| SPI | $\mathbf{F}C\mathbf{I}$ | FT  | $C\Lambda$ | TT( | ONS |
|-----|-------------------------|-----|------------|-----|-----|
| 171 | '. L                    | ' ' | · /        |     |     |

CUSTOMER : MANSEI

SAMPLE CODE :

(This Code will be changed while mass production)

MASS PRODUCTION CODE : PG12864WRM-KNN-IL3 (VER:B)

# **Customer Approved**

Date:

| Sales Sign | QC Confirmed | Checked By | Designer |
|------------|--------------|------------|----------|
|            |              | Tom 4/22   | 4/22     |

Approval For Specifications Only.

Please contact Powertip or it's representative before designing your product based on this specification.

Approval For Specifications and Sample.

## **Powertip Corporation**

Headquarters:LCD Division:LCM Division:No.8, 6th Road, Taichung Industrial Park,TEL: 886-4-2355-6888TEL: 886-4-2355-8168

Taichung, Taiwan FAX: 886-4-2355-6898 FAX: 886-4-2355-8166

台中市 407 工業區六路 8 號 E-mail: <u>sales@display.powertip.com.tw</u> E-mail: <u>sales@mail.powertip.com.tw</u>

Http://www.powertip.com.tw Http://www.powertip.com.tw

<sup>\*</sup> This specification is subject to change without notice.



# **RECORDS OF REVISION**

| Date      | Rev. | Description                  | Note | Page |
|-----------|------|------------------------------|------|------|
| 2003/4/20 | 0    | Revised Contents             |      |      |
| 2003/6/27 | A    | Update 1.1 Features LCD TYPE |      | 4    |
|           |      | Normal Temp —▶Extended Temp. |      |      |
| 2003/6/28 | В    | Update 1.1 Features LCD TYPE |      | 4    |
|           |      | Positive ——negative          |      |      |
|           |      |                              |      |      |
|           |      |                              |      |      |
|           |      |                              |      |      |
|           |      |                              |      |      |
|           |      |                              |      |      |
|           |      |                              |      |      |
|           |      |                              |      |      |
|           |      |                              |      |      |
|           |      |                              |      |      |
|           |      |                              |      |      |
|           |      |                              |      |      |
|           |      |                              |      |      |
|           |      |                              |      |      |
|           |      |                              |      |      |

Total: 20 Page



#### **Contents**

#### 1. SPECIFICATIONS

- 1.1 Features
- 1.2 Mechanical Specifications
- 1.3 Absolute Maximum Ratings
- 1.4 DC Electrical Characteristics
- 1.5 Optical Characteristics
- 1.6 Backlight Characteristics

#### 2. MODULE STRUCTURE

- 2.1 Counter Drawing
- 2.2 Interface Pin Description
- 2.3 Timing Characteristics
- 2.4 Display Command

## 3. QUALITY ASSURANCE SYSTEM

- 3.1 Quality Assurance Flow Chart
- 3.2 Inspection Specification

### 4. RELIABILITY TEST

4.1 Reliability Test Condition

### 5. PRECAUTION RELATING PRODUCT HANDLING

- 5.1 Safety
- 5.2 Handling
- 5.3 Storage
- 5.4 Terms of Warranty

Note: For detailed information please refer to IC data sheet: KS0107B, KS0108B



## 1. SPECIFICATIONS

### 1.1 Features

| Item                        | Standard Value                                    |
|-----------------------------|---------------------------------------------------|
| Display Type                | 128*64 dots                                       |
| LCD Type                    | STN, BLUE, Transmissive, Negative, Extended Temp. |
| Driver Condition            | LCD Module: 1/64 Duty, 1/8.5 Bias                 |
| Viewing Direction           | 6 O' clock                                        |
| Backlight                   | White LED B/L                                     |
| Weight                      | 70g                                               |
| Interface                   | -                                                 |
| Other(controller/driver IC) | -                                                 |

1.2 Mechanical Specifications

| Item              | Standard Value                   | Unit |
|-------------------|----------------------------------|------|
| Outline Dimension | 93.0(L) * 70.0(w) * 14.0(H)(Max) | mm   |
| Viewing Area      | 72.0(L) * 40.0(w)                | mm   |
| Active Area       | 66.52(L) * 33.24(w)              | mm   |
| Dot Size          | 0.48(L) * 0.48(w)                | mm   |
| Dot Pitch         | 0.52(L) * 0.52(w)                | mm   |

Note: For detailed information please refer to LCM drawing

1.3 Absolute Maximum Ratings

| Item                      | Symbol                           | Condition    | Min.                  | Max.                 | Unit |
|---------------------------|----------------------------------|--------------|-----------------------|----------------------|------|
| Power Supply Voltage      | $V_{DD}$                         | -            | -0.3                  | 7.0                  | V    |
| LCD Driver Supply Voltage | V <sub>DD</sub> -V <sub>EE</sub> | -            | V <sub>DD</sub> -19.0 | V <sub>DD</sub> +0.3 | V    |
| Input Voltage             | V <sub>IN</sub>                  | -            | -0.3                  | V <sub>DD</sub> +0.3 | V    |
| Operating Temperature     | $T_{OP}$                         | Excluded B/L | -20                   | 70                   |      |
| Storage Temperature       | $T_{ST}$                         | Excluded B/L | -30                   | 80                   |      |
| Storage Humidity          | $H_D$                            | Ta < 40      | -                     | 90                   | %RH  |

