments, and memory pages.

Virtual addresses are translated by a translation lookaside buffer (TLB). The TLB is a full-associative type and
has 48 entries. Each entry can be mapped in page sizes of 4 KB to 1 GB.

The coprocessor performs control when an interrupt or exception occurs as exception processing.

It counts the number of times an event has occurred to check if instruction execution is efficient in order to
monitor the performance.

System interface unit (SIU)

The SysAD bus realizes interfacing with an external agent. This bus is a 64-/32-bit address/data multiplexed
bus and is compatible with the VR5000 Series.

To enhance the bus efficiency, four 64-bit write transaction buffers (WTBs) are provided.

The SIU also supports an uncached accelerated store operation, so that consecutive single write accesses are
combined into one block write access.

(10) Clock generator

The clock generator generates a clock for the pipeline from an externally input clock. The frequency ratio can
be selected from 1:2, 1:2.5, 1:3, 1:3.5, 1:4, 1:4.5, 1:5, and 1:5.5.

(11) Test interface

This interface connects an external debugging tool. It conforms to the N-Wire specification and controls testing
and debugging of the processor by using JTAG interface signals and debug interface signals.

Preliminary User’'s Manual U16044EJ1VOUM 29

CHAPTER 1 GENERAL

1.3.2 CPU registers
The VR5500 has the following registers.

o General-purpose registers (GPR): 64 bits x 32
In addition, the processor provides the following special registers.

e PC: Program Counter (64 bits)
o Hl register: Contains the integer multiply and divide higher doubleword result (64 bits)
¢ LO register: Contains the integer multiply and divide lower doubleword result (64 bits)

Two of the general-purpose registers have assigned the following functions.

e r0: Since it is fixed to zero, it can be used as the target register for any instruction whose result is to be
discarded. r0 can also be used as a source when a zero value is needed.

e r31: The link register used by the JAL/JALR instruction. This register can be used for other instructions.
However, be careful that use of the register by the JAL/JALR instruction does not coincide with use of the
register for other operations.

The register group is provided in the CPO (system control coprocessor), to process exceptions and to manage
addresses and in the FPU (floating-point unit) used for the floating-point operation.

CPU registers can operate as either 32-bit or 64-bit registers, depending on the processor’s operation mode.

The operation of the CPU register differs depending on what instructions are executed: 32-bit instructions or
MIPS16 instructions.

Figure 1-2 shows the CPU registers.

30 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 1 GENERAL

Figure 1-2. CPU Registers

General-purpose registers
63 0 Multiply/divide register
r0=0 63 0
r | HI I
r2
63 0
| Lo I
r29 Program Counter
r30 63 0
r31 (Link address) PC I

The VR5500 has no Program Status Word (PSW) register; this is covered by the Status and Cause registers
incorporated within the system control coprocessor (CP0). For details of the CPO registers, refer to 1.3.4 System
control coprocessors (CPO0).

1.3.3 Coprocessors

ISA of MIPS defines that up to four coprocessors (CP0O to CP3) can be used. Of these, CPO is defined as a
system control coprocessor, and CP1 is defined as a floating-point unit. CP2 and CP3 are reserved for future
expansion.

Preliminary User’'s Manual U16044EJ1VOUM 31

CHAPTER 1 GENERAL

1.3.4 System control coprocessors (CP0)
CPO translates virtual addresses to physical addresses, switches the operating mode (kernel, supervisor, or user
mode), and manages exceptions. It also controls the cache subsystem to analyze a cause and to return from the

error state.

Table 1-1 shows a list of the CPO registers. For details of the registers related to the virtual system memory, refer
to CHAPTER 5 MEMORY MANAGEMENT SYSTEM. For details of the registers related to exception handling,
refer to CHAPTER 6 EXCEPTION PROCESSING.

Table 1-1. CPO Registers

Register Number

Register Name

Usage

Description

0 Index Memory management Programmable pointer to TLB array
1 Random Memory management Pseudo-random pointer to TLB array (read only)
2 EntryLoO Memory management Lower half of TLB entry for even VPN
3 EntryLo1 Memory management Lower half of TLB entry for odd VPN
4 Context Exception processing Pointer to virtual PTE table in 32-bit mode
5 PageMask Memory management Page size specification
6 Wired Memory management Number of wired TLB entries
7 - - Reserved
8 BadVAddr Memory management Display of virtual address where the most recent error occurred
9 Count Exception processing Timer count
10 EntryHi Memory management Higher half of TLB entry (including ASID)
11 Compare Exception processing Timer compare value
12 Status Exception processing Operation status setting
13 Cause Exception processing Display of cause of the most recent exception occurred
14 EPC Exception processing Exception program counter
15 PRId Memory management Processor revision ID
16 Config Memory management Memory system mode setting
17 LLAddr Memory management Display of address of the LL instruction
18 WatchLo Exception processing Memory reference trap address lower bits
19 WatchHi Exception processing Memory reference trap address higher bits
20 XContext Exception processing Pointer to virtual PTE table in 64-bit mode
21to 24 - - Reserved
25 Performance Exception processing Count and control of performances
Counter
26 Parity Error Exception processing Cache parity bits
27 Cache Error Exception processing Cache error and status register
28 TaglLo Memory management Lower half of cache tag
29 TagHi Memory management Higher half of cache tag
30 ErrorEPC Exception processing Error exception program counter
31 - - Reserved

32

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 1 GENERAL

1.3.5 Floating-point unit
The floating-point unit (FPU) executes floating-point operations. The FPU of the VrR5500 conforms to ANSI/IEEE
Standard 754-1985 “IEEE2 Floating-Point Operation Standard”.

The FPU can perform an operation with both single-precision (32-bit) and double-precision (64-bit) values.
The FPU has the following registers.

o Floating-point general-purpose register (FGR): 64/32 bits x 32
¢ Floating-point control register (FCR): 32 bits x 32

The number of bits of the FGR can be changed depending on the setting of the FR bit of the Status register in
CPO. If the number of bits is set to 32, sixteen 64-bit FGRs can be used for floating-point operations. If it is set to 64
bits, thirty-two 64-bit registers can be used.

Of the 32 FCRs, only five can be used.

Figure 1-3 shows the FPU registers.

Figure 1-3. FPU Registers

Floating-point general-purpose registers Floating-point control registers
63 0 31 0
FGRO FCRO (Implementation/Revision)
FGR1
Reserved
FGR2
¢ FCR25 (Condition Code)
: FCR26 (Cause/Flag)
. Reserved
FGR29 FCR28 (Enable/Mode)
FGR30 Reserved
FGR31 FCR31 (Control/Status)

Like the CPU, the FPU uses an instruction set with a load/store architecture. A floating-point operation can be
started in each cycle. The load instructions of the FPU include R-type instructions.

For details of the FPU, refer to CHAPTER 7 FLOATING-POINT UNIT and CHAPTER 8 FLOATING-POINT
EXCEPTIONS.

1.3.6 Cache memory

The VR5500 has an internal instruction cache and data cache to enhance the efficiency of the pipeline. The
instruction cache and data cache can be accessed in parallel. Both the instruction cache and data cache have a
data width of 64 bits and a capacity of 32 KB, and are managed by a two-way set associative method.

For details of the caches, refer to CHAPTER 11 CACHE MEMORY.

Preliminary User’'s Manual U16044EJ1VOUM 33

CHAPTER 1 GENERAL

1.4 Outline of Instruction Set

All the instructions are 32 bits long. The instructions come in three types as shown in Figure 1-4: immediate (I-

type), jump (J-type), and register (R-type).

Figure 1-4. Instruction Type

31 26 25 21 20 16 15 0
I-type (immediate) | op ‘ rs rt immediate |
31 26 25 0
J-type (jump) | op ‘ target |
31 26 25 21 20 16 15 11 10 6 5 0
R-type (register) | op ‘ s ‘ rt rd sa funct |

(1)

The instructions are classified into the following six groups.

Load/store instructions transfer data between memory and a general-purpose register. Most of these
instructions are I-type. The addressing mode is in the format in which a 16-bit signed offset is added to the
base register. Some load/store instructions are index-type instructions that use floating-point registers (R-type).
Arithmetic operation instructions execute an arithmetic operation, logical operation, shift manipulation, or
The instruction types of these instructions are R-type (both the
operand and the result of the operation are stored in registers) and I-type (one of the operands is a 16-bit signed
immediate value).

Jump/branch instructions change the flow of program control. A jump instruction jumps to an address that is
generated by combining a 26-bit target address and the higher bits of the program counter (J-type), or to an
address indicated by a register (R-type). A branch instruction branches to a 16-bit offset address relative to the
program counter (I-type). The Jump and Link instruction saves the return address to register 31.

Coprocessor instructions execute the operations of the coprocessor. The load and store instructions of the

multiplication/division on register values.

coprocessor are I-type instructions. The format of the operation instruction of a coprocessor differs depending
on the coprocessor (refer to CHAPTER 7 FLOATING-POINT UNIT).
System control coprocessor instructions execute operations on the CPO register to manage the memory of the
processor and to process exceptions.
Special instructions execute system call exceptions and breakpoint exceptions. In addition, they branch to a
general-purpose exception processing vector depending on the result of comparison. The instruction types are

R-type and I-type.

For each instruction, refer to CHAPTER 3 OUTLINE OF INSTRUCTION SET, CHAPTER 17 CPU INSTRUCTION

SET, and CHAPTER 18 FPU INSTRUCTION SET.

34

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 1 GENERAL

1.5 Data Format and Addressing
The VR5500 has the following four types of data formats.

Doubleword (64 bits)
Word (32 bits)
Halfword (16 bits)
Byte (8 bits)

If the data format is doubleword, word, or halfword, the byte order can be set to big endian or little endian by
using the BigEndian pin at reset.

The endianness is defined by the position of byte 0 in the data structure of multiple bytes.

In a big-endian system, byte 0 is the most significant byte (leftmost byte). This byte order is compatible with that
employed for MC68000™ and IBM370™. Figure 1-5 shows the configuration.

Figure 1-5. Byte Address of Big Endian

(a) Word data
Word
31 24 23 16 15 87 0 address
Higher
address 12 13 14 15 12
8 9 10 11 8
4 5 6 7 4
Lower
0 1 2 3 0
address
(b) Doubleword data
W Half Byt
‘ ord . alfword ‘ ‘ yte ‘ Doubleword
63 32 31 1615 87 0 address
Higher
address 16 17 18 19 20 21 22 23 16
8 9 10 11 12 13 14 15 8
Lower 0 1 2 3 4 5 6 7 0
address
Remarks 1. The most significant byte is at the least significant address.
2. A word is specified by the address of the most significant byte.

Preliminary User’'s Manual U16044EJ1VOUM 35

CHAPTER 1 GENERAL

In a little-endian system, byte 0 is the least significant byte (rightmost byte). This byte order is compatible with
that employed for Pentium™ and DEC VAX™. Figure 1-6 shows the configuration.
Unless otherwise specified, little endian is used in this manual.

Figure 1-6. Byte Address of Little Endian

(a) Word data
Word
31 24 23 16 15 87 0 address

Higher 15 14 13 12 12
address

11 10 9 8 8

7 6 5 4 4

Lower

3 2 1 0 0

address
(b) Doubleword data
‘ Word 8 Halfword ‘ ‘ Byte . Doubleword
63 32 31 1615 87 0 address
Higher
address 23 22 21 20 19 18 17 16 16
15 14 13 12 11 10 9 8 8
Lower 7 6 5 4 3 2 1 0 0
address
Remarks 1. The least significant byte is at the least significant address.
2. A word is specified by the address of the least significant byte.

36 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 1 GENERAL

The CPU uses the following addresses to access halfwords, words, and doublewors.

e Halfword: Even-byte boundary (0, 2, 4 ...)
o Word: 4-byte boundary (0, 4, 8 ...)
e Doubleword: 8-byte boundary (0, 8, 16 ...)

To load/store data that is not aligned at a 4-byte boundary (word) or 8-byte boundary (doubleword), the following

dedicated instructions are used.

e Word: LWL, LWR, SWL, SWR
¢ Doubleword: LDL, LDR, SDL, SDR

These instructions are always used in pairs of L and R.
Figure 1-7 illustrates how the word at byte address 3 is accessed.

Figure 1-7. Byte Address (Unaligned Word)

(a) Big endian

31 24 23 16 15 87

Higher address 4 5 6

Lower address 3

(b) Little endian

31 24 23 16 15 87

Higher address 6 5

Lower address 3

Preliminary User’'s Manual U16044EJ1VOUM

37

CHAPTER 1 GENERAL

1.6 Memory Management System

The VR5500 can manage a physical address space of up to 64 GB (36 bits). Most systems, however, are
provided with a physical memory only in units of 1 GB or lower. Therefore, the CPU translates addresses, allocates
them to a vast virtual address space, and supplies the programmer with an extended memory space.

For details of these address spaces, refer to CHAPTER 5 MEMORY MANAGEMENT SYSTEM.

1.6.1 High-speed translation lookaside buffer (TLB)

TLB translates a virtual address into a physical address. It is of full-associative method and has 48 entries. Each
entry has consecutive two pages of mapping information. The page size can be changed from 4 KB to 1 GB in units
of power of 4.

(1) Joint TLB (JTLB)
This TLB holds both instruction addresses and data addresses.
The higher bits of a virtual address (the number of bits depends on the size of the page) and a process identifier
are combined and compared with each entry of JLTB. If there is no matching entry in the TLB, an exception
occurs, and the entry contents are written by software from a page table on memory to the TLB. The entry is
determined by the value of the Random register or Index register.

(2) Micro TLB
This TLB is for address translation in a cache. Two micro TLBs, an instruction micro TLB and a data micro TLB,
are available. Each micro TLB has four entries and the contents of an entry can be loaded from the JTLB.
However, loading to the micro TLB is performed internally and cannot be monitored by software.

1.6.2 Processor modes

(1) Operating mode
The VrR5500 has three operating modes: user, supervisor, and kernel. The memory mapping differs depending
on the operating mode. For details, refer to CHAPTER 5 MEMORY MANAGEMENT SYSTEM.

(2) Addressing mode
The VRrR5500 has two addressing modes: 32-bit and 64-bit addressing. The address translation method and
memory mapping differ depending on the addressing mode. For details, refer to CHAPTER 5 MEMORY
MANAGEMENT SYSTEM.

1.7 Instruction Pipeline

The Vr5500 has an instruction pipeline of up to 10 stages. It also has a mechanism that can simultaneously
execute two instructions and thus can execute a floating-point operation instruction and an instruction of another
type at the same time. For details, refer to CHAPTER 4 PIPELINE.

1.7.1 Branch prediction

The VR5500 has an internal branch prediction mechanism that accelerates branching. The branch history is
recorded in a branch history table. The branch instruction that has been fetched is executed according to this table.
The subsequent instructions are speculatively processed. For operations when branch prediction hits or misses,
refer to CHAPTER 4 PIPELINE.

38 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 2 PIN FUNCTIONS

Pin Configuration

21

e 272-pin plastic BGA (C/D advanced type) (29 x 29)

Top View

Bottom View

/

—TOOONOUSTON— O
NN+ =0 ONOWTO®N
O0O00000000000O0ODO0OODO0O0OOO

0000000000000 000O00O0O0O
000000000000 0O0O0O0O0O0O0OO0OO
00000000000 0O0O0O0O0O0O0O0OO0OO

0oo0O0O 0000
(e} el eNe] 0000
oo0O0O 0000
o000 0000
o000 o00O0O
(e} el eNe] 0000
oo0O0O 0000
o000 0000
0oo0O0O 0000
(e} el eNe] 0000

o000 0000
o000 0000
o000 o00O0O
00000000000 000OO0O0O0O0O0O0OO
000000000000 0O0O0O0O0O0O0OO0OO
0000000000000 00O0O0O0O0O0O
0000000000000 000O00O0O0O

ABCDEFGHJKLMNPRTUVWYAA

AMYWVUTRPNMLKJHGFEDCBA

39

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 2 PIN FUNCTIONS

(1/2
Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name
A1l Vss B17 SysAD27 D12 Vss H4 Voo
A2 Vss B18 VoolO D13 SysAD31 H18 Vss
A3 VoolO B19 VoolO D14 Voo H19 Vss
A4 VoolO B20 Vss D15 SysAD60 H20 Vss
A5 Reset# B21 Vss D16 Vss H21 SysAD21
A6 PReg# C1 VoolO D17 SysAD26 J1 SysCmd7
A7 Validin# Cc2 VoolO D18 Vss J2 SysCmd8
A8 ValidOut# C3 Vss D19 Vss J3 TIntSel
A9 Vss C4 Vss D20 VoolO J4 IntO#
A10 SysADC7 C5 Vss D21 VoolO J18 SysAD52
A1 SysADC3 C6 Voo E1 SysCmdo J19 SysAD20
Al12 SysADCA1 c7 WrRdy# E2 DisDValidO# J20 SysAD51
A13 SysADC4 C8 Vss E3 DWBTrans# J21 SysAD19
A14 SysAD62 C9 SysID1 E4 O3Return# K1 Int1#
A15 SysAD30 C10 Vop E18 SysAD57 K2 Vss
A16 SysAD28 C1i1 SysADC2 E19 SysAD25 K3 Vss
A17 SysAD59 C12 Vss E20 SysAD56 K4 Vss
A18 VoolO C13 SysAD63 E21 SysAD24 K18 Voo
A19 VoolO C14 Vop F1 SysCmd1 K19 Voo
A20 Vss C15 SysAD29 F2 Vss K20 Vop
A21 Vss C16 Vss F3 Vss K21 Vop
B1 Vss C17 SysAD58 F4 Vss L1 Int2#
B2 Vss Cc18 VoolO F18 Voo L2 Int3#
B3 VoolO C19 Vss F19 Vob L3 Int4#
B4 VoolO C20 VoolO F20 Vop L4 Int5#
B5 ColdReset# Cc21 VoolO F21 SysAD55 L18 SysAD17
B6 Releaset D1 VoolO G1 SysCmd2 L19 SysAD49
B7 ExtRqgst# D2 VoolO G2 SysCmd3 L20 SysAD18
B8 BusMode D3 Vss G3 SysCmd4 L21 SysAD50
B9 SysID2 D4 Vss G4 SysCmd5 M1 RMode#/BKTGIO#
B10 Voo D5 IC G18 SysAD23 M2 Voo
B11 SysADC6 D6 Vop G19 SysAD54 M3 Voo
B12 Vss D7 RdRdy# G20 SysAD22 M4 Voo
B13 SysADCO D8 Vss G21 SysAD53 M18 Vss
B14 Voo D9 SysIDO H1 SysCmd6 M19 Vss
B15 SysAD61 D10 Voo H2 Vop M20 Vss
B16 Vss D11 SysADC5 H3 Voo M21 Vss
Caution Leave the IC pin open.

Remark # indicates active low.

40

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 2 PIN FUNCTIONS

(2/2
Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name
N1 VoolO T21 SysAD12 w2 VoolO Y12 Vop
N2 NMI# U1 NTrcClk W3 Vss Y13 SysAD3
N3 VoolO u2 NTrcDataO w4 Vss Y14 Vss
N4 BigEndian u3 NTrcData1 W5 VooPA2 Y15 SysAD37
N18 SysAD15 u4 NTrcData3 W6 Vss Y16 SysAD39
N19 SysAD47 u1s SysAD10 W7 VoolO Y17 SysAD40
N20 SysAD16 u19 SysAD42 w8 Vop Y18 VoolO
N21 SysAD48 u20 SysAD11 W9 JTDI Y19 VoolO
P1 Vss u21 SysAD43 W10 Vss Y20 Vss
P2 Vss \Al NTrcData2 W11 SysAD1 Y21 Vss
P3 Vss V2 NTrcEnd w12 Vop AA1 Vss
P4 Vss V3 Vss W13 SysAD35 AA2 Vss
P18 Vop V4 Vss W14 Vss AA3 VoolO
P19 Vop V5 VssPA2 W15 SysAD38 AA4 VoolO
P20 Vop V6 Vss W16 Vop AA5 VooPA1
P21 SysAD46 V7 VoolO W17 SysAD9 AA6 VoolO
R1 DivMode0 V8 Voo w18 Vss AA7 IC
R2 DivMode1 V9 JTMS W19 Vss AA8 JTDO
R3 DivMode2 V10 Vss W20 VoolO AA9 DrvCon
R4 VoolO Vi1 SysAD33 w21 VoolO AA10 Vss
R18 SysAD44 V12 Voo Y1 Vss AA11 SysADO
R19 SysAD13 V13 SysAD4 Y2 Vss AA12 SysAD2
R20 SysAD45 V14 Vss Y3 VoolO AA13 SysAD34
R21 SysAD14 V15 SysAD7 Y4 VoolO AA14 SysAD36
T1 Vop V16 Vob Y5 VssPA1 AA15 SysAD5
T2 Voo V17 SysAD41 Y6 SysClock AA16 SysAD6
T3 Vop V18 Vss Y7 JTRST# (Vss) AA17 SysAD8
T4 Vop V19 Vss Y8 Vop AA18 VoolO
T18 Vss V20 VoolO Y9 JTCK AA19 VoolO
T19 Vss V21 VoolO Y10 Vss AA20 Vss
T20 Vss Wi1 VoolO Y11 SysAD32 AA21 Vss
Caution Leave the IC pin open.
Remarks 1. Inside the parentheses indicates the pin name in Ver. 1.x.
2. #indicates active low.
Preliminary User’'s Manual U16044EJ1VOUM 41

CHAPTER 2 PIN FUNCTIONS

Pin Identification

BigEndian:
BKTGIO#:
BusMode:
ColdReset#:
DisDValidO#:
DivMode(2:0):
DrvCon:
DWBTrans#:
ExtRgst#:

IC:

Int(5:0)#:
JTCK:

JTDI:

JTDO:

JTMS:
JTRST#:
NMI#:
NTrcClk:
NTrcData(3:0):
NTrcEnd:
OS3Returni:

Big endian

Break/trigger input/output
Bus mode

Cold reset

Disable delay ValidOut#
Divide mode

Driver control
Doubleword block transfer
External request
Internally connected
Interrupt

JTAG clock

JTAG data input

JTAG data output

JTAG mode select

JTAG reset
Non-maskable interrupt
N-Trace clock

N-Trace data output
N-Trace end

Out-of-Order Return mode

Remark # indicates active low.

42

PReq#:
RdRdy#:
Release#:
Reset#:
SysAD(63:0):
SysADC(7:0):

SysClock:
SysCmd(8:0):

SysID(2:0):
TIntSel:
Validin#:
ValidOut#:
Vob:
VoplO:

VooPA1, VooPA2:

Vss:

VssPA1, VssPA2:

WrRdy#:

Preliminary User’'s Manual U16044EJ1VOUM

Processor request

Read ready

Release

Reset

System address/data bus
System address/data check
bus

System clock

System command/data
identifier bus

System bus identifier
Timer interrupt selection
Valid input

Valid output

Power supply for CPU core
Power supply for 1/0

Quiet Voo for PLL

Ground

Quiet Vss for PLL

Write ready

CHAPTER 2 PIN FUNCTIONS

2.2 Pin Functions

Remark # indicates active low.

2.2.1 System interface signals
These signals are used when the VR5500 is connected to an external device in the system. Table 2-1 shows the

functions of these signals.

Table 2-1. System Interface Signals

Pin Name I/0 Function
SysAD(63:0) 1/0 System address/data bus
This is a 64-bit bus that establishes communication between the processor and external agent.
The lower 32 bits (SysAD(31:0)) of this bus are used in the 32-bit bus mode.
SysADC(7:0) 1/0 System address/data check bus
This is a parity bus for the SysAD bus. It is valid only in the data cycle. The lower 4 bits
(SysADC(3:0)) are used in the 32-bit bus mode.
SysCmd(8:0) 1/0 System command/data ID bus
This is a 9-bit bus that transfers commands and data identifiers between the processor and
external agent.
SysID(2:0) 110 System bus protocol ID
These signals transfer a request identifier in the out-of-order return mode.
The processor drives the valid identifier when the ValidOut# signal is asserted.
The external agent must drive the valid identifier when the Validin# signal is asserted.
Validin# Input Valid in
This signal indicates that the external agent is driving a valid address or data onto the SysAD
bus or a valid command or data identifier onto the SysCmd bus, or a valid request identifier
onto the SysID bus in the out-of-order return mode.
ValidOut# Qutput | Valid out
This signal indicates that the processor is driving a valid address or data onto the SysAD bus or
a valid command or data identifier onto the SysCmd bus, or a valid request identifier onto the
SyslID bus in the out-of-order return mode.
RdRdy# Input Read ready
This signal indicates that the external agent is ready to acknowledge a processor read request.
WrRdy# Input Write ready
This signal indicates that the external agent is ready to acknowledge a processor write request.
ExtRqgst# Input External request
This signal is used by the external agent to request the right to use the system interface.
Release# Output | Release interface
This signal indicates that the processor releases the system interface to the slave status.
PReqg# Qutput | Processor request
This signal indicates that the processor has a pending request.

Preliminary User’'s Manual U16044EJ1VOUM 43

CHAPTER 2 PIN FUNCTIONS

2.2.2 |Initialization interface signals
These signals are used by the external device to initialize the operation parameters of the processor. Table 2-2

shows the functions of these signals.

Table 2-2. Initialization Interface Signals (1/2)

Pin Name 1/0 Function

DivMode(2:0) Input Division mode
These signals set the division ratio of PClock and SysClock.
111: Divided by 5.5
110: Divided by 5
101: Divided by 4.5
100: Divided by 4
011: Divided by 3.5
010: Divided by 3
001: Divided by 2.5
000: Divided by 2

Set the level of these signals before starting a power-on reset, and make sure that the level
does not change during operation.

BigEndian Input Endian mode

This signal sets the byte order for addressing.
1: Big endian
0: Little endian

Set the level of these signals before starting a power-on reset, and make sure that the level
does not change during operation.

BusMode Input Bus mode

This signal sets the bus width of the system interface.
1: 64 bits
0: 32 bits

Set the level of these signals before starting a power-on reset, and make sure that the level
does not change during operation.

TIntSel Input Interrupt source select

This signal sets the interrupt source to be allocated to the IP7 bit of the Cause register.
1: Timer interrupt
0: Int5# input and external write request (SysADS5)

Set the level of these signals before starting a power-on reset, and make sure that the level
does not change during operation.

DisDValidO# Input ValidOut# delay enable
1: ValidOut# is active even while address cycle is stalled.
0: ValidOut# is active only in the address issuance cycle.

Set the level of these signals before starting a power-on reset, and make sure that the level
does not change during operation.

Remark 1: High level, O: Low level

44 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 2 PIN FUNCTIONS

Table 2-2. Initialization Interface Signals (2/2)

Pin Name

I/0

Function

DWBTrans#

Input

Doubleword block transfer enable (valid only in 32-bit mode)
1: Disabled
0: Enabled

Set the level of these signals before starting a power-on reset, and make sure that the level
does not change during operation.

O3Return#

Input

Out-of-order return mode
This signal sets the protocol of the system interface.
1: Normal mode
0: Out-of-order return mode

Set the level of these signals before starting a power-on reset, and make sure that the level
does not change during operation.

ColdReset#

Input

Cold reset

This signal completely initializes the internal status of the processor. Deassert this signal in
synchronization with SysClock.

Reset#

Input

Reset

This signal logically initializes the internal status of the processor. Deassert this signal in
synchronization with SysClock.

DrvCon

Input

Drive control
This signal sets the impedance of the external output driver.
1: Weak
0: Normal (recommended)

Set the level of these signals before starting a power-on reset, and make sure that the level
does not change during operation.

Remark This signal is used in Ver. 2.0 or later. It is fixed to 0 in Ver. 1.x.

Remark 1: High level, O: Low level

The O3Return#, DWBTrans#, DisDValidO#, and BusMode signals are used to determine the protocol of the
system interface. These signals select the protocol as follows.

Protocol O3Return# DWBTrans# DisDValidO# BusMode
VR5000-compatible 1 1 1 1
RM523x-compatible 1 1 1 0
Vr5432 native mode-compatible 1 0 0 0
Out-of-order return mode 0 Any Any Any

Remark 1: High level, 0: Low level

RM523x is a product of PMC-Sierra.

Preliminary User’'s Manual U16044EJ1VOUM

45

CHAPTER 2 PIN FUNCTIONS

223

of these signals.

Interrupt interface signals
The external device uses these signals to send an interrupt request to the VrR5500. Table 2-3 shows the functions

Table 2-3. Interrupt Interface Signals

Pin Name I/0 Function
Int(5:0)# Input Interrupt
These are general-purpose processor interrupt requests. The input status of these signals can
be checked by the Cause register.
Whether Int5# is acknowledged is determined by the status of the TIntSel signal at reset.
NMI# Input Non-maskable interrupt
This is an interrupt request that cannot be masked.

2.2.4 Clock interface signals
These signals are used to supply or manage the clock. Table 2-4 shows the functions of these signals.

Table 2-4. Clock Interface Signals

Pin Name I/0 Function
SysClock Input System clock
Clock signal input to the processor.
VooPA1 - Voo for PLL
VooPA2 Power supply for the internal PLL.
VssPA1 - Vss for PLL
VssPA2 Ground for the internal PLL.

2.2.5 Power supply

Table 2-5. Power Supply

Pin Name I/0 Function
Vob - Power supply pin for core
VoolO - Power supply pin for 1/0
Vss - Ground pin

The Vr5500 uses two power supplies. Power can be applied to these power supplies in any

Caution
order. However, do not allow a voltage to be applied to only one of the power supplies for 100

ms or more.

Preliminary User’'s Manual U16044EJ1VOUM

46

CHAPTER 2 PIN FUNCTIONS

2.2.6 Test interface signal
These signals are used to test the VR5500. They include the JTAG interface signals conforming to IEEE

Standard 1149.1 and debug interface signals conforming to the N-Wire specifications. Table 2-6 shows the function

of these signals.

Table 2-6. Test Interface Signals

Pin Name I/0 Function
NTrcData(3:0) Output | Trace data
Trace data output.
NTrcEnd Output | Trace end
This signal delimits (indicates the end of) a trace data packet.
NTrcClk Output | Trace clock
This clock is for the test interface. The same clock as SysClock is output.
RMode#/ 1/0 Reset mode/break trigger 1/0
BKTGIO# This pin inputs a debug reset mode signal while the JTRST# signal (ColdReset# signal in Ver.
1.x) is active.
It inputs/outputs a break or trigger signal during normal operation.
JTDI Input JTAG data input
Serial data input for JTAG.
JTDO OQutput | JTAG data output
Serial data output for JTAG. This signal is output at the falling edge of JTCK.
JTMS Input JTAG mode select
This signal selects the JTAG test mode.
JTCK Input JTAG clock input
This is a serial clock input signal for JTAG. The maximum frequency is 33 MHz. It is not
necessary to synchronize this signal with SysClock.
JTRST# Input JTAG reset input
This signal is used to initialize the JTAG test module.
Remark Only Ver. 2.0 or later

Preliminary User’'s Manual U16044EJ1VOUM

47

CHAPTER 2 PIN FUNCTIONS

2.3 Handling of Unused Pins

2.3.1 System interface pin

(1)

()

3)

48

32-bit bus mode

In the VR5500, the width of the SysAD bus can be selected from 64 bits or 32 bits. When the 32-bit bus mode is
selected, only the necessary system interface pins are selected and used. In the 32-bit bus mode, therefore,
handle the pins that are not used, as follows.

Pin Handling
SysAD(63:32) Leave open
SysADC(7:4) Leave open

Normal mode

The Vr5500 in the out-of-order return mode can process read/write transactions regardless of the request
issuance sequence. At this time, the SysID(2:0) pins are used to identify the request. These signals are not
used in the normal mode and therefore must be handled as follows.

Pin Handling

SysID(2:0) Leave open

Parity bus

The Vr5500 allows selection of whether to protect data by using parity or not. When parity is used, parity data
is output from the processor or external agent to the SysADC bus.

Because whether parity is used or not is selected by software, however, the VrR5500 cannot determine the
operation of the SysADC bus until the program is started. Therefore, make sure that the SysADC bus is not left
open nor goes into a high-impedance state.

When it is known that parity will not be used in the system, it is recommended to connect each pin of the
SysADC bus to VoplO via a high resistance.

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 2 PIN FUNCTIONS

2.3.2 Test interface pins

The Vr5500 can be tested and debugged with the device mounted on the board. The test interface pins are used
to connect an external debugging tool. Therefore, handle the test interface pins as follows when the debugging

function is not used and in the normal operating mode.

Pin Handling

JTCK Pull up

JTDI Pull up
JTMS Pull up
JTRST#"" Pull down
JTDO Leave open
NTrcClk Leave open
NTrcData(3:0) Leave open
NTrcEnd Leave open
RMode#/BKTGIO# Pull up

Note Only Ver. 2.0 or later

Preliminary User’'s Manual U16044EJ1VOUM

49

CHAPTER 3 OUTLINE OF INSTRUCTION SET

This chapter describes the architecture of the instruction set and outlines the CPU instruction set used for the
VR5500.

3.1 Instruction Set Architecture

The VR5500 can execute the MIPS 1V instruction set and additional instructions dedicated to the Vr5500.

At present, five MIPS instruction set levels, levels | to V, are available. Instruction sets with higher level numbers
include instruction sets with lower level numbers (refer to Figure 3-1). Therefore, a processor having the MIPS V

instruction set can execute the binary program of MIPS I, MIPS 1, MIPS Ill, and MIPS IV without modification.

Figure 3-1. Expansion of MIPS Architecture

MIPS 1l

MIPS 1lI

MIPS IV

The instructions used in the VR5500 can be classified as follows. For operation details, refer to the corresponding
chapter.

e CPU instructions (refer to 3.3 Outline of CPU Instruction Set and CHAPTER 17 CPU INSTRUCTION SET)

e Floating-point (FPU) instructions (Refer to 7.5 Outline of FPU Instruction Set and CHAPTER 18 FPU
INSTRUCTION SET)

50 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 3 OUTLINE OF INSTRUCTION SET

3.1.1 Instruction format

All instructions are 1-word (32-bit) instructions and are located at the word boundary. Three types of instruction
formats are available as shown in Figure 3-2. By simplifying the instruction formats to three, decoding instructions is
simplified. Operations and addressing modes that are complicated and not often used are realized by combining two

or more instructions with a compiler.

Figure 3-2. Instruction Format

31 26 25 21 20 16 15 0
| type (immediate) | op | rs | rt | immediate |
31 26 25 0
J type (jump) | op | target |
31 26 25 21 20 16 15 1110 65 0
R type (register) | op | rs | rt | rd | sa | funct |
op: 6-bit operation code
rs: 5-bit source register number
rt: 5-bit target (source/destination) register number or branch condition
immediate: 16-bit immediate value, branch displacement, or address displacement
target: 26-bit unconditional branch target address
rd: 5-bit destination register number
sa: 5-bit shift amount
funct: 6-bit function field

Preliminary User’'s Manual U16044EJ1VOUM

51

CHAPTER 3 OUTLINE OF INSTRUCTION SET

3.1.2 Load/store instructions

The load/store instructions transfer data between memory, the CPU, and the general-purpose registers of the
coprocessor. These instructions are used to transfer fields of various sizes, treat loaded data as a signed or
unsigned integer, access unaligned fields, select the addressing mode, and update the atomic memory (read-modify-
write).

A halfword, word, or doubleword address indicates the least significant byte of the bytes generating an object,
regardless of the byte order (big endian or little endian). In big endian, this is the most significant byte; it is the least
significant byte in little endian.

With some exceptions, the load/store instructions must access an object that is naturally aligned. If an attempt is
made to load/store an object at an address that is not even times greater than the size of the object, an address
error exception occurs.

New load/store operations have been added at each level of the architecture.

MIPS II
e 64-bit coprocessor transfer
e Atomic update

MIPS 1l
e 64-bit CPU transfer
¢ Loading unsigned word to CPU

MIPS V
o Register + register addressing mode of FPU

Remarks 1. The VR5500 does not support an environment where two or more processors operate
simultaneously. To maintain compatibility with the other VR Series processors, however, the atomic
update instructions of memory defined by MIPS Il ISA (such as the load link instruction and
conditional store instruction) operate correctly.

The load link bit (LL bit) is set by the LL instruction, cleared by the ERET instruction, and tested by
the SC instruction. If the LL bit cannot be set because the cache has become invalid, it can be
manipulated only when it is reset from an external source.

2. The SYNC instruction is processed as a NOP instruction. The processor waits until all the
instructions issued before the SYNC instruction are committed. Therefore, an LL/SC instruction
placed before and after the SYNC instruction can be executed in the program sequence.

Tables 3-1 and 3-2 show the supported load/store instructions and the level of the MIPS architecture at which
each instruction is supported first.

52 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 3 OUTLINE OF INSTRUCTION SET

(1

)

Table 3-1. Load/Store Instructions Using Register + Offset Addressing Mode

CPU Coprocessor (Except 0)
Data Size Signed Load | Unsigned Store Load Store
Load
Byte | | |
Halfword | | |
Word | 1] | | |
Doubleword 1]] 1] 1]

Unaligned word | |

Unaligned doubleword []

Link word (atomic modify) 1l Il

Link doubleword (atomic modify) 1]]

Table 3-2. Load/Store Instructions Using Register + Register Addressing Mode

Floating-Point Coprocessor Only
Data Size
Load Store
Word \Y 1\
Doubleword v v

Scheduling load delay slot

The instruction position immediately after a load instruction is called a load delay slot.
contains a load destination register can be described in the load delay slot, but an interlock is generated for the
required number of cycles. Therefore, although any instruction description can be made, it is recommended to
schedule the load delay slot from the viewpoints of improving performance and maintaining compatibility with
the Vr Series. However, because the VrR5500 executes instructions by using an out-of-order mechanism, it can

An instruction that

resolve a load delay even if scheduling is not made by software.

Definition of access type

The access type is the size of the data the processor loads/stores.

The opcode of a load/store instruction determines the access type. Figure 3-3 shows the access type and the
data that is loaded/stored. The address used for a load/store instruction is the least significant byte address
(address indicating the least significant byte in little endian), regardless of the access type and byte order
(endianness).

The byte order in the doubleword of the accessed data is determined by the access type and the lower 3 bits of
the address, as shown in Figure 3-3. Combinations of the access type and the lower bits of the address other
than those shown in Figure 3-3 are prohibited (except for the LUXC1 and SUXC1 instructions). If such

combinations are used, an address error exception occurs.

Preliminary User’'s Manual U16044EJ1VOUM 53

CHAPTER 3 OUTLINE OF INSTRUCTION SET

Figure 3-3. Byte Specification Related to Load and Store Instructions

Access Type Lower Accessed Byte (Big Endian) Accessed Byte (Little Endian)
(Value) Address Bit
2 1 0]683 0 |63 0
Doubleword (7) ojojojo|1|(2|3|(4|5|6|7|7|6|5|4|3|2|1]0
7-byte (6) ojoj|0|0|1]|2|3|4|5]|6 6|5[4|3|2|1]0
0[O0 |1 112 (3|4|5|6|7|7|6|5|4]3|2]1
6-byte (5) ojoj|0|0|1]|]2|3|4]|5 54 (3[2(1]0
o(1]o0 2(3|4(5|6|7|7|6|5|4]3]|2
5-byte (4) ojojo0|0|1]2|3]|4 413[2(1]0
of(1]1 3(4|5(6|7|7|6|5|4]|3
Word (3) ojojo|0|1]|]2]3 31210
11010 4156 |7|7|6]|5]|4
3-byte (2) ojojo0|0|1]2 21110
0[O0 |1 112138 3121
100 4|5]|6 6|5 |4
110 (1 5|6 |7|7]|6]|5
Halfword (1) 0O(0|j0(|O0]1 110
o(1]o0 213 3|2
100 415 51 4
11110 67|76
Byte (0) o|o0|0]|O 0
0[O0 |1 1 1
o|1]0 2 2
of(1]1 3 3
100 4 4
110 (1 5 5
11110 6 6
111 (1 717

54

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 3 OUTLINE OF INSTRUCTION SET

3.1.3 Operation instructions

Arithmetic operations of 2’s complement are executed using integers expressed as 2’s complement. Signed
addition, subtraction, multiplication, and division instructions are available. “Unsigned” addition and subtraction
instructions are also available but these are actually modulo operation instructions that do not detect overflow.
Unsigned multiplication and division instructions are also available, as are all shift and logical operation instructions.

MIPS | executes a 32-bit arithmetic operation using 32-bit integers. MIPS Ill can also execute arithmetic shift
instructions using 64-bit operands as 64-bit integers have been added. The logical operations are not affected by
the width of the registers.

The operation instructions perform the following operations, using the value of registers.

o Arithmetic operation e Multiplication

e Logical operation e Division

e Shift e Sum-of-products operation
¢ Rotate e Counting 0/1 in data

These operations are processed by the following six types of operation instructions.

¢ ALU immediate instructions ¢ Multiplication/division instructions
e 3-operand type instructions e Sum-of-products instructions
¢ Shift/rotate instructions o Register scan instructions

Internally, the VR5500 performs processing in 64-bit units. A 32-bit operand can also be used but must be sign-
extended. The basic arithmetic and logical instructions such as ADD, ADDU, SUB, SUBU, ADDI, SLL, SRA, and
SLLV can support 32-bit operands. If the operand is not correctly sign-extended, however, the operation is
undefined. 32-bit data is sign-extended and stored in a 64-bit register.

3.1.4 Jump/branch instructions

All jump and branch instructions always have a delay slot of one instruction. The instruction immediately after a
jump/branch instruction (instruction in the delay slot) is executed while the instruction at the destination is being
fetched from the cache. The jump/branch instruction cannot be placed in a delay slot. Even if it is placed, however,
an error is not detected, and the execution result of the program is undefined.

If execution of the instruction in a delay slot is aborted by the occurrence of an exception or interrupt, the virtual
address of the jump/branch instruction immediately before is stored in the EPC register. When the program returns
from processing the exception or interrupt, both the jump/branch instruction and the instruction in its delay slot are
re-executed. Therefore, do not use register 31 (link address register) as the source register of the Jump and Link,
and Branch and Link instructions.

Because an instruction must be placed at the word boundary, use a register in which an address whose lower bits
are 0 is stored as the operand of the JR and JALR instructions. If the lower 2 bits of the address are not 0, an
address error exception occurs when the destination of the instruction is fetched.

Preliminary User’'s Manual U16044EJ1VOUM 55

CHAPTER 3 OUTLINE OF INSTRUCTION SET

(1) Outline of jump instructions
To call a subroutine described in a high-level language, the J or JAL instruction is usually used. The J and JAL
instructions are J-type instructions. This format shifts a 26-bit target address 2 bits to the left and combines the
result with the higher 4 bits of the current program counter to generate an absolute address.
Usually, the JR or JALR instruction is used to exit, dispatch, or jump between pages. Both these instructions
are R-type and reference the 64-bit byte address of a general-purpose register.

(2) Outline of branch instructions
The branch address of all the branch instructions is calculated by adding a 16-bit offset (signed 64 bits shifted 2
bits to the left) to the address of the instruction in the delay slot. All the branch instructions generate one delay
slot.
If the branch condition of the Branch Likely instruction is not satisfied, the instruction in the delay slot is invalid.
The instruction in the delay slot is executed unconditionally for the other branch instructions.

3.1.5 Special instructions

The special instructions generate an exception by software unconditionally or conditionally. Actually, system call,
breakpoint, and trap exceptions occur in the processor. System calls and breakpoints are unconditionally executed,
whereas a condition can be specified for a trap.

The SYNC instruction is used to terminate all pending instructions. The Vr5500 executes the SYNC instruction
as NOP.

3.1.6 Coprocessor instructions

The coprocessor is an alternate execution unit that has a register file separated from the CPU. The MIPS
architecture allows allocation of up to four coprocessors, 0 to 3. Each architecture level defines these coprocessors
as shown in Table 3-3. Coprocessor 0 is always used for system control, and coprocessor 1 is used as a floating-
point unit. The other coprocessors are valid in terms of architecture but have no usage allocated. Some
coprocessors are undefined and their opcode is reserved or used for other purposes.

Table 3-3. Definition and Usage of Coprocessors by MIPS Architecture

MIPS Architecture Level
Coprocessor
| Il I v

0 System control System control System control System control

1 Floating-point operation | Floating-point operation | Floating-point operation | Floating-point operation
2 Unused Unused Unused Unused

3 Unused Unused Undefined Floating-point operation

(COP1X)

A coprocessor has two register sets: coprocessor general-purpose registers and coprocessor control registers.
Each register set has up to 32 registers. Depending on the operation instruction of the coprocessor, both the
register sets may be changed.

56 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 3 OUTLINE OF INSTRUCTION SET

All system control of a MIPS processor is provided as coprocessor 0 (CPO: system control processor). This
coprocessor has processor control, memory management, and exception processing functions. The CPO
instructions are peculiar to each CPU.

If the system has an internal floating-point unit, it is used as coprocessor 1 (CP1). With MIPS IV, the FPU uses
the opcode space for coprocessor unit 3 as COP1X. For the FPU instructions, refer to 7.5 Outline of FPU
Instruction Set and CHAPTER 18 FPU INSTRUCTION SET.

The coprocessor instructions can be classified into the following two major groups.

e Load/store instructions reserved for the main opcode space
o Coprocessor-specific operations that are defined by the coprocessor

(1) Load/store for coprocessor
No load/store instruction is defined for CP0O. To read/write a CPO register, therefore, only an instruction that
transfers data to or from the coprocessor can be used.

(2) Coprocessor operation
Up to four coprocessors can be used. To which coprocessor an instruction belongs is indicated by z (z = 0 to 3)
suffixed to the mnemonic. In the main opcode, the coprocessor has a coprocessor-specific coded instruction.

3.2 Addition and Modification of VR5500 Instructions

The Vr5500 has additional instructions that can be used for multimedia applications, such as sum-of-products
instructions and register scan instructions. These additional instructions are not included in the MIPS IV instruction
set.

In addition, MIPS ISA makes instructions already defined available again and expands and changes functions.

3.2.1 Integer rotate instructions

Integer rotate instructions have also been added to the VR5500 in the same manner as the VrR5432.

These instructions shift the value of a general-purpose register to the right by the number of bits specified by 5
bits of the instruction or by the number of bits specified by a register. The least significant bit that has been shifted is
joined to the most significant bit, and the result is stored in the destination register.

Table 3-4. Rotate Instructions

Instruction Definition
DROR Doubleword Rotate Right
DROR32 Doubleword Rotate Right + 32
DRORV Doubleword Rotate Right Variable
ROR Rotate Right
RORV Rotate Right Variable

Preliminary User’'s Manual U16044EJ1VOUM 57

CHAPTER 3 OUTLINE OF INSTRUCTION SET

3.2.2 Sum-of-products instructions

Sum-of-products instructions have also been added to the VrR5500 in the same manner as the Vr5432.

These instructions add a value to the result of multiplication, using the HI register and LO register as an
accumulator, and store the result in the destination register. The accumulator is 64 bits long with the lower 32 bits of
the HI register as its higher bits and the lower 32 bits of the LO register as its lower bits. No overflow or underflow
occurs as a result of executing these instructions. Therefore, no exception occurs.

In addition to the MACC instruction added to the VrR5432, the VR5500 also has a sum-of-products instruction that
does not store the result in a general-purpose register, and a multiplication instruction that does not store the result

in the HI or LO register.

Table 3-5. MACC Instructions

Instruction Definition
MACC Multiply, Accumulate, and Move LO
MACCHI Multiply, Accumulate, and Move HI
MACCHIU Unsigned Multiply, Accumulate, and Move HI
MACCU Unsigned Multiply, Accumulate, and Move LO
MSAC Multiply, Negate, Accumulate, and Move LO
MSACHI Multiply, Negate, Accumulate, and Move HlI
MSACHIU Unsigned Multiply, Negate, Accumulate, and Move HI
MSACU Unsigned Multiply, Negate, Accumulate, and Move LO
MUL Multiply and Move LO
MULHI Multiply and Move HlI
MULHIU Unsigned Multiply and Move HI
MULS Multiply, Negate, and Move LO
MULSHI Multiply, Negate, and Move Hl
MULSHIU Unsigned Multiply, Negate, and Move HlI
MULSU Unsigned Multiply, Negate, and Move LO
MULU Unsigned Multiply and Move LO

Table 3-6. Sum-of-Products Instructions

Instruction Definition
MADD Multiply and Add Word
MADDU Multiply and Add Word Unsigned
MSUB Multiply and Subtract Word
MSUBU Multiply and Subtract Word Unsigned
MUL64 Multiply

58

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 3 OUTLINE OF INSTRUCTION SET

3.2.3 Register scan instructions

Register scan instructions have been added to the Vr5500.

These instructions scan the contents of a general-purpose register and store the number of 0s or 1s of the
register in the destination register.

Table 3-7. Register Scan Instructions

Instruction Definition
CLO Count Leading Ones
CLz Count Leading Zeros
DCLO Count Leading Ones in Doubleword
DCLZ Count Leading Zeros in Doubleword

3.2.4 Floating-point load/store instructions
These instructions have been added to the VrR5500.
They load/store data between a floating-point register and memory regardless of whether data is aligned or not.

Table 3-8. Floating-Point Load/Store Instructions

Instruction Definition
LUXC1 Load Doubleword Indexed Unaligned
SUXCH1 Store Doubleword Indexed Unaligned

3.2.,5 Other additional instructions

Coprocessor 0 branch instructions are not supported by the VR5000 Series but they are available in the VrR5500
again.

In addition, an instruction that is used to manipulate the contents of the performance counter in coprocessor 0,
and a NOP instruction that synchronizes the superscalar pipeline are also provided.

The standby mode instructions supported by the VR5000 are also provided in the VR5500.

Table 3-9. Coprocessor 0 Instructions

Instruction Definition
BCOT Branch on Coprocessor 0 True
BCOF Branch on Coprocessor 0 False
BCOTL Branch on Coprocessor 0 True Likely
BCOFL Branch on Coprocessor 0 False Likely
MTPC Move to Performance Counter
MFPC Move from Performance Counter
MTPS Move to Performance Event Specifier
MFPS Move from Performance Event Specifier

Preliminary User’'s Manual U16044EJ1VOUM 59

CHAPTER 3 OUTLINE OF INSTRUCTION SET

Table 3-10. Special Instructions

Instruction Definition

SSNOP Superscalar NOP

WAIT Wait

3.2.6 Instructions for which functions and operations were changed
Functions and operations have been changed in the following instructions.

Table 3-11. Instruction Function Changes in VrR5500

Instruction Major Changed Points
CACHE In Fill and Fetch_and_Lock operation, the way to be replaced is
selected based on the LRU bit of the cache tag.
TLBP (Compatible with MIPS64)
TLBR (Compatible with Vr5000 Series)
SC The LL bit is not changed"™
SCD
SYNC The SYNC instruction is executed after all the on-going

instructions complete the commit stage.

Note In the Vr5432, the LL bit is cleared when the SC/SCD instruction is executed.

3.3 Outline of CPU Instruction Set

3.3.1 Load and store instructions

Load and store are I-type instructions that transfer data between memory and general-purpose registers. The
only addressing mode that load and store instructions directly support is the mode to add a signed 16-bit signed
immediate offset to the base register.

60 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 3 OUTLINE OF INSTRUCTION SET

Table 3-12. Load/Store Instructions

Instruction Format and Description | op | base | rt | offset
LB n, offset (base)
Load Byte The sign-extended offset is added to the contents of register base to generate an address. The contents

of the bytes specified by the address are sign-extended and loaded to register rt.

Load Byte Unsigned

LBU rt, offset (base)
The sign-extended offset is added to the contents of register base to generate an address. The contents
of the bytes specified by the address are zero-extended and loaded to register rt.

Load Halfword

LH rt, offset (base)
The sign-extended offset is added to the contents of register base to generate an address. The
contents of the halfword specified by the address are sign-extended and loaded to register rt.

Load Halfword

LHU rt, offset (base)
The sign-extended offset is added to the contents of register base to generate an address. The

Unsigned
9 contents of the halfword specified by the address are zero-extended and loaded to register rt.
LW rt, offset (base)
Load Word The sign-extended offset is added to the contents of register base to generate an address. The contents

of the word specified by the address is loaded to register rt. In the 64-bit mode, it is sign-extended.

Load Word Left

LWL rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address. The word
whose address is specified is shifted to the left so that the address-specified byte is at the left-most
position of the word. The result is merged with the contents of register rt and loaded to register rt. In
the 64-bit mode, it is sign-extended.

Load Word Right

LWR n, offset (base)

The sign-extended offset is added to the contents of register base to generate an address. The word
whose address is specified is shifted to the right so that the address-specified byte is at the right-
most position of the word. The result is merged with the contents of register rt and loaded to register rt.
In the 64-bit mode, it is sign extended.

Store Byte

SB , offset (base)
The sign-extended offset is added to the contents of register base to generate an address. The least
significant byte of register rtis stored in the memory location specified by the address.

Store Halfword

SH , offset (base)
The sign-extended offset is added to the contents of register base to generate an address. The least
significant halfword of register rt is stored in the memory location specified by the address.

Store Word

SW nt, offset (base)
The sign-extended offset is added to the contents of register base to generate an address. The lower
word of register rtis stored in the memory location specified by the address.

Store Word Left

SWL i, offset (base)

The sign-extended offset is added to the contents of register base to generate an address. The contents
of register rt is shifted to the right so that the left-most byte of the word is in the position of the
address-specified byte. The result is stored in the lower word in memory.

Store Word Right

SWR T, offset (base)

The sign-extended offset is added to the contents of register base to generate an address. The contents
of register rt is shifted to the left so that the right-most byte of the word is in the position of the
address-specified byte. The result is stored in the upper word in memory.

Preliminary User’'s Manual U16044EJ1VOUM 61

CHAPTER 3 OUTLINE OF INSTRUCTION SET

Table 3-13. Load/Store Instructions (Extended ISA)

Instruction

Format and Description | op |base | rt | offset

Load Doubleword

LD rt, offset (base)
The sign-extended offset is added to the contents of register base to generate an address. The
contents of the doubleword specified by the address are loaded to register rt.

Load Doubleword Left

LDL rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address. The
doubleword whose address is specified is shifted to the left so that the address-specified byte is at
the left-most position of the doubleword. The result is merged with the contents of register rt and
loaded to register rt.

Load Doubleword Right

LDR r, offset (base)

The sign-extended offset is added to the contents of register base to generate an address. The
doubleword whose address is specified is shifted to the right so that the address-specified byte is at
the right-most position of the doubleword. The result is merged with the contents of register rf and
loaded to register rt.

LL rt, offset (base)

Load Linked The sign-extended offset is added to the contents of register base to generate an address. The
contents of the word specified by the address are loaded to register rf and the LL bit is set to 1.
LLD rt, offset (base

Load Linked) ()) .
The sign-extended offset is added to the contents of register base to generate an address. The

Doubleword

contents of the doubleword specified by the address are loaded to register rt and the LL bit is set to 1.

Load Word Unsigned

LWU n, offset (base)
The sign-extended offset is added to the contents of register base to generate an address. The contents
of the word specified by the address are zero-extended and loaded to register rt.

Store Conditional

SC i, offset (base)

The sign-extended offset is added to the contents of register base to generate an address. If the LL bit
is set to 1, the contents of the lower word of register rt are stored in the memory specified by the
address, and register rtis setto 1.

If the LL bit is set to 0, the store operation is not performed and register rt is cleared to 0.

Store Conditional
Doubleword

SCD rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address. If the LL bit
is set to 1, the contents of register rt are stored in the memory specified by the address, and register rtis
setto 1.

If the LL bit is set to 0, the store operation is not performed and register rtis cleared to 0.

Store Doubleword

SD i, offset (base)
The sign-extended offset is added to the contents of register base to generate an address. The contents
of register rt are stored in the memory specified by the address.

Store Doubleword Left

SDL rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address. The contents
of register rt is shifted to the right so that the left-most byte of the doubleword is in the position of the
address-specified byte. The result is stored in the lower doubleword in memory.

Store Doubleword Right

SDR rt, offset (base)

The sign-extended offset is added to the contents of register base to generate an address. The contents
of register rt is shifted to the left so that the right-most byte of the doubleword is in the position of the
address-specified byte. The result is stored in the higher doubleword in memory.

62

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 3 OUTLINE OF INSTRUCTION SET

3.3.2 Computational instructions

Computational instructions perform arithmetic, logical, and shift operations on values in registers. Computational
instructions can be either in register (R-type) format, in which both operands are registers, or in immediate (I-type)
format, in which one operand is a 16-bit immediate.

Computational instructions are classified as:

1) ALU immediate instructions

2) Three-operand type instructions
3) Shift/rotate instructions

5) Sum-of-products instructions

(1)
)
3)
(4) Multiply/divide instructions
(5)
(6)

6) Register scan instructions

Table 3-14. ALU Immediate Instructions

Instruction

Format and Description | op | rs rt immediate

Add Immediate

ADDI rt, rs, immediate

The 16-bit immediate is sign-extended and added to the contents of register rs. The 32-bit result is
stored in register rt. In the 64-bit mode, it is sign-extended.

An exception occurs on the generation of 2's complement overflow.

Add Immediate
Unsigned

ADDIU n, rs, immediate

The 16-bit immediate is sign-extended and added to the contents of register rs. The 32-bit result is
stored in register rt. In the 64-bit mode, it is sign extended. No exception occurs on the generation of
overflow.

Set on Less Than
Immediate

SLTI n, rs, immediate

The 16-bit immediate is sign-extended and compared to the contents of register rt treating both
operands as signed integers. If rsis less than the immediate, 1 is stored in register rt; otherwise 0 is
stored in register rt.

Set on Less Than
Immediate Unsigned

SLTIU n, rs, immediate

The 16-bit immediate is sign-extended and compared to the contents of register rt treating both
operands as unsigned integers. If rsis less than the immediate, 1 is stored in register rt; otherwise 0
is stored in register rt.

AND Immediate

ANDI rt, rs, immediate
The 16-bit immediate is zero-extended and ANDed with the contents of the register rs. The result is
stored in register rt.

OR Immediate

ORI tt, rs, immediate
The 16-bit immediate is zero-extended and ORed with the contents of the register rs. The result is
stored in register rt.

Exclusive OR
Immediate

XORI tt, rs, immediate
The 16-bit immediate is zero-extended and Ex-ORed with the contents of the register rs. The result
is stored in register rt.

Load Upper Immediate

LUI rt, immediate
The 16-bit immediate is shifted left by 16 bits to set the lower 16 bits of word to 0. The result is
stored in register rt. In the 64-bit mode, it is sign extended.

Preliminary User’'s Manual U16044EJ1VOUM 63

CHAPTER 3 OUTLINE OF INSTRUCTION SET

Table 3-15. ALU Immediate Instructions (Extended ISA)

Instruction Format and Description | op | rs | rt | immediate
DADDI r, rs, immediate
Doubleword Add o o IMMEEEe . . .
Immediate The 16-bit immediate is sign-extended to 64 bits and added to the contents of register rs. The 64-bit

result is stored in register rt. An exception occurs on the generation of integer overflow.

Doubleword Add
Immediate Unsigned

DADDIU rt, rs, immediate
The 16-bit immediate is sign-extended to 64 bits and added to the contents of register rs. The 64-bit
result is stored in register rt. No exception occurs on the generation of overflow.

Table 3-16. Three-Operand Type Instructions

Instruction

Format and Description | op | rs | rt | rd | sa | funct

Add

ADD rd, rs, rt

The contents of registers rs and rt are added. The 32-bit result is stored in register rd. In the 64-bit
mode, it is sign-extended.

An exception occurs on the generation of integer overflow.

Add Unsigned

ADDU rd, rs, it

The contents of registers rs and rt are added. The 32-bit result is stored in register rd. In the 64-bit
mode, it is sign-extended.

No exception occurs on the generation of integer overflow.

Subtract

SUB rd, rs, 1t

The contents of register rt are subtracted from the contents of register rs. The 32-bit result is stored in
register rd. In the 64-bit mode, it is sign-extended.

An exception occurs on the generation of integer overflow.

Subtract Unsigned

SUBU rd, rs, rt

The contents of register rt are subtracted from the contents of register rs. The 32-bit result is stored in
register rd. In the 64-bit mode, it is sign-extended.

No exception occurs on the generation of integer overflow.

Set on Less Than

SLT rd, rs, rt

The contents of registers rs and rt are compared, treating both operands as signed integers.

If the contents of register rs are less than those of register rt, 1 is stored in register rd; otherwise 0 is
stored in register rd.

Set on Less Than
Unsigned

SLTU rd, rs, it

The contents of registers rs and rt are compared, treating both operands as unsigned integers.

If the contents of register rs are less than those of register rt, 1 is stored in register rd; otherwise 0 is
stored in register rd.

AND

AND rd, rt, rs
The contents of register rs are ANDed with those of general-purpose register rt bit-wise. The result is
stored in register rd.

OR

OR rd, i, rs
The contents of register rs are ORed with those of general-purpose register rt bit-wise. The result is
stored in register rd.

Exclusive OR

XOR rd, rt, rs
The contents of register rs are Ex-ORed with those of general-purpose register rt bit-wise. The result
is stored in register rd.

NOR

NOR rd, i, rs
The contents of register rs are NORed with those of general-purpose register rt bit-wise. The result is
stored in register rd.

64

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 3 OUTLINE OF INSTRUCTION SET

Table 3-17. Three-Operand Type Instructions (Extended ISA)

Instruction Format and Description | op | rs | it | rd | sa | funct
DADD rd, rt, rs
Doubleword Add The contents of register rs and register rt are added. The 64-bit result is stored in register rd.
An exception occurs on the generation of integer overflow.
DADDU rd, i, rs
Doubleword Add
Unsigned The contents of register rs and register rt are added. The 64-bit result is stored in register rd.

No exception occurs on the generation of integer overflow.

Doubleword Subtract

DSUB rd, rt, rs

The contents of register rt are subtracted from those of register rs. The 64-bit result is stored in
register rd.

An exception occurs on the generation of integer overflow.

Doubleword Subtract
Unsigned

DSUBU rd, rt, rs

The contents of register rt are subtracted from those of register rs. The 64-bit result is stored in
register rd.

No exception occurs on the generation of integer overflow.

Instruction

-
-
o

Format and Description SPECIAL rs sa funct

Move Conditional on
Not Zero

MOVN rd, rs, rt
The contents of register rs are stored in register rd if register rtis not equal to 0.

Move Conditional on
Zero

MOVZ rd, rs, rt
The contents of register rs are stored in register rd if register rtis equal to 0.

Table 3-18. Shift Instructions

Instruction

Format and Description | op | rs | rt rd sa funct

Shift Left Logical

SLL rd, rs, sa
The contents of register rt are shifted left by sa bits and zeros are inserted into the lower bits.
The 32-bit result is stored in register rd. In the 64-bit mode, it is sign-extended.

Shift Right Logical

SRL rd, rs, sa
The contents of register rt are shifted right by sa bits and zeros are inserted into the higher bits.
The 32-bit result is stored in register rd. In the 64-bit mode, it is sign-extended.

Shift Right Arithmetic

SRA rd, rt, sa
The contents of register rt are shifted right by sa bits and the higher bits are sign-extended.
The 32-bit result is stored in register rd. In the 64-bit mode, it is sign-extended.

Shift Left Logical
Variable

SLLV rd, rt, rs

The contents of register rt are shifted left and zeros are inserted into the lower bits. The number of
bits shifted is specified by the lower 5 bits of register rs.

The 32-bit result is stored in register rd. In the 64-bit mode, it is sign-extended.

Shift Right Logical
Variable

SRLV rd, i, rs

The contents of register rt are shifted right and zeros are inserted into the higher bits. The number
of bits shifted is specified by the lower 5 bits of register rs.

The 32-bit result is stored in register rd. In the 64-bit mode, it is sign-extended.

Shift Right Arithmetic
Variable

SRAV rd, rt, rs

The contents of register rt are shifted right and the higher bits are sign-extended. The number of bits
shifted is specified by the lower 5 bits of register rs.

The 32-bit result is stored in register rd. In the 64-bit mode, it is sign-extended.

