To all our customers

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMSs (flash memory, SRAMs €tc.)
Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand
names are mentioned in the document, these names have in fact all been changed to Renesas
Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and
corporate statement, no changes whatsoever have been made to the contents of the document, and
these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.
Customer Support Dept.
April 1, 2003

RENESAS

RenesasTechnology Corp.

Cautions

Keep safety first in your circuit designs!

1

Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and more reliable, but there is aways the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1

These materials are intended as areference to assist our customersin the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or athird party.

Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party'srights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements or
other reasons. It istherefore recommended that customers contact Renesas Technology Corporation
or an authorized Renesas Technology Corporation product distributor for the latest product information
before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

When using any or al of theinformation contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate all information as atota system before
making afinal decision on the applicability of the information and products. Renesas Technology
Corporation assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

Renesas Technology Corporation semiconductors are not designed or manufactured for usein adevice
or system that is used under circumstances in which human lifeis potentially at stake. Please contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor
when considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

Please contact Renesas Technology Corporation for further details on these materials or the products
contained therein.

SuperH RISC engine

SH-4

Programming Manual

RENESANS

ADE-602-156D

Rev.5.0
4/19/2001
Hitachi, Ltd.

Cautions

1.

Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s
patent, copyright, trademark, or other intellectual property rights for information contained in
this document. Hitachi bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information
contained in this document.

Products and product specifications may be subject to change without notice. Confirm that you
have received the latest product standards or specifications before final design, purchase or
use.

Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi’ s sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may directly
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear
power, combustion control, transportation, traffic, safety equipment or medical equipment for
life support.

Design your application so that the product is used within the ranges guaranteed by Hitachi
particularly for maximum rating, operating supply voltage range, heat radiation characteristics,
installation conditions and other characteristics. Hitachi bears no responsibility for failure or
damage when used beyond the guaranteed ranges. Even within the guaranteed ranges,
consider normally foreseeable failure rates or failure modes in semiconductor devices and
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi
product does not cause bodily injury, fire or other consequential damage due to operation of
the Hitachi product.

This product is not designed to be radiation resistant.

No oneis permitted to reproduce or duplicate, in any form, the whole or part of this document
without written approval from Hitachi.

Contact Hitachi’ s sales office for any questions regarding this document or Hitachi
semiconductor products.

Preface

The SH-4 has been developed as the top-end model in the SuperH™* RISC engine family,
featuring a 128-hit graphic engine for multimedia applications and 360 MIPS performance.

The SH-4 CPU has a RISC type instruction set, and features upward-compatibility at the object
code level with SH-1, SH-2, SH-3 microcomputers.

In addition to single- and double-precision floating-point operation capability, the on-chip FPU
has a 128-bit graphic engine that enables 32-bit floating-point data to be processed 128 bhits at a
time. It also supports 4 x 4 array operations and inner product operations.

A superscalar architecture is employed that enables simultaneous execution of two instructions
(including FPU instructions), providing performance of up to twice that of conventional
architectures at the same frequency.

This programming manual gives details of the SH-4 instructions. For hardware details, refer to the
relevant hardware manual.

Related Manual:
SH7750 Series Hardware Manual
SH7751 Hardware Manual

Please consult your Hitachi sales representative for information on development environment
systems.

Note: * SuperH™ is atrademark of Hitachi, Ltd.

Rev. 5.0, 04/01, page iii of 12
RENESAS

Rev. 5.0, 04/01, page iv of 12
RENESAS

Main Revisions and Additionsin thisVersion

Page Item Revision
(See Manual for Details)
13 2.2.4 Control Registers External interrupts of a same level or a
« IMASK: Interrupt mask level lower level than IMASK are masked.
16 23 Memory-Mapped Registers Description amended
26 3.2 Register Descriptions In the SH7750 series and SH7751,
3. Page table entry assistance access to a PCMCIA interface area by
register (PTEA) the DMAC is always performed using the
DMAC’s CHCRN.SSAn, CHCRn.DSAn,
CHCRnN.STC, and CHCRn.DTC values.
112 5.6.4 Priority Order with Multiple Descriptions (a) to (f) totally revised
Exceptions
2. Indivisible delayed branch
instruction and delay slot
instruction
280 9.47 FTRV 1. Multiplies all terms. The results are 28

bits long.

