A—
y 4
r 4
| 4
-

.
“—
——
Features

e Reduced Instruction Set Computer
(RISC) Architecture

— Simple format instructions

— Most instructions execute in a
single cycle

e Very high performance
— 25-,33-, and 40-MHz clock speeds
yield 18, 24, and 29 MIPS sustained
throughput respectively

— Very fast interrupt response
— Four-stage pipeline
e Large windowed register file
— 136 general-purpose 32-bit registers

PRESS
EMICONDUCTOR

CY7C601A

— Registers can be used as eight win-
dows of 24 registers each for low
procedure overhead

— Registers can also be used as regis-
ter banks for fast context switching

e Multiprocessing support
e Large virtual address space

— 32-bit virtual address bus

— 8-bit address space identifier bus
e Hardware pipeline interlocks
Multitasking support
—- User/supervisor modes
— Privileged instructions

Artificial intelligence support

High-performance coprocessor inter-
face for user-defined coprocessor

32-Bit RISC Processor

e FPU interface allows concurrent ex-
ecution of floating-point instructions

e §.8-micron CMOS technology
e 207-pin grid array package
Overview

The CY7C601A integer unit is a high-
speed CMOS implementation of the
SPARC® 32-bit RISC processor. The
RISCarchitecture makes possible the cre-
ation of a processor that can execute in-
structions at a rate of one instruction per
processorclock. The CY7C601A supports
a tightly coupled floating-point interface
and coprocessor interface that allows con-
current execution of floating-point, copro-
cessor, and integer instructions.

Logic Block Diagram Pin Configuration
AB1:0) i
i ———————
l ASI(7:0) PHOLD
SIZE(1:0) FEXC
DESTINATION MAD | Pack
REGISTER FILE e FOC00)
136 x 32 D31:0) leFCCY
DS FINS1
SOURCE 1 SOURCE 2 — o™ FINS2
——™ FPSYN
___MowB
BHOLD
| l e] 7C601A
COE
—_———
ARTIAETS SHIFT UNIT _ CK] SPARC INST
- UNIT IRL(3:0 F—
Trmoc| PROCESSOR | "wsi
MEXC
———
PROGRAM RESE]
COUNTERS [CAuen] «—RROR_ |
RD
-
PROGESSOR EE. WE
STATE | INSTRUCTION | WRT eGP
“"T‘;‘:;”;'gg“" DECODE DXFER |, _cHOLD
ALt TR 1 LDSTO o CEXC
INULL CXACK
y LOCK CCC(1:0)
-—— —————
DOE ccev
ADDRESS INSTRUCTION/DATA s ot P
i [oms2
601A-2
Selection Guide
7C601A-40 7C601A-33 7C601A-25
MaximumOperating Current (mA) 650 600 600

SPARC is a registered trademark of SPARC International, Inc.

CY7C601A

Overview (continued)

The CY7C601A SPARC processor provides the following fea-
tures:

Simple instruction format. All instructions are 32-bits wide
and aligned on 32-bit boundaries in memory. The three basic in-
struction formats feature uniform placement of opcode and ad-
dress fields.

g| architecture. Most instructions operate on
either two registers or one register and a constant, and place the
result in a third register. Only load and store instructions access
off-chip memory.

Large windowed register file. The processor has 136 on-chip
32-bit registers configured as eight overlapping sets of 24 regis-
ters each and eight global registers. This scheme allows compil-
ers to cache local values across subroutine calls and provides a
register-based parameter passing mechanism.

Delayed control transfer. The processor always fetches the next
instruction after a control transfer, and either executes it or an-
nuls it depending on the state of a bit in the control transfer in-
struction. This feature allows compilers to rearrange code to
place a useful instruction after a delayed control transfer and
thereby take better advantage of the processor pipeline.

Concurrent floating-point. Floating-point instructions can exe-
cute concurrently with each other and with non-floating-point in-
structions.

Fast interrupt response. Interrupt inputs are sampled on every
clock cycle and can be acknowledged in one to three cycles. The
first instruction of an interrupt service routine can be executed
within 6 to 8 cycles of receiving the interrupt request.

The 7C600 Family

The SPARC processor family consists of a CY7C601A integer
unitto perform all non-floating-point operations and a
CY7C602A floating-point unit (FPU) to perform floating-point
arithmetic concurrent with the CY7C601A. Support is also pro-
vided for a second generic coprocessor interface. The
CY7C601A communicates with external memory via a 32-bit ad-
dress bus and a 32-bit data/instruction bus. In typical data proc-
essing applications, the CY7C601A and CY7C602A are com-
bined with a high-performance CY7C604A memory
management unit and cache controller and a cache memory im-
plemented with CY7C157A 16-Kbyte x 16 cache RAMS. In
many dedicated controller applications the CY7C601A can func-
tion by itself with only high-speed local memory.