Preliminary User’'s Manual U16044EJ1VOUM 65

CHAPTER 3 OUTLINE OF INSTRUCTION SET

Table 3-19. Shift Instructions (Extended ISA)

Instruction

Format and Description | op | rs | rt | rd sa funct

Doubleword Shift Left
Logical

DSLL rd, rt, sa
The contents of register rt are shifted left by sa bits and zeros are inserted into the lower bits.
The 64-bit result is stored in register rd.

Doubleword Shift Right
Logical

DSRL rd, i, sa
The contents of register rt are shifted right by sa bits and zeros are inserted into the higher bits.
The 64-bit result is stored in register rd.

Doubleword Shift Right
Arithmetic

DSRA rd, rt, sa
The contents of register rt are shifted right by sa bits and the higher bits are sign-extended.
The 64-bit result is stored in register rd.

Doubleword Shift Left
Logical Variable

DSLLV rd, rt, rs

The contents of register rt are shifted left and zeros are inserted into the lower bits. The number of
bits shifted is specified by the lower 6 bits of register rs.

The 64-bit result is stored in register rd.

Doubleword Shift Right
Logical Variable

DSRLV rd, rt, rs
The contents of register rt are shifted right and zeros are inserted into the higher bits. The number of
bits shifted is specified by the lower 6 bits of register rs. The 64-bit result is stored in register rd.

Doubleword Shift Right
Arithmetic Variable

DSRAV rd, nt, rs

The contents of register rt are shifted right and the higher bits are sign-extended. The number of bits
shifted is specified by the lower 6 bits of register rs.

The 64-bit result is stored in register rd.

Doubleword Shift Left
Logical + 32

DSLL32 rd, rt, sa
The contents of register rt are shifted left by 32 + sa bits and zeros are inserted into the lower bits.
The 64-bit result is stored in register rd.

Doubleword Shift Right
Logical + 32

DSRL32 rd, rt, sa
The contents of register rt are shifted right by 32 + sa bits and zeros are inserted into the higher bits.
The 64-bit result is stored in register rd.

Doubleword Shift Right
Arithmetic + 32

DSRA32 rd, rt, sa
The contents of register rt are shifted right by 32 + sa bits and the higher bits are sign-extended.
The 64-bit result is stored in register rd.

66

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 3 OUTLINE OF INSTRUCTION SET

Table 3-20. Rotate Instructions (For Vr5500)

Instruction

Format and Description [SPECAL] rs | t]| sa funct

Rotate Right

ROR rd, rt, sa

The contents of register rt are shifted right by sa bits and the lower bits shifted out are inserted into
the higher bits.

The 32-bit result is stored in register rd. In the 64-bit mode, it is sign-extended.

Rotate Right Variable

RORV rd, i, rs

The contents of register rt are shifted right and the lower bits shifted out are inserted into the higher
bits. The number of bits shifted is specified by the lower 5 bits of register rs.

The 32-bit result is stored in register rd. In the 64-bit mode, it is sign-extended.

Doubleword Rotate
Right

DROR rd, i, sa

The contents of register rt are shifted right by sa bits and the lower bits shifted out are inserted into
the higher bits.

The 64-bit result is stored in register rd.

Doubleword Rotate
Right + 32

DROR32 rd, rt, sa

The contents of register rt are shifted right by 32 + sa bits and the lower bits shifted out are inserted
into the higher bits.

The 64-bit result is stored in register rd.

Doubleword Rotate
Right Variable

DRORV rd, rt, rs
The contents of register rt are shifted right and the lower bits shifted out are inserted into the higher
bits.

The number of bits shifted is specified by the lower 5 bits of register rs.
The 64-bit result is stored in register rd.

Preliminary User’'s Manual U16044EJ1VOUM

67

CHAPTER 3 OUTLINE OF INSTRUCTION SET

Table 3-21. Multiply/Divide Instructions

Instruction Format and Description | op | rs | rt | rd | sa | funct |
MULT rs, rt
Multiply The contents of registers rs and rt are multiplied, treating both operands as 32-bit signed integers.

The 64-bit result is stored in special registers Hl and LO. In the 64-bit mode, it is sign-extended.

Multiply Unsigned

MULTU rs, 1t
The contents of registers rs and rt are multiplied, treating both operands as 32-bit unsigned integers.
The 64-bit result is stored in special registers Hl and LO. In the 64-bit mode, it is sign-extended.

Divide

DIV rs, rt

The contents of register rs are divided by those of register rt, treating both operands as 32-bit signed
integers. The 32-bit quotient is stored in special register LO, and the 32-bit remainder is stored in
special register HI. In the 64-bit mode, it is sign-extended.

Divide Unsigned

DIVU rs, rt

The contents of register rs are divided by those of register rt, treating both operands as 32-bit
unsigned integers. The 32-bit quotient is stored in special register LO, and the 32-bit remainder is
stored in special register HI. In the 64-bit mode, it is sign-extended.

Move from HlI

MFHI rd
The contents of special register HI are loaded to register rd.

Move from LO

MFLO rd
The contents of special register LO are loaded to register rd.

MTHI

Move to HI s . . .
The contents of register rs are loaded to special register HI.
MTL!

Move to LO s . . .
The contents of register rs are loaded to special register LO.

Table 3-22. Multiply/Divide Instructions (Extended ISA)
Instruction Format and Description | op | rs | rt | rd | sa | funct |

DMULT rs, rt

Doubleword Multiply

The contents of registers rs and rt are multiplied, treating both operands as signed integers.
The 128-bit result is stored in special registers HIl and LO.

Doubleword Multiply
Unsigned

DMULTU rs, 1t
The contents of registers rs and rt are multiplied, treating both operands as unsigned integers.
The 128-bit result is stored in special registers HI and LO.

Doubleword Divide

DDIV rs, it

The contents of register rs are divided by those of register rt, treating both operands as signed
integers. The 64-bit quotient is stored in special register LO, and the 64-bit remainder is stored in
special register HI.

Doubleword Divide
Unsigned

DDIVU rs, 1t

The contents of register rs are divided by those of register rt, treating both operands as unsigned
integers.

The 64-bit quotient is stored in special register LO, and the 64-bit remainder is stored in special
register HI.

68

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 3 OUTLINE OF INSTRUCTION SET

Table 3-23. MACC Instructions (For Vr5500) (1/2)

Instruction

Format and Description |SPECIAL| rs | rt | rd | funct |

Multiply, Accumulate,
and Move LO

MACC rd, rs, it

The contents of registers rs and rt are multiplied, treating both operands as 32-bit signed integers,
and result is added to a value that combines the lower 32 bits of special registers Hl and LO. The
lower 32 bits of the result are stored in register rd.

Unsigned Multiply,
Accumulate, and Move
LO

MACCU rd, rs, 1t

The contents of registers rs and rt are multiplied, treating both operands as 32-bit unsigned integers,
and result is added to a value that combines the lower 32 bits of special registers Hl and LO. The
lower 32 bits of the result are stored in register rd.

Multiply, Accumulate,
and Move HI

MACCHI rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit signed integers,
and result is added to a value that combines the lower 32 bits of special registers Hl and LO. The
higher 32 bits of the result are stored in register rd.

Unsigned Multiply,
Accumulate, and Move
HI

MACCHIU rd, rs, 1t

The contents of registers rs and rt are multiplied, treating both operands as 32-bit unsigned integers,
and result is added to a value that combines the lower 32 bits of special registers Hl and LO. The
higher 32 bits of the result are stored in register rd.

Multiply, Negate,
Accumulate, and Move
LO

MSAC rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit signed integers,
and result is subtracted from a value that combines the lower 32 bits of special registers HI and LO.
The lower 32 bits of the result are stored in register rd.

Unsigned Multiply,
Negate, Accumulate,
and Move LO

MSACU rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit unsigned integers,
and result is subtracted from a value that combines the lower 32 bits of special registers Hl and LO.
The lower 32 bits of the result are stored in register rd.

Multiply, Negate,
Accumulate, and Move
HI

MSACHI rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit signed integers,
and result is subtracted from a value that combines the lower 32 bits of special registers HI and LO.
The higher 32 bits of the result are stored in register rd.

Unsigned Multiply,
Negate, Accumulate,
and Move HI

MSACHIU rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit unsigned integers,
and result is subtracted from a value that combines the lower 32 bits of special registers Hl and LO.
The higher 32 bits of the result are stored in register rd.

Multiply and Move LO

MUL rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit signed integers.
The higher 32 bits of the result is stored in the lower bits of special register HI, and lower 32 bits of
the result are stored in lower bits of special register LO and register rd.

Unsigned Multiply and
Move LO

MULU rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit unsigned integers.
The higher 32 bits of the result is stored in the lower bits of special register HI, and lower 32 bits of
the result are stored in lower bits of special register LO and register rd.

Preliminary User’'s Manual U16044EJ1VOUM 69

CHAPTER 3 OUTLINE OF INSTRUCTION SET

Table 3-23. MACC Instructions (For Vr5500) (2/2)

Instruction

Format and Description |SPECIAL| rs | rt | rd | funct |

Multiply and Move HI

MULHI rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit signed integers.
The higher 32 bits of the result are stored in the lower bits of special register HI and register rd, and
the lower 32 bits of the result are stored in the lower bits of special register LO.

Unsigned Multiply and
Move HI

MULHIU rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit unsigned integers.
The higher 32 bits of the result are stored in the lower bits of special register HI and register rd, and
the lower 32 bits of the result are stored in the lower bits of special register LO.

Multiply, Negate, and
Move LO

MULS rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit signed integers,
and the result is inverted. The higher 32 bits of the result are stored in the lower bits of special
register HI, and the lower 32 bits of the result are stored in the lower bits of special register LO and
register rd.

Unsigned Multiply,
Negate, and Move LO

MULSU rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit unsigned integers,
the result is inverted. The higher 32 bits of the result are stored in the lower bits of special register
HI, and the lower 32 bits of the result are stored in the lower bits of special register LO and register
rd.

Multiply, Negate, and
Move HI

MULSHI rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit signed integers,
the result is inverted. The higher 32 bits of the result are stored in the lower bits of special register HI
and register rd, and the lower 32 bits of the result are stored in the lower bits of special register LO.

Unsigned Multiply,
Negate, and Move HI

MULSHIU rd, rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit unsigned integers,
the result is inverted. The higher 32 bits of the result are stored in the lower bits of special register HI
and register rd, and the lower 32 bits of the result are stored in the lower bits of special register LO.

70

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 3 OUTLINE OF INSTRUCTION SET

Table 3-24. Sum-of-Products Instructions (For Vr5500)

Instruction Format and Description [SPECAL2| rs | nt | rd | 0 [funct |
MADD rs, rt
The contents of registers rs and rt are multiplied, treating both operands as 32-bit signed integers,
Multiply and Add Word) g p 9 .p . . g 9
and the result is added to a value that combines the lower 32 bits of special registers Hl and LO.
The 64-bit result is stored in special registers HI and LO.
MADDU rs, rt
Multiply and Add Word The contents of registers rs and rt are multiplied, treating both operands as 32-bit unsigned integers,
Unsigned and the result is added to a value that combines the lower 32 bits of special registers HI and LO.

The 64-bit result is stored in special registers HI and LO.

Multiply and Subtract
Word

MSUB rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit signed integers,
and the result is subtracted from a value that combines the lower 32 bits of special registers HI and
LO. The 64-bit result is stored in special registers HI and LO.

Multiply and Subtract
Word Unsigned

MSUBU rs, rt

The contents of registers rs and rt are multiplied, treating both operands as 32-bit unsigned integers,
and the result is subtracted from a value that combines the lower 32 bits of special registers HI and
LO. The 64-bit result is stored in special registers HI and LO.

Multiply

MUL64 rd, rs, rt
The contents of registers rs and rt are multiplied, treating both operands as 32-bit signed integers.
The lower 32 bits of the result are stored in register rd.

Since the VR5500 stalls the entire pipeline when executing an integer multiply/divide instruction, the number of

execution cycle increases compared with normal instruction execution. The number of processor cycles (PCycles)

required for an integer multiply/divide instruction is shown below.

Table 3-25. Number of Cycles for Multiply and Divide Instructions

Instruction Number of PCycles
When Executed When Executed
Singly Repeatedly
DIV, DIVU 40 40
DDIV, DDIVU 72 72
MACC, MACCHI, MACCHIU, MACCU, MSAC, MSACHI, MSACHIU, MSACU 3 3
MUL, MULHI, MULHIU, MULU, MULS, MULSHI, MULSHIU, MULSU 3 3
MADD, MADDU, MSUB, MSUBU 2 2
MUL64 2 2
MULT, MULTU 3 3
DMULT, DMULTU 3 3

Preliminary User’'s Manual U16044EJ1VOUM 71

CHAPTER 3 OUTLINE OF INSTRUCTION SET

Table 3-26. Register Scan Instructions (For Vr5500)

Instruction

Format and Description |SPECIAL2| rs | rt | rd 0 funct

Count Leading Ones

CLO rd, rs
The 32-bit contents of register rs are scanned from the highest to lowest bit, and the number of 1s is
stored in register rd.

Count Leading Zeros

CLZ rd, rs
The 32-bit contents of register rs are scanned from the highest to lowest bit, and the number of Os is
stored in register rd.

Count Leading Ones in
Doubleword

DCLO rd, rs
The 64-bit contents of register rs are scanned from the highest to lowest bit, and the number of 1s is
stored in register rd.

Count Leading Zeros in
Doubleword

DCLZ rd, rs
The 64-bit contents of register rs are scanned from the highest to lowest bit, and the number of Os is
stored in register rd.

3.3.3 Jump and branch instructions

Jump and branch instructions change the control flow of a program. All jump and branch instructions occur with a
delay of one instruction: that is, the instruction immediately following the jump or branch instruction (this is known as
the instruction in the delay slot) always executes while the target instruction is being fetched from memory.

For instructions involving a link (such as JAL and BLTZAL), the return address is saved in register r31.

Table 3-27. Jump Instruction

Instruction

Format and Description | op | target |

Jump

J target
The contents of the 26-bit target address is shifted left by two bits and combined with the higher 4 bits
of the PC. The program jumps to this calculated address with a delay of one instruction.

Jump and Link

JAL target

The contents of the 26-bit target address is shifted left by two bits and combined with the higher 4 bits
of the PC. The program jumps to this calculated address with a delay of one instruction. The
address of the instruction following the delay slot is stored in r31 (link register).

Instruction

Format and Description op | rs | rt | rd | sa |funct

Jump Register

JR rs
The program jumps to the address specified in register rs with a delay of one instruction.

Jump and Link Register

JALR rs, rd
The program jumps to the address specified in register rs with a delay of one instruction.
The address of the instruction following the delay slot is stored in rd.

72

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 3 OUTLINE OF INSTRUCTION SET

Table 3-28. Branch Instructions

Instruction

Format and Description | op | rs | rt | offset |

Branch on Equal

BEQ rs, rt, offset
If the contents of register rs are equal to those of register rt, the program branches to the target
address.

Branch on Not Equal

BNE rs, nt, offset
If the contents of register rs are not equal to those of register rt, the program branches to the target
address.

Branch on Less Than or
Equal to Zero

BLEZ rs, offset
If the contents of register rs are less than or equal to zero, the program branches to the target
address.

Branch on Greater Than
Zero

BGTZ rs, offset
If the contents of register rs are greater than zero, the program branches to the target address.

Instruction

Format and Description |REGIMM| rs | sub | offset

Branch on Less Than
Zero

BLTZ rs, offset
If the contents of register rs are less than zero, the program branches to the target address.

Branch on Greater Than
or Equal to Zero

BGEZ rs, offset
If the contents of register rs are greater than or equal to zero, the program branches to the target
address.

Branch on Less Than
Zero and Link

BLTZAL rs, offset
The address of the instruction that follows delay slot is stored in register r31 (link register). If the
contents of register rs are less than zero, the program branches to the target address.

Branch on Greater Than
or Equal to Zero and Link

BGEZAL rs, offset

The address of the instruction that follows delay slot is stored in register r31 (link register). If the
contents of register rs are greater than or equal to zero, the program branches to the target
address.

Remark sub: Sub-operation code

Instruction

Format and Description COPO BC | br | offset

Branch on Coprocessor 0
True

BCOT offset

The 16-bit offset (shifted left by two bits and sign-extended) is added to the address of the
instruction in the delay slot to calculate the branch target address.

If the conditional signal of the coprocessor 0 is true, the program branches to the target address
with one-instruction delay.

Branch on Coprocessor 0
False

BCOF offset

The 16-bit offset (shifted left by two bits and sign-extended) is added to the address of the
instruction in the delay slot to calculate the branch target address.

If the conditional signal of the coprocessor 0 is false, the program branches to the target address
with one-instruction delay.

Remark BC: BC sub-operation code
br: Branch condition identifier

Preliminary User’'s Manual U16044EJ1VOUM 73

CHAPTER 3 OUTLINE OF INSTRUCTION SET

Table 3-29. Branch Instructions (Extended ISA)

Instruction

Format and Description | op | rs | rt | offset

Branch on Equal Likely

BEQL rs, r, offset
If the contents of register rs are equal to those of register rt, the program branches to the target
address. If the branch condition is not met, the instruction in the delay slot is discarded.

Branch on Not Equal
Likely

BNEL rs, rt, offset
If the contents of register rs are not equal to those of register rt, the program branches to the target
address. If the branch condition is not met, the instruction in the delay slot is discarded.

Branch on Less Than
or Equal to Zero Likely

BLEZL rs, offset
If the contents of register rs are less than or equal to zero, the program branches to the target
address. If the branch condition is not met, the instruction in the delay slot is discarded.

Branch on Greater
Than Zero Likely

BGTZL rs, offset
If the contents of register rs are greater than zero, the program branches to the target address. If
the branch condition is not met, the instruction in the delay slot is discarded.

Instruction

Format and Description |REG|MM| rs | sub | offset

Branch on Less Than
Zero Likely

BLTZL rs, offset
If the contents of register rs are less than zero, the program branches to the target address. If the
branch condition is not met, the instruction in the delay slot is discarded.

Branch on Greater
Than or Equal to Zero
Likely

BGEZL rs, offset
If the contents of register rs are greater than or equal to zero, the program branches to the target
address. If the branch condition is not met, the instruction in the delay slot is discarded.

Branch on Less Than
Zero and Link Likely

BLTZALL rs, offset

The address of the instruction that follows delay slot is stored in register r31 (link register).

If the contents of register rs are less than zero, the program branches to the target address. If the
branch condition is not met, the instruction in the delay slot is discarded.

Branch on Greater
Than or Equal to Zero
and Link Likely

BGEZALL rs, offset

The address of the instruction that follows delay slot is stored in register r31 (link register).

If the contents of register rs are greater than or equal to zero, the program branches to the target
address. If the branch condition is not met, the instruction in the delay slot is discarded.

Remark sub: Sub-operation code

Instruction

offset

Format and Description |COP0| BC | br |

Branch on Coprocessor
0 True Likely

BCOTL offset

The 16-bit offset (shifted left by two bits and sign-extended) is added to the address of the
instruction in the delay slot to calculate the branch target address.

If the conditional signal of the coprocessor 0 is true, the program branches to the target address with
one-instruction delay.

If the branch condition is not met, the instruction in the delay slot is discarded.

Branch on Coprocessor
0 False Likely

BCOFL offset

The 16-bit offset (shifted left by two bits and sign-extended) is added to the address of the
instruction in the delay slot to calculate the branch target address.

If the conditional signal of the coprocessor 0 is false, the program branches to the target address
with one-instruction delay.

If the branch condition is not met, the instruction in the delay slot is discarded.

Remark BC: BC sub-operation code
br: Branch condition identifier

74

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 3 OUTLINE OF INSTRUCTION SET

3.3.4 Special instructions

Special instructions mainly generate software exceptions.

Table 3-30. Special Instructions

Instruction

-
=
o

Format and Description [sPECIAL] 1S sa_ | funct |

Synchronize

SYNC
Completes the load/store instruction executing in the current pipeline before the next load/store
instruction starts execution.

SYSCALL

Trap if Greater Than or
Equal

System Call

Generates a system call exception, and then transits control to the exception handling program.
. BREAK

Breakpoint

Generates a break point exception, and then transits control to the exception handling program.
Table 3-31. Special Instructions (Extended ISA) (1/2)
Instruction Format and Description [sPEciAL] rs [t [rd | sa funct

TGE rs, 1t

The contents of register rs are compared with those of register rt, treating both operands as signed
integers. If the contents of register rs are greater than or equal to those of register rt, an exception
occurs.

Trap if Greater Than or
Equal Unsigned

TGEU rs, 1t

The contents of register rs are compared with those of register rt, treating both operands as unsigned
integers. If the contents of register rs are greater than or equal to those of register rt, an exception
occurs.

Trap if Less Than

TLT rs, rt
The contents of register rs are compared with those of register rt, treating both operands as signed
integers. If the contents of register rs are less than those of register rt, an exception occurs.

Trap if Less Than
Unsigned

TLTU rs, 1t
The contents of register rs are compared with those of register rt, treating both operands as unsigned
integers. If the contents of register rs are less than those of register rt, an exception occurs.

Trap if Equal

TEQ rs, 1t
If the contents of registers rs and rt are equal, an exception occurs.

Trap if Not Equal

TNE rs, it
If the contents of registers rs and rt are not equal, an exception occurs.

Preliminary User’'s Manual U16044EJ1VOUM 75

CHAPTER 3 OUTLINE OF INSTRUCTION SET

Table 3-31. Special Instructions (Extended ISA) (2/2)

Instruction

Format and Description |REGIMM| rs | sub | immediate

Trap if Greater Than or
Equal Immediate

TGEI rs, immediate

The contents of register rs are compared with 16-bit sign-extended immediate data, treating both
operands as signed integers. If the contents of register rs are greater than or equal to 16-bit sign-
extended immediate data, an exception occurs.

Trap if Greater Than or
Equal Immediate
Unsigned

TGEIU rs, immediate

The contents of register rs are compared with 16-bit zero-extended immediate data, treating both
operands as unsigned integers. If the contents of register rs are greater than or equal to 16-bit sign-
extended immediate data, an exception occurs.

Trap if Less Than
Immediate

TLTI rs, immediate

The contents of register rs are compared with 16-bit sign-extended immediate data, treating both
operands as signed integers. If the contents of register rs are less than 16-bit sign-extended
immediate data, an exception occurs.

Trap if Less Than
Immediate Unsigned

TLTIU rs, immediate

The contents of register rs are compared with 16-bit zero-extended immediate data, treating both
operands as unsigned integers. If the contents of register rs are less than 16-bit sign-extended
immediate data, an exception occurs.

Trap if Equal Immediate

TEQI rs, immediate
If the contents of register rs and immediate data are equal, an exception occurs.

Trap if Not Equal
Immediate

TNEI rs, immediate
If the contents of register rs and immediate data are not equal, an exception occurs.

Remark sub: Sub-operation code

Instruction Format and Description op base hint offset
PREF hint, offset (base)
Prefetch Sign-extends a 16-bit offset and adds it to register base to generate a virtual address. The operation
to be performed on that address is indicated by 5-bit hint.
Table 3-32. Special Instructions (For Vr5500)
Instruction Format and Description [speciaL] rs | d | sa funct
SSNOP
Superscalar NOP The processor waits until all preceding instructions have been committed or until writeback to a

register by the preceding load instruction has been completed.

76

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 3 OUTLINE OF INSTRUCTION SET

3.3.5 Coprocessor instructions

The coprocessor instructions perform the operations of each coprocessor.

The coprocessor load and store

instructions are I-type instructions. The format of the operation instructions of the coprocessor differs depending on

the coprocessor.

Table 3-33. Coprocessor Instructions

Instruction

Format and Description | op | base rt offset

Load Word to
Coprocessor z

LWCz rt, offset (base)
Sign-extends an offset and adds it to register base to generate an address.

Loads the contents of a word specified by the address to general-purpose register rt of coprocessor z.

Store Word from
Coprocessor z

SWCz n, offset (base)
Sign-extends an offset and adds it to register base to generate an address.

Stores the contents of general-purpose register rt of coprocessor z in the memory location specified
by the address.

Instruction

Format and Description [coPz] sub | nt [rd | 0

Move to Coprocessor z

MTCz rt, rd

Transfers the contents of CPU register rt to register rd of coprocessor z.

Move from
Coprocessor z

MFCz rt, rd

Transfers the contents of register rd of coprocessor z to CPU register rt.

Move Control to
Coprocessor z

CTCz rt, rd

Transfers the contents of CPU register rt to coprocessor control register rd of coprocessor z.

Move Control from
Coprocessor z

CFCz i, d

Transfers the contents of coprocessor control register rd of coprocessor z to CPU register rt.

Remark sub: Sub-operation code

Instruction

Format and Description | COPZ| CO cofun

Coprocessor z
Operation

COPz cofun

Coprocessor z executes the operation defined for each coprocessor.

The CPU status is not affected by the operation of the coprocessor.

Remark CO: Sub-operation identifier

Preliminary User’'s Manual U16044EJ1VOUM 77

CHAPTER 3 OUTLINE OF INSTRUCTION SET

Table 3-34. Coprocessor Instructions (Extended ISA)

Instruction

Format and Description |COPZ| sub | rt | rd | 0

Doubleword Move to
Coprocessor z

DMTCz rt, rd

Transfers the contents of general-purpose register rt of the CPU to register rd of coprocessor z.

Doubleword Move from
Coprocessor z

DMFCz rt, rd

Transfers the contents of register rd of coprocessor z to general-purpose register rt of the CPU.

Remark sub: Sub-operation code

Instruction

Format and Description op base rt offset

Load Doubleword to
Coprocessor z

LDCz rt, offset (base)
Sign-extends an offset and adds it to register base to generate an address.

Loads the contents of the doubleword specified by the address to a general-purpose register (rt if FR
=1, orrtand rt+ 1 if FR = 0) of coprocessor z.

Store Doubleword from
Coprocessor z

SDCz t, offset (base)
Sign-extends an offset and adds it to register base to generate an address.

Stores the contents of the doubleword of a general-purpose register (rtif FR =1, or rtand rt + 1 if FR
= 0) of coprocessor z in the memory location specified by the address.

3.3.6 System control coprocessor (CPO0) instructions
System control coprocessor (CPO) instructions perform operations specifically on the CPO registers to manipulate
the memory management and exception handling facilities of the processor.

Table 3-35. System Control Coprocessor (CP0) Instructions (1/2)

Instruction

Format and Description |COP0| sub | rt | rd | 0

Move to System
Control Coprocessor

MTCO rt, rd
The word data of general register rtin the CPU are loaded to general register rd in the CPO.

Move from System
Control Coprocessor

MFCO rt, rd
The word data of general register rd in the CPO are loaded to general register rtin the CPU.

Doubleword Move to
System Control
Coprocessor 0

DMTCO rt, rd
The doubleword data of general register rtin the CPU are loaded to general register rdin the CPO.

Doubleword Move from
System Control
Coprocessor 0

DMFCO rt, rd
The doubleword data of general register rd in the CPO are loaded to general register rtin the CPU.

Remark sub: Sub-operation code

78

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 3 OUTLINE OF INSTRUCTION SET

Table 3-35. System Control Coprocessor (CP0) Instructions (2/2)

Instruction Format and Description |COP0 | CO | funct

TLBR
The TLB entry indexed by the Index register is loaded to the EntryHi, EntryLoO, EntryLo1, or
PageMask register.

Read Indexed TLB
Entry

TLBWI
The contents of the EntryHi, EntryLoO, EntryLo1, or PageMask register are loaded to the TLB entry
indexed by the Index register.

Write Indexed TLB
Entry

TLBWR

Write Random TLB
I The contents of the EntryHi, EntryLoO, EntryLo1, or PageMask register are loaded to the TLB entry

Ent
i indexed by the Random register.
. TLBP
Probe TLB for Matching)) .
Ent The address of the TLB entry that matches the contents of EntryHi register is loaded to the Index
i register.
ERET

Return from Exception .
The program returns from exception, interrupt, or error trap.

Remark CO: Sub-operation identifier

Instruction Format and Description CACHE | base | op | offset

CACHE op, offset (base)

Sign-extends the 16-bit offset and adds to the contents of register base to generate a virtual address.
This virtual address is translated to physical address with TLB. For this physical address, cache
operation that is indicated by 5-bit op is performed.

Cache Operation

Table 3-36. System Control Coprocessor (CP0) Instructions (For Vr5500)

Instruction Format and Description | COPO | CO | code | funct |

WAIT

Wait
l The processor’s operating mode is shifted to standby mode.

Remark CO: Sub-operation identifier

Instruction Format and Description | COPO sub rt rd 0 | reg |
MTPC tt, re
Move to Performance 9 . . .
Counter The contents of general-purpose register rt in the CPU are loaded to performance counter reg in the
CPO.
MFPC tt, reg
Move from) . .
The contents of performance counter reg in the CPO are loaded to general-purpose register rtin the
Performance Counter
CPU.
MTPS rt, reg

Move to Performance

. The contents of general-purpose register rt in the CPU are loaded to performance counter control
Event Specifier

register reg in the CPO.

Move from MFPS rt, reg
Performance Event The contents of performance counter control register reg in the CP0 are loaded to general-purpose
Specifier register rtin the CPU.

Remark sub: Sub-operation code

Preliminary User’'s Manual U16044EJ1VOUM 79

CHAPTER 4 PIPELINE

This chapter explains the pipeline.
4.1 Overview

The pipeline is one of the instruction execution formats. It divides instruction execution processing into several
stages. An instruction has been completely executed when it has gone through all the stages. When one instruction
has been processed in one stage, the next instruction enters that stage.

The operating clock of the pipeline is called PClock, and one of its cycles is called PCycle. Each stage of the
pipeline is executed in 1 PCycle.

The pipeline of the VrR5500 has a two-way superscalar architecture in which two instructions are fetched at a time.
The instructions are executed in the pipeline out of order. If the pipeline is completely filled, execution of two
instructions can be completed in 1PCycle.

80 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 4 PIPELINE

4.1.1 Pipeline stages

The VRr5500 has six execution units including integer operation, floating-point operation (including sum-of-
products operation), load/store, and branch units. Each of these units operates independently. Therefore, the
number of stages of the pipeline differs depending on the instruction. For example, an integer arithmetic operation
instruction uses nine stages.

The stages that make up the pipeline include the following.

IF: Instruction fetch EX: Execution
BR: Branch prediction DF: Data fetch
IQ: Instruction queue AL: Data align
RN: Register renaming WB: Writeback
RS: Reservation station CoR: Commit register
RF: Register fetch CoM: Commit memory

Figure 4-1. Pipeline Stages of Vr5500 and Instruction Flow

Renaming & dispatch

Execution pipeline Commit pipeline

LSU (load/store)

3 ‘ pipeline !
IF IQ ! !
IF IQ ! !
BR ! !
! ! ALUO (integer)
c ‘ ! —= EX wB
S o [RN RS !
S ! ALU1 (integer)
2° M RS | = EX | wB

c — EX DF AL |
._g = RF |

g8

TS BRU (JR/branch)

% 173 —| RF —

o +— EX1 EX2

FPU (floating-point)
+— EX1 EX2 WB —=

FPU/MACU (floating-point/multiplication/division)

— EX1 EX2 WB —
CoR CoM
(=)
g ko
s 2 CoR CoM
SO
g2
> CoR CoM

Preliminary User’'s Manual U16044EJ1VOUM 81

CHAPTER 4 PIPELINE

4.1.2 Configuration of pipeline

(1

)

82

The pipeline of the VrR5500 is divided into four blocks. Each block operates independently.

Fetch pipeline

The fetch pipeline generates a speculative fetch stream in accordance with branch prediction and stores a
fetched instruction in a 16-entry instruction queue. It can fetch two instructions per cycle from the 64-bit bus
connected to the instruction cache. If the fetched instruction includes a branch or jump instruction, the fetch
pipeline immediately calculates the address at the destination by using a branch history table and information
on the return address stack, and changes the program flow. As a result, all processing is speculatively issued.
Even if the execution pipeline does not execute a branch instruction, therefore, the fetch pipeline continues
processing a branch instruction and tracing an instruction stream without stalling, until the instruction queue
becomes full.

Renaming & dispatch pipeline

The renaming & dispatch pipeline can receive up to two instructions from the instruction queue per cycle, and
assign a renaming register number to the received instructions. At the same time, it overwrites the register
number specified as an operand with a renaming register number. The renamed instructions are stored in the
reservation station (RS). The VR5500 has an RS dedicated to each execution unit. Four entries each are
available for the two ALUSs, four entries for LSU, four entries for BRU, two entries for FPU, and two entries for
FPU/MACU.

This pipeline continues operating until the instruction queue becomes empty or the RS becomes full.

Each instruction stored in the RS is checked for its dependency upon other instructions and the utilization status
of the execution unit necessary for execution. An instruction that has been judged as executable is selected
from the RS. Up to two instructions can be selected per cycle. The instruction sequence described in the
program is ignored. The two selected instructions are packed into one instruction, like VLIW. The packed
instructions are sent to the execution pipeline.

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 4 PIPELINE

The types of instructions that can be packed are shown below.

Figure 4-2.

Combination of Instructions That Can Be Packed

Higher-side Lower-side Higher-side Lower-side Higher-side Lower-side
instruction instruction instruction instruction instruction instruction
INT INT FP INT FP nop .
INT BR FP BR INT nop !
INT FP FP FP MEM nop !
MEM INT MAC INT - nop BR
MEM BR MAC BR - nop MAC
MEM FP MAC FP
Remark |NT: |nteger operation BR: Branch
FP: Floating-point operation MEM: Load/store (memory access)
MAC: Sum-of-products operation, nop: No operation

multiplication/division

(3) Execution pipeline

The execution pipeline consists of six execution units. The higher side of the packed instructions is sent to the
LSU, ALUO, and FPU/MACU, and is executed by one of these units. The lower side is sent to the FPU/MACU,

ALU1, BRU, and FPU, and is executed by one of them.

The FPU/MACU and FPU execute floating-point operations. The FPU/MACU is a FPU with a multiplier/divider
added, and can also execute integer multiplication/division.
All the execution results are stored in the renaming register assigned to the instruction along with exception

information that has been detected.

Instructions do not stall in the execution pipeline of the VrR5500. All dependency relationships and resource

conflicts are resolved by the renaming & dispatch pipeline before the execution pipeline.

execution pipeline of the Vr5500 is not provided with a mechanism for stall detection.

Preliminary User’'s Manual U16044EJ1VOUM

Therefore, the

83

CHAPTER 4 PIPELINE

Figure 4-3. Instruction Flow in Execution Pipeline

Instruction

RS RS RS RS RS RS

P

Higher-side Lower-side
instruction instruction

Packed instruction

LSU ALUO FPU/MACU ALU1 BRU FPU

(4) Commit pipeline
The commit pipeline controls the processor state. The instructions that are executed by the execution pipeline
regardless of the program sequence are completed (committed) in the program sequence by this pipeline. The

commit pipeline performs the following processing.
e Checking of exception/trap

o Updating store buffer
e Updating processor state

84 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 4 PIPELINE

4.2 Branch Delay

The position of the instruction next to a branch instruction is called the branch delay slot. The instruction in the
branch delay slot is executed regardless of whether the condition of the branch instruction (except the Branch Likely

instruction) is satisfied or not.

To accelerate branch processing, the VrR5500 has a branch prediction mechanism. This mechanism uses a
branch history table (BHT) with 4096 entries (2 bits each) to record satisfaction of the condition of branch
instructions executed in the past. It also uses a return address stack (RAS) to hold the address to which execution
is to return after a function call. The Vr5500 predicts the target address of a branch instruction in accordance with

the BHT, and speculatively fetches and executes the subsequent instructions.

The pipeline of the VR5500 generates a branch delay of six cycles if branch prediction is wrong. If branch
prediction is correct, the branch delay is 1 cycle.
Figure 4-4 shows how branch prediction is performed and the position of the branch delay slot.
Figure 4-4. Branch Delay
(a) If branch prediction is correct
Branch forwhich [™r T'gria] RN | RS | RF | EX | WB | CoR | CoM |
pred|ct|on is correct
Branch delaysiot | IF | BRIQ| RN | RS | RF | Ex | wB | Cor | Com |
Target [F |BrI@Q] RN | Rs | RF | EX | wB | CoR | Com |
4—»‘
Branch delayN°t®
(b) If branch prediction is wrong
Branchforwhich [™"\¢ 73R 1q] RN | RS | RF | EX | WB | CoR | CoM |
prediction is wrong
Branchdelaysiot | IF | BRIQ] AN | RS | RF | EX | wB | CoR | CoM |
Target [F Teria] mn RS RF EX | wB [Cor | CoM |
| |
Branch delayNe'®
Note The branch delay is covered if there is a valid instruction in the instruction queue.
Preliminary User’'s Manual U16044EJ1VOUM 85

CHAPTER 4 PIPELINE

4.3 Load Delay

The load delay instruction generates a delay until the subsequent instruction can use the result of loading. The
processor performs the scheduling necessary for eliminating this delay.

Because the VrR5500 uses an out-of-order mechanism to execute instructions, the delay can be covered by
executing an instruction that is not dependent upon the load instruction even if a load delay occurs.

Figure 4-5. Load Delay

ADD RF EX
Dispatch
LW RF EX DF AL
RF EX
Dispatch
RF EX Data transfer
RF EX
Dispatch
RF EX \
A}
RF EX
Dispatch
RF EX

4.3.1 Non-blocking load

To alleviate the penalty due to a cache miss, the data cache of the VrR5500 has a non-blocking mechanism. This
allows the VR5500 to continue accessing the cache while holding a cache miss, even if a cache miss occurs as a
result of executing a load instruction. This means that the subsequent instructions, including other load instructions,
can be consecutively executed if they do not have dependency relationship with the load instruction that has caused
the cache miss. Up to four cache misses can be held.

86 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 4 PIPELINE

4.4 Exception Processing

If an exception occurs, the instruction that has caused the exception and all the subsequent instructions in the
pipeline are canceled.
If the instruction responsible for the exception has reached the commit stage, the following three events occur.

e The status and cause of the exception are written to each CPO register.
e The current PC changes to an appropriate exception vector address.
e The previous exception bit is cleared.

As a result, all the instructions that had been issued before the exception occurred are completed, and all the
instructions issued after the instruction responsible for the exception are discarded. Therefore, the EPC indicates
the value from which execution can be resumed.

Figure 4-6 shows an example of detecting an exception.

Figure 4-6. Exception Detection

All instructions are aborted.

Instruction at exception
Exception detected vector executed

l

[F Ter@] AN RS RFE | Ex | we [cor [com |
[F BRI RN [Rs | RF [EX [wB | CoR |
[F [Bri@] RN | Rs | RF [Ex | ws |

[F [Bri] RN | Rs | RF [EX

|
[F Terie] Rv [mrs | RF [Ex [wB [cor [com |

4.5 Store Buffer

The Vr5500 has a 4-entry store buffer (SB) in the DCU so that it can speculatively execute store instructions.
The SB temporarily holds the store data of a speculatively executed store instruction, and actually writes data to the
cache when that store instruction is committed.

4.6 Write Transaction Buffer

The Vr5500 has a write transaction buffer (WTB) that improves the performance of write operations to the
external memory. The WTB is used for all transactions of the system interface. The WTB is a four-stage FIFO and
can hold data of up to 256 bits. It can therefore hold up to four read requests or one uncached write request or
cache line writeback.

The entire WTB is used for writeback data in case of a cache miss that requires writeback, and the processor can
perform processing in parallel with memory updating. In the case of storing in an uncached area and a write-through
store, processing by the WTB and writing to the memory by the CPU are not executed in parallel. If the WTB is full,
the subsequent store operation is stalled until there is a space available.

The WTB cannot be read or written by software.

Preliminary User’'s Manual U16044EJ1VOUM 87

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

The VrR5500 has a memory management unit (MMU) that uses a high-speed translation lookaside buffer (TLB)
which translates virtual addresses into physical addresses. This chapter explains in detail the operation of the TLB,
the CPO registers used as a software interface with the TLB, and the memory mapping method used to translate
virtual addresses into physical addresses.

5.1 Processor Modes

5.1.1 Operating modes
The VR5500 has the following three operating modes with priority assigned by the system to these modes,
starting with the one at the top.

o Kernel mode (highest priority): In this mode, all the registers can be accessed and changed. The nucleus of
the operating system operates in the kernel mode.

e Supervisor mode: The priority of this mode is lower than that of the kernel mode. This mode is used for
sections assigned a lower importance by the operating system.

e User mode (lowest priority): This mode prevents users from interfering with each other.

The basic operating mode of the processor is the user mode. When the processor processes an error (when the
ERL bit is set) or an exception (when the EXL bit is set), it enters the kernel mode.

The operating mode of the processor is set by the KSU field of the Status register and the ERL and EXL bits.
Table 5-1 shows the three operating modes, and the setting of the Status register related to the error and exception
levels. A blank indicates that any setting is possible.

Table 5-1. Operating Modes

Status Register Bit Operating Mode
KSU(1:0) EXL ERL
10 0 0 User mode
01 0 0 Supervisor mode
00 0 0 Kernel mode
1
1

In the case of an exception or error, the EXL and ERL bits are set regardless of the setting of the KSU field.
When these bits are set, interrupts are disabled. If the EXL bit is cleared by an exception handler to enable
processing of multiple interrupts, for example, the processor enters the mode set by the KSU field from the kernel
mode. Therefore, change the KSU field before clearing the EXL bit by an exception handler.

88 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER5 MEMORY MANAGEMENT SYSTEM

5.1.2 Instruction set modes

The instruction set mode of the processor determines which instructions are enabled. By default, the MIPS IV
instruction set architecture (ISA) is implemented. However, MIPS IIl ISA or MIPS I/ll ISA can also be used to
maintain compatibility with a conventional machine.

The instruction set mode is set by bits UX, SX, and XX of the Status register. Table 5-2 shows the setting of the
Status register related to the instruction set mode. A blank indicates that any setting is possible.

Table 5-2. Instruction Set Modes

Operating Mode Status Register Bit Instruction Set Mode

UXx SX XX MIPS I, 1l MIPS IlI MIPS IV

User mode 0 0 Can be used Cannot be used | Cannot be used
0 1 Can be used Cannot be used | Can be used

0 Can be used Can be used Cannot be used
1 1 Can be used Can be used Can be used
Supervisor mode 0 Can be used Cannot be used Can be used
1 Can be used Can be used Can be used
Kernel mode Can be used Can be used Can be used

5.1.3 Addressing modes
The addressing mode of the processor determines whether a 32-bit or 64-bit memory address is to be generated.
Refer to Table 5-3 for the settings of the following addressing modes.

¢ [n the kernel mode, 64-bit addressing is enabled by the KX bit. All the instructions are always valid.

¢ In the supervisor mode, 64-bit addressing and the MIPS Ill instructions are enabled by the SX bit.

¢ In the user mode, 64-bit addressing and the MIPS Il instructions are enabled by the UX bit. In addition, the
MIPS IV instructions are enabled by the XX bit.

Table 5-3. Addressing Modes

Operating Mode Status Register Bit Addressing
UX SX KX Mode

User mode 0 32-bit
1 64-bit
Supervisor mode 0 32-bit
1 64-bit
Kernel mode 0 32-bit
1 64-bit

Preliminary User’'s Manual U16044EJ1VOUM 89

CHAPTER5 MEMORY MANAGEMENT SYSTEM

5.2 Translation Lookaside Buffer (TLB)

Virtual addresses are translated into physical addresses using an on-chip TLB"“®. The on-chip TLB is a fully-
associative memory that holds 48 entries, which provide mapping to odd/even page in pairs for one entry. These
pages can have ten different sizes, 4 K, 16 K, 64 K, 256 K, 1 M, 4 M, 16 M, 64 M, 256 M, and 1 G, and can be
specified for each entry.

If it is supplied with a virtual address, each TLB entry checks the 48 entries simultaneously to see whether they
match the virtual addresses that are provided with the ASID field and saved in the EntryHi register.

If there is a virtual address match (hit) in the TLB, a physical address is created from the physical page number
and the offset value.

If no match occurs (miss), an exception is taken and software refills the TLB entry from the page table resident in
memory. The software writes to an entry selected using the Index register or a random entry indicated in the
Random register.

If more than one entry in the TLB matches the virtual address being translated, the operation is undefined. In this
case, the TS bit of the Status register is set to 1, and a TLB refill exception occurs regardless of the valid bit status of
the TLB entry. Replace the TLB entry using the exception handler and clear the TS bit to 0.

Note Depending on the address space, virtual addresses may be translated to physical addresses without
using a TLB. For example, address translation for the kseg0 or kseg1 address space does not use
mapping. The physical addresses of these address spaces are determined by subtracting the base
address of the address space from the virtual addresses.

(1) Micro TLB
The VRr5500 has two 4-entry micro TLBs in addition to a 48-entry TLB. These TLBs are also full-associative
memories and are respectively dedicated to the translation of instruction and data addresses.
The micro TLBs are a subset of the TLB, and the page size can be set for each entry in the same manner as the
TLB. If a mismatch occurs in a micro TLB, the entries are replaced with new entries from the TLB by using a
dummy LRU (Least Recently Used) algorithm. The pipeline stalls while an entry is being transferred from the
TLB.

90 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER5 MEMORY MANAGEMENT SYSTEM

5.2.1 Format of TLB entry
Figure 5-1 shows the TLB entry formats for both 32- and 64-bit modes. Each field of an entry has a corresponding
field in the EntryHi, EntryLoO, EntryLo1, or PageMask registers.

Figure 5-1. Format of TLB Entry

(a) 32-bit addressing mode

127 126 109 108 96
0 MASK 0
95 77 76 75 72 71 64
VPN2 G 0 ASID
63 62 61 38 37 35 34 33 32
0 PFN C DlVv|oO
31 30 29 6 5 3 2 1 0
0 PFN C DlVv|oO

(b) 64-bit addressing mode

255 223 222 205 204 192
0 MASK 0
191 190 189 168 167 141 140 139 136 135 128
R 0 VPN2 G 0 ASID

127 94 93 70 69 67 66 65 64
0 PFN C D|Vv|oO

63 30 29 6 5 3 2 1 0
0 PFN C DlVv|oO

The format of the EntryHi, EntryLoO, EntryLo1, and PageMask registers is almost the same as a TLB entry.
However, the bit at the position corresponding to the TLB G bit is reserved (0) in the EntryHi register. The bit at the
position corresponding to the G bit of the EntryLo register is reserved (0) in the TLB. For details of other fields, refer
to the description of the relevant registers.

The contents of the TLB entries can be read or written via the EntryHi, EntryLoO, EntryLo1, and PageMask
registers using a TLB manipulation instruction, as shown in Figure 5-2. The target entry is either one specified by
the Index register, or a random entry indicated by the Random register.

Preliminary User’'s Manual U16044EJ1VOUM 91

CHAPTER5 MEMORY MANAGEMENT SYSTEM

Figure 5-2. Outline of TLB Manipulation

PageMask EntryHi EntryLo1 EntryLoO
(47
TLB entry selected using
[~ the Index register or
Random register
TLB i i
0
~
127/255 0

5.2.2 TLB instructions
The instructions used for TLB control are described below.

(1) TLBP (Translation lookaside buffer probe)
The TLBP instruction loads the Index register with a TLB entry number that matches the contents of the EntryHi
register. If there is no matching TLB entry, the most significant bit of the Index register is set (1).

(2) TLBR (Translation lookaside buffer read)
The TLBR instruction writes the EntryHi, EntryLoO, EntryLo1, and PageMask registers with the contents of the
TLB entry indicated by the content of the Index register.

(3) TLBWI (Translation lookaside buffer write index)
The TLBWI instruction writes the contents of the EntryHi, EntryLoO, EntryLo1, and PageMask registers to the
TLB entry indicated by the contents of the Index register.

(4) TLBWR (Translation lookaside buffer write random)
The TLBWR instruction writes the contents of the EntryHi, EntryLoO, EntryLo1, and PageMask registers to the
TLB entry indicated by the contents of the Random register.

5.2.3 TLB exception

If there is no TLB entry that matches the virtual address, a TLB Refill exception occurs. If the access control bits
(D and V) indicate that the access is not valid, a TLB modified or TLB invalid exception occurs.

Refer to CHAPTER 6 EXCEPTION PROCESSING for details of TLB exceptions.

92 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER5 MEMORY MANAGEMENT SYSTEM

5.3 Virtual-to-Physical Address Translation

Translating a virtual address to a physical address begins by comparing the virtual address sent from the
processor with the virtual addresses of all entries in the TLB. First, one of the following comparisons is made for the
virtual page number (VPN) of the address.

e [n 32-bit mode: The higher bits™*® of the virtual address are compared to the contents of the VPN2 (virtual
page number divided by two) of each TLB entry.

e In 64-bit mode: The higher bits™* of the virtual address are compared to the contents of the R and the VPN2
(virtual page number divided by two) of each TLB entry.

Note The number of bits differs depending on the page size.
The table below shows examples of the higher bits of the virtual address with page sizes of 16 MB and 4

KB.
Page Size 16 MB 4 KB
Addressing Mode
32-bit mode A(31:25) A(31:13)
64-bit mode AB3, AB2, A(39:25) AB3, A62, A(39:13)

When there is an entry which has a field with the same contents in this comparison, if either of the following
applies, a match occurs.

¢ The Global bit (G) of the TLB entry is set to 1
e The ASID field of the virtual address is the same as the ASID field of the TLB entry.

This match is referred to as a TLB hit.

If the matching entry is in the TLB, the physical address and access control bits (C, D, V) are read out from that
entry. In order to perform valid address translation, the entry’s V bit must be set (1), but this is unrelated to the
determination of the matching TLB entry. An offset value is added to the physical address that was read out. The
offset indicates an address inside the page frame space. The offset part bypasses the TLB and the lower bits of the
virtual address are output as are.

If there is no match, the processor core generates a TLB refill exception and references the page table in the
memory in which the virtual addresses and physical addresses have been paired, the contents of which are then
written to the TLB via software.

Figure 5-3 shows a summary of address translation, and Figure 5-4 the TLB address translation flowchart.

Preliminary User’'s Manual U16044EJ1VOUM 93

CHAPTER5 MEMORY MANAGEMENT SYSTEM

Figure 5-3. Virtual-to-Physical Address Translation

<1> The virtual address page number
(VPN, higher bits in the address) and
ASID are compared with the
corresponding area in the TLB.

<2> If there is an entry matched, the page
frame number (PFN) representing the
higher bits of the physical address is
output from the TLB.

<3> The offset is then added to the PFN,
which bypasses the TLB.

Virtual address

ASID VPN Offset
G ASID VPN
TLB
entry
PFN
TLB
PFN Offset

Physical address

94

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER5 MEMORY MANAGEMENT SYSTEM

Figure 5-4. TLB Address Translation

Virtual address
input

User mode?

Supervisor No

mode?

Address OK? No

Physical address
output

TLB not used

Address OK?

Address OK?

Address error
exception

Address error
exception

No

VPN match?

No

TS bit of Status
register « 1

TLB invalid
exception

No

32-bit
address?

(" :) (XTLB refill)
TLB refill exception exception

No

D bit=1?

Uncached
area?

TLB modified
exception

Yes

Physical address Physical address
output output

Main memory access Cache access

Preliminary User’'s Manual U16044EJ1VOUM 95

CHAPTER5 MEMORY MANAGEMENT SYSTEM

5.3.1 32-bit addressing mode address translation
Figure 5-5 shows the virtual-to-physical address translation in the 32-bit mode addressing mode. The page sizes
can be selected from the ten pattern, 4 KB (12 bits) to 1 GB (30 bits) in 4-multiply units.

e Shown at the top of Figure 5-5 is the virtual address space in which the page size is 4 KB and the offset is 12
bits. The 20 bits excluding the ASID field represent the virtual page number (VPN), enabling selection of a
page table of 1 M entries.

e Shown at the bottom of Figure 5-5 is the virtual address space in which the page size is 16 MB and the offset
is 24 bits. The 8 bits excluding the ASID field represent the VPN, enabling selection of a page table of 256
entries.

Figure 5-5. Virtual Address Translation in 32-Bit Addressing Mode

39 3231 2928 12 11 0

Virtual address for
4 KB page x 1 M (2%) ASID Note VPN Offset

20 bits = 1 M page

N J

The offset is used for
the physical address
Virtual-to-physical address without being changed.
TL
Y

translation with the TLB

35 / 0
36-bit physical
address PFN Offset
. . A _
Virtual-to-physical address The offset is used for
translation with the TLB the physical address
TLB without being changed.
A N
- e
39 3231 2928 24 23 0
Virtual address for
16 MB page x 256 (2°) ASID Note! VPN Offset

8 bits = 256 page

Note User, supervisor, or kernel address space is selected by bits 31 to 29 of the virtual address.

Remark Bits 35 to 32 of the physical address are not output in the 32-bit bus mode.

96 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER5 MEMORY MANAGEMENT SYSTEM

5.3.2 64-bit addressing mode address translation
Figure 5-6 shows the virtual-to-physical address translation in the 64-bit mode addressing mode. The page sizes
can be selected from the ten pattern, 4 KB (12 bits) to 1 GB (30 bits) in 4-multiply units.

e Shown at the top of Figure 5-6 is the virtual address space in which the page size is 4 KB and the offset is 12
bits. The 28 bits excluding the ASID field represent the virtual page number (VPN), enabling selection of a
page table of 256 M entries.

e Shown at the bottom of Figure 5-6 is the virtual address space in which the page size is 16 MB and the offset
is 24 bits. The 16 bits excluding the ASID field represent the VPN, enabling selection of a page table of 64 K
entries.

Figure 5-6. Virtual Address Translation in 64-Bit Addressing Mode

71 64636261 40 39 12 11 0

Virtual address for

4 KB page x 256 M (22%8) ASID Note 0 or -1 VPN Offset

28 bits = 256 M page
N J

The offset is used for

Virtual-to-physical address

TLB) ’ the physical address
translation with the TLB without being changed.
35 Y 0
36-bit physical
address PFN Offset
. . The offset is used for
Virtual-to-physical address the physical address
translation with the TLB ; ;
1B without being changed.
A A
s e
71 64636261 40 39 24 23 0
Virtual address for
16 MB page x 64 K (219) ASID Note| 0 or-1 VPN Offset

16 bits = 64 K page

Note User, supervisor, or kernel address space is selected by bits 63 and 62 of the virtual address.

Remark Bits 35 to 32 of the physical address are not output in the 32-bit bus mode.

Preliminary User’'s Manual U16044EJ1VOUM 97

CHAPTER5 MEMORY MANAGEMENT SYSTEM

5.4 Virtual Address Space

The address space of the CPU is extended in memory management system, by translating huge virtual memory
addresses into physical addresses.

The VR5500 has three types of virtual address spaces: user, supervisor, and kernel. The addressing mode of
each of these virtual address spaces can be set to 32-bit or 64-bit mode. In the 32-bit addressing mode, a virtual
address is 32 bits wide, and the maximum user area is 2 GB (231 bytes). In the 64-bit addressing mode, the virtual
address width is 64 bits and the maximum user area is 1 TB (2% bytes).

The virtual address is extended with an address space identifier (ASID) (refer to Figures 5-5 and 5-6), which
reduces the frequency of TLB flushing when switching contexts. This 8-bit ASID is in the CP0O EntryHi register, and
the Global (G) bit is in the EntryLoO and EntryLo1 registers, described later in this chapter.

When the system interface is in the 32-bit bus mode, the VrR5500 uses 32-bit physical addresses. Consequently,
the physical address space is 4 GB. In the 64-bit bus mode, the physical address space is 128 GB because the
VR5500 uses 36-bit physical address.

Caution If the system interface of the Vr5500 is in the 32-bit bus mode, an address error exception

does not occur and physical addresses are processed with bits 35 to 32 ignored, even if the
space is referenced so that bits 35 to 32 of the physical address are a value other than 0.

98 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER5 MEMORY MANAGEMENT SYSTEM

5.4.1 User mode virtual address space

In user mode, a 2 GB (2% bytes) virtual address space (useg) can be used in 32-bit addressing mode. In 64-bit
addressing mode, a 1 TB (2% bytes) virtual address space (xuseg) can be used.

useg and xuseg can be referenced via the TLB. Whether a cache is used or not is determined for each page by
the TLB entry (depending on the C bit setting in the TLB entry).

The user address space can be accessed in supervisor mode and kernel mode.

The user segment starts at address 0 and the current active user process resides in either useg (in 32-bit
addressing mode) or xuseg (in 64-bit addressing mode).

The VR5500 operates in user mode when the Status register contains the following bit-values.

e KSU field =10
e EXLDbit=0
e ERLDit=0
In addition, the UX bit in the Status register selects addressing mode as follows.
e When UX bit = 0: 32-bit useg space is selected.
A TLB mismatch is processed by the 32-bit TLB refill exception handler.
e When UX bit = 1: 64-bit xuseg space is selected.

A TLB mismatch is processed by the 64-bit XTLB refill exception handler.

Figure 5-7 shows user mode address mapping and Table 5-4 lists the characteristics of the user segments.

Preliminary User’'s Manual U16044EJ1VOUM 99

CHAPTER5 MEMORY MANAGEMENT SYSTEM

Figure 5-7. User Mode Address Space

32-bit mode 64-bit mode
OXFFFF FFFF OxFFFF FFFF FFFF FFFF

Address error Address error
0x8000 0000 0x0000 0100 0000 0000
Ox7FFF FFFF 0x0000 O0FF FFFF FFFF

2 GB with TLB 1 TB with TLB

. useg) xuseg
mapping mapping

0x0000 0000 0x0000 0000 0000 0000

Remark When a 2’s complement overflow occurs in the address calculation, the calculated address is invalid
and the result is not defined.

Table 5-4. 32-Bit and 64-Bit User Mode Segments

Addressing | Address Bit Status Register Bit Value Segment Address Range Size
Mode Value | ksu | EXL | ERL | UX Name
32-bit A31=0 Any 0 0 0 useg 0x0000 0000 2GB
to (2" bytes)
Ox7FFF FFFF
64-bit A(63:40) =0 0 0 1 xuseg 0x0000 0000 0000 0000 1TB
to (2* bytes)

0x0000 00FF FFFF FFFF

100 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER5 MEMORY MANAGEMENT SYSTEM

(1) useg (32-bit mode)
When the UX bit of in the Status register is 0 and the most significant bit of the virtual address is 0, this virtual
address space is labeled useg. Any attempt to reference an address with the most-significant bit of 1 causes an
address error exception (refer to CHAPTER 6 EXCEPTION PROCESSING).

(2) xuseg (64-bit mode)
When the UX bit of the Status register is 1 and bits 63 to 40 of the virtual address are all 0, this virtual address
space is labeled xuseg, and 1 terabyte (2% bytes) of the user address space can be used. Any attempt to
reference an address with bits 63 to 40 equal to 1 causes an address error exception (refer to CHAPTER 6
EXCEPTION PROCESSING).

5.4.2 Supervisor mode virtual address space

Supervisor mode layers the execution of operating systems. Kernel operating systems at the highest layer are
executed in kernel mode, and the rest of the operating system is executed in supervisor mode.

suseg, sseg, xsuseg, xsseg, and csseg (all the spaces) can be referenced via the TLB. Whether a cache is used
or not is determined for each page by the TLB entry (depending on the C bit setting in the TLB entry).

The supervisor address space can be accessed in kernel mode.

The processor operates in supervisor mode when the Status register contains the following bit-values.

e KSU field = 01
e EXLbit=0
e ERLDbit=0

In addition, the SX bit in the Status register selects addressing mode as follows.
o When SX bit = 0: 32-bit supervisor space
A TLB mismatch is processed by the 32-bit TLB refill exception handler.
e When SX bit = 1: 64-bit supervisor space

A TLB mismatch is processed by the 64-bit XTLB refill exception handler.

Figure 5-8 shows supervisor mode address mapping and Table 5-5 lists the characteristics of the segments in
supervisor mode.

Preliminary User’'s Manual U16044EJ1VOUM 101

CHAPTER5 MEMORY MANAGEMENT SYSTEM

Figure 5-8. Supervisor Mode Address Space

32-bit mode 64-bit mode
0xFFFF FFFF O0xFFFF FFFF FFFF FFFF
Address error Address error
0xE000 0000 OxFFFF FFFF E000 0000
0xDFFF FFFF OxFFFF FFFF DFFF FFFF
0.5 GB Wl_th TLB sseq 0.5GBWith TLB | coqeq
mapping mapping
0xC000 0000 OxFFFF FFFF C000 0000
O0XBFFF FFFF OxFFFF FFFF BFFF FFFF

Address error

0x4000 0100 0000 0000
0x3FFF FFFF FFFF FFFF

Address error

1 TB with TLB
) xsseg
mapping
0x8000 0000 0x0000 0100 0000 0000
0x7FFF FFFF 0x3FFF FFFF FFFF FFFF
Address error
2 GB with TLB 0x0000 0100 0000 0000
mapping 0%x0000 00FF FFFF FFFF
1 TB with TLB
suseg . xsuseg
mapping
0x0000 0000 0x0000 0000 0000 0000

Remark When a 2’s complement overflow occurs in the address calculation, the calculated address is invalid
and the result is not defined.

102 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER5 MEMORY MANAGEMENT SYSTEM

Table 5-5. 32-Bit and 64-Bit Supervisor Mode Segments

Addressing | Address Bit Status Register Bit Value Segment Address Range Size
Mode Value | ksu | EXL | ERL | sX Name
32-bit A31=0 01 0 0 0 suseg 0x0000 0000 2GB
or to (2”' bytes)
00 Ox7FFF FFFF
A(31:29) = 01 0 0 0 sseg 0xC000 0000 512 MB
110 or to (2* bytes)
00 OxDFFF FFFF
64-bit A(63:62) = 01 0 0 1 xsuseg 0x0000 0000 0000 0000 1TB
00 or to (2° bytes)
00 0x0000 00FF FFFF FFFF
A(63:62) = 01 0 0 1 xsseg 0x4000 0000 0000 0000 1TB
01 or to (2° bytes)
00 0x4000 OOFF FFFF FFFF
A(63:62) = 01 0 0 1 csseg OxFFFF FFFF C000 0000 | 512 MB
11 or to (2® bytes)
00 OxFFFF FFFF DFFF FFFF
(1) suseg (32-bit supervisor mode, user space)

)

3)

(4)

®)

When the SX bit of the Status register is 0 and the most-significant bit of the virtual address space is 0, the
suseg virtual address space is selected; it covers 2 GB (2% bytes) of the current user address space. The
virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

sseg (32-bit supervisor mode, supervisor space)

When the SX bit of the Status register is 0 and the higher 3 bits of the virtual address space are 110, the sseg
virtual address space is selected; it covers 512 MB (2% bytes) of the current supervisor virtual address space.
The virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

xsuseg (64-bit supervisor mode, user space)

When the SX bit of the Status register is 1 and bits 63 and 62 of the virtual address space are 00, the xsuseg
virtual address space is selected; it covers 1 TB (2% bytes) of the current user address space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

xsseg (64-bit supervisor mode, current supervisor space)

When the SX bit of the Status register is 1 and bits 63 and 62 of the virtual address space are 01, the xsseg
virtual address space is selected; it covers 1 TB (2% bytes) of the current supervisor virtual address space. The
virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

csseg (64-bit supervisor mode, separate supervisor space)

When the SX bit of the Status register is 1 and bits 63 and 62 of the virtual address space are 11, the csseg
virtual address space is selected; it covers 512 MB (2% bytes) of the separate supervisor virtual address space.
The virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

Preliminary User’'s Manual U16044EJ1VOUM 103

CHAPTER5 MEMORY MANAGEMENT SYSTEM

5.4.3 Kernel mode virtual address space
If the Status register satisfies any of the following conditions, the processor runs in kernel mode.

e KSU=00
o EXL=1
e ERL=1

The addressing width in kernel mode varies according to the state of the KX bit of the Status register, as follows.

o When KX = 0: 32-bit kernel space is selected.

A TLB mismatch is processed by the 32-bit TLB refill exception handler.
o When KX = 1: 64-bit kernel space is selected.

A TLB mismatch is processed by the 32-bit XTLB refill exception handler.

The processor enters kernel mode whenever an exception is detected and it remains in kernel mode until an
exception return (ERET) instruction is executed and results in ERL and/or EXL = 0. The ERET instruction restores
the processor to the mode existing prior to the exception.