2. Aligns these results, rounding them to
fit within 30 bits.

RENESAS

Rev. 5.0, 04/01, page v of 12

Rev. 5.0, 04/01, page vi of 12
RENESAS

SECHON 1 OVEIVIBW ...ttt sttt 1
S o B {1 =SSR 1
Section 2 Programming MOE ... 5
A R B = = 0] 01T OO RPRRPR 5
A2 = =0 11 (= g @00 g1 Lo U= 4 o] o 1S 6
221 Privileged Mode and Banks..........cccceveiieieieesieseseseseeseesees e s sreseesesseseesnesnens 6
222 GENEral REGISIEIS. . cuiiuiceieeee e ste sttt e sttt sa e e s te e s neene e e eneennens 9
2.2.3 Floating-PoiNt REJISIENS........coveiiiiieiriiieierieeeert e 11
224 CONrol REGISIEISooveeeieitisieierteseeeste ettt sn e 13
225 SYSEM REQISIES.ccuiieeiiitirieietert ettt bbbt 14
2.3 Memory-Mapped REJISLENS.......ccviuiiireeeeee e see e st e e sa e ae e sneeresnenaennens 16
24 DataFormat in REQISIEIS.......ccciuieeierieresie st seseses st esae e sre e sre e seesaesre e resnesneeaenseseens 17
25 DataFormatSin MEMOIYcoiciiecicerese s e s e e s se et e te s ene e e e naeeesrens 17
2.6 PrOCESSOI SEALES........eiiteiiieieeite et ettt sttt sttt rb e et et sae e bt et e et e eatesaeesaeesbeesbeeeesaneeaee 18
2.7 PrOCESSON MOUES......uiiuiiuieiieiesieste sttt sttt b e sbe st et e e st e besbeeneeneeeenseseens 20
Section 3 Memory Management Unit (MMU) ... 21
TN A O = V1= SRS 21
TN R = (1 =< ST RTS R 21
3.1.2 ROIEOfF the MMU ..ot 21
3.1.3 Register CONfigUIaioN........cceiiuirieiriiieeriesieesie et 24
10 51 0 S = 1 o o ST 24
TV = =0 11 (= D 1= o] o) o) SRR 25
T N |V 1= 0 0] Y = o PP OP PR 28
3.3.1 PhySiCal MEMOIY SPACE......cccueieriiriesieeteeeeieeeseesesiesres e esaestesrestesnesreeseeseneeseenes 28
3.3.2 EXternal MEmOrY SPACE........ccouiiieirieieierieeee sttt 31
3.3.3 Virtual MEmOIY SPECE........coueeriiieeriirieisie ettt 32
334 ON-Chip RAM SPBECE.......coiieiiriiieirteieie sttt 33
3.35 AdAressS TranSalioNccveeeririeirisieeee e 33
3.3.6 SingleVirtua Memory Mode and Multiple Virtual Memory Mode.................... 34
3.3.7 Address Space ldentifier (ASID)ccveeeierere e 34
T I = ¥ o o) OSSN 34
34.1 Unified TLB (UTLB) CONfiQUIrationccecuruerieirienieenienieeseseesies e 34
34.2 Instruction TLB (ITLB) Configuration...........coerueerenieenenieeseseesiese s 38
34.3 Address Trandation MethOd..........ccooueirineiiiineneeee e 38
35 MMU FUNCHIONS.....ciietiitiietiriieeesie ettt ettt sttt 41
351 MMU Hardware Managementccceceeeerereveseseeeeseesieseesreseesseessessessssesssennes 41
352 MMU Software Managementcoccoeerereeenenieese et 41