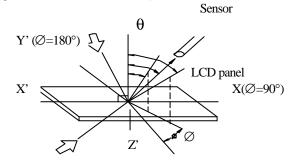


## 1.4 DC Electrical Characteristics

 $V_{DD} = 5.0~V \pm 10\%$  ,  $V_{SS} = 0V$  , Ta = 25

| Item                 | Symbol            | Condition                                | Min.     | Тур. | Max.     | Unit |
|----------------------|-------------------|------------------------------------------|----------|------|----------|------|
| Logic Supply Voltage | $V_{\mathrm{DD}}$ | -                                        | 4.5      | 5.0  | 5.5      | V    |
| "H" Input Voltage    | $V_{\mathrm{IH}}$ | -                                        | 0.7 V DD | 1    | VDD      | V    |
| "L" Input Voltage    | $V_{\rm IL}$      | -                                        | 0        | -    | 0.3 V DD | V    |
| "H" Output Voltage   | $V_{OH}$          | -                                        | 2.4      | ı    | •        | V    |
| "L" Output Voltage   | $V_{OL}$          | -                                        | -        | 1    | 0.4      | V    |
| Supply Current       | $I_{\mathrm{DD}}$ | $V_{DD} = 5.0 \text{ V}$                 | -        | 1.0  | •        | mA   |
|                      |                   | V <sub>DD</sub> - V <sub>O</sub> (-20°C) | -        | 1    | -        |      |
| LCM Driver Voltage   | $V_{OP}$          | V <sub>DD</sub> - V <sub>O</sub> (25°C)  | -        | 12.6 | -        | V    |
|                      |                   | V <sub>DD</sub> - V <sub>O</sub> (70°C)  | -        | -    | -        |      |

# **1.5 Optical Characteristics**


LCD Panel : 1/64 Duty , 1/9 Bias ,  $V_{LCD} = 14\ V$  , Ta = 25

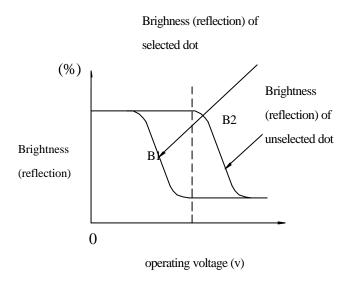
| Item                | Symbol | Conditions                                       | Min. | Тур.   | Max. | Reference   |
|---------------------|--------|--------------------------------------------------|------|--------|------|-------------|
| View Angle          | è      | $C \ge 2.0, \varnothing = 0^{\circ}$             | 40°  | -      | -    | Notes 1 & 2 |
| Contrast Ratio      | С      | $\grave{e} = 5^{\circ}, \varnothing = 0^{\circ}$ | 5    | 7      | -    | Note 3      |
| Response Time(rise) | tr     | $\grave{e} = 5^{\circ}, \varnothing = 0^{\circ}$ | -    | 150 ms | -    | Note 4      |
| Response Time(fall) | tf     | $\grave{e} = 5^{\circ}, \varnothing = 0^{\circ}$ | -    | 300 ms | -    | Note 4      |



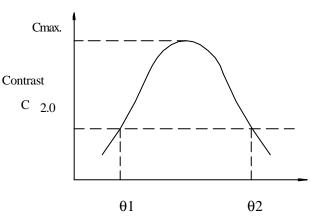
#### Note 1: Definition of angles $\theta$ and $\emptyset$

Light (when reflected)  $z (\theta=0^{\circ})$ 




Light (when transmitted )  $Y(\varnothing=0^{\circ})$   $(\theta=90^{\circ})$ 

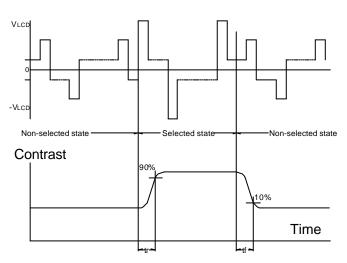
Note 3: Definition of contrast C


C = -

Brightness (reflection) of unselected dot (B2)

Brightness (reflection) of selected dot (B1)




Note 2: Definition of viewing angles  $\theta 1$  and  $\theta 2$ 



viewing angle  $\theta$  ( $\emptyset$  fixed)

Note : Optimum viewing angle with the naked eye and viewing angle  $\theta$  at Cmax. Above are not always the same

Note 4: Definition of response time



Note: Measured with a transmissive LCD panel which is displayed 1 cm<sup>2</sup>

 $V_{LCD}$  : Operating voltage  $f_{FRM}$  : Frame frequency  $t_r$  : Response time (rise)  $t_r$ : Response time (fall)