Kernel mode virtual address space is divided into regions differentiated by the higher bits of the virtual address,
as shown in Figure 5-9. Table 5-6 lists the characteristics of the 32-bit kernel mode segments, and Table 5-7 lists
the characteristics of the 64-bit kernel mode segments.

104 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER5 MEMORY MANAGEMENT SYSTEM

Figure 5-9. Kernel Mode Address Space

OXFFFF FFFF

0xE000
0x0FFF

0000
FFFF

0xC000
0xBFFF

0000
FFFF

0xA000
0x9FFF

0000
FFFF

0x8000 0000
0XTFFFF FFFF

0x0000 0000

Remark

32-bit mode

0.5 GB with TLB
mapping

0.5 GB with TLB
mapping

0.5 GB without TLB
mapping,
uncached

0.5 GB without TLB

mapping,
cacheable

2 GB with TLB
mapping

and the result is not defined.

kseg3

ksseg

kseg1

kseg0

kuseg

0XFFFF

0XFFFF
OXFFFF

0XFFFF
O0XFFFF

0XFFFF
0XFFFF

0XFFFF
0XFFFF

0xC000
0xC000

0xC000
0xBFFF

0x8000
0x7FFF

0x4000
0x4000

0x4000
0x3FFF

0x0000
0x0000

0x0000

FFFF

FFFF
FFFF

FFFF
FFFF

FFFF
FFFF

FFFF
FFFF

00FF
00FF

0000
FFFF

0000
FFFF

0100
00FF

0000
FFFF

0100
00FF

0000

FFFF

E000
DFFF

€000
BFFF

A000
9FFF

8000
TFFF

8000
TFFF

0000
FFFF

0000
FFFF

0000
FFFF

0000
FFFF

0000
FFFF

0000

FFFF

0000
FFFF

0000
FFFF

0000
FFFF

0000
FFFF

0000
FFFF

0000
FFFF

0000
FFFF

0000
FFFF

0000
FFFF

0000
FFFF

0000

64-bit mode

0.5 GB with TLB
mapping

0.5 GB with TLB
mapping

0.5 GB without TLB

mapping,
uncached

0.5 GB without TLB

mapping,
cacheable

Address error

With TLB mapping

Without TLB mapping
(see Figure 5-10)

Address error

1 TB with TLB
mapping

Address error

1 TB with TLB
mapping

When a 2’s complement overflow occurs in the address calculation, the calculated address is invalid

ckseg3

cksseg

ckseg1

cksegO

xkseg

xkphys

xksseg

xkuseg

Preliminary User’'s Manual U16044EJ1VOUM

105

CHAPTER5 MEMORY MANAGEMENT SYSTEM

Figure 5-10. xkphys Area Address Space

0xBFFF

0xB800
0xB800

0xB800
0xB7FF

0xB000
0xB000

0xB000
0xAFFF

0xA800
0xA800

0xA800
0xA7FF

0xA000
0xA000

0xA000
0x9FFF

0x9800
0x9800

0x9800
0x97FF

0x9000
0x9000

0x9000
0x8FFF

0x8800
0x8800

0x8800
0x87FF

0x8000
0x8000

0x8000

FFFF FFFF FFFF

0010 0000 0000
000F FFFF FFFF

0000 0000 0000
FFFF FFFF FFFF

0010 0000 0000
000F FFFF FFFF

0000 0000 0000
FFFF FFFF FFFF

0010 0000 0000
000F FFFF FFFF

0000 0000 0000
FFFF FFFF FFFF

0010 0000 0000
000F FFFF FFFF

0000 0000 0000
FFFF FFFF FFFF

0010 0000 0000
000F FFFF FFFF

0000 0000 0000
FFFF FFFF FFFF

0010 0000 0000
000F FFFF FFFF

0000 0000 0000
FFFF FFFF FFFF

0010 0000 0000
000F FFFF FFFF

0000 0000 0000
FFFF FFFF FFFF

0010 0000 0000
000F FFFF FFFF

0000 0000 0000

Address error

64 GB without TLB
mapping, uncached,
accelerated

Address error

Reserved

Address error

64 GB without TLB
mapping, cacheable,
writeback

Address error

64 GB without TLB
mapping, cacheable,
write-through

Address error

64 GB without TLB
mapping, cacheable,
writeback

Address error

64 GB without TLB
mapping, uncached

Address error

64 GB without TLB
mapping, cacheable,
write-through

Address error

Reserved

106

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER5 MEMORY MANAGEMENT SYSTEM

(1)

)

3)

Table 5-6. 32-Bit Kernel Mode Segments

Address Bit Status Register Bit Value Segment Virtual Address Physical Size
Value KSU | EXL | ERL Name Address
A31=0 KSU =00 0 kuseg 0x0000 0000 TLB map 2GB
or to (231 bytes)
EXL =1 O0x7FFF FFFF
A(31:29) = 100 EREr] 0 kseg0 0x8000 0000 0x0000 0000 | 512 MB
- to to (229 bytes)
O0x9FFF FFFF | Ox1FFF FFFF
A(31:29) = 101 0 kseg1 0xA000 0000 0x0000 0000 |512 MB
to to (229 bytes)
OxBFFF FFFF | Ox1FFF FFFF
A(31:29) = 110 0 ksseg 0xC000 0000 TLB map 512 MB
to (2% bytes)
OxDFFF FFFF
A(31:29) = 111 0 kseg3 0xE000 0000 TLB map 512 MB
to (2% bytes)
OxFFFF FFFF

kuseg (32-bit kernel mode, user space)

When the KX bit of the Status register is 0 and the most-significant bit of the virtual address space is 0, the
kuseg virtual address space is selected; it is the current 2 GB (2% bytes) user address space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

References to kuseg are mapped through TLB. Whether cache can be used or not is determined by bit C of
each page’s TLB entry.

If the ERL bit of the Status register is 1, the user address space is assigned 2 GB (2*' bytes) without TLB
mapping and becomes unmapped (with virtual addresses being used as physical addresses) and uncached.

kseg0 (32-bit kernel mode, kernel space 0)

When the KX bit of the Status register is 0 and the higher 3 bits of the virtual address space are 100, the kseg0
virtual address space is selected; it is the current 512 MB (2* bytes) physical space.

References to kseg0 are not mapped through TLB; the physical address selected is defined by subtracting
0x8000 0000 from the virtual address. The KO field of the Config register controls cacheability (see 5.5.8
Config register (16)).

kseg1 (32-bit kernel mode, kernel space 1)

When the KX bit of the Status register is 0 and the higher 3 bits of the virtual address space are 101, the kseg1
virtual address space is selected; it is the current 512 MB (2* bytes) physical space.

References to kseg1 are not mapped through TLB; the physical address selected is defined by subtracting
O0xA000 0000 from the virtual address. Caches are disabled for accesses to these addresses, and main
memory (or memory-mapped I/O device registers) is accessed directly.

Preliminary User’'s Manual U16044EJ1VOUM 107

CHAPTER5 MEMORY MANAGEMENT SYSTEM

(4) ksseg (32-bit kernel mode, supervisor space)

When the KX bit of the Status register is 0 and the higher 3 bits of the virtual address space are 110, the ksseg
virtual address space is selected; it is the current 512 MB (2% bytes) virtual address space. The virtual address
is extended with the contents of the 8-bit ASID field to form a unique virtual address.
References to ksseg are mapped through TLB. Whether cache can be used or not is determined by bit C of
each page’s TLB entry.

®)

kseg3 (32-bit kernel mode, kernel space 3)

When the KX bit of the Status register is 0 and the higher 3 bits of the virtual address space are 111, the kseg3
virtual address space is selected; it is the current 512 MB (2 bytes) kernel virtual space. The virtual address is
extended with the contents of the 8-bit ASID field to form a unique virtual address.
References to kseg3 are mapped through TLB. Whether cache can be used or not is determined by bit C of
each page’s TLB entry.

Table 5-7. 64-Bit Kernel Mode Segments

Address Bit Value | Status Register Bit Value Segment Virtual Address Physical Address Size
KSU ‘ EXL | ERL KX Name
A(63:62) = 00 KSU =00 1 [xkuseg 0x0000 0000 0000 0000 TLB map 1 TB (2* bytes)
or to
EXL =1 0x0000 O0FF FFFF FFFF
A(63:62) = 01 or 1 |xksseg 0x4000 0000 0000 0000 TLB map 1 TB (2* bytes)
ERL =1 to
0x4000 00FF FFFF FFFF
A(63:62) = 10 1 |xkphys 0x8000 0000 0000 0000 | 0x0000 0000 0000 [2% bytes
to to (see (8))
O0xBFFF FFFF FFFF FFFF | 0x000F FFFF FFFF
A(63:62) = 11 1 [xkseg 0xC000 0000 0000 0000 TLB map 2“ 10 2* bytes
to
0xCO000 O0FF 7FFF FFFF
A(63:62) = 11, 1 |cksegO OxFFFF FFFF 8000 0000 0x0000 0000 (512 MB
A(63:31) = -1 to to (229 bytes)
OxFFFF FFFF 9FFF FFFF | Ox1FFF FFFF
A(63:62) = 11, 1 |cksegil O0xFFFF FFFFA000 0000 0x0000 0000 (512 MB
A(63:31) = -1 to to (2 bytes)
OxFFFF FFFF BFFF FFFF | Ox1FFF FFFF
A(63:62) = 11, 1 cksseg O0xFFFF FFFF C000 0000 TLB map 512 MB
A(63:31) = -1 to (229 bytes)
OxFFFF FFFF DFFF FFFF
A(63:62) = 11, 1 |ckseg3 OxFFFF FFFF EO00 0000 TLB map 512 MB
A(63:31) = -1 to (2 bytes)
OxFFFF FFFF FFFF FFFF
108 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER5 MEMORY MANAGEMENT SYSTEM

(6)

(@)

®)

xkuseg (64-bit kernel mode, user space)

When the KX bit of the Status register is 1 and bits 63 and 62 of the virtual address space are 00, the xkuseg
virtual address space is selected; it is the 1 TB (2* bytes) current user address space. The virtual address is
extended with the contents of the 8-bit ASID field to form a unique virtual address.

References to xkuseg are mapped through TLB. Whether cache can be used or not is determined by bit C of
each page’s TLB entry.

If the ERL bit of the Status register is 1, the user address space is assigned 2 GB (2°' bytes) without TLB
mapping and becomes unmapped (with virtual addresses being used as physical addresses) and uncached.

xksseg (64-bit kernel mode, normal supervisor space)

When the KX bit of the Status register is 1 and bits 63 and 62 of the virtual address space are 01, the xksseg
address space is selected; it is the 1 TB (2* bytes) normal supervisor address space. The virtual address is
extended with the contents of the 8-bit ASID field to form a unique virtual address.

References to xksseg are mapped through TLB. Whether cache can be used or not is determined by bit C of
each page’s TLB entry.

xkphys (64-bit kernel mode, physical spaces)

When the KX bit of the Status register is 1and bits 63 and 62 of the virtual address space are 10, the virtual
address space is called xkphys and one of the 8 spaces of the unmapped area is selected. Internally, bits 35 to
0 of the virtual address are used for the physical address as is. If any of bits 58 to 32 of the address is 1, an
attempt to access that address results in an address error.

Bits 61 to 59 of the virtual address indicate the cache usability of each space and its attribute (algorithm). Table
5-8 shows cache algorithm corresponding to 8 address spaces.

Table 5-8. Cache Algorithm and xkphys Address Space

Bits 61 to 59 Cache Usability and Algorithm Address

0 Reserved 0x8000 0000 0000 0000 to 0x8000 000F FFFF FFFF

1 Cacheable, write-through, write-allocated 0x8800 0000 0000 0000 to 0x8800 000F FFFF FFFF

Uncached 0x9000 0000 0000 0000 to 0x9000 000F FFFF FFFF

Cacheable, writeback 0x9800 0000 0000 0000 to 0x9800 000F FFFF FFFF

Cacheable, write-through, write-allocated 0xA000 0000 0000 0000 to OxA000 000F FFFF FFFF

Cacheable, writeback 0xA800 0000 0000 0000 to 0xA800 000F FFFF FFFF

Reserved 0xB0OO 0000 0000 0000 to 0xBOOO 000F FFFF FFFF

N|o (o |~ |[w|N

Uncached, accelerated 0xB800 0000 0000 0000 to 0xB800 000F FFFF FFFF

Preliminary User’'s Manual U16044EJ1VOUM 109

CHAPTER5 MEMORY MANAGEMENT SYSTEM

(9) xkseg (64-bit Kernel mode, physical spaces)
When the KX bit of the Status register is 1 and bits 63 and 62 of the virtual address space are 11, the virtual
address space is called xkseg and selected as either of the following.

o Kernel virtual space xkseg, the current kernel virtual space; the virtual address is extended with the contents

of the 8-bit ASID field to form a unique virtual address
References to xkseg are mapped through TLB. Whether cache can be used or not is determined by bit C of
each page’s TLB entry.

o One of the four 32-bit kernel compatibility spaces, as described in the next section.

(10) 64-bit kernel mode compatible spaces (ckseg0, ckseg1, cksseg, and ckseg3)
If the conditions listed below are satisfied in kernel mode, ckseg0, ckseg1, cksseg, or ckseg3 (each having 512
MB) is selected as a compatible space according to the state of the bits 30 and 29 (lower 2 bits) of the address.

110

e The KX bit of the Status register is 1.
e Bits 63 and 62 of the 64-bit virtual address are 11.
e Bits 61 to 31 of the virtual address are OxFFF FFFF.

(a)

(b)

(¢)

(d)

ckseg0
This space is an unmapped area, compatible with the 32-bit mode kseg0 space. The KO field of the Config
register controls cacheability and coherency. (Refer to 5.5.8 Config register (16)).

ckseg1
This space is an unmapped and uncached area, compatible with the 32-bit mode kseg1 space.

cksseg

This space is the ordinaty supervisor virtual space, compatible with the 32-bit mode ksseg space.
References to cksseg are mapped through TLB. Whether cache can be used or not is determined by bit C
of each page’s TLB entry.

ckseg3

This space is the kernel virtual space, compatible with the 32-bit mode kseg3 space.

References to ckseg3 are mapped through TLB. Whether cache can be used or not is determined by bit C
of each page’s TLB entry.

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER5 MEMORY MANAGEMENT SYSTEM

5.5 Memory Management Registers

The CPO registers used for managing the memory are described below. The memory management registers are
listed in Table 5-9. Each register has a unique identification number that is referred to as its register number. CPO
registers not listed below are used for exception processing (refer to CHAPTER 6 EXCEPTION PROCESSING for
details).

Table 5-9. CP0 Memory Management Registers

Register Name Register No.

Index register 0

Random register 1

EntryLoO register 2

EntryLo1 register 3
PageMask register 5
Wired register 6
EntryHi register 10
PRId register 15
Config register 16
LLAddr register"™® 17
TagLo register 28
TagHi register 29

Note This register is defined to preserve compatibility with other
VR Series products and has no actual operation.

With the Vr5500, the hardware automatically avoids a hazard that occurs when a TLB or CPO register is changed,

except when settings related to instruction fetch are made. For the hazards related to instruction fetch, refer to
CHAPTER 19 INSTRUCTION HAZARDS.

Preliminary User’'s Manual U16044EJ1VOUM 111

CHAPTER5 MEMORY MANAGEMENT SYSTEM

5.5.1 Index register (0)

The Index register is a 32-bit, readable/writable register containing five lower bits to index an entry in the TLB.
The most-significant bit of the register shows the success or failure of a TLB probe (TLBP) instruction.

The Index field also specifies the TLB entry affected by TLB read (TLBR) or TLB write index (TLBWI) instructions.
If the TLBP instruction has been successful, the index of the TLB entry that matches the contents of the EntryHi
register is set to the Index field.

Since the contents of the Index register after reset are undefined, initialize this register via software.

Figure 5-11. Index Register

31 30 6 5 0
P 0 Index

P: Indicates whether probing is successful or not. It is set (1) if the latest TLBP instruction fails. It is
cleared (0) when the TLBP instruction is successful.

Index: Specifies an index to a TLB entry that is a target of the TLBR or TLBWI instruction.

0: Reserved. Write 0 to these bits. Zero is returned when these bits are read.

5.5.2 Random register (1)
The Random register is a read-only register. The lower 6 bits are used in referencing a TLB entry. This register is
decremented each time an instruction is executed. The values that can be set in the register are as follows.

e The lower bound is the content of the Wired register.
e The upper bound is 47.

The Random register specifies the entry in the TLB that is affected by the TLB write random (TLBWR) instruction.
The register can be read to verify proper operation of the processor.

The Random register is set to the value of the upper boundary upon Cold Reset. This register is also set to the
upper boundary when the Wired register is written.

Figure 5-12. Random Register

31 6 5 0

0 Random

Random: TLB random index
0: Reserved. Write 0 to these bits. Zero is returned when these bits are read.

112 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER5 MEMORY MANAGEMENT SYSTEM

5.5.3 EntryLoO (2) and EntryLo1 (3) registers

The EntryLo register consists of two registers that have identical formats: the EntryLoO register, used for even
pages and the EntryLo1 register, used for odd pages. The EntryLoO and EntryLo1 registers are both read-/write-
accessible. They are used to access the lower bits of the on-chip TLB. When a TLB read/write operation is carried
out, the EntryLoO and EntryLo1 registers accesses the contents of the lower bits of TLB entries at even and odd
addresses, respectively.

Since the contents of these registers after reset are undefined, initialize these registers via software.

Figure 5-13. EntryLoO and EntryLo1 Registers

31 30 29 6 5 3210
EntryLoO
32-bit mode 0 PFN ¢ |DbVviG
31 30 29 6 5 3210
EntryLo1
32-bit mode 0 PFN C Dlv|G
63 30 29 6 5 3210
EntryLoO
64-bit mode 0 PFN ¢ |DViG
63 30 29 6 5 3210
EntryLo1
64-bit mode 0 PFN ¢ |DbVviG

PFN: Page frame number; higher bits of the physical address.

C: Specifies the page attribute of the TLB entry (refer to Table 5-10).

D: Dirty. If this bit is set to 1, the page is writable. This bit is actually a write-protect bit that software can
use to prevent alteration of data.

V: Valid. If this bit is set to 1, it indicates that the TLB entry is valid; if an entry with this bit O is hit, a TLB
Invalid exception (TLBL or TLBS) occurs.

G: Global. If this bit is set in both the EntryLoO and EntryLo1 registers, then the processor ignores the
ASID during TLB lookup.

0: Reserved. Write 0 to these bits. Zero is returned when these bits are read.

Caution If the system interface of the Vr5500 is in the 32-bit bus mode, an address error exception
does not occur and physical addresses are processed with bits 35 to 32 ignored, even if the
space is referenced so that bits 35 to 32 of the physical address are a value other than 0.

Preliminary User’'s Manual U16044EJ1VOUM 113

CHAPTER5 MEMORY MANAGEMENT SYSTEM

The C bit specifies whether the cache is used when a page is referenced. To use the cache, select an algorithm
from “writeback” or “write-through, write-allocated”. Table 5-10 shows the page attributes selected by the C bit.

Table 5-10. Cache Algorithm

Value of C Bit Cache Algorithm
0 Reserved
1 Cacheable, write-through, write-allocated
2 Uncached
3 Cacheable, writeback
4 Cacheable, write-through, write-allocated, unguarded
5 Cacheable, writeback, unguarded
6 Reserved
7 Uncached, accelerated

“Unguarded” means enabling a speculative refill operation to the external memory before a speculatively issued
load/store instruction is committed if a data cache miss occurs because of the instruction. Therefore, the unguarded
attribute is valid only for the data cache.

114 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER5 MEMORY MANAGEMENT SYSTEM

5.5.4 PageMask register (5)

The PageMask register is a readable/writable register used for reading from or writing to the TLB; it holds a
comparison mask that sets the page size for each TLB entry, as shown in Table 5-11. Page sizes can be set from 1
KB to 256 KB in five ways.

TLB read/write operation uses this register as either a source or a destination; bits 30 to 13 that are targets of
comparison are masked during address translation.

Since the contents of the PageMask register after reset are undefined, initialize this register via software.

Table 5-11 lists the mask pattern for each page size. If the mask pattern is one not listed below, the TLB
operates unexpectedly.

Figure 5-14. PageMask Register

31 30 13 12 0
0 MASK 0

MASK: Page comparison mask, which determines the virtual page size for the corresponding entry.
0: Reserved. Write 0 to these bits. Zero is returned when these bits are read.

Table 5-11. Mask Values and Page Sizes

Page Size Bit

30 |29 |28 |27 |26 |25 |24 |23 |22 |21 (20|19 |18 |17 |16 | 15| 14 | 13
4 KB ojo|lo0oj0|lO|lO|lO|]O|O|O|O|O0O|]O]|]O|JO|O]|O0O|O
16 KB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
64 KB ojojo|jo0o|lO0O|lO|lO|JO|O|O|O]O0O]|]O0O]O0]1 1 1 1
256 KB 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
1 MB 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
4 MB 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
16 MB 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
64 MB 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
256 MB 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1GB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Preliminary User’'s Manual U16044EJ1VOUM 115

CHAPTER5 MEMORY MANAGEMENT SYSTEM

5.5.5 Wired register (6)

The Wired register is a readable/writable register that specifies the lower boundary of the random entry of the
TLB. Wired entries cannot be overwritten by a TLBWR instruction. They can, however, be overwritten by a TLBWI
instruction. Random entries can be overwritten by both instructions.

Figure 5-15. Positions Indicated by Wired Register

TLB

47

Range of random
entries

-— Value specified by

the Wired register

Range of wired entries

| 0

The Wired register is cleared to 0 after reset. Writing this register also sets the Random register to the value of its
upper boundary (see 5.5.2 Random register (1)).

Figure 5-16. Wired Register

31 6 5 0
0 Wired

Wired: Specifies TLB wired boundary
0: Reserved. Write 0 to these bits. Zero is returned when these bits are read.

116 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER5 MEMORY MANAGEMENT SYSTEM

5.5.6 EntryHi register (10)

The EntryHi register is a writable register and is used to access the higher bits of the TLB. The EntryHi register
holds the higher bits of a TLB entry for TLB read/write operations. If a TLB refill, TLB invalid, or TLB modified
exception occurs, the EntryHi register is set with the virtual page number (VPN2) and the ASID for a virtual address
where an exception occurred. See CHAPTER 6 EXCEPTION PROCESSING for details of TLB exceptions.

The ASID is used to read from or write to the ASID field of the TLB entry. It is also checked with the ASID of the
TLB entry as the ASID of the virtual address during address translation.

The EntryHi register is accessed by the TLBP, TLBWR, TLBWI, and TLBR instructions.

Figure 5-17. EntryHi Register

31 13 12 8 7 0
32-bit
mode VPN2 0 ASID

63 62 61 40 39 13 12 8 7 0
64-bit)
mode| R Fill VPN2 0 ASID

VPN2: Virtual page number divided by two (mapping to two pages)

ASID: 8-bit address space ID field. This field enables the TLB to be shared by several processes. The virtual
address of each process may be duplicated.

R: Space type (00 — User, 01 — Supervisor, 11 — Kernel). Matches bits 63 and 62 of the virtual address.

Fill: Reserved. Ignored on write. Zero is returned when these bits are read.

0: Reserved. Write O to these bits. Zero is returned when these bits are read.

Preliminary User’'s Manual U16044EJ1VOUM 117

CHAPTER5 MEMORY MANAGEMENT SYSTEM

5.5.7 PRId (processor revision ID) register (15)
The 32-bit, read-only processor revision ID (PRId) register contains information identifying the implementation
and revision level of the CPU and CPO.

Figure 5-18. PRId Register

31 16 15 8 7 0

0 Imp Rev

Imp: CPU processor ID number (0x55 for the VR5500)
Rev: CPU processor revision number
0: Reserved. Write O to these bits. Zero is returned when these bits are read.

The processor revision number is stored as a value in the form yx, where y is a major revision number in bits 7 to

4 and x is a minor revision number in bits 3 to 0.

The processor revision number can distinguish some revisions of the chip, however there is no guarantee that
changes to the chip will necessarily be reflected in the PRId register, or that changes to the revision number
necessarily reflect real chip changes. Therefore, create a program that does not depend on the processor revision
number field.

5.5.8 Config register (16)

The Config register indicates/sets various statuses of processors on the VR5500.

Bits 31 to 28 and 21 to 3 are set by hardware after reset. These are read-only bits, and their status when
accessed by software can be checked.

Bits 27 to 22 and 2 to 0 are readable/writable and can be manipulated by software. Since these bits are
undefined after reset, initialize these bits via software.

118 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER5 MEMORY MANAGEMENT SYSTEM

Figure 5-19. Config Register (1/2)

31 30 28 27 24232221201918 17 16 15 14 13 12 11 9 8

6 5 4 3 2 0

|O‘EC‘ EP‘EM‘11‘EW‘1‘O‘BE‘1‘1‘O‘011‘01

1‘1‘1‘0‘K0|

EC: Sets the division ratio of the system clock to PClock.
000 — Divided by 2
001 — Divided by 2.5
010 — Divided by 3
011 — Divided by 3.5
100 — Divided by 4
101 — Divided by 4.5
110 — Divided by 5
111 — Divided by 5.5
EP:

of the system interface (the transfer pattern is the same).

® 32-bit bus mode
0000 — DDDDDDDD (1 word/1 cycle)
0001 — DDxDDxDDxDDx (2 words/3 cycles)
0010 — DDxxDDxxDDxxDDxx (2 words/4 cycles)
0011 — DxDxDxDxDxDxDxDx (2 words/4 cycles)
0100 — DDxxxDDxxxDDxxxDDxxx (2 words/5 cycles)
0101 — DDxxxxDDxxxxDDxxxxDDxxxx (2 words/6 cycles)
0110 — DxxDxxDxxDxxDxxDxxDxxDxx (2 words/6 cycles)
0111 — DDxxxxxxDDxxxxxxDDxxxxxxDDxxxxxx (2 words/8 cycles)
1000 — DxxxDxxxDxxxDxxxDxxxDxxxDxxxDxxx (2 words/8 cycles)
Other — Reserved

® 64-bit bus mode
0000 — DDDD (1 doubleword/1 cycle)
0001 — DDxDDx (2 doublewords/3 cycles)
0010 — DDxxDDxx (2 doublewords/4 cycles)
0011 — DxDxDxDx (2 doublewords/4 cycles)
0100 — DDxxxDDxxx (2 doublewords/5 cycles)
0101 — DDxxxxDDxxxx (2 doublewords/6 cycles)
0110 — DxxDxxDxxDxx (2 doublewords/6 cycles)
0111 — DDxxxxxxDDxxxxxx (2 doublewords/8 cycles)
1000 — DxxxDxxxDxxxDxxx (2 doublewords/8 cycles)
Other — Reserved

Sets the transfer rate of block write data. The number of data words differs depending on the bus mode

Preliminary User’'s Manual U16044EJ1VOUM

119

CHAPTER5 MEMORY MANAGEMENT SYSTEM

Figure 5-19. Config Register (2/2)

EM: Sets SysAD bus timing mode. The mode that can be selected differs depending on the bus mode of the
system interface.

¢ In normal mode
00 — Vr4000 compatible mode
01 — Reserved
10 — Pipeline write mode
11 — Write re-issuance mode
e In out-of-order return mode
00, 10 — Pipeline mode
01, 11 — Re-issuance mode
EW: Sets SysAD bus mode (bus width).
00 — 64-bit bus mode
01 — 32-bit bus mode
Other — Reserved
BE: Sets big-endian mode.
0 — Little endian
1 — Big endian
KO: Sets cache algorithm of kseg0.
001 — Cacheable, write-through, write-allocated
010 — Uncached
011 — Cacheable, writeback
100 — Cacheable, write-through, write-allocated, unguarded
101 — Cacheable, writeback, unguarded
111 — Uncached, accelerated
Other — Reserved
1: 1 is returned when read.
0: 0 is returned when read.

120 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER5 MEMORY MANAGEMENT SYSTEM

5.5.9 LLAddr (load linked address) register (17)

The LLAddr register is a read/write register and indicates the physical address that was read by the last LL
instruction.

This register is used only for diagnostic purposes.

The PAddr field indicates the physical address PA(35:4) that is read when the LL instruction is executed.

The contents of the LLAddr register after reset are undefined.

Figure 5-20. LLAddr Register

31 0
PAddr

Paddr: Bits 35 to 4 of physical address read by last LL instruction

Preliminary User’'s Manual U16044EJ1VOUM 121

CHAPTER5 MEMORY MANAGEMENT SYSTEM

5.5.10 TagLo (28) and TagHi (29) registers
The TagLo and TagHi registers are 32-bit readable/writable registers that hold the cache tag during cache
initialization, cache diagnostics, or cache error processing. The Tag registers are written by the CACHE and MTCO
instructions.
The contents of these registers after reset are undefined.

Figure 5-21. TagLo and TagLo Registers

31 8 7 6 5 4 3 1
TaglLo PTaglLo PState L | R 0 P

31 0
TagHi 0

PTaglLo: Specifies physical address bits 31 to 10.
Pstate: Indicates the status of the cache.
00 — Invalid
10 — Clean
11 — Dirty
Other — Reserved
L: Sets the cache line lock.
0 — Not locked
1 — Locked
R: Specifies the way of the cache that is a candidate for replacement. The candidate for replacement is
determined by the LRU algorithm.
0—> WayO0
1 —> Way 1
P: Even parity bit for the cache tag
0: Reserved. Write 0 to these bits. Zero is returned when these bits are read.

The Index_Store_Tag operation of the CACHE instruction writes the value of the P bit of the TagLo register to the
P bit of the cache tag as is (parity is not calculated). An operation other than the Index_Store_Tag operation that
changes the contents of the cache writes the value of the parity calculated by the processor to the P bit of the cache
tag.

The Index_Load_Tag operation of the CACHE instruction writes the value of the P bit of the target cache tag to
the P bit of the TagLo register.

122 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 6 EXCEPTION PROCESSING

This chapter describes CPU exception processing, including an explanation of the hardware that processes
exceptions. For details of FPU exceptions, sece CHAPTER 8 FLOATING-POINT EXCEPTIONS.

6.1 Exception Processing Operation

The processor receives exceptions from a number of sources, including translation lookaside buffer (TLB) misses,
arithmetic overflows, I/O interrupts, and system calls. When the CPU detects an exception, the normal sequence of
instruction execution is suspended and the processor enters kernel mode (refer to CHAPTER 5 MEMORY
MANAGEMENT SYSTEM for a description of system operating modes). The processor then disables interrupts and
moves control for execution to the exception handler (fixed at a specific address as an exception processing routine
implemented by software). For the exception handler, save the state of the processor, including the contents of the
program counter, the current operating mode (user or supervisor), statuses, and interrupt enable. These can be
restored when the exception has been processed.

When an exception occurs, the CPU loads the exception program counter (EPC) register with an address where
execution can restart after the exception has been processed. The restart address in the EPC register is the
address of the instruction that caused the exception or, if the instruction was being executed in a branch delay slot,
the address of the branch instruction preceding the delay slot.

In addition, registers that hold address, cause, and status information during exception processing are also
available. For details, refer to 6.2 Exception Processing Registers. For details of exception processing, refer to
6.4 Details of Exceptions.

Preliminary User’'s Manual U16044EJ1VOUM 123

CHAPTER 6 EXCEPTION PROCESSING

6.2 Exception Processing Registers

This section explains the CPO registers that are used in exception processing. Table 6-1 lists these registers,
along with their number-each register has a unique identification number that is referred to as its register number.
The CPO registers not listed in the table are used in memory management (for details, see CHAPTER 5 MEMORY
MANAGEMENT SYSTEM).

The exception handler examines the CPO registers during exception processing to determine the cause of the

exception and the state of the CPU at the time the exception occurred.

With the Vr5500, the hardware automatically avoids a hazard that occurs when a TLB or CPO register is changed,
except when settings related to instruction fetch are made. For the hazards related to instruction fetch, refer to

Table 6-1. CP0 Exception Processing Registers

Register Name Register No.
Context register 4
BadVAddr register 8
Count register 9
Compare register 11
Status register 12
Cause register 13
EPC register 14
WatchLo register 18
WatchHi register 19
XContext register 20
Performance Counter register 25
Parity Error register 26
Cache Error register 27
ErrorEPC register 30

CHAPTER 19 INSTRUCTION HAZARDS.

124

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 6 EXCEPTION PROCESSING

6.2.1 Context register (4)

The Context register is a read-/write-accessible register and indicates an entry in the page table entry (PTE) array
in the memory. This array shows the operating system structure, and stores the virtual-to-physical address table.
When a TLB miss occurs, the operating system loads the unsuccessfully translated entry from the PTE to the TLB.
The Context register is used by the TLB refill exception handler for loading TLB entries.

The Context register duplicates some of the information provided in the BadVAddr register, but the information is

arranged in a form that is more useful for a TLB exception handler.
The contents of the Context register after reset are undefined.

Figure 6-1. Context Register

31 23 22

32-bit mode PTEBase BadVPN2

63 23 22

64-bit mode PTEBase

BadVPN2

PTEBase: Base address of the page table entry.

address for which translation failed.

BadVPN2: This field holds the value obtained by halving the virtual page number of the most recent virtual

0: Reserved. Write 0 to these bits. Zero is returned when these bits are read.

The PTEBase field is used only by the operating system as the pointer to the current PTE array on the memory.

The 19-bit BadVPN2 field contains bits 31 to 11 of the virtual address that caused the TLB miss; bit 10 is
excluded because a single TLB entry maps to an even-odd page pair. For a 4 KB page size, this format can directly
address the pair-table of 8-byte PTEs. When the page size is 16 KB or more, shifting or masking this value

produces the correct PTE reference address.

Preliminary User’'s Manual U16044EJ1VOUM

125

CHAPTER 6 EXCEPTION PROCESSING

6.2.2 BadVAddr register (8)

The Bad Virtual Address (BadVAddr) register is a read-only register that saves the most recent virtual address
that failed to have a valid translation, or that had an addressing error. Figure 7-2 shows the format of the BadVAddr
register.

If an address error occurs as a result of an instruction fetch in the 64-bit mode and a virtual address is stored in
the BadVAddr register, all of bits 58 to 40 are 0 or 1.

The contents of the BadVAddr register after reset are undefined.

Caution This register saves no information after a bus error exception, because it is not an address
error exception.

Figure 6-2. BadVAddr Register

32-bit mode BadVAddr

63 0
64-bit mode BadVAddr

BadVAddr: Most recent virtual address for which an addressing error occurred, or for which address
translation failed.

126 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 6 EXCEPTION PROCESSING

6.2.3 Count register (9)

The readable/writable Count register acts as a timer. It is incremented in synchronization with the frequency of
1/2 PClock, regardless of the instruction execution or pipeline progress status.

This register is a free-running type. When the register reaches all 1, it rolls over to 0 at the next event and
continues incrementing. This register is used for self-diagnostic test, system initialization, or the establishment of
inter-process synchronization.

The contents of the Count register after reset are undefined.

Figure 6-3. Count Register

31 0

Count

Count: Most recent count value.

6.2.4 Compare register (11)

The Compare register causes a timer interrupt; it holds a value but does not change on its own. When the value
of the Count register (see 6.2.3 Count register (9)) equals the value of the Compare register, the IP7 bit in the
Cause register is set. When the IP7 bit is set, this causes an interrupt as soon as the interrupt is enabled.

Writing a value to the Compare register, as a side effect, clears the timer interrupt request.

For diagnostic purposes, the Compare register is a read/write register. Normally, this register should be only used
for a write.

The contents of the Compare register after reset are undefined.

Figure 6-4. Compare Register Format

31 0

Compare

Compare: Value that is compared with the count value of the Count register.

Preliminary User’'s Manual U16044EJ1VOUM 127

CHAPTER 6 EXCEPTION PROCESSING

6.2.5 Status register (12)
The Status register is a readable/writable register that contains the operating mode, the interrupt enabling, and
diagnostic states of the processor.

Figure 6-5. Status Register

31 30 28 27 26 25 24 16 15 8 7 6 5 4 3 2 1 0
XX CU(2:0) 0 [FR| O DS IM(7:0) KX |SX|UX| KSU | ERL | EXL | IE
XX: Enables use of the MIPS IV instruction set in the user mode (0 — Disables use, 1 — Enables use).
CuU: Enables use of three coprocessors (0 — Disables use, 1 — Enables use).

In the kernel mode, CPO can be always used regardless of the CUO bit.
CP2 is reserved for future expansion.

FR: Number of floating-point registers usable (0 — 16, 1 — 32)
DS: Self-diagnosis status field (See Figure 6-6.)
IM: Interrupt mask. Enables external, internal, coprocessor, and software interrupts (0 — Disables, 1 —

Enables). This field consists of 8 bits and controls eight interrupts.
Each interrupt is allocated to the corresponding bit of this field as follows.
IM7: Masks timer interrupts or Int5# and external write requests.
IM(6:2): Masks ordinary external interrupts (Int(4:0)# and external write request).
IM(1:0): Masks software interrupts.
KX: Enables 64-bit addressing in kernel mode (0 — 32-bit, 1 — 64-bit). If this bit is set, an XTLB refill
exception occurs if a TLB miss occurs in the kernel mode address space.
In addition, 64-bit operations are always valid in kernel mode.

SX: Enables 64-bit addressing and operation in supervisor mode (0 — 32-bit, 1 — 64-bit). If this bit is
set, an XTLB refill exception occurs if a TLB miss occurs in the supervisor mode address space.

UX: Enables 64-bit addressing and operation in user mode (0 — 32-bit, 1 — 64-bit). If this bit is set, an
XTLB refill exception occurs if a TLB miss occurs in the user mode address space.

KSU: Sets and indicates the operating mode (10 — User, 01 — Supervisor, 00 — Kernel).

ERL: Sets and indicates the error level (0 — Normal, 1 — Error).

EXL: Sets and indicates the exception level (0 — Normal, 1 — Exception).

IE: Sets and indicates interrupt enabling/disabling (0 — Disabled, 1 — Enabled).

0: RFU. Write 0 to this bit. Zero is returned when this bit is read.

128 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 6 EXCEPTION PROCESSING

Figure 6-6 shows the details of the Diagnostic Status (DS) field.

Figure 6-6. Status Register Diagnostic Status Field

24 23 22 21 20 19

18

17

16

DME 0 BEV TS SR 0

CH

CE

DE

TS:

SR:
CH:

CE:

DE:

DME: Enables setting of debug mode (0 — Disables, 1 — Enables).
BEV:

Normal, 1 — Bootstrap).
Occurrence of TLB shutdown (0 — Does not occur, 1 — Occurs)

This bit is used to avoid an adverse effect if two or more TLB entries match the same virtual address.

When this bit is set (1), a TLB refill exception occurs.

TLB shutdown also occurs if the TLB entry that matches a virtual address is invalidated (by clearing the

V bit of the entry).
Occurrence of soft reset or NMI (0 — Does not occur, 1 — Occurs)

Condition bit of CP0 (0 — False, 1 — True). This bit can be read or written only by software and is not

affected by hardware.

When this bit is 1, the contents of the Parity Error register are used to set or change the check bit of the

cache (see 6.2.4).

Enables exception occurrence in case of cache parity error (0 — Enables, 1 — Disables).

Reserved. Write 0 to this bit. 0 is returned if this bit is read.

Specifies base address of TLB refill exception vector and general-purpose exception vector (0 —

The field of the Status register that sets the mode and access status is explained next.

(1) Interrupt enable
Interrupts are enabled when all of the following conditions are true:

IEis setto 1.

EXL is cleared to 0.

ERL is cleared to 0.

The appropriate bit of the IM is set to 1.

Preliminary User’'s Manual U16044EJ1VOUM

129

CHAPTER 6 EXCEPTION PROCESSING

()

@)

(4)

130

Operating modes
The following Status register bit settings are required for user, kernel, and supervisor modes.

e The processor is in the user mode when the KSU field is 10, the EXL bit is 0, and the ERL bit is 0.
e The processor is in the supervisor mode when the KSU field is 01, the EXL bit is 0, and the ERL bit is 0.
e The processor is in the kernel mode when the KSU field is 00, the EXL bit is 1, or the ERL bit is 1.

Accessing the kernel address space is enabled only in the kernel mode.
Accessing the supervisor address space is enabled in the supervisor mode and kernel mode.
Accessing the user address space is enabled in all modes.

Addressing mode

The following Status register bit settings select 32- or 64-bit operation for user, kernel, and supervisor operating
modes. Enabling 64-bit operation permits the execution of 64-bit opcodes and translation of 64-bit addresses.
64-bit operation for user, kernel and supervisor modes can be set independently.

e 64-bit addressing for the kernel mode is enabled when the KX bit is 1. 64-bit operations are always valid in
the kernel mode.
If a TLB miss occurs in the kernel mode address space when this bit is set, an XTLB refill exception occurs.

e 64-bit addressing and operations are enabled for the supervisor mode when the SX bit = 1.
If a TLB miss occurs in the supervisor mode address space when this bit is set, an XTLB refill exception
occurs.

e 64-bit addressing and operations are enabled for the user mode when the UX bit = 1.
If a TLB miss occurs in the user mode address space when this bit is set, an XTLB refill exception occurs.

Status at reset
At reset, the contents of the Status register are undefined except for the following bits.

e The SR bit is 0 when a cold reset is executed and is 1 when a soft reset is executed or an NMI occurs.
e ERL bit=1 and BEV bit =1

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 6 EXCEPTION PROCESSING

6.2.6 Cause register (13)

The 32-bit readable/writable Cause register holds the cause of the most recent exception. A 5-bit in the exception
code field indicates one of the exception causes (see Table 6-2). Other bits hold the detailed information of the
specific exception. All bits in the Cause register, excepting the IP1 and IPO bits, are read-only; IP1 and IP0 are used
for software interrupts.

The contents of the Cause register after reset are undefined.

Figure 6-7. Cause Register

0:

31 30 29 28 27 16 15 8 7 6 2 1 0
BD| 0 CE 0 IP(7:0) 0 ExcCode 0
BD: Indicates whether the most recent exception occurred in the branch delay slot (1 — In delay slot, 0
— Normal).
CE: Indicates the coprocessor number in which a coprocessor unusable exception occurred.
This field will remain undefined for as long as no coprocessor unusable exception occurs.
IP: Indicates whether an interrupt is pending (1 — No interrupt pending, 0 — No interrupt).

ExcCode: Exception code field (see Table 6-2 for details).

Interrupt requests are assigned to the bits as follows.

IP7: Timer interrupt request (INT5# and external write request)

IP(6:2): Normal interrupt requests (INT(4:0)# and external write request)

IP(1:0): Software interrupt requests. These bits generate a software interrupt when they are set to
1 by software.

Reserved. Write 0 to these bits. Zero is returned when these bits are read.

Eight interrupt requests are provided in the VrR5500, and requests states are reflected in IP(7:0). For details of
interrupt function, refer to CHAPTER 16 INTERRUPTS.

IP7

This bit indicates a timer interrupt request, assertion of the interrupt request pin Int5#, and the occurrence of
an interrupt due to an external write request. It is set when the contents of the count register are equal to
those of the compare register, when the Performance Counter overflows, when the Int#5 signal is asserted, or
when data is written to an internal register by an external write request.

Whether the timer interrupt request, Int5# signal, or interrupt request generated by the external write request
is used is specified by the TIntSel signal at reset.

IP(6:2)

Bits IP(6:2) reflect the logical sum of two internal registers. One of the registers latches the status of interrupt
request pins Int(4:0)# in each cycle. Data is written to the other register by the external write request of the
system interface.

IP1, IPO
A software interrupt request can be set or cleared by manipulating bits IP1 and IPO.

Preliminary User’'s Manual U16044EJ1VOUM 131

CHAPTER 6 EXCEPTION PROCESSING

The following table describes the exception codes.

Table 6-2. Exception Codes

ExcCode Mnemonic Description
0 Int Interrupt exception
1 Mod TLB modified exception
2 TLBL TLB refill exception (load or instruction fetch)
3 TLBS TLB refill exception (store)
4 AdEL Address error exception (load or instruction fetch)
5 AdES Address error exception (store)
6 IBE Bus error exception (instruction fetch)
7 DBE Bus error exception (data load or store)
8 Sys System call exception
9 Bp Breakpoint exception
10 RI Reserved instruction exception
11 CpU Coprocessor unusable exception
12 Ov Operation overflow exception
13 Tr Trap exception
14 - Reserved
15 FPE Floating-point exception
16-22 - Reserved
23 Watch Watch exception
24-31 - Reserved

To indicate the cause of the floating-point exception in detail, the exception code included in the floating-point
Control/Status register is used (refer to CHAPTER 8 FLOATING-POINT EXCEPTIONS).

132 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 6 EXCEPTION PROCESSING

6.2.7 EPC (exception program counter) register (14)
The EPC (exception program counter) register is a readable/writable register that contains the address at which
processing resumes after an exception has been processed, as shown below.

o Virtual address of the instruction that directly caused the exception.
e Virtual address of the preceding branch or jump instruction (when the instruction associated with the

exception is in a branch delay slot, and the BD bit in the Cause register is set (1)).

e Virtual address of the instruction immediately after the WAIT instruction when the standby mode is released

by an interrupt exception immediately after execution of the WAIT instruction

If an address error exception due to instruction fetch occurs and a virtual address is stored in the EPC register in
the 64-bit mode, all of bits 58 to 40 are cleared to 0 or set to 1.
The EXL bit in the Status register is set (1) to keep the processor from overwriting the address of the exception-

causing instruction contained in the EPC register in the event of another exception.

The contents of the EPC register after reset are undefined.

Figure 6-8. EPC Register

Preliminary User’'s Manual U16044EJ1VOUM

31 0
32-bit mode EPC
63 0
64-bit mode EPC
EPC: Address for a program to be restarted after exception processing.
133

CHAPTER 6 EXCEPTION PROCESSING

6.2.8 WatchLo (18) and WatchHi (19) registers

The VR5500 can detect a request to reference the physical address specified by the WatchLo and WatchHi
registers. This function can also be used as a debugging function to generate a watch exception at the execution of
a load/store instruction.

Since the contents of these registers after reset are undefined, initialize these registers via software.

Figure 6-9. WatchLo and WatchHi Registers

31 3 2 1 0
WatchLo PAddr0 0| R|W

31 4 3 0
WatchHi 0 PAddr1

Paddr1: Bits 35 to 32 of physical address.
PAddr0: Bits 31 to 3 of physical address.

R: Enables an exception occurrence when a load instruction is executed (0 — Enables, 1 — Disables).
W: Enables an exception occurrence when a store instruction is executed (0 — Enables, 1 — Disables).
0: Reserved. Write O to these bits. Zero is returned when these bits are read.

134 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 6 EXCEPTION PROCESSING

6.2.9 XContext register (20)

The readable/writable XContext register indicates an entry in the page table entry (PTE), an operating system
data structure that stores virtual-to-physical address translations. If a TLB miss occurs, the operating system loads
the untranslated data from the PTE into the TLB to handle the software error.

The XContext register is used by the XTLB Refill exception handler to load TLB entries in 64-bit addressing
mode.

The XContext register duplicates some of the information provided in the BadVAddr register, and puts it in a form
useful for the XTLB exception handler.

This register is included solely for operating system use. The operating system sets the PTEBase field in this
register, as needed.

The contents of the XContext register after reset are undefined.

Figure 6-10. XContext Register

63 33 32 31 30 4 3 0
PTEBase R BadVPN2 0

PTEBase: The PTEBase field is a base address of the page table entry.

R: Address space type (00 — user, 01 — supervisor, 11 — kernel). The setting of this field matches
virtual address bits 63 and 62.

BadVPN2: Virtual address for which translation is invalid (bits 39 to 13).

0: Reserved. Write 0 to these bits. Zero is returned when these bits are read.

Only the operating system uses the PTEBase field as a pointer to the current PTE array on memory.

The R field is written by hardware in case of a TLB miss.

The 27-bit BadVPN2 field has bits 39 to 11 of the virtual address that caused the TLB refill; bit 12 is excluded
because a single TLB entry maps to an even-odd page pair. For a 4 KB page size, this register format can be used
as a pointer that references the pair-table of 8-byte PTEs. When the page size is 16 KB or more, shifting or masking
this value produces the appropriate PTE reference address.

Preliminary User’'s Manual U16044EJ1VOUM 135

CHAPTER 6 EXCEPTION PROCESSING

6.2.10 Performance Counter register (25)

The Performance Counter register consists of four registers: two counter registers and two control registers.
Each register is a 32-bit read/write register. The VrR5500 uses the Performance Counter register to count the number
of events that have occurred in the processor, and can generate a timer interrupt request when the Performance
Counter register overflows.

A counter register is incremented when an event specified by a control register occurs. The two counter registers
correspond to the two control registers, and each counter register operates independently of each other.

The control register specifies an event to count, the mode at that time, and enables occurrence of an interrupt
request.

When a counter register overflows, the IP7 bit of the Cause register is set if the control register enables
occurrence of an interrupt. Even after the counter register overflows, it continues counting regardless of whether an
interrupt request is reported.

When a cold reset is executed, the contents of all these registers are initialized to 0. The contents of these
registers are retained after a warm reset.

Figure 6-11. Performance Counter Register

31 0
Counter
register Count

31 11 10 9 6 5 4 3 2 1 0
Control
register 0 CE Event IP|IE| U| S| K |[EXU

Count: Performance count value

CE: Enables performance count.

Event: Sets an event to count (refer to Table 6-3).

IP: Indicates occurrence of an interrupt. This bit is set (1) if the counter register overflows. Writing 0 to
this bit clears the interrupt request.

IE: Enables occurrence of an interrupt. When this bit is set (1), the IP7 bit of the Cause register is set (1)

if the counter register overflows.

When this bit is set (1), counting is performed if an event occurs in the user mode.

When this bit is set (1), counting is performed if an event occurs in the supervisor mode.

K: When this bit is set (1), counting is performed if an event occurs in the kernel mode and if the ERL
and EXL bits are 0.

EXL: When this bit is set (1), counting is performed if an event occurs in the kernel mode and if the EXL bit
is 0.

0: Reserved. Write 0 to these bits. 0 is returned if these bits are read.

» <

136 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 6 EXCEPTION PROCESSING

Table 6-3 shows the setting of the Event field.

Table 6-3. Events to Count

Event Field

Event

Processor clock cycle

Instruction execution

Execution of load/prefetch/cache instruction

Execution of store instruction

Execution of branch instruction

Execution of floating-point instruction

Doubleword flush to main memory

TLB refill

Data cache miss

© (0 | N | (o |~ |[W|N

Instruction cache miss

10

Branch prediction miss

11-15

Reserved

Remark If execution of an instruction is set as an event, it is

assumed that the instruction is executed when

it

causes an exception, and the instruction is counted as

an event.

Preliminary User’'s Manual U16044EJ1VOUM

137

CHAPTER 6 EXCEPTION PROCESSING

6.2.11 Parity Error register (26)

The Parity Error register reads/writes the data parity bit of the cache for initializing the cache, self-diagnosis, and
error processing.

The parity is read to the Parity Error register by the CACHE instruction Index_Load_Tag.

If the CE bit of the Status register is set, the contents of the Parity Error register are written instead of the parity to
the data cache by a store instruction and to the instruction cache by the Fill operation of the CACHE instruction.

The contents of the Parity Error register are undefined at reset.

Figure 6-12. Parity Error Register

31 8 7 0

0 Parity

Parity: Parity bit of cache data.
e For data cache
Bit 0: Even parity for the least significant byte
Bit 1: Even parity for the second least significant byte
Bit 2: Even parity for the third least significant byte
Bit 3: Even parity for the fourth least significant byte
Bit 4: Even parity for the fourth most significant byte
Bit 5: Even parity for the third most significant byte
Bit 6: Even parity for the second most significant byte
Bit 7: Even parity for the most significant byte
e For instruction cache
Bit 0: Even parity for the lower word
Bit 1: Even parity for the higher word
0: Reserved. Write 0 to these bits. Zero is returned when these bits are read.

138 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 6 EXCEPTION PROCESSING

6.2.12 Cache Error register (27)

The Cache Error register is a 32-bit read-only register and indicates the status of a parity error in the cache. The
parity error cannot be corrected.

The Cache Error register has cache index bits that indicate the cause of an error, and status bits.

The contents of the Cache Error register after reset are undefined.

Figure 6-13. Cache Error Register

31 30 29 28 27 26 25 24 0
ER|EC |ED | ET|ES|EE | EB 0

ER: Type of cache (0 — Instruction, 1 — Data)

EC: Cache level of error (0 — Internal, 1 — Reserved)

ED: Indicates whether a data area error has occurred (0 — No error, 1 — Error).

ET: Indicates whether a tag area error has occurred (0 — No error, 1 — Error).

ES: Setif an error occurs in the first doubleword.

EE: Setif an error occurs on the SysAD bus.

EB: Set if a data error occurs in addition to an instruction error (indicated by other bit). If this bit is set, it
indicates that flushing is required for the data cache after the instruction error has been processed.

0: Reserved. Write O to these bits. Zero is returned when these bits are read.

Preliminary User’'s Manual U16044EJ1VOUM 139

CHAPTER 6 EXCEPTION PROCESSING

6.2.13 ErrorEPC register (30)

The ErrorEPC (error exception program counter) register is similar to the EPC register. It is used to store the
program counter value at which the reset, soft reset, NMI, or cache error exception has been processed. The
readable/writable ErrorEPC register holds any of the following virtual address at which instruction execution can
resume after servicing an error.

o Virtual address of the instruction that directly caused the exception.

e Virtual address of the preceding branch or jump instruction (when the instruction associated with the
exception is in a branch delay slot, and the BD bit in the Cause register is set (1)).

e Virtual address of the instruction immediately after the WAIT instruction when the standby mode is released
by a reset, soft reset, NMI, or cache error exception immediately after execution of the WAIT instruction

There is no branch delay slot indication for the ErrorEPC register.

Figure 6-14. ErrorEPC Register

31 0
32-bit mode ErrorEPC

63 0
64-bit mode ErrorEPC

ErrorEPC: Program counter that indicates the restart address after a reset, soft reset, NMI, or cache error
exception.

140 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 6 EXCEPTION PROCESSING

6.3 Details of Exceptions

If an exception occurs in the processor, the EXL bit of the Status register is set to 1, and the system enters the
kernel mode. Usually, the KSU field of the Status register is reset to 00 and the EXL bit is reset to 0 by an exception
handler to enable occurrence of an exception in the exception handler after information has been saved. Re-set the
EXL bit to 1 using the exception handler so that the saved information is not lost by any other exception while it is
being restored.

When the exception processing has been completed, the setting of the KSU field before the occurrence of the
exception is restored and the EXL bit is reset to 0. For details, refer to the description of the ERET instruction in
CHAPTER 17 CPU INSTRUCTION SET.

Remark If both the EXL and ERL bits of the Status register are 0, the user mode, supervisor mode, or kernel
mode is selected as the operating mode, depending on the value of the KSU field of the Status register.
If either of the EXL or ERL bit is 1, the processor enters the kernel mode.

6.3.1 Exception types
Exceptions are classified as the following types, according to the internal status of the processor retained when
an exception occurs.

Reset exceptions

Soft reset exceptions (NMI exception)

Cache error exceptions

Processor exceptions other than above (general exceptions)

When an exception occurs, the registers in the processor are set as follows

(1) Reset exceptions

T: undefined
Random « TLBENTRIES - 1
Wired « 0
Config « 0 Il EC Il undefined® Il 110110 Il BE Il 110011011110 || undefined®
ErrorEPC « PC
SR « undefined’ Il 1 Il undefined' Il 1 Il undefined®
PerformanceCounter « 0
PC « OxFFFF FFFF BFCO 0000

(2) Soft reset and NMI exceptions

T: ErrorEPC « PC
SR <« SRa1:23 || 1 [SR21 Il 1 1l SR19:3 1 1 11 SR10
PC « OxFFFF FFFF BFCO 0000

Preliminary User’'s Manual U16044EJ1VOUM 141

CHAPTER 6 EXCEPTION PROCESSING

(8) Cache error exceptions

ErrorEPC « PC
CacheErr < ERIIECIIED IET IES Il EE Il EB Il 0%
SR « SRst3 11 1 11 SR1o
if SR22 = 1 then /* When the BEV bitis setto 1 */
PC « OxFFFF FFFF BFCO 0200 + 0x100 /* Access to the ROM area */
else
PC « OxFFFF FFFF A000 0000 + 0x100 /* Access to the main memory area */
endif

(4) General exceptions

142

Cause < BD 1 0 Il CE Il 0 Il Cause1s:s || ExcCode Il 0°

if SR1 = 0 then /* User or supervisor mode when exception processing is not in progress */
EPC « PC

endif

SR « SRsi2 1l 1 1l SRo

if SR22 = 1 then /* When the BEV bit is setto 1 */
PC « OxFFFF FFFF BFCO 0200 + vector /* Access to the uncached area */

else
PC«0xFFFF FFFF 8000 0000 + vector /* Access to the cache area */

endif

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 6 EXCEPTION PROCESSING

6.3.2 Exception vector address

If an exception occurs, an exception vector address is set to the program counter, and processor’s processing
branches from the main program. Locate a program that processes the exception (exception handler) at the position
of the exception vector address.

The vector address is the sum of a base address and a vector offset. The vector address differs depending on
the type of exception.

64-/32-bit mode exception vectors and their offset values are shown below.

Table 6-4. 32-Bit Mode Exception Vector Addresses

Exception Vector Base Address (Virtual Address) Vector Offset
Reset, soft reset, NMI 0xBFCO0 0000 0x0000
(BEV bit is automatically set to 1)
Cache error 0xA000 0000 (BEV = 0) 0x0100
0xBFCO 0200 (BEV = 1)
TLB mismatch, EXL = 0 0x8000 0000 (BEV = 0) 0x0000
XTLB mismatch, EXL = 0 OxBFCO 0200 (BEV = 1) 0x0080
Other 0x0180
Table 6-5. 64-Bit Mode Exception Vector Addresses
Exception Vector Base Address (Virtual Address) Vector Offset
Reset, soft reset, NMI OxFFFF FFFF BFCO 0000 0x0000
(BEV bit is automatically set to 1)
Cache error OxFFFF FFFF A000 0000 (BEV = 0) 0x0100
OxFFFF FFFF BFCO 0200 (BEV = 1)
TLB mismatch, EXL =0 OxFFFF FFFF 8000 0000 (BEV = 0) 0x0000
XTLB mismatch, EXL = 0 OxFFFF FFFF BFCO 0200 (BEV = 1) 0x0080
Other 0x0180

e Vector of reset, soft reset, and NMI exception
The vector address (virtual) of each of the reset, soft reset, and NMI exceptions is in the kseg1 (uncached,
non-TLB mapping) area.

e Vector of cache error exception
The vector address (virtual) of the cache error exception is in the kseg1 (uncached, non-TLB mapping) area.

e Vector of TLB refill exception (EXL = 0)
When the BEV bit is 0, the vector address (virtual) of this exception is in the kseg0 (cacheable, non-TLB
mapping) area.
When the BEV bit is 1, the vector address (virtual) of this exception is in kseg1 (uncached, non-TLB mapping)
area.

Preliminary User’'s Manual U16044EJ1VOUM 143

CHAPTER 6 EXCEPTION PROCESSING

(1)

e Vector of general exception
When the BEV bit is 0, the vector address (virtual) of this exception is in the kseg0 (cacheable, non-TLB
mapping) area.
When the BEV bit is 1, the vector address (virtual) of this exception is in kseg1 (uncached, non-TLB mapping)
area.

Selecting TLB refill exception vector
The ISA of MIPS Il or later has the following two TLB refill exception vectors.

o For referencing 32-bit address space (TLB mismatch)
e For referencing 64-bit address space (XTLB mismatch)

The TLB mismatch vector is selected in accordance with the addressing space (user, supervisor, or kernel) of
the address that has generated a TLB miss, and the value of the corresponding extension addressing bits (UX,
SX, or KX) of the Status register. Except when it has something to do with specifying the address space in
which the address exists, the current operating mode of the processor is not important. The Context register
and XContext register are completely different page table pointer registers. Each indicates a different page
table and is used for refilling. No matter which TLB exception (refill exception, invalid exception, TLBL
exception, or TLBS exception) occurs, the address is loaded to the BadVPN2 field of both the registers in the
same way as the Vr4000.

Remark Unlike the VrR5500, the Vr4000 selects a vector in accordance with the current operating mode of the
processor (user, supervisor, or kernel) and the value of the corresponding extension addressing bit
(UX, SX, or KX) of the Status register. The Context register and XContext register are provided not
as completely separate registers, but share the PTEBase field. If a mismatch occurs at a specific
address, a TLB refill exception or XTLB refill exception occurs, depending on the source of reference.
Unless a mismatch handler decodes the address and selects a page table, only one page table can
be used.

Table 6-6 shows the addresses that generate TLB mismatches and the position of the TLB refill exception vector
according to the corresponding mode bit.

144

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 6 EXCEPTION PROCESSING

Table 6-6. TLB Refill Exception Vector

Space Virtual Address Range Area Exception Vector
Kernel O0xFFFF FFFF E000 0000 kseg3 TLB mismatch (KX = 0) or
to XTLB mismatch (KX = 1)
OxFFFF FFFF FFFF FFFF
Supervisor 0xFFFF FFFF C000 0000 sseg, ksseg TLB mismatch (SX = 0) or
to XTLB mismatch (SX = 1)
OxFFFF FFFF DFFF FFFF
Kernel 0xC000 0000 0000 0000 xkseg XTLB mismatch (KX = 1)
to
0xC000 OFFE FFFF FFFF
Supervisor 0x4000 0000 0000 0000 xsseg, xksseg XTLB mismatch (SX = 1)
to
0x4000 OFFF FFFF FFFF
User 0x0000 0000 8000 0000 xsuseg, xuseg, xkuseg XTLB mismatch (UX = 1)
to
0x0000 OFFF FFFF FFFF
User 0x0000 0000 0000 0000 useg, Xuseg, suseg, xsuseg, TLB mismatch (UX = 0) or

to
0x0000 0000 7FFF FFFF

kuseg, xkuseg

XTLB mismatch (UX = 1)

Preliminary User’'s Manual U16044EJ1VOUM

145

CHAPTER 6 EXCEPTION PROCESSING

6.3.3 Priority of exceptions
When more than one exception occurs for a single instruction, only the exception with the highest priority is
selected for processing. Table 6-7 lists the priorities.

Table 6-7. Exception Priority Order

Priority Exception
High Cold reset
A Soft reset
NMI

Debug break (instruction fetch)
Address error (instruction fetch)
TLB/XTLB refill (instruction fetch)
TLB invalid (instruction fetch)
Cache error (instruction fetch)
Bus error (instruction fetch)
System call

Breakpoint

Coprocessor unusable
Reserved instruction

Trap

Integer overflow

Floating-point

Debug break (data access)
Address error (data access)
TLB/XTLB refill (data access)
TLB invalid (data access)

TLB modified (data write)
Cache error (data access)

Bus error (data access)

Watch

Low Interrupt (other than NMI)

Hereafter, handling exceptions by hardware is referred to as “process”, and handling exception by software is
referred to as “service”.

146 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 6 EXCEPTION PROCESSING

6.4 Details of Exceptions

6.4.1 Reset exception

(1)

()

Cause
The reset exception occurs when the ColdReset# signal goes from active to inactive. This exception is not
maskable.

Processing
The special interrupt vector for reset exception is used.

e In 32-bit mode: 0xBFCO 0000 (virtual address)
e In 64-bit mode: OxFFFF FFFF BFCO 0000 (virtual address)

The reset exception vector resides in unmapped and uncached areas, so the hardware need not initialize the
TLB or the cache to process this exception. It also means the processor can fetch and execute instructions
while the caches and virtual memory are in an undefined state.

When this exception occurs, the contents of all registers are undefined except for the following registers.

¢ SR bit of the Status register is cleared (0).

e ERL and BEV bits of the Status register are set (1).

e The Random register is set to the value of its upper bound (47).

e The Wired register is initialized to 0.

¢ The Performance Counter register is initialized to 0.

e Some bits of the Config register are set in accordance with the input status of the initialization interface
signal.