Coprocessor Interface

The CYTC601A is the basic processing engine that executes all
of the instruction set except for floating-point operations. The
CY7C601A and CY7C602A operate concurrently. The
CY7C602A recognizes floating-point instructions and places
them in a queue while the CY7C601A continues to execute
non-floating-point instructions. If the CY7C602A encounters an
instruction that will not fit in its queue, the CY7C602A holds the
CY7C601A until the instruction can be stored. The CY7C602A
contains its own set of registers on which it operates. The con-
tents of these registers are transferred to and from external
memory under control of the CY7C601A via floating-point
load/store instructions. Processor interlock hardware hides
floating-point concurrency from the compiler or assembly lan-
guage programmer. A program containing floating-point compu-
tations generates the same results as if instructions were exe-
cuted sequentially.

Registers

The CY7C601A contains a large 136 x 32 triple-port register file
which is divided into 8 windows, each with 24 working registers
and each having access to the same 8 global registers. A current
window pointer (CWP) field in the processor state register keeps
track of which window is currently active. The CWP is decre-
mented when the processor calls a subroutine and is incre-
mented when the processor returns. The registers in each
window are divided into ins, outs, and locals. The eight global
registers are shared by all windows and appear as registers 0—7
in each window. Registers 815 serve as outs, registers 16—23
as locals, and 2431 serve as ins. Each window shares its ins and
outs with adjacent windows. The outs of the previous window are
the ins of the current window, and the outs of the current win-
dow are the ins of the next window. The globals are equally
available to all windows and the locals are unique to each win-
dow. The windows are joined together in a circular stack where
the outs of window 7 are the ins of window 0.

Multitasking Support

The CY7C601A supports a multitasking operating system by
providing user and supervisor modes. Some instructions are
privileged and can only be executed while the processor is in su-
pervisor mode. Changing from user to supervisor mode requires
taking a hardware interrupt or executing a trap instruction.

Interrupts and Traps

The CY7C601A supports both asynchronous traps (interrupts)
and synchronous traps {error conditions and trap instructions).
Traps transfer control to an offset within a table. The base ad-
dress of the table is specified by a trap base register and the off-
set is a function of the trap type. Traps are taken before the cur-
reat instruction causes any changes visible to the programmer
and can therefore be considered to occur between instructions.

Instruction Set Summary
Instructions fall into five basic categories as follows:

1. Load and store instructions. Load and store are the only in-
structions which access external memory. They use two
CY7C601A registers or one CY7C601A register and a signed im-
mediate value to generate the memory address. The instruction
destination field specifies either an CY7C601A register, a
CY7C602A register, or a coprocessor register as the destination
for a load or source for a store. Integer load and store instruc-
tions support 8-, 16-, 32-, and 64-bit transfers while floating-point
and coprocessor instructions support 32- and 64-bit accesses.

2. Arithmetic/logical/shift. These instructions compute a result
that is a function of two source operands and write the result
into a destination register or discard it. They perform arithmetic,
tagged arithmetic, logical, and shift operations. An instruction
SETHI, useful in creating 32-bit constants in two instructions,
writes a 22-bit constant into the high order bits of a register and
zeroes the remaining bits. The contents of any register can be
shifted left or right any number of bits in one clock cycle as
specified by a register or the instruction itself. The tagged in-
structions are useful in artificial intelligence applications.

3. Control transfer. Control transfer instructions include jumps,
calls, traps and branches. Control transfer is usually delayed so
that the instruction immediately following the control transfer
{called the delay instruction) is executed before control is trans-
ferred to the target location. The delay instruction is always

RISC E

CY7C601A

?a
&
E SEMICONDUCTOR

Instruction Set Summary (continued)

fetched,however, abit in the control transfer instructioncan cause
the delay instruction to be nullified if the branch is not taken. This
flexibilityincreases the likelihood that a useful instruction can be
placed after the control transfer thereby filling an otherwise un-
used hole in the processors pipeline. Branch and call instructions
useprogram counter relative displacements. A jump and link in-
structionuses aregisterindirectdisplacementcomputingitstarget
addressas either the sum of two registers or the sum of a register
and a 13-bit signed immediate value. The branch instruction pro-
vides a displacement plus or minus 8 megabytes, and the call in-
structions 30-bit displacement allows transfer to almost any ad-
dress.

4. Read/write control registers. The processor provides special
instructions to read and write the contents of the various control
registerswithin the machine. These registers include the multiply
step register, processor state register, window invalid mask regis-
ter, and trap base register.

5. Floating-point/coprocessor instructions. These instructions
includeall floating-point conversion and arithmetic operations as
well as future coprocessor instructions. These instructions involve
operationsonly on the contents of the register file internal to the
CY7C602A or coprocessor.