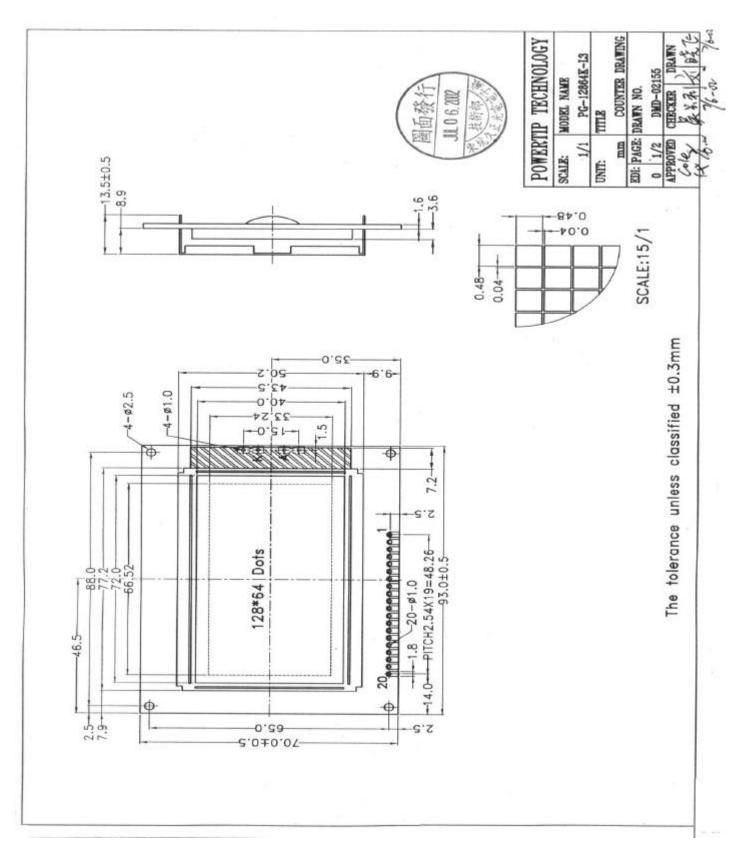
# 1.6 Backlight Characteristics

LCD Module with LED Backlight

**Maximum Ratings** 

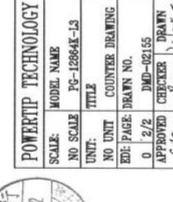
| Iviaxiiiaiii Ivaaiigs     |          |            |      |      |      |
|---------------------------|----------|------------|------|------|------|
| Item                      | Symbol   | Conditions | Min. | Max. | Unit |
| Forward Current           | IF       | Ta =25°C   | 1    | 72   | mA   |
| Reverse Voltage           | VR       | Ta =25°C   | 1    | 5    | V    |
| Power Dissipation         | PO       | Ta =25°C   | 1    | 0.29 | W    |
| Operating Temperature     | $T_{OP}$ | -          | -20  | 70   |      |
| Storage Temperature       | $T_{ST}$ | -          | -30  | 80   |      |
| Solder Temp. for 3 Second | -        | -          | -    | 260  |      |

## Electrical / Optical Characteristics

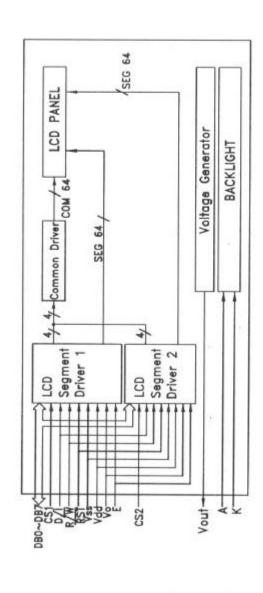

Ta =25

| Item                             | Symbol | Conditions | Min. | Тур.  | Max. | Unit              |
|----------------------------------|--------|------------|------|-------|------|-------------------|
| Forward Voltage                  | VF     | IF=60 mA   | 3    | 3.3   | 4.0  | V                 |
| Reverse Current                  | lR     | VR=5V      | -    | -     | 0.15 | mA                |
| Average Brightness (with LCD)    | IV     | IF=60mA    | -    | 1     | -    | cd/m <sup>2</sup> |
| Average Brightness (without LCD) | lv     | IF=60 mA   | 160  | 245   | -    | cd/m              |
| Wavelength                       | р      | IF=60 mA   | -    | White | -    | nm                |
| Color                            |        |            |      | White |      |                   |




#### 2. MODULE STRUCTURE

# 2.1 Counter Drawing

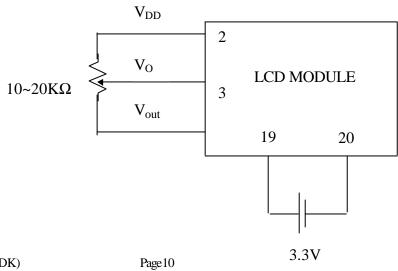





| SIGNAL  | Vss | PP/ | 0/ | 1/0 | R/W | ш | 080 | DB1 | DB2 | DB3 | <b>DB4</b> | DB5 | DB6 | 087 | S  | CS2 | RST | Vout | A  | ×  |
|---------|-----|-----|----|-----|-----|---|-----|-----|-----|-----|------------|-----|-----|-----|----|-----|-----|------|----|----|
| PIN NO. | -   | 2   | 3  | 4   | 2   | 9 | 7   | œ   | 6   | 10  | =          | 12  | 13  | 14  | 15 | 16  | 17  | 18   | 19 | 20 |