(3) Servicing

The reset exception is serviced by:
o [Initializing all processor registers, coprocessor registers, TLB, caches, and the memory system

e Performing diagnostic tests
e Bootstrapping the operating system

Preliminary User’'s Manual U16044EJ1VOUM 147

CHAPTER 6 EXCEPTION PROCESSING

6.4.2 Soft reset exception

(1)

)

)

148

Cause

A soft reset occurs inactive while the Reset# signal goes from active to inactive when the ColdReset# signal
remains.

This exception is not maskable.

Processing
The special interrupt vector for reset exception (same location as reset) is used.

e In 32-bit mode: 0xBFCO0 0000 (virtual address)
e In 64-bit mode: OxFFFF FFFF BFCO 0000 (virtual address)

This vector is located within unmapped and uncached areas, so that the hardware need not initialize the TLB or
the cache to process this exception. The SR bit of the Status register is set to 1 to distinguish this exception
from a reset exception.

When this exception occurs, the contents of all registers are saved except for the following registers.

e The program counter value at which an exception occurs is set to the ErrorEPC register.
e ERL, SR, and BEV bits of the Status register are set (1).

During a soft reset, access to the cache or system interface may be aborted. This means that the contents of
the cache and memory will be undefined if a soft reset occurs.

Servicing
The soft reset exception is serviced by:

e Saving the current processor states for diagnostic tests
¢ Reinitializing the system in the same way as for a reset exception

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 6 EXCEPTION PROCESSING

6.4.3 NMI exception

(1)

()

@)

Cause
The NMI (non-maskable interrupt) exception occurs when the signal input to the NMI# pin becomes active. It
can also be generated by writing 1 to bit 6 of the internal interrupt register from an external source via SysADB6.
This exception is not maskable; it occurs regardless of the settings of the EXL, ERL, and IE bits of the Status
register

Processing
The special interrupt vector for NMI exception is used.

e In 32-bit mode: 0xBFCO 0000 (virtual address)
e In 64-bit mode: OxFFFF FFFF BFCO 0000 (virtual address)

This vector is located within unmapped and uncached areas so that the hardware need not initialize an NMI
exception. The SR bit of the Status register is set (1) to distinguish this exception from a reset exception.
Because the NMI exception can occur even while another exception is being processed, program execution
cannot be continued after the NMI exception has been processed.

NMI occurs only at instruction boundaries. The states of the caches and memory system are saved by this
exception.

When this exception occurs, the contents of all registers are saved except for the following registers.

e The program counter value at which an exception occurs is set to the ErrorEPC register.
e The ERL, SR, and BEV bits of the Status register are set (1).

Servicing
The NMI exception is serviced by:

e Saving the current processor states for diagnostic tests
¢ Reinitializing the system in the same way as for a reset exception

Preliminary User’'s Manual U16044EJ1VOUM 149

CHAPTER 6 EXCEPTION PROCESSING

6.4.4 Address error exception

(1)

()

@)

150

Cause
The address error exception occurs when an attempt is made to execute one of the following. This exception is
not maskable.

e Execution of the LW or SW instruction for word data that is not located on a word boundary

e Execution of the LH or SH instruction for halfword data that is not located on a halfword boundary

e Execution of the LD or SD instruction for doubleword data that is not located on a doubleword boundary

o Referencing the kernel address space in user or supervisor mode

* Referencing the supervisor space in user mode

e Fetching an instruction that does not located on a word boundary

o Referencing the address error space

o Referencing the supervisor or kernel address space in supervisor or kernel mode using an address whose
bit 31 is not sign-extended to bits 32 to 63 in 32-bit mode

Processing

The general exception vector is used for this exception. The AJEL or AJES code in the Cause register is set. If
this exception has been caused by an instruction reference or load operation, AdEL is set. If it has been caused
by a store operation, AdES is set.

When this exception occurs, the BadVAddr register stores the virtual address that was not properly aligned or
was referenced in protected address space. The contents of the VPN field of the Context and EntryHi registers
are undefined, as are the contents of the EntryLo register.

The EPC register contains the address of the instruction that caused the exception. However, if this instruction
is in a branch delay slot, the EPC register contains the address of the preceding branch instruction, and the BD
bit of the Cause register is set (1).

Servicing

The kernel reports the UNIX™ SIGSEGV (segmentation violation) signal to the current process, and this
exception is usually fatal.

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 6 EXCEPTION PROCESSING

(4) Restrictions

(a)

With VR5500 Ver. 1.x, when the return address (contents of the EPC register) to which execution is to
return from an exception handler by executing the ERET instruction is in the address error area, a value
different from the contents of the program counter is stored in the EPC register if an interrupt occurs
immediately after execution of the ERET instruction.

This restriction does not apply to Ver. 2.0 or later.

With VR5500 Ver. 2.0 or later, if a jump/branch instruction is located two instructions before the boundary
with the address error space and if a branch prediction miss (including RAS miss), ERET instruction
commitment, exception (except the address error exception mentioned) does not occur (is not committed)
between execution of the above jump/branch instruction and occurrence (commitment) of an address error
exception due to a specific cause (refer below), the address stored in the BadVAddr register by the
processing of the above address error exception is the address at the position (boundary with the address
space) two instructions after the jump/branch instruction. However, the correct address is stored in the
EPC register.

Therefore, do not locate a jump/branch instruction at the position two instructions before the boundary with
the address space.

This restriction applies to the following causes of the address error exception.

o |f an attempt is made to fetch an instruction in the kernel address space in the user or supervisor mode
o |f an attempt is made to fetch an instruction in the supervisor address space in the user mode

o If an attempt is made to fetch an instruction not located at the word boundary

o If an attempt is made to reference the address error space in the kernel mode

This restriction is included in the specifications of the VrR5500.

Caution With the Vr5500, bits 58 to 40 of an address that is different from the actual value of the

program counter are stored in the BadVAddr register and EPC register if an address
error exception occurs as a result of an execution jump to the address error space in the
64-bit mode. If an address error exception occurs, therefore, do not reference the
BadVAddr and EPC registers.
However, if an address error exception occurs because execution is made to jump to the
address error space by the JR or JALR instruction, an incorrect address is stored in the
EPC register as mentioned above, but the same value as the program counter is stored
in the BadVAddr register.

Preliminary User’'s Manual U16044EJ1VOUM 151

CHAPTER 6 EXCEPTION PROCESSING

6.4.5 TLB exceptions
Three types of TLB exceptions can occur.

o TLB refill exception

e TLB invalid exception

e TLB modified exception

The following three sections describe these TLB exceptions.

(1) TLB refill exception (32-bit mode)/XTLB refill exception (64-bit mode)

152

(a)

(b)

(c)

Cause
The TLB refill exception occurs when there is no TLB entry matching the address to be referenced, or when
there are multiple TLB entries to matching the address to be referenced. This exception is not maskable.

Processing

There are two special exception vectors for this exception; one for 32-bit addressing mode, and one for 64-
bit addressing mode. The UX, SX, and KX bits of the Status register determine which vector to use,
depending on either 32-bit or 64-bit space is used for the user, supervisor or kernel mode. When the EXL
bit of the Status register is set to 0, either of these two special vectors is referenced. When the EXL bit is
set to 1, the general exception vector is referenced.

This exception sets the TLBL or TLBS code in the ExcCode field of the Cause register. If this exception
has been caused by an instruction reference or load operation, TLBL is set. If it has been caused by a
store operation, TLBS is set.

When this exception occurs, the BadVAddr, Context, XContext, and EntryHi registers hold the virtual
address that failed address translation. The EntryHi register also contains the ASID from which the
translation fault occurred. The Random register normally contains a valid location in which to place the
replacement TLB entry. The contents of the EntryLo register are undefined.

The EPC register contains the address of the instruction that caused the exception. However, if this
instruction is in a branch delay slot, the EPC register contains the address of the preceding branch
instruction, and the BD bit of the Cause register is set (1).

Servicing

To service this exception, the contents of the Context or XContext register are used as a virtual address to
load memory words containing the physical page frame and access control bits for a pair of TLB entries.
The memory word is written into the TLB entry by using the EntryLoO, EntryLo1, or EntryHi register.

If the address to be referenced matches two or more entries (TLB shutdown), also clear the TS bit of the
Status register to 0.

It is possible that the physical page frame and access control bits are placed in a page where the virtual
address is not resident in the TLB. This condition is processed by allowing a TLB Refill exception in the
TLB refill exception handler. In this case, the general exception vector is used because the EXL bit of the
Status register is set (1).

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 6 EXCEPTION PROCESSING

(2) TLB Invalid exception

(a)

(b)

(c)

Cause
The TLB invalid exception occurs when the TLB entry that matches with the virtual address to be
referenced is invalid (V bit is 0). This exception is not maskable.

Processing

The general exception vector is used for this exception. The TLBL or TLBS code in the ExcCode field of
the Cause register is set. If this exception has been caused by an instruction reference or load operation,
TLBL is set. If it has been caused by a store operation, TLBS is set.

When this exception occurs, the BadVAddr, Context, XContext, and EntryHi registers contain the virtual
address that failed address translation. The EntryHi register also contains the ASID from which the
translation fault occurred. The Random register normally stores a valid location in which to place the
replacement TLB entry. The contents of the EntryLo register are undefined.

The EPC register contains the address of the instruction that caused the exception. However, if this
instruction is in a branch delay slot, the EPC register contains the address of the preceding branch
instruction, and the BD bit of the Cause register is set (1).

Servicing
Usually, the V bit of a TLB entry is cleared in the following cases.

e When a virtual address does not exist
e When the virtual address exists, but is not in main memory (a page fault)

¢ When a trap is required on any reference to the page (for example, to maintain a reference bit)

After servicing the cause of a TLB invalid exception, the TLB entry location is identified with a TLBP (TLB
Probe) instruction, and replaced by another entry with setting (1) its V bit.

Preliminary User’'s Manual U16044EJ1VOUM 153

CHAPTER 6 EXCEPTION PROCESSING

(3) TLB modified exception

154

(a)

(b)

(c)

Cause
The TLB modified exception occurs when the TLB entry that matches with the virtual address referenced by
the store instruction is valid (V bit is 1) but is not writable (D bit is 0). This exception is not maskable.

Processing

The general exception vector is used for this exception, and the Mod code in the ExcCode field of the
Cause register is set.

When this exception occurs, the BadVAddr, Context, XContext, and EntryHi registers hold the virtual
address that failed address translation. The EntryHi register also contains the ASID from which the
translation fault occurred. The contents of the EntryLo register are undefined.

The EPC register contains the address of the instruction that caused the exception. However, if this
instruction is in a branch delay slot, the EPC register contains the address of the preceding branch
instruction, and the BD bit of the Cause register is set (1).

Servicing

The kernel uses the failed virtual address or virtual page number to identify the corresponding access
control bits. The page identified may or may not permit write accesses; if writes are not permitted, a write
protection violation occurs.

If write accesses are permitted, the page frame is marked Dirty (writable) by the kernel in its own data
structures.

The TLBP instruction places the index of the TLB entry that must be altered into the Index register. The
word data containing the physical page frame and access control bits (with setting (1) the D bit) is loaded to
the EntryLo register, and the contents of the EntryHi and EntryLo registers are written into the TLB.

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 6 EXCEPTION PROCESSING

6.4.6 Cache error exception

(1)

)

)

Cause

If a parity error of the cache is detected, a cache error exception occurs. This exception can be masked by the
DE bit of the Status register.

When an instruction or data is read from an external source, the timing of the cache error exception differs
depending on the data transfer format. When a block is transferred, only an error in the first word is checked. If
an error is found in the first word, therefore, the exception immediately occurs. If an error is in the other words,
however, the exception occurs when the processor uses that data. During single transfer, the exception occurs
as soon as an error is found in the data.

Processing
The processor sets the ERL bit of the Status register to 1, saves the exception restart address of the ErrorEPC
register, and transfers information to the following special vector in a space where the cache cannot be used.

e When BEV bit = 0, the vector is OxFFFF FFFF A000 0100
e When BEV bit = 1, the vector is 0OxFFFF FFFF BFCO 0300

Servicing

All errors must be logged. To correct a parity error, the system makes the cache block invalid by using the
CACHE instruction, overwrites old data via a cache miss, and resumes execution by using the ERET instruction.
Any other data is uncorrectable and may be fatal to the current process.

Caution Because the data cache of the VrR5500 has a non-blocking structure, a cache error exception
occurs asynchronously. Even if a cache miss occurs, the subsequent instructions can be
executed as long as they are not dependent upon the line where the miss occurred.
Therefore, the value of the program counter when the cache error exception occurs is not
always the address of the instruction that has caused the exception. Consequently,
resuming execution from the instruction responsible for the exception is not guaranteed
even if the system restores from the exception by using the ERET instruction.

Preliminary User’'s Manual U16044EJ1VOUM 155

CHAPTER 6 EXCEPTION PROCESSING

6.4.7 Bus error exception

(1)

)

(©)

156

Cause

A bus error exception is raised by board-level circuitry for events such as bus time-out, local bus parity errors,
and invalid physical memory addresses or access types. This exception is not maskable.

When an instruction or data is read from an external source, the timing of the bus error exception differs
depending on the data transfer format. When a block is transferred, only an error in the first word is checked. If
an error is found in the first word, therefore, the exception immediately occurs. If an error is in the other words,
however, the exception occurs when the processor uses that data. During single transfer, the exception occurs
as soon as an error is found in the data.

Processing

The general interrupt vector is used for a bus error exception. The IBE or DBE code in the ExcCode field of the
Cause register is set. If the cause of the exception is an instruction reference (instruction fetch), IBE is set. If it
is a data reference (load/store instruction), DBE is set.

The EPC register contains the address of the instruction that caused the exception. However, if this instruction
is in a branch delay slot, the EPC register contains the address of the preceding branch instruction, and the BD
bit of the Cause register is set (1).

Servicing
The physical address at which the fault occurred can be computed from information available in the system
control coprocessor (CPO) register.

¢ If the IBE code in the Cause register is set (indicating an instruction fetch), the virtual address is stored in
the EPC register. (4 is added to the contents of the EPC register if the BD bit of the Cause register is set to
1)

o If the DBE code is set (indicating a load or store), the virtual address (address of the preceding branch
instruction if the BD bit of the Cause register is set to 1) of the instruction that caused the exception is
stored in the EPC register. (4 is added to the contents of the EPC register if the BD bit of the Cause register
is setto 1.)

The virtual address of the load and store instruction can then be obtained by interpreting the instruction. The
physical address can be obtained by using the TLBP instruction and reading the EntryLo register to compute the
physical page number.

At the time of this exception, the kernel reports the UNIX SIGBUS (bus error) signal to the current process, but
the exception is usually fatal.

Caution Because the data cache of the VrR5500 has a non-blocking structure, a bus error exception
occurs asynchronously. Even if a cache miss occurs, the subsequent instructions can be
executed as long as they are not dependent upon the line where the miss occurred.
Therefore, the value of the program counter when the bus error exception occurs is not
always the address of the instruction that has caused the exception. Consequently,
resuming execution from the instruction responsible for the exception is not guaranteed
even if the system restores from the exception by using the ERET instruction.

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 6 EXCEPTION PROCESSING

6.4.8 System call exception

(1)

()

@)

Cause
A system call exception occurs during an attempt to execute the SYSCALL instruction. This exception is not
maskable.

Processing

The general exception vector is used for this exception, and the Sys code in the ExcCode field of the Cause
register is set.

The EPC register contains the address of the SYSCALL instruction. However, if this instruction is in a branch
delay slot, the EPC register contains the address of the preceding branch instruction, and the BD bit of the
Cause register is set (1).

Servicing

When this exception occurs, control is moved to the applicable system routine.

To resume execution, the EPC register must be altered so that the SYSCALL instruction does not re-execute;
this is accomplished by adding a value of 4 to the EPC register before returning.

If a SYSCALL instruction is in a branch delay slot, decoding of the jump or branch instruction for identifying the
branch destination is required to resume execution.

6.4.9 Breakpoint exception

(1)

()

(©)

Cause
A Breakpoint exception occurs when an attempt is made to execute the BREAK instruction. This exception is
not maskable.

Processing

The general exception vector is used for this exception, and the Bp code in the ExcCode field of the Cause
register is set.

The EPC register contains the address of the BREAK instruction. However, if this instruction is in a branch
delay slot, the EPC register contains the address of the preceding branch instruction, and the BD bit of the
Cause register is set (1).

Servicing

When the Breakpoint exception occurs, control is moved to the applicable system routine. Additional
distinctions can be made by analyzing the unused bits of the BREAK instruction (bits 25 to 6), and loading the
contents of the instruction whose address the EPC register contains (the address at which 4 is added to the
contents of the EPC register if the BREAK instruction is in a branch delay slot).

To resume execution, the EPC register must be altered so that the BREAK instruction does not re-execute; this
is accomplished by adding a value of 4 to the EPC register before returning.

If a BREAK instruction is in a branch delay slot, decoding of the branch instruction for identifying the branch
destination is required to resume execution.

Preliminary User’'s Manual U16044EJ1VOUM 157

CHAPTER 6 EXCEPTION PROCESSING

6.4.10 Coprocessor unusable exception

(1)

()

@)

158

Cause
The coprocessor unusable exception occurs when an attempt is made to execute a coprocessor instruction for
either of the following.

e A corresponding coprocessor unit that has not been marked usable (CUO bit of Status register = 0)
e CPO instructions are executed in user or supervisor mode when the use of CPO is disabled (the CUO bit of
the Status register = 0).

This exception is not maskable.

Processing

The general exception vector is used for this exception, and the CpU code in the ExcCode field of the Cause
register is set. The CE bit of the Cause register indicates which of the four coprocessors was referenced.

The EPC register contains the address of the instruction that caused the exception. However, if this instruction
is in a branch delay slot, the EPC register contains the address of the preceding branch instruction, and the BD
bit of the Cause register is set (1).

Servicing

The coprocessor unit to which an attempted reference was made is identified by the CE bit of the Cause
register.

One of the following processing is performed by the handler.

(a) If the process is entitled access to the coprocessor, the coprocessor is marked usable and execution is
resumed.

(b) If the process is entitled access to the coprocessor, but the coprocessor does not exist or has failed,
decoding of the coprocessor instruction is possible.

(c) If the BD bit in the Cause register is set (1), the branch instruction must be decoded; then the coprocessor
instruction can be emulated and execution resumed with the EPC register advanced passing the
coprocessor instruction.

(d) If the process is not entitled access to the coprocessor, the kernel reports UNIX SIGILL/ILL_PRIVIN_FAULT
(illegal instruction/privileged instruction fault) signal to the current process, and this exception is fatal.

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 6 EXCEPTION PROCESSING

6.4.11 Reserved instruction exception

(1)

)

)

Cause
The reserved instruction exception occurs when an attempt is made to execute one of the following instructions.

e Instruction with an undefined opcode (bits 31 to 26)

e SPECIAL instruction with an undefined sub opcode (bits 5 to 0)

o REGIMM instruction with an undefined sub opcode (bits 20 to 16)
e 64-bit instructions in 32-bit user or supervisor mode

64-bit operations are always valid in kernel mode regardless of the value of the KX bit in the Status register.
This exception is not maskable.

Processing

The general exception vector is used for this exception, and the RI code in the ExcCode field of the Cause
register is set.

The EPC register contains the address of the instruction that caused the exception. However, if this instruction
is in a branch delay slot, the EPC register contains the address of the preceding branch instruction, and the BD
bit of the Cause register is set (1).

Servicing

All currently defined MIPS ISA instructions can be executed.

The process executing at the time of this exception is handled by a UNIX SIGILL/ILL_RESOP_FAULT (illegal
instruction/reserved operand fault) signal. This exception is usually fatal.

6.4.12 Trap exception

(1

)

)

Cause
The trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEUI, TLTI, TLTUI, TEQI, or
TNEI instruction results in a true condition. This exception is not maskable.

Processing

The general exception vector is used for this exception, and the Tr code in the ExcCode field of the Cause
register is set.

The EPC register contains the address of the instruction that caused the exception. However, if this instruction
is in a branch delay slot, the EPC register contains the address of the preceding branch instruction, and the BD
bit of the Cause register is set (1).

Servicing

At the time of a Trap exception, the kernel reports the UNIX SIGFPE/FPE_INTOVF_TRAP (floating-point
exception/integer overflow) signal to the current process, and this exception is usually fatal.

Preliminary User’'s Manual U16044EJ1VOUM 159

CHAPTER 6 EXCEPTION PROCESSING

6.4.13 Integer overflow exception

(1)

()

(©)

Cause
An integer overflow exception occurs when an ADD, ADDI, SUB, DADD, DADDI, or DSUB instruction results in
a two’s complement overflow. This exception is not maskable.

Processing

The general exception vector is used for this exception, and the Ov code in the ExcCode field of the Cause
register is set.

The EPC register contains the address of the instruction that caused the exception. However, if this instruction
is in a branch delay slot, the EPC register contains the address of the preceding branch instruction, and the BD
bit of the Cause register is set (1).

Servicing
At the time of the exception, the kernel reports the UNIX SIGFPE/FPE_INTOVF_TRAP (floating-point
exception/integer overflow) signal to the current process, and this exception is usually fatal for current process.

6.4.14 Floating-point operation exception

(1

)

3)

160

Cause
The floating-point exception occurs as a result of an operation of the floating-point coprocessor. This exception
cannot be masked.

Processing

This vector uses an ordinary exception vector and the FPE code is set to the ExcCode field of the Cause
register.

The contents of the floating-point Control/Status register indicate the cause of this exception.

Servicing

This exception is cleared by clearing the corresponding bit of the floating-point Control/Status register.

If an unimplemented operation exception occurs, the kernel must emulate that instruction. If any other
exception occurs, the kernel passes the exception to the user program that has caused the exception.

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 6 EXCEPTION PROCESSING

6.4.15 Watch exception

(1)

()

(©)

Cause

A watch exception occurs when a load or store instruction references the physical address specified by the
WatchLo and WatchHi registers. The WatchLo and WatchHi registers specify whether a load or store or both
could initiate this exception.

 When the R bit of the WatchLo register is set to 1: Load instruction
e When the W bit of the WatchLo register is set to 1: Store instruction
e When both the R bit and W bit of the WatchLo register are set to 1: Load instruction or store instruction

The CACHE instruction never causes a Watch exception.

The watch exception is held pending while the EXL bit of the Status register is set (1). The watch exception can
be masked by either setting (1) the EXL bit of the Status register, or clearing (0) the R and W bits of the
WatchLo register.

Processing

The general exception vector is used for this exception, and the WATCH code in the ExcCode field of the Cause
register is set.

The EPC register contains the address of the instruction that caused the exception. However, if this instruction
is in a branch delay slot, the EPC register contains the address of the preceding branch instruction, and the BD
bit of the Cause register is set (1).

Servicing

The watch exception is a debugging aid; typically the exception handler moves control to a debugger, allowing
the user to examine the situation. To continue, mask the watch exception to execute the faulting instruction.
The watch exception must then be re-enabled. The faulting instruction can be executed either by the debugger
for each instruction or by setting breakpoints.

Because the contents of the WatchLo and WatchHi registers become undefined after reset, initialize these
registers via software (it is particularly important to clear (0) the R and W bits). If the registers are not initialized,
a watch exception may occur.

Preliminary User’'s Manual U16044EJ1VOUM 161

CHAPTER 6 EXCEPTION PROCESSING

6.4.16 Interrupt exception

(1)

)

(©)

162

Cause

The interrupt exception occurs when one of the eight interrupt sources"™ is made active.

The application of these interrupts differs depending on the system. An interrupt request signal from a pin is
detected by the level.

Each of the eight interrupts can be masked by clearing the corresponding bit in the IM field of the Status
register, and all of the eight interrupts can be masked by clearing the IE bit of the Status register.

Note They are 1 timer interrupt, 5 ordinary interrupts, and 2 software interrupts.

Remark The timer interrupt request signal is generated if the count register matches the compare register, or if
the performance counter overflows.
A timer interrupt request, or an interrupt request resulting from asserting the Int5# pin or an external
write request (SysADS5) can be selected as the interrupt source reflected on the IP7 bit of the Cause
register, depending on the status of the TIntSel pin after reset.

Processing

The general exception vector is used for this exception, and the Int code is set in the ExcCode field of the
Cause register.

The IP field of the Cause register indicates current interrupt requests. It is possible that more than one of the
bits can be simultaneously set (or cleared) if the interrupt request signal is active (inactive) before this register is
read.

The EPC register contains the address of the instruction that caused the exception. However, if this instruction
is in a branch delay slot, the EPC register contains the address of the preceding branch instruction, and the BD
bit of the Cause register is set (1).

Servicing

If a timer interrupt request occurs, check the contents of the performance counter to identify whether a match
between the count register and compare register or an overflow of the performance counter has caused the
interrupt.

If the interrupt is caused by one of the two software sources, the interrupt request is cleared by setting the
corresponding Cause register bit to 0.

If the interrupt is caused by hardware, the interrupt source is cleared by deactivating the corresponding interrupt
request signal.

Data may not be stored in an external device until execution of the other instructions in the pipeline is completed
because an internal write buffer is provided. Therefore, make sure that the data is stored correctly before the
instruction that returns execution from the interrupt (ERET) is executed. If the data is not stored, the interrupt
request processing may be performed again even if there is actually no pending interrupt.

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 6 EXCEPTION PROCESSING

6.5 Exception Processing Flowcharts

The remainder of this chapter contains flowcharts for the following exceptions and servicing for their handlers.

General exception processing and their exception handlers

TLB/XTLB refill exception processing and their exception handlers

Cache error exception processing and their exception handlers

Processing of reset, soft reset and NMI exceptions, and their exception handlers

Preliminary User’'s Manual U16044EJ1VOUM 163

CHAPTER 6 EXCEPTION PROCESSING

Figure 6-15. General Exception Processing (1/2)

(a) Hardware processing

(Start)

Set FP Control/

Status register

EntryHi < VPN2, ASID
Context/XContext «— VPN2
Set Cause register
(ExcCode, CE)

; FP Control/Status register is set only when
a floating-point exception occurs.
EntryHi and Context/XContext registers are
set only when a TLB invalid, TLB modified,
TLB refill, or address error exception occurs.

Instruction No
is in branch dela:
slot?

Yes

BD bit « 1 BD bit < 0
No No

Yes Yes

Set BadVAddr register Set BadVAddr register
EPC « (PC - 4) EPC « PC
- ‘ '

EXL bit < 1 ; _Kernel mode is_set and
interrupts are disabled.

BEV bit =1 (bootstrap)

=0 (normal)
PC « OxFFFF FFFF 8000 0000 + 180 PC « OxFFFF FFFF BFCO 0200 + 180
(Unmapped, cacheable) (Unmapped, uncached)

-
S

®

Remark The interrupts can be masked by setting the IE or IM bit. The watch exception can be held pending
by setting the EXL bitto 1.

164 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 6 EXCEPTION PROCESSING

Figure 6-15. General Exception Processing (2/2)

Execute MFCO instruction
Context/XContext
EPC
Status
Cause

Execute MTCO instruction
(Set Status register)
KSU bit « 00
EXL bit < 0
IE bit « 1

Check the Cause register,
and jump to each routine

Servicing of
exception routine

EXL bit « 1

Execute MTCO instruction
EPC
Status

Execute ERET instruction

)

(b) Software processing

; Prevent a TLB modified, TLB invalid, or TLB refill
exception from occurring by using unmapped area.

; Watch and interrupt exceptions are disabled by
setting EXL bit to 1.

; OS/system avoids all other exceptions.

_ ; Only reset, soft reset, and NMI exceptions are enabled.

; Option: Interrupts are enabled in kernel mode.

; After EXL bit = 0 is set, all exceptions are enabled
(except the Interrupt exception masked by the IE and IM bit.)

; The register files are saved.

; The execution of the ERET instruction is disabled in
the branch delay slots for the other jump instructions.

; The processor does not execute an instruction n the
branch delay slot for the ERET instruction.

; PC « EPC, EXL bit < 0, LL bit < 0

Preliminary User’'s Manual U16044EJ1VOUM

165

CHAPTER 6 EXCEPTION PROCESSING

Figure 6-16. TLB/XTLB Refill Exception Processing (1/2)

(s)

Instruction
is in branch delay
slot?

Yes

(a) Hardware processing

No

EntryHi < VPN2, ASID
Context/XContext « VPN2
Set Cause register

ExcCode field

CE bit

BD bit « 1

EntryHi < VPN2, ASID
Context/XContext « VPN2
Set Cause register

ExcCode field

CE bit

BD bit < 0

No

EXL bit =07?

EXL bit = 0?7

Set BadVAddr register
EPC « (PC -4)

Set BadVAddr register
EPC « PC

XTLB
exception?

; Check for multiple exceptions

Vec.Off. = 0x080

Vec. Off. = 0x000

Set BadVAddr register
Vec.Off. = 0x180

v

EXL bit « 1

=1 (bootstrap)

BEV bit

=0 (normal)

(Unmapped, cacheable)

PC « OxFFFF FFFF 8000 0000 + Vec. Off.

PC « OxFFFF FFFF BFCO0 0200 + Vec. Off.
(Unmapped, uncached)

; Kernel mode is set and
interrupts are disabled.

166

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 6 EXCEPTION PROCESSING

Figure 6-16. TLB/XTLB Refill Exception Processing (2/2)

(b) Software processing

; Prevent a TLB modified, TLB invalid, or TLB refill exception from
occurring by using unmapped area.

Execute MFCO instruction
Context/XContext

; Watch and interrupt exceptions are disabled by setting EXL bit to 1.

; OS/system avoids all other exceptions.

; Only reset, soft reset, and NMI exceptions are enabled.

Servicing of exception routineN°*®

; The physical address for a virtual address that is loaded into the
Context register is loaded into the EntryLo register and written to the TLB.

; TS bit is cleared upon TLB shutdown.

; The execution of the ERET is disabled in the branch delay slots for the
other jump instructions.

Execute ERET instruction

; The processor does not execute an instruction n the branch delay slot for

the ERET instruction.

; PC « EPC, EXL bit «- 0, LL bit < 0

C End

)

Note A TLB refill exception may reoccur while the data/instruction addresses are in the mapping area. If an
exception reoccurs, servicing will jump to the general exception vector because the EXL bitis 1. In this

case, service the TLB m

ERET instruction, and generate the TLB refill exception again.

iss in the general exception handler, return to the user program using the

Preliminary User’'s Manual U16044EJ1VOUM 167

CHAPTER 6 EXCEPTION PROCESSING

Figure 6-17. Processing of Cache Error Exception

Hardware
(Start)
Set Cache Error register
Instruction is Yes
in branch delay
slot?
No
ErrorEPC « PC ErrorEPC « (PC - 4)
ERL bit « 1
BEV bit =1 (bootstrap)
=0 (normal)
PC « OxFFFF FFFF A000 0000 + 100 PC « OxFFFF FFFF BFCO 0200 + 100
(unmapped, uncached) (unmapped, uncached)
Software ; Prevent exceptions related to TLB and the cache error

exception from occurring by using unmapped and
uncached area.

Servicing of
exception routine

A

; Interrupt exceptions are disabled because ERL bit = 1.

; OS/system avoids all other exceptions.

_; Only reset, soft reset, and NMI exceptions are enabled.

; ERET is not enabled in branch delay slot of other jump
instructions.

Execute ERET instruction | < . processor does not execute the instruction in the branch
delay slot of the ERET instruction.

; PC « ErrorEPC, ERL bit < 0, LL bit < 0

C = D

168 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 6 EXCEPTION PROCESSING

Figure 6-18. Processing of Reset/Soft Reset/NMI Exceptions

Hardware
Soft reset or .
C NMI exception) C Reset exception)
| |
Status register setting Random « 47

BEV bit « 1 Wired <~ 0

SR bit « 1 Update bits 31 to 6 of

ERL bit « 1 Config register.

Set Status register
BEV bit « 1
SR bit < 0
ERL bit « 1
ErrorEPC « PC
PC «O0xFFFF FFFF BFCO 0000
Software
Yes
; Processor does not make indication to
distinguish between NMI and soft reset.
Indication at the system level is necessary.
Servicing of

NMI exception routine

(Option)
ERET instruction execution Servicing of soft Servicing of reset
reset exception routine exception routine

C o D

Preliminary User’'s Manual U16044EJ1VOUM

169

CHAPTER 7 FLOATING-POINT UNIT

7.1 Overview
The floating-point unit (FPU) operates as coprocessor CP1 of the CPU and executes floating-point operation

instructions. It can use both single-precision (32-bit) and double-precision (64-bit) data, and can also convert a
floating-point value into a fixed-point value or vice versa.

The FPU of the VR5500 conforms to ANSI/IEEE Standard 754-1985, “IEEE2 Floating-Point Operation Standard”.
7.2 FPU Registers

The FPU has 32 general-purpose registers and 32 control registers.

Figure 7-1. Registers of FPU (1/2)

(a) Floating-point general-purpose registers
(i) When FR bit=0 (ii) When FR bit = 1
Floating-point register Floating-point Floating-point register Floating-point
(FPR) general-purpose register (FGR) (FPR) general-purpose register (FGR)
31 0 63 0
(Lower) FGRO FPRO FGRO
FPRO
(Higher) FGR1 FPR1 FGR1
(Lower) FGR2 FPR2 FGR2
FPR2
(Higher) FGR3 FPR3 FGR3
(Lower) FGR28 FGR28
FPR28 FPR28
(Higher) FGR29 FPR29 FGR29
(Lower) FGR30 FGR30
FPR30 FPR30
(Higher) FGR31 FPR31 FGR31

170 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 7 FLOATING-POINT UNIT

Figure 7-1. Registers of FPU (2/2)

(b) Floating-point control registers

31 0

FCRO (Implementation/Revision)

Reserved

FCR25 (Condition Code)

FCR26 (Cause/Flag)

Reserved

FCR28 (Enable/Mode)

Reserved

Reserved

FCR31 (Control/Status)

7.2.1 Floating-point general-purpose registers (FGRs)

The FPU has one set (32) of floating-point general-purpose registers (FGRs). The register length is 32 bits if the
FR bit of the Status register in CPO is 0; it is 64 bits if the FR bit is 1. The CPU accesses an FGR by using a load,
store, or transfer instruction.

(1) If the FR bit of the Status register is 0, the general-purpose registers are used as sixteen 64-bit registers
(FPRs) that hold single-precision or double-precision floating-point data. Each FPR corresponds to a pair of
FGRs each having a serial number, as shown in Figure 7-1.

(2) If the FR bit of the Status register is 1, the general-purpose registers are used as thirty-two 64-bit registers
(FPRs) that hold single-precision or double-precision floating-point data. In this case, each FPR corresponds to
one FGR as shown in Figure 7-1.

Preliminary User’'s Manual U16044EJ1VOUM 171

CHAPTER 7 FLOATING-POINT UNIT

7.2.2 Floating-point registers (FPRs)

If the FR bit of the Status register in CPO is 0, sixteen floating-point registers (FPRs) can be used. If the FR bit is
1, thirty-two FPRs can be used. An FPR is a 64-bit logical register and holds a floating-point value when a floating-
point operation has been executed. Physically, an FPR consists of one or two general-purpose registers (FGRs). If
the FR bit of the Status register is 0, the FPR consists of two 32-bit FGRs. If the FR bit is 1, the FPR consists of one
64-bit FGR.

An FPR holds a single-precision or double-precision floating-point value. If the FR bit of the Status register is 0,
only an even number is used to specify an FPR. If the FR bit is 1, all the FPR register numbers are valid. If the FR
bit is 0 when double-precision floating-point operation is executed, a pair of FGRs is used as a doubleword. If FPRO
is selected for a double-precision floating-point operation, for example, two FGRs adjoining each other, FGRO and
FGR1, are used.

7.2.3 Floating-point control registers (FCRs)
The FPU has 32 control registers. The VrR5500 can use the following five FCRs.

¢ The Control/Status register (FCR31) controls and monitors exceptions. This register also holds the result of a
comparison operation and sets the rounding mode.

e The Enable/Mode register (FCR28), Cause/Flag register (FCR26), and Condition Code register (FCR25)
respectively hold part of the area of FCR31, and set/hold the same contents.

¢ The Implementation/Revision register (FCRO0) holds revision information on the FPU.

Table 7-1 shows the assignment of the FCRs.

Table 7-1. FCR

FCR No. Usage
FCRO Implementation/revision of coprocessor
FCR1 to FCR24 Reserved
FCR25 Condition code
FCR26 Cause, flag
FCR27 Reserved
FCR28 Exception enable, rounding mode
FCR29, FCR30 Reserved
FCR31 Condition code, rounding mode, cause, exception enable, flag

When FCRO, FCR25, FCR26, FCR28, or FCR31 is read by the CFC1 instruction, the contents of the register are
transferred to the main processor after execution of all the instructions in the pipeline has been completed.

Each bit of FCR25, FCR26, FCR28, and FCR31 can be set or cleared by using the CTC1 instruction. Data is
written to these registers after execution of all the instructions in the pipeline has been completed.

172 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 7 FLOATING-POINT UNIT

7.3 Floating-point Control Register

7.3.1 Control/Status register (FCR31)

The Control/Status register (FCR31) is a read/write register, and holds control data and status data. This register
controls the rounding mode and enables the occurrence of a floating-point exception. It also indicates information on
an exception that has occurred in the instruction executed last, and information on exceptions that have been
accumulated thus far without being treated as such because they are masked. Figure 7-2 shows the configuration of
FCR31. This figure shows the configuration of the cause, enable, and flag bits in FCR31.

Figure 7-2. FCR31

31 25 24 23 22 18 17 12 11 7 6 2 1 0

. Cause Enable Flag
cer:n FS |cco 0 EVZOUI VzZOoUl VzZOoUl RM

Figure 7-3. Cause/Enable/Flag Bits of FCR31

Bit 17 16 15 14 13 12
E \Y z O U | Cause bit

Bit 11 10 9 8 7
Vv z O U | Enable bit

Bit 6 5 4 3 2

Vv 4 O U | Flag bit
Inexact operation
Underflow
Overflow
Division by zero
Invalid operation
Unimplemented
operation

IEEE754 defines how an exception is detected during a floating-point operation, how flags are set, and how an
exception handler is called if an exception occurs. The MIPS architecture implements this specification by using the
cause, enable, and flag bits of the Control/Status register. The flag bit conforms to the exception status flag of
IEEE754, and the cause and enable bits conform to the exception handler of IEEE754.

Each bit of FCR31 is explained next.

Preliminary User’'s Manual U16044EJ1VOUM 173

CHAPTER 7 FLOATING-POINT UNIT

(1)

)

)

174

FS bit

The FS bit enables flushing a value that cannot be normalized (denormalized number). If this bit is set and if the
enable bit of the underflow exception and illegal exception is not set, the result of a denormalized number does
not cause an unimplemented operation exception to occur, but rather is flushed. Whether the denormalized
number that has been flushed is 0 or the minimum normalized value depends on the rounding mode (refer to
Table 7-2). However, the MADD.fmt, NMADD.fmt, MSUB.fmt, and NMSUB.fmt instructions cause the
unimplemented operation exception to occur, regardless of the value of the FS bit.

Table 7-2. Flush Value of Denormalized Number Result

Result of Denormalized Rounding Mode of Result Flushed
Number RN RZ RP RM
Positive +0 +0 +2Emin +0
Negative -0 -0 -0 —2Emin

CC bits

Bits 31 to 25 and 23 of FCR31 are CC (condition) bits. These bits store the result of a floating-point comparison
instruction. If the result is true, they are set to 1; if the result is false, they are cleared to 0. The CC bits are not
affected by any instruction other than the comparison instruction and CTC1 instruction.

Cause bits

Bits 17 to 12 of FCR31 are cause bits and reflect the result of the instruction executed last. The cause bits are
logical extensions of the CPO Cause register and indicate occurrence of an exception resulting from the last
floating-point operation exception and its cause. If the corresponding enable bit is set, an exception occurs. If
one instruction causes two or more exceptions, the corresponding bits are set.

The cause bits are rewritten by a floating-point operation (except the load, store, and transfer instructions). The
E bit is set to 1 if emulation of software is necessary; otherwise it will remain 0. The other bits are cleared to O if
an IEEE754 exception occurs, and remain set to 1 if the exception does not occur.

If a floating-point operation exception occurs, the operation result is not stored, and only the cause bits are
affected.

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 7 FLOATING-POINT UNIT

(4) Enable bits

®)

(6)

A floating-point operation exception occurs when both the cause bit and corresponding enable bit are set. The
exception occurs as soon as a cause bit enabled for a floating-point operation has been set. The exception also
occurs when the cause bit and enable bit are set by the CTC1 instruction.

No enable bit corresponding to the unimplemented operation exception is available. When the unimplemented
operation exception occurs, a floating-point operation exception always occurs.

To restore from the floating-point operation exception, the cause bit that is enabled to cause the exception to
occur must be cleared by software to prevent recurrence of the exception. Therefore, a cause bit that has been
set cannot be seen from the program in the user mode. When using information on the cause bit via a handler
in the user mode, copy the value of the Status register to another location.

Even if a cause bit is set, an exception does not occur if the corresponding enable bit is not set, and the default
result defined by IEEE754 is stored. In this case, the exception caused by the floating-point operation
immediately before can be identified by reading the cause bit.

Flag bits

The flag bits accumulate and indicate exceptions that have occurred after reset. If an exception defined by
IEEE754 occurs, the flag bit is set to 1; otherwise it will remain unchanged. The flag bit is not cleared by a
floating-point operation. However, it can be set/cleared by software if a new value is written to FCR31 by using
the CTC1 instruction.

If a floating-point operation exception occurs, the hardware does not set the flag bit. Therefore, set the flag bit

by software before processing is transferred to the user handler.
Rounding mode control bits
Bits 1 and 0 of FCR31 are RM (rounding mode control) bits. These bits define the rounding mode the FPU uses

for all the floating-point instructions.

Table 7-3. Rounding Mode Control Bits

RM Bit Mnemonic Description
Bit 1 Bit 0

0 0 RN Rounds the result to the closest value that can be expressed. If the value is
in between two values that can be expressed, the result is rounded toward
the value whose least significant bit is 0.

0 1 Rz Rounds the result toward 0. The result is the closest to the value that does
not exceed the absolute value of the result with infinite accuracy.

1 0 RP Rounds the result toward + . The result is closest to a value greater than
the accurate result with infinite accuracy.

1 1 RM Rounds the result toward — . The result is closest to a value less than the
accurate result with infinite accuracy.

Preliminary User’'s Manual U16044EJ1VOUM 175

CHAPTER 7 FLOATING-POINT UNIT

7.3.2 Enable/Mode register (FCR28)
The Enable/Mode register (FCR28) accesses only the enable, FS, and rounding mode control bits of FCR31. For
details of each bit, refer to 7.3.1 Control/Status register (FCR31).

Figure 7-4. FCR28

31 12 11 7 6 3 2 1 0

Enable
vV Z O U I

7.3.3 Cause/Flag register (FCR26)
The Cause/Flag register (FCR26) accesses only the cause and flag bits of FCR31. For details of each bit, refer
to 7.3.1 Control/Status register (FCR31).

Figure 7-5. FCR26

31 18 17 12 11 7 6 2 1 0

Cause Flag
EVZOU.I vV Z O U I

7.3.4 Condition Code register (FCR25)
The Condition Code register (FCR25) accesses only the CC bits of FCR31. This register can treat the CC bit as
eight consecutive bits. For details of the CC bits, refer to 7.3.1 Control/Status register (FCR31).

Figure 7-6. FCR25

31 8 7 0

176 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 7 FLOATING-POINT UNIT

7.3.5 Implementation/Revision register (FCRO0)

The Implementation/Revision register (FCRO0) is a read-only register and holds the implementation identification
number and implementation revision number of the FPU, status of the supported floating-point functions. This
information can be used for revising the coprocessor, determining the performance level, and self-diagnosis.

Figure 7-7 shows the configuration of the Implementation/Revision register.

Figure 7-7. FCRO

31 20 19 18 17 16 15 8 7 0
0 3D|PS|D| S Imp Rev

3D: Support of three-dimensional graphics (0)

PS: Support of single-precision data pair (0)

D: Support of double-precision data pair (1)

S: Support of single-precision data (1)

Imp: Implementation identification number (0x55)

Rev: Implementation revision number

0: Reserved. Write 0 to these bits. Zero is returned when these bits are read.

Bits 19 to 16 indicate which functions are implemented in the VR5500. If a given function is not implemented, the
corresponding bit is O; if the function is implemented, the bit is 1.

The implementation revision number is a value in the form of x.y, where y is the major revision number stored in
bits 7 to 4 and x is the minor revision number stored in bits 3 to 0. The implementation revision number can be used
to identify revision of the chip. However, modification of the chip is not always reflected on the revision number.
Conversely, modification of the revision number does not always reflect the actual modification of the chip.
Therefore, develop a program so that it does not depend upon the revision number of this register.

Preliminary User’'s Manual U16044EJ1VOUM 177

CHAPTER 7 FLOATING-POINT UNIT

7.4 Data Format

7.4.1 Floating-point format

The FPU supports 32-bit (single-precision) and 64-bit (double-precision) IEEE754 floating-point operations. The
single-precision floating-point format consists of a 24-bit signed mantissa (s + f) and an 8-bit exponent (e), as shown
in Figure 7-8.

Figure 7-8. Single-Precision Floating-Point Format

31 30 23 22 0
S e f
Sign Exponent Mantissa
1 8 23

The double-precision floating-point format consists of a 53-bit signed mantissa (s + f) and an 11-bit exponent (e),
as shown in Figure 7-9.

Figure 7-9. Double-Precision Floating-Point Format

63 62 52 51 0
s e f
Sign Exponent Mantissa
1 11 52

A numeric value in the floating-point format consists of the following three areas.

e Sign bit: s
e Exponent: e = E + bias value
o Mantissa: f =.b1b2...br-1 (value lower than the first place below the decimal point)

The range of unbiased exponent E covers all integer values from Emin to Emax, two reserved values, Emin — 1 (0 or
denormalized number), and Emax + 1 (e or NaN: Not a Number). A numeric value other than 0 is expressed in one
format, depending on the single-precision and double-precision formats.

The numeric value (v) expressed in this format can be calculated by the expression shown in Table 7-4.

178 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 7 FLOATING-POINT UNIT

Table 7-4. Calculation Expression of Floating-Point Value

Type Calculation Expression
NaN (Not a Number) If E = Emax+ 1 and f # 0, v is NaN regardless of s.
+e (infinite number) If E=Emax+1andf=0,v=(-1)se
Normalized number If Emin < E < Emax, v = (=1)°2° (1.f)
Denormalized number IfE=Emn—1andfz0,v=(-1)2"(0.f)
+0 (zero) IfE=Emn—1andf=0,v=(-1)0

¢ NaN (Not a Number)

IEEE754 defines a floating-point value called NaN (Not a Number). Because it is not a numeric value, it
does not have a relationship of greater than or less than.
If viis NaN in all the floating-point formats, it may be either SignalingNaN or QuietNaN, depending on the
value of the most significant bit of f. If the most significant bit of f is set, v is SignalingNaN; if the most

significant bit is cleared, it is QuietNaN.

Table 7-5 shows the value of each parameter defined in the floating-point format.

Table 7-5. Floating-Point Format and Parameter Value

Parameter

Format

Single precision

Double precision

Emax +127 +1023
Enmin -126 -1022
Bias value of exponent +127 +1023
Length of exponent (number of bits) 8 11

Integer bit Cannot be seen Cannot be seen
Length of mantissa (number of bits) 24 53
Length of format (number of bits) 32 64

Table 7-6 shows the minimum value and maximum value that can be expressed in this floating-point format.

Table 7-6. Maximum and Minimum Values of Floating Point

Type

Value

Minimum value of single-precision floating point

1.40129846e — 45

Minimum value of single-precision floating point (normal)

1.17549435e — 38

Maximum value of single-precision floating point

3.40282347e + 38

Minimum value of double-precision floating point

4.9406564584124654e — 324

Minimum value of double-precision floating point (normal)

2.2250738585072014e — 308

Maximum value of double-precision floating point

1.7976931348623157e + 308

Preliminary User’'s Manual U16044EJ1VOUM

179

CHAPTER 7 FLOATING-POINT UNIT

7.4.2 Fixed-point format

The value of a fixed point is held in the format of 2’s complement. Operation instructions that handle data in the

unsigned fixed-point format are not provided in the floating-point instruction set.

point format and Figure 7-11 shows a 64-bit fixed-point format.

Figure 7-10. 32-Bit Fixed-Point Format

Figure 7-10 shows a 32-bit fixed-

31 30 0
s i
Sign Integer
1 31
s: Sign bit
i Integer value (2’s complement)
Figure 7-11. 64-Bit Fixed-Point Format
63 62 0
s i
Sign Integer
1 63
s: Sign bit

i: Integer value (2’s complement)

180 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 7 FLOATING-POINT UNIT

7.5 Outline of FPU Instruction Set

All the FPU instructions are 32 bits long and aligned at the word boundary. These instructions are classified as
follows.

o Load/store/transfer instructions that transfer data between the general-purpose register or control register of
the FPU and the CPU or memory

e Conversion instructions that convert the data format

o Arithmetic operation instructions that execute an operation on a floating-point value in an FPU register

e Comparison instructions that compares FPU registers and set the result to the CC bits of FCR31 and FCR25

e FPU branch instructions that branch execution to a specified target if the specified coprocessor condition is
satisfied

fmt appended to the instruction opcode of an operation or comparison instruction indicates the data type. S
indicates single-precision floating point, D indicates double-precision floating point, L indicates 64-bit fixed point, and
W indicates 32-bit fixed point. For example, “ADD.D” indicates that the operand of the addition instruction is a
double-precision floating-point value.

If the FR bit of the Status register in CP0 is 0, an odd-numbered register cannot be specified.

For details of each instruction, refer to CHAPTER 18 FPU INSTRUCTION SET.

Preliminary User’'s Manual U16044EJ1VOUM 181

CHAPTER 7 FLOATING-POINT UNIT

7.5.1 Floating-point load/store/transfer instructions

(1

Load/store between FPU and memory
Loading/storing between the FPU and memory is performed by the following instructions.

e LWC1, LWXC1, SWC1, and SWXC1 instructions, which access FGR in word (32-bit) units
e LCD1, LDXC1, LUXC1, SDC1, SDXC1, and SUXC1 instructions, which access FGR in doubleword (64-bit)
units

These load/store instructions are independent of the numeric value format, and format conversion is not

executed. Nor does the floating-point operation exception occur.

()

@)

4)

®)

Data transfer between FPU and CPU

Data is transferred between a general-purpose register of the FPU and the CPU by the MTC1, MFC1, DMTCA,
or DMFC1 instruction. Like the load/store instructions, these transfer instructions do not convert the numeric
value format and the floating-point operation exception does not occur.

The CTC1 and CFC1 instructions of the CPU instruction transfer data between a control register of the FPU and
the CPU.

Load delay and hardware interlock

The register that is to be loaded can be used in the instruction immediately after a load instruction. In this case,
however, interlocking occurs and a cycle is appended. To avoid interlocking, therefore, scheduling of the load
delay slot is necessary.

With the Vr5500, however, the load delay is eliminated, unless the pipeline is congested, because instructions
are executed by an out-of-order mechanism. Therefore, it seems that instructions were executed without delay.

Aligning data
All the load/store instructions except LUXC1 and SUXC1 reference the following aligned data.

¢ The access type for a word load/store instruction is always a word, and the lower 2 bits of the address must
be 0.

e The access type for a doubleword load/store instruction is always a doubleword, and the lower 3 bits of the
address must be 0.

Byte arrangement

Regardless of the byte arrangement (endianness), an address is specified by the lowest byte address in an
address area. In a big-endian system, the leftmost byte address is specified. In a little-endian system, the
rightmost byte address is specified.

Table 7-7 lists the load/store/transfer instructions.

182

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 7 FLOATING-POINT UNIT

Table 7-7. Load/Store/Transfer Instructions (1/2)

Instruction

Format and Description | op | base | ft | offset

Load Word to FPU

LWCH ft, offset (base)
Sign-extends and adds a 16-bit offset to the contents of CPU register base to generate an address. Loads
the contents of the word specified by the address to FPU general-purpose register ft.

Store Word from FPU

SWCH ft, offset (base)
Sign-extends and adds a 16-bit offset to the contents of CPU register base to generate an address.
Stores the contents of FPU general-purpose register ft in the memory position specified by the address.

Load Doubleword to
FPU

LDC1 ft, offset (base)

Sign-extends and adds a 16-bit offset to the contents of CPU register base to generate an address. Loads
the contents of the doubleword specified by the address to FPU general-purpose registers ft and ft + 1
when FR = 0. When FR = 1, loads the contents of the doubleword to FPU general-purpose register ft.

Store Doubleword from
FPU

SDC1 ft, offset (base)

Sign-extends and adds a 16-bit offset to the contents of CPU register base to generate an address.
Stores the contents of FPU general-purpose registers ft and ft + 1 in the memory location specified by the
address when FR = 0. When FR = 1, stores the contents of FPU general-purpose register ft in the same
memory location.

Instruction

Format and Description [copt | base | index 0 fd [function

Load Word Indexed to
FPU

LWXC1 fd, index (base)
Adds the contents of CPU register base to CPU register index to generate an address. Loads the
contents of the word specified by the address to FPU general-purpose register fd.

Load Doubleword
Indexed to FPU

LDXC1 fd, index (base)

Adds the contents of CPU register base to the contents of CPU register index to generate an address.
Loads the contents of the doubleword specified by the address to FPU general-purpose registers fd and fd
+ 1 when FR = 0, and to FPU general-purpose register fd when FR = 1.

Load Doubleword
Indexed Unaligned to
FPU

LUXC1 fd, index (base)

Adds the contents of CPU register base to the contents of CPU register index to generate an address.
Loads the contents of the doubleword specified by the address to FPU general-purpose registers fd and fd
+ 1 when FR = 0, and to FPU general-purpose register fd when FR = 1.

Instruction

Format and Description [copt | base | index fs 0 [function

Store Word Indexed
from FPU

SWXC1 fs, index (base)
Adds the contents of CPU register base to the contents of CPU register index to generate an address.
Stores the contents of FPU general-purpose register fs in the memory location specified by the address.

Store Doubleword
Indexed from FPU

SDXC1 fs, index (base)

Adds the contents of CPU register base to the contents of CPU register index to generate an address.
Stores the contents of FPU general-purpose registers fs and fs + 1 in the memory location specified by the
address when FR = 0, and FPU general-purpose register fs in the same memory location when FR = 1.

Store Doubleword
Indexed Unaligned from
FPU

SUXCH1 fs, index (base)

Adds the contents of CPU register base to the contents of CPU register index to generate an address.
Stores the contents of FPU general-purpose registers fs and fs + 1 in the memory location specified by the
address when FR = 0, and FPU general-purpose register fs in the same memory location when FR = 1.

Preliminary User’'s Manual U16044EJ1VOUM 183

CHAPTER 7 FLOATING-POINT UNIT

Table 7-7. Load/Store/Transfer Instructions (2/2)

Instruction

Format and Description [copt [sub | nt | s 0

Move Word to FPU

MTC1 nt, fs
Transfers the contents of CPU general-purpose register rt to FPU general-purpose register fs.

Move Word from FPU

MFC1 , fs
Transfers the contents of FPU general-purpose register fs to CPU general-purpose register rt.

Move Control Word to
FPU

CTC1n, fs
Transfers the contents of CPU general-purpose register rt to FPU control register fs.

Move Control Word from
FPU

CFC1nt, fs
Transfers the contents of FPU control register fs to CPU general-purpose register rt.

Doubleword Move to
FPU

DMTC1 t, fs
Transfers the contents of CPU general-purpose register rt to FPU general-purpose register fs.

Doubleword Move from
FPU

DMFC1 t, fs
Transfers the contents of FPU general-purpose register fs to CPU general-purpose register rt.

Instruction

Format and Description COP1 | fmt | cc | fs | fd function

Floating-point
Move Conditional on
FPU True

MOVT.fimt fd, fs, cc
Transfers the contents of FPU register fs in the specified format (fmf) to FPU register fd if the cc bit is
true.

Floating-point
Move Conditional on
FPU False

MOVF.fmt fd, fs, cc
Transfers the contents of FPU register fs in the specified format (fmtf) to FPU register fd if the cc bit is
false.

Instruction

Format and Description COP1 | fmt | rt | fs | fd |function|

Floating-point
Move Conditional on
Zero

MOVZ.fmt fd, fs, rt
Transfers the contents of FPU register fs in the specified format (fmt) to FPU register fd if CPU register rt
is 0.

Floating-point
Move Conditional on Not
Zero

MOVN.fmt fd, fs, rt
Transfers the contents of FPU register fs in the specified format (fmt) to FPU register fd if CPU register rt
is other than 0.

184

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 7 FLOATING-POINT UNIT

7.5.2 Conversion instructions

The conversion instructions execute format conversion between single precision and double precision, or
between fixed point and floating point.
Table 7-8 lists the conversion instructions.

Table 7-8. Conversion Instructions

Instruction

Format and Description [copt [fimt | o | fs | fd [tunction]

Floating-point Convert to
Single Floating-point
Format

CVT.S.fmt fd, fs

Converts the contents of FPU register fs from the specified format (fmf) into a single-precision floating-
point format. Stores the result rounded in accordance with the setting of FCR31 and FCR28 in FPU
register fd.

Floating-point Convert to
Double Floating-point
Format

CVT.D.fmt fd, fs

Converts the contents of FPU register fs from the specified format (fmt) into a double-precision floating-
point format. Stores the result rounded in accordance with the setting of FCR31 and FCR28 in FPU
register fd.

Floating-point Convert to
Long Fixed-point Format

CVT.L.fmt fd, fs
Converts the contents of FPU register fs from the specified format (fmf) into a 64-bit fixed-point format.
Stores the result rounded in accordance with the setting of FCR31 and FCR28 in FPU register fd.

Floating-point Convert to
Single Fixed-point
Format

CVT.W.fmt fd, fs
Converts the contents of FPU register fs from the specified format (fmf) into a 32-bit fixed-point format.
Stores the result rounded in accordance with the setting of FCR31 and FCR28 in FPU register fd.

Floating-point Round to
Long Fixed-point Format

ROUND.L.fmt fd, fs
Rounds and converts the contents of FPU register fs from the specified format (fmi) to a value closest to a
64-bit fixed-point format. Stores the result in FPU register fd.

Floating-point Round to
Single Fixed-point
Format

ROUND.W.fmt fd, fs
Rounds and converts the contents of FPU register fs from the specified format (fmt) to a value closest to a
32-bit fixed-point format. Stores the result in FPU register fd.

Floating-point Truncate
to Long Fixed-point
Format

TRUNC.L.fmt fd, fs
Rounds the contents of FPU register fs toward 0 and converts the contents from the specified format (fmf)
into a 64-bit fixed-point format. Stores the result in FPU register fd.

Floating-point Truncate
to Single Fixed-point
Format

TRUNC.W.fmt fd, fs
Rounds the contents of FPU register fs toward 0 and converts the contents from the specified format (fmt)
into a 32-bit fixed-point format. Stores the result in FPU register fd.

Floating-point Ceiling to
Long Fixed-point Format

CEIL.L.fmt fd, fs
Rounds the contents of FPU register fs toward +e and converts the contents from the specified format
(fmt) into a 64-bit fixed-point format. Stores the result in FPU register fd.

Floating-point Ceiling to
Single Fixed-point
Format

CEIL.W.fmt fd, fs
Rounds the contents of FPU register fs toward +e and converts the contents from the specified format
(fmt) into a 32-bit fixed-point format. Stores the result in FPU register fd.

Floating-point Floor to
Long Fixed-point Format

FLOOR.L.fmt fd, fs
Rounds the contents of FPU register fs toward —e and converts the contents from the specified format
(fmt) into a 64-bit fixed-point format. Stores the result in FPU register fd.

Floating-point Floor to
Single Fixed-point
Format

FLOOR.W.fmt fd, fs
Rounds the contents of FPU register fs toward —e and converts the contents from the specified format
(fmt) into a 32-bit fixed-point format. Stores the result in FPU register fd.

Preliminary User’'s Manual U16044EJ1VOUM 185

CHAPTER 7 FLOATING-POINT UNIT

When converting a floating-point format into a fixed-point format, make sure that the result is a value in a range of
2% _1 to —2%. If the result cannot be correctly expressed because it exceeds the range of 2% — 1 to —253 as a result
of rounding the value of the source, an unimplemented operation exception occurs and the result of the operation is

discarded. The instructions that cause the unimplemented operation exception under these conditions are listed
below.

CEIL.L.S CEIL.LD
CVT.L.S CVT.LD
FLOOR.L.S FLOOR.L.D
ROUND.L.S ROUND.L.D
TRUNC.L.S TRUNC.L.D

An unimplemented operation exception may also occur when converting a fixed-point format into a floating-point
format. For details, refer to 8.3.6 Unimplemented operation exception (E).

186 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 7 FLOATING-POINT UNIT

7.5.3 Operation instructions

The operation instructions execute an operation on a floating-point value in a register.
operation instructions.

Table 7-9 lists the

Three-operand instructions execute addition, subtraction, multiplication, or division of floating-point values.
Two-operand instructions execute absolute value, transfer, square root, and arithmetic negation of a floating-point

value.

Table 7-9. Operation Instructions (1/2)

Instruction

Format and Description [copt [fmt | #t | fs [fd [function

Floating-point Add

ADD. fmt fd, fs, ft
Arithmetically adds the contents of FPU registers fs and ft in the specified format (fmt), and stores the
rounded result in FPU register fd.

Floating-point Subtract

SUB. fmt fd, fs, ft
Arithmetically subtracts the contents of FPU registers fs and ft in the specified format (fmf), and stores the
rounded result in FPU register fd.

Floating-point Multiply

MUL. fmt fd, fs, ft
Arithmetically multiplies the contents of FPU registers fs and ftin the specified format (fmf), and stores the
rounded result in FPU register fd.

Floating-point Divide

DIV. fmt fd, fs, ft
Arithmetically divides the contents of FPU register fs by the contents of FPU register ft in the specified
format (fmt), and stores the rounded result in FPU register fd.

Floating-point Absolute
Value

ABS. fmt fd, fs
Calculates an arithmetic absolute value of the contents of FPU register fs in the specified format (fmt),
and stores the result in FPU register fd.

Floating-point Move

MOV. fmt fd, fs
Copies the contents of FPU register fs in the specified format (fmtf) to FPU register fd.

Floating-point Negate

NEG. fmt fd, fs
Calculates arithmetic negation of the contents of FPU register fs in the specified format (fmt), and stores
the result in FPU register fd.

Floating-point Square
Root

SQRT. fmt fd, fs
Calculates an arithmetic positive square root of the contents of FPU register fs in the specified format
(fmt), and stores the rounded result in FPU register fd.

Preliminary User’'s Manual U16044EJ1VOUM 187

CHAPTER 7 FLOATING-POINT UNIT

Table 7-9. Operation Instructions (2/2)

Instruction

Format and Description [copix| fr | #t | fs [fd [uuncion] fmt]

Floating-point Multiply-
Add

MADD.fmt fd, fr, fs, ft
Multiplies the contents of FPU registers fs and ft in the specified format (fmt), and adds the result to the
contents of FPU register frin a specified format (fmf). Then stores the rounded result in FPU register fd.

Floating-point Multiply-
Subtract

MSUB.fmt fd, fr, fs, ft

Multiplies the contents of FPU registers fs and ft in the specified format (fmf), and subtracts the contents
of FPU register fr from the result in the specified format (fmf). Then stores the rounded result in FPU
register fd.

Floating-point Negate
Multiply-Add

NMADD.fmt fd, fr, fs, ft

Multiplies the contents of FPU registers fs and ft in the specified format (fmt), and adds the result to the
contents of FPU register frin the specified format (fmif). Rounds the result and calculates arithmetic
negation, and then stores that result in FPU register fd.

Floating-point Negate
Multiply-Subtract

NMSUB.fmt fd, fr, fs, ft

Multiplies the contents of FPU registers fs and ft in the specified format (fmf), and subtracts the contents
of FPU register fr from the result in the specified format (fmf). Rounds the result and calculates arithmetic
negation, and then stores that result in FPU register fd.

Instruction

Format and Description coP1 | fmt 0 | fs [fd Jfunction

Floating-point
Reciprocal

RECIP.fmt fd, fs
Calculates the approximate value of the inverse number of the contents of FPU register fs in the specified
format, and stores the result in FPU register fd.

