Product Preview

Multiplexer - Demultiplexer
The MC74VHC1G54 is an advanced high speed CMOS multiplexer demultiplexer analog switch fabricated with silicon gate CMOS technology. It achieves high speed propagation delays and low ON resistances while maintaining CMOS low power dissipation. This multiplexer - demultiplexer controls analog and digital voltages that may vary across the full power-supply range (from $V_{C C}$ to GND).

The device has been designed so that the ON resistances (R_{ON}) are much lower and more linear over input voltage than RON of the typical metal-gate CMOS or High Speed CMOS analog switches.
The ON/OFF control inputs are compatible with standard CMOS outputs; with pull-up resistors, it is compatible with LSTTL outputs.

- Fast Switching and Propagation Speeds
- Low Power Dissipation: ICC $=2 \mu \mathrm{~A}(\mathrm{Max})$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Diode Protection Provided on Channel Select Input
- Improved Linearity and Lower ON Resistance over Input Voltage
- Latchup Performance Exceeds 300 mA
- ESD Performance: HBM > 2000 V; MM > 200 V, CDM > 1500 V

PIN ASSIGNMENT

MARKING DIAGRAM
d = date code

DEVICE ORDERING INFORMATION

Device Order Number	Device Nomenclature						Package Type	Tape and ReelSize
	Motorola Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape and Reel Suffix		
MC74VHC1G54DTT1	MC	74	VHC1G	54	DT	T1	TSOP6	7-Inch/3000 Unit
MC74VHC1G54DTT3	MC	74	VHC1G	54	DT	T3	TSOP6	$\begin{aligned} & \text { 13-Inch/ } \\ & 10000 \text { Unit } \end{aligned}$

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

ABSOLUTE MAXIMUM RATINGS

Maximum ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

Characteristics	Symbol	Value	Unit
DC Supply Voltage	V_{CC}	-0.5 to +7.0	V
Digital Input Voltage	V_{IN}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Analog Input Voltage	V_{IS}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Digital Input Diode Current	I_{IK}	-20	mA
DC Supply Current, V_{CC} and GND	I CC	± 25	mA
Power dissipation in still air, TSOP6 \dagger	P_{D}	450	mW
Lead temperature, 1 mm from case for 10 s	$\mathrm{~T}_{\mathrm{L}}$	260	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {Stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

\dagger Power Dissipation Derating: TSOP6 Package: $-6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	V_{CC}	2.0	5.5	V
Digital Input Voltage	V_{IN}	GND	V_{CC}	V
Analog Input Voltage	V_{IS}	GND	V_{CC}	V
Static or Dynamic Voltage Across Switch	$\mathrm{V}_{\mathrm{IO}}{ }^{*}$	-	100	mV
Operating Temperature Range	T_{A}	-55	+125	${ }^{\circ} \mathrm{C}$
Input Rise and Fall Time,	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$			
SELECT \& ENABLE		0	100	$\mathrm{~ns} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		20

* For voltage drops across the switch greater than 100 mV (switch on), excessive V_{CC} current may be drawn; i.e. the current out of the switch may contain both V_{CC} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	$V_{C C}$ (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
V_{IH}	Minimum High-Level Input Voltage Channel Select Input	RON = Per Spec	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 2.1 \\ & 3.15 \\ & 3.85 \end{aligned}$			$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$		$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$		V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage Channel Select Input	RON = Per Spec	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$			$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$		$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$		$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	V
IIN	Maximum Input Leakage Current Channel Select Input	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	$\begin{aligned} & \hline 0 \text { to } \\ & 5.5 \end{aligned}$			± 0.1		± 1.0		± 1.0	$\mu \mathrm{A}$
ICC	Maximum Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC}} \text { or } G N D \\ & \mathrm{~V}_{\mathrm{IO}}=0 \mathrm{~V} \end{aligned}$	5.5			2.0		20		40	$\mu \mathrm{A}$
RON	Maximum "ON" Resistance		$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{gathered} 25 \\ 12 \\ 5 \end{gathered}$	$\begin{aligned} & 50 \\ & 20 \\ & 10 \end{aligned}$		$\begin{aligned} & 70 \\ & 30 \\ & 15 \end{aligned}$		$\begin{aligned} & 100 \\ & 45 \\ & 25 \end{aligned}$	Ω
		$\begin{aligned} & \text { Endpoints } \\ & V_{I N}=V_{I H} \\ & V_{I S}=V_{C C} \text { to GND } \\ & I_{\text {IS }} \leq 20 \mathrm{~mA} \text { (Figure 1) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		25 12 5	$\begin{aligned} & 50 \\ & 20 \\ & 10 \end{aligned}$		$\begin{aligned} & 65 \\ & 26 \\ & 13 \end{aligned}$		90 40 22	Ω
IOFF	Maximum Off-Channel Leakage Current, Any One Channel	$\begin{aligned} & \hline V_{I N}=V_{I L} \\ & V_{I O}=V_{C C} \text { to GND } \\ & \text { Switch Off (Figure 2) } \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$			$\begin{aligned} & 0.1 \\ & 0.5 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 10 \end{aligned}$		$\begin{aligned} & 10 \\ & 20 \end{aligned}$	nA
	Maximum Off-Channel Leakage Current, Common Channel	$\begin{aligned} & V_{I N}=V_{I L} \\ & V_{I O}=V_{C C} \text { to GND } \\ & \text { Switch Off (Figure 3) } \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$			$\begin{aligned} & 0.1 \\ & 0.5 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 10 \end{aligned}$		$\begin{aligned} & 10 \\ & 20 \end{aligned}$	nA
ION	Maximum On-Channel Leakage Current	$\begin{array}{\|l} \hline \mathrm{V}_{I N}=\mathrm{V}_{I H} \\ \mathrm{~V}_{I S}=\mathrm{V}_{C C} \text { to } G N D \\ \text { (Figure 4) } \\ \hline \end{array}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$			$\begin{aligned} & 0.2 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 10 \\ & 20 \end{aligned}$		$\begin{aligned} & 20 \\ & 40 \end{aligned}$	nA

INJECTION CURRENT COUPLING SPECIFICATIONS ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Conditions	Typ	Max	Unit
$\mathrm{V} \Delta_{\text {out }}$	Maximum Shift of Output Voltage of Enabled Analog Channel (Figure 7)	$\begin{aligned} & \mathrm{l}_{\text {in }} \leq 10 \mathrm{~mA}, \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF} \end{aligned}$	1.0	5.0	mV

1. $\mathrm{l}_{\text {in }}=$ Total current injected into disabled channel. To express Injection Current Coupling in terms of charge: $\mathrm{Q}=\mathrm{V} \Delta_{\mathrm{O}} \mathrm{t} \bullet \mathrm{CL}_{\mathrm{L}}$ where Q is in pC ,
$\mathrm{V} \Delta_{\text {out }}$ is in V and C_{L} is in pF .

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{C}_{\text {load }}=50 \mathrm{pF}\right.$, Input $\left.\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}\right)$

Symbol	Parameter	Test Conditions	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
tpLH, tpHL	Maximum Propagation Delay, Input X to X_{0} or X_{1}	Figure 5	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		1 0 0 0	5 2 1 1		6 3 1 1		$\begin{aligned} & 7 \\ & 4 \\ & 2 \\ & 1 \end{aligned}$	ns
$\begin{aligned} & \text { tPLH, } \\ & \text { tPHL } \end{aligned}$	Maximum Propagation Delay, SELECT to Analog Output	Figure 6	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		15 8 6 4	$\begin{aligned} & \hline 35 \\ & 15 \\ & 10 \\ & 7 \end{aligned}$		$\begin{gathered} \hline 46 \\ 20 \\ 13 \\ 9 \end{gathered}$		$\begin{aligned} & 57 \\ & 25 \\ & 17 \\ & 11 \end{aligned}$	ns
$\mathrm{CIN}_{\text {I }}$	Maximum Input Capacitance	Channel Select Input	0.0		3	10		10		10	pF
		Analog I/O Common O/I Feedthrough Channel Select = GND	5.0		8 8 20	$\begin{aligned} & \hline 15 \\ & 15 \\ & 50 \end{aligned}$		20 20 50		$\begin{aligned} & 20 \\ & 20 \\ & 50 \end{aligned}$	
	Power Dissipation Capacitance (per Switch) (Note 1) Figure 8					Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\text {cc }}=5.0 \mathrm{~V}$					pF
CPD						18					

1. CPD $^{\prime}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $\operatorname{ICC}(O P R)=C_{P D} \bullet V_{C C} \bullet f_{i n}+I C C$. $\mathrm{C}_{P D}$ is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{P D} \cdot \mathrm{~V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

Symbol	Parameter	Test Conditions	V_{Cc}	$\begin{gathered} \text { Limit }^{\dagger} \\ 25^{\circ} \mathrm{C} \end{gathered}$	Unit
BW	Maximum On-Channel Bandwidth or Minimum Frequency Response Figure 9	$\mathrm{f}_{\text {in }}=1 \mathrm{MHz}$ Sine Wave Adjust $f_{\text {in }}$ voltage to obtain 0 dBm at V_{OS} Increase $\mathrm{f}_{\mathrm{in}}=$ frequency until dB meter reads -3 dB $R_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 150 \\ & 175 \\ & 200 \end{aligned}$	MHz
$\mathrm{ISO}_{\text {off }}$	Off-Channel Feedthrough Isolation Figure 10	$\mathrm{f}_{\text {in }}=$ Sine Wave Adjust f_{in} voltage to obtain 0 dBm at $\mathrm{V}_{\text {IS }}$ $\mathrm{f}_{\text {in }}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ $\mathrm{f}_{\text {in }}=1.0 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline-90 \\ & -90 \\ & -90 \\ & \hline-80 \\ & -80 \\ & -80 \end{aligned}$	dB
NOISE ${ }_{\text {feed }}$	Feedthrough Noise Channel Select to Switch Figure 11	$\mathrm{V}_{\text {in }} \leq 1 \mathrm{MHz}$ Square Wave ($\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2 \mathrm{~ns}$) Adjust R_{L} at setup so that $I_{S}=0 \mathrm{~A}$ $R_{L}=600 \Omega, C_{L}=50 \mathrm{pF}$ $R_{L}=50 \Omega, C_{L}=10 \mathrm{pF}$	3.0 4.5 5.5 3.0 4.5 5.5	$\begin{gathered} \hline 45 \\ 60 \\ 100 \\ \hline 25 \\ 30 \\ 60 \end{gathered}$	mV PP
THD	Total Harmonic Distortion Figure 12	$\mathrm{f}_{\mathrm{in}}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ THD $=$ THD Measured - THDSource $\mathrm{V}_{\text {IS }}=3.0 \mathrm{~V}_{\mathrm{PP}}$ sine wave $\mathrm{V}_{\text {IS }}=4.0 \mathrm{~V}_{\mathrm{PP}}$ sine wave $\mathrm{V}_{\text {IS }}=5.0 \mathrm{~V}$ PP sine wave	$\begin{aligned} & 3.3 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.10 \\ & 0.06 \end{aligned}$	\%

\dagger Guaranteed limits not tested. Determined by design and verified by qualification.

Figure 1. On Resistance Test Set-Up

Figure 3. Maximum Off-Channel Leakage Current Test Set-Up, Common Channel

Figure 5. Propagation Delay Test Set-Up, Analog I/O to Analog I/O

Figure 2. Maximum Off-Channel Leakage Current Test Set-Up, Any One Channel

Figure 4. Maximum On-Channel Leakage Current Test Set-Up

Figure 6. Propagation Delay Test Set-Up, Channel Select to Analog I/O

Figure 7. Injection Current Coupling Test Set-Up

*Includes all probe and jig capacitance.
Figure 9. Maximum On-Channel Bandwidth Test Set-Up
$\mathrm{V}_{\mathrm{IN}} \leq 1 \mathrm{MHz}$
$t_{r}=t_{f}=2 n s$
$\stackrel{V_{C C}}{\square} \square \square$

Figure 11. Feedthrough Noise, Channel Select to Analog Out, Test Set-Up

Figure 8. Power Dissipation Capacitance Test Set-Up

*Includes all probe and jig capacitance.
Figure 10. Off-Channel Feedthrough Isolation Test Set-Up

*Includes all probe and jig capacitance.
Figure 12. Total Harmonic Distortion Test Set-Up

INFORMATION FOR USING THE TSOP-6 SURFACE MOUNT PACKAGE

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to insure proper solder connection
interface between the board and the package. With the correct pad geometry, the packages will self align when subjected to a solder reflow process.

TSOP-6 POWER DISSIPATION

The power dissipation of the TSOP-6 is a function of the drain pad size. This can vary from the minimum pad size for soldering to a pad size given for maximum power dissipation. Power dissipation for a surface mount device is determined by $T_{J}(\max)$, the maximum rated junction temperature of the die, $R_{\theta J A}$, the thermal resistance from the device junction to ambient, and the operating temperature, T_{A}. Using the values provided on the data sheet for the TSOP-6 package, PD can be calculated as follows:

$$
P_{D}=\frac{T_{J(\max)}-T_{A}}{R_{\theta J A}}
$$

The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values into the equation for an ambient temperature T_{A} of $25^{\circ} \mathrm{C}$, one can calculate the power dissipation of the device which in this case is 450 milliwatts.

$$
\mathrm{PD}_{\mathrm{D}}=\frac{125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}}{225^{\circ} \mathrm{C} / \mathrm{W}}=450 \text { milliwatts }
$$

The $225^{\circ} \mathrm{C} / \mathrm{W}$ for the TSOP-6 package assumes the use of the recommended footprint on a glass epoxy printed circuit board to achieve a power dissipation of 450 milliwatts. There are other alternatives to achieving higher power dissipation from the TSOP-6 package. Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal Clad ${ }^{\top M}$. Using a board material such as Thermal Clad, an aluminum core board, the power dissipation can be doubled using the same footprint.

SOLDERING PRECAUTIONS

The melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. Therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected.

- Always preheat the device.
- The delta temperature between the preheat and soldering should be $100^{\circ} \mathrm{C}$ or less.*
- When preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. When using infrared heating with the reflow soldering method, the difference shall be a maximum of $10^{\circ} \mathrm{C}$.
- The soldering temperature and time shall not exceed $260^{\circ} \mathrm{C}$ for more than 10 seconds.
- When shifting from preheating to soldering, the maximum temperature gradient shall be $5^{\circ} \mathrm{C}$ or less.
- After soldering has been completed, the device should be allowed to cool naturally for at least three minutes. Gradual cooling should be used as the use of forced cooling will increase the temperature gradient and result in latent failure due to mechanical stress.
- Mechanical stress or shock should not be applied during cooling.

[^0]
TSOP-6 Tape and Reel Options

SECTION A-A

QUANTITY PER REEL		
DEVICE	REEL SIZE	QUANTITY
MGSF34xxX-T1	7-inches	3,000
MGSF34xxX-T3	13-inches	10,000

Dim	T1				T3			
	Millimeters		Inches		Millimeters		Inches	
	Min	Max	Min	Max	Min	Max	Min	Max
A	7.70	8.30	0.303	0.327	7.70	8.30	0.303	0.327
B	1.65	1.85	0.065	0.073	1.65	1.85	0.065	0.073
C	3.10	3.30	0.122	0.130	3.10	3.30	0.122	0.130
D	3.05	3.25	0.120	0.128	3.05	3.25	0.120	0.128
E	3.90	4.10	0.154	0.161	3.90	4.10	0.154	0.161
F	3.90	4.10	0.154	0.161	3.90	4.10	0.154	0.161
G	3.10	3.30	0.122	0.130	3.10	3.30	0.122	0.130
H	0.17	0.23	0.007	0.009	0.17	0.23	0.007	0.009
\varnothing Ј	1.50	1.60	0.059	0.063	1.50	1.60	0.059	0.063
K	1.30	1.50	0.051	0.059	1.30	1.50	0.051	0.059
\varnothing K	1.00	1.10	0.039	0.043	1.00	1.10	0.039	0.043
L	170	180	6.929	7.087	328	332	12.91	13.07
$\Theta \mathrm{L}$	-	3°	-	3°	-	3°	-	3°
M	1.50	2.50	0.059	0.098	1.50	2.50	0.059	0.098
$\varnothing \mathrm{N}$	12.8	13.2	0.504	0.520	12.8	13.2	0.504	0.520
$\varnothing \mathrm{P}$	21.5	22.5	0.846	0.886	21.5	22.5	0.847	0.886
T	1.00	2.00	0.039	0.078	1.00	2.00	0.039	0.078
V	53.0	54.0	2.087	2.126	53.0	54.0	2.087	2.126
W	7.90	8.90	0.311	0.350	24.4	16.4	0.961	1.039

OUTLINE DIMENSIONS

PLANNED PACKAGE
 6-Lead TSSOP
 $\mathrm{T}_{\mathrm{amb}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: MILLIMETER
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	2.90	3.10	0.1142	0.1220
B	1.30	1.70	0.0512	0.0669
C	0.90	1.10	0.0354	0.0433
D	0.25	0.50	0.0098	0.0197
G	0.85	1.05	0.0335	0.0413
H	0.013	0.100	0.0005	0.0040
J	0.10	0.26	0.0040	0.0102
K	0.20	0.60	0.0079	0.0236
L	1.25	1.55	0.0493	0.0610
M	$0{ }^{\circ}$	10°	00°	10°
S	2.50	3.00	0.0985	0.1181

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (4) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc

How to reach us
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution
P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

Customer Focus Center: 1-800-521-6274
Mfax $^{\text {TM }: ~ R M F A X 0 @ e m a i l . s p s . m o t . c o m ~-~ T O U C H T O N E ~ 1-602-244-6609 ~}$
Motorola Fax Back System

- US \& Canada ONLY 1-800-774-1848
-http://sps.motorola.com/mfax
HOME PAGE: http://motorola.com/sps/
tegic Planning Office, 141,
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 81-3-5487-8488

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

[^0]: * Soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device.