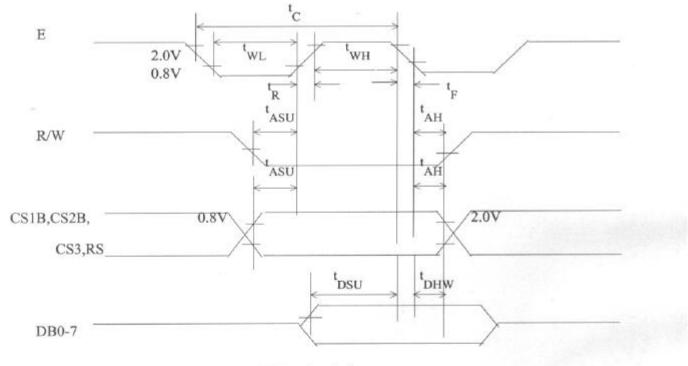


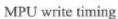


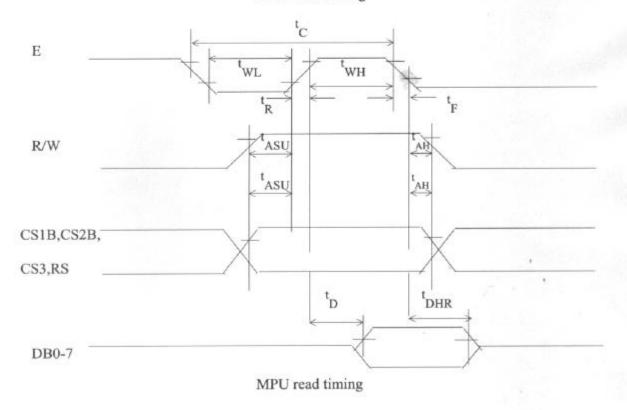





#### **Interface Pin Description** 2.2


| Pin No. | Symbol  | Function                                                                                                                |
|---------|---------|-------------------------------------------------------------------------------------------------------------------------|
| 1       | Vss     | Signal ground (GND)                                                                                                     |
| 2       | Vdd     | Power supply for logic (VDD> VSS)                                                                                       |
| 3       | Vo      | Operating voltage for LCD (variable)                                                                                    |
| 4       | D/ I    | Register selection input High =Data register Low =Instruction register (for write) Busy flag address counter (for read) |
| 5       | R/W     | R/W signal input is used to select the read/write mode  High =Read mode, Low =Write mode                                |
| 6       | Е       | Start enable signal to read or write the data                                                                           |
| 7-14    | DB0-DB7 | Data bus                                                                                                                |
| 15      | CS1     | Chip enable for D2 (segment 1 to segment 64)                                                                            |
| 16      | CS2     | Chip enable for D3 (segment 65 to segment 128)                                                                          |
| 17      | RST     | Reset signal                                                                                                            |
| 18      | Vout    | Negative voltage power supply                                                                                           |
| 19      | A       | Power supply for LED backlight (+)                                                                                      |
| 20      | K       | Power supply for LED backlight (-)                                                                                      |


Contrast Adjust






# 2.3 Timing Characteristics







| Set DDKAM | 0 | 0 | 1 | AC | Set DDKAM address in address | 37118 | 1 |
|-----------|---|---|---|----|----|----|----|----|----|----|------------------------------|-------|---|
| Address   | Ü | U | 1 | 6  | 5  | 4  | 3  | 2  | 1  | 0  | counter.                     | 37μ3  |   |



| Characteristic         | Symbol | Min. | Тур | Max | Unit |
|------------------------|--------|------|-----|-----|------|
| E Cycle                | tC     | 1000 | -   | -   | ns   |
| E High Level Width     | tWH    | 450  | -   | -   | ns   |
| E Low Level Width      | tWL    | 450  | -   | -   | ns   |
| E Rise Time            | tR     | -    | -   | 25  | ns   |
| E Fall Time            | tF     | -    | -   | 25  | ns   |
| Address Set-Up time    | tASU   | 140  | -   | -   | ns   |
| Address Hold Time      | tAH    | 10   | -   | -   | ns   |
| Data Set-Up Time       | tDSU   | 200  |     | -   | ns   |
| Data Delay Time        | tD     | -    | -   | 320 | ns   |
| Data Hold Time (Write) | tDHW   | 10   | -   | -   | ns   |
| Data Hold Time (Read)  | tDHR   | 20   | -   | -   | ns   |



2.4Display command

| 2.4Dispiay com |     |     |     | 1   | ı   |       | ı      | Т         |       | ī   |                            |  |
|----------------|-----|-----|-----|-----|-----|-------|--------|-----------|-------|-----|----------------------------|--|
| Instructions   | D/I | R/W | DB7 | DB6 | DB5 | DB4   | DB3    | DB2       | DB1   | DB0 | Functions                  |  |
|                |     |     |     |     |     |       |        |           |       |     | Controls the display on or |  |
| Display on/off | L   | L   | L   | L   | Н   | Н     | Н      | Н         | Н     | L/H | Off. Internal status and   |  |
|                |     |     |     |     |     |       |        |           |       |     | display RAM data is not    |  |
|                |     |     |     |     |     |       |        |           |       |     | affected.                  |  |
|                |     |     |     |     |     |       |        |           |       |     | L: OFF , H: ON             |  |
| Set address    | L   | L   | L   | Н   |     |       | Y ad   | dress     |       |     | Sets the Y address in the  |  |
| (Y address)    |     |     |     |     |     |       | (0~    | 63)       |       |     | address counter.           |  |
| Set Page       | L   | L   | Н   | L   | Н   | Н     | Н      |           | Page  |     | Sets the X address at the  |  |
| ( X address)   |     |     |     |     |     |       |        |           | (0-7) |     | X register.                |  |
| Display Start  | L   | L   | Н   | Н   |     | D     | isplay | start lir | ne    |     | Indicates the display data |  |
| Line           |     |     |     |     |     |       | (0~    | 63)       |       |     | RAM displayed at the top   |  |
| (Z address)    |     |     |     |     |     |       |        |           |       |     | of the screen.             |  |
|                | L   | Н   | В   | L   | О   | R     | L      | L         | L     | L   | Reads status.              |  |
|                |     |     | U   |     | N   | Е     |        |           |       |     | BUSY H: In operation       |  |
|                |     |     | S   |     | /   | S     |        |           |       |     | L: Ready                   |  |
| Status Read    |     |     | Y   |     | О   | Е     |        |           |       |     | ON/OFF H : Display OFF     |  |
|                |     |     |     |     | F   | T     |        |           |       |     | L : Display ON             |  |
|                |     |     |     |     | F   |       |        |           |       |     | RESET H: Reset             |  |
|                |     |     |     |     |     |       |        |           |       |     | L : Normal                 |  |
|                |     |     |     |     |     |       |        |           |       |     | Writes data (DB0:7) into   |  |
|                |     |     |     |     |     |       |        |           |       |     | display data RAM. After    |  |
| Write Display  | Н   | L   |     |     |     | Write | Data   |           |       |     | writing instruction, Y     |  |
| Data           |     |     |     |     |     |       |        |           |       |     | address is increased by 1  |  |
|                |     |     |     |     |     |       |        |           |       |     | automatically.             |  |
|                |     |     |     |     |     |       |        |           |       |     | Reads data (DB0:7) from    |  |
| Read Display   | Н   | Н   |     |     |     | Read  | Data   |           |       |     | display data RAM to the    |  |
| Data           |     |     |     |     |     |       |        |           |       |     | data bus.                  |  |

