# AlGaAs laser diodes RLD78MA-E

The RLD-78MA-E is world's first mass-produced laser diodes that is manufactured by molecular beam epitaxy. The signal-to-noise ratio is stable in comparison to conventional manufacturing techniques. This device is ideal for use in compact disc players.

#### Applications

Compact disc players

#### Features

- 1) Signal-to-noise ratio guaranteed over entire operating temperature range.
- 2) Reduced facet reflection.
- 3) One-third the dispersion compared with conventional laser diodes.
- 4) High-precision, compact package.

#### • External dimensions (Units : mm)



#### Absolute maximum ratings (Tc=25°C)

| Parameter             |                | Symbol   | Limits  | Unit |  |  |
|-----------------------|----------------|----------|---------|------|--|--|
| Output                |                | Po       | 5       | mW   |  |  |
| Reverse<br>voltage    | Laser          | Vr       | 2       | V    |  |  |
|                       | PIN photodiode | Vr (PIN) | 30      | V    |  |  |
| Operating temperature |                | Topr     | -10~+60 | °C   |  |  |
| Storage temperature   |                | Tstg     | -40~+85 | °C   |  |  |

### Laser diodes

| ●Electrical and optical characteristics (Tc=25°C) |                     |      |      |      |       |                        |  |  |  |
|---------------------------------------------------|---------------------|------|------|------|-------|------------------------|--|--|--|
| Parameter                                         | Symbol              | Min. | Тур. | Max. | Unit  | Conditions             |  |  |  |
| Threshold current                                 | lth                 | -    | 35   | 60   | mA    | -                      |  |  |  |
| Operating current                                 | lop                 | -    | 45   | 70   | mA    | Po=3mW                 |  |  |  |
| Operating voltage                                 | Vop                 | -    | 1.9  | 2.3  | V     | Po=3mW                 |  |  |  |
| Differential efficiency                           | η                   | 0.1  | 0.25 | 0.6  | mW/mA | 2mW<br>I(3mW) – I(1mW) |  |  |  |
| Monitor current                                   | lm                  | 0.1  | 0.2  | 0.6  | mA    | Po=3mW, Vr(pin)=15V    |  |  |  |
| Parallel divergence angle                         | θ //*               | 8    | 11   | 15   | deg   |                        |  |  |  |
| Perpendicular divergence angle                    | θ ⊥*                | 20   | 37   | 45   | deg   | Po=3mW                 |  |  |  |
| Parallel deviation angle                          | Δφ //               | -    | -    | ±2   | deg   |                        |  |  |  |
| Perpendicular deviation angle                     | $\Delta \phi \perp$ | -    | _    | ±3   | deg   |                        |  |  |  |
| Emission point accuracy                           | ΔΧ<br>ΔΥ<br>ΔΖ      | _    | _    | ±80  | μm    | _                      |  |  |  |
| Peak emission wavelength                          | λ                   | 770  | 785  | 810  | nm    | Po=3mW                 |  |  |  |
| Signal-to-noise ratio                             | S/N                 | 60   | -    | -    | dB    | f=720kHz, ∆f=10kHz     |  |  |  |

 $\ast\theta/\!\!/$  and  $\theta\perp$  are defined as the angle within which the intensity is 50% of the peak value.

#### •Electrical and optical characteristic curves



Fig.1 Optical output vs.operating current







Fig.3 Far field pattern









rig.o Monitor current vs.optical ou

ROHM

## Laser diodes



# ROHM