Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp. The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself. Note: Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices. Renesas Technology Corp. Customer Support Dept. April 1, 2003 ### 1 Chip Digital Echo with Microphone mixing Amplifier ### **DESCRIPTION** The M65855FP is a CMOS IC built-in Digital Echo function with microphone mixing circuits for KARAOKE equipment packed in a single chip. It is suitable for KARAOKE equipments such as Video CD Player, Mini stereo, CD Radio cassette, TV or VCR. ### FEATURES) - Internal Input/Output low pass filter, A/D, D/A converters, microphone mixing amplifier, memory achieve a digital echo system with a single chip. - High performance digital echo circuit thanks to 20Kbit memory - Thanks to the improvement A/D,D/A converters,decrease the external output - Internal echo mute circuit and echo volume achieve a mixing level control - Built-in current control oscillation circuit for generating clocks - Delay time =164msec (Min.15ms to max. 200 ms can be set) - Small 16-Pin Flat package (16P2N) - · Built-in automatic reset circuit with power turned on - 5V single power supply #### RECOMMENDED OPERATING CONDITIONS Supply voltage range Vcc=3.5~5.5V Rated supply voltage Vcc=5V #### PIN CONFIGURATION ### PIN DESCRIPTION | Pin No. | Symbol | Name | I/O | Function | |---------|----------|--------------------------|-----|--| | 1 | GND | GND | | | | 2 | ECHOVOL | Echo Volume control | ı | Echo level control with external DC voltage (from 0 to -10,-∞ 8 steps) | | 3 | REF | Reference | - | To connect 1/2 Vcc output and filter capacitor | | 4 | OP2 IN | Opeamp 2 input | I | Uses external C to form an D/A conversion | | 5 | OP2 OUT | Opeamp 2 output | 0 | integrator | | 6 | LPF2 IN | Low pass filter 2 input | I | Uses external CR to form a low pass | | 7 | LPF2 OUT | Low pass filter 2 output | 0 | filter at the input side | | 8 | MIC OUT | Microphone mixing output | 0 | Mixing output echo output and microphone | | 9 | MIC IN | Microphone input | I | Microphone input | | 10 | LPF1 IN | Low pass filter 1 input | Ī | Uses external CR to form a low pass | | 11 | LPF1 OUT | Low pass filter 1 output | 0 | filter at the input side | | 12 | OP1 OUT | Opeamp 1 output | 0 | Uses external C to form an A/D conversion | | 13 | OP1 IN | Opeamp 1 input | ı | integrator | | 14 | Vcc | Power Supply | - | Applies a voltage of 3.5V to 5.5V(Rated5V) | | 15 | ECHOMUTE | Echo mute control | I | Echo mute control and clock stop control with external DC voltage | | 16 | CLOCK | Clock control | I | Controls a built-in clock generation circuit with external R | ### ABSOLUTE MAXIMUM RATINGS (Ta=25°C,unless otherwise noted) | Symbol | Parameter | Test conditions | Ratings | Unit | |--------|-----------------------|-----------------|---------|------| | Vcc | Supply voltage | | 6.0 | V | | Icc | Circuit current | | 100 | mA | | Pd | Power dissipation | | 0.8 | W | | Topr | Operating temperature | | -20~75 | °C | | Tstg | Storage temperature | | -40~125 | °C | ### RECOMMENDED OPERATING CONDITIONS | | | N 100 | Limits | | | | |--------|---------------------|-----------------|------------|---------|------------|------| | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | | Vcc | Supply voltage | | 3.5 | 5 | 5.5 | ٧ | | ViL | "L" input voltage | | 0.0 | _ | 1.0 | ٧ | | ViR | "Ref" input voltage | | 1/2Vcc-0.5 | 1/2 Vcc | 1/2Vcc+0.5 | ٧ | | ViH | "H"input voltage | | Vcc-1 | _ | Vcc | ٧ | ### **ELECTRICAL CHARACTERISTICS** (Vcc=5V,f=1kHz,Vi=100mV(rms),fck=1MHz,Ta=25°C,unless otherwise noted) | | | | | Limits | | | | |-------|--------|---------------------------------------|-----------------------------|-------------|------|-------|--------| | L. | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | | TOTAL | Icc | Circuit current | When signal is not provided | 10 | 25 | 50 | mA | | | Gv | Voltage gain between input and output | RL=47kΩ | -6.5 | -3.5 | -0.5 | dB | | | Vomax | Maximum output voltage | THD=10% | 0.9 | 1.2 | ===== | V(rms) | | ЕСНО | THD | Output distortion | 30kHz LPF | | 1.2 | 3.0 | % | | Ш | No | Output noise voltage | JIS-A | | -80 | -60 | dBV | | | fck | Clock frequency | Rc=120kΩ | | 1 | 2 | MHz | | | td | Delay time | Rc=120kΩ | | 164 | | ms | | | Gv | Voltage gain between input and output | RL=47kΩ | -3.0 | 0 | 3.0 | dB | | MIC | Vomax | Maximum output voltage | THD=10% | 1.1 | 1.7 | | V(rms) | | Σ | THD | Output distortion | 30kHz LPF | <u> </u> | 0.05 | 0.10 | % | | | No | Output noise voltage | JIS-A,ECHO=Mute | - | -90 | -80 | dBV | #### **FUNCTION DESCRIPTION** #### (1) Clock oscillator circuit The M65855FP incorporates a current control type clock oscillator circuit in it, thus providing circuit configuration just by connecting a resistor for current control to pin 16 CLOCK. Fully internal clock supply prevents occurrence of undesired radiation without affecting any external circuit When Rc=120kΩ fck=1MHz #### (2) Delay time Td The delay time can be calculated by the equation; Td=N/fs (N=The number of memory bits=20480) when fck=1MHz,Td can be set at 164ms. <<Reference>>The M65855FP adopts ADM (adaptive Delta Modulation) system in A/D,D/A converters. The sampling frequency can be calculated by the following equation; fs=clock frequency /8(Hz) For clock frequency fck=1MHz, the calculated sampling frequency is; fs=1MHz/8=125kHz #### (3) Mute #### 1) When power is on When power is turned on, the mute function works automatically to prevent noise generation. (Here,however,"mute" means the function which prevents noise generation after the reset time.) (a)When power is on (fck=1MHz) #### 2) When mute signal input Delay output can be set the mute control from 15 pin supply voltage. (Please refer the following) | 15 pin supply voltage | Mode | | |-----------------------|--|--| | H(≥Vcc-1V) | Normal mode | | | Ref(1/2 Vcc±0.5V) | Mute mode (clock stop +Microphone output mute) | | | L(≤1.0V) | Mute(clock stop) | | When the setting change from mute to normal mode, it also mute function work same time as 1) setting. (b)Mute L → H change setting (fck=1MHz) (c)Mute R →H change setting (fck=1MHz) #### (4) Input/Output LPF It is necessary to change the LPF setting (signal pass band;fsig)of digital echo according to the clock frequency. fsig= $$\frac{1}{2\pi \sqrt{C1 \cdot C2 \cdot R2 \cdot R3}}$$ $$G_{V=20log} = \frac{R2}{R1}$$ When,R1=20K,R2=8.2K,R3=10K,C1=0.012 μ F, C2=4700pF, cut off frequency and voltage gain is following. $$Gv = -6dB$$ The recommend voltage gain and the A/D ,D/A LPF signal pass band, please refer to the table below. (Delay time 164msec (When Master clock 1MHz)) | A/D L | .PF | D/A LPF | | | |------------------|------|------------------|------|--| | Signal pass band | Gain | Signal pass band | Gain | | | 3KHz | -6dB | 3KHz | +3dB | | ### APPLICATION EXAMPLE Unit Resistance:Ω Capacitor:F