# **Detailed Explanation**

Code

## Display On/Off

| 1 1 | 1 1 | 1 | 1 | 0 | 0 | 0 | 0 |  |
|-----|-----|---|---|---|---|---|---|--|



The display data appears when D is 1 and disappears when D is 0. Though the data is not on the screen with D=0, it remains in the display data RAM. Therefore, you can make it appear by changing D=0 into D=1.

### **Display Start Line (Z Address)**

|      | RS | R/W | DB7 | • ••••• | ••••• |     | DB( | )   |     |     |
|------|----|-----|-----|---------|-------|-----|-----|-----|-----|-----|
| Code | 0  | 0   | 1   | 1       | AC5   | AC4 | AC3 | AC2 | AC1 | AC0 |

Z address(AC0-AC2) of display data RAM is set in the display start line register and display at the top of the screen. When the display duty cycle is 1/64 or others(1/32-1/64), the data of total line number of LCD screen, form the line specified by display start line instruction, is displayed. See figure 1.

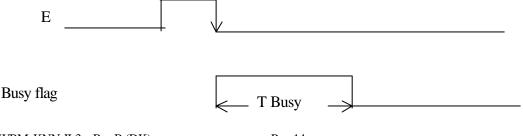
#### Set page (X address)

|      | RS | R/W | DI | 2'/ | ••••• | ••••• |   | DB0 |     |     |
|------|----|-----|----|-----|-------|-------|---|-----|-----|-----|
| Code | 0  | 0   | 1  | 0   | 1     | 1     | 1 | AC2 | AC1 | AC0 |

X address (AC0-AC2) of the display data RAM is set in the X address register. Writing or reading to or from MPU is executed in this specified page until the next page is set. See figure 2.

#### Set Adress (Y Address)

|      | RS | R/W | DI DI | 37 | ••••• |     | DB  | 0   |     |     |
|------|----|-----|-------|----|-------|-----|-----|-----|-----|-----|
| Code | 0  | 0   | 0     | 1  | AC5   | AC4 | AC3 | AC2 | AC1 | AC0 |


Y address(AC0-AC5) of the display data RAM is set in the Y address Counter. An address is set by instruction and increased by 1 automatically by read or write operation of display data.

### Status Read

|      | RS I | R/W | DB7  |   |        | ••••• | DB0 |   |   |   |
|------|------|-----|------|---|--------|-------|-----|---|---|---|
| Code | 1    | 0   | BUSY | 0 | ON/OFF | REST  | 0   | 0 | 0 | 0 |

#### Busy

When busy is 1, the Chip is executing internal operation and no instructions are accepted When busy is 0, the Chip is read to accept any instructions.



PG12864WRM-KNN-IL3 Rev.B (DK)

Page 14



#### • ON/OFF

When on/off is 1, the display is OFF.

When on/off is 0, the display is ON.

1/fCLK T Busy 3/fCLK

#### • RESET

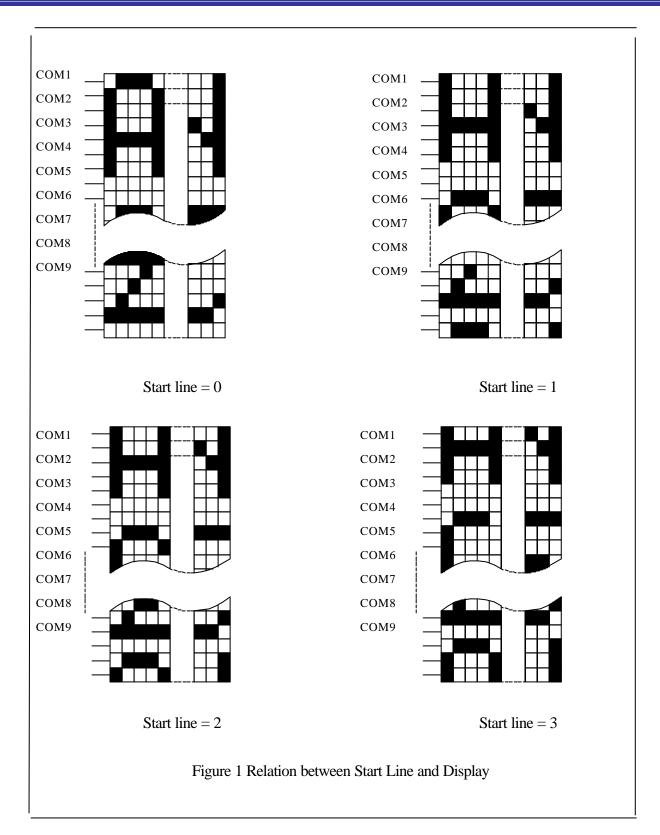
When RESET is 1, the system is being initialized.