Floating-point
Reciprocal Square Root

RSQRT.fmt fd, fs
Calculates the square root of the contents of FPU register fs and then the approximate value of the
inverse number of that value in the specified format. Then stores the result in FPU register fd.

188

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 7 FLOATING-POINT UNIT

7.5.4 Comparison instruction
The comparison instruction (C.cond.fmt) converts the contents of two FPU registers (fs and ff) in the specified

format (fmi) for comparison. The result is determined based on the comparison condition (cond) included in the

code. Table 7-10 lists the comparison instruction, and Table 7-11 lists the conditions of the comparison instruction.

Table 7-10. Comparison Instruction

Instruction

Format and Description

[cop1

mt | #t | fs 0

function

Floating-point Compare

C.cond.fmt fs, ft

Interprets the contents of FPU register fs and ft in the specified format (fmt), and arithmetically compares
them. The result is identified by comparison and the specified condition (cond). The result of the
comparison can be used for the FPU branch instructions of the CPU.

Table 7-11. Conditions for Comparison Instruction

Nmemonic Definition Nmemonic Definition

F Always false T Always true

UN Unordered OR Ordered

EQ Equal NEQ Not equal

UEQ Unordered or equal OLG Ordered and less than or greater than

OLT Ordered and less than UGE Unordered or greater than or equal to

ULT Ordered or less than OGE Ordered and greater than or equal to

OLE Ordered and less than or equal to UGT Unordered or greater than

ULE Unordered or less than or equal to OGT Ordered and greater than

SF Signaling and false ST Signaling and true

NGLE Not greater than, not less than, and not GLE Greater than, less than, or equal to
equal to

SEQ Signaling and equal to SNE Signaling and not equal to

NGL Not greater than and not less than GL Greater than or less than

LT Less than NLT Not less than

NGE Not greater than and not equal to GE Greater than or equal to

LE Less than or equal to NLE Not less than and not equal to

NGT Not greater than GT Greater than

Preliminary User’'s Manual U16044EJ1VOUM

189

CHAPTER 7 FLOATING-POINT UNIT

7.5.5 FPU branch instructions

Table 7-12 lists the FPU branch instructions. These instructions can be used to test the result of the comparison
instruction (C.cond.fmt). “Delay slot” in this table means the instruction immediately following a branch instruction.
For details, refer to CHAPTER 4 PIPELINE.

Table 7-12. FPU Branch Instructions

Instruction

Format and Description | COP1 | BC br offset

Branch on FPU True

BC1T offset
Calculates the branch target address by adding the instruction address in the delay slot and a 16-bit offset
(shifts the address 2 bits to the left and sign-extends it).

If the FPU condition line is true, execution branches to the target address (delay of 1 instruction).

Branch on FPU False

BC1F offset
Calculates the branch target address by adding the instruction address in the delay slot and a 16-bit offset
(shifts the address 2 bits to the left and sign-extends it).

If the FPU condition line is false, execution branches to the target address (delay of 1 instruction).

Branch on FPU True
Likely

BC1TL offset
Calculates the branch target address by adding the instruction address in the delay slot and a 16-bit offset
(shifts the address 2 bits to the left and sign-extends it).

If the FPU condition line is true, execution branches to the target address (delay of 1 instruction). If a
conditional branch does not take place, the instruction in the delay slot is invalid.

Branch on FPU False
Likely

BC1FL offset
Calculates the branch target address by adding the instruction address in the delay slot and a 16-bit offset
(shifts the address 2 bits to the left and sign-extends it).

If the FPU condition line is false, execution branches to the target address (delay of 1 instruction). If a
conditional branch does not take place, the instruction in the delay slot is invalid.

7.5.6 Other instructions

Table 7-13. Prefetch Instruction

Instruction

Format and Description | COP1 | base | index | hint | 0 function

Prefetch Indexed

PREFX hint, index (base)
Adds the contents of CPU register base to the contents of CPU register index to generate an address.
How the data specified by the address is treated is specified by the hint area.

Table 7-14. Conditional Transfer Instructions

Instruction

Format and Description |SPEC|AL| rs | cc | rd 0 funct

Move Conditional on
FPU True

MOVT rd, rs, cc
Transfers the contents of CPU register rs to CPU register rd if the cc bit is true.

Move Conditional on
FPU False

MOVF rd, rs, cc
Transfers the contents of CPU register rs to CPU register rd if the cc bit is false.

190

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 7 FLOATING-POINT UNIT

7.6 Execution Time of FPU Instruction

Table 7-15. Number of Execution Cycles of Floating-Point Instructions (1/2)

Instruction Number of PCycles (When Executed Singly/Repeatedly)
Single Double Word Long Word

ADD.fmt 4/4 4/4 - -
SUB.fmt 4/4 4/4 - -
MUL.fmt 5/5 6/6 - -
MADD.fmt 9/9 10/10 - -
MSUB.fmt 9/9 10/10 - -
NMADD.fmt 9/9 10/10 - -
NMSUB.fmt 9/9 10/10 - -
DIV.fmt 30/30 59/59 - -
SQRT.fmt 30/30 59/59 - -
RECIP.fmt 30/30 59/59 - -
RSQRT.fmt 60/60 118/118 - -
ABS.fmt 2/2 2/2 - -
NEG.fmt 2/2 2/2 - -
ROUND.W.fmt 6/6 6/6 - -
ROUND.L.fmt 6/6 6/6 - -
TRUNC.W.fmt 6/6 6/6 - -
TRUNC.L.fmt 6/6 6/6 - -
CEIL.W.fmt 6/6 6/6 - -
CEIL.L.fmt 6/6 6/6 - -
FLOOR.W.fmt 6/6 6/6 - -
FLOOR.L.fmt 6/6 6/6 - -
CVT.D.fmt 2/2 - 6/6 6/6
CVT.S.fmt - 4/4 6/6 6/6
CVT.W.fmt 6/6 6/6 - -
CVT.L.fmt 6/6 6/6 - -
C.cond.fmt 22 2/2 - -

Preliminary User’'s Manual U16044EJ1VOUM

Unlike the CPU, which executes almost all instructions in 1 cycle, the FPU instructions take a long time to

Table 7-15 shows the minimum execution time of each floating-point instruction in the number of PCycles. This
execution time is calculated on the assumption that the result of execution of each instruction is used by the
instruction immediately after.

191

CHAPTER 7 FLOATING-POINT UNIT

Table 7-15. Number of Execution Cycles of Floating-Point Instructions (2/2)

Instruction Number of PCycles (When Executed Singly/Repeatedly)
Single Double Word Long Word
BCIT 2/2 (hit), 6/6 (miss) 2/2 (hit), 6/6 (miss) - -
BC1F 2/2 (hit), 6/6 (miss) 2/2 (hit), 6/6 (miss) - -
BC1TL 2/2 (hit), 6/6 (miss) 2/2 (hit), 6/6 (miss) - -
BC1FL 2/2 (hit), 6/6 (miss) 2/2 (hit), 6/6 (miss) - -
LWC1 4/3 4/3 - -
SWC1 NA/ NA/ - -
LDCA 4/3 4/3 - -
SDC1 NA/ NA/ - -
LWXCA1 4/3 4/3 - -
SWXCH1 NA/ NA/ - -
LDXC1 4/3 4/3 - -
SDXCH1 NA/ NA/ - -
LUXCA 4/3 4/3 - -
SUXCH1 NA/ NA/ - -
MOV.fmt 2/2 2/2 - -
MOVZ.fmt 77 77 - -
MOVN.fmt 717 717 - -
MOVF.fmt 77 77 - -
MOVT.fmt 717 717 - -
MTCA 2/2 2/2 - -
MFCA1 11 i7al - -
DMTCA 2/2 2/2 - -
DMFCA1 i7al 11 - -
CTCA™™ 10/12 10/12 - -
CFC1™* 10/12 10/12 - -

192

Note This instruction is executed serially.

Remark NA: Under evaluation

Preliminary User’'s Manual U16044EJ1VOUM

No other instructions are executed at the same time.

CHAPTER 8 FLOATING-POINT EXCEPTIONS

This chapter explains how the FPU processes floating-point exceptions.
8.1 Types of Exceptions

A floating-point exception occurs if a floating-point operation or an operation result cannot be processed by the
ordinary method.
The FPU may perform either of the following operations if an exception occurs.

o When exceptions are enabled
The FPU sets the cause bit of the Control/Status register (FCR31) or Cause/Flag register (FCR26) and
transfers processing to an exception handler routine (software processing).

o When exceptions are disabled
The FPU stores an appropriate value (default value) in the destination register and continues execution.

The FPU supports the following five types of IEEE754 exceptions by using the cause bit, enable bit, and flag bit
(status flag).

¢ Inexact operation (l)
e Overflow (O)

¢ Underflow (U)

o Division-by-zero (2)
¢ Invalid operation (V)

As the sixth exception cause, the FPU has an unimplemented operation (E) that is used if a floating-point
operation cannot be executed with the standard architecture of MIPS (including when the FPU cannot correctly
process an exception). This exception must be processed by software. An E bit is not provided in the enable or flag
bits. If this exception occurs, unimplemented exception processing is executed (if interrupts input by the FPU to the
CPU are enabled).

Figure 8-1 shows the bits of FCR31 that are used to support exceptions. The same enable bits is also provided in
FCR28, and the same cause and flag bits are also provided in FCR26.

Preliminary User’'s Manual U16044EJ1VOUM 193

CHAPTER 8 FLOATING-POINT EXCEPTIONS

Figure 8-1. Cause/Enable/Flag Bits of FCR31

Bit 17 16 15 14 13 12
E \ z (0] U | Cause bit
Bit 11 ‘ 1‘0 9‘) E‘i ‘7
\Y 4 (0] U | Enable bit
| | | | |
Bit 6 4 3 2
\Y Z (0] U | Flag bit

Inexact operation

Underflow
Overflow

Division by zero
Invalid operation

Unimplemented operation

The five exceptions of IEEE754 (V, Z, O, U, and |) are enabled by setting the corresponding bit. When an
exception occurs, the corresponding cause bit is set. If the corresponding enable bit is set, the FPU generates an
interrupt to the CPU, and starts exception processing. If occurrence of the exception is disabled, the cause bit and
flag bit corresponding to that exception are set.

8.2 Exception Processing

If a floating-point operation exception occurs, the Cause register of CPO indicates that the cause of the exception
lies in the FPU. The code of the floating-point exception (FPE) is used, and the cause bits of FCR31 and FCR26
indicate the cause of the floating-point operation exception. These bits function as an extension of the Cause
register of CPO.

8.2.1 Flag

A flag bit is available for each IEEE754 exception. The flag bit is set if occurrence of the corresponding exception
is disabled and if the condition of the exception is detected. The flag bit can be set/reset by writing a new value to
FCR31 or FCR26 using the CTC1 instruction.

If an exception is disabled by the corresponding enable bit, the FPU performs predetermined processing. This
processing gives a default value instead of the result of the floating-point operation. This default value is determined
by the type of the exception. If an overflow or underflow exception occurs, the default value differs depending on the
rounding mode at that time. Table 8-1 shows the default values given by each IEEE754 exception of the FPU.

194 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 8 FLOATING-POINT EXCEPTIONS

Table 8-1. Default Values of IEEE754 Exceptions in FPU

Area Description Rounding Mode Default Value
\ Invalid operation - Uses Quiet Not a Number (Q-NaN).
Zz Division-by-zero - Uses correctly signed o.
O Overflow RN o with sign of intermediate result
RZ Maximum normalized number with sign of intermediate result
RP Negative overflow: Maximum negative normalized number

Positive overflow: +e

RM Positive overflow: Maximum positive normalized number

Negative overflow: —eo

U Underflow RN 0 with sign of intermediate result
Rz 0 with sign of intermediate result
RP Positive underflow: Minimum positive normalized number

Negative underflow: 0

RM Negative underflow: Minimum negative normalized number

Positive underflow: 0

Inexact operation - Uses rounded result.

The FPU internally detects nine types of statuses that may trigger an exception. When the FPU detects these
abnormal statuses, an IEEE754 exception or the unimplemented operation exception (E) occurs. Table 8-2 shows
the statuses that trigger exceptions, and a comparison of the contents of the corresponding cause bits of the FPU
and the IEEE754 standard.

Table 8-2. FPU Internal Result and Flag Status

FPU Internal Result IEEE754 Exception | Exception Remark
Enabled Disabled

Inexact operation | | | Result is not accurate.
Exponent overflow O, [Nete o, O, | Normalized exponent > Emax
Division-by-zero Z z Z Zero (exponent = Emin — 1, mantissa = 0)
Overflow during conversion \% E E Source is outside integer range
Signaling NaN (S-NaN) source | V \Y \
Invalid operation \ \ \ 0+ 0, etc.
Exponent underflow U E E Normalized exponent < Emin
Denormalized source None E E Exponent = Emin — 1 and mantissa # 0
Q-NaN None E E

Note IEEE754 allows an Inexact operation exception to occur in the case of an overflow only when the
overflow exception is disabled, but the VrR5500 always allows an overflow exception and an inexact
operation exception to occur in the case of an overflow.

Preliminary User’'s Manual U16044EJ1VOUM 195

CHAPTER 8 FLOATING-POINT EXCEPTIONS

8.3 Details of Exceptions
This section explains the conditions under which each exception occurs and the action taken by the FPU.

8.3.1 Inexact operation exception (I)
The FPU generates an inexact operation exception in the following cases.

o |f the accuracy of the rounded result drops

o |If the rounded result overflows

e |f the rounded result underflows and if an underflow exception and an inexact operation exception are
disabled and the FS bit of FCR31 and FCR28 is set

Usually, the FPU checks the operands of an instruction before executing the instruction. Based on the exponent
value of the operand, the FPU judges whether an exception may occur as a result of executing this instruction. If an
exception may occur, the FPU uses a stall when executing this instruction.

However, the FPU cannot predict whether executing a certain instruction results in an illegal value. If the inexact
operation exception is enabled, the FPU uses a stall for executing all instructions, and thus the execution time
increases by 1 cycle. This substantially affects the performance. Therefore, enable the inexact operation instruction
only when it is necessary.

(1) If exception is enabled
The contents of the destination register are not changed, the contents of the source register are saved, and the
inexact operation exception occurs.

(2) If exception is not enabled

If no other exception occurs, the rounded result or the result that underflows/overflows is stored in the
destination register.

196 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 8 FLOATING-POINT EXCEPTIONS

8.3.2 Invalid operation exception (V)
An invalid operation exception occurs if one of or both the operands are invalid. If the exception is not enabled,
the result is Not a Number (Q-NaN). The invalid operations include the following operations.

o Addition/subtraction: Addition/subtraction between infinities (+o) + (—o0) Or (—o0) — (—oo)

e Multiplication: 0 x oo

e Division: £0 + 20 or *oeo + oo

e Comparison of “<” or “>” with an Unordered operand and without “?”

o Arithmetic operation with S-NaN included in the operand. The transfer instruction (MOV) is not treated as an
arithmetic operation, but the absolute value (ABS) and arithmetic negation (NEG) are treated as arithmetic
operations.

¢ Comparison with S-NaN as operand and conversion into floating point

e Square root: If operand is less than 0

In addition to the above, an exception can be simulated by software if an invalid operation is performed on the
specified source operand. Examples of this operation include IEEE754-specified functions that can be executed by
software, such as the remainder mentioned below.

e Remainder xREMy if y is 0 or if x is infinity
¢ Conversion of a floating-point value of infinity or NaN that triggers overflow into a decimal number
e Transcendental functions such as In(-5) and cos — 1(3)

(1) If exception is enabled
The contents of the destination register are not changed, the contents of the source register are saved, and the
inexact operation exception occurs.

(2) If exception is not enabled
If no other exception occurs, Q-NaN is stored in the destination register.

8.3.3 Division-by-zero exception (Z)

A division-by-zero exception occurs if a finite number with a divisor of 0 and a dividend of other than 0 is used.
This exception also occurs if an operation that produces signed infinity as the result, such as In(0), sec(w/2), csc(0),
and 0 — 1, is performed.

(1) If exception is enabled
The contents of the destination register are not changed, the contents of the source register are saved, and the

division-by-zero exception occurs.

(2) If exception is not enabled
If no other exception occurs, a correctly signed infinite number (+e) is stored in the destination register.

Preliminary User’'s Manual U16044EJ1VOUM 197

CHAPTER 8 FLOATING-POINT EXCEPTIONS

8.3.4 Overflow exception (O)

An overflow exception occurs if the exponent range is infinite and if the size of the result of the rounded floating

point is greater than the maximum finite number in the destination format (an inexact operation exception occurs and

the flag bit is set).

(1

)

If exception is enabled
The contents of the destination register are not changed, the contents of the source register are saved, and the
overflow exception occurs.

If exception is not enabled

If no other exception occurs, the default value that is determined by the rounding mode and the sign of the
intermediate result is stored in the destination register (refer to Table 8-1 Default Values of IEEE754
Exceptions in FPU).

8.3.5 Underflow exception (U)

An underflow exception occurs in the following two cases.

o |f the operation result is —2%™ to +2°™ (but other than 0)
o |If the accuracy drops as a result of an operation between not normalized small numbers.

IEEE754 defines many methods for detecting an underflow. However, be sure to detect an underflow by the

same method whatever processing may be performed.

(1)

()

The following two methods may be used to detect an underflow.
« If the result calculated after rounding and with an infinite exponent range is other than 0 and within +2™
o |[f the result calculated before rounding and with an infinite exponent range and accuracy is other than 0 and
within £2°™

The MIPS architecture detects an underflow after rounding the result.
The following two methods may be used to detect a drop in accuracy.

e Denormalized loss (if a given result and the result calculated when the exponent range is infinite differ)
o lllegal result (if a given result and the result calculated when the exponent range and accuracy are infinite
differ)

The MIPS architecture detects a drop in accuracy as an illegal result.

If exception is enabled

If the underflow exception/inexact operation exception is enabled or if the FS bit of FCR31 and FCR28 is not
set, an unimplemented operation exception (E) occurs. At this time, the contents of the destination register are
not changed.

If exception is not enabled

If the underflow exception and inexact operation exception are disabled and if the FS bit of FCR31 and FCR28
is set, the default value determined by the rounding mode and the sign of the intermediate result is stored in the
destination register (refer to Table 8-1 Default Values of IEEE754 Exceptions in FPU).

198 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 8 FLOATING-POINT EXCEPTIONS

8.3.6 Unimplemented operation exception (E)

The E bit is set and an exception occurs if an attempt is made to execute an instruction with an operation code
reserved for future expansion or an invalid format code. The operand and the contents of the destination register
are not changed. Usually, the instruction is emulated by software. If an IEEE754 exception occurs from an
emulated operation, simulate that exception.

The unimplemented operation exception also occurs in the following cases, in which an abnormal operand or
abnormal result that cannot be correctly processed by hardware is detected.

o |[f the operand is a denormalized number (except a compare instruction)

o If the operand is a Q-NaN (except compare instruction)

o |f the result is a denormalized number or underflows when the underflow/inexact operation exception is
enabled or when the FS bit of FCR31 and FCR28 is not set

o If a reserved instruction is executed

e |f an unimplemented format is used

o If a format whose operation is invalid is used (e.g., CVT.S.S)

Caution If the instruction is a format conversion or arithmetic operation instruction, the exception
occurs only when the operand is a denormalized number or NaN. The exception occurs even if
the operand is a denormalized number or NaN when a transfer instruction is executed.

The VR5500 also generates the unimplemented operation exception in the following cases.

o If the result of multiplication by the MADD, MSUB, NMADD, or NMSUB instruction is a denormalized number,
underflows, or overflows

e If a MIPS IV floating-point instruction is executed when the MIPS 1V instruction set is not enabled

e If the value of the result is outside the range of 2* — 1 (0x001F FFFF FFFF FFFF) to —2% (OxFFEO 0000 0000
0000) when the format is converted from a floating-point format to a 64-bit fixed-point format
Instruction: CEIL.L.fmt, CVT.L.fmt, FLOOR.L.fmt, ROUND.L.fmt, TRUNC.L.fmt

e |f the value of the result is outside the range of 2*' — 1 (0x7FFF FFFF) to —2% (0x8000 0000) when the format
is converted from a floating-point format to a 32-bit fixed-point format
Instruction: CEIL.W.fmt, CVT.W.fmt, FLOOR.W.fmt, ROUND.W.fmt, TRUNC.W.fmt

« If the value of the source operand is outside the range of 2* — 1 (0x007F FFFF FFFF FFFF) to —2* (OxFF80
0000 0000 0000) when the format is converted from a 64-bit fixed-point format to a floating-point format
Instruction: CVT.D.fmt, CVT.S.fmt

The unimplemented operation exception can be used in any way by the system. To maintain complete
compatibility with IEEE754, the unimplemented operation exception can be handled by software if it occurs.

(1) If exception is enabled
The contents of the destination register are not changed, the contents of the source register are saved, and the

unimplemented operation exception occurs.

(2) If exception is not enabled
This exception cannot be disabled because there is no corresponding enable bit.

Preliminary User’'s Manual U16044EJ1VOUM 199

CHAPTER 8 FLOATING-POINT EXCEPTIONS

8.4 Saving and Restoring Status

The LDC1 or SDC1 instruction is executed for 16 doublewords™™ to save or restore the status of a floating-point
register to or from memory. Information on FCR31, FCR28, FCR26, and FCR25 is saved to or restored from a CPU
register by the CFC1 or CTC1 instruction. Usually, FCR31 is saved first and restored last.

If the FPU is executing a floating-point instruction when FCR31, FCR28, FCR26, or FCR25 is read, the instruction
may be completely executed or reported as an exception. Because the architecture does not allow a pending
instruction to cause an exception, if execution of the pending instruction cannot be completed, that instruction is
transferred to an exception register (if any). Information such as the type of the exception is stored in FCR31,
FCR28, FCR26, or FCR25. When the status is restored, FCR31 indicates that an exception is pending.

By writing a value of 0 to the Cause bits of FCR31 or FCR26, all pending exceptions can be cleared, and
resumption of the normal processing is enabled after the status of the floating-point register has been restored.

The Cause bits of FCR31 and FCR21 hold the result of only one instruction. The FPU checks the operand before
executing an instruction to judge whether an exception may occur. If an exception may occur, the FPU executes this
instruction by using a stall, so that two or more instructions (that may cause an exception) are not executed at the
same time.

Note Thirty-two doublewords if the FR bit of the Status register in CPO is set to 1

8.5 Handler for IEEE754 Exceptions

IEEE754 recommends an exception handler that can store calculation results in the destination register
regardless of which of the five standard exceptions occurs.
The exception handler can identify the following by using the EPC register to search for an instruction.

e Occurrence of exception during instruction execution
e |nstruction under execution
e Format of destination

To obtain the correctly rounded result if an overflow, underflow (except the conversion instruction), or inexact
operation exception occurs, the exception handler must have software that checks the source register and simulates
instructions.

If an invalid operation exception or division-by-zero exception occurs or if an overflow exception or underflow
exception occurs during floating-point conversion, the exception handler must have software that can obtain the
value of the operand by checking the source register of the instruction.

IEEE754 recommends that, if possible, the overflow and underflow exceptions have a priority higher than the
inexact operation exception. This priority is set by software. The hardware sets the bits of both the overflow and the
underflow exceptions, and inexact operation exception.

200 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 9 INITIALIZATION INTERFACE

9.1 Functional Outline
The Vr5500 can be reset in three ways by using the ColdReset# and Reset# signals.

e Power-on reset
When the power supply has been stabilized after power application, all clocks are started. A power-on reset
completely initializes the internal information of the processor without saving any status information.

¢ Cold reset
If the ColdReset# signal is asserted while the processor is operating, all clocks are restarted and the test
interface circuit is also initialized. A cold reset completely initializes the internal statuses of the processor
without saving any status information.

o Warm reset
Although the processor is restarted, the clock and test interface circuits are not affected. By using a warm
reset, most of the internal statuses of the processor can be retained. However, the contents of registers are
undefined.

After reset, the processor serves as the bus master and drives the SysAD bus.

When adjusting a system reset with other system elements, the following must be noted: Generally, the operation
is undefined if a bus error occurs immediately before, during, and immediately after reset. In addition, reset
initializes only a part of the internal status. Therefore, completely initialize the processor by software.

The statuses of the registers, control signals, and current are undefined from when power is applied to when reset
is completed.

Preliminary User’'s Manual U16044EJ1VOUM 201

CHAPTER 9 INITIALIZATION INTERFACE

9.2 Reset Sequence

The following two signals are used during reset.

(1) ColdReset#
Assert this signal to execute a power-on reset or cold reset. Synchronize it with SysClock to deassert it.

(2) Reset#
Assert this signal to execute all reset operations. This signal does not have to be synchronized with the
ColdReset# signal when it is asserted. When only the Reset# signal is asserted, a warm reset is started. To
deassert this signal, synchronize it with SysClock.

9.2.1 Power-on reset
The sequence of a power-on reset is as follows.

1. Confirm that stable Voo and VoplO are supplied within the specified voltage range. Also confirm that the
system clock of the specified frequency is stable and continues operating.

2. After power supply has been stabilized, assert the ColdReset# signal for the duration of at least 64 K
SysClock cycles. Deassert the ColdReset# signal in synchronization with SysClock.

3. The processor starts operating when the Reset# signal is asserted after the ColdReset# signal has been
deasserted. Keep the Reset# signal active for the duration of at least 16 SysClock cycles after the
ColdReset# signal has been deasserted. Deassert the Reset# signal in synchronization with SysClock.

The status of the initialization signal (refer to 9.3) is latched 1 SysClock cycle after the ColdReset# signal has
been deasserted. Set the input level of the initialization signal before starting a power-on reset. Keep the level from
changing during operation.

At reset, the processor serves as the bus master and drives the SysAD bus.

When the Reset# signal is deasserted, the processor branches to the reset exception vector and starts execution
of the reset exception handler.

Figure 9-1 shows the timing of a power-on reset.

202 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 9 INITIALIZATION INTERFACE

Figure 9-1. Power-on Reset Timing

Vob _]
VoolO _]l 3135V i
AVAVAVAVANAVA
(input)
|
>100 ms \ > 64 K SysClock

tos
ColdReset# Z 2
(input)
tbs
Reset# —
(input) g g g 3

9.2.2 Cold reset

The sequence of a cold reset is the same as that of a power-on reset except that the power supply must be
stabilized before the reset signal is asserted.

Figure 9-2 shows the timing of a cold reset.

> 16 SysClock

Figure 9-2. Cold Reset Timing

Voo H
VoolO H .) -
SysClock [\ W_/—\J[S l—\
(input)
> 64 K SysClock
tos
tos ((
ColdReset# — \ ; N > 16 SysClock

(input) \ (¢ (¢

—1

tos
tos
Reset# \ —
(input) {5 {5 >

Preliminary User’'s Manual U16044EJ1VOUM 203

CHAPTER 9 INITIALIZATION INTERFACE

9.2.3 Warm reset

A warm reset is started if the Reset# signal is asserted in synchronization with SysClock. Keep the Reset# signal
active for the duration of at least 16 SysClock cycles before deasserting it in synchronization with SysClock. A warm
reset causes the processor to generate a soft reset exception.

Because a warm reset is started as soon as the Reset# signal has been asserted, multiple-cycle operations such
as processing of a cache miss and floating-point instructions are stopped, and the data and results may be lost.

At reset, the processor serves as the bus master and drives the SysAD bus. When executing a warm reset while
a SysAD bus transaction is in progress, also reset the external agent so that a conflict does not occur on the SysAD
bus.

When the Reset# signal is deasserted, the processor branches to the reset exception vector and starts executing
the soft reset exception handler.

Figure 9-3 shows the timing of a warm reset.

Figure 9-3. Warm Reset Timing

VoolO H

(input) N

> 16 SysClock

ColdReset# 35
(input)

tos
tos -—
Reset#
(input)

9.2.4 Processor status at reset

After a power-on reset, cold reset, and warm reset, all the internal statuses of the processor are reset and the
processor starts program execution from the reset vector.

The internal settings of the processor are retained after a warm reset has been executed. However, the status of
the cache may be retained or not depending on whether processing of a cache miss has been aborted by resetting
the processor. In addition, because the VrR5500 has a non-blocking structure, updating registers is canceled if
execution of a load instruction is not complete when a reset is executed.

The branch history table is initialized by a power-on reset and cold reset.
The statuses of the registers, control signals, and current are undefined from when power is applied to when reset
is completed.

204 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 9 INITIALIZATION INTERFACE

9.3 Initialization Signals

The Vr5500 has eight types of input signals that are sampled during initialization. These signals are used to set
the division ratio of the clock, the byte configuration of memory, and the protocol of the system interface.
Set the level of these signals before starting a power-on reset. Keep the level unchanged during operation.

(1) DivMode(2:0)
These signals specify the division ratio of the internal processor clock (PClock) and external system clock
(SysClock). Eight types of division ratios can be set: 2, 2.5, 3, 3.5, 4, 4.5, 5, and 5.5.

(2) BigEndian
This signal specifies the byte order used by the processor during operation. When it is high, big endian is
specified; when it is low, little endian is specified.

(3) BusMode
This signal specifies the bus width of the system interface. When this signal is high, the bus width is 64 bits;
when it is low, the bus width is 32 bits.

(4) TIntSel
This signal specifies the interrupt source allocated to the IP7 bit of the Cause register. When it is high, the timer
interrupt is selected, and an interrupt request executed by asserting the Int5# pin or an external write request
(SysADSb) is ignored. When this signal is low, the interrupt request executed by the Int5# pin or an external write
request (SysADDb) is selected, and the timer interrupt request is ignored.

(5) DisDValidO#
This signal specifies the operation of the ValidOut# signal. When this signal is low, the ValidOut# signal is
asserted only during the address issuance cycle; when it is low, the ValidOut# signal is asserted even if address
issuance is stalled due to ready control.

(6) DWBTrans#
This signal specifies expansion of the data transfer size when the system interface is 32 bits wide. If this signal
is low, doubleword block transfer is enabled; it is disabled when this signal is high.

(7) O3Return#
This signal specifies the protocol of the system interface. When it is low, the out-of-order return mode is
specified; when it is high, the normal mode is specified.

(8) DrvCon

This signal specifies the impedance control level of the output driver. When it is high, the level is weak; when it
is low, the level is normal. It is recommended to set this signal to the low level (normal) with the Vr5500.

Preliminary User’'s Manual U16044EJ1VOUM 205

CHAPTER 10 CLOCK INTERFACE

This chapter explains the clock interface used in the VR5500.
10.1 Term Definitions
This manual uses the following terms when describing signals.
* “Rising edge” indicates the point of transition from low level to high level.
* “Falling edge” indicates the point of transition from high level to low level.
* “Clock-Q delay” indicates the time required between when a signal inputs data to a device (clock) and when it
outputs data from a device (Q).

Figures 10-1 and 10-2 illustrate the meanings of these terms.

Figure 10-1. Signal’s Transition Points

1 clock cycle
-
1 ‘ 2 ‘ 3 4
Point of transition from Point of transition from
high level to low level low level to high level

Figure 10-2. Clock-Q Delay

Q. Data output
Data input
[\
Clock input
Clock-Q
delay
-

206 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 10 CLOCK INTERFACE

10.2 Basic System Clock

The VR5500 uses the following clock signals.

(1) SysClock
The internal clock of the VrR5500 is generated based on SysClock. The interface with the external device also
operates based on SysClock.

(2) PClock
The frequency ratio of PClock to SysClock can be selected from 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 4.5:1, 5:1, and 5.5:1.
This ratio is set by the signals input from the DivMode(2:0) pins at reset.
All the internal registers and latches use PClock.

Figure 10-3. When Frequency Ratio of SysClock to PClock Is 1:2

Cycle ‘ 1 2 ‘ 3 ‘ 4 ‘

SysClock
(input)
PClock
(internal)

too

tom
Note (output) Data < Data X:X Data X:X Data
too

Note (input)

— 0

Data X Data X X Data X X%ata

tps |—

~—|toH

Note SysAD(63:0), SysADC(7:0), SysCmd(8:0), SysID(2:0)

Preliminary User’'s Manual U16044EJ1VOUM 207

CHAPTER 10 CLOCK INTERFACE

10.2.1 Synchronization with SysClock

The processor data changes when tom has elapsed after the rising edge of SysClock was detected, and is in the
stable output status when too has elapsed. This time is the sum of the maximum value of the Clock-Q delay of the
processor output register and the maximum value of the delay when the data passes through the processor output
driver.

Keep the data supplied to the processor stable for the duration of at least tos before SysClock rises, and for the
duration of toH after the rising edge of SysClock, as shown in Figure 10-3.

10.3 Phase Lock Loop (PLL)

The processor has an internal PLL circuit that is used to synchronize SysClock with PClock. Because of the
nature of the PLL circuit, however, a clock synchronized with the frequency of SysClock can be generated in a
limited range.

The clock generated by using the PLL circuit has specific uncertainty called jitter. The clock synchronized with
SysClock by the PLL circuit leads or lags behind SysClock, up to the maximum permissible value tJ of jitter.

To obtain accurate I/O timing parameters, therefore, add tu to tos, toH, and too, and subtract ts from tom.

208 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 11 CACHE MEMORY

This chapter explains the cache memory: its place in the VR5500 core memory organization, and the individual

organization of the caches.

11.1 Memory Organization

Figure 11-1 shows the VrR5500 core system memory hierarchy. In the logical memory hierarchy, the caches are
located between the CPU and main memory. They are designed to make the speedup of memory accesses

transparent to the user.

Each functional block in Figure 11-1 has the capacity to hold more data than the block above it. For example,
main memory (physical memory) has a larger capacity than the caches. At the same time, each functional block
takes longer to access than any block above it. For example, it takes longer to access data in the main memory

than in the CPU on-chip registers.

Figure 11-1. Logical Hierarchy of Memory

Vr5500 CPU

Register

Register

Instruction
cache

Data cache

Cache

Main memory

Disc, CD-ROM,
tape, etc.

Register

Cache

Memory Fasteraccess
time

Peripheral
devices

Y

Increasing data
capacity

Preliminary User’'s Manual U16044EJ1VOUM

209

CHAPTER 11 CACHE MEMORY

11.1.1 Internal cache

The VR5500 has two caches. One of them is an instruction cache that holds instructions (program). The other is
a data cache that holds data.

When writing data to the data cache, translation of the store address and tag check are performed in the first
phase, and then the data is written to RAM in the next phase.

Figure 11-2 shows the relationship between the cache and memory.

Figure 11-2. Internal Cache and Main Memory

Vr5500
Cache controller < - Main memory
Instruction Data cache
cache

The features of the internal cache are as follows.

e Index using virtual address

e Physical address held by tag

¢ Coherency with memory maintained by writeback or write through
o Data management by two-way set associative method

e Line lock can be specified

e Cache line replacement by LRU (Least Recently Used) algorithm
¢ Non-blocking structure (data cache only)

The size of both the instruction and data caches of the Vr5500 is 32 KB.

210 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 11 CACHE MEMORY

11.2 Configuration of Cache

This section explains the configuration of the internal data and instruction caches of the Vr5500.

A cache consists of blocks called cache lines. A cache line is the minimum unit of information that can be fetched
from the main memory to the cache, and is divided into a tag and data. The size of a cache line of both the
instruction cache and data cache is 8 words (32 bytes).

11.2.1 Configuration of instruction cache
Figure 11-3 shows the format of an 8-word (32-byte) instruction cache line.

Figure 11-3. Format of Instruction Cache Line

28 27 4 3 2 1 0
Tag R ITag L State P
263 262 261 198 197 196 195 132 131 130 129 66 65 64 63 0
Data DataP Data DataP Data DataP Data DataP Data

ITag: Instruction tag

L: Lock bit (line lock status)
State: Status bit (line status)
R: LRU bit (way indication of candidate for replacement)

P: Parity bit (even parity for ITag)
DataP: Even parity for Data (in word units)
Data: Data of instruction cache

Preliminary User’'s Manual U16044EJ1VOUM 211

CHAPTER 11 CACHE MEMORY

11.2.2 Configuration of data cache
Figure 11-4 shows the format of an 8-word (32-byte) data cache line.

Figure 11-4. Line Format of Data Cache

28 27 4 3 2 1 0
Tag R DTag L State P
287 280 279 216 215 208 207 144 143 136 135 72 71 64 63 0
Data DataP Data DataP Data DataP Data DataP Data

DTag: Data tag

L: Lock bit (line lock status)
State: Status bit (line status)
R: LRU bit (way indication of candidate for replacement)

P: Parity bit (even parity for DTag)
DataP: Even parity for Data (in byte units)
Data: Data of data cache

11.2.3 Location of data cache

The Vr5500 manages cache data by a two-way set associative method. This method divides the cache into two
blocks of memory spaces (ways), and allocates two cache lines to the same index (refer to 11.3.5 Accessing
cache).

212 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 11 CACHE MEMORY

11.3 Cache Operations

As described earlier, caches provide temporary data storage, and they speed up memory accesses as seen by
the user. In general, the processor accesses cache-resident instructions or data using the following procedure.

(1) The processor attempts to access the instruction used next or data in the appropriate cache via the on-chip
cache controller.
(2) The cache controller checks to see if this instruction or data is present in the cache.

¢ |f the instruction/data is present, the CPU retrieves it. This is called a cache hit.
* |f the instruction/data is not present in the cache, the cache controller retrieves it from the main memory. This
is called a cache miss.

(3) When the required data or instruction is found, the cache controller passes it to the processor. The processor
then continues operating.

If a cache miss occurs, data is read from the main memory and one of the cache line is overwritten. This is called
replacing a cache line.

The Vr5500 manages the cache by a two-way set associative method, with two cache lines allocated to one
index. If a cache miss occurs, which of the two lines is to be replaced is determined by the LRU (Least Recently
Used) method. The way that is a candidate for replacement is indicated by the LRU bit of the cache tag.

The cache of the VR5500 has a line lock function. If a cache line is locked when it is allocated, that line is not
replaced even if a cache miss occurs. If a cache miss occurs while the line of both the ways is locked, however, one
of the cache lines is unlocked in accordance with the LRU bit. A cache line is locked or unlocked by the CACHE
instruction. The setting status of locking is indicated by the lock bit of the cache tag.

11.3.1 Coherency of cache data

It is possible for the same data to be in two places simultaneously: the main memory and a cache. This
coherency of this data is maintained by using the writeback or write-through method.

With the Vr5500, the data cache management technique can be selected from writeback and write through,
depending on the setting of the EntryLo register or Config register of CPO.

The writeback method stores write data only in the cache, without writing it directly to the main memory"*°. Some
time later the data written to the cache is independently transferred to the main memory. In the Vr5500, a modified
cache line is not written back to the memory until the cache line is to be replaced either in the course of satisfying a
cache miss, or during the execution of a writeback CACHE instruction.

With the write-through method, data written to the memory is also written to the cache simultaneously.

Preliminary User’'s Manual U16044EJ1VOUM 213

CHAPTER 11 CACHE MEMORY

11.3.2 Replacing instruction cache line

If a miss occurs in the instruction cache, the cache line is replaced by using sub-block ordering.

If a miss occurs in the instruction cache, the processor issues a memory read request. This means that the
processor reads the cache line it requests from the main memory and writes it to the instruction cache. At this time,
execution of the pipeline is resumed and the instruction cache is accessed again.

11.3.3 Replacing data cache line
If a miss occurs while data is being loaded from or stored in a cache, the cache line is replaced in compliance
with the following rules.

(1) Data load miss
If the cache line on which a miss has occurred is not dirty, that cache line is replaced with a new cache line.
If the cache line is dirty, the cache line is first transferred to the write transaction buffer. Then the cache line on
which a miss occurred is replaced with a new cache line, and the data transferred to the write transaction buffer
is written to memory.

(2) Data store miss

(a) With writeback cache
If the cache line on which a miss has occurred is not dirty, that cache line is replaced by store data merged
with a new cache line.
If the cache line is dirty, that cache line is first transferred to the write transaction buffer. Then store data
merged with a new cache line is written to the cache, and the data transferred to the write transaction buffer
is written to memory.

(b) With write-through cache
If the cache line on which a miss has occurred is not dirty, that cache line and memory contents are
replaced by store data merged with a new cache line. If the cache line is dirty, that cache line is first
transferred to the write transaction buffer. Then store data merged with a new cache line is written to the
cache and memory.

214 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 11 CACHE MEMORY

11.3.4 Speculative replacement of data cache line

The VR5500 adds an unguarded attribute to the algorithm of the data cache. This attribute can be selected
according to the setting of the EntryLo register or Config register of CP0O, when the data cache is used (refer to
CHAPTER 5 MEMORY MANAGEMENT SYSTEM).

The VR5500 speculatively executes instructions by using branch prediction and an out-of-order mechanism. If a
data load miss or data store miss occurs as a result of speculative execution of an instruction, the refill buffer once
holds data to replace cache lines. If the conventional algorithm is selected for the data cache, replacement is not
started until this instruction is committed, even if the refill buffer becomes full.

By contrast, replacement can be started even before this instruction is committed if the unguarded attribute is
selected. Speculative replacement like this cannot be stopped once it has been started, regardless of whether its
result is necessary or not.

Caution Make sure that the following conditions are satisfied in the area where the unguarded attribute
is specified.

o The OS uses the virtual address space and all spaces are contiguous.
o If I/O is connected, a device whose status is not changed even if read must be used.

If the address space is not contiguous, the result cannot be discarded when a load instruction
is speculatively executed because a bus error exception occurs, and the system hangs up.

If an I/0 whose status may be changed when read is connected, the result cannot be discarded
because the status on the I/O side is changed when a load instruction is speculatively
executed.

Remarks 1. Speculative processing using the unguarded attribute is only executed for the data cache.

2. Of the accesses to the area of the unguarded attribute, a read request is speculatively output from
the system interface before the instruction is committed, but a write request is output after the
instruction has been committed. By contrast, if an access is made to the uncached area, a read
request is also output to the system interface after the instruction has been committed.

Preliminary User’'s Manual U16044EJ1VOUM 215

CHAPTER 11 CACHE MEMORY

11.3.5 Accessing cache

The CACHE instruction is used to change the status of the cache line or to write back cache data (for details,
refer to CHAPTER 17 CPU INSTRUCTION SET).

Part of the virtual address (VA) is used to index the instruction cache and data cache. Because the cache size of
the VR5500 is 32 KB and has a two-way set, the most significant bit is VA13. In addition, because the line size is 8
words (32 bytes), the least significant bit is VA5. The way to be accessed is specified by the LRU method for Hit,

Fill, and Fetch_and_Lock operations, and by VAO for other operations.
Figure 11-5 shows the relationship between index and data output of the cache.

Figure 11-5. Index and Data Output of Cache

Internal address bus

<

VAO
VA(13:5) Y l
Way 0 Way 1

L Tag line Data line L] Tag line Data line

2 o) S g 2 o S 8

oas (] w © O © 1| ®© w ©

) = a o n = a (=

© S © 3
|

Internal data bus

216

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 11 CACHE MEMORY

11.4 Status of Cache

The cache line may be in the following three states, which indicate the validity of data and coherency with the

main memory.

The status of the cache line is undefined after reset. Initialize it by software.

(1) Instruction cache
The instruction cache may be in either of the following two states.

e |Invalid:

e Clean:

State in which the cache line does not have valid information.

A cache line in this state cannot be used. Set all the cache lines after a warm reset to Invalid by
software. A cache line not in the Invalid status is assumed to have valid information.

Neither a cold reset nor a warm reset makes the cache status Invalid. The cache is invalidated by
software.

State in which the cache line has valid information that has been fetched from the main memory. It
can be specified by software whether the cache line is locked or not.

(2) Data cache
The data cache may be in any of the following three states.

e |nvalid:

e Clean:

e Dirty:

State in which the cache line does not have valid information.

The cache line in this state cannot be used. Set all the cache lines after a warm reset to Invalid by
software. A cache line not in the Invalid status is assumed to have valid information.

Neither a cold reset nor a warm reset makes the cache status Invalid. The cache is invalidated by
software.

State in which the cache line has valid information that has not been changed after being fetched
from the main memory. It can be specified by software whether the cache line is locked or not.

State in which the cache line has valid information that has been changed after being loaded from the
main memory. It can be specified by software whether the cache line is locked or not.

A cache line in the Clean or Dirty status may be changed when the processor executes a certain type of CACHE
instruction operation. For the operations of the CACHE instruction, refer to CHAPTER 17 CPU INSTRUCTION SET.

11.5 Manipulating Cache by External Agent

The VR5500 does not allow an external agent to check or manipulate the statuses and contents of either of the

caches.

Preliminary User’'s Manual U16044EJ1VOUM 217

CHAPTER 12 OVERVIEW OF SYSTEM INTERFACE

The processor uses the system interface to access the external resources necessary for processing a cache miss
and in the uncached area, and the external agent uses the system interface to access the internal resources of the
processor.

The system interface of the VR5500 has several mode, including a mode in which another read request can be
issued even if the first read operation is not complete and a read response can be separated and returned, and a
mode that is compatible with the VR5000. These modes can be selected by a combination of the levels input to the
initialization pins at reset.

This chapter explains the bus modes and basic operations of the system interface of the Vr5500.

12.1 Definition of Terms
The following terms are used in CHAPTERS 13, 14, and 15.

o External agent
A device connected to the processor via the system interface which processes requests issued by the
processor

e System event
An event that is generated in the processor and requests access to the external resources. For example, the
following events are included.

e Occurrence of a miss in the instruction cache when an instruction is fetched
e Occurrence of a miss in the data cache when a load/store instruction is executed
e Execution of a load/store instruction to the uncached area.

e Sequence
Requests successively generated by the processor to process a system event

e Protocol
Signal transition in each cycle of the system interface pins by which the processor or external agent issues

requests

¢ Syntax
Definition of the bit pattern of a code bus such as a command bus

218 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 12 OVERVIEW OF SYSTEM INTERFACE

12.2 Bus Modes

The VR5500 has the following five types of bus modes. For details of the operation, refer to the corresponding
chapter.

e 64-bit R5000 mode
— Refer to CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE).
e 64-bit out-of-order return mode
— Refer to CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE).
e 32-bit R5000 mode (compatible with PMC-Sierra’s RM523x)
— Refer to CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE).
e 32-bit VR5432 native mode
— Refer to CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE).
e 32-bit out-of-order return mode
— Refer to CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE).

The bus modes other than the out-of-order return mode are collectively called the normal mode.
These modes are selected by using the BusMode, O3Return#, DWBTrans#, and DisDValidO# signals at reset.

The figure below shows the relationship between the setting of each signal and the mode to be selected.

Figure 12-1. Bus Modes of Vr5500

Vr5500
bus mode

BusMode = H BusMode = L

64-bit
bus mode

32-bit
bus mode

O3Return# =L

O3Retumn# = H, O3Returni# = H,
DWBTrans# = H, DWBTranst# = H,
DisDValidO# = H DisDValidO# = H

O3Returni# = H,
DWBTrans# =L,
DisDValidO# = L

O3Return# =L

R5000 mode
(compatible with
RM523x)

Vr5432
native mode

Qut-of-order
return mode

Qut-of-order
return mode

R5000 mode

Remarks 1. H: high level, L: low level
2. When the O3Return# signal is low, the DWBTrans# and DisDValidO# signals can be set to any
level, but keep the level from changing during operation.

Preliminary User’'s Manual U16044EJ1VOUM 219

CHAPTER 12 OVERVIEW OF SYSTEM INTERFACE

12.3 Outline of System Interface

12.3.1 Interface bus

The SysAD bus (address/data bus) and SysCmd bus (command bus) are the main communication buses of the
system interface. Because the both the buses are bidirectional buses, they can be driven by a processor that issues
processor requests or an external device that issues external requests (for details, refer to 12.4.4 Processor
request and external request).

A request that passes through the system interface consists of the following.

e Address
o Response data to read request or write data to write request

o Command specifying type of request/data

Figure 12-2 shows the interface bus in the 64-bit bus mode, and Figure 12-3 shows the interface bus in the 32-bit
bus mode.

Figure 12-2. System Interface Bus (64-Bit Bus Mode)

Vr5500 External agent

SysAD(63:0)

SysCmd(8:0)

Figure 12-3. System Interface Bus (32-Bit Bus Mode)

Vr5500 External agent

SysAD(31:0)

SysCmd(8:0)

220 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 12 OVERVIEW OF SYSTEM INTERFACE

12.3.2 Address cycle and data cycle

A cycle in which a valid address is on the SysAD bus is called an address cycle. A cycle in which valid data is on
the SysAD bus is called a data cycle. The Vr5500 uses the ValidOut# signal to indicate that the address/data output
to the system bus is valid. The external agent uses the ValidIn# signal to indicate that the address/data output to the
system bus is valid. The SysCmd bus identifies the contents of the SysAD bus cycle in a valid cycle. The most
significant bit of the SysCmd bus always indicates whether the current cycle is an address cycle or a data cycle.

The SysCmd bus indicates the following contents when the ValidOut# or Validin# signal is active.

¢ In an address cycle (SysCmd8 = 0), SysCmd(7:0) on the SysCmd bus is a system interface command.
¢ In a data cycle (SysCmd8 = 1), SysCmd(7:0) on the SysCmd bus is a data identifier.

For details of the command and data identifier codes, refer to the descriptions on system interface commands
and data identifiers in CHAPTERS 13, 14, and 15.

12.3.3 Issuance cycle

(1) Processor request
The processor issues two types of requests: a processor read request and a processor write request.
The issuance cycle of the processor read request is determined by the status of the RdRdy# signal, and that of
the processor write request is determined by the status of the WrRdy# signal. The issuance cycle is a cycle that
is valid in the address cycle of each processor request. Only one issuance cycle exists per processor request.
To define the issuance cycle of an address cycle, assert the Rdy#/WrRdy# signal on the external agent side up
to two cycles before the address cycle of a processor read/write request, as shown in Figure 12-4.
To set an address cycle as the issuance cycle, do not deassert the RdRdy#/WrRdy# signal until that address
cycle is started.

Figure 12-4. Status of RdRdy#/WrRdy# Signal of Processor Request

SysCycle‘1‘2‘3‘4‘5‘6‘
(internal)
SysAD(63:0)
/) X Adar X
RdRdy#/WrRdy# /
(input)

Issuance cycle

Preliminary User’'s Manual U16044EJ1VOUM 221

CHAPTER 12 OVERVIEW OF SYSTEM INTERFACE

()

Processor request and external request

The processor releases the system interface to the slave status and receives an external request in response to
the ExtRqgst# signal from the external agent even when it is about to issue a processor request.

If issuance of a processor request conflicts with issuance of an external request, the processor takes either of
the following actions.

o Completes issuance of the processor request before receiving the external request.
o Releases the system interface to the slave status without completing issuance of the processor request.

In the latter case, the processor issues the processor request after the external request has been completed (if
the processor request is still necessary).

12.3.4 Handshake signal

(1)

)

@)

The processor manages the flow of requests by using the following seven control signals.

RdRdy# and WrRdy# signals
The external agent uses these signals to indicate whether it is ready to receive a new read transaction or a new
write transaction.

ExtRgst#, Release#, and PReq# signals

These signals are used to control transfer between the SysAD bus and SysCmd bus. The ExtRqgst# signal is
used by the external agent to indicate that it needs the right to control the interface. The Release# signal is
asserted by the processor when the processor grants the external agent the right to control the system
interface. The PReqg# signal is used by the processor to indicate that it needs the right to control the interface.

ValidOut# and Validin# signal
The processor uses the ValidOut# signal and the external agent uses the Validin# signal to indicate valid
command/data on the SysCmd or SysAD bus.

222 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 12 OVERVIEW OF SYSTEM INTERFACE

12.3.5 System interface bus data
The data shown in Table 12-1 is driven on the SysAD and SysCmd buses. The symbols in this table are used in
the timing charts shown in the latter part of this chapter.

Table 12-1. System Interface Bus Data

Range Symbol Meaning

Common Unsd Unused

SysAD(63:0) Addr Physical address
Data<n> (Element n + 1 of) data

SysCmd(8:0) Cmd Unspecific system interface command
Read Read request command of processor or external agent
Write Write request command of processor or external agent
SINull External null request command for releasing system interface
NEOD Data identifier of last data element
NData Data identifier of data element other than last

Preliminary User’'s Manual U16044EJ1VOUM

223

CHAPTER 12 OVERVIEW OF SYSTEM INTERFACE

12.4 System Interface Protocol
Figure 12-5 shows an operation between registers that is performed via the system interface. The output signal
of the processor is directly output from an output register and changes at the rising edge of SysClock.

The signal input to the processor is directly latched to an input register at the rising edge of SysClock.

Figure 12-5. Operation of System Interface Between Registers

Vr5500
Output data
— —_—
P
Output ‘ o
latch -
Input data
D
Input
SysClock| latch

12.4.1 Master status and slave status

The system interface is in the master status while the VR5500 is driving the SysAD bus or SysCmd bus. While
the external agent is driving these buses, the system interface is in the slave status.

In the master status, the processor always asserts the ValidOut# signal if the SysAD bus and SysCmd bus are
valid.

In the slave status, always assert the Validin# signal of the external agent if the SysAD bus and SysCmd bus are
valid.

The default bus master of the system interface is the processor. The external agent serves as the master of the
system interface after the result of external arbitration has been obtained or it has issued a processor read request.
The external agent returns the right to control the bus to the processor when the external request has been
completed.

The system interface remains in the master status unless either of the following occurs.

e The external agent requests and is granted the right to control the system interface (external arbitration).
e The processor issues a read request (compelled transition to slave status).

These two cases are explained below.

224 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 12 OVERVIEW OF SYSTEM INTERFACE

12.4.2 External arbitration

The system interface must be in the slave status when the external agent issues an external request via the
system interface. So that the system interface changes its status from master to slave, the processor performs
arbitration by using the handshake signals of the system interface, ExtRgst# and Release#, in the following
procedure.

<1> The external agent asserts the ExtRqst# signal to transmit a request to issue an external request to the
processor.

<2> When the processor is ready to receive the external request, it asserts the Release# signal to change the
status of the system interface from master to slave, and releases the system interface.

<3> The system interface returns to the master status as soon as the external request has been issued.

12.4.3 Uncompelled transition to slave status

Uncompelled transition of the system interface to the slave status is performed by the processor, and the system
interface changes its status from master to slave when a processor read request is held pending. The Release#
signal is automatically asserted when a read request is issued. Uncompelled transition to the slave status takes
place in the cycle next to that of the processor read request.

If an external request is issued after uncompelled transition to the slave status, the system interface returns to the
master status. If there is a pending processor read request or if the external agent issues another external request,
the processor asserts the Release# signal for one cycle, and puts the system interface in the uncompelled slaved
status.

The external agent should confirm that the processor has put the system interface in the uncompelled slave
status, and start driving the SysCmd and SysAD buses. While the system interface is in the slave status, the
external agent can start an external request without arbitrating the system interface, i.e., without asserting the
ExtRgst# signal.

If the ExtRqst# signal is active when the external request is completed, the system interface automatically returns
to the master status.

Preliminary User’'s Manual U16044EJ1VOUM 225

CHAPTER 12 OVERVIEW OF SYSTEM INTERFACE

12.4.4 Processor requests and external requests

There are two types of requests: processor requests and external requests.

When a system event occurs, the processor issues a request via the system interface and accesses the external
resources needed to process the event. Accordingly, the system interface should be connected to the external
agent that is used to control access to system resources. To request access to the processor’s internal resources,
the external agent issues an external request.

Processor requests include the following.

e Read request: Supplies the read address to the external agent
¢ Write request: Supplies the write address and either single data or block data to the external agent

External requests include the following.

o Write request: Supplies an address and word data to be written to the processor resources
o Null request: Returns the system interface to the master status without affecting the processor

These system events and requests are illustrated in Figure 12-6 below.

Figure 12-6. Requests and System Events

VR5500 External agent
Processor requests
* Read >
* Write
External requests
- * Write

* Null

System events

¢ Load miss

¢ Store miss

e Store hit

¢ Load/store to uncached area

* Accelerated store to uncached area
¢ Instruction fetch from uncached area
¢ Fetch miss

226 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 12 OVERVIEW OF SYSTEM INTERFACE

12.5 Processor Requests

A processor request is a request for access to external resources via the system interface. Processor requests

include read requests and write requests.

(1

)

(©)

Summary of requests

A read request is a request for data of a block, a doubleword, an unaligned doubleword, a word, or an unaligned
word to be retrieved from the main memory or other system resources.

A write request is a request which provides data of a block, a doubleword, an unaligned doubleword, a word, or
an unaligned word to be written to the main memory or other system resources.

Issuing requests

The processor issues requests using a completely sequential method. This means that the processor handles
only one pending request at a time. For example, after the processor issues a read request it waits for a read
response before issuing the next request (except for the out-of-order return mode). The processor issues write
requests only when there are no pending read requests.

Control of requests

The RdRdy# and WrRdy# signals, which are input signals for the processor, are used by the external agent to
control the flow of processor requests. The RdRdy# signal controls the flow of processor read requests, and the
WrRdy# signal controls the flow of processor write requests.

Figure 12-7 shows the sequence of processor request cycles.

Figure 12-7. Flow of Processor Requests

Vr5500 External agent
<1> Processor issues read or write
request -
- <2> By setting RdRdy# and

WrRdy# signals as active,
the external system
controls acknowledgement

Preliminary User’'s Manual U16044EJ1VOUM 227

CHAPTER 12 OVERVIEW OF SYSTEM INTERFACE

12.5.1 Processor read request

Once the processor has issued a read request, the external agent should access the specified resource and
return the request data.

A processor read request can be separated from the response data of the external agent. In other words, the
external agent can start an unrelated external request before returning response data in response to a processor
read request. A processor read request ends when the last word of the response data has been received from the
external agent.

The response data’s data identifier may indicate whether or not any errors exist in the response data. This
enables the processor to generate a bus error exception.

In the VR5500, the external agent must be able to receive a new processor read request at any time if the
following condition is satisfied.

e The RdRdy# signal is active at least two cycles before issuance of the address cycle.

In the normal mode, the external agent must be able to receive a new processor read request at any time if the
following condition is satisfied.

e There is currently no pending processor read request.
In the out-of-order return mode, up to five read requests can be held pending.

12.5.2 Processor write request

Once the processor has issued a write request, the specified resource is accessed and the specified data is
written.

A processor write request ends when the last word of the data has been sent to the external agent.

The write requests of the VrR5500 support VrR4000-compatible, write re-issuance, and pipeline write timing modes.

The external agent must be able to receive a new processor write request at any time if the following two
conditions are satisfied.

e There is currently no pending processor read request.
o The WrRdy# signal is active at least two cycles before issuance of the address cycle and conforms to the

requirements of the timing mode set by the Config register.

In the out-of-order return mode, a write request may be issued after a read request.

228 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 12 OVERVIEW OF SYSTEM INTERFACE

12.6 External Requests

External requests include write requests and null requests.

(1) Outline of request
A write request supplies data to be written to the internal resources (interrupt register) of the processor. A null
request returns the system interface to the master status without affecting the processor.
(2) Controlling requests
As shown in Figure 12-8, the processor controls the flow of external requests via the arbitration signals
ExtRqgst# and Release#. The external agent cannot issue an external request unless it is granted the right to
control the system interface. The external agent acquires the right to control the system interface by asserting
the ExtRsqt# signal and waiting until the processor asserts the Release# signal for the duration of 1 cycle.
When the external agent issues an external request, the right to control the system interface is returned to the
processor.
Figure 12-8. Flow of External Request
Vr5500 External agent
- <1> External system requests right
of control by asserting ExtRgst#
<2> Processor grants right of control signal.
by asserting Release# signal >
. . . <3> External system issues
<4> Right of control is returned - external request.
to processor.
The right to control the system interface is always returned to the processor when the Validin# signal has been
asserted after an external request was issued. The processor does not acknowledge the subsequent external
requests until it completes the current request.
(3) Issuing request

If there is no pending processor request, the processor determines whether it receives an external request or
issues a new processor request, depending on its internal status. The processor can issue a new processor
request even while the external agent is requesting access to the system interface.

The external agent asserts the ExtRqst# signal to indicate that it wants to start an external request. In
response, the processor asserts the Release# signal to release the right to control the system interface. The
processor can acknowledge an external request in the following cases.

o When the processor has completed the processor request under execution

¢ When the ExtRgst# signal is input to the processor one or more cycles before the RdRdy#/WrRdy# signal is
asserted while the processor is waiting for assertion of the RdRdy#/WrRdy signal to issue a processor
read/write request

o When the processor puts the system interface in the uncompelled slave status and waits for a response to a
read request (the external agent can issue an external request before supplying the read response data)

Preliminary User’'s Manual U16044EJ1VOUM 229

CHAPTER 12 OVERVIEW OF SYSTEM INTERFACE

12.6.1 External write request

When the external agent issues a write request, it accesses a specified external resource and writes data to it.
The external write request is completed when word data has been transferred to the processor.

The only resource of the processor that can be accessed by an external write request is the Interrupt register.

12.6.2 Read response

A read response is used by the external agent to return data in response to a processor read request.

Unlike the other external requests, a read response does not execute system interface arbitration (requesting the
right to control the system interface by using the ExtRqgst# signal). Therefore, a read response is treated as
something different from an external request.

The data identifier of response data can also indicate that the response data contains an error, so that the
processor can generate a bus error exception.

Figure 12-9. Read Response

Vr5500 External agent

<1> Read request

\j

<2> Read response

A

230 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 12 OVERVIEW OF SYSTEM INTERFACE

12.7 Event Processing
This section explains the following system events.

e Load miss

e Store miss

e Store hit

e Load/store in uncached area

o Accelerated store in uncached area
o |Instruction fetch from uncached area
e Fetch miss

12.7.1 Load miss

If the processor misses the data cache when loading data, it issues a read request to obtain a cache line. The
external agent returns data as a read response.

If the cache data to be replaced is dirty, the processor writes back this data to memory. After writing back the
data, the processor requests the external agent for clean data, and performs a write operation to the cache.

The operation when a load miss occurs is shown in Table 12-2.

Table 12-2. Operation in Case of Load Miss

Page Attribute Status of Data Cache Line to Be Replaced

Clean/Invalid Dirty

Cache BR BR/BW

BR: Processor block read request
BW: Processor block write request

If it is necessary to write back the current cache line, the processor issues a block write request to save the dirty
cache line to memory.

Preliminary User’'s Manual U16044EJ1VOUM 231

CHAPTER 12 OVERVIEW OF SYSTEM INTERFACE

12.7.2 Store miss

If a processor store miss occurs in the cache, the processor requests the external agent for the cache line that
holds the target store location.

Table 12-3 shows the operation in case of a store miss.

Table 12-3. Operation in Case of Store Miss

Page Attribute Status of Data Cache Line to Be Replaced
Clean/Invalid Dirty
Writeback BR BR/BW
Write through BR/W -

BR: Processor block read request
BW: Processor block write request
W: Processor non-block write request

The processor issues a block read request to the cache line that holds the data element to be loaded, and waits
until the external agent supplies read data in response to this read request. If it is necessary to write back the
current cache line, the processor issues a request to write the current cache line. If the page attribute is write
through, the processor issues a non-block write request.

12.7.3 Store hit

The operation in the system bus is determined by whether the cache line in question is writeback or write through.
If the line uses the writeback policy, a processor request is not generated by a store hit. If the line uses the write-
through policy, a non-block write request of store data is generated by a store hit.

12.7.4 Load/store in uncached area

When the processor executes loading from an uncached area, it issues a read request for a doubleword, an
unaligned doubleword, a word, or an unaligned word. If the processor executes storing in an uncached area, it
issues a write request for a doubleword, an unaligned doubleword, a word, or an unaligned word. All the write
requests by the processor are buffered in a 4-stage write transaction buffer, and output to the system interface.
Because this buffer is a FIFO, if the buffer has an entry when a read request is issued, processing of the read
request is started after the buffer has become completely empty.

12.7.5 Accelerated store in uncached area

An accelerated operation to an uncached area is used to access a page with an uncached accelerated cache
algorithm. When the processor executes an accelerated store operation to an uncached area, it can issue a block
write request or a write request for one or more doublewords, an unaligned doubleword, a word, or an unaligned
word. All the write requests by the processor are buffered in a 4-stage write transaction buffer and output to the
system interface. Because this buffer is a FIFO, if the buffer has an entry when a read request is issued, processing
of the read request is started after the buffer has become completely empty.