The instruction set of the processor is summarized in Table 1.

Registers

The followingsectionsprovide an overviewofthe CY7C601Areg-
isters. The CY7C601A has two types of registers; working regis-
ters (r registers), and control registers. The r registers provide
storage for processes, and the control registers keep track of and
control the state of the CY7C601A.

r Registers. The r registers (Figure 1) consist of eight 32-bit

global registers, and 8 windows, each having twenty-four 32-bit
registers. Each two adjacent windows are overlapped in eight

registers. This results in a total of 136 32-bit general purpose reg-
isters on the chip.

CY7C601A Control Registers. The CY7C601A control registers
contain various addresses and pointers used by the system to con-
trol its internal state. They include the program counters (PCand
nPC), the processor state register (PSR), the window invalid mask
register (WIM), the trap base register (TBR), and the Y register.
The following paragraphs briefly describe each:

Processor Status Register (PSR). The processor status register
contains fields that describe and control the state of the
CY7C601A (see Figure 2).

{U Implementation and IU Version Numbers (IMPL field,
PSR<31:28>; VER field, PSR<27:24>). These are read-only
fields in the PSR. The version number and the implementation
number are each set to “0001”.

Integer Condition Codes (PSR<23:20>). The integer condition
codes consist of four flags: negative, zero, overflow, and carry.
Theseflags are set by the conditions occurring during integer logic
andarithmetic operations.

Enable Coprocessor (EC bit, PSR<13>). This bit is used to en-
able the coprocessor. If a coprocessor operation (CPop) is en-
counteredand the ECbit is cleared (i.€., coprocessor disabled), a
coprocessor disabled trapis generated.

Enable Floating Point Unit (EF bit, PSR<12>). Thisbit isusedto
enable the floating point unit. Ifa floating point operation (FPop)
is encountered and the EF bit is cleared (i.c., FPU disabled), a
floating point disabled trap is generated.

Processor Interrupt Level (PIL field, PSR<11:8>). This four bit
field sets the CY7C601A interrupt level. The CY7C601A will
only acknowledge interrupts greater than the level indicated by
the PIL field. Bit 11 is the MSB; bit 8 is the LSB.

Supervisor Mode (S bit, PSR<7>). S = 1 indicates that the
CY7C601A is in supervisor mode. Supervisor mode can only be
entered by a software or hardware trap.

Previous Window
r31
: INS
r :; Trap Enable (ET)
r N :
. LOCALS N Pravious Supervisor Mode (PS)
16 C Current Window Supervisor Mode (S)
r15s r31 Enable Fioating P oint Unit (EF)
. ouTs S INS Enable Copracessor (EC)
8 r24 Integer Condition Codes
23 .
2 iU Version
16 LOCALS Next Window w Number Pracessor Current
i Interrupt Window
r ':5 OUTS r3t INS Number -I Level Pointer
r8 r24 (mpl) (ver) {ICC) Reserved Py (CWP)
B s ra [¢ I | s [s]
r16 BEEEES 14 1312 8765
ris
OouTs -
rg negalive zero | overflow | carry
n V) ¢
r7
. 23 22 21 20
b GLOBALS 60144