In this condition, no instructions except status read can be accepted.

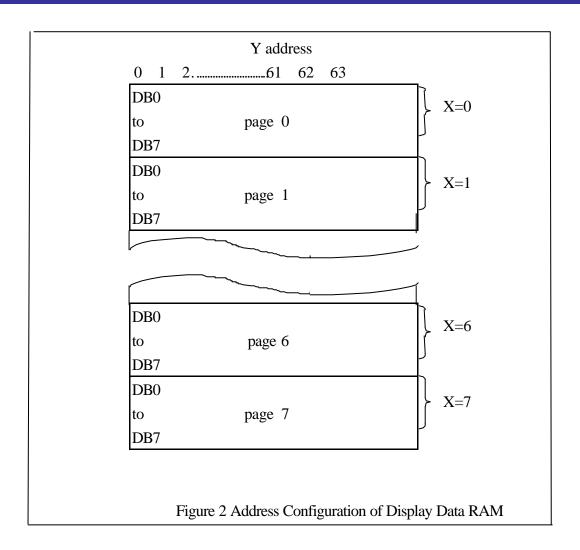
When RESET is 0,initializing has finished and the system is in the usual operation condition.

### Write Display Data

|      | RS | R/W | DB7 |    |    |    | DB0 |    |    |    |
|------|----|-----|-----|----|----|----|-----|----|----|----|
| Code | 0  | 1   | D7  | D6 | D5 | D4 | D3  | D2 | D1 | D0 |


Write data(D0-D7)from the display data RAM. After writing instruction, Y address is increased by 1 automatically.

### **Read Display Data**


| ]    | R/W 1 | D/I ] | DB7 |   |   |   | DB0 |   |   |   |
|------|-------|-------|-----|---|---|---|-----|---|---|---|
| Code | 1     | 1     | D   | D | D | D | D   | D | D | D |

Reads data(D0-D7) from the display data RAM. After reading instruction, Y address is increased by 1automatically

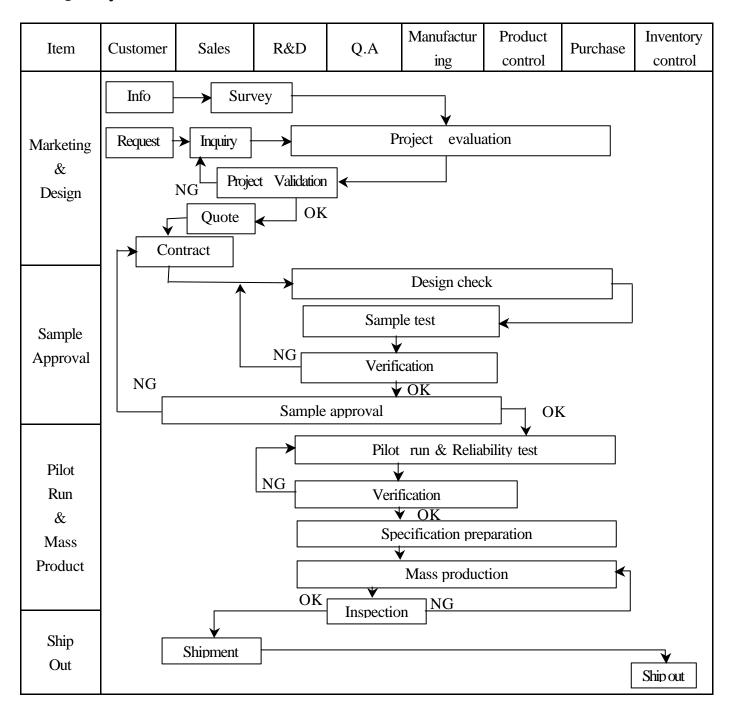




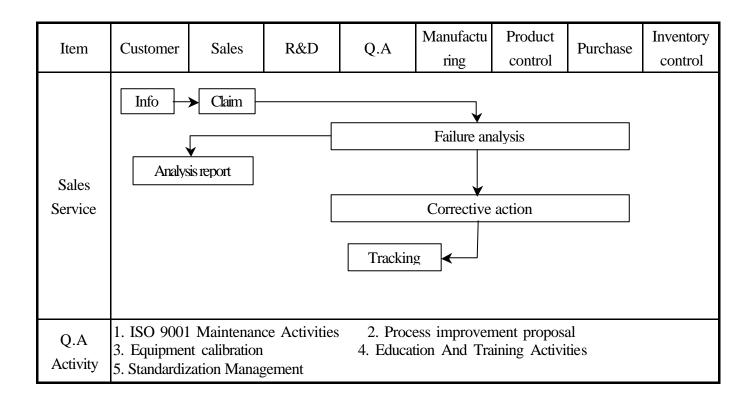




Note: "128\*64" consist of 2 "64\*64"


CS1⇒ Chip enable for left 64\*64 (segment1 to segment 64)

CS2⇒ Chip enable for right 64\*64 (segment 65 to segment 128)




# 3. QUALITY ASSURANCE SYSTEM

## 3.1 Quality Assurance Flow Chart









## 3.2 Inspection Specification

Inspection Standard: MIL-STD-105E Table Normal Inspection Single Sampling Level

Equipment: Gauge, MIL-STD, Powertip Tester, Sample,

IQC Defect Level: Major Defect AQL 0.4; Minor Defect AQL 1.5.