By an accelerated operation to an uncached area, several sequential uncached word/doubleword accesses can
be combined into one 32-byte block write operation that can be processed by one external SysAD bus transaction.
When organizing a system, utmost care must be exercised in locating data that is used to access an uncached
accelerated page, so that this transaction is effectively performed.

An accelerated write operation to an uncached area is buffered in the write transaction buffer on a FIFO basis, in
the same way as the other transactions. If the data used for an accelerated write operation on an uncached area is

232 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 12 OVERVIEW OF SYSTEM INTERFACE

located in accordance with the following rules, however, two or more consecutive transactions are combined on a
FIFO basis and processed as a 4-doubleword access.

o |[f the first target of the accelerated operation to the uncached area is located at a 32-byte boundary

o |[f all the accelerated operations to the uncached area to be processed are word or doubleword accesses

o |[f the target of the word or doubleword access to be processed is located at a word boundary or doubleword
boundary

¢ Inthe case of word access, if the targets are located consecutively at a doubleword boundary

o |If the address value is incremented sequentially

A write transaction to an uncached area that is not in compliance with these rules is not treated as an accelerated
operation. If the transactions for an accelerated operation include a transaction that does not comply with the above
rules, all the transactions are processed as an ordinary uncached word/doubleword access.

An accelerated operation to an uncached area is aborted when the processor enters the debug mode. In the
debug mode, the contents of the write transaction buffer are cleared. If an exception occurs, the accelerated
operation to the uncached area is also aborted.

12.7.6 Instruction fetch from uncached area

The processor issues a word read to fetch an instruction in an uncached area. Therefore, the system ROM
address space that is accessed while booting of the processor is being resumed must support an aligned 32-bit read
operation.

12.7.7 Fetch miss

If a miss occurs in the instruction cache while an instruction is being fetched, the processor issues a read request
to obtain a cache line. The external agent returns data as a read response.

Preliminary User’'s Manual U16044EJ1VOUM 233

CHAPTER 12 OVERVIEW OF SYSTEM INTERFACE

12.8 Error Check Function

12.8.1 Parity error check

The Vr5500 performs error detection only, using an even parity.

Parity error detection is the most simple error detection method. By suffixing 1 bit called a parity bit to the end of
data, an error of 1 bit can be detected. However, the error cannot be corrected.

Parity comes in the following two types.

e Odd parity is used to append a bit of 1 to data when the number of 1s in the data is even, making the total
number of 1s, including that of the parity bit, odd.

e Even parity is used to append a bit of 1 to data when the number of 1s in the data is odd, making the total
number of 1s, including that of the parity bit, even.

Here is an example of odd parity and even parity.

Data(3:0) Odd Parity Bit Even Parity Bit
0010 0 1

In this example, only one bit that is 1, Datal, is in Data(3:0).
e Even parity sets the parity bit to 1. As a result, the number of bits that are 1 is two (even).
e Odd parity sets the parity bit to 0. As a result, the number of bits that are 1 remains odd (only the one bit of

Data1).

Here is an example of odd parity and even parity for various data values.

Data(3:0) Odd Parity Bit Even Parity Bit
0110 1 0
0000 1 0
1111 1 0
1101 0 1

Parity can detect an error of 1 bit but cannot identify the bit that has the error. For example, if a value 00011 is
received as odd parity, this data has an error because the last bit is the parity bit and the number of 1s, which should
be odd, is even. However, which bit has the error is unknown.

234 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 12 OVERVIEW OF SYSTEM INTERFACE

12.8.2 Error check operation
The processor uses parity to check the accuracy of data when it transfers data between the system interface and
cache.

(1) System interface bus
The processor generates an accurate check bit for the data of a word or an unaligned word that is to be
transferred to the system interface. It does not change the data check bit of the cache and directly passes it to
the system interface because only the accuracy of the data is to be checked.
The processor does not check the data of an external write operation it receives from the system interface. The
processor can also be set to not check the data of a read response it received from the system interface by
setting the SysCmd4 bit of a data identifier.
The processor does not check an address it has received from the system interface, and does not generate a
check bit for the address to be transferred to the system interface.
The Vr5500 does not have a circuit that corrects data. If an error is detected in accordance with the data check
bit, a cache error exception occurs. Perform error processing by software.

(2) System interface command bus
The VR5500 does not have a function to check the data of the system interface command bus.

Preliminary User’'s Manual U16044EJ1VOUM 235

CHAPTER 12 OVERVIEW OF SYSTEM INTERFACE

(8) Outline of error check operation

Tables 12-4 and 12-5 outline the error check operation.

Table 12-4. Error Check for Internal Transaction

Transaction | Uncached Load Uncached Store Cache Load from System Interface CACHE
B System Interface Write from Cache Instruction
us
Processor data From system Not checked Not changed, from | Checked, and trap | Checked when

system interface

occurs in case of
error

cache is written
back, and trap
occurs in case of
error

System address,
command, check
bit during transfer

Not generated

Not generated

Not generated

Not generated

Not generated

System address, Not checked Not checked Not checked Not checked Not checked
command, check
bit during
reception
System interface Checked, and trap | From processor Specified word is From cache From cache
data occurs in case of checked, and trap

error occurs in case of

error

System interface Checked, and trap | Generated Specified word is From cache From cache

data check bit

occurs in case of
error

checked, and trap
occurs in case of
error

Table 12-5. Error Check for External Transaction

Transaction External Write
Bus
Processor data Disabled
System address, command, check bit during transfer Disabled
System address, command, check bit during reception Not checked
System interface data Not checked
System interface data check bit Not checked

236

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE)

This chapter explains the request protocol of the system interface in the 64-bit bus normal mode. The system
interface of the VR5500 can be set in the 64-bit bus mode by inputting a high level to the BusMode pin before a
power-on reset. It can also be set in the normal mode by inputting a high level to the O3Return# pin before a power-

on reset, and in the out-of-order return mode by inputting a low level to the same pin.
The 64-bit bus normal mode is also called the R5000 mode, in which the VrR5500 is compatible with the bus
protocol of the VR5000 Series. To set this mode, input a high level to the DWBTrans# and DisDValidO# pins before

a power-on reset.

Vr5500 bus mode

BusMode = H BusMode = L

32-bit bus mode

64-bit bus mode

O3Return# =L

O3Return# = H,
O3Return# = L O3Return# = H, OBReturn# = H, DWBTrans# = L,
DWBTrans# = H, DWBTrans# = H, DisDValidO# = L

DisDValidO# = H DisDValidO# = H

R5000 mode
(compatible
with RM523x)

VRr5432
native mode

Out-of-order
return mode

Out-of-order

return mode RS000 mode

For the protocol in the 32-bit bus normal modes (operation mode compatible with native mode of the Vr5432 and
the RM523x), refer to CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE). For the protocol in the out-of-
order return mode, refer to CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE).

Preliminary User’'s Manual U16044EJ1VOUM 237

CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE)

13.1 Protocol of Processor Requests

This section explains the following two processor request protocols.

Read

o Write

13.1.1
The

Processor read request protocol
following sequence explains the protocol of a processor read request for a doubleword, unaligned

doubleword, word, and unaligned word (the numbers correspond to the numbers in Figure 13-1).

<1>

<2>

<3>

<4>

<5>

<6>

The external agent makes the RdRdy# signal is low and is ready to acknowledge a read request.

When the system interface is in the master status, the processor issues a processor read request by driving
a read command onto the SysCmd bus and a read address onto the SysAD bus. A physical address is
driven onto SysAD(35:0). All the other bits are driven to 0.

At the same time, the processor asserts the ValidOut# signal for the duration of 1 cycle. This signal
indicates that valid data is on the SysCmd and SysAD buses.

The processor puts the system interface in the uncompelled slave status. The external agent must wait
without asserting the ExtRgst# signal in an attempt to return a read response, until transition of the system
interface to the uncompelled slave status is completed.

The processor releases the SysCmd and SysAD buses 1 cycle after the Release# signal has been asserted.
The external agent drives the SysCmd and SysAD buses 2 cycles after the Release# signal has been
asserted.

When the system interface has been put in the slave status, the external agent can return the requested data by
using a read response. The read response can also return an indication that an error has occurred in the data if the
requested data could not be searched correctly, as well as the requested data. If the returned data contains an
error, the processor generates a bus error exception.

Figure 13-1 shows the processor read request, and uncompelled transition to the slave status that takes place
when the read request is issued.

The

238

timing of the SysADC bus is the same as that of the SysAD bus.

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE)

Figure 13-1. Processor Read Request

Master ‘ Slave
SysCycIe‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘
Yo T\
(Input)
SYSAD(?E?/:S; Y Addr }---
SvsCmd(8:0 <2> <5> <6>
ystbm EI/'O; XRead)—----(
¥ ouiput &
Release# <4>
(Output)
RdRdy# <> L
(Input)

Remark The dotted line indicates high impedance.

After the Release# signal has been asserted (<6> and later in the figure), the processor can acknowledge both a
read response (if the read request is pending) and an external request.

13.1.2 Processor write request protocol
The processor write request is issued by using either of the following two protocols.

o A write request for a doubleword, word, or unaligned word uses a single write request protocol.
o Cache block write and uncached accelerated write uses a block write request protocol.

A processor write request is issued when the system interface is in the master status.
Figure 13-2 shows the processor single write request cycle and Figure 13-3 shows the processor block write
request cycle (the numbers in the explanation below correspond to the numbers in the figures).

<1> The external agent makes the WrRdy# signal low and is ready to acknowledge a write request.

<2> The processor issues a processor write request by driving a write command onto the SysCmd bus and a
write address onto the SysAD bus. A physical address is driven onto SysAD(35:0). All the other bits are
driven to 0.

<3> The processor asserts the ValidOut# signal.

<4> The processor drives a data identifier onto the SysCmd bus and data onto the SysAD bus.

<5> The data identifier corresponding to the data cycle must include an indication of the last data cycle. At the
end of the cycle, the ValidOut# signal is deasserted.

Remark The timing of the SysADC bus is the same as that of the SysAD bus.

Preliminary User’'s Manual U16044EJ1VOUM 239

CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE)

Figure 13-2. Processor Non-Block Write Request Protocol

Master
SysCycle | 1 | 2 | 3| 4 | 5 | 6| 7| 8| 9| 10| 11] 12|
R AWAWAWAWAWAWAWAWAVAWAWAN
(Input)
SysAD(G(?/gg X Addr X DataoX
<2> <4>
Syscmd((ls/:g; X Write XNEODX
ValidO
?Olutplﬁg & <5
WrRdy#
(znpxt) <> L

Figure 13-3. Processor Block Write Request

Master
SysCycIe‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘

SysClock
e R AW AW AW WA AW AW AW AW

SysAD(63:0)

X Addr XDataOX Data1 X Datazx DataSX

(/) <2> <4>
Sysema) Y Write NData | NData \NData \NEOD }

ValidOut# \<3> <5>/
(Output)

WrRdy# <1> L

(Input)

240 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE)

13.1.3 Control of processor request flow

The external agent uses the RdRdy# signal to control the flow of processor read requests.

Figure 13-4 shows the control of the read request flow (the numbers in the explanation below correspond to the
numbers in the figure).

<1> The processor samples the RdRdy# signal and determines whether the external agent can acknowledge a
read request.

<2> The processor issues a read request to the external agent.

<38> The external agent deasserts the RdRdy# signal. This signal indicates that no more read requests can be
acknowledged.

<4> Because the RdRdy# signal is deasserted two cycles before, issuance of the read request is stalled.

<56> The read request is issued again to the external agent.

Figure 13-4. Control of Processor Request Flow

SysCycle | 1 | 2 | 3| 4 | 5| 6 | 7 | 8 | 9 |10/ 11]12]13]
(Input)

8y5ADI630) YAcdr) - ---(Data } -~ -{ Unsd X »----{pata } -----

Sysomd((f/gg XRead)-- - - -(NEOD} - ---(" Unsd X Read)----{NEOD}-----

ValidOut#
(Output)

Validin#
(Input) _/ _/
RdRdy#
(Input)

Release# — \ /
(Output) _/

Remark The dotted line indicates high impedance.

<2> <5>

<1> <3>

Preliminary User’'s Manual U16044EJ1VOUM 241

CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE)

Figure 13-5 shows an example in which two processor write requests are issued but issuance of the second
request is delayed because of the condition of the WrRdy# signal (the numbers in the explanation below correspond
to the numbers in the figure).

<1> The external agent asserts the WrRdy# signal to indicate that it is ready to acknowledge a write request.

<2> The processor asserts the ValidOut# signal, and drives a write command onto the SysCmd bus and a write
address onto the SysAD bus.

<3> The second write request is delayed until the WrRdy# signal is asserted again.

<4> If the WrRdy# signal is active two cycles before, an address cycle is issued in response to the processor
write request. This completes the issuance of the write request.

Remark The timing of the SysADC bus is the same as that of the SysAD bus.

Figure 13-5. Timing When Second Processor Write Request Is Delayed

Master
SysCycle | 1 | 2 | 3 | 4 | 5 |6 | 7 | 8| 9| 10| 11| 12]
e AW AYAVAVAVAWAWAY AW
(Input)
SysAD(ER \ Acar) Data | Y Addr) (Data
<3> <4>

Sysomd((?/:(c)); Y write {NEODY \ Write Xneop)

" (Ouipun 2> /

WrRdy#

(Input) <1> / \ /

13.1.4 Timing mode of processor request
The VR5500 has three timing modes: VrR4000-compatible mode, write re-issuance mode, and pipeline write mode.

e VRr4000-compatible mode
If single write requests are successively issued, the processor inserts two unused cycles after the data cycle
so that an address cycle is issued once every 4 system cycles.

o Write re-issuance mode
If the WrRdy# signal is deasserted in the address cycle of a write request, that request is discarded, but the
processor issues the same write request again.

e Pipeline write mode

Even if the WrRdy# signal is deasserted in the address cycle of a write request, the processor assumes that it
has issued that request.

242 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE)

(1) Vr4000-compatible mode

With the VR5500 processor interface, the WrRdy# signal must be asserted two system clocks before issuance of
a write cycle. If the WrRdy# signal is deasserted immediately after the external agent has received a write
request that fills the buffer, the subsequent write requests are kept waiting for the duration of 4 system cycles.
The processor inserts at least two unused system cycles after a write address/data pair, giving the external
agent the time to keep the next write request waiting.

Figure 13-6 shows a back-to-back write cycle in the VrR4000-compatible mode (the numbers in the explanation
below correspond to the numbers in the figure).

<1> The external agent asserts the WrRdy# signal to indicate that it is ready to issue a write cycle.

<2> The WrRdy# signal remains active. This indicates that the external agent can acknowledge another write
request.

<38> The WrRdy# signal is deasserted. This indicates that the external agent cannot acknowledge any more
write requests, and that issuance of the next write request is stalled.

Figure 13-6. Timing of VrR4000-Compatible Back-to-Back Write Cycle

Master

SysCycle | 1 | 2| 3 |4 |5 |6 [7 | 8] 9|10 11]12]13]14]

W AW AW AWAWAWAVAWAVAVAVAWAWAS
(Input)

Cycle 1 2 3 4

SysAD(63:0)
(1/0) X XAderDataXUnstUnstAder DataXUnstUnst Addr XDataX
Write#1 Write#2 Write#3
ValidOut# —\—/—\—/—\—/_
(Output)
WrRdy# <1> <2> <3>
(Input)

Preliminary User’'s Manual U16044EJ1VOUM 243

CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE)

(2) Write re-issuance mode
Figure 13-7 shows the write re-issuance protocol (the numbers in the explanation below correspond to the
numbers in the figure).
A write request is issued when the WrRdy# signal is asserted two cycles before the address cycle and in the
address cycle.

<1> The external agent asserts the WrRdy# signal to indicate that it is ready to acknowledge a write request.

<2> The WrRdy# signal remains active even when the write request has been issued. This indicates that the
external agent can acknowledge another write request.

<3> The WrRdy# signal is deasserted in the address cycle. This write cycle is aborted.

<4> The external agent asserts the WrRdy# signal, indicating that it is ready to acknowledge a write request.
In response, the write request aborted in <3> is re-issued.

<5> Even if a write request is issued, the WrRdy# signal remains active. This indicates that the external agent
can acknowledge another write request.

Figure 13-7. Write Re-Issuance

Master
Not Not Not Not Re-
Issued issued issued issued issued issued
sysCycle | 1 | 2| 3|4 |5 | 6] 7| 8] 9| 1w0]| 11]12]13]14]
SysClock
(Input)
SVSAD(G(‘T’/g; XadarofDataq{AddriXDatatf Unsd X Addri Xpatat)
Sysemd®S XwriteXnEoD{writeXNEOD{ Unsd X Write oY
validoutt —\ —\ I
z(i(gutplljjtﬂ)E
X(\SLTSL)J/:; <1> <2> /<3> \ <4> <5>

244 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE)

(3) Pipeline write mode
Figure 13-8 shows the pipeline write protocol (the numbers in the explanation below correspond to the numbers
in the figure). If the WrRdy# signal is issued two cycles before the address cycle, a write request is issued.
After the WrRdy# signal has been deasserted, the external agent must acknowledge one more write request.

<1>

<2>

<3>

<4>

The external agent asserts the WrRdy# signal to indicate that it is ready to acknowledge a write request.
Even when the write request has been issued, the WrRdy# signal remains active. This indicates that the
external agent can acknowledge one more write request.

The WrRdy# signal is deasserted. This indicates that the external agent can acknowledge no more write
requests. However, this write request is acknowledged.

The external agent asserts the WrRdy# signal, indicating that it can acknowledge a write request.

Figure 13-8. Pipeline Write

Master
Not Not Not
Issued Issued issued issued issued Issued
SysCycIe‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘13|14‘
SysClock
(Input)

SYSAD(6(I3/8; XAddroX Datag{AddrtXDatatk ~ Unsd X Addr2 Joata2
SysCmd((?/g; Xwrite\NEOD{Write\NEODX ~ Unsd X Write AvEoDX

ValidO \ / \ /

?(I)utplﬁg

g R =

Preliminary User’'s Manual U16044EJ1VOUM 245

CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE)

13.2 Protocol of External Request

An external request can be issued only when the system interface is in the slave status. Arbitration that changes
the status of the system interface from master to slave is realized by using the handshake signals of the system
interface (ExtRqst# and Release#).

This section explains the following external request protocols, as well as the arbitration protocol.

e Null
o Write
o Read response

13.2.1 External arbitration protocol

To issue an external request, assert the ExtRgst# signal to arbitrate the system interface. Then wait until the
processor asserts the Release# signal and releases the system interface to the slave status. When the system
interface is already in the slave status, i.e., when the processor previously executed an uncompelled transition of the
system interface to the slave status, the external agent can immediately start issuing an external request.

After issuing an external request, the external agent must return the right to control the system interface to the
processor.

If the external agent does not have any more external requests that must be processed, it must deassert the
ExtRgst# signal two cycles after the Release# signal was asserted. To issue two or more requests in a row, the
ExtRqgst# signal must be kept active until the last request cycle. If the last request cycle lasts for two cycles or more
after the Release# signal was asserted, deassert the ExtRgst# signal.

While the ExtRgst# signal is active, the processor continues processing the external request. However, the
processor cannot release the system interface to process the next external request until processing of the current
request is finished. While the ExtRgst# signal is active, two or more successive external requests cannot be
interrupted by a processor request.

246 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE)

Figure 13-9 shows the arbitration protocol of an external request issued by the external agent. The following
sequence explains the arbitration protocol (the numbers in the explanation below correspond to the numbers in the

figure).

<1>
<2>
<3>

<4>

<5>

<6>

The external agent continues asserting the ExtRqst# signal to issue an external request.

The processor asserts the Release# signal for 1 cycle when it is ready to process the external request.

The processor makes the SysAD and SysCmd buses go into a high-impedance state.

The external agent must drive the SysAD and SysCmd buses at least two cycles after the Release# signal
was asserted.

The external agent must deassert the ExtRqst# signal two cycles after the Release# signal was asserted,
except when it executes another external request.

The external agent must make the SysAD and SysCmd buses go into a high-impedance state on
completion of the external request.

Remark The timing of the SysADC bus is the same as that of the SysAD bus.

Figure 13-9. External Request Arbitration Protocol

SysAD(63:0)

SysCmd(8:0)

-«——— Master 4%47 Slave —»}47 Master ———»
SysCycIe‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘

SysClock
(Input)

(V0) \\ — { Addr f Data0 }-+-----

/) <3> <4> <6>

(/0) KK)' --------- (Cmdx NEOD)- (
" \,
ExtRgst# 1> /<5>
(Input) ¢
2>

"ouah)

Remark The dotted line indicates high impedance.

Preliminary User’'s Manual U16044EJ1VOUM 247

CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE)

13.2.2 External null request protocol

The processor supports an external null request. This request only returns the system interface from the slave
status to the master status, and does not have any other influence on the processor.

Figure 13-10 shows the timing of the external null request (the numbers in the explanation below correspond to
the numbers in the figure).

<1> The external agent drives an external null request command onto the SysCmd bus and asserts the Validln#
signal for one cycle. This returns the right to control the system interface to the processor.

<2> The SysAD bus is not used in the address cycle corresponding to the external null request (the bus does
not hold valid data).

<38> When the address cycle is issued, the null request is completed.

The external null request returns the system interface to the master status when the external agent has released
the SysCmd and SysAD buses.

Figure 13-10. External Null Request Protocol

- Slave 4>‘¢ Master —»

SysCycle ‘ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 | 9 | 10| 11| 12|

e AW AW AW AWAYAWAWAWAWRWAN
(Input) 2>

SysAD(G((IB/g \ Unsd }--rreeee (:

SysCde?/:(()); \sing}--eeeeee (:

ValidOut# H
(Output)
Validin#
(Input)

ExtRgst# H
(Input)

Release# H
(Output)

<1>

Remark The dotted line indicates high impedance.

248 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE)

13.2.3 External write request protocol
The external write request performs an operation close to the processor single write request, except that it asserts
the ValidIn# signal, instead of the ValidOut# signal.
Figure 13-11 shows the timing of the external write request (the numbers in the explanation below correspond to
the numbers in the figure).

<1>
<2>

<3>

<4>

<5>

<6>

The external agent asserts the ExtRqst# signal to arbitrate the system interface.
The processor asserts the Release# signal to release the system interface to the slave status.

The external agent asserts the Validin# signal and drives a write command onto the SysCmd bus and a

write address onto the SysAD bus.
The external agent asserts the Validin# signal and drives a data identifier onto the SysCmd bus and data
onto the SysAD bus.

The data identifier corresponding to the data cycle must contain an indication of the last data cycle.
When the data cycle is issued, the write request is completed. The external agent makes the SysCmd and
SysAD buses go into a high-impedance state, and returns the system interface to the master status.

Remark The timing of the SysADC bus is the same as that of the SysAD bus.

The external write request can only write word data to the processor.

specified for the external write request, the operation of the processor is undefined.

Figure 13-11. External Write Request Protocol

If a data element other than a word is

SysCycle

SysClock

SysCmd(8:0
(1/0)
ValidOut#
(Output)
Validin#
(Input)
ExtRqgst#
(Input)
Release#
(Output)

-«——— Master 4»{47 Slave 4’}4— Master ———»

‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘

AVAVAVAVAYAYAYAWAWAWAWAN
}borveeer-(adar Y Data0 oo

<3> <4> <6>

bovveree{ Wit \NEOD} -+

<5>

Remark The dotted line indicates high impedance.

Preliminary User’'s Manual U16044EJ1VOUM

249

CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE)

13.2.4 Read response protocol

The external agent must return data to the processor by using a read response protocol, in response to a
processor read request. The following sequence explains the read response protocol (the numbers in the
explanation below correspond to the numbers in Figures 13-12 and 13-13).

<1>
<2>

<3>

<4>

<5>

<6>

The external agent waits until the processor puts the system interface in the uncompelled slave status.

The processor returns data via a single data cycle or a series of data cycles.

When the last data cycle is issued, the read response is completed, and the external agent makes the
SysCmd and SysAD buses go into a high-impedance state.

The system interface returns to the master status.

Remark When the read request is issued, the processor always puts the system interface in the
uncompelled slave status.

The data identifier of the data cycle must indicate that this data is response data.
The data identifier corresponding to the last data cycle must contain an indication of the last data cycle.

If the read response is for a block read request, the response data does not have to identify the initial cache
status. The processor automatically allocates the cache to the clean status.

The data identifier corresponding to the data cycle can indicate that the data transferred in that cycle has an error.
Even if data may have an error, however, the external agent must return a data block of the correct size. The
processor checks the error bit of only the first doubleword of the block, and ignores the rest of the error bits of that
block (refer to 13.2.5 SysADC(7:0) protocol for block read response).

Only when there is a pending processor read request, read response data is passed to the processor. The
operation of the processor is undefined if there is no pending processor read request when a read response is
received.

Figure 13-12 shows a processor word request and the word read response that follows. Figure 13-13 shows the
read response to a processor block read request when the system interface is already in the slave status.

Remark The timing of the SysADC bus is the same as that of the SysAD bus.

250

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE)

Figure 13-12. Protocol of Read Request and Read Response

Master } Slave } Master—
sysCyde | 1 | 2 | 8 | 4 | 5 | 6| 7| 8| 9| 0] 11]12]
(Input) ’
SysAD(63:0) \ Adar }-- - -4 N Jpatao)- - - - -<
(170) (¢ <2> <3><4>
SysCmd(8:0) XRead)_ - .(:: XNEOD)- - <
() (‘ ,‘ <6>
.))
T —
ExtRgst# H 9
(Input) y
Validl)7
e U
Release#)
(Output) <1>

Remark The dotted line indicates high impedance.

Figure 13-13. Block Read Response in Slave Status

Slave i Master
SysCycIe‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘
RV AVAVAYAWAVAWAWAWAWAWRN
(Input)
SySAD@ig) XDataOX Data1X Data2X Data3)- --- -(
(I70) <D> <3> <4>
SYSCmd((?/gg J NData Y NData) NData} NEOD }- - - - {
<5> <5> <5> <6>
ValidOut# H
(Output)
ExtRqgst# H
(Input)
Validin# —\ /
(Input)
Release# H
(Output)

Remark The dotted line indicates high impedance.

Preliminary User’'s Manual U16044EJ1VOUM 251

CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE)

13.2.5 SysADC(7:0) protocol for block read response
When a block read response is issued, SysADC(7:0) must be used in compliance with the following rules.

o Only the first doubleword of transfer data is checked. If the data has an error (SysCmd5 = 1), the cache line
is invalidated, and a bus error exception occurs in the processor.

e A parity error of the first doubleword is detected when a request is issues, and a cache error exception
occurs. At this time, the cache line is in the Invalid status. A parity error of a subsequent doubleword is
detected again when that data is used.

e The error bits in three subsequent doublewords of data are ignored. The parity of each doubleword is written
to the cache, but is not checked until the data is referenced.

o If a memory error occurs during a block read operation, the SysADC bit must be changed to an illegal parity
during a read response operation for all the bytes that are affected by the memory error. However, even if
SysCmd5 is set to 1 during data transfer other than the first doubleword, a bus error exception does not
occur. If the SysADC bit has been changed to an illegal parity, a cache error exception occurs when any of
the remaining three doublewords is referenced.

13.3 Data Flow Control

The system interface supports a data rate of 1 doubleword per cycle.

13.3.1 Data rate control

The external agent can send data to the processor at the maximum data rate of the system interface.

The rate at which data is to be sent to the processor can be controlled on the external agent side. The transfer
rate from the external agent is not limited. The external agent asserts the Validin# signal in the cycle in which it
transfers data.

When the Validln# signal has been asserted and as long as a data identifier is on the SysCmd bus, the processor
acknowledges the cycle as valid. It then goes on acknowledging data until it receives a data word with NEOD.

The operation of the processor is undefined if data is sent in a pattern of other than 1 cycle for single data, and
other than 4 cycles for block data.

Figure 13-14 shows the timing of the read response where the data rate pattern is DDx.

252 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE)

Figure 13-14. Read Response with Data Rate Pattern DDx

Slave i Master ——
SysCycdle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10| 11| 12|
(Input)
SysAD(&‘ﬁi/:g; XDataOXData1X XData2XData3)- --- -(
SysCde?/:oog XNDataXNDataX XNDataXNData)— --— -(
ValidOut# H
(Output)
Validin# \ / \ /
(Input)
ExtRqst#
X(Incgasut) H
Release# H
(Output)
Remark The dotted line indicates high impedance.

13.3.2 Block write data transfer pattern

The rate at which the processor transfers block write data to the external agent can be set by the EP bit of the
Config register after reset. The data pattern is indicated by characters D and x that indicate the array of data cycle
and unused cycle at each data rate. D indicates a data cycle, and x indicates an unused cycle. For example, Dxx
data pattern indicates a data rate of 1 doubleword in every 3 cycles.

Table 13-1 shows the maximum data rate that can be set after reset.

Table 13-1. Transfer Data Rate and Data Pattern

Maximum Data Rate Data Pattern
1 doubleword/1 cycle DDDD
2 doublewords/3 cycles DDxDDx
2 doublewords/4 cycles DDxxDDxx
1 doubleword/2 cycles DxDxDxDx
2 doublewords/5 cycles DDxxxDDxxx
2 doublewords/6 cycles DDxxxxDDxxxx
1 doubleword/3 cycles DxxDxxDxxDxx
2 doublewords/8 cycles DDxxxxxXDDXXXXXX
1 doubleword/4 cycles DxxxDxxxDxxxDxxx

13.3.3 System endianness
The endianness of the system is set by the BigEndian pin after reset. The set endianness is indicated by the BE
bit of the Config register.

Preliminary User’'s Manual U16044EJ1VOUM 253

CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE)

13.4 Independent Transfer with SysAD Bus

For general applications, the SysAD bus connects the processor and a bidirectional register type transceiver in
the external agent between two points. For such applications, only the processor and external agent can be
connected to the SysAD bus.

For specific applications, other drivers and receivers are connected to the SysAD bus so that transfer can be
performed independently of the processor on the SysAD bus. This is called independent transfer. To execute
independent transfer, the external agent must adjust the right to control the SysAD bus by using the arbitration
handshake signals and external null request.

The procedure of independent transfer of the SysAD bus is as follows.

<1> The external agent requests the right to control the SysAD bus by asserting the ExtRgst# signal to issue an
external request.

<2> The processor releases the system interface to the slave status by asserting the Release# signal.

<3> In this way, the external agent can execute independent transfer on the SysAD bus. The Validin# signal
must not be asserted during transfer.

<4> When transfer is completed, the external agent releases and returns the system interface to the master
status by issuing an external null request.

13.5 System Interface Cycle Time

Because processor requests are restricted by the system interface protocol, the number of request cycles is
checked by the protocol. Because external requests have the following two types of wait times, the number of
request cycles differs depending on these wait times.

¢ Standby time until the processor releases the system interface to the slave status in response to an external
request (release wait time)
¢ Response time of the external request that requires a response (external response wait time)

While an external request is being issued, the release wait time differs depending on the status of the system
interface. When the external request is detected, the system interface is released to the external agent after the
cycle under processing.

The external response time of the VrR5500 is kept to the minimum. Data that is written is immediately loaded.

254 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE)

13.6 System Interface Commands and Data Identifiers

A system interface command defines the type and attribute of a system interface request. This definition is
indicated in the address cycle of a request.

The system interface data identifier defines the attribute of the data transferred in the system interface data cycle.

This section explains the syntax of the commands and data identifiers of the system interface, i.e., coding in bit
units.

Set the reserved bits and reserved area in the commands and data identifiers of the system interface related to
external requests to 1.

The reserved bits and reserved area in the commands and data identifiers of the system interface related to
processor requests are undefined.

13.6.1 Syntax of commands and data identifiers

The commands and data identifiers of the system interface are coded in 9-bit units, and transferred from the
processor to the external agent, or vice versa, via the SysCmd bus in the address cycle and data cycle.

SysCmd8 (most significant bit) determines whether the current contents of the SysCmd bus are a command
(address cycle) or data identifier (data cycle). If they are a command, clear SysCmd8 to 0; if they are a data
identifier, setitto 1.

13.6.2 Syntax of command
This section explains the coding of the SysCmd bus when a system interface command is used. Figure 13-15

shows the common code used for all the system interface commands.

Figure 13-15. Bit Definition of System Interface Command

0 Request type Details of request

Be sure to clear SysCmd8 to 0 when a system interface command is used.

SysCmd(7:5) define the types of system interface requests such as read, write, and null.

Table 13-2. Code of System Interface Command SysCmd(7:5)

Bit Contents

SysCmd(7:5) Command

0: Read request
1: Reserved

2: Write request
3: Null request
4to 7: Reserved

SysCmd(4:0) are determined according to the type of request. A definition of each request is given below.

Preliminary User’'s Manual U16044EJ1VOUM 255

CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE)

(1) Read request

The code of the SysCmd bus related to a read request is shown below.
Figure 13-16 shows the format of the command when a read request is issued.
Tables 13-3 to 13-5 show the code of the read attribute of the SysCmd(4:0) bits related to the read request.

Figure 13-16. Bit Definition of SysCmd Bus During Read Request

000

Details of read request
(refer to the tables below)

Table 13-3. Code of SysCmd(4:3) During Read Request

Bit

Contents

SysCmd(4:3)

Read attribute
0, 1: Reserved
2: Block read
3: Single read

Table 13-4. Code of SysCmd(2:0) During Block Read Request

Bit

Contents

SysCmd2

Reserved

SysCmd(1:0)

Size of read block
0: Reserved
1: 8 words
2, 3: Reserved

Table 13-5. Code of SysCmd(2:0) During Single Read Request

Bit

Contents

SysCmd(2:0)

Read data size
0: 1 byte is valid (byte).

3 bytes are valid.
5 bytes are valid.

6 bytes are valid.
7 bytes are valid.

Noaswh

2 bytes are valid (halfword).

4 bytes are valid (word).

8 bytes are valid (doubleword).

256

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE)

(2) Write request
The code of the SysCmd bus related to a write request is shown below.
Figure 13-17 shows the format of the command when a write request is issued.

Tables 13-6 to 13-8 show the code of the write attribute of the SysCmd(4:0) bits related to the write request.

Figure 13-17. Bit Definition of SysCmd Bus During Write Request

0 010 Details of write request
(refer to the tables below)

Table 13-6. Code of SysCmd(4:3) During Write Request

Bit Contents

SysCmd(4:3) Write attribute

0, 1: Reserved
2: Block write

3: Single write

Table 13-7. Code of SysCmd(2:0) During Block Write Request

Bit Contents

SysCmd2 Update of cache line
0: Replaced
1: Retained

SysCmd(1:0) Size of write block
0: Reserved

1: 8 words

2, 3: Reserved

Table 13-8. Code of SysCmd(2:0) During Single Write Request

Bit Contents

SysCmd(2:0) Write data size

0: 1 byte is valid (byte).

2 bytes are valid (halfword).

3 bytes are valid.

4 bytes are valid (word).

5 bytes are valid.

6 bytes are valid.

7 bytes are valid.

8 bytes are valid (doubleword).

Noasrwh

Preliminary User’'s Manual U16044EJ1VOUM

257

CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE)

(3) Null request
Figure 13-18 shows the format of the command when a null request is used.

Figure 13-18. Bit Definition of SysCmd Bus During Null Request

0 011 Details of null request
(refer to the table below)

Table 13-9 shows the code of the SysCmd(4:3) bits related to the null request.
For the null request, the SysCmd(2:0) bits are reserved.

Table 13-9. Code of SysCmd(4:3) During Null Request

Bit Contents

SysCmd(4:3) Null attribute
0: Released
1to 3: Reserved

13.6.3 Syntax of data identifier
This section explains coding of the SysCmd bus when a system interface data identifier is used.
Figure 13-19 shows the common code used for all system interface data identifiers.

Figure 13-19. Bit Definition of System Interface Data Identifier

8 7 6 5 4 3
At Indication L
Indication Indication of |Data check
1 Reserved
of last data g;trssponse error data |enable

Be sure to set SysCmd8 of the system interface data identifier to 1.

258 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE)

A definition of the SysCmd(7:0) bits is given below.

SysCmd7: Indicates whether the data element is the last one.

SysCmd6: Indicates whether the data is response data. Response data is returned in response to a read
request.

SysCmd5: Indicates whether the data element contains an error. The error indicated in the data cannot be

corrected. If this data is returned to the processor, a bus error exception occurs. In the case of
a response block, send the entire line to the processor regardless of the degree of error. The
processor checks SysCmd5 of the first doubleword of the block response data. The external

agent should ignore this bit in a processor data identifier because no error is indicated.

SysCmd4: This bit in an external data identifier indicates whether the data of the data element and check

bit are checked. This bit in a processor data identifier is reserved.

SysCmd(3:0): These bits are reserved.

Table 13-10 indicates the codes of SysCmd(7:5) of a processor data identifier, and Table 13-11 shows the codes
of SysCmd(7:4) of an external data identifier.

Table 13-10. Codes of SysCmd(7:5) of Processor Data Identifier

Bit

Contents

SysCmd7

Indication of last data element
0: Last data element
1: Not last data element

SysCmd6

Indication of response data
0: Response data
1: Not response data

SysCmd5

Indication of error data
0: Error occurred
1: No error occurred

Table 13-11. Codes of SysCmd(7:4) of External Data Identifier

Bit

Contents

SysCmd7

Indication of last data element
0: Last data element
1: Not last data element

SysCmd6

Indication of response data
0: Response data
1: Not response data

SysCmd5

Indication of error data
0: Error occurred
1: No error occurred

SysCmd4

Data check enables
0: Data and check bit checked
1: Data and check bit not checked

Preliminary User’'s Manual U16044EJ1VOUM

259

CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE)

13.7 System Interface Address

The system interface address is a 36-bit physical address and is output to SysAD(35:0) in the address cycle. The
other bits of the SysAD bus are not used in the address cycle.

13.7.1 Address specification rules
An address related to transferring data such as a word and an unaligned word is aligned in accordance with the
size of the data element. The system uses the following address rules.

e An address related to the request of a block is aligned at the requested doubleword boundary. Therefore, the
lower 3 bits of the address are 0.

e The lower 3 bits of an address for a doubleword request are cleared to 0.

e The lower 2 bits of an address for a word request are cleared to 0.

e The least significant bit of an address for a halfword request cleared to 0.

e Each request of 1, 3, 5, 6, and 7 bytes uses a byte address.

13.7.2 Sub-block ordering

The order of the data returned in response to a processor block read request is sub-block ordering. With sub-
block ordering, the processor outputs the address of the doubleword required in a block. The external agent must
return a block that starts with the specified doubleword, by using sub-block ordering (for details, refer to APPENDIX
A SUB-BLOCK ORDER).

For a block write request, the processor always outputs the address of the first doubleword in the block. It
sequentially outputs the doublewords in the block, starting from the first doubleword of the block.

In the data cycle, whether the byte line of an aligned doubleword (or byte, halfword, 3 bytes, word, 6 bytes, or 7
bytes) is valid or not depends on the position of the data. In the little-endian mode, for example, SysAD(7:0) of a
byte request where lower 3 address bits are 0 are valid in the data cycle.

For the byte lane that is used when an unaligned word in big endian and little endian is transferred, refer to
Figure 3-3 Byte Specification Related to Load/Store Instruction.

13.7.3 Processor internal address map

For an external write, the external agent accesses the internal resources of the processor. When an external
write request is made, the processor decodes the SysAD(6:4) bits of the address that is output, to determine which
of the resources of the processor is to be accessed. The only internal resource of the processor that can be
accessed by an external write request is the interrupt register. Access the interrupt register by an external write
access, by specifying an address that clears SysAD(6:4) to 000.

260 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

This chapter explains the request protocol of the system interface in the 32-bit bus normal mode. The system
interface of the VR5500 can be set in the 32-bit bus mode by inputting a low level to the BusMode pin before a
power-on reset. It can also be set in the normal mode by inputting a high level to the O3Return# pin before a power-
on reset, and in the out-of-order return mode by inputting a low level to the same pin.

The 32-bit bus normal mode includes two protocol modes: R5000 mode and VrR5432 native mode. These modes
can be selected according to the combination of levels input to the DWBTrans# and DisDValidO# pins before a
power-on reset.

e R5000 mode
The R5000 mode is selected when a high level is input to both the DWBTrans# and DisDValidO# pins. This
mode is compatible with the bus protocol of the RM523x (a product of PMC-Sierra).

e VR5432 native mode
The Vr5432 native mode is selected when a low level is input to both the DWBTrans# and DisDValidO# pins.
This mode is compatible with the bus protocol of the native mode of the VrR5432.

Vr5500 bus mode

BusMode = H BusMode = L

32-bit bus mode

64-bit bus mode

O3Return# =L

O3Return# = H,
DWBTranst# =L,
DisDValidO# = L

O3Return# = H,
DWBTrans# = H,
DisDValidO# =H

O3Return# = H,
DWBTrans# = H,
DisDValidO# =H

O3Return# =L

R5000 mode
(compatible
with RM523x

Vr5432
native mode

Out-of-order
return mode

Out-of-order

return mode R5000 mode

For the protocol in the 64-bit bus normal modes (operation mode compatible with the VrR5000), refer to CHAPTER
13 SYSTEM INTERFACE (64-BIT BUS MODE). For the protocol in the out-of-order return mode, refer to CHAPTER
15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE).

Preliminary User’'s Manual U16044EJ1VOUM 261

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

14.1 Protocol of Processor Requests

This section explains the following two processor request protocols.

Read

o Write

14.1.1 Processor read request protocol
The following sequence explains the protocol of a processor read request for a doubleword, unaligned
doubleword, word, and unaligned word (the numbers correspond to the numbers in Figure 14-1).

<1>

<2>

<3>

<4>

<5>

<6>

The external agent makes the RdRdy# signal is low and is ready to acknowledge a read request.

When the system interface is in the master status, the processor issues a processor read request by driving
a read command onto the SysCmd bus and a read address (physical address) onto the SysAD bus.

At the same time, the processor asserts the ValidOut# signal for the duration of 1 cycle. This signal
indicates that valid data is on the SysCmd and SysAD buses.

The processor puts the system interface in the uncompelled slave status. The external agent must wait
without asserting the ExtRgst# signal in an attempt to return a read response, until transition of the system
interface to the uncompelled slave status is completed.

The processor releases the SysCmd and SysAD buses 1 cycle after the Release# signal has been
asserted.

The external agent drives the SysCmd and SysAD buses 2 cycles after the Release# signal has been
asserted.

When the system interface has been put in the slave status, the external agent can return the requested data by

using a read response. The read response can also return an indication that an error has occurred in the data if the

requested data could not be searched correctly, as well as the requested data. If the returned data contains an

error, the processor generates a bus error exception.

Figure 14-1 shows the processor read request, and uncompelled transition to the slave status that takes place

when the read request is issued.
The timing of the SysADC bus is the same as that of the SysAD bus.

262

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

Figure 14-1. Processor Read Request

Master } Slave
SysCycIe‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘
SysClock

e A AW AW A AW AW AW AW AW AW AW A
SYSAD(C’Z:;S; \ Addr }--- -
SysCmd(8:0) = <> =
ysLm . e
(1/0) XRead)— (
ValidOut# 3>
(Output) \L/
Release# <4>
(Output)
RdRdy# 15
(Input)
Remark The dotted line indicates high impedance.

After the Release# signal has been asserted (<6> and later in the figure), the processor can acknowledge both a
read response (if the read request is pending) and an external request.

14.1.2 Processor write request protocol
The processor write request is issued by using either of the following two protocols.

o A write request for a word or unaligned word uses a single write request protocol.
o Cache block write and uncached accelerated write uses a block write request protocol.

A processor write request is issued when the system interface is in the master status.
Figure 14-2 shows the processor single write request cycle and Figure 14-3 shows the processor block write
request cycle (the numbers in the explanation below correspond to the numbers in the figures).

<1> The external agent makes the WrRdy# signal low and is ready to acknowledge a write request.

<2> The processor issues a processor write request by driving a write command onto the SysCmd bus and a
write address onto the SysAD bus.

<3> The processor asserts the ValidOut# signal.

<4> The processor drives a data identifier onto the SysCmd bus and data onto the SysAD bus.

<56> The data identifier corresponding to the data cycle must include an indication of the last data cycle. At the
end of the cycle, the ValidOut# signal is deasserted.

Remark The timing of the SysADC bus is the same as that of the SysAD bus.

Preliminary User’'s Manual U16044EJ1VOUM 263

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

Figure 14-2. Processor Non-Block Write Request Protocol

Master
SysCycIe‘1‘2‘3‘4‘5‘6‘7‘3‘9‘10‘11‘12‘
e AWAWAWAWAWAWAWAWAVAWAWAS
(Input)
SysAD(3(|1/00g X Addr XDataOX
<2> <4>
Syscmd((ls/:g; X Write XNEODX
ValidO
?Olutplﬁg =% <52
WrRdy#
(znpxt) <> L

Figure 14-3. Processor Block Write Request

Master
SysCycIe‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘
R W W AW W W AW AW AW WA WA
(Input)
SysAD(S(r/I(()); X Addrx Data0 [Data1 X DataZX Data3X Data4 X Data5 X Data6 X Data7 X
<2> <4>
SysCmd((if/:(()); X Write XNDataXNDataXNDataXNDataXNDataXNDataXNDataXNEODX

ValidOut# \ 3 <5>/
(Output) =
WrRdy# <1> L
(Input)

264 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

14.1.3 Control of processor request flow

The external agent uses the RdRdy# signal to control the flow of processor read requests.

Figure 14-4 shows the control of the read request flow (the numbers in the explanation below correspond to the
numbers in the figure).

<1> The processor samples the RdRdy# signal and determines whether the external agent can acknowledge a
read request.
<2> The processor issues a read request to the external agent.
<38> The external agent deasserts the RdRdy# signal. This signal indicates that no more read requests can be
acknowledged.
<4> Because the RdRdy# signal is deasserted two cycles before, issuance of the read request is stalled.
<56> The read request is issued again to the external agent.

Figure 14-4. Control of Processor Request Flow (1/2)

(a) R5000 mode

Master ‘ Slave ‘ Master ~— Slave
SysCyde | 1 | 2 | 3| 4 | 5 | 6 | 7 | 8 | 9 | 10| 11| 12|
RV AVAVAVAVAVAVAVAVAVAVAW
(Input)
YA X Addr }-----(Data}-----(Unsa X" Addr }----(Data}
Sysomd((ﬁg; XRead}-- - - -(NEOD}----(" Unsd X Read)----(NEOD}
vagous _/
" input _/ _/
Rgﬁszg <1> <2> /E\<4>
" (Outpu _/ /

Remark The dotted line indicates high impedance.

Preliminary User’'s Manual U16044EJ1VOUM

265

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

Figure 14-4. Control of Processor Request Flow (2/2)

(b) Vr5432 native mode

Master4+f8|ave—ﬁ Masterg—F Slave

SysCyce | 1 | 2 | 3| 4 | 5| 6 | 7 | 8 | 9 | 10] 11| 12]

S AavaVaVaVaVaVaVaVaWaVaVaV
SVSAD(?Z?/:OO; XAddr }----(pata}----(Unsd X" Addr }----(Data}
Sysema(XRead) ----(NEOD}----(_ Unsd X Read)----(NEOD}

W\

iy - -

Rg':g&’g <1> <2> [<3~ \<a>

"Ouput _/ _/

Remark The dotted line indicates high impedance.

Figure 14-5 shows an example in which two processor write requests are issued but issuance of the second

request is delayed because of the condition of the WrRdy# signal (the numbers in the explanation below correspond
to the numbers in the figure).

<1>

<2>

<3>

<4>

The external agent asserts the WrRdy# signal to indicate that it is ready to acknowledge a write request.
The processor asserts the ValidOut# signal, and drives a write command onto the SysCmd bus and a write
address onto the SysAD bus.

The second write request is delayed until the WrRdy# signal is asserted again.

If the WrRdy# signal is active two cycles before, an address cycle is issued in response to the processor
write request. This completes the issuance of the write request.

Remark The timing of the SysADC bus is the same as that of the SysAD bus.

266

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

Figure 14-5. Timing When Second Processor Write Request Is Delayed

(a) R5000 mode

Master
Syscycle | 1 | 2 | 3 | 4 | 5 |6 | 7 | 8 9 | 10 | 11| 12|
LAWY EWAWAWAWAWAWAWAWAWAW
(Input)
SYSAD(?Z:/:OO; X Adar X Data) X Addr <4>J(Data |
Syscmd%ﬁioog ¥ write \NEODY X Write XNEOD)
o —
W&':SZS <1> / \<3> /_
(b) VRr5432 native mode
Master
SysCycle \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \

WY AW AW AW AW AW AWAWAW AW
(Input)

SysAD(?J(:/gi Y Addr X Data | X Addr <4>J Data |
Syscmd((zla/:gg Y write \NEODY \ Write XNeEoD|
" (ouiput 2 SR
iy <t / e /

14.1.4 Timing mode of processor request
The Vr5500 has three timing modes: Vr4000-compatible mode, write re-issuance mode, and pipeline write mode.

¢ VR4000-compatible mode
If single write requests are successively issued, the processor inserts two unused cycles after the data cycle
so that an address cycle is issued once every 4 system cycles.

o Write re-issuance mode
If the WrRdy# signal is deasserted in the address cycle of a write request, that request is discarded, but the
processor issues the same write request again.

e Pipeline write mode

Even if the WrRdy# signal is deasserted in the address cycle of a write request, the processor assumes that it
has issued that request.

Preliminary User’'s Manual U16044EJ1VOUM 267

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

(1) Vr4000-compatible mode

With the VR5500 processor interface, the WrRdy# signal must be asserted two system clocks before issuance of
a write cycle. If the WrRdy# signal is deasserted immediately after the external agent has received a write
request that fills the buffer, the subsequent write requests are kept waiting for the duration of 4 system cycles in
the VrR4000 non-block-write-compatible mode. The processor inserts at least two unused system cycles after a

write address/data pair, giving the external agent the time to keep the next write request waiting.

Figure 14-6 shows a back-to-back write cycle in the VrR4000-compatible mode (the numbers in the explanation

below correspond to the numbers in the figure).

<1> The external agent asserts the WrRdy# signal to indicate that it is ready to issue a write cycle.

<2> The WrRdy# signal remains active. This indicates that the external agent can acknowledge another write

request.

<38> The WrRdy# signal is deasserted. This indicates that the external agent cannot acknowledge any more

write requests, and that issuance of the next write request is stalled.

Figure 14-6. Timing of VrR4000-Compatible Back-to-Back Write Cycle

SysCycle

SysClock
(Input)

SysAD(31:0)
(/0)

ValidOut#
(Output)

WrRdy#
(Input)

SysCycle

SysClock
(Input)

SysAD(31:0)
(1/0)

ValidOut#
(Output)

WrRdy#
(Input)

(a) R5000 mode

Master

1| 2|3 |4 |5 |6 |7 8] 9|10 11]12]13]14]

AVAVAVAWAWAVAVAWAVAVAWAWAWARN

Cycle 1 2 3 4
X XAddr X Data X UnstUnstAder DataXUnstUnsd X Addr X DataX

[— N
Write#1 Write#2 Write#3
<1> <2> <3>

(b) Vr5432 native mode

Master

1l 2|3 |4 |5 |6 |7 8] 910 11]12]13]14]

AVAVAVAWAWAVAVAWAVAVAWAWAWAN

Cycle 1 2 3 4
X XAddr X Data X UnstUnstAder DataXUnstUnsd X Addr X DataX

[— N
Write#1 Write#2 Write#3
<1> <2> <3>

268

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

(2) Write re-issuance mode
Figure 14-7 shows the write re-issuance protocol (the numbers in the explanation below correspond to the
numbers in the figure).
A write request is issued when the WrRdy# signal is asserted two cycles before the address cycle and in the
address cycle.

<1> The external agent asserts the WrRdy# signal to indicate that it is ready to acknowledge a write request.

<2> The WrRdy# signal remains active even when the write request has been issued. This indicates that the
external agent can acknowledge another write request.

<3> The WrRdy# signal is deasserted in the address cycle. This write cycle is aborted.

<4> The external agent asserts the WrRdy# signal, indicating that it is ready to acknowledge a write request.
In response, the write request aborted in <3> is re-issued.

<5> Even if a write request is issued, the WrRdy# signal remains active. This indicates that the external agent
can acknowledge another write request.

Figure 14-7. Write Re-Issuance

(a) R5000 mode

Master
Not Not Not Not Re-
Issued issued issued issued issued issued
SysCycle | 1 | 2| 3|45 | 6| 7| 8] 9]0 11]12]13]14]
SysClock
(Input)
SVSAD(3(I1/8; XAdarof DatagAdcrXDatat} Unsd X Addr1 XDatatf
Syscmd((?/g; XwritekNEOD{WriteNEODY ~ Unsd X Write XNEODX
Validoutt —\ —
?(5utplﬁg
W(:Egzg <1> <2> /<3> \ <4> <5>
(b) VRr5432 native mode
Master
Not Not Not Not Re-
Issued issued issued issued issued issued
SysCycle | 1 | 2| 3|45 | 6| 7| 8] 9]0 11]12]13]14]
SysClock
(Input)
SVSAD(3(I1/8; Xadarof DatagadcrXDatat{ Unsd X Addr1 XDatatf
Syscmd((?/g; XwritekNEOD{Write\NEODY Unsd X Write XNEODX
ValidOut# —\ / \ /
(Output)
W(:Egzg <1> <2> /<3> \ <4> <5>

Preliminary User’'s Manual U16044EJ1VOUM 269

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

(3) Pipeline write mode
Figure 14-8 shows the pipeline write protocol (the numbers in the explanation below correspond to the numbers
in the figure). If the WrRdy# signal is issued two cycles before the address cycle, a write request is issued.
After the WrRdy# signal has been deasserted, the external agent must acknowledge one more write request.

<1> The external agent asserts the WrRdy# signal to indicate that it is ready to acknowledge a write request.

<2> Even when the write request has been issued, the WrRdy# signal remains active. This indicates that the
external agent can acknowledge one more write request.

<38> The WrRdy# signal is deasserted. This indicates that the external agent can acknowledge no more write
requests. However, this write request is acknowledged.

<4> The external agent asserts the WrRdy# signal, indicating that it can acknowledge a write request.

Figure 14-8. Pipeline Write

(a) R5000 mode

Master
Not Not Not
Issued Issued issued issued issuedlssued

SysCycIe‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘13|14‘

SysClock

(Input)
SYSAD(?;L@; XAddroX DatagfAddrtXDatatk ~ Unsd X Addr2 AData2(
SysCmd((?/g; Xwrite\NEOD(Write\NEODX ~ Unsd X Write oDy

ValidO \ / \ /

?(I)utpLixtg

e e e L

(b) Vr5432 native mode
Master
Not Not Not
Issued Issued issued issued issued Issued
SysCyde | 1 | 2| 34| 5| 6| 7| 8] 9| t0]11]12]13]14]
SysClock
(Input)

SysAD(3(I1/=OOg XAddroX Datag{AddriXDatat ~ Unsd X Addr2 XData2)
SysCmd((ﬁioog Xwrite \NEOD{Write\NEOD{ ~ Unsd X Write pED

ValidOut# —\ / \ /

(Output)

iR S =

270 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

14.2 Protocol of External Request

An external request can be issued only when the system interface is in the slave status. Arbitration that changes
the status of the system interface from master to slave is realized by using the handshake signals of the system
interface (ExtRqst# and Release#).

This section explains the following external request protocols, as well as the arbitration protocol.

e Null
o Write
o Read response

14.2.1 External arbitration protocol

To issue an external request, assert the ExtRgst# signal to arbitrate the system interface. Then wait until the
processor asserts the Release# signal and releases the system interface to the slave status. When the system
interface is already in the slave status, i.e., when the processor previously executed an uncompelled transition of the
system interface to the slave status, the external agent can immediately start issuing an external request.

After issuing an external request, the external agent must return the right to control the system interface to the
processor.

If the external agent does not have any more external requests that must be processed, it must deassert the
ExtRgst# signal two cycles after the Release# signal was asserted. To issue two or more requests in a row, the
ExtRgst# signal must be kept active until the last request cycle. If the last request cycle lasts for two cycles or more
after the Release# signal was asserted, deassert the ExtRgst# signal.

While the ExtRgst# signal is active, the processor continues processing the external request. However, the
processor cannot release the system interface to process the next external request until processing of the current
request is finished. While the ExtRgst# signal is active, two or more successive external requests cannot be
interrupted by a processor request.

Preliminary User’'s Manual U16044EJ1VOUM 271

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

Figure 14-9 shows the arbitration protocol of an external request issued by the external agent. The following
sequence explains the arbitration protocol (the numbers in the explanation below correspond to the numbers in the

figure).
<1>
<2>
<3>
<4>

<5>

<6>

The external agent continues asserting the ExtRqst# signal to issue an external request.

The processor asserts the Release# signal for 1 cycle when it is ready to process the external request.

The processor makes the SysAD and SysCmd buses go into a high-impedance state.

The external agent must drive the SysAD and SysCmd buses at least two cycles after the Release# signal
was asserted.

The external agent must deassert the ExtRqst# signal two cycles after the Release# signal was asserted,
except when it executes another external request.

The external agent must make the SysAD and SysCmd buses go into a high-impedance state on
completion of the external request.

Remarks 1. The processor can issue a request one cycle after the external agent has set the system interface

to a high-impedance state.
2. The timing of the SysADC bus is the same as that of the SysAD bus.

Figure 14-9. External Request Arbitration Protocol

-«——— Master 4»{47 Slave 4’}47 Master ———»

syscyde | 1| 2 |3 | a4 | s | 6| 7| 8| 9| 0] 11| 2]
SysClock /__/7
(Input)
SySAD(i:/g; \\). (Addr XDataO)- (
SysCmd(8:0) /- N N
Y (I/O) K)K)). (Cmdx NEOD)‘ (
Validin# \ /
(Input)
ExtRqst# <15, [<5>

(Input) (>
>

"oupah)

Remark The dotted line indicates high impedance.

272

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

14.2.2 External null request protocol

The processor supports an external null request. This request only returns the system interface from the slave
status to the master status, and does not have any other influence on the processor.

Figure 14-10 shows the timing of the external null request (the numbers in the explanation below correspond to
the numbers in the figure).

<1> The external agent drives an external null request command onto the SysCmd bus and asserts the Validin#
signal for one cycle. This returns the right to control the system interface to the processor.

<2> The SysAD bus is not used in the address cycle corresponding to the external null request (the bus does
not hold valid data).

<38> When the address cycle is issued, the null request is completed.

The external null request returns the system interface to the master status when the external agent has released
the SysCmd and SysAD buses.

Figure 14-10. External Null Request Protocol

- Slave 4>‘¢ Master —»
syscydle | 1 | 2 | 8 | 4 | s | 6| 7| 8| 9| 10| 11| 12]
R AW AW AYAY AW AW AVAYAYAWAE
(Input) <2>
o) Kunsa}-{___
UnSd
I/0
(o) <1> 35
SysCmdg:0) Moy,
o) SINull} {
ValidOut# H
(Output)
Validin# <1>
(Input)
ExtRqgst# H
(Input)
Release# H
(Output)

Remark The dotted line indicates high impedance.

Preliminary User’'s Manual U16044EJ1VOUM 273

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

14.2.3 External write request protocol

The external write request performs an operation close to the processor single write request, except that it asserts
the ValidIn# signal, instead of the ValidOut# signal.

Figure 14-11 shows the timing of the external write request (the numbers in the explanation below correspond to
the numbers in the figure).

<1> The external agent asserts the ExtRqst# signal to arbitrate the system interface.

<2> The processor asserts the Release# signal to release the system interface to the slave status.

<3> The external agent asserts the Validin# signal and drives a write command onto the SysCmd bus and a
write address onto the SysAD bus.

<4> The external agent asserts the Validin# signal and drives a data identifier onto the SysCmd bus and data
onto the SysAD bus.

<5> The data identifier corresponding to the data cycle must contain an indication of the last data cycle.

<6> When the data cycle is issued, the write request is completed. The external agent makes the SysCmd and
SysAD buses go into a high-impedance state, and returns the system interface to the master status.

The external write request can only write word data to the processor. If a data element other than a word is
specified for the external write request, the operation of the processor is undefined.

Figure 14-11. External Write Request Protocol

- Master4>{<7 Slave —»}4— Master ——»
SysCycIe‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘
e W AW AW AW AW AW AYRAWAW AW
(Input)
SySAD(S:/Zg)). (Addr XDataO)- (
SvsC d:S 0; <3> <4> <6>
ys m v N Write NEOD
i . (00 (e S
ValidOut# H
(Output)
Validin#
(Input) <3> <4>
ExtRqgst# \
(Input) <!> /
Release#
(Output) <2>
Remark The dotted line indicates high impedance.

274 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

14.2.4 Read response protocol
The external agent must return data to the processor by using a read response protocol, in response to a

processor read request. The following sequence explains the read response protocol (the numbers in the

explanation below correspond to the numbers in Figures 14-12 and 14-13).

<1>
<2>

<3>

<4>

<5>

<6>

The external agent waits until the processor puts the system interface in the uncompelled slave status.

The processor returns data via a single data cycle or a series of data cycles.

When the last data cycle is issued, the read response is completed, and the external agent makes the
SysCmd and SysAD buses go into a high-impedance state.

The system interface returns to the master status.

Remark When the read request is issued, the processor always puts the system interface in the
uncompelled slave status.

The data identifier of the data cycle must indicate that this data is response data.
The data identifier corresponding to the last data cycle must contain an indication of the last data cycle.

If the read response is for a block read request, the response data does not have to identify the initial cache

status. The processor automatically allocates the cache to the clean status.
The data identifier corresponding to the data cycle can indicate that the data transferred in that cycle has an error.
Even if data may have an error, however, the external agent must return a data block of the correct size.

Only when there is a pending processor read request, read response data is passed to the processor. The

operation of the processor is undefined if there is no pending processor read request when a read response is

received.

Figure 14-12 shows a processor word request and the word read response that follows. Figure 14-13 shows the

read response to a processor block read request when the system interface is already in the slave status.

Remark The timing of the SysADC bus is the same as that of the SysAD bus.

Preliminary User’'s Manual U16044EJ1VOUM 275

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

Figure 14-12. Protocol of Read Request and Read Response

Master } Slave } Master —
sysCyde | 1 | 2 | 8 | 4 | 5 | 6| 7| 8| 9| 0] 11]12]
(Input) 5
SysAD(31:0) \ Adar }-- - -4 N Jpatao}- - - - {
(170) (¢ <2> <3><4>
SysCmd(8:0) XRead)_ - .(:: XNEOD)- - <
(o) (‘,‘ <6>
.))
b\
ExtRgst# H 9
(Input) y
Validl)7
o T
Release#)
(Output) <1>

Remark The dotted line indicates high impedance.

Figure 14-13. Block Read Response in Slave Status

Slave ‘ Master
SysCycIe‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘
R EAWAVAVAVAVAVAVAWRWAWAE
(Input)
SysAD(3I1/:8) XDataOX Data1X Data2X Data3 X Data4x Data5 X Data6X Data7)— --- -<
(o) <2> <3> <4>
Syscmd((?/:g; Y NData \NData) NData) NData | NData NData f NData NEOD }- - - - -<
<5> <5> <5> <5> <5> <5> <5> <6>
ValidOut# H
(Output)
ExtRgst# H
(Input)
Validin# —\ /7
(Input)
Release# H
(Output)

Remark The dotted line indicates high impedance.

276 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

14.2.5 SysADC(3:0) protocol for block read response
When a block read response is issued, SysADC(3:0) must be used in compliance with the following rules.

¢ Only the first two words of transfer data are checked. If the data has an error (SysCmd5 = 1), the cache line
is invalidated, and a bus error exception occurs in the processor.

o A parity error of the first two words is detected when a request is issues, and a cache error exception occurs.
At this time, the cache line is in the Invalid status. A parity error of a subsequent word is detected again when
that data is used.

e The error bits in six subsequent words of data are ignored. The parity of each word is written to the cache,
but is not checked until the data is referenced.

o If a memory error occurs during a block read operation, the SysADC bit must be changed to an illegal parity
during a read response operation for all the bytes that are affected by the memory error. However, even if
SysCmd5 is set to 1 during data transfer other than the first two words, a bus error exception does not occur.
If the SysADC bit has been changed to an illegal parity, a cache error exception occurs when any of the
remaining six words is referenced.