601A-3

Figure 1. Register Windows

Figure 2. Processor State Register

—_—

— YA CY7C601A
=7 SEMICONDUCTCR
Table 1. Instruction Set Summary
Inputs Operation Cycles
LDSB(LDSBA*) Load Signed Byte (from Alternate Space) 2
LDSH(LDSHA*) Load Signed Halfword from Alternate Space 2
LDUB(LDUBA*) Load Unsigned Byte from Alternate Space 2
LDUH(LDUHA*) Load Unsigned Halfword from Alternate Space 2
LD(LDA*) Load Word (from Alternate Space 2
LDD(LDDA*) Load Doubleword (from Alternate Space 3
LDF Load Floating Point 2
LDDF Load Double Floating Point 3
é’ LDFSR Load Floating Point State Register 2
1 LDC LoadCoprocessor 2
£ LDDC Load Double Coprocessor 3
E LDCSR Load Coprocessor State Register 2
'E STB(STBA*) Store Byte (into Alternate Space) 3
8 STH(STHA¥) Store Halfword into Alternate Space 3
& ST(STA*) Store Word into Alternate Space 3
= STD(STDA*) Store Doubleword into Alternate Space 4
- STF Store Floating Point 3
s STDF Store Double Floating Point 4
= STFSR Store Floating Point State Register 3
STDFQ* Store Double Floating Point Queue 4
STC StoreCoprocessor 3
STDC Store Double Coprocessor 4
STCSR Store Coprocessor State Register 3
STDCO* Store Double Coprocessor Queue 4
LDSTUB(LDSTUBA*®) Atomic Load/Store Unsigned Byte (in Alternate Space) 4
SWAP(SWAPA*) Swap r Register with Memory (in Alternate Space) 4
ADD(ADDcc) Add (modifyicc) 1
ADDX(ADDXcc) Add with Carry (modifyicc) 1
TADDcc(TADDccTV) Tagged Add and modify icc (and Trap on overflow) 1
SUB(SUBcc) Subtract (modifyicc) 1
SUBX(SUBXcc) Subtract with Carry (modifyicc) 1
% TSUBcc(TSUBccTV) Tagged Subtract and modify icc (and Trap on overflow) 1
& MULScc Multiply Step and modify icc 1
8 AND(ANDcc) And (and modify icc) i
.§° ANDN(ANDNcc) And Not and modify icc) 1
S OR(ORcc) Inclusive Or and modify icc 1
g ORN(ORNcc) Inclusive Or Not and modify icc 1
g XOR(XORce) Exclusive Or and modify icc 1
=} XNOR(XNORcc) Exclusive Nor and modify icc 1
= SLL Shift Left Logical 1
SRL Shift Right Logical 1
SRA Shift Right Arithmetic 1
SETHI Set High 22 Bits of r Register 1
SAVE Save Caller’s window 1
RESTORE Restore Caller’swindow 1
o Bicc Branch on Integer Condition Codes 1**
& FBicc Branch on Floating Point Condition Codes 1**
E CBcee Branch on Coprocessor Condition Codes 1**
= CALL Call 1**
E JTMPL Jump and Link 2%F
g RETT Return from Trap 2%
© Ticc Trap on Integer Condition Codes 1 (4 if Taken)

35 = CY7C601A
F SEMICONDUCTOR
Table 1. Instruction Set Summary (continued)
Inputs Operation Cycles
RDY Read Y Register 1
- RDPSR Read Processor State Register 1
& RDWIM Read Window Invalid Mask 1
22 RDTBR Read Trap Base Register 1
%é" WRY Write Y Register 1
o WRPSR* Write Processor State Register 1
5 £ WRWIM* Write Window Invalid Mask 1
g WRTBR* Write Trap Base Register 1
< UNIMP UnimplementedInstruction 1
IFLUSH Instruction Cache Flush 1
% FPop Floating Point Unit Operations 1 to Launch
=20 CPop CoprocessorOperations 1 to Launch

* Privileged instruction.

Processor Status Register (continued)

Previous Supervisor Mode (PS bit, PSR<6>). This bit indicates
the state of the supervisor bit before the most recent trap.

Trap Enable (ET bit, PSR<5>). This bit enables or disables the
CY7C601A traps. This bit is automatically set to 0 (traps dis-
abled) upon entering a trap. When ET = 0, all asynchronoustraps
are ignored. If a synchronous trap occurs when ET = 0, the
CY7C601Aenters error mode.

Current Window Pointer (CWP field, PSR<4:0>). Therregisters
areaddressed by the current window pointer (CWP), afield of the
processor status register (PSR), which points to the 24 active local

registers. Itisincremented bya RESTORE instruction and decre-
mented by a SAVE instruction. Note that the globals are always
accessible regardless of the CWP. In the overlapping configura-
tion each window shares its ins and outs with adjacent windows.

The outs from a previous window (CWP +1) are the ins of the cur-
rentwindow, and the outs from the current window are the ins for
the next window (CWP -1). In both the windowed and register
bank configurations globals are equally available and the locals

are unique to each window.

Program Counters (PC and nPC). The program counter (PC)
holds the address of the instruction being executed, and the next
program counter (nPC) holds the address of the next instruction
to be executed.

Trap Base Register (TBR). The trap base register contains the
base address of the trap table and a field that provides a pointer
into the trap table.

Trap Base Address Trap Type (tt)

Ii 20 8

31 12 11

Reserved

I

Figure 3. Trap Base Register

Window Invalid Mask Register (WIM). The window invalid
maskregister determines which windows are valid and which win-
dow accesses cause window_overflow and window_underflow
traps.

** Assuming delay slot is filled with useful instruction.

Window 0

Window 1
Window 2
Window 3 —l‘|
Etc..

[7fe]s]efa]2]r o]
0

[Reserved

Figure 4. Window Invalid Mask

Y register. The Y register is used to hold the partial product dur-
ing execution of the multiply-step instruction (MULSCC).

Pin Description

The integer unit’s external signals fall into three categories:
(1) memory subsystem interface signals, (2) floating-point unit/
coprocessorinterface signals, and (3) miscellaneous I/O signals.
Theseare described in the following sections. Paragraphsafter the
tables describe each signal. Signals that are active LOW are
markedwith an overcomer; all others are active HIGH. Forexam-
ple, WE is active LOW, while RD is active HIGH.