Rev. 5.0, 04/01, page vii of 12
RENESAS

353 MMU INSruction (LDTLB) ..cviveverireerienrereresieeesiee s 41

354 Hardware ITLB MiSSHaNAIINGcccoiveiiririeiiirieee e 42
355 Avoiding Synonym ProblEmMS..........cccoiiiiiiiniereeese e 43
3.6 MMU EXCEPLIONS.....c.ciuiriiuiriirtiieiesteee ettt sb et b et b sn e 44
3.6.1 Instruction TLB Multiple Hit EXCEPLION.......ccccveeeiee e 44
3.6.2 Instruction TLB MiSS EXCEPLION.......cccieiierieriesiesereeteeseesae e st e e e e see e e 45
3.6.3 Instruction TLB Protection Violation EXCEPLIoNccccceivveeereeeerienene e 46
3.6.4 DataTLB Multiple Hit EXCEPLIONc.coeiieiriiieinieeeriee e 47
3.65 DataTLB MiSSEXCEPLONc.cvviiiiiiieiriiieeresie et 47
3.6.6 DataTLB Protection Violation EXCEPLION.........ccccurerrererininieireseeee e 48
3.6.7 Initial Page Writ€ EXCEPION......ccveieee e 49
3.7 Memory-Mapped TLB ConfigUration..........cccccieveierieeieeriereseseseeseesee e e se s see e see e 50
2% R I Y0 o [S AN - Y 51
O N BT r- U Y 1 - Y PSS 52
R T B N B B r- U Y £ - VPSS 53
374 UTLB AQArESS AITYcouirieieiirieieiisieiee sttt 53
375 UTLB DABAITAY L..ooiciieieesiereee ettt sttt 55
376 UTLB DABAITAY 2ottt st sttt st 56
SECHON 4 CBCNES.......coc st 57
R O = oV YU URRSPRN 57
O R = (U1 = TP 57
4.1.2 Register CONfigUIaioN.......cccceieiirieieeeeeeseeseste e se e e sae e sre e saeere e e eaeseeseenees 58
N = (=0 15 (= G L= v] o] o] PSR 58
4.3 Operand Cathe (OC)......ccuivieieeieieiese st st e e sesee e sre e e e e ss e besresre s e eneeneenaenseseens 61
4.3 1 CONFIQUIBLTIONccueieieeeirtiieiesi ettt bbbt 61
4.3.2 REH OPEIELHONccuieinieiiitieierite sttt 62
4.3.3 WIITE OPEIALION ...ttt bbb 63
434 Write-Back BUFfEr ..o 65
435 Write-Through BUFfENcceieiececce st 65
436 RAM MOUE......oiiiiiiieeese ettt et sttt bbb e 65
4.3.7 OC INAEBX MOUE ...ttt st seesne e 66
4.3.8 Coherency between Cache and External MemMOrycccocvverrenennienenieiesennee 67
4.3.9 PrefefCh OPEration ..ot e 67
A 1 01 0 (o 1T W @ = (o S 68
5 R O o 1o [0 - (o o R 68
N = (== o M @ o= = (o] o 69
443 TCINAEX MOUE........coieiieieieeeeeee ettt e b nes 70
45 Memory-Mapped Cache Configurationccoeirereineniee e 70
451 IC AUUIESS ATTAY ..ovieeieieiieieeierteee sttt bbbt 70
N A O D F- - W N - Y PSP RURRUPRPRRPI 71
4.5.3 OC ACUrESS ATTAY...cueieieeeeeeeeiesiesese st ete e e etesee e saesre e e e saestestestesneeseeeenseseesrennes 72
R N @ O BT - U N £ - Y PR PP PR PRPRRPI 74

Rev. 5.0, 04/01, page viii of 12

IS (0] (=X @ 11 < U T TSR 75
4.6.1 SQ CONFIQUIBLION......ceiuereirieiiriirieeeiesi ettt 75
4.6.2 SQWWIILES....eucuiitiieeiitisiei sttt ettt e st e e se s be e e se s benaenesee e e 75
4.6.3 Transfer to EXternal MemOrY........cccoociiiieiinerieene et 75
VN SIS O N = (o] (= (o] [OOSR 77
SECHONS EXCEPUIONS.......cooierierceeeieeieeieeieet ettt sttt 79
LT R © 1 4V 1= ORI 79
TN R = (1 - USSR URURPRORN 79
512 Register CONfigUIation.........ccceireiieririeieirieeeisieeee e 79
ST = =0 11 (= 1= o] o) o) RS 80
5.3 Exception Handling FUNCLIONS.........cccoiiiiiiiinirecieseese et see st st e e e e e 81
531 Exception Handling FIOWcccviieieiiiiie s s eneas 8l
5.3.2 Exception Handling Vector AdAreSSESooveeririeeriinieesieseeesieseeesiesee s 81
5.4 EXception TYpesS and PriortieSccoeoiiiiiririentsenese e e 82
5.5 EXCEPLON FIOW ..ottt et 85
55.1 EXCEPLION FIOW ...ccuiiieceicieiec ettt st s e e et nnenne s 85
5.5.2 EXCEPLION SOUICE ACCEPLANCE.eivecveeeeeneeiestesteseesteseeseesaesse e sresressesseessensenseseens 86
5.5.3 Exception Requestsand BL Bitccccceeieieieriiisesecreses s 88
55.4 Return from Exception Handlingcceoiveieinineinieereeceseeeeseesee s 88
5.6 DeSCription Of EXCEDIIONS.....cccciitirieiiterieeeie sttt ettt 88
B.B.1 RESES....cuiiiiiciitisieiste sttt sttt ettt b et b et ne ettt enn 88
5.6.2 GeENEral EXCEPLIONS.cceeieeieviise et eeee sttt st e e aeseesaenne s 95
5.6.3 INLEITUPDLS...ciitiiiiee sttt be e s b re et e e e re e e 109
5.6.4 Priority Order with Multiple EXCEPIONS........ccccveierieresie s seseceeeeseeie e 112
5.7 USAOE NOLESottt s se e nenre s 113
5.8 RESIICHONS ..ttt sttt ettt ettt st b e be et e nee e e aeseesnens 114
Section 6 Floating-PoiNt UNITo.ooccncseieeesesssseeseesssssssssssesseees 115
LN A @ = 1= ST RS 115
6.2 DalBFOIMELS........eoieeie e 115
6.2.1 Floating-POiNt FOMMEL.........cooeiiiieeirieieereeer e 115
6.2.2 NON-NUMDES (NN) ...coviiiieiiriiieireee s 117
6.2.3 Denormalized NUMDENSc.oiiiiiieieeses et eneas 118
LG T o 11 (= £ PSR 119
6.3.1 Floating-PoiNt REQISIEIS......cccciiiiieeeeeeeiereste e sres e eaesaesee e sreste s e eseeeeseensesnens 119
6.3.2 Floating-Point Status/Control Register (FPSCR).........cccvovvieveieseneeeeieeseenie e 121
6.3.3 Floating-Point Communication Register (FPUL)cccoviiineinircnceneees 122
6.4 ROUNGING. ...c.ecueitieeietiriiiet sttt bbb bbb bt e et st e s s b e 122
6.5 F0ating-PoiNt EXCEPLIONS.couiiiirieiniirieisi sttt 123
6.6 GraphiCs SUPPOIt FUNCLIONS........ccieieiesie e cteseeeese s e re et eaesae st neere e e e e saesresreeneennens 124
6.6.1 Geometric Operation INSIIUCHIONS.......cccccovieiieeereee e e 124
6.6.2 Pair Single-Precision Data TranSfer.......ccovvveeeieerere e esee e st 126