14.3 Data Flow Control

The system interface supports a data rate of 1 word per cycle.

14.3.1 Data rate control

The external agent can send data to the processor at the maximum data rate of the system interface.

The rate at which data is to be sent to the processor can be controlled on the external agent side. The transfer
rate from the external agent is not limited. The external agent asserts the Validin# signal in the cycle in which it
transfers data.

When the Validln# signal has been asserted and as long as a data identifier is on the SysCmd bus, the processor
acknowledges the cycle as valid. It then goes on acknowledging data until it receives a data word with NEOD.

The operation of the processor is undefined if data is sent in a pattern of other than 1 cycle for single data, and
other than 2 or 8 cycles for block data.

Figure 14-14 shows the timing of the read response where the data rate pattern is DDx.

Preliminary User’'s Manual U16044EJ1VOUM 277

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

Figure 14-14. Read Response with Data Rate Pattern DDx

Slave
SysCycle | 1 | 2 | 3| 4 | 5 | 6 | 7 | 8 | 9 |10 11]12]13]
s AVAVAVAVAVAVAVAVAVAVAVAVAVA
(Input)
SySAD(‘?E:/:g; XDataOXData1X XDataZXDataSX XData4XData5X XDataGXData?X)— -
Syscmdﬁ%’; XNDataXNData ~ XNDatafNData ~ YNDataNData NDatg{NEODY)--
ValidOut# H
(Output)
Validin# \ / \ / \ / \ /
(Input)
ExtRqst#
X(Incg)sut) H
Release# H
(Output)
Remark The dotted line indicates high impedance.

14.3.2 Block write data transfer pattern

The rate at which the processor transfers block write data to the external agent can be set by the EP bit of the
Config register after reset. The data pattern is indicated by characters D and x that indicate the array of data cycle
and unused cycle at each data rate. D indicates a data cycle, and x indicates an unused cycle. For example, Dxx
data pattern indicates a data rate of 1 word in every 3 cycles.

Table 14-1 shows the maximum data rate that can be set after reset.

Table 14-1. Transfer Data Rate and Data Pattern

Maximum Data Rate Data Pattern
1 word/1 cycle DDDDDDDD
2 words/3 cycles DDxDDxDDxDDx
2 words/4 cycles DDxxDDxxDDxxDDxx
1 word/2 cycles DxDxDxDxDxDxDxDx
2 words/5 cycles DDxxxDDxxxDDxxxDDxxx
2 words/6 cycles DDxxxxDDxxxxDDxxxxDDxxxx
1 word/3 cycles DxxDxxDxxDxxDxxDxxDxxDxx
2 words/8 cycles DDxxxxxxDDxxxxxxDDxxxxxxDDXXXXXX
1 word/4 cycles DxxxDxxxDxxxDxxxDxxxDxxxDxxxDxxx

278 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

14.3.3 Word transfer sequence
The VRr5500 transfers a 32-bit address in one address cycle and 32-bit data in one data cycle.

It takes two

system cycles to transfer each doubleword as a block. Data is transferred in these two cycles in the following

sequence.

e The lower 4 bytes (lower word) are transferred in the first data cycle in the little-endian mode, and in the

second data cycle in the big-endian mode.

¢ The higher 4 bytes (higher word) are transferred in the second data cycle in the little-endian mode, and in the
first data cycle in the big-endian mode.

The VR5500 can transfer a word or an unaligned word in one system cycle.

The table below shows the transfer sequence in both the little-endian and big-endian modes to write a block,

doubleword, unaligned doubleword, word, and unaligned word.

Table 14-2. Data Write Sequence

Transfer Type Little Endian Big Endian
Block 1. A(31:0) 1. A(31:0)
2. D0(31:0) 2. D0(63:32)
3. D0(63:32) 3. D0(31:0)
4. D1(31:0) 4. D1(63:32)
5. D1(63:32) 5. D1(31:0)
6. D2(31:0) 6. D2(63:32)
7. D2(63:32) 7. D2(31:0)
8. D3(31:0) 8. D3(63:32)
9. D3(63:32) 9. D3(31:0)
Doubleword 1. A(31:0) 1. A(31:0)
(in R5000 mode) 2. D(31:0) 2. D(63:32)
3. A(31:0) 3. A(31:0)
4. D(63:32) 4. D(31:0)
Doubleword 1. A(31:0) 1. A(31:0)
(in VR5432 native mode) | 2. D(31:0) 2. D(63:32)
3. D(63:32) 3. D(31:0)
Word or unaligned word | 1. A(31:0) 1. A(31:0)
2. W(31:0) 2. W(31:0)

Remark A: Address, D: Doubleword, W: Word
Dn: n+1th doubleword in block data (n = 0 to 3)

Dn(31:0): Lower word of doubleword data Dn(63:0)
Dn(63:32): Higher word of doubleword data Dn(63:0)

Preliminary User’'s Manual U16044EJ1VOUM

279

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

With the Vr5500, a doubleword is read in accordance with the sub-block order (refer to APPENDIX A SUB-
BLOCK ORDER) when a cache line is obtained from the external agent and replaced. Doubleword transfer in this
case is treated as 2-word transfer in sub-block order. The other doublewords, unaligned doublewords, words, and

unaligned words are read in the same sequence as when they are written.

The table below shows the transfer sequence in both the little-endian and big-endian modes to read a block,

doubleword, unaligned doubleword, word, and unaligned word.

Table 14-3. Data Read Sequence (1/2)

Transfer Type Little Endian Big Endian

Block (when A(4:3) =00) | 1. D0(31:0) 1. D0(63:32)
2. D0(63:32) 2. D0(31:0)
3. D1(31:0) 3. D1(63:32)
4. D1(63:32) 4. D1(31:0)
5. D2(31:0) 5. D2(63:32)
6. D2(63:32) 6. D2(31:0)
7. D3(31:0) 7. D3(63:32)
8. D3(63:32) 8. D3(31:0)

Block (when A(4:3) =01) | 1. D1(31:0) 1. D1(63:32)
2. D1(63:32) 2. D1(31:0)
3. D0(31:0) 3. D0(63:32)
4. D0(63:32) 4. D0(31:0)
5. D3(31:0) 5. D3(63:32)
6. D3(63:32) 6. D3(31:0)
7. D2(31:0) 7. D2(63:32)
8. D2(63:32) 8. D2(31:0)

Block (when A(4:3) = 10) | 1. D2(31:0) 1. D2(63:32)
2. D2(63:32) 2. D2(31:0)
3. D3(31:0) 3. D3(63:32)
4. D3(63:32) 4. D3(31:0)
5. D0O(31:0) 5. D0(63:32)
6. D0(63:32) 6. DO(31:0)
7.D1(31:0) 7. D1(63:32)
8. D1(63:32) 8. D1(31:0)

Remark A: Address, D: Doubleword, W: Word
Dn: n+1th doubleword in block data (n = 0 to 3)
Dn(31:0): Lower word of doubleword data Dn(63:0)
Dn(63:32): Higher word of doubleword data Dn(63:0)

280 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

Table 14-3. Data Read Sequence (2/2)

Transfer Type Little Endian Big Endian
Block (when A(4:3) = 11) | 1. D3(31:0) 1. D3(63:32)
2. D3(63:32) 2. D3(31:0)
3. D2(31:0) 3. D2(63:32)
4. D2(63:32) 4. D2(31:0)
5. D1(31:0) 5. D1(63:32)
6. D1(63:32) 6. D1(31:0)
7. DO0(31:0) 7. D0(63:32)
8. D0(63:32) 8. D0O(31:0)
Doubleword (Vr5432 1. D(31:0) 1. D(63:32)
native mode) 2. D(63:32) 2. D(31:0)
Word, unaligned word 1. W(31:0) 1. W(31:0)

Remarks 1. Doubleword read requests are not supported in R5000 mode.

2. A: Address, D: Doubleword, W: Word

Dn: n+1th doubleword in block data (n = 0 to 3)
Dn(31:0): Lower word of doubleword data Dn(63:0)
Dn(63:32): Higher word of doubleword data Dn(63:0)

The external agent can write 1 word of data to the VR5500 at a time (refer to Figure 14-11). Therefore, it takes

the external agent 1 system cycle to transfer a word to the VrR5500.

14.3.4 System endianness
The endianness of the system is set by the BigEndian pin after reset. The set endianness is indicated by the BE

bit of the Config register.

Preliminary User’'s Manual U16044EJ1VOUM

281

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

14.4 Independent Transfer with SysAD Bus

For general applications, the SysAD bus connects the processor and a bidirectional register type transceiver in
the external agent between two points. For such applications, only the processor and external agent can be
connected to the SysAD bus.

For specific applications, other drivers and receivers are connected to the SysAD bus so that transfer can be
performed independently of the processor on the SysAD bus. This is called independent transfer. To execute
independent transfer, the external agent must adjust the right to control the SysAD bus by using the arbitration
handshake signals and external null request.

The procedure of independent transfer of the SysAD bus is as follows.

<1> The external agent requests the right to control the SysAD bus by asserting the ExtRgst# signal to issue an
external request.

<2> The processor releases the system interface to the slave status by asserting the Release# signal.

<3> In this way, the external agent can execute independent transfer on the SysAD bus. The Validin# signal
must not be asserted during transfer.

<4> When transfer is completed, the external agent releases and returns the system interface to the master
status by issuing an external null request.

14.5 System Interface Cycle Time

Because processor requests are restricted by the system interface protocol, the number of request cycles is
checked by the protocol. Because external requests have the following two types of wait times, the number of
request cycles differs depending on these wait times.

¢ Standby time until the processor releases the system interface to the slave status in response to an external
request (release wait time)
¢ Response time of the external request that requires a response (external response wait time)

While an external request is being issued, the release wait time differs depending on the status of the system
interface. When the external request is detected, the system interface is released to the external agent after the
cycle under processing.

The external response time of the VrR5500 is kept to the minimum. Data that is written is immediately loaded.

282 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

14.6 System Interface Commands and Data Identifiers

A system interface command defines the type and attribute of a system interface request. This definition is
indicated in the address cycle of a request.

The system interface data identifier defines the attribute of the data transferred in the system interface data cycle.

This section explains the syntax of the commands and data identifiers of the system interface, i.e., coding in bit
units.

Set the reserved bits and reserved area in the commands and data identifiers of the system interface related to
external requests to 1.

The reserved bits and reserved area in the commands and data identifiers of the system interface related to
processor requests are undefined.

14.6.1 Syntax of commands and data identifiers

The commands and data identifiers of the system interface are coded in 9-bit units, and transferred from the
processor to the external agent, or vice versa, via the SysCmd bus in the address cycle and data cycle.

SysCmd8 (most significant bit) determines whether the current contents of the SysCmd bus are a command
(address cycle) or data identifier (data cycle). If they are a command, clear SysCmd8 to 0; if they are a data
identifier, setitto 1.

14.6.2 Syntax of command
This section explains the coding of the SysCmd bus when a system interface command is used. Figure 14-15

shows the common code used for all the system interface commands.

Figure 14-15. Bit Definition of System Interface Command

0 Request type Details of request

Be sure to clear SysCmd8 to 0 when a system interface command is used.

SysCmd(7:5) define the types of system interface requests such as read, write, and null.

Table 14-4. Code of System Interface Command SysCmd(7:5)

Bit Contents

SysCmd(7:5) Command

0: Read request
1: Reserved

2: Write request
3: Null request
4to 7: Reserved

SysCmd(4:0) are determined according to the type of request. A definition of each request is given below.

Preliminary User’'s Manual U16044EJ1VOUM 283

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

(1) Read request

The code of the SysCmd bus related to a read request is shown below.
Figure 14-16 shows the format of the command when a read request is issued.

Tables 14-5 to 14-7 show the code of the read attribute of the SysCmd(4:0) bits related to the read request.

Figure 14-16. Bit Definition of SysCmd Bus During Read Request

Details of read request

000 (refer to the tables below)

Table 14-5. Code of SysCmd(4:3) During Read Request

Bit

Contents

SysCmd(4:3)

Read attribute
0, 1: Reserved
2: Block read
3: Single read

Table 14-6. Code of SysCmd(2:0) During Block Read Request

Bit

Contents

SysCmd2

Reserved

SysCmd(1:0)

Size of read block
0: 2 words (in Vr5432 native mode only)
1: 8 words
2, 3: Reserved

Table 14-7. Code of SysCmd(2:0) During Single Read Request

Bit

Contents

SysCmd2

Reserved

SysCmd(1:0)

Read data size
0: 1 byte is valid (byte).
1: 2 bytes are valid (halfword).
2: 3 bytes are valid.
3: 4 bytes are valid (word).

284

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

(2) Write request
The code of the SysCmd bus related to a write request is shown below.
Figure 14-17 shows the format of the command when a write request is issued.

Tables 14-8 to 14-10 show the code of the write attribute of the SysCmd(4:0) bits related to the write request.

Figure 14-17. Bit Definition of SysCmd Bus During Write Request

Details of write request

0 010 (refer to the tables below)

Table 14-8. Code of SysCmd(4:3) During Write Request

Bit Contents

SysCmd(4:3) Write attribute

0, 1: Reserved
2: Block write

3: Single write

Table 14-9. Code of SysCmd(2:0) During Block Write Request

Bit Contents

SysCmd2 Update of cache line
0: Replaced
1: Retained

SysCmd(1:0) Size of write block

0: 2 words (in Vr5432 native mode only)
1: 8 words

2, 3: Reserved

Table 14-10. Code of SysCmd(2:0) During Single Write Request

Bit Contents

SysCmd2 Reserved

SysCmd(1:0) Write data size

0: 1 byte is valid (byte).

1: 2 bytes are valid (halfword).
2: 3 bytes are valid.

3: 4 bytes are valid (word).

Preliminary User’'s Manual U16044EJ1VOUM

285

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

(3) Null request
Figure 14-18 shows the format of the command when a null request is used.

Figure 14-18. Bit Definition of SysCmd Bus During Null Request

0 011 Details of null request
(refer to the table below)

Table 14-11 shows the code of the SysCmd(4:3) bits related to the null request.
For the null request, the SysCmd(2:0) bits are reserved.

Table 14-11. Code of SysCmd(4:3) During Null Request

Bit Contents

SysCmd(4:3) Null attribute
0: Released
1to 3: Reserved

14.6.3 Syntax of data identifier
This section explains coding of the SysCmd bus when a system interface data identifier is used.
Figure 14-19 shows the common code used for all system interface data identifiers.

Figure 14-19. Bit Definition of System Interface Data Identifier

8 7 6 5 4 3
At Indication N
Indication Indication |Data check
Reserved
1 of last data gfatraesponse of error data |enable

Be sure to set SysCmd8 of the system interface data identifier to 1.

286 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

A definition of the SysCmd(7:0) bits is given below.

SysCmd7:
SysCmd6:

SysCmd5:

SysCmd4:

SysCmd(3:0):

Indicates whether the data element is the last one.

Indicates whether the data is response data. Response data is returned in response to a read
request.

Indicates whether the data element contains an error. The error indicated in the data cannot
be corrected. If this data is returned to the processor, a bus error exception occurs. In the
case of a response block, send the entire line to the processor regardless of the degree of
error. The external agent should ignore this bit in a processor data identifier because no error
is indicated.

This bit in an external data identifier indicates whether the data of the data element and check
bit are checked. This bit in a processor data identifier is reserved.

These bits are reserved.

Table 14-12 indicates the codes of SysCmd(7:5) of a processor data identifier, and Table 14-13 shows the codes
of SysCmd(7:4) of an external data identifier.

Table 14-12. Codes of SysCmd(7:5) of Processor Data Identifier

Bit Contents

SysCmd7 Indication of last data element

0: Last data element
1: Not last data element

SysCmd6 Indication of response data

0: Response data
1: Not response data

SysCmd5 Indication of error data

0: Error occurred
1: No error occurred

Table 14-13. Codes of SysCmd(7:4) of External Data Identifier

Bit Contents

SysCmd7 Indication of last data element

0: Last data element
1: Not last data element

SysCmd6 Indication of response data

0: Response data
1: Not response data

SysCmd5 Indication of error data

0: Error occurred
1: No error occurred

SysCmd4 Data check enables

0: Data and check bit checked
1: Data and check bit not checked

Preliminary User’'s Manual U16044EJ1VOUM 287

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE)

14.7 System Interface Address

The system interface address is a 32-bit physical address and is output in the address cycle, using all the bits of
the SysAD bus.

14.7.1 Address specification rules
An address related to transferring data such as a word and an unaligned word is aligned in accordance with the
size of the data element. The system uses the following address rules.

e An address related to the request of a block is aligned at the requested doubleword boundary. Therefore, the
lower 3 bits of the address are 0.

e The lower 3 bits of an address for a doubleword request are cleared to 0.

e The lower 2 bits of an address for a word request are cleared to 0.

e The least significant bit of an address for a halfword request cleared to 0.

e Each request of 1 and 3 bytes uses a byte address.

14.7.2 Sub-block ordering

The order of the data returned in response to a processor block read request is sub-block ordering. With sub-
block ordering, the processor outputs the address of the doubleword required in a block. The external agent must
return a block that starts with the specified doubleword, by using sub-block ordering (for details, refer to APPENDIX
A SUB-BLOCK ORDER).

For a block write request, the processor always outputs the address of the first doubleword in the block. It
sequentially outputs the doublewords in the block, starting from the first doubleword of the block.

Remark The sequence of the data in a doubleword differs depending on the endianness (refer to Tables 14-2
and 14-3).

In the data cycle, whether the byte line of an aligned doubleword (or byte, halfword, 3 bytes, or word) is valid or
not depends on the position of the data. In the little-endian mode, for example, SysAD(7:0) of a byte request where
lower 3 address bits are 0 are valid in the data cycle.

For the byte lane that is used when an unaligned word in big endian and little endian is transferred, refer to Figure
3-3 Byte Specification Related to Load/Store Instruction.

14.7.3 Processor internal address map

For an external write, the external agent accesses the internal resources of the processor. When an external
write request is made, the processor decodes the SysAD(6:4) bits of the address that is output, to determine which
of the resources of the processor is to be accessed. The only internal resource of the processor that can be
accessed by an external write request is the interrupt register. Access the interrupt register by an external write
access, by specifying an address that clears SysAD(6:4) to 000.

288 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE)

This chapter explains the request protocol of the system interface in the 64-/32-bit out-of-order return mode.
The system interface of the VR5500 enters the out-of-order return mode when a low level is input to the

OS3Return# pin before a power-on reset.

Vr5500 bus mode

BusMode = H BusMode = L

32-bit bus mode

64-bit bus mode

O3Return# =L

O3Return# = H,
O3Return# = L O3Return# = H, O3Return# = H, DWBTrans# =L,
DWBTrans# = H, DWBTranst# = H, DisDValidO# = L

DisDValidO# = H DisDValidO# = H

R5000 mode
(compatible
with RM523x)

VRr5432
native mode

Out-of-order
return mode

Out-of-order
return mode

R5000 mode

For the protocol in the normal mode (R5000 mode (operation mode compatible with the VrR5000 Series and
RM523x) and Vr5432 native mode), refer to CHAPTER 13 SYSTEM INTERFACE (64-BIT BUS MODE) and

CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE).

Preliminary User’'s Manual U16044EJ1VOUM 289

CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE)

15.1 Overview

In the out-of-order return mode, the external agent can return a response to a processor read request regardless
of the order in which the request has been issued. Each request is issued with an identification number attached. If
the external agent returns response data along with this identification number, the processor verifies the returned
data and request.

The out-of-order return mode supports the following functions.

e Two timing modes
Select either pipeline mode or re-issuance mode.
o Response queue of up to five entries
Up to one instruction and four data entries can be managed.

The request cycles, basic operation of the protocol, and events that generate requests in the out-of-order return
mode are the same as those in the normal mode. For details of these, refer to CHAPTER 13 SYSTEM INTERFACE
(64-BIT BUS MODE) and CHAPTER 14 SYSTEM INTERFACE (32-BIT BUS MODE).

15.1.1 Timing mode

The out-of-order return mode has two timing modes: re-issuance mode and pipeline mode. These modes can be
selected by using the EMO bit of the Config register in CPO. In the out-of-order return mode, the setting of the EM1
bit of the Config register is ignored.

e Pipeline mode
The pipeline mode is selected when the EMO bit of the Config register is cleared to 0.
In this mode, even if the RdRdy#/WrRdy# signal is deasserted in the address cycle of a request, it is
assumed that the request has been acknowledged.

e Re-issuance mode
The re-issuance mode is selected when the EMO bit of the Config register is set to 1.
In this mode, a request is discarded if the RdRdy#/WrRdy# signal is deasserted in the address cycle of the
request, and the same request is re-issued when the RdRdy#/WrRdy# signal is asserted.

290 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE)

15.1.2 Master status and slave status
In the out-of-order return mode, the system interface changes its status from master to slave in the following
cases.

o When the maximum five requests are stored in the response queue and the processor has no write request to
issue.
e The processor has no requests after it has issued a read request.

Remark The processor cannot issue a request in the following cases.

o When the processor has no requests.
e When the processor has a read request but the RdRdy# signal is inactive.
e When the processor has a write request but the WrRdy# signal is inactive.

When the system interface enters the slave status, the Release# signal is asserted. Therefore, the external
agent must wait until the Release# signal is asserted, and then obrain the right to control the system interface to
start driving response data.

Even when the system interface is in the slave status, the processor can request the right to control the system
interface by asserting the PReqg# signal.

When the active level of the PReqg# signal is detected, the external agent can return the right to control the
system interface to the processor by issuing a null request. At this time, the RdRdy#/WrRdy# signal must also be
asserted, so that the processor can issue the subsequent request. If the RdRdy#/WrRdy# signal remains inactive,
the system interface enters the slave status again even if it has entered the master status when the external agent
issues the null request, without the processor issuing a request.

Even if the maximum five requests are stored in the response queue, the PReq# signal is asserted if read/write
requests are accumulated in the processor. The external agent must process the processor requests by issuing a
null request before the number of requests waiting for a request reaches five. Even if the external agent issues a
null request when five requests are waiting for a response, processing of the requests does not proceed, and only
the right to control the system interface is transferred.

15.1.3 Identifying request

The Vr5500 uses the SysID(2:0) signals to identify the contents of a read request issued in the out-of-order return
mode. The SysIDO signal indicates whether reading an instruction or data is requested, and the SysID(2:1) signals
indicate the request sequence (number). When reading an instruction is requested, the SysID(2:1) signals are
always 00 (for details, refer to 15.4 Request Identifier).

The status of the SysID(2:0) signals is undefined when a write request is made.

Preliminary User’'s Manual U16044EJ1VOUM 291

CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE)

15.2 Protocol of Out-of-Order Return Mode

This section explains the protocol of out-of-order return in the 64-bit bus mode. When using the 32-bit bus mode,
read the SysAD bus width as 32 bits.
The data shown in Table 15-1 is driven onto the SysAD, SysCmd, and SysID buses. The symbols in this table

are used in the timing chart shown later.

Table 15-1. System Interface Bus Data

Range Symbol Meaning

Common Unsd Unused

SysAD(64:0) Addr<n> Physical address of ID<n> request
Data<n><m> (m+1th element of) data of request of ID<n>

SysCmd(8:0) Read Read request command of processor or external agent
Write Write request command of processor or external agent
Null External null request command
EOD Data identifier of last data element
Data Data identifier of data element other than last data element

SysID(2:0) ID<n> Read request identifier

292

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE)

15.2.1 Successive read requests
This section explains the protocol used in each mode when three processor read requests are issued in a row.

(1) When processor read/write request follows in pipeline mode

In the pipeline mode, the external agent must acknowledge a request even if the RdRdy# signal goes high in the

address cycle.

<1> to <3> in Figure 15-1 indicate that the external agent makes the RdRdy# signal low, indicating that it is

ready to acknowledge a read request.

In response, the processor successively issues read requests in <2> to <4>. At this time, request identifiers are

also driven onto the SysID bus.

In <4>, the external agent makes the RdRdy#/WrRdy# signal high, indicating that it can acknowledge no more
read/write requests. However, the processor assumes that the request in the address cycle <4> has been

acknowledged.

The external agent can return a response from a request for which data has been prepared. When driving

response data, also drive the corresponding request identifier onto the SysID bus.

Figure 15-1. Successive Read Requests (in Pipeline Mode, with Subsequent Request)

Master - Slave — == Master
SysCydle | 1] 2| 38|4|5|6|7|8/|0|10|11|12/13]14]15] |
S AV AVAVAVAVAVAVAVAVAVAVAVAVAVAVAV.
o) (D)) () (T o O) o) O
SysCmd(8:0 i i-
veemato)))) T () G0) o e
TS (G000 (.0, M e O (D) (D) (G0 e
ValidOut#
(Output) __/__/__/
ValidIin#
(Input) \ /
Release#
(Output) \ /

R((:‘IESZ:; <1> <2> <3>/ /<4>\
WrRdy#
(Input) / <4>\

Preliminary User’'s Manual U16044EJ1VOUM 293

CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE)

(2) When processor read/write request does not follow in pipeline mode
In the pipeline mode, the external agent must acknowledge a request even if the RdRdy# signal goes high in the
address cycle.
<1> to <3> in Figure 15-2 indicate that the external agent makes the RdRdy# signal low, indicating that it is
ready to acknowledge a read request.
In response, the processor successively issues read requests in <2> to <4>. At this time, request identifiers are
also driven onto the SysID bus.
Even if the external agent makes the RdRdy# signal high in the address cycle <4>, indicating that it cannot
acknowledge a read request, the processor assumes that this request has been acknowledged.
The external agent can return a response from a request for which data has been prepared. When driving
response data, also drive the corresponding request identifier onto the SysID bus.

Figure 15-2. Successive Read Requests (in Pipeline Mode, Without Subsequent Request)

—— Master J“ Slave ——J« Master—

SysCycIe‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘13‘14‘15‘16‘

SysClock
SysAD(63:0

o
Syscmd(®0)
SyepEo (DoX{ssX(or Y02} Y{or)(2)(00) 4 s

(/0
ValidOut#
(Output)
Validln#
(Input)
Release#
(Qutput)

RdRdy# <1> <2> <3>/ <4>
(Input)

{HE

|

I

294 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE)

(3) In re-issuance mode
If the RdRdy# signal goes high in the address cycle in the re-issuance mode, the processor discards the
request and re-issues it when it returns to the master status.
<1> to <3> in Figure 15-3 indicate that the external agent makes the RdRdy# signal low, indicating that it is
ready to acknowledge a read request.
In response, the processor successively issues read requests in <2> to <4>. At this time, request identifiers are
also driven onto the SysID bus.
If the external agent makes the RdRdy# signal high in the address cycle <4>, indicating that it cannot
acknowledge a read request, the processor discards this request. When the processor later returns to the
master status, it re-issues the request.
The external agent can return a response from a request for which data has been prepared. When driving
response data, also drive the corresponding request identifier onto the SysID bus.

Figure 15-3. Successive Read Requests (in Re-Issuance Mode)

—— Master —*7 Slave 44* Master
SysCycle ‘ 1 ‘ 2‘3‘4 ‘ 5 ‘ 6‘7‘8 ‘ 9 ‘10‘11‘12‘13‘14‘15‘16‘
S AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY.
SYsADERD) (D) e, O i O) O) R T
(110)

Sysema®l) S GO @ CD RS T
SysbEd) (1D Yirsd(io)unsd((102)unsa == Yior)(Xipo) #-*{unsa

ValidOut# —_/—_/—_/
(Output)
Validin# _/__/_
(Input)
Release#
(Output) \—/
RdRdy#
(Input)

<1> <2> <3>/ /<4>\

Preliminary User’'s Manual U16044EJ1VOUM 295

CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE)

15.2.2 Successive write requests
This section explains the protocol used in each mode when processor write requests are issued in a row.

(1) In pipeline mode
In the pipeline mode, the external agent must acknowledge a request even if the WrRdy# signal goes high in the
address cycle.
<1> to <3> in Figure 15-4 indicate that the external agent makes the WrRdy# signal low, indicating that it is
ready to acknowledge a write request.
In response, the processor successively issues write requests in <2> to <4>. At this time, the status of the
SysID bus is undefined.
Even if the external agent makes the WrRdy# signal high in the address cycle <4>, indicating that it cannot
acknowledge a write request, the processor assumes that this request has been acknowledged.
When the external agent makes the WrRdy# signal low in <5>, the processor completes issuance of the write
request in <6>.

Figure 15-4. Successive Write Requests (in Pipeline Mode)

- Master >

SysCycle ‘ 1 ‘ 2‘3‘4 ‘ 5‘6‘7‘8‘9 ‘10‘11‘12‘13‘14‘15‘16‘
S AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY,
SysAD(63:0 Unsd Y Adars Unsd X:

(|/o;

Sromis D G O D .
R O OOO000CE O
ot ——\ e

Validin#
(Input)

WrRdy# /—
(Input) <1> <2> <3> <4> <5> <6>

H

Note When the DisDValidO# signal is low level

296 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE)

(2) Inre-issuance mode

If the WrRdy# signal goes high in the address cycle in the re-issuance mode, the processor discards the
request and re-issues it when the WrRdy# signal goes low.
<1> to <3> in Figure 15-5 indicate that the external agent makes the WrRdy# signal low, indicating that it is
ready to acknowledge a write request.
In response, the processor successively issues write requests in <2> to <4>. At this time, the status of the

SysID bus is undefined.

If the external agent makes the WdRdy# signal high in the address cycle <4>, indicating that it cannot
acknowledge a write request, the processor discards this request.
When the external agent makes the WrRdy# signal low in <5>, the processor re-issues in <6> the request
discarded in <4>, and completes issuance of the write request.

Figure 15-5. Successive Write Requests (in Re-Issuance Mode)

SysCycle

SysClock
SysAD(63:0
(110
SysCmd(8:0
(/0
SysID(2:0
(110
ValidOut#
(Output)
Validin#
(Input)
WrRdy#
(Input)

- Master >
‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘13‘14‘15‘16‘
Unsd X Addr2 nsd X
D) (0 0 (I 0 U T 0 O O

6 6 6 G - T .

H

<1> <2> <3>/ Z4> \ <5> <6>/

Note When the DisDValidO# signal is low level

Preliminary User’'s Manual U16044EJ1VOUM

297

CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE)

15.2.3 Write request following read request

This section explains the protocol when a processor write request is issued immediately after a processor read
request.

<1> and <2> in Figure 15-6 indicate that the external agent makes the RdRdy# signal low, indicating that it is
ready to acknowledge a read request.

In response, the processor successively issues read requests in <2> and <3>. At this time, the request identifier
is also driven onto the SysID bus.

In <4>, the external agent makes the WrRdy# signal low, indicating that it is ready to acknowledge a write
request.

In response, the processor issues a write request in <5>. At this time, the status of the SysID bus is undefined.

Figure 15-6. Write Request Following Read Request

Master 4%7 Slave —4+ Master
SysCycle ‘ 1 ‘ 2‘ 3‘4‘5‘6‘7‘8‘9 ‘10‘11‘12‘13‘14‘15‘ ‘
S A VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV.

SysAD(ES) O 2 2) el O) O) O

Sysomd(E0))) 0)) (el O G0 O G O
SyelD(z) (DT D 2) O S O G0) (D) e

ValidOut# —_/—_/—_/
(Output)

Validln# \ / \ /

(Input)

Release#

(Output)

RdRdy#
(Input)

WrRdys# \<4> <5> /

(Input)

C

<1> <2> <3> /

298 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE)

15.2.4 Bus arbitration of processor
This section explains the protocol in each mode when an external read response is aborted by asserting the
PReg# signal.

(1) When processor read/write request follows in pipeline mode
In the pipeline mode, the external agent must acknowledge a request even if the RdRdy# signal goes high in the
address cycle.
<1> and <2> in Figure 15-7 indicate that the external agent makes the RdRdy# signal low, indicating that it is
ready to acknowledge a read request.
In response, the processor successively issues read requests in <2> and <3>. At this time, request identifiers
are also driven onto the SysID bus.
In <3>, the external agent makes the RdRdy#/WrRdy# signal high, indicating that it can acknowledge no more
read/write requests. However, the processor assumes that the request in the address cycle <3> has been
acknowledged.
If the processor makes the PReq# signal low while a response cycle is delayed because it takes time to prepare
response data, the external agent can issue a null request (<4>) and return the right to control the system
interface to the processor. By transferring the right of control in this way before the number of requests waiting
for a response reaches five, requests can be efficiently processed.
When the external agent makes the RdRdy#/WrRdy# signal low in <5>, the processor completes issuance of
the read/write request in <6>.

Figure 15-7. Bus Arbitration of Processor (in Pipeline Mode, with Subsequent Request)

_— Master4+7 SIave—»F Master —

SysCyCIe‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘13‘14‘15‘16‘

SysClock

SysAD(E0 I .) e
— - —
o) Read Unsd }AZfeooY Yl ead
SyD(z) 60 (2 (D M e 0 G O
ValidOut# _\—/_\—/
(Output)
Validin#
o /e

PReg# \
(Output)

Release#
(Output) _/
stgl)llg <1> <2> /<3>\ \<5>/ <6>

WrRdy# /<3>\ \65>/ <6>

(Input)

e

h

Preliminary User’'s Manual U16044EJ1VOUM 299

CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE)

()

When processor read/write request does not follow in pipeline mode

In the pipeline mode, the external agent must acknowledge a request even if the RdRdy# signal goes high in the
address cycle.

<1> and <2> in Figure 15-8 indicate that the external agent makes the RdRdy# signal low, indicating that it is
ready to acknowledge a read request.

In response, the processor successively issues read requests in <2> and <3>. At this time, request identifiers
are also driven onto the SysID bus.

Even if the external agent makes the RdRdy#/WrRdy# signal high in the address cycle <3>, indicating that it
cannot acknowledge a read/write request, the processor assumes that this request has been acknowledged.

If the processor makes the PReg# signal low while a response cycle is delayed because it takes time to prepare
response data, the external agent can issue a null request (<4>) and return the right to control the system
interface to the processor. By transferring the right of control in this way before the number of requests waiting
for a response reaches five, requests can be efficiently processed.

When the external agent makes the RdRdy#/WrRdy# signal low in <5>, the processor completes issuance of
the read/write request in <6>.

Figure 15-8. Bus Arbitration of Processor (in Pipeline Mode, Without Subsequent Request)

B — Master4+7 Slave 4+— Master——F Slave

SysCycIe‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘13‘14‘15‘16
SyenoiE0 I S (0 o W

)
)
Sysemdtd) 2 Leoo)(Y HCUnsd Wreadp A
)
)

AP CO) () 2ot C) G O ot G 0 s O
e —\ \/
o an

(Oupan \ /

Ot _/ _/
RdRdy#

(Input)

WrRdy#
(Inpzt) \<5>/ <6>

<1> <2> / <3> \<5>/ <6>

300

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE)

(3) In re-issuance mode

If the RdRdy# signal goes high in the address cycle in the re-issuance mode, the processor discards the
request and re-issues it when it returns to the master status.

<1> and <2> in Figure 15-9 indicate that the external agent makes the RdRdy# signal low, indicating that it is
ready to acknowledge a read request.

In response, the processor successively issues read requests in <2> and <3>. At this time, request identifiers
are also driven onto the SysID bus.

If the external agent makes the RdRdy# signal high in the address cycle <3>, indicating that it cannot
acknowledge a read request, the processor discards this request.

If the processor makes the PReg# signal low while a response cycle is delayed because it takes time to prepare
response data, the external agent can issue a null request (<4>) and return the right to control the system
interface to the processor. By transferring the right of control in this way before the number of requests waiting
for a response reaches five, requests can be efficiently processed.

When the external agent makes the RdRdy# signal low in <5>, the processor completes issuance of the read
request in <6>.

Figure 15-9. Bus Arbitration of Processor (in Re-Issuance Mode)

— Master 4+7 Slaveg% Master —
SysCycle ‘ 1 ‘ 2‘3 ‘ 4 ‘ 5 ‘ 6‘7 ‘ 8 ‘ 9 ‘10‘11‘12‘13‘14‘15‘16‘
SysClock

S0 e} <2 Cons Y
Sremded Ty e
Syle((lz/:g; Unsd 12)D_H_i-_ D1
ValidOut# —\ [\ /

(Output) _

Validin#
(Input)
PReqg# \

(Output)

Release#
(Output) _/

RdRdy#
(Input) <1> <2> /<3>\ \<5>/ <6>

<4>

Preliminary User’'s Manual U16044EJ1VOUM 301

CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE)

15.2.5 Single read request following block read request
This section explains the protocol in each mode when a processor single read request is issued immediately after
a processor block read request.

(1) When processor read/write request follows in pipeline mode
In the pipeline mode, the external agent must acknowledge a request even if the RdRdy# signal goes high in the
address cycle.
<1> and <2> in Figure 15-10 indicate that the external agent makes the RdRdy# signal low, indicating that it is
ready to acknowledge a read request.
In response, the processor successively issues read requests in <2> and <3>. At this time, request identifiers
are also driven onto the SysID bus.
Even if the external agent makes the RdRdy# signal high in the address cycle <3>, indicating that it cannot
acknowledge a read request, the processor assumes that this request has been acknowledged.
The external agent can return a response from a request for which data has been prepared. When driving
response data, also drive the corresponding request identifier onto the SysID bus.

Figure 15-10. Single Read Request Following Block Read Request
(in Pipeline Mode, with Subsequent Request)

—— Master4+78Iave4>FMaster
SysCycle ‘ 1 ‘ 2‘3‘4‘5‘6‘7‘8 ‘ 9‘10‘11‘12‘13‘14‘ ‘
S AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV
RS LD)) e e
o)) T) E R EE
(/0) (0D X Data)Data} Data)EOD)
SVS'D%; (1poXursf(ip 1Y unsa}-{ip1) ID0 HrE(
ValidOut# —_/—_/
(Output)
Validin# \ —_—

(Input)
Release#
(Output)
RdRdy#
(Input)

C

<1> <2> /<3>\

302 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE)

(2) When processor read/write request does not follow in pipeline mode

In the pipeline mode, the external agent must acknowledge a request even if the RdRdy# signal goes high in the

address cycle.

<1> and <2> in Figure 15-11 indicate that the external agent makes the RdRdy# signal low, indicating that it is

ready to acknowledge a read request.

In response, the processor successively issues read requests in <2> and <3>. At this time, request identifiers

are also driven onto the SysID bus.
Even if the external agent makes the RdRdy# signal high in the address cycle <3>, indicating that it cannot

acknowledge a read request, the processor assumes that this request has been acknowledged.

The external agent can return a response from a request for which data has been prepared. When driving

response data, also drive the corresponding request identifier onto the SysID bus.

Figure 15-11. Single Read Request Following Block Read Request
(in Pipeline Mode, Without Subsequent Request)

SysCycle

SysClock

SysAD(63:0)
(/0)
SysCmd(8:0)
(/0)
SysID(2:0)
(/0)
ValidOut#
(Output)
Validin#
(Input)
Release#
(Output)
RdRdy#
(Input)

— Master 4+7 Slave 4"*Master
1]2]alals|e|7]8|ofr0]1]r] | |
TR EEEEE

g

Y AW

—

<1> <2> <3>

Preliminary User’'s Manual U16044EJ1VOUM

303

CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE)

(3) Inre-issuance mode
If the RdRdy# signal goes high in the address cycle in the re-issuance mode, the processor discards the
request and re-issues it when it returns to the master status.
<1> and <2> in Figure 15-12 indicate that the external agent makes the RdRdy# signal low, indicating that it is
ready to acknowledge a read request.
In response, the processor successively issues read requests in <2> and <3>. At this time, request identifiers
are also driven onto the SysID bus.
If the external agent makes the RdRdy# signal high in the address cycle <4>, indicating that it cannot
acknowledge a read request, the processor discards this request.

Figure 15-12. Single Read Request Following Block Read Request (in Re-Issuance Mode)

— Master Jr Slave 44* Master

SySCycle‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘13‘14‘

SysAD(EED A T) T e

(/0

)
)
SysCmd(8:0 y)
o) HZ (Y pate)pate Y Date)0 12
)
)

SysiDz0 G0\ (), T o (D GO

ValidOut# __/—_/
(Qutput)
Validin# \—/7

(Input)

Release#
(Output)
RdRdy#

(Input)

C

<1> <2> /<3>\

304 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE)

15.2.6 Unaligned 2-word read request
This section explains the protocol when a read request of unaligned 2-word data is issued in the 32-bit bus mode.

Remark Unaligned 2-word data is data of 5 to 8 bytes that is divided into 1 word and 1 to 4 bytes when
processed.

To read unaligned 2-word data, two read requests are successively issued, and the same request identifier is
driven onto the SysID bus. The external agent must return response data in the same sequence as the
corresponding request.

In <1> and <2> in Figure 15-13, the external agent makes the RdRdy# signal low, indicating that it is ready to
acknowledge a read request.

In response, the processor successively issues read requests in <2> and <3>. At this time, the same request
identifier is driven twice onto the SysID bus.

In <4> and <5>, the external agent must return the response data for which data has been prepared in the same
sequence as the requests. When the response data is driven, the corresponding request identifier must also be
driven onto the SysID bus.

Figure 15-13. Unaligned 2-Word Read (in Pipeline Mode, with Subsequent Request)

—— Master 4%7 Slave —4« Master —

SysCycIe‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘13‘14‘15‘

RS ()) (0 (T ot HiZ
(1/0) O O ep2

SysCmd(8:0 -)
e ((I/O; M2 YooY Neol2(

SysID(2:0 §)
S — 0) ST o O 0) (0o

ValidOut# —_/—_/
(Output)
Validin#
(Input)
Release#
(Output)

RdRdy# \<1 >/ \<2>/ /<3>\

(Input)

<4 <5>

C

Preliminary User’'s Manual U16044EJ1VOUM 305

CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE)

15.3 System Interface Commands and Data Identifiers

A system interface command defines the type and attribute of a system interface request. This definition is
indicated in the address cycle of a request.

The system interface data identifier defines the attribute of the data transferred in the system interface data cycle.

This section explains the syntax of the commands and data identifiers of the system interface (coding in bit units)
in the out-of-order return mode.

Set the reserved bits and reserved area in the commands and data identifiers of the system interface related to
external requests to 1.

The reserved bits and reserved area in the commands and data identifiers of the system interface related to
processor requests are undefined.

15.3.1 Syntax of commands and data identifiers

The commands and data identifiers of the system interface are coded in 9-bit units, and transferred from the
processor to the external agent, or vice versa, via the SysCmd bus in the address cycle and data cycle.

SysCmd8 (most significant bit) determines whether the current contents of the SysCmd bus are a command
(address cycle) or data identifier (data cycle). If they are a command, clear SysCmd8 to 0; if they are a data
identifier, setitto 1.

15.3.2 Syntax of command
This section explains the coding of the SysCmd bus when a system interface command is used. Figure 15-14

shows the common code used for all the system interface commands.

Figure 15-14. Bit Definition of System Interface Command

0 Request type Details of request

Be sure to clear SysCmd8 to 0 when a system interface command is used.

SysCmd(7:5) define the types of system interface requests such as read, write, and null.

Table 15-2. Code of System Interface Command SysCmd(7:5)

Bit Contents

SysCmd(7:5) Command

0: Read request
1: Reserved

2: Write request
3: Null request
4to 7: Reserved

SysCmd(4:0) are determined according to the type of request. A definition of each request is given below.

306 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE)

(1) Read request
The code of the SysCmd bus related to a read request is shown below.
Figure 15-15 shows the format of the command when a read request is issued.
Tables 15-3 to 15-5 show the code of the read attribute of the SysCmd(4:0) bits related to the read request.

Figure 15-15. Bit Definition of SysCmd Bus During Read Request

Details of read request
0 000
(refer to the tables below)

Table 15-3. Code of SysCmd(4:3) During Read Request

(a) In 64-bit bus mode

Bit Contents

SysCmd(4:3) Read attribute
0: Reserved
1: Reserved
2: Block read
3: Single read

(b) In 32-bit bus mode

Bit Contents
SysCmd(4:3) Read attribute
0: Reserved
1: Unaligned 2-word read"**
2: Block read
3: Single read

Note When an unaligned 2-word read request is issued, the processor drives the
same request identifier twice onto the SysID bus. The external agent must
return the response data to the unaligned 2-word read request in the same
sequence as the request.

Preliminary User’'s Manual U16044EJ1VOUM 307

CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE)

308

Table 15-4. Code of SysCmd(2:0) During Block Read Request

(a) In 64-bit bus mode

Bit

Contents

SysCmd2

Reserved

SysCmd(1:0)

Size of read block
0: Reserved
1: 8 words
2, 3: Reserved

(b) In 32-bit bus mode

Bit

Contents

SysCmd2

Reserved

SysCmd(1:0)

Size of read block
0: 2 words (only when the DWBTrans# signal is low level)
1: 8 words
2, 3: Reserved

Table 15-5. Code of SysCmd(2:0) During Single Read Request

(a) In 64-bit bus mode

Bit

Contents

SysCmd(2:0)

Read data size
0: 1 byte is valid (byte).
2 bytes are valid (halfword).
3 bytes are valid.
4 bytes are valid (word).
5 bytes are valid.
6 bytes are valid.
7 bytes are valid.
8 bytes are valid (doubleword).

Noa MDD

(b) In 32-bit bus mode

Bit

Contents

SysCmd2

Reserved

SysCmd(1:0)

Read data size
0: 1 byte is valid (byte).
1: 2 bytes are valid (halfword).
2: 3 bytes are valid.
3: 4 bytes are valid (word).

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE)

(2) Write request
The code of the SysCmd bus related to a write request is shown below.
Figure 15-16 shows the format of the command when a write request is issued.

Tables 15-6 to 15-8 show the code of the write attribute of the SysCmd(4:0) bits related to the write request.

Figure 15-16. Bit Definition of SysCmd Bus During Write Request

0 010 Details of write request
(refer to the tables below)

Table 15-6. Code of SysCmd(4:3) During Write Request

(a) In 64-bit bus mode

Bit Contents

SysCmd(4:3) Write attribute
0: Reserved
1: Reserved
2: Block write
3: Single write

(b) In 32-bit bus mode

Bit Contents

SysCmd(4:3) Write attribute

0: Reserved

1: Unaligned 2-word write
2: Block write

3: Single write

Preliminary User’'s Manual U16044EJ1VOUM

309

CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE)

310

Table 15-7. Code of SysCmd(2:0) During Block Write Request

(a) In 64-bit bus mode

Bit

Contents

SysCmd2

Update of cache line
0: Replaced
1: Retained

SysCmd(1:0)

Size of write block
0: Reserved
1: 8 words
2, 3: Reserved

(b) In 32-bit bus mode

Bit

Contents

SysCmd2

Update of cache line
0: Replaced
1: Retained

SysCmd(1:0)

Size of write block
0: 2 words (only when the DWBTrans# signal is low level)
1: 8 words
2, 3: Reserved

Table 15-8. Code of SysCmd(2:0) During Single Write Request

(a) In 64-bit bus mode

Bit

Contents

SysCmd(2:0)

Write data size
0: 1 byte is valid (byte).
1 2 bytes are valid (halfword).
: 3 bytes are valid.
: 4 bytes are valid (word).
5 bytes are valid.
6 bytes are valid.
7 bytes are valid.
8 bytes are valid (doubleword).

NoahrDb

(b) In 32-bit bus mode

Bit

Contents

SysCmd2

Reserved

SysCmd(1:0)

Write data size
0: 1 byte is valid (byte).
1: 2 bytes are valid (halfword).
2: 3 bytes are valid.
3: 4 bytes are valid (word).

Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE)

(3) Null request

Figure 15-17. Bit Definition of SysCmd Bus During Null Request

Figure 15-17 shows the format of the command when a null request is used.
Table 15-9 shows the code of the SysCmd(4:3) bits related to the null request.
For the null request, the SysCmd(2:0) bits are reserved.

011

Details of null request
(refer to the table below)

Table 15-9. Code of SysCmd(4:3) During Null Request

Bit

Contents

SysCmd(4:3)

110 3:

Null attribute
0: Released

Reserved

15.3.3 Syntax of data identifier
This section explains coding of the SysCmd bus when a system interface data identifier is used.
Figure 15-18 shows the common code used for all system interface data identifiers.

Figure 15-18. Bit Definition of System Interface Data Identifier

8 7 6 5 4
- Indication N
Indication Indication |Data check
Reserved
1 of last data gfa;’aesponse of error data |enable

Be sure to set SysCmd8 of the system interface data identifier to 1.

Preliminary User’'s Manual U16044EJ1VOUM

311

CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE)

A definition of the SysCmd(7:0) bits is given below.

SysCmd7: Indicates whether the data element is the last one.

SysCmd6: Indicates whether the data is response data. Response data is returned in response to a read
request.

SysCmd5: Indicates whether the data element contains an error. The error indicated in the data cannot be

corrected. If this data is returned to the processor, a bus error exception occurs. In the case of
a response block, send the entire line to the processor regardless of the degree of error. The
external agent should ignore this bit in a processor data identifier because no error is indicated.
SysCmd4: This bit in an external data identifier indicates whether the data of the data element and check
bit are checked. This bit in a processor data identifier is reserved.
SysCmd(3:0): These bits are reserved.

Table 15-10 indicates the codes of SysCmd(7:5) of a processor data identifier, and Table 15-11 shows the codes
of SysCmd(7:4) of an external data identifier.

Table 15-10. Codes of SysCmd(7:5) of Processor Data Identifier

Bit Contents

SysCmd7 Indication of last data element
0: Last data element
1: Not last data element

SysCmd6 Indication of response data
0: Response data
1: Not response data

SysCmd5 Indication of error data
0: Error occurred
1: No error occurred

Table 15-11. Codes of SysCmd(7:4) of External Data Identifier

Bit Contents

SysCmd7 Indication of last data element
0: Last data element
1: Not last data element

SysCmd6 Indication of response data
0: Response data
1: Not response data

SysCmd5 Indication of error data
0: Error occurred
1: No error occurred

SysCmd4 Data check enables
0: Data and check bit checked
1: Data and check bit not checked

Remark To enable data check, clear the DE bit of the Status register in CPO to 0.

312 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 15 SYSTEM INTERFACE (OUT-OF-ORDER RETURN MODE)

15.4 Request Identifier

In the out-of-order return mode, the processor drives a request identifier onto the SysID bus.

The request identifier defines the target of the read request and sequence of issuance (ID number). This
definition is indicated in the address cycle of the request. The SysID bus is in an undefined state when a write
request is issued.

SysIDO (least significant bit) determines whether the data targeted to the current request is an instruction or data.

SyslID(2:1) defines the ID number of the read request.

Tables 15-12 to 15-14 show the code of the request identifier.

Table 15-12. Code of Request Identifier SysIiD0

Bit Contents

SysIDO Request target
0: Instruction
1: Data

Table 15-13. Code of SysID(2:1) During Instruction Read

Bit Contents
SysID(2:1) Request issuance sequence
0: IDO (first)
1to 3: Reserved

Table 15-14. Code of SysID(2:1) During Data Read

Bit Contents
SysID(2:1) Request issuance sequence
0: DO (first)
1: ID1 (second)
2: 1D2 (third)
3: 1D3 (fourth)

Preliminary User’'s Manual U16044EJ1VOUM 313

CHAPTER 16 INTERRUPTS

This chapter explains the following four types of interrupts in the Vr5500.

1
2
3
4

Non-maskable interrupt (NMI): 1 source
External ordinary interrupt: 6 sources (of which one is exclusive with a timer interrupt)
Software interrupt: 2 sources

(1)
)
@)
(4)

Timer interrupt: 1 source (which is exclusive with one external ordinary interrupt)

16.1 Interrupt Request Type

16.1.1 Non-maskable interrupt (NMI)

The NMI request is acknowledged when the NMI# signal is asserted, and execution branches to the reset
exception vector. The NMI# signal is latched by an internal register at the rising edge of the SysClock signal as
shown in Figure 16-1. This signal is edge-triggered.

This interrupt request can also be set by an external write request via the SysAD bus. In the data cycle, SysAD6
serves as an NMI request bit (1: Request), and SysAD22 serves as the write enable bit (1: Enable) corresponding to
SysAD6.

An NMI cannot be masked.

Figure 16-1 shows the internal processing of the NMI# signal. A low-level signal input to the NMI# pin is latched
to an internal register at the rising edge of SysClock. The latched NMI# signal is inverted and ORed with bit 6 of the
internal register, and transmitted to the internal units as an NMI request.

Figure 16-1. NMI# Signal

External write request

: W

Interrupt register (internal)

(Internal register)

NMI interrupt
NMI# —» 4>©i):> -

SysClock

314 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 16 INTERRUPTS

16.1.2 External ordinary interrupt

This interrupt is acknowledged when the Int(5:0)# signals are made low, which sets the IP(7:2) bits of the Cause
register. The Int(5:0)# signals are level-triggered. Keep these signals low until an interrupt exception occurs. After
the interrupt exception has occurred, make high the signals that were low by the time execution returns to the normal
routine, or before multiple interrupts are enabled.

An external ordinary interrupt request can also be set by an external write request via the SysAD bus. In the data
cycle, SysAD(5:0) serve as external interrupt request bits (1: Request), and SysAD(21:16) serve as write enable bits
(1: Enable) corresponding to SysAD(5:0). After an interrupt exception has occurred, issue the external write request
again before execution returns to the ordinary routine or multiple interrupts are enabled, and clear the corresponding
bit of the interrupt register to 0.

The interrupt request executed by Int5# signal or SysADS5 is acknowledged exclusively to the timer interrupt. If a
low level is input to TIntSel pin before a power-on reset, the interrupt request by Int5# or SysAD5 becomes valid.

An external ordinary interrupt request can be masked by the IM(7:2), IE, EXL, and ERL bits of the Status register.

16.1.3 Software interrupts

Software interrupt requests are acknowledged when bits 1 and 0 of the IP (interrupt pending) field in the Cause
register are set. These must be written by software; there is no hardware mechanism to set or clear these bits.

After the occurrence of an interrupt exception, the corresponding bit of the IP field in the Cause register must be
cleared (0) before returning to the ordinary routine or before multiple interrupts are enabled.

A software interrupt request can be masked by the IM(1:0), IE, EXL, and ERL bits of the Status register.

16.1.4 Timer interrupt

This interrupt request uses bit 7 in the IP (interrupt pending) area of the Cause register. The IP7 bit is
automatically set and the interrupt request is acknowledged if the value of the Count register becomes equal to that
of the Compare register or if the performance counter overflows.

The timer interrupt is acknowledged exclusively to the interrupt request executed by the Int5# signal or SysAD5.
If a high level is input to TIntSel pin before power-on reset, the timer interrupt request becomes valid.

An timer interrupt request can be masked by the IM7, IE, EXL, and ERL bits of the Status register.

16.2 Acknowledging Interrupt Request Signal

If the external agent issues an external write request that makes SysAD(6:4) = 000, it is written to the interrupt
register. This register can be used in the external write cycle but cannot be used in the external read cycle. When a
request is written to the interrupt register, the processor ignores the address issued by the external agent. This
register cannot be read or written by software, unlike the CPO registers.

In the data cycle, each bit of SysAD(22:16) enables a write access to the corresponding bit of the interrupt
register, allowing the values of SysAD(6:0) to be written to the bits of the interrupt register. Therefore, bits 0 to 6 of
the interrupt register can be set or cleared by issuing an external write request only once. This mechanism is
illustrated in Figure 16-2, along with the NMI described above.

Preliminary User’'s Manual U16044EJ1VOUM 315

CHAPTER 16 INTERRUPTS

Figure 16-2. Bits of Interrupt Register and Enable Bits

Non-maskable
interrupt request External interrupt request

SysAD(6:0) | 6 5 4|3 2/|1]o0

Interrupt register (internal)

{/\ 2 » Refer to Figures 16-3
and 16-4.
1D 3

> :
? 6 —> Refer to Figure 16-1.

SysAD(22:16) | 22 21 | 20 | 19 | 18 | 17 | 16

SysAD6 SysAD(5:0)
write enable bit write enable bit
Bit Function Setting
SysAD(5:0) External interrupt request For each bit 1: Request

1
0: No request

SysAD(21:16) Write enable bits of SysAD(5:0) | For each bit 1: Enabled

0: Disabled
SysAD6 Non-maskable interrupt request | 1: Request
0: No request
SysAD22 Write enable bit of SysAD6 1: Enabled
0: Disabled

316 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 16 INTERRUPTS

16.2.1 Detecting hardware interrupt

Figure 16-3 illustrates how a hardware interrupt request is detected by using the Cause register.

¢ Bit 15 (IP7) of the Cause register is directly checked for the timer interrupt request.
e Bits 15 to 10 (IP(7:2)) of the Cause register are directly checked for external ordinary interrupt requests

(Int(5:0)# and SysAD(5:0)).

o Whether IP7 indicates the timer interrupt request or interrupt request executed by Int5# or SysADS5 is
determined according to the status of the TIntSel pin before a power-on reset. If this pin is high, it indicates
the timer interrupt. If it is low, it indicates the interrupt request executed by Int5# or SysAD5.

IPO and IP1 of the Cause register are used for software interrupt requests (for details, refer to CHAPTER 6
EXCEPTION PROCESSING). Software interrupts cannot be set or cleared by hardware.

Figure 16-3. Hardware Interrupt Request Signal

Interrupt register (internal)

1o

IP2 | 10

IP3 | 11

IP4 |12

IP5 |13

IP6 | 14

Timer interrupt

TIntSel

B A

Int4# Int2# IntO#

I IP7 |15

Bits 15 to 10 of

L Selector

Cause register

(Internal register)

—> Refer to Figure 16-4.

Preliminary User’'s Manual U16044EJ1VOUM

317

CHAPTER 16 INTERRUPTS

16.2.2 Masking interrupt signal
Figure 16-4 illustrates how an interrupt signal is masked.

¢ Bits 15 to 8 (IP(7:0)) of the Cause register are connected to the interrupt mask bits (bits 15 to 8, i.e., IM(7:0))
of the Status register by an AND-OR logic block, masking each interrupt request signal.

¢ Bit 0 of the Status register is a global interrupt enable (IE) bit. The output of this bit is ANDed with the output
of the AND-OR logic block to generate the interrupt request signals of the Vr5500. In addition, these
interrupts are enabled by the EXL and ERL bits of the Status register.

Figure 16-4. Masking Interrupt Signal

Status register
Bit 0

IE

Status register
Bits 15t0 8
IMO |8
IM1 |9
IM2 [10
IM3 |11 8
IM4 |12
IM5 [13
IM6 |14
IM7 |15

7
Y

%L» Interrupt of VrR5500

IPO |8
IP1]9
IP2 |10 AND
IP3 11 8 block
External ordinary interrupt IP4 112
IP5 |13
IP6 |14 AND-OR
—»| IP7 |15 block

7%

Software interrupt {

7

Timer interrupt or
external ordinary interrupt

Cause register

Bits 15t0 8
Bit Function Setting
IE Enables all interrupts. 1: Enables
0: Disables

IM(7:0) Interrupt mask For each bit 1: Enabled
0: Disabled

IP(7:0) Interrupt request For each bit 1: Request pending
0: Not pending

318 Preliminary User’'s Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

This chapter provides a detailed description of the operation of the CPU instruction in both 32- and 64-bit modes.
The instructions are listed in alphabetical order.
For details of the FPU instruction set, refer to CHAPTER 18 FPU INSTRUCTION SET.

17.1 Instruction Notation Conventions

In this chapter, all variable subfields in an instruction format (such as rs, rf, immediate, etc.) are shown in
lowercase names. The instruction names (e.g. ADD and SUB) are indicated by upper-case characters. For the sake
of clarity, we sometimes use an alias for a variable subfield in the formats of specific instructions. For example, we
use base instead of rs in the format for load and store instructions. Such an alias is always lower case, since it
refers to a variable subfield.

The architecture level at which the instruction was defined first is indicated on the right of the instruction format.
The product name is also shown for instructions that may be incorporated differently depending on the product.

Figures with the actual bit encoding for all the mnemonics are located at the end of this chapter (17.4 CPU
Instruction Opcode Bit Encoding), and the bit encoding also accompanies each instruction.

In the instruction descriptions that follow, the operation section describes the operation performed by each
instruction using a high-level language notation. The Vr5500 can operate as either a 32- or 64-bit microprocessor
and the operation for both modes is included with the instruction description.

Special symbols used in the notation are described in Table 17-1.

Preliminary User's Manual U16044EJ1VOUM 319

CHAPTER 17 CPU INSTRUCTION SET

Table 17-1. CPU Instruction Operation Notations

Symbol Meaning

“— Assignment

Il Bit string concatenation

X Replication of bit value x into a y-bit string. x is always a single-bit value

Xy..z Selection of bits y to z of bit string x. Little-endian bit notation is always used. If yis less than z, this
expression is an empty (zero length) bit string

+ 2’s complement or floating-point addition

- 2’s complement or floating-point subtraction

* 2’s complement or floating-point multiplication

div 2’s complement integer division

mod 2’s complement modulo

/ Floating-point division

< 2’s complement less than comparison

and Bit-wise logical AND

or Bit-wise logical OR

xor Bit-wise logical XOR

nor Bit-wise logical NOR

GPR[x] General-purpose register x. The content of GPR[0] is always zero. Attempts to alter the content of
GPR[0] have no effect.

CPR[z, x] Coprocessor unit z, general-purpose register x.

CCR[z, x] Coprocessor unit z, control register x.

COC[Z] Coprocessor unit z condition signal.

BigEndianMem | Big-endian mode as configured at reset (0 — Little, 1 — Big). Specifies the endianness of the memory
interface (see Table 17-2 Load and Store Common Functions), and the endianness in kernel and
supervisor mode. The status of the BE bit of the Config register is reflected.

ReverseEndian | Signal to reverse the endianness of load and store instructions.

The status of bit 25 of the Status register is reflected. This value is always 0 in the Vr5500.

BigEndianCPU | The endianness for load and store instructions (0 — Little, 1 — Big).

This variable is computed as BigEndianMem XOR ReverseEndian.

T+1 Indicates the time steps between operations. Each of the statements within a time step are defined to be
executed in sequential order (as modified by conditional and loop constructs). Operations which are
marked T + i: are executed at instruction cycle i relative to the start of execution of the instruction. Thus,
an instruction which starts at time j executes operations marked T + i: at time i + j. The interpretation of
the order of execution between two instructions or two operations that execute at the same time should be
pessimistic; the order is not defined.

320 Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

The following examples illustrate the application of some of the instruction notation conventions:

Example 1:
GPR [rt] « immediate Il 0"

Sixteen zero bits are concatenated with an immediate value (typically 16 bits), and the 32-bit string is
assigned to general-purpose register rt.

Example 2:
(immediate1s)™ Il immediate1s..o

Bit 15 (the sign bit) of an immediate value is extended for 16-bit positions, and the result is concatenated
with bits 15 to 0 of the immediate value to form a 32-bit sign extended value.

17.2 Cautions on Using CPU Instructions

17.2.1 Load and store instructions

The instruction immediately after a load instruction can use the contents of a register that has been loaded, but
execution of that instruction may be delayed. The VRrR5500 can cover the load delay using an out-of-order
mechanism, but it is recommended to schedule the load delay slot to improve the performance.

With the Vr5500, two special instructions, a load link instruction and a conditional store instruction, can be used.
However, these instructions are used in a carefully programmed sequence when one of the synchronous primitives
(such as test & set, lock of bit level, semaphore, and sequencer/event counter) is executed. These instructions are
defined in the VR5500 to maintain compatibility with the other processors.

In the load and store descriptions, the functions listed below are used to summarize the handling of virtual
addresses and physical memory.

Table 17-2. Load and Store Common Functions

Function Meaning

AddressTranslation Uses the TLB to find the physical address given the virtual address. The function fails and a TLB
refill exception occurs if the required translation is not present in the TLB.