Memory Subsystem Interface Signals

A[31:0]. These 32 bits are the addresses of instructions or data

and they are sent out “unlatched” by the integer unit. Assertion of
the MAO signal during a cache miss will force the integer unit to

putthe previous (missed) address on the addressbus. A[31:0] pins

are three-stated if the AOE or TOE signal is deasserted.

ASI[7:0]. These 8 bits are the address space identifier for an
instruction or data access to the memory. ASI[7:0} are sent out
“unlatched” by the integer unit. The value on these pins during
any given cycle isthe address space identifier corresponding tothe
memory address on the A[31:0] pinsat that cycle. Assertionof the
MAO signal during a cache miss will force the integer unit to put
the previous address space identifier on the ASI{7:0] pins.
ASI[7:0] pins are three-stated if the AOE or TOE signal is deas-

CY7C601A

;

serted. Normally, the encoding of the ASI bits is as shown in
Table 2. The remaining codes are software generated.

Table 2. ASI Bit Assignment

Address Space Identifier (ASI) Address Space
00001600 User Instruction
00001010 User Data
00001601 Supervisor Instruction
00001011 Supervisor Data

D[31:0]. D[31:0]is the bidirectional data bus to and from the in-
teger unit. The data bus is driven by the integer unit during the
execution of integer store instructions and the store cycle of
atomicload/store instructions. Similarly, the data bus is driven by
the floating-point unit only during the execution of floating-point
store instructions. The store data is sent out unlatched and must
be latched externally before it is used. Once latched, store data is
valid during the second data cycle of a store single access, the sec-
ond and third data cycle of a store double access, and the third
data cycle of an atomic load store access. The alignment for load
andstore instructions is done inside the processor. A double word
is aligned on an 8-byte boundary, a word is aligned on a 4-byte
boundary, and a half word is aligned on a 2-byte boundary. D(31)
corresponds to the most significant bit of the least significant byte
of the 32-bit word. If a double word, word, or half word load or
storeinstruction generatesanimproperlyaligned address, amem-
ory address not aligned trapwill occur. Instructions and operands
are always expected to be fetched from a 32-bit wide memory.

SIZE[1:0]. These two bits specify the data size associated witha
data or instruction fetch. Size bits are sent out “unlatched” by the
integer unit. The value on these pins at any given cycle is the data
size corresponding to the memory address on the A[31:0] pins at
that cycle. SIZE[1:0] remains valid on the bus during all data cy-
clesofloads, stores, load_doubles, store_doubles and atomicload
stores. Since all instructions are 32-bits long, SIZE[1:0] is set to
“10” during all instruction fetch cycles. Encoding of the SIZE[1:0]
bits is shown in Table 3.

Thble 3. Size Bit Assignment

Size 1 Size 0 Data Transfer Type
0 0 Byte
0 1 Halfword
1 0 Word
1 1 Word (Load/Store Double)

MHOLDA and MHOLDB. The processor pipeline will be frozen
while MHOLDA or MHOLDB is asserted and the CY7C601A
outputswill revert to and maintain the value they had at therising
edge of the clock in the cycle before MHOLDA or MHOLDB was
asserted. MHOLDA/B is used to freeze the clock to both the inte-
ger and floating point units during a cache miss (for systems with
cache) or when a slow memory is accessed. This signal must be
presentedto the processor chip at the beginning of each processor
clock cycle and be stable during the high time of the processor
clock. Either MHOLDA or MHOLDRB can be used for stopping
the processor during a cache miss_or memory exception.

MHOLDB has the same definition as MHOLDA. The processor
hardware uses the logical “OR” of all hold signals (i.e., MHOL-
DA, MHOLDB and BHOLD) to generate a final hold 51gnal for

freezing the processor pipeline. All HOLD signals are latched
(transparentlatch) in the CY7C601A before they are used.

BHOLD. BHOLD is asserted by the I/O controller when an ex-
ternal bus master requests the data bus. Assertion of this signal
will freeze the processorpipeline. Externallogicshould guarantee
thatafterdeassertion of BHOLD, the data at all inputs to the chip
is the same as what it wasbefore BHOL D wasasserted. Thissignal
must be presented to the processor chip at the beginning of each
processor clock cycle and be stable during the high time of the
processorclocksince the CY’ 7C601Aprocesses the BHOLD input
througha transparent latch before it is used. BHOLD should be
used only for bus access requests by an external device since the
MDS and MEXC signals are not recognized while this input is ac-
tive. BHOLD should not be deasserted while LOCK is asserted.