Rev. 5.0, 04/01, page ix of 12
RENESAS

SECHON 7 INSITUCHION SEL.....oeeeeeeeeeeeeee ettt e et et e et e s st eeeneeeeeee e 127

7.1 EXECULION BENVIFONMENE.......oiiiiiiitietieieie ettt s sae e st et st snesne e e eneeseens 127
7.2 AJAreSSING MOEScocuiieiiieeietee bbbt e 129
7.3 INSITUCHION SEE ...ttt sttt b et e et et eae e e e eeneeseens 133
SECHION 8 PIPEIINING ...ttt 147
T80 R = 1 o= 11 0= OO 147
8.2 Parallel-EXECULADITILYcoireeiieiecisie e 154
8.3 Execution Cyclesand Pipeling Stallingccccovireininieirieeee e 158
Section 9 INSLruCtion DESCIIPLIONS..........ccieeereieeieeeeeereseeeeeee et 175
91 ADD...... ADD biNary ...ococeveecevesese s Arithmetic Instruction 188
9.2 ADDC ... ADD With Carryccccvvevvecieeceeseie s Arithmetic Instruction............ 190
9.3 ADDV ... ADD with (V flag) overflow check Arithmetic Instruction 191
94 AND ... AND 10gICal ..o Logical Instruction................ 193
95 BF ... Branch if Falseccoovovvevenciceeecee, Branch Instruction................. 195
96 BF/S.... Branch if Falsewith delay Slot Branch Instruction................. 197
9.7 BRA ... BRANCH ..o Branch Instruction................. 199
9.8 BRAF BRANCh Far ...cccooeiiieee e Branch Instruction................. 201
99 BSR....... Branch to SubRoutineccccceeeveienienne. Branch Instruction................. 202
9.10 BSRF........... Branch to SubRoutine Farcccccoeeuee. Branch Instruction................. 204
911 BT .o Branch if True ..., Branch Instruction................. 206
9.12 BT/S........... Branch if Truewith delay Slot Branch Instruction................. 208
9.13 CLRMACCleaR MAC registerccccovvvrvreeieeieesennnns System Control Instruction.... 210
9.14 CLRS........ CleaR Shit ..o System Control Instruction.... 211
9.15 CLRT CleaR T Dt oo System Control Instruction.... 212
9.16 CMP/cond ... CoMPare conditionalyccoceveerenne Arithmetic Instruction............ 213
9.17 DIVOS DIVide (step 0) as Signedcceeevreenene Arithmetic Instruction 217
9.18 DIVOU DIVide (step 0) asUnsignedcccceeueee. Arithmetic Instruction............ 218
9.19 DIV1 ... (D] AVATo (SRS (= o Arithmetic Instruction............ 219
9.20 DMULSL ... Double-length