FQC Defect Level: 100% Inspection<sub>o</sub> OUT Going Defect Level: Sampling<sub>o</sub>

Specification:

| NO | Item                                                 | Specification                                                                       | Judge | Level |
|----|------------------------------------------------------|-------------------------------------------------------------------------------------|-------|-------|
| 1  | Part Number                                          | The part number is inconsistent with work order of production                       | N.G.  | Major |
| 2  | Quantity                                             | The quantity is inconsistent with work order of production                          | N.G.  | Major |
|    | Electronic                                           | The display lacks of some patterns.                                                 | N.G.  | Major |
|    | characteristics of                                   | Missing line.                                                                       | N.G.  | Major |
| 3  | LCM                                                  | The size of missing dot, A is $> 1/2$ Dot size                                      | N.G.  | Major |
|    | $A=(L+W) \div 2$                                     | There is no function.                                                               | N.G.  | Major |
|    | , , , , , , , , , , , , , , , , , , ,                | Output data is error                                                                | N.G.  | Major |
|    |                                                      | Material is different with work order of production                                 | N.G.  | Major |
|    |                                                      | LCD is assembled in inverse direction                                               | N.G.  | Major |
|    |                                                      | Bezel is assembled in inverse direction                                             | N.G.  | Major |
|    |                                                      | Shadow is within LCD viewing area + 0.5 mm                                          | N.G.  | Major |
|    | Appearance of                                        | The diameter of dirty particle, A is > 0.4 mm                                       | N.G.  | Minor |
|    | $\begin{array}{c} LCD \\ A=(L+W) \div 2 \end{array}$ | Dirty particle length is > 3.0mm, and 0.01mm < width 0.05mm                         | N.G.  | Minor |
| 4  | D:                                                   | Display is without protective film                                                  | N.G.  | Minor |
|    | Dirty particle<br>(Including                         | Conductive rubber is over bezel 1mm                                                 | N.G.  | Minor |
|    | scratch, bubble)                                     | Polarizer exceeds over viewing area of LCD                                          | N.G.  | Minor |
|    | scratcik bubble)                                     | Area of bubble in polarizer, A > 1.0mm, the number of bubble is > 1 piece.          | N.G.  | Minor |
|    |                                                      | 0.4mm < Area of bubble in polarizer, A < 1.0mm, the number of bubble is > 4 pieces. | N.G.  | Minor |
|    |                                                      | Burned area or wrong part number is on PCB                                          | N.G.  | Major |
|    |                                                      | The symbol, character, and mark of PCB are unidentifiable.                          | N.G   | Minor |
|    |                                                      | The stripped solder mask, A is > 1.0mm                                              | N.G.  | Minor |
|    |                                                      | 0.3mm < stripped solder mask or visible circuit, A <                                | NC    | Minon |
| _  | Appearance of                                        | 1.0mm, and the number is 4 pieces                                                   | N.G.  | Minor |
| 5  | PCB $A=(L+W) \div 2$                                 | There is particle between the circuits in solder mask                               | N.G   | Minor |
|    | A-(L+W) <del>-</del> 2                               | The circuit is peeled off or cracked                                                | N.G   | Minor |
|    |                                                      | There is any circuits risen or exposed.                                             | N.G   | Minor |
|    |                                                      | 0.2mm < Area of solder ball, A is 0.4mm  The number of solder ball is 3 pieces      | N.G   | Minor |
|    |                                                      | The magnitude of solder ball, A is > 0.4mm.                                         | N.G   | Minor |



| NO | Item                            | Specification                                                                                        | Judge | Level |
|----|---------------------------------|------------------------------------------------------------------------------------------------------|-------|-------|
|    |                                 | The shape of modeling is deformed by touching.                                                       | N.G.  | Major |
|    | Appearance of                   | Insufficient epoxy: Circuit or pad of IC is visible                                                  | N.G.  | Minor |
| 6  | molding $A=(L+W) \div 2$        | Excessive epoxy: Diameter of modeling is > 20mm or height is > 2.5mm                                 | N.G.  | Minor |
|    |                                 | The diameter of pinhole in modeling, A is > 0.2mm.                                                   | N.G.  | Minor |
|    |                                 | The folding angle of frame must be $> 45 + 10$                                                       | N.G.  | Minor |
| 7  | Appearance of frame             | The area of stripped electroplate in top-view of frame, A is > 1.0mm.                                | N.G.  | Minor |
| /  | $A=(L+W) \div 2$                | Rust or crack is (Top view only)                                                                     | N.G.  | Minor |
|    |                                 | The scratched width of frame is > 0.06mm. (Top view only)                                            | N.G.  | Minor |
|    | Electrical                      | The color of backlight is nonconforming                                                              | N.G.  | Major |
|    | Electrical characteristic of    | Backlight can't work normally.                                                                       | N.G.  | Major |
| 8  | backlight                       | The LED lamp can't work normally                                                                     | N.G.  | Major |
|    | ouekiigit                       | The unsoldering area of pin for backlight, A is > 1/2 solder joint area.                             | N.G.  | Minor |
|    | $A=(L+W) \div 2$                | The height of solder pin for backlight is > 2.0mm                                                    | N.G.  | Minor |
|    |                                 | The mark or polarity of component is unidentifiable.                                                 | N.G.  | Minor |
|    |                                 | The height between bottom of component and surface of the PCB is floating > 0.7mm                    | N.G.  | Minor |
| 10 | Assembly parts $A=(L+W) \div 2$ | D > 1/4W  W  D  D  Pad                                                                               | N.G.  | Minor |
|    | 11-(2   11), 2                  | End solder joint width, D' is > 50% width of component termination or width of pad                   | N.G.  | Minor |
|    |                                 | Side overhang, D is > 25% width of component termination.                                            | N.G.  | Minor |
|    |                                 | Component is cracked, deformed, and burned, etc.                                                     | N.G.  | Minor |
|    |                                 | The polarity of component is placed in inverse direction.                                            | N.G.  | Minor |
|    |                                 | Maximum fillet height of solder extends onto the component body or minimum fillet height is < 0.5mm. | N.G.  | Minor |



# 4. RELIABILITY TEST

# 4.1 Reliability Test Condition

| NO | Item                               | Test Condition                                                                                                                                                                                                                                  |                                                                                                                                     |
|----|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 1  | High Temperature<br>Storage        | Storage at 80 ± 2 96~100 hrs Surrounding temperature, then storage at normal condition 4hrs                                                                                                                                                     |                                                                                                                                     |
| 2  | Low Temperature<br>Storage         | Storage at -30 ± 2 96~100 hrs Surrounding temperature, then storage at normal condition 4hrs                                                                                                                                                    |                                                                                                                                     |
| 3  | High Temperature /Humidity Storage | 1.Storage 96~100 hrs 60 ± 2 , 90~95%RH surrounding temperature, then storage at normal condition 4hrs.  (Excluding the polarizer).  or  2.Storage 96~100 hrs 40 ± 2 , 90~95%RH surrounding temperature, then storage at normal condition 4 hrs. |                                                                                                                                     |
| 4  | Temperature Cycling                | -20 25 70 25 (30mins) (5mins) (30mins) (5mins) 10 Cycle                                                                                                                                                                                         |                                                                                                                                     |
| 5  | Vibration                          | 10~55Hz (1 minute) 1.5mm  X,Y and Z direction * (each 2hrs)                                                                                                                                                                                     |                                                                                                                                     |
| 6  | ESD Test                           | Air Discharge: Apply 6 KV with 5 times discharge for each polarity +/- Testing location: Around the face of LCD                                                                                                                                 | Contact Discharge: Apply 250V with 5 times discharge for each polarity +/- Testing location: 1.Apply to bezel. 2.Apply to Vdd, Vss. |
| 7  | Drop Test                          | Packing Weight (Kg)  0 ~ 45.4  45.4 ~ 90.8  90.8 ~ 454  Over 454                                                                                                                                                                                | Drop Height (cm)  122  76  61  46                                                                                                   |



#### 5. PRECAUTION RELATING PRODUCT HANDLING

#### **5.1 SAFETY**

- 5.1.1 If the LCD panel breaks, be careful not to get the liquid crystal to touch your skin.
- 5.1.2 If the liquid crystal touches your skin or clothes, please wash it off immediately by using soap and water.

#### 5.2 HANDLING

- 5.2.1 Avoid any strong mechanical shock which can break the glass.
- 5.2.2 Avoid static electricity which can damage the CMOS LSI—When working with the module, be sure to ground your body and any electrical equipment you may be using.
- 5.2.3 Do not remove the panel or frame from the module.
- 5.2.4 The polarizing plate of the display is very fragile. So , please handle it very carefully ,do not touch , push or rub the exposed polarizing with anything harder than an HB pencil lead (glass , tweezers , etc.)
- 5.2.5 Do not wipe the polarizing plate with a dry cloth, as it may easily scratch the surface of plate.
- 5.2.6 Do not touch the display area with bare hands, this will stain the display area.
- 5.2.7 Do not use ketonics solvent & aromatic solvent. Use with a soft cloth soaked with a cleaning naphtha solvent.

#### 5.3 STORAGE

- 5.3.1 Store the panel or module in a dark place where the temperature is  $25 \pm 5$  and the humidity is below 65% RH.
- 5.3.2 Do not place the module near organics solvents or corrosive gases.
- 5.3.3 Do not crush, shake, or jolt the module.

#### **5.4 TERMS OF WARRANTY**

- 5.4.1 Applicable warrant period

  The period is within thirteen months since the date of shipping out under normal using and storage conditions.
- 5.4.2 Unaccepted responsibility
  - This product has been manufactured to your company's specification as a part for use in your company's general electronic products. It is guaranteed to perform according to delivery specifications. For any other use apart from general electronic equipment, we cannot take responsibility if the product is used in nuclear power control equipment, aerospace equipment, fire and security systems or any other applications in which there is a direct risk to human life and where extremely high levels of reliability are required.