MDS. Assertion of this signal will enable the clock input to the
on-chipinstruction register (during an instruction fetch) or to the
load result register (during a data fetch). In a system with cache,
MDS is used to signal the processor when the missed data (cache
miss)is ready on the bus. In a system with slow memories, MDS is
used tosignal the processor when the read data is available on the
bus. MDS must be asserted only while the processor is frozen by
either the MHOLDA or MHOLDB input signals. The
CY7C601A samples the MDS signal via an on-chip transparent
latch before it is used. The MDS signal is also used for strobing
memory exceptions. In other words, MDS should be asserted
whenever MEXC is asserted (see MEXCdefinition).

MEXC. This signal is asserted by the memory (or cache) control-
ler to initiate an instruction (or data) exception trap. MEXC is
latched in the processor at the rising edge of CLK and is used in
the following cycle. If MEXC is asserted during an instruction
fetch cycle an instruction access exception is generated, and if
MEXCis asserted during a data fetch cycle, a data access excep-
tion trap is generated. The MEXC signal is used during
(MHOLD) in conjunction with the MDS signal to indicate to the
CY7C601A that the memory system was unable to supplyvalid in-
struction or data. If MDS is applied without MEXC, the
CY7C601A accepts the contents of the data bus as valid informa-
tion but when MDS is applied with MEXC an exoeption trap is
generated and the contents of the data bus is ignored by the
CY7C601A (i.e., MHOLD and MDS must be low when MEXC is
asserted). MEXC must be deasserted in the same clock cycle in
which MHOLD is released.

AOE. Deassertion of this signal will three-state all output drivers
associated with A[31:0] and ASI[7:0] outputs. AOE is connected
directly to the output drivers of the address and ASI signals and
mustbe asserted during normal operations. This signal should be
deasserted only when the bus is granted to another bus master
(i.e.,when either BHOLD, MHOLDA or MHOLDB is asserted).

DOE. Deassertion of this signal will three-state all output drivers
of the data D[31:0] bus. DOE is connected directly to the databus
output drivers and must be asserted during normal operations.
This signal should be deasserted only when the bus is granted to
another bus master (i.e., when either BHOLD, MHOLDA or
MHOLDB:s asserted).

COE. Deassertion of this signal will three-state all outputdrivers
associated with SIZE[1:0], RD, WE, WRT, LOCK, LDSTO and
DXFER outputs. COE is connected directly to the output drivers
and must be asserted during normal operations. This signal
shouldbe deasserted only when the bus is granted to another bus
master (i.e., when either BHOLD, MHOLDA, or MHOLDB is
asserted).

RISC E

=/
SEMICONDUCTOR

CY7C601A

RD. This signal specifies whether the current memory access is
a read or write operation. It is sent out “unlatched” by the inte-
ger unit and must be latched externally before it is used. RD is
set to “0” only during address cycles of store instructions includ-
ing the store cycles of atomic load store instructions. This signal
when used in conjunction with SIZE[1:0], ASI[7:0], and LDSTO,
can be used to check access rights of bus transactions. In addi-
tion, the RD signal may be used to turn off the output drivers of
data RAMs during a store operation. For atomic load store in-
structions the RD signal is “1” during the first address cycle
(read cycle) and “0” during the second and third address cycles
(write cycle).

WE. This signal is asserted by the integer unit during the sec-
ond address cycle of store single instructions, the second and
third address cycles of store double instructions, and the third
address cycle of atomic load/store instructions. The WE signal is
sent out “unlatched” and must be latched externally before it is
used. The WE signal may be externally qualified by HOLD sig-
nals (i.e., mmsf%ax and) to avoid writing into the
memory during memory exceptions.

WRT. This signal is asserted (set to “1”) by the processor during
the first address cycle of single or double integer store instruc-
tions, the first address cycle of single or double floating-point
store instructions, and the second address cycle of atomic load/
store instructions. WRT is sent out “unlatched” and must be
latched externally before it is used.

LDSTO. This signal is asserted by the integer unit during the
data cycles of atomic load store operations. LDSTO is sent out
“unlatched” by the integer unit and must be latched externally
before it is used.

LOCK. This signal is set to “1” when the processor needs the
bus for multiple cycle transactions such as atomic load/store,
double loads and double stores. LOCK signal is sent “un-
latched” and should be latched externally before it is used. The
bus may not be granted to another bus master as long as LOCK
signal is asserted (i.e., BHOLD should not be asserted in the fol-
lowing processor clock cycle when LOCK=1).

DXFER. This signal is asserted by the processor at the begin-
ning of all bus data transfer cycles. DXFER is “unlatched” and
DXFER = 1 indicates a data cycle.

INULL. Assertion of INULL indicates that the current memory
access (whose address is held in an external latch) is to be nulli-
fied by the processor. INULL is intended to be used to disable
cache misses (in systems with cache) and to disable memory ex-
ception generation for the current memory access (i.e., MDS and
MEXC should not be asserted for a memory access when IN-
ULL=1). INULL is a latched output and is active during the
same cycle as the address, which it nullifies (the address is not on
the bus, but is latched externally). INULL is asserted under the
following conditions: During the second cycle of a store instruc-
tion, or whenever the CY7C601A address is invalid due to an ex-
ternal or internal exception. If a floating-point unit or coprocess-
or unit is present in the system, INULL should be ORed with the
FNULL and CNULL signals from these units.

IFT. The state of this pin determines the behavior of the
IFLUSH instruction. If =1, then IFLUSH executes like a
NOP with no side effects. If IFT=0, then IFLUSH causes an
unimplemented instruction trap.

Floating-Point/Coprocessor Interface Signals

FP. This signal indicates whether or not a floating-point unit ex-
ists in the system. The FP signal is normally pulled up to VDD
by a resistor. It is grounded when the FPU chip is present. The

integer unit generates a floating-point disable trap if FP = 1dur-
ing the execution of a floating-point instruction, FBfcc instruc-
tion or floating-point load, and store instructions.

CP. This signal indicates whether or not a coprocessor €xists in
the system. The CP signal is normally pulled up to VDD by a
resistor. It is grounded when the coprocessor chip is present.
The integer unit generates a coprocessor disable trap i % =1
during the execution of a coprocessor instruction, CBcce instruc-
tion or coprocessor load and store instructions.

FCC[1:0]. These bits are taken as the current condition code
bits of the FPU. They are considered valid if FCCV=1. During
the execution of the FBfcc instruction, the processor uses these
bits to determine whether the branch should be taken or not.
FCC[1:0] are latched by the processor before they are used.

CCC[1:0]. These bits are taken as the current condition code
bits of the coprocessor. They are considered valid if CCCV=1.
During the execution of the CBccc instruction, the processor uses
these bits to determine whether the branch should be taken or
not. CCC[1:0] are latched by the processor before they are used.

FCCV. This signal should be asserted only when the FCC[1:0]
bits are valid. The floating-point unit deasserts FCCV if pending
floating-point compare instructions exist in the floating-point
queue. FCCV is reasserted when the compare instruction is
completed and the floating-point condition codes FCC[1:0] are
valid. The integer unit will enter a wait state if FCCV is deas-
serted (i.e., FCCV = “0”). The FCCV signal is latched (trans-
parent latch) in the CY7C601A before it is used.

CCCV. This signal should be asserted only when the CCC[1:0]
bits are valid. The coprocessor deasserts CCCV if pending
coprocessor compare instructions exist in the coprocessor queue.
CCCYV is reasserted when the compare instruction is completed
and the coprocessor condition codes CCC[1:0] are valid. The in-
teger unit will enter a wait state if CCCV is deasserted (i.e,,
CCCV = “0”). The CCCV signal is latched (transparent latch)
in the CY7C601A before it is used.

FHOLD. This signal is asserted by the floating-point unit if a
situation arises in which the FPU cannot continue execution.
The floating-point unit checks all dependencies in the decode
stage of the instruction and asserts FH%SLD (if necessary) in the
next cycle. This signal is used by the integer unit to freeze the
instruction E‘i)Eeline in the same cycle. The FPU must eventually
deassert FHOLD in order to unfreeze the integer unit’s pipeline.
The FHOLD signa! is latched (transparent latch) in the
CY7C601A before it is used.

CHOLD. This signal is asserted by the coprocessor if a situation
arises in which the coprocessor cannot continue execution. The
coprocessor checks all dependencies in the decode stage of the
instruction and asserts LD (if necessary) in the next cycle.
This signal is used by the integer unit to freeze the instruction
pipeline in the same cycle. The copracessor must eventually
deassert CHOLD in order to unfreeze the integer unit’s pipe-
line. The THOLD signal is latched (transparent latch) in the
CY7C601A before it is used.

FEXC. Assertion of thissignal indicates that a floating-point ex-
ception has occurred. must remain asserted until the inte-
ger unit takes the trap and acknowledges the FPU via FXACK
signal. Floating-point exceptions are taken only during the exe-
cution of floating-point instructions, FBfcc instruction and float-
ing-point load, and store instructions. FEXC is latched in the in-
teger unit before it is used. The FPU should deassert FHOLD if
it detects an exception while FHOLD is asserted. In this case
FEXC should be asserted a cycle before FHOLD is deasserted.

8§-12

CY7C601A

=
% SEMICONDUCTOR

CEXC. Assertionofthissignal indicates that acoprocessor excep-
tion has occurred. This signal must remain asserted until the inte-
ger unit takes the trap and acknowledges the coprocessor via
CXACK ssignal. Coprocessor exceptions are taken only during the
execution of coprocessor instructions, CBccc instruction and
coprocessorload and store instructions. CEXC is latched in the
integer unit before it is used. The coprocessor should deassert
CHOLD if it detects an exception while CHOLD is asserted. In
thiscase CEXCshould be asserted acycle before CHOLD is deas-
serted.

INST Thissignal is asserted by the integer unit whenever a new
instruction is being fetched. It is used by the FPU or coprocessor
to latch the instruction on the D[31:0] bus into the FPU or copro-
cessor instruction buffer. The FPU (or coprocessor) needs two in-
struction buffers (D1 and D2) to save the last two fetched instruc-
tions. When INST is asserted anew instruction enters into the D1
buffer and the old instruction in D1 enters into the D2 buffer.

FLUSH. This signal is asserted by the integer unit and is used by
the FPU or coprocessor to flush the instructions in its instruction
registers. This may happen when a trap is taken by the integer
unit. Instructions that have entered into the floating-point (or
coprocessor) gueue may continue their execution if FLUSH is
raised as a result of a trap or exception other than floating-point
(orcoprocessor)exceptions.

FINSL. This signal is asserted by the integer unit during the de-
code stage of an FPU instruction if the instruction is in the D1
buffer of the FPU chip. The FPU uses this signal to latch the in-
struction in D1 buffer into its execute stage instruction register.
FINS2. This signal is asserted by the integer unit during the de-
code stage of an FPU instruction if the instruction is in the D2
buffer of the FPU chip. The FPU uses this signal to latch the in-
struction in D2 buffer into its execute stage instruction register.

CINSL. This signal is asserted by the integer unit during the de-
code stage of a coprocessor instruction if the instruction is in the
D1 buffer of the coprocessor chip. The coprocessor uses this sig-
nal to latch the instruction in D1 buffer into its execute stage in-
structionregister.

CINS2. Thissignal is asserted by the integer unit during the de-
code stage of a coprocessor instruction if the instruction is in the
D2 buffer of the coprocessor chip. The coprocessor uses this sig-
nal to latch the instruction in D2 buffer into its execute stage in-
structionregister.

FXACK. This signal is asserted by the integer unit in order to ac-
knowledge to the FPU that the current FEXC trap is taken. The
FPU must deassert FEXC after it receives an asserted level of
FXACK signal so that the next floating-point instruction does not
cause a “repeated” floating-point exception trap.

Document #: 38—R—-10001—-A

CXACK. Thissignal is asserted by the integer unit in order to ac-
knowledge to the coprocessor that the current CEXC trap is
taken. The coprocessor must deassert CEXC after it receives an
asserted level of CXACK signal so that the next coprocessor in-
structiondoes not cause a “repeated” coprocessor exception trap.

Miscellaneous I/O Signals

IRL[3:0]. The data on these pins defines the external interrupt
level. IRL[3:0]=0000 indicates that no external interrupts are
pending. The integer unit uses two on-chip synchronizing latches
to sample these signals on the rising edge of CLK. A given inter-
rupt level must remain valid for at least two consecutive cycles to
be recognized by the integer unit. IRL[3:0}=1111 signifies an
non-maskableinterrupt. All other interrupt levels are maskable
by the PIL field of the processor state register (PSR). External in-
terrupts should be latched and prioritized by the external logic be-
fore they are passed to the integer unit. The external interrupt
latches should keep the interrupts pending until they are taken
(and acknowledged) by the integer unit. External interrupts can
be acknowledged by software or by the Interrupt Acknowledge
(INTACK) output.

INTACK. Thissignalis asserted by theinteger unit when an exter-
nal interrupt is taken.

RESET Assertion of this pin will reset the integer unit. The RE-
SET signal must be asserted for a minimum of eight processor
clockcycles. After a reset, the integer unit will start fetching from
address 0. The RESET signal is latched by the integer unit before
itis used.

ERROR. This signal is asserted by the integer unit when a trap is
encountered while traps are disabled via the ET bit in the PSR. In
this situation the integer unit saves the PC and nPC registers, sets
the tt value in the TBR, enters into an error state, asserts the ER-
RORsignal and then halts. The only way to restart the processor
trapped in the error state, is to trigger a reset by asserting the RE-
SETsignal.

TOE. This signalis used to force all output drivers of the proces-
sor chip into a high-impedance state. Itis used to isolate the chip
from the rest of the system for debugging purposes.

FPSYN. This pin is amode pin which is used to allow execution of
additional instructions in future designs. It should be normally
kept deasserted (FPSYN=0) to disable the execution of these in-
structions.

CLK. CLK is a 50% duty-cycle clock used for clocking the
CY7C601As pipeline registers. Itis HIGH during the first half of
the processor cycle, and LOW during the second half. The rising
edge of CLK defines the beginning of each pipeline stage in the
CY7C601Achip.

RISC i