LoadMemory Uses the cache and main memory to find the contents of the word containing the specified
physical address. The lower 6 bits of the address and the Access Type field indicate which of
each of the four bytes within the data word need to be returned. If the cache is enabled for this
access, the entire word is returned and loaded to the cache. If the specified data is short of word
length, the data position to which the contents of the specified data is stored is determined
considering the endian mode and reverse-endian mode.

StoreMemory Uses the cache, write buffer, and main memory to store the word or part of word specified as data
in the word containing the specified physical address. The lower 3 bits of the address and the
Access Type field indicate which of each of the four bytes within the data word should be stored. If
the specified data is short of word length, the data position to which the contents of the specified
data is stored is determined considering the endian mode and reverse-endian mode.

Preliminary User's Manual U16044EJ1VOUM 321

CHAPTER 17 CPU INSTRUCTION SET

The Access Type field indicates the size of the data item to be loaded or stored. Regardless of access type or
byte-numbering order (endian), the address specifies the byte that has the smallest byte address in the addressed
field. The access type field is the leftmost byte in a big-endian system, and includes a 2’s complement sign value.
This field is the rightmost byte in a little-endian system.

Table 17-3. Access Type Specifications for Loads/Stores

Access Type SysCmd(2:0) Meaning
DOUBLEWORD 7 8 bytes (64 bits)
SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
WORD 3 4 bytes (32 bits)
TRIPLEBYTE 2 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 bits)

The bytes within the addressed doubleword that are used can be determined directly from the access type and
the lower 3 bits of the address.

17.2.2 Jump and branch instructions

The jump and branch instructions have a branch delay slot. A jump or branch instruction cannot be used in a
delay slot. If used, the error is not detected and the results of such an operation are undefined.

If an exception or interrupt prevents the completion of a legal instruction during a delay slot, the hardware sets the
EPC register to point at the jump or branch instruction that precedes it. When the code is restarted, both the jump or
branch instructions and the instruction in the delay slot are reexecuted.

Because jump and branch instructions may be restarted after exceptions or interrupts, they must be restartable.
Therefore, when a jump or branch instruction stores a return link value, CPU general-purpose register r31 (the
register in which the link is stored) may not be used as a source register.

Since instructions must be word-aligned, a Jump Register or Jump and Link Register instruction must use a
register which contains a content (address) whose lower 2 bits are zero. If the lower 2 bits are not zero, an address
error exception will occur when the jump target instruction is subsequently fetched.

17.2.3 Coprocessor instructions

The coprocessor is an alternate execution unit and has a register file independent of that of the CPU. The MIPS
architecture allows four coprocessor units to be defined. Each of these coprocessors has two register spaces, and
each register space has thirty-two 32-bit registers. The coprocessor instructions modify the registers in either of the
spaces.

e Coprocessor general-purpose registers are allocated in the first space. These registers directly load/store data
from/in the main memory. They can also be used to transfer data between coprocessors.

e Coprocessor control registers are allocated in the second space. These registers can transfer their contents
only between coprocessors.

322 Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

17.2.4 System control coprocessor (CPO) instructions

There are some special limitations imposed on operations involving CPO that is incorporated within the CPU.
Although load and store instructions to transfer data to/from coprocessors and to move control to/from coprocessor
instructions are generally permitted by the MIPS architecture, CPO is given a somewhat protected status since it has
responsibility for exception handling and memory management. Therefore, the move to/from coprocessor
instructions are the only valid mechanism for writing to and reading from the CPO registers.

Several CPO instructions are defined to directly read, write, and probe TLB entries and to modify the operating
modes in preparation for returning to User mode or interrupt-enabled states.

17.3 CPU Instruction

This section describes the functions of CPU instructions in detail for both 32-bit address mode and 64-bit address
mode.

The exception that may occur by executing each instruction is shown in the last of each instruction's description.
For details of exceptions and their processes, sce CHAPTER 6 EXCEPTION PROCESSING.

Preliminary User's Manual U16044EJ1VOUM 323

CHAPTER 17 CPU INSTRUCTION SET

31 26 25 21 20 16 15 11 10 6 5
SPECIAL s o d 0 ADD
000000 00000 100000

Format:

ADDrd, rs, rt

Purpose:

Adds 32-bit integers. A trap is performed if an overflow occurs.

Description:

Add

MIPS |

The contents of general-purpose register rs and the contents of general-purpose register rt are added and the
result is stored in general-purpose register rd. In 64-bit mode, the operands must be valid sign-extended, 32-bit

values.

An integer overflow exception occurs if the carries out of bits 30 and 31 differ (2's complement overflow). The

destination register rd is not modified when an integer overflow exception occurs.

Operation:
32 T GPRI[rd] « GPR[rs] + GPR{rt]
64 T: temp « GPR[rs] + GPR[r]
GPR([rd] « (tempm)32 Il tempat.o
Exceptions:

Integer overflow exception

324 Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

ADDI Add Immediate
31 26 25 21 20 16 15 0
0'81D0D0|0 rs rt immediate
Format:
ADDI rt, rs, immediate MIPS |
Purpose:

Adds a 32-bit integer to a constant. A trap is performed if an overflow occurs.

Description:

The 16-bit immediate is sign-extended and added to the contents of general-purpose register rs and the result is
stored in general-purpose register rt. In 64-bit mode, the operand must be valid sign-extended, 32-bit values.

An integer overflow exception occurs if carries out of bits 30 and 31 differ (2’s complement overflow). The
destination register rtis not modified when an integer overflow exception occurs.

Operation:
32 T GPRIr] « GPR]rs] + (immediates)'® Il immediates.o
64 T: temp « GPR]rs] + (immediate15)48 [l immediaters.o
GPR[r] < (temps1)* Il tempa1.o
Exceptions:

Integer overflow exception

Preliminary User's Manual U16044EJ1VOUM 325

CHAPTER 17 CPU INSTRUCTION SET

ADDIU Add Immediate Unsigned

31 26 25 21 20 1615 0

ADDIU . .
001001 rs rt immediate

Format:
ADDIU rt, rs, immediate MIPS |

Purpose:

Adds a 32-bit integer to a constant.

Description:

The 16-bit immediate is sign-extended and added to the contents of general-purpose register rs and the result is
stored in general-purpose register rt. No integer overflow exception occurs under any circumstances. In 64-bit
mode, the operand must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADDI instruction is that ADDIU never causes an integer
overflow exception.

Operation:
32 T: GPRIr] < GPR][rs] + (immediatess)'® Il immediatess.o
64 T: temp < GPR{rs] + (immediates)®® Il immediates.o
GPRrt] « ('(empa1)32 Il tempat.o
Exceptions:
None

326 Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

ADDU Add Unsigned

31 26 25 21 20 1615 11 10 6 5 0

SPECIAL rs it rd 0 ADDU
000000 00000 100001

Format:
ADDU rd, rs, rt MIPS |

Purpose:
Adds 32-bit integers.

Description:

The contents of general-purpose register rs and the contents of general-purpose register rf are added and The
result is stored in general-purpose register rd. No integer overflow exception occurs under any circumstances. In
64-bit mode, the operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADD instruction is that ADDU never causes an integer
overflow exception.

Operation:

32 T: GPR[rd] « GPR[rs] + GPR[r]

64 T: temp « GPR[rs] + GPR[r]
GPR(rd] « (tempa1)32 Il tempat.o

Exceptions:

None

Preliminary User's Manual U16044EJ1VOUM 327

CHAPTER 17 CPU INSTRUCTION SET

AND AND
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs it rd 0 AND
000000 00000 100100
Format:
AND rd, rs, rt MIPS |
Purpose:

Performs a bit-wise logical AND operation.

Description:

The contents of general-purpose register rs are combined with the contents of general-purpose register rtin a bit-
wise logical AND operation. The result is stored in general-purpose register rd.

Operation:

32 T: GPRrd] « GPR[rs] and GPR[r]

64 T: GPRrd] « GPR[rs] and GPR[r]

Exceptions:

None

328 Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

ANDI AND Immediate
31 26 25 21 20 16 15 0
OGTPOIO rs rt immediate
Format:
ANDI i, rs, immediate MIPS |
Purpose:

Performs a bit-wise logical AND operation with a constant.

Description:

The 16-bit immediate is zero-extended and combined with the contents of general-purpose register rs in a bit-wise
logical AND operation. The result is stored in general-purpose register rt.

Operation:

32 T: GPR[rt] < 0"° Il (immediate and GPR{rs]+s.0)

64 T: GPR[r] < 0® Il (immediate and GPR{rs]+s.0)

Exceptions:

None

Preliminary User's Manual U16044EJ1VOUM 329

CHAPTER 17 CPU INSTRUCTION SET

BCOF Branch on Coprocessor 0 False
31 26 25 21 20 16 15 0
COPO BC BCF offset
010000 01000 00000
Format:
BCOF offset MIPS |
Purpose:

Tests the CPO condition code and executes a PC relative condition branch.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit

offset, shifted left two bits and sign-extended. If contents of CPQ's condition signal (CpCond), as sampled during

the previous instruction, is false, then the program branches to the target address with a delay of one instruction.

Because the condition line is sampled during the previous instruction, there must be at least one instruction

between this instruction and a coprocessor instruction that changes the condition line.

Remark The condition branch range of this instruction is £128 KB because an 18-bit signed offset is used. To
branch to an address outside this range, use the J or JR instruction.

Operation:
32 T - 1: condition < not COP0O
T: target « (offsetis)"* Il offset Il 0°
T + 1: if condition then
PC « PC + target
endif
64 T - 1: condition < not COP0O
T: target « (offsetis)™ Il offset Il 0°
T + 1: if condition then
PC « PC + target
endif
Exceptions:

Coprocessor unusable exception

330

Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

BCOFL Branch on Coprocessor 0 False Likely

31 26 25 21 20 1615 0

COPO BC BCFL
010000 01000 00010

offset

Format:
BCOFL offset MIPS 1l

Purpose:

Tests the CPO condition code and executes a PC relative condition branch. Executes a delay slot only when a
given branch condition is satisfied.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. If the contents of CP0's condition (CpCond) line, as sampled during
the previous instruction, is false, the target address is branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is discarded.

Remarks 1. The condition branch range of this instruction is £128 KB because an 18-bit signed offset is used.
To branch to an address outside this range, use the J or JR instruction.
2. Use this instruction only when it is expected with a high probability (98% or higher) that a given
branch condition is satisfied. If the branch condition is not satisfied or if the branch destination is
not known, use the BCOF instruction.

Operation:

32 T -1: condition < not COPO
T: target « (offsetis)'* Il offset Il 0°
T+ 1: if condition then
PC « PC + target
else

NullifyCurrentinstruction

endif
64 T-1: condition « not COPO
T: target « (offsetis)™ Il offset Il 0°

T+ 1: if condition then
PC « PC + target
else
NullifyCurrentinstruction

endif

Exceptions:

Coprocessor unusable exception

Preliminary User's Manual U16044EJ1VOUM 331

CHAPTER 17 CPU INSTRUCTION SET

BCOT Branch on Coprocessor 0 True
31 26 25 21 20 16 15 0
COPO BC BCT offset
010000 01000 00001
Format:
BCOT offset MIPS |
Purpose:

Tests the CPO condition code and executes a PC relative condition branch.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. If the contents of CPQ's condition signal (CpCond) that is sampled
during the previous instruction is true, then the program branches to the target address, with a delay of one

instruction.

Remark The condition branch range of this instruction is £128 KB because an 18-bit signed offset is used. To

branch to an address outside this range, use the J or JR instruction.

Operation:
32 T -1: condition « COPO
T: target « (offsetis)'* Il offset Il 0°
T + 1: if condition then
PC « PC + target
endif
64 T -1: condition « COPO
T: target « (offsetis)™ Il offset Il 0°
T + 1: if condition then
PC « PC + target
endif
Exceptions:

Coprocessor unusable exception

332

Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

Branch on Coprocessor 0 True Likely

31 26 25 21 20 16 15
COPO BC BCTL offset
010000 01000 00011
Format:
BCOTL offset
Purpose:

MIPS 1l

Tests the CPO condition code and executes a PC relative condition branch. Executes a delay slot only when a

given branch condition is satisfied.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. If the contents of CP0's condition (CpCond) line, as sampled during

the previous instruction, is true, the target address is branched to with a delay of one instruction.
If the conditional branch is not taken, the instruction in the branch delay slot is discarded.

Remarks 1. The condition branch range of this instruction is £128 KB because an 18-bit signed offset is used.

To branch to an address outside this range, use the J or JR instruction.

2. Use this instruction only when it is expected with a high probability (98% or higher) that a given

branch condition is satisfied.

not known, use the BCOT instruction.

Operation:

If the branch condition is not satisfied or if the branch destination is

32 T-1:

T+1:

64 T-1:

T+1:

condition « COPO
target « (offsehs)14 Il offset Il 07
if condition then
PC « PC + target
else
NullifyCurrentlnstruction
endif

condition « COPO
target « (offsehs)46 Il offset Il 07
if condition then
PC « PC + target
else
NullifyCurrentlnstruction
endif

Exceptions:

Coprocessor unusable exception

Preliminary User's Manual U16044EJ1VOUM

333

CHAPTER 17 CPU INSTRUCTION SET

BEQ Branch on Equal
31 26 25 21 20 16 15 0
0(?0E1((1)0 rs rt offset
Format:
BEQrs, rt, offset MIPS |
Purpose:

Compares general-purpose registers and executes a PC relative condition branch.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. The contents of general-purpose register rs and the contents of
general-purpose register rf are compared. If the two registers are equal, then the program branches to the target
address, with a delay of one instruction.

Remark The condition branch range of this instruction is £128 KB because an 18-bit signed offset is used. To
branch to an address outside this range, use the J or JR instruction.

Operation:
32 T: target « (offsetis)'* Il offset Il 0°
condition « (GPR([rs] = GPR]rt])
T+ 1: if condition then
PC « PC + target
endif
64 T: target « (offsetis)™ Il offset Il 0°
condition « (GPR([rs] = GPR]rt])
T+ 1: if condition then
PC « PC + target
endif
Exceptions:
None

334 Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

BEQL

31 26 25

21 20 16 15

Branch on Equal Likely

BEQL

010100 rs

rt offset

Format:
BEQL rs, rt, offset

Purpose:

MIPS 1l

Compares general-purpose registers and executes a PC relative condition branch. Executes a delay slot only
when a given branch condition is satisfied.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. The contents of general-purpose register rs and the contents of
general-purpose register rt are compared. [f the two registers are equal, the target address is branched to, with a

delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is discarded.

Remarks 1. The condition branch range of this instruction is +128 KB because an 18-bit signed offset is used.

To branch to an address outside this range, use the J or JR instruction.

2. Use this instruction only when it is expected with a high probability (98% or higher) that a given

branch condition is satisfied.

not known, use the BEQ instruction.

Operation:

If the branch condition is not satisfied or if the branch destination is

32 T:

else

endif

64 T:

else

endif

target « (offset1s)14 Il offset Il 0°
condition « (GPR([rs] = GPRrt])
T+ 1: if condition then

PC « PC + target

NullifyCurrentinstruction

target « (offset1s)46 Il offset Il 0°
condition « (GPR([rs] = GPRrt])
T+ 1: if condition then

PC « PC + target

NullifyCurrentinstruction

Exceptions:

None

Preliminary User's Manual U16044EJ1VOUM

335

CHAPTER 17 CPU INSTRUCTION SET

BG EZ Branch on Greater Than or Equal to Zero

31 26 25 21 20 16 15 0

REGIMM rs BGEZ offset
000001 00001

Format:
BGEZ rs, offset MIPS |

Purpose:

Tests a general-purpose register and executes a PC relative condition branch.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. If the contents of general-purpose register rs are zero or greater
when compared to zero, then the program branches to the target address, with a delay of one instruction.

Remark The condition branch range of this instruction is £128 KB because an 18-bit signed offset is used. To
branch to an address outside this range, use the J or JR instruction.

Operation:
32 T: target « (offsetis)"* Il offset Il 0°
condition « (GPR(rs]s1 = 0)
T + 1: if condition then
PC « PC + target
endif
64 T: target « (offsetis)™ Il offset Il 0°
condition « (GPR(rs]es = 0)
T + 1: if condition then
PC « PC + target
endif
Exceptions:
None

336 Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

BG EZAL Branch on Greater Than or Equal to Zero and Link
31 26 25 21 20 16 15 0
REGIMM rs BGEZAL offset
000001 10001
Format:

BGEZAL rs, offset

Purpose:

MIPS |

Tests a general-purpose register and executes a PC relative condition procedure call.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. Unconditionally, the address of the instruction after the delay slot is
stored in the link register, r31. If the contents of general-purpose register rs are zero or greater when compared
to zero, then the program branches to the target address, with a delay of one instruction.

General-purpose register r371 should not be specified as general-purpose register rs. If register r31 is specified,
restarting may be impossible due to the destruction of rs contents caused by storing a link address. Even such

instructions are executed, an exception does not result.

Remark The condition branch range of this instruction is £128 KB because an 18-bit signed offset is used. To
branch to an address outside this range, use the J or JR instruction.

Operation:

32 T:

T+1:

endif

64 T:

T+1:

endif

target « (offset1s)14 Il offset Il 0°
condition « (GPR(rs]s1 = 0)
GPR[31] < PC + 8
if condition then

PC « PC + target

target « (offsehs)46 Il offset Il 0%
condition « (GPR]rs]es = 0)
GPR[31] < PC +8
if condition then

PC « PC + target

Exceptions:

None

Preliminary User's Manual U16044EJ1VOUM

337

CHAPTER 17 CPU INSTRUCTION SET

BGEZALL Branch on Greater Than or Equal to Zero and Link Likely
(1/2)
31 26 25 21 20 16 15 0
REGIMM rs BGEZALL offset
000001 10011
Format:
BGEZALL rs, offset MIPS I
Purpose:

Tests a general-purpose register and executes a PC relative condition procedure call. Executes a delay slot only
when a given branch condition is satisfied.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. Unconditionally, the address of the instruction after the delay slot is
stored in the link register, r31. If the contents of general-purpose register rs are zero or greater when compared

to zero, then the program branches to the target address, with a delay of one instruction.
If the conditional branch is not taken, the instruction in the branch delay slot is discarded.
General-purpose register r31 should not be specified as general-purpose register rs. If register r31 is specified,

restarting may be impossible due to the destruction of rs contents caused by storing a link address. Even such

instructions are executed, an exception does not result.

Remarks 1.

338

The condition branch range of this instruction is £128 KB because an 18-bit signed offset is used.
To branch to an address outside this range, use the J or JR instruction.

Use this instruction only when it is expected with a high probability (98% or higher) that a given
branch condition is satisfied. If the branch condition is not satisfied or if the branch destination is
not known, use the BGEZAL instruction.

Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

BGEZALL

Operation:

Branch on Greater Than or Equal to Zero and Link Likely

2/2)

32

64

T+1:

T+1:

target « (offsehs)14 Il offset Il 0%
condition « (GPR]rs]s1 = 0)
GPR[31] < PC + 8
if condition then

PC « PC + target
else

NullifyCurrentinstruction

endif

target « (offset1s)46 Il offset Il 0°
condition « (GPR(rs]es = 0)
GPR[31] <+ PC + 8
if condition then

PC « PC + target
else

NullifyCurrentinstruction

endif

Exceptions:

None

Preliminary User's Manual U16044EJ1VOUM 339

CHAPTER 17 CPU INSTRUCTION SET

BGEZL

31

Branch on Greater Than or Equal to Zero Likely

26 25 21 20 16 15 0

REGIMM
000001

rs BGEZL offset
00011

Format:

BGEZL rs, offset MIPS Il

Purpose:

Tests a general-purpose register and executes a PC relative condition branch. Executes a delay slot only when a
given branch condition is satisfied.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. If the contents of general-purpose register rs are zero or greater
when compared to zero, then the program branches to the target address, with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is discarded.

Remarks 1. The condition branch range of this instruction is £128 KB because an 18-bit signed offset is used.
To branch to an address outside this range, use the J or JR instruction.

2. Use this instruction only when it is expected with a high probability (98% or higher) that a given
branch condition is satisfied. If the branch condition is not satisfied or if the branch destination is
not known, use the BGEZ instruction.

Operation:
32 T: target « (offsehs)14 Il offset Il 0%

T + 1: if condition then

64 T:

T + 1: if condition then

condition « (GPR(rs]s1 = 0)

PC « PC + target
else
NullifyCurrentlInstruction
endif

target « (offsehs)46 Il offset Il 0%
condition « (GPR(rs]es = 0)

PC « PC + target
else
NullifyCurrentlInstruction
endif

Exceptions:

None

340

Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

BGTZ Branch on Greater Than Zero
31 26 25 21 20 16 15 0
BGTZ rs 0 offset
000111 00000
Format:
BGTZ rs, offset MIPS |
Purpose:

Tests a general-purpose register and executes a PC relative condition branch.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. If the contents of general-purpose register rs are zero or greater
when compared to zero, then the program branches to the target address, with a delay of one instruction.

Remark The condition branch range of this instruction is £128 KB because an 18-bit signed offset is used. To
branch to an address outside this range, use the J or JR instruction.

Operation:
32 T: target « (offsehs)14 Il offset Il 0%
condition < (GPRirs]s1 = 0) and (GPRrs] = 0%)
T + 1: if condition then
PC « PC + target
endif
46 2
64 T: target « (offsetts) ~ Il offset Il O
condition < (GPRirs]ss = 0) and (GPRrs] = 0*)
T + 1: if condition then
PC « PC + target
endif
Exceptions:
None

Preliminary User's Manual U16044EJ1VOUM 341

CHAPTER 17 CPU INSTRUCTION SET

BGTZL Branch on Greater Than Zero Likely

31 26 25 21 20 16 15 0

BGTZL 0

010111 rs 00000 offset

Format:
BGTZL rs, offset MIPS Il

Purpose:

Tests a general-purpose register and executes a PC relative condition branch. Executes a delay slot only when a
given branch condition is satisfied.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. The contents of general-purpose register rs are compared to zero.
If the contents of general-purpose register rs are greater than zero, then the program branches to the target
address, with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is discarded.

Remarks 1. The condition branch range of this instruction is +128 KB because an 18-bit signed offset is used.
To branch to an address outside this range, use the J or JR instruction.
2. Use this instruction only when it is expected with a high probability (98% or higher) that a given
branch condition is satisfied. If the branch condition is not satisfied or if the branch destination is
not known, use the BGTZ instruction.

Operation:

32 T: target « (offsetis)'* Il offset Il 0°
condition < (GPRirs]s1 = 0) and (GPR[rs] = 0%)
T + 1: if condition then
PC « PC + target
else
NullifyCurrentinstruction
endif

64 T: target « (offsetis)™ Il offset Il 0°
condition < (GPRirs]ss = 0) and (GPRrs] = 0*)
T + 1: if condition then
PC « PC + target
else
NullifyCurrentinstruction
endif

Exceptions:

None

342 Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

BLEZ Branch on Less Than or Equal to Zero
31 26 25 21 20 16 15 0
BLEZ rs 0 offset
000110 00000
Format:
BLEZ rs, offset MIPS |
Purpose:

Tests a general-purpose register and executes a PC relative condition branch.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. The contents of general-purpose register rs are compared to zero.
If the contents of general-purpose register rs are zero or smaller than zero, then the program branches to the
target address, with a delay of one instruction.

Remark The condition branch range of this instruction is £128 KB because an 18-bit signed offset is used. To
branch to an address outside this range, use the J or JR instruction.

Operation:
32 T: target « (offsetis)'* Il offset Il 0°
condition « (GPR{rs]si = 1) or (GPR][rs] = 0%)
T + 1: if condition then
PC « PC + target
endif
64 T: target « (offsetis)™ Il offset Il 0°
condition « (GPR{rs]s = 1) or (GPR][rs] = 0%
T + 1: if condition then
PC « PC + target
endif
Exceptions:
None

Preliminary User's Manual U16044EJ1VOUM 343

CHAPTER 17 CPU INSTRUCTION SET

BLEZL Branch on Less Than or Equal to Zero Likely
31 26 25 21 20 16 15
BLEZL rs 0 offset
010110 00000
Format:

BLEZL rs, offset

Purpose:

MIPS 1l

Tests a general-purpose register and executes a PC relative condition branch. Executes a delay slot only when a
given branch condition is satisfied.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. The contents of general-purpose register rs is compared to zero. If
the contents of general-purpose register rs are zero or smaller than zero, then the program branches to the target
address, with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is discarded.

Remarks 1. The condition branch range of this instruction is £128 KB because an 18-bit signed offset is used.

To branch to an address outside this range, use the J or JR instruction.

2. Use this instruction only when it is expected with a high probability (98% or higher) that a given

branch condition is satisfied.

not known, use the BLEZ instruction.

Operation:

If the branch condition is not satisfied or if the branch destination is

else

endif

else

endif

32 T: target « (offsetis)'* Il offset Il 0°
condition < (GPRirs]s1 = 1) or (GPR][rs] = 0%)
T + 1: if condition then
PC « PC + target

NullifyCurrentinstruction

64 T: target « (offsetis)™ Il offset Il 0°
condition < (GPRirs]ss = 1) or (GPR][rs] = 0*)
T + 1: if condition then
PC « PC + target

NullifyCurrentinstruction

Exceptions:

None

344

Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

BLTZ Branch on Less Than Zero
31 26 25 21 20 16 15 0
REGIMM rs BLTZ offset
000001 00000
Format:
BLTZ rs, offset MIPS |
Purpose:

Tests a general-purpose register and executes a PC relative condition branch.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. If the contents of general-purpose register rs are smaller than zero,
then the program branches to the target address, with a delay of one instruction.

Remark The condition branch range of this instruction is £128 KB because an 18-bit signed offset is used. To
branch to an address outside this range, use the J or JR instruction.

Operation:
32 T: target « (offsehs)14 Il offset Il 0%
condition « (GPR][rs]s1 = 1)
T+ 1: if condition then
PC « PC + target
endif
64 T: target « (offsehs)46 Il offset Il 0%
condition « (GPR][rsles = 1)
T+ 1: if condition then
PC « PC + target
endif
Exceptions:
None

Preliminary User's Manual U16044EJ1VOUM 345

CHAPTER 17 CPU INSTRUCTION SET

BLTZAL Branch on Less Than Zero and Link

31 26 25 21 20 16 15 0

REGIMM rs BLTZAL offset
000001 10000

Format:
BLTZAL rs, offset MIPS |

Purpose:

Tests a general-purpose register and executes a PC relative condition procedure call.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. Unconditionally, the address of the instruction after the delay slot is
stored in the link register, r31. If the contents of general-purpose register rs are smaller than zero when
compared to zero, then the program branches to the target address, with a delay of one instruction.
General-purpose register r31 should not be specified as general-purpose register rs. If register r31 is specified,
restarting may be impossible due to the destruction of rs contents caused by storing a link address. Even such
instructions are executed, an exception does not result.

Remark The condition branch range of this instruction is £128 KB because an 18-bit signed offset is used. To
branch to an address outside this range, use the J or JR instruction.

Operation:

32 T: target « (offsehs)14 Il offset Il 0%
condition « (GPR][rs]s1 = 1)
GPR[31] <« PC + 8
T + 1: if condition then
PC « PC + target

endif

64 T: target « (offsetis)™ Il offset Il 0°
condition « (GPR]rs]es = 1)
GPR[31] < PC +8
T+ 1: if condition then
PC « PC + target

endif

Exceptions:

None

346 Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

BLTZALL Branch on Less Than Zero and Link Likely
(1/2)
31 26 25 21 20 16 15 0
REGIMM s BLTZALL offset
000001 10010
Format:
BLTZALL rs, offset MIPS I
Purpose:

Tests a general-purpose register and executes a PC relative condition procedure call. Executes a delay slot only
when a given branch condition is satisfied.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. Unconditionally, the address of the instruction after the delay slot is

stored in the link register, r31. If the contents of general-purpose register rs are smaller than zero when

compared to zero, then the program branches to the target address, with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is discarded.

General-purpose register r31 should not be specified as general-purpose register rs. If register r31 is specified,
restarting may be impossible due to the destruction of rs contents caused by storing a link address. Even such
instructions are executed, an exception does not result.

Remarks 1.

The condition branch range of this instruction is £128 KB because an 18-bit signed offset is used.
To branch to an address outside this range, use the J or JR instruction.

Use this instruction only when it is expected with a high probability (98% or higher) that a given
branch condition is satisfied. If the branch condition is not satisfied or if the branch destination is
not known, use the BLTZAL instruction.

Preliminary User's Manual U16044EJ1VOUM 347

CHAPTER 17 CPU INSTRUCTION SET

BLTZALL

Operation:

Branch on Less Than Zero and Link Likely

@2/2)

32

64

T+1:

T+1:

target « (offsehs)14 Il offset Il 0%
condition « (GPR([rs]s1 = 1)
GPR[31] < PC + 8
if condition then

PC « PC + target
else

NullifyCurrentinstruction

endif

target « (offset1s)46 Il offset Il 0°
condition « (GPR(rs]es = 1)
GPR[31] < PC +8
if condition then

PC « PC + target
else

NullifyCurrentinstruction

endif

Exceptions:

None

348

Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

Branch on Less Than Zero Likely

31 26 25 21 20 16 15 0
REGIMM s BLTZL offset
000001 00010
Format:

BLTZ rs, offset

Purpose:

MIPS 1l

Tests a general-purpose register and executes a PC relative condition procedure call. Executes a delay slot only
when a given branch condition is satisfied.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. If the contents of general-purpose register rs are smaller than zero
when compared to zero, then the program branches to the target address, with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is discarded.

Remarks 1. The condition branch range of this instruction is £128 KB because an 18-bit signed offset is used.
To branch to an address outside this range, use the J or JR instruction.
2. Use this instruction only when it is expected with a high probability (98% or higher) that a given

branch condition is satisfied.

not known, use the BLTZ instruction.

Operation:

If the branch condition is not satisfied or if the branch destination is

32 T:

T+1:

else

endif

64 T:

T+1:

else

endif

target « (offset1s)14 Il offset Il 0°
condition « (GPR(rs]s1 = 1)
if condition then

PC « PC + target

NullifyCurrentinstruction

target « (offset1s)46 Il offset Il 0°
condition « (GPR(rs]es = 1)
if condition then

PC « PC + target

NullifyCurrentinstruction

Exceptions:

None

Preliminary User's Manual U16044EJ1VOUM

349

CHAPTER 17 CPU INSTRUCTION SET

BNE Branch on Not Equal
31 26 25 21 20 16 15 0
05&%1 rs rt offset
Format:
BNE rs, r, offset MIPS |
Purpose:

Tests a general-purpose register and executes a PC relative condition branch.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. The contents of general-purpose register rs and the contents of
general-purpose register rt are compared. If the two registers are not equal, then the program branches to the
target address, with a delay of one instruction.

Remark The condition branch range of this instruction is £128 KB because an 18-bit signed offset is used. To
branch to an address outside this range, use the J or JR instruction.

Operation:
32 T: target « (offsetis)'* Il offset Il 0°
condition « (GPR(rs] # GPR[rt])
T+ 1: if condition then
PC « PC + target
endif
64 T: target « (offsetis)™ Il offset Il 0°
condition « (GPR(rs] # GPR[rt])
T+ 1: if condition then
PC « PC + target
endif
Exceptions:
None

350 Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

BNEL

31 26 25

21 20 16 15

Branch on Not Equal Likely

BNEL

010101 rs

rt offset

Format:
BNEL rs, rt, offset

Purpose:

MIPS 1l

Tests a general-purpose register and executes a PC relative condition branch. Executes a delay slot only when a
given branch condition is satisfied.

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. The contents of general-purpose register rs and the contents of
general-purpose register rt are compared. If the two registers are not equal, then the program branches to the
target address, with a delay of one instruction.
If the conditional branch is not taken, the instruction in the branch delay slot is discarded.

Remarks 1. The condition branch range of this instruction is +128 KB because an 18-bit signed offset is used.
To branch to an address outside this range, use the J or JR instruction.
2. Use this instruction only when it is expected with a high probability (98% or higher) that a given

branch condition is satisfied.

not known, use the BNE instruction.

Operation:

If the branch condition is not satisfied or if the branch destination is

32 T:

else

endif

64 T:

else

endif

target « (offset1s)14 Il offset Il 0°
condition « (GPR([rs] # GPR[rt])
T + 1: if condition then

PC « PC + target

NullifyCurrentinstruction

target « (offset1s)46 Il offset Il 0°
condition « (GPR([rs] # GPR[rt])
T + 1: if condition then

PC « PC + target

NullifyCurrentinstruction

Exceptions:

None

Preliminary User's Manual U16044EJ1VOUM

351

CHAPTER 17 CPU INSTRUCTION SET

BREAK Breakpoint

31 26 25 6 5 0

SPECIAL code BREAK
000000 001101

Format:
BREAK MIPS |

Purpose:

Generates a breakpoint exception.

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler.
The code field is available for use as software parameters, but is retrieved by the exception handler only by
loading the contents of the memory word containing the instruction.

Operation:

32,64 T: BreakpointException

Exceptions:

Breakpoint exception

352 Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

CACHE Cache Operation
(1/4)
31 26 25 21 20 16 15 0
CACHE
101111 base op offset
Format:
CACHE op, offset (base) MIPS 1li
Description:

The 16-bit offset is sign-extended and added to the contents of general-purpose register base to generate a
virtual address. The virtual address is translated to a physical address using the TLB, and the 5-bit sub-opcode
specifies a cache operation for that address.

If CPO is not usable (user or supervisor mode) and the CPO enable bit in the Status register is clear, a
coprocessor unusable exception is taken. The operation of this instruction on any operation/cache combination
not listed below, or on a secondary cache that is not incorporated in Vr5500, is undefined. The operation of this
instruction on uncached addresses is also undefined.

The Index operation uses part of the virtual address to specify a cache block. For a cache of 2
2LINEBITS

CACHEBITS

bytes with
bytes per tag, vAddrcacHesiTs.. LINEBITS specifies the block. The way of the cache is specified by using bit 0
of the virtual address.

In Hit, Fill, and Fetch_and_Lock operations, the way of the cache is specified by using the LRU bit of the cache
tag.

Index_Load_Tag also uses vAddruinesiTs..3 to select the doubleword for reading parity. If the CE bit of the Status
register is set, vAddrunesits.3 is used for Hit_Write_Back_Invalidate, Index_Write_Back_Invalidate, and Fill
operations to select the doubleword that includes the modified parity. This operation is unconditionally executed.
The Hit operation accesses the specified cache as normal data references, and performs the specified operation
if the cache block contains valid data with the specified physical address (a hit). If the cache block is invalid or
contains a different address (a miss), no operation is performed.

Preliminary User's Manual U16044EJ1VOUM 353

CHAPTER 17 CPU INSTRUCTION SET

CACHE

Cache Operation

(2/4)

Write back from a cache goes to main memory. The main memory address to be written is specified by the cache

tag and not the physical address translated using TLB.

TLB refill and TLB invalid exceptions can occur on any operation. For Index operations™™ for addresses in the

unmapped areas, unmapped addresses may be used to avoid TLB exceptions. Index operations never cause a

TLB modified exception.

Note Physical addresses here are used to index the cache, and they do not need to match the cache tag.

Bits 17 and 16 of the instruction code specify the cache for which the operation is to be performed as follows.

op1.0 Name Cache
0 | Instruction cache
1 D Data cache
2 - Reserved
3 - Reserved

Bits 20 to 18 of this instruction specify the contents of cache operation. Details are provided from the next page.

354 Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

CACHE

Cache Operation

(3/4)

0p4..2

Cache

Name

Operation

Index_Invalidate

Set the cache state of the cache block to Invalid.

Index_Write_
Back_Invalidate

Examine the cache state of the data cache block at the index specified by the
virtual address. If the state is Dirty and not Invalid, then write back the block to
memory. The address to write is taken from the cache tag. Set cache state of
cache block to Invalid.

Index_Load_Tag

Read the tag for the cache block at the specified index and place it into the TagLo
CPO registers. At this time, a parity error is ignored. In addition, data is loaded
from the doubleword for which the data parity was specified to the Parity Error
register.

Index_Store_
Tag

Write the tag for the cache block at the specified index from the TagLo CPO
register.

Create_Dirty

This operation is used to avoid loading data needlessly from memory when writing
new contents to an entire cache block. If the cache block does not contain the
specified address, and the block is dirty, write it back to the memory. In all cases,
set the cache state to Dirty. The specified physical address is set to the cache
block tag in all cases and the cache status is set to Dirty.

Hit_Invalidate

If the cache block contains the specified address, mark the cache block Invalid.

Fill

Fill the instruction cache block from memory. If the CE bit of the Status register is
set, the contents of the ECC register is used instead of the computed parity bits for
addressed doubleword when written to the instruction cache.

Hit_Write_Back
Invalidate

If the cache block contains the specified address, write back the data if it is Dirty,
and mark the cache block Invalid.

Hit_Write_Back

If the cache block includes the specified address and if the cache status is Dirty,
data is written back to the main memory and the cache status of that cache block is
set to Clean.

Fetch_and_Lock

If the specified address is not included in the cache block, that block is filled with
data from the main memory. In all cases, the specified physical address is set to
the cache block tag and the cache status is locked.

Fetch_and_Lock

If the specified address is not included in the cache block and if that block is Dirty,
the data is written back and the block is filled with data from the main memory. In
all cases, the specified physical address is set to the cache block tag and the
cache status is locked.

Preliminary User's Manual U16044EJ1VOUM

355

CHAPTER 17 CPU INSTRUCTION SET

CACHE Cache Operation

(4/4)
Operation:

32,64 T: vAddr < ((offsetis)* Il offsetss.o)+GPR[base]
(pAddr,uncached) < AddressTranslation (vAddr, DATA)
CacheOp (op, vAddr, pAddr)

Exceptions:

Coprocessor unusable exception
TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Cache error exception

356 Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

CLO Count Leading Ones in Word
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 rs it d 0 CLO
011100 00000 100001
Format:
CLO1d, rs VR5500
Purpose:

Counts the number of 1s in 32-bit data.

Description:

This instruction scans the 32-bit contents of general-purpose register rs from the most significant bit toward the
least significant bit, and stores the number of 1s in general-purpose register rd. If the value of register rsis all 1,
32 is stored in rd.

In the 64-bit mode, the operand must be a sign-extended 32-bit value; otherwise the result will be undefined.
Specify the same register as general-purpose register rd for general-purpose register rt.

Operation:

32,64 T: temp « 32
foriin 31..0
if GPR]rs]i = 0 then
temp « 31 —i
break
endif
endfor

GPRrd] « (temps1)® Il temp

Exceptions:

None

Preliminary User's Manual U16044EJ1VOUM 357

CHAPTER 17 CPU INSTRUCTION SET

CLZ Count Leading Zeros in Word
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 rs it rd 0 CLz
011100 00000 100000
Format:
CLZ rd, rs VR5500
Purpose:

Counts the number of Os in 32-bit data.

Description:

This instruction scans the 32-bit contents of general-purpose register rs from the most significant bit toward the
least significant bit, and stores the number of Os in general-purpose register rd. If the value of register rs is all 0,
32 is stored in rd.

In the 64-bit mode, the operand must be a sign-extended 32-bit value; otherwise the result will be undefined.
Specify the same register as general-purpose register rd for general-purpose register rt.

Operation:

32,64 T: temp « 32
foriin 31..0
if GPR]rs]i = 1 then
temp « 31 —i
break
endif
endfor

GPRrd] « (temps1)® Il temp

Exceptions:

None

358 Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU

INSTRUCTION SET

COPz

Coprocessor z Operation

MIPS |

31 26 25 24 0
COPz co
0100XXNote 1 cofun
Format:
COPz cofun
Purpose:

Executes a coprocessor instruction.

Description:

This instruction executes a coprocessor instruction.
coprocessor register and can modify the status of the coprocessor. However, the status of the processor, cache,
and main memory remains unchanged. For details of the coprocessor instructions, refer to CHAPTER 18 FPU
INSTRUCTION SET.

Operation:

This instruction can specify and reference an internal

32,64 T:

CoprocessorOperation (z, cofun)

Exceptions:

Coprocessor unusable exception

Floating-point operation exception (CP1 only)

Note See the opcode table below, or 17.4 CPU Instruction Opcode Bit Encoding.

Opcode Table:

31 30 29 28 27 26 25 0
COPO | O 1 0 0 0 0 1

31 30 29 28 27 26 25 0
COP1 0 1 0 0 0 1 1

31 30 29 28 27 26 25 0
COP2 0 1 0 0 1 0 1

~ S~
Opcode Coprocessor sub-opcode

Coprocessor No.

Remark Coprocessor 2 is reserved in the VR5500.

Preliminary User's Manual U16044EJ1VOUM 359

CHAPTER 17 CPU INSTRUCTION SET

Doubleword Add

31 26 25 21 20 16 15 11 10 0
SPECIAL s " d 0 DADD
000000 00000 101100
Format:

DADD rd, rs, rt

Purpose:

Adds 64-bit integers. A trap is performed if an overflow occurs.

Description:

MIPS 1l

The contents of general-purpose register rs and the contents of general-purpose register rt are added and the
result is stored in general-purpose register rd. An integer overflow exception occurs if the carries out of bits 62
and 63 differ (2's complement overflow). The destination register rd is not modified when an integer overflow

exception occurs.

This operation is defined in the 64-bit mode and 32-bit kernel mode. A reserved instruction exception occurs if
this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T:

GPR[rd] < GPR]rs] + GPRIr]

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Integer overflow exception
Reserved instruction exception (32-bit user/supervisor mode)

360

Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

DADDl Doubleword Add Immediate

31 26 25 21 20 16 15 0

DADDI
011000

rs rt immediate

Format:
DADDI t, rs, immediate MIPS i

Purpose:

Adds a 64-bit integer to a constant. A trap is performed if an overflow occurs.

Description:

The 16-bit immediate is sign-extended and added to the contents of general-purpose register rs and the result is
stored in general-purpose register rt. An integer overflow exception occurs if carries out of bits 62 and 63 differ
(2’s complement overflow). The destination register rtis not modified when an integer overflow exception occurs.
This operation is defined in the 64-bit mode and 32-bit kernel mode. A reserved instruction exception occurs if
this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: GPRIr] < GPR][rs] + (immediateis)” Il immediatess.o

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Integer overflow exception
Reserved instruction exception (32-bit user/supervisor mode)

Preliminary User's Manual U16044EJ1VOUM 361

CHAPTER 17 CPU INSTRUCTION SET

DADDIU Doubleword Add Immediate Unsigned

31 26 25 21 20 16 15 0

DADDIU
011001

rs rt immediate

Format:
DADDIU tt, rs, immediate MIPS i

Purpose:

Adds a 64-bit integer to a constant.

Description:

The 16-bit immediate is sign-extended and added to the contents of general-purpose register rs and the result is
stored in general-purpose register rt.

This operation is defined in the 64-bit mode and 32-bit kernel mode. A reserved instruction exception occurs if
this instruction is executed in the 32-bit user mode or supervisor mode.

The only difference between this instruction and the DADDI instruction is that DADDIU never causes an integer
overflow exception.

Operation:

64 T GPRIrt] « GPR]rs] + (immediates)*® Il immediatess.o

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)

362 Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

DADDU Doubleword Add Unsigned
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL H o 0 DADDU
000000 rs 00000 101101
Format:
DADDU rd, rs, rt MIPS lli
Purpose:

Adds 64-bit integers.

Description:

The contents of general-purpose register rs and the contents of general-purpose register rt are added and the
result is stored in general-purpose register rd.

This operation is defined in the 64-bit mode and 32-bit kernel mode. A reserved instruction exception occurs if
this instruction is executed in the 32-bit user mode or supervisor mode.

The only difference between this instruction and the DADD instruction is that DADDU never causes an integer
overflow exception.

Operation:

64 T: GPRrd] « GPR[rs] + GPR[r]

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)

Preliminary User's Manual U16044EJ1VOUM 363

CHAPTER 17 CPU INSTRUCTION SET

DCLO Count Leading Ones in Doubleword
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 rs it rd 0 DCLO
011100 00000 100101
Format:
DCLO rd, rs VR5500
Purpose:

Counts the number of 1s in 64-bit data.

Description:

This instruction scans the 64-bit contents of general-purpose register rs from the most significant bit toward the
least significant bit, and stores the number of 1s in general-purpose register rd. If the value of register rsis all 1,
64 is stored in rd.

Specify the same register as general-purpose register rd for general-purpose register rt.

This operation is defined in the 64-bit mode and 32-bit kernel mode. A reserved instruction exception occurs if
this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: temp « 64
foriin 63..0
if GPR(rs]i = 0 then
temp « 63 —i
break
endif
endfor
GPR{[rd] « (temps1)* |l temp

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)

364 Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

DCLZ Count Leading Zeros in Doubleword
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 rs rt rd 0 DCLz
011100 00000 100100
Format:
DCLZ rd, rs VR5500
Purpose:

Counts the number of Os in 64-bit data.

Description:

This instruction scans the 64-bit contents of general-purpose register rs from the most significant bit toward the
least significant bit, and stores the number of Os in general-purpose register rd. If the value of register rs is all 0,
64 is stored in rd.

Specify the same register as general-purpose register rd for general-purpose register rt.

This operation is defined in the 64-bit mode and 32-bit kernel mode. A reserved instruction exception occurs if
this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: temp « 64
foriin 63..0
if GPR(rs]i= 1 then
temp « 63 —i
break
endif
endfor
GPR{[rd] « (temps1)* Il temp

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)

Preliminary User's Manual U16044EJ1VOUM 365

CHAPTER 17 CPU INSTRUCTION SET

DDIV

31 26 25 21 20 1615

Doubleword Divide

SPECIAL
000000

0

rs n 0000000000

DDIV
011110

Format:
DDIV rs, rt

Purpose:

Divides a 64-bit signed integer.

Description:

MIPS 1l

The contents of general-purpose register rs are divided by the contents of general-purpose register rt, treating
both operands as signed values. No integer overflow exception occurs under any circumstances, and the result
of this operation is undefined when the divisor is zero.
This instruction is typically followed by additional instructions to check for a zero divisor and for overflow.

When the operation completes, the quotient word of the double result is loaded to special register LO, and the
remainder word of the double result is loaded to special register HI.
If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are undefined. To
obtain the correct result, insert two or more instructions between the MFHI or MFLO instruction and the DDIV

instruction.

This operation is defined in the 64-bit mode and 32-bit kernel mode. A reserved instruction exception occurs if
this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T-2: LO « undefined

HI « undefined
LO « undefined
HI « undefined
LO « GPRrs] div GPR]rt]
HI « GPRIrs] mod GPRIrt]

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)

366

Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

DDIVU Doubleword Divide Unsigned
31 26 25 21 20 16 15 6 5 0
SPECIAL rs it 0 DDIVU
000000 0000000000 011111
Format:
DDIVU rs, 1t MIPS 11l
Purpose:

Divides a 64-bit unsigned integer.

Description:

The contents of general-purpose register rs are divided by the contents of general-purpose register rt, treating
both operands as unsigned values. No integer overflow exception occurs under any circumstances, and the
result of this operation is undefined when the divisor is zero.

This instruction may be followed by additional instructions to check for a zero divisor, inserted by the programmer.
When the operation completes, the quotient word of the double result is loaded to special register LO, and the
remainder word of the double result is loaded to special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are undefined. To
obtain the correct result, insert two or more instructions between the MFHI or MFLO instruction and the DDIVU
instruction.

This operation is defined in the 64-bit mode and 32-bit kernel mode. A reserved instruction exception occurs if
this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T -2: LO « undefined
HI « undefined
T-1: LO « undefined
HI « undefined
T: LO « (0 Il GPR(rs]) div (0 Il GPRIrt])
HI « (0 Il GPR(rs]) mod (0 Il GPRrt])

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)

Preliminary User's Manual U16044EJ1VOUM 367

CHAPTER 17 CPU INSTRUCTION SET

DlV Divide
31 26 25 21 20 16 15 6 5 0
SPECIAL rs it 0 DIV
000000 0000000000 011010
Format:
DIV rs, rt MIPS |
Purpose:

Divides a 32-bit signed integer.

Description:

The contents of general-purpose register rs are divided by the contents of general-purpose register rt, treating
both operands as signed values. No integer overflow exception occurs under any circumstances, and the result
of this operation is undefined when the divisor is zero.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

This instruction is typically followed by additional instructions to check for a zero divisor and for overflow.

When the operation completes, the quotient word of the double result is loaded to special register LO, and the
remainder word of the double result is loaded to special register Hi.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are undefined. To
obtain the correct result, insert two or more instructions between the MFHI or MFLO instruction and the DDIV
instruction.

Operation:

32 T -2: LO « undefined
HI « undefined
T-1: LO « undefined
HI « undefined
T: LO « GPR(rs] div GPR[r]
HI « GPR[rs] mod GPRIri]

64 T -2: LO « undefined
HI « undefined
T-1: LO « undefined
HI « undefined
T: q < GPRrs]s1.0 div GPR[rt]s1.0
r < GPR]rs]s1.0 mod GPR]rt]s1.0
LO « (gen)Z 1l gat.o

HI « (r:«n)32 Il 'rs1.0

Exceptions:

None

368 Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

Divide Unsigned

MIPS |

31 26 25 21 20 16 15 0
SPECIAL s ot 0 DIVU
000000 0000000000 011011

Format:

DIVU rs, rt

Purpose:

Divides a 32-bit unsigned integer.

Description:

The contents of general-purpose register rs are divided by the contents of general-purpose register rt, treating

both operands as unsigned values.

No integer overflow exception occurs under any circumstances, and the

result of this operation is undefined when the divisor is zero. In 64-bit mode, the operands must be valid sign-
extended, 32-bit values.

This instruction is typically followed by additional instructions to check for a zero divisor.

When the operation completes, the quotient word of the double result is loaded to special register LO, and the

remainder word of the double result is loaded to special register Hi.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are undefined. To
obtain the correct result, insert two or more instructions between the MFHI or MFLO instruction and the DDIV

instruction.

Operation:

32 T-2:

64 T-2:

LO « undefined
HI « undefined
LO « undefined
HI « undefined
LO « (0 Il GPRrs]) div (0 Il GPRIrt])
HI « (0 Il GPRIrs]) mod (0 Il GPR(rt])

LO « undefined

HI « undefined

LO « undefined

HI « undefined

g < (0 Il GPRIrs]st.0) div (0 Il GPR]rt]s1.0)
r < (0 Il GPR]rs]s1.0) mod (0 Il GPRrt]s1..0)
LO « (gen)Z Il gat.o

HI « (r:«n)32 Il 'rs1.0

Exceptions:

None

Preliminary User's Manual U16044EJ1VOUM

369

CHAPTER 17 CPU INSTRUCTION SET

DMFCO Doubleword Move from System Control Coprocessor
31 26 25 21 20 16 15 11 10 0
COPO DMF it d 0
010000 00001 00000000000
Format:
DMFCO rt, rd MIPS 11l
Description:

The contents of coprocessor register rd of the CPO are loaded to general-purpose register rt.

This operation is defined in the 64-bit mode and 32-bit kernel mode. A reserved instruction exception occurs if
this instruction is executed in the 32-bit user mode or supervisor mode. The contents of the coprocessor register
rd source are written to the 64-bit general-purpose register rt destination. The operation of DMFCO on a 32-bit
coprocessor 0 register is undefined.

Operation:

64 T: data < CPRI[0, rd]
T+1: GPR[r] « data

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Coprocessor unusable exception (64-/32-bit user/supervisor mode if CPO is disabled)
Reserved instruction exception (32-bit user/supervisor mode)

370 Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

MIPS 1l

DMTCO Doubleword Move to System Control Coprocessor
31 26 25 21 20 16 15 11 10
COPO DMT it d 0
010000 00101 00000000000
Format:
DMTCO rt, rd
Description:

The contents of general-purpose register rt are loaded to coprocessor register rd of the CPO.

This operation is defined in the 64-bit mode and 32-bit kernel mode. A reserved instruction exception occurs if
this instruction is executed in the 32-bit user mode or supervisor mode.
The contents of the general-purpose register rd source are written to the 64-bit coprocessor register rt destination.

The operation of DMTCO on a 32-bit coprocessor 0 register is undefined.

Because the state of the virtual address translation system may be altered by this instruction, the operation of
load instructions, store instructions, and TLB operations immediately prior to and after this instruction are

undefined.

Operation:

64 T:
T+ 1: CPRIO, rd] « data

data < GPR[r]

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Coprocessor unusable exception (64-/32-bit user/supervisor mode if CPO is disabled)
Reserved instruction exception (32-bit user/supervisor mode)

Preliminary User's Manual U16044EJ1VOUM

371

CHAPTER 17 CPU INSTRUCTION SET

DMULT

31 2625 21 20 1615

Doubleword Multiply

SPECIAL
000000

0

rs rt 0000000000

DMULT
011100

Format:
DMULT rs, rt

Purpose:

Multiply 64-bit signed integers.

Description:

MIPS 1l

The contents of general-purpose registers rs and rt are multiplied, treating both operands as signed values. No
integer overflow exception occurs under any circumstances.
When the operation completes, the lower word of the double result is loaded to special register LO, and the higher
word of the double result is loaded to special register HI.
If either of the two preceding instructions is MFHI or MFLO, the results of these instructions are undefined. To
obtain the correct result, insert two or more instructions between the MFHI or MFLO instruction and the DMULT

instruction.

This operation is defined in the 64-bit mode and 32-bit kernel mode. A reserved instruction exception occurs if
this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T-2: LO « undefined

HI « undefined

LO « undefined

HI « undefined

t « GPR]rs] * GPR]rt]
LO « te3.0

HI « t127.64

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)

372

Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

DMULTU Doubleword Multiply Unsigned
31 26 25 21 20 16 15 6 5 0
SPECIAL rs it 0 DMULTU
000000 0000000000 011101
Format:
DMULTU rs, rt MIPS 11l
Purpose:

Multiply 64-bit unsigned integers.

Description:

The contents of general-purpose registers rs and rt are multiplied, treating both operands as unsigned values. No
integer overflow exception occurs under any circumstances.

When the operation completes, the lower word of the double result is loaded to special register LO, and the higher
word of the double result is loaded to special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these instructions are undefined. To
obtain the correct result, insert two or more instructions between the MFHI or MFLO instruction and the DMULTU
instruction.

This operation is defined in the 64-bit mode and 32-bit kernel mode. A reserved instruction exception occurs if
this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T -2: LO « undefined
HI « undefined
T-1: LO « undefined
HI « undefined
T: t « (0 1l GPRrs]) * (0 Il GPRIrt])
LO « te3.0

HI « t127.64

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)

Preliminary User's Manual U16044EJ1VOUM 373

CHAPTER 17 CPU INSTRUCTION SET

DROR Doubleword Rotate Right
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 1 " g DROR
000000 00001 : sa 111010
Format:
DROR rd, i, sa VR5500
Purpose:

Arithmetically shifts a doubleword to the right by the specific number of bits (0 to 31 bits).

Description:

This instruction shifts the contents of general-purpose register rt to the right by the number of bits specified by sa.
The lower bit that is shifted out is inserted in the higher bit. The result is stored in general-purpose register rd.
This operation is defined in the 64-bit mode and 32-bit kernel mode. A reserved instruction exception occurs if
this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: GPRIrd] « GPR[rt]sa-1..0 Il GPR[rt]63.sa

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)

374 Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

DROR32 Doubleword Rotate Right + 32
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 1 " g DROR32
000000 00001 : sa 111110
Format:
DROR32 rd, rt, sa VR5500
Purpose:

Arithmetically shifts a doubleword to the right by the specific number of bits (32 to 63 bits).

Description:

This instruction shifts the contents of general-purpose register rt 32 + sa bits to the right. The lower bit that is
shifted out is inserted in the higher bit. The result is stored in general-purpose register rd.

This operation is defined in the 64-bit mode and 32-bit kernel mode. A reserved instruction exception occurs if
this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

32,64 T: s« sa+ 32
GPR[rd] « GPR[rt]s-1..0 Il GPR]rt]e3..s

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)

Preliminary User's Manual U16044EJ1VOUM 375

CHAPTER 17 CPU INSTRUCTION SET

DRORV Doubleword Rotate Right Variable
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL " g 1 DRORV
000000 rs : 00001 010110
Format:
DRORV rd, rt, rs VR5500
Purpose:

Arithmetically shifts a doubleword to the right by the specified number of bits.

Description:

This instruction shifts the contents of general-purpose register rt to the right by the number of bits specified by the
lower 5 bits of general-purpose register rs. The lower bit that is shifted out is inserted in the higher bit. The result
is stored in general-purpose register rd.

This operation is defined in the 64-bit mode and 32-bit kernel mode. A reserved instruction exception occurs if
this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

32,64 T: s « GPRJrsls..0
GPR[rd] « GPRrt]s-1..0 Il GPR]rt]e3..s

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)

376 Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

DSLL Doubleword Shift Left Logical
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 it d sa DSLL
000000 00000 111000
Format:
DSLL rd, rt, sa MIPS 11l
Purpose:

Shifts a doubleword to the left by the specific number of bits (0 to 31 bits).

Description:

The contents of general-purpose register rt are shifted left by the number of bits specified by sa, inserting zeros
into the lower bits. The result is stored in general-purpose register rd.

This operation is defined in the 64-bit mode and 32-bit kernel mode. A reserved instruction exception occurs if
this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: s« 0llsa
GPR[rd] « GPR[rt] (63-s).0 Il 0°

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)

Preliminary User's Manual U16044EJ1VOUM 377

CHAPTER 17 CPU INSTRUCTION SET

DSLL32 Doubleword Shift Left Logical + 32
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 it d sa DSLL32
000000 00000 111100
Format:
DSLL32 rd, rt, sa MIPS Il
Purpose:

Shifts a doubleword to the left by the specific number of bits (32 to 63 bits).

Description:

The contents of general-purpose register rtf are shifted left by 32 + sa bits, inserting zeros into the lower bits. The
result is stored in general-purpose register rd.

This operation is defined in the 64-bit mode and 32-bit kernel mode. A reserved instruction exception occurs if
this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:
64 T: s« 1llsa
GPR{rd] « GPR[r] es-5).0 Il 0°
Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)

378 Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

DSLLV Doubleword Shift Left Logical Variable
31 26 25 21 20 16 15 11 10
SPECIAL rs it d 0 DSLLV
000000 00000 010100
Format:

DSLLV rd, rt, rs

Purpose:

Shifts a doubleword to the left by the specified number of bits.

Description:

MIPS 1l

The contents of general-purpose register rt are shifted left by the number of bits specified by the lower 6 bits

contained in general-purpose register rs, inserting zeros into the lower bits.

purpose register rd.
This operation is defined in the 64-bit mode and 32-bit kernel mode. A reserved instruction exception occurs if
this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

The result is stored in general-

64 T:

s « GPRrs]s.o
GPR[rd] « GPRIr] es-s).0 Il 0°

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)

Preliminary User's Manual U16044EJ1VOUM

379

CHAPTER 17 CPU INSTRUCTION SET

DSRA Doubleword Shift Right Arithmetic
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 it d sa DSRA
000000 00000 111011
Format:
DSRA rd, rt, sa MIPS 11l
Purpose:

Arithmetically shifts a doubleword to the right by the specific number of bits (0 to 31 bits).

Description:

The contents of general-purpose register rt are shifted right by sa bits, sign-extending the higher bits. The result
is stored in general-purpose register rd.

This operation is defined in the 64-bit mode and 32-bit kernel mode. A reserved instruction exception occurs if
this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: s« 0llsa
GPR[rd] « (GPR][rt]es)’ Il GPR[t]es.s

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)

380 Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

DSRA32 Doubleword Shift Right Arithmetic + 32
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 it d sa DSRA32
000000 00000 111111
Format:
DSRA32 rd, 1, sa MIPS Il
Purpose:

Arithmetically shifts a doubleword to the right by the specific number of bits (32 to 63 bits).

Description:

The contents of general-purpose register rt are shifted right by 32 + sa bits, sign-extending the higher bits. The
result is stored in general-purpose register rd.

This operation is defined in the 64-bit mode and 32-bit kernel mode. A reserved instruction exception occurs if
this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: s« 1llsa
GPR[rd] « (GPR][rt]es)’ Il GPR[t]es.s

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)

Preliminary User's Manual U16044EJ1VOUM 381

CHAPTER 17 CPU INSTRUCTION SET

DSRAV Doubleword Shift Right Arithmetic Variable
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs it d 0 DSRAV
000000 00000 010111
Format:
DSRAV rd, i, rs MIPS 11l
Purpose:

Arithmetically shifts a doubleword to the right by the specified number of bits.

Description:

The contents of general-purpose register rt are shifted right by the number of bits specified by the lower 6 bits of
general-purpose register rs, sign-extending the higher bits. The result is stored in general-purpose register rd.
This operation is defined in the 64-bit mode and 32-bit kernel mode. A reserved instruction exception occurs if
this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: s « GPR]rs]s.0
GPRIrd] « (GPRIrt]es)° Il GPR[rt]es.s

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)

382 Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

DSRL Doubleword Shift Right Logical
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 it d sa DSRL
000000 00000 111010
Format:
DSRL rd, rt, sa MIPS 11l
Purpose:

Logically shifts a doubleword to the right by the specific number of bits (0 to 31 bits).

Description:

The contents of general-purpose register rt are shifted right by sa bits, inserting zeros into the higher bits. The
result is stored in general-purpose register rd.

This operation is defined in the 64-bit mode and 32-bit kernel mode. A reserved instruction exception occurs if
this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: s« 0llsa
GPR][rd] « 0° Il GPR{rt]es.s

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)

Preliminary User's Manual U16044EJ1VOUM 383

CHAPTER 17 CPU INSTRUCTION SET

DSRL32 Doubleword Shift Right Logical + 32
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 it d sa DSRL32
000000 00000 111110
Format:
DSRL32 rd, t, sa MIPS 11l
Purpose:

Logically shifts a doubleword to the right by the specific number of bits (32 to 63 bits).

Description:

The contents of general-purpose register rt are shifted right by 32 + sa bits, inserting zeros into the higher bits.
The result is stored in general-purpose register rd.

This operation is defined in the 64-bit mode and 32-bit kernel mode. A reserved instruction exception occurs if
this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: s« 1llsa
GPR][rd] « 0° Il GPR{rt]es.s

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)

384 Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

DSRLV Doubleword Shift Right Logical Variable
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs it d 0 DSRLV
000000 00000 010110
Format:
DSRLV rd, rt, rs MIPS 11l
Purpose:

Logically shifts a doubleword to the right by the specified number of bits.

Description:

The contents of general-purpose register rt are shifted right by the number of bits specified by the lower 6 bits of
general-purpose register rs, inserting zeros into the higher bits. The result is stored in general-purpose register
rd.

This operation is defined in the 64-bit mode and 32-bit kernel mode. A reserved instruction exception occurs if
this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: s « GPRrs]s.o
GPR][rd] « 0° Il GPR{rt]es.s

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Reserved instruction exception (32-bit user/supervisor mode)

Preliminary User's Manual U16044EJ1VOUM 385

CHAPTER 17 CPU INSTRUCTION SET

DSUB Doubleword Subtract
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs it d 0 DSuUB
000000 00000 101110
Format:
DSUB rd, rs, rt MIPS Il
Purpose:

Subtract a 64-bit integer. A trap is performed if an overflow occurs.

Description:

The contents of general-purpose register rt are subtracted from the contents of general-purpose register rs and
the result is stored in general-purpose register rd.

An integer overflow exception takes place if the carries out of bits 62 and 63 differ (2's complement overflow).
The destination register rd is not modified when an integer overflow exception occurs.

This operation is defined in the 64-bit mode and 32-bit kernel mode. A reserved instruction exception occurs if
this instruction is executed in the 32-bit user mode or supervisor mode.

Operation:

64 T: GPRrd] « GPR[rs] - GPRIr]

Remark The operation is the same in the 32-bit kernel mode.

Exceptions:

Integer overflow exception
Reserved instruction exception (32-bit user/supervisor mode)

386 Preliminary User's Manual U16044EJ1VOUM

CHAPTER 17 CPU INSTRUCTION SET

DSUBU Doubleword Subtract Unsigned
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs it d 0 DSUBU
000000 00000 101111
Format:
DSUBU rd, rs, rt MIPS 11l
Purpose:

Subtract a 64-bit integer.

Description:

The contents of general-purpose register rt are subtracted from the contents of general-purpose register rs and
the result is stored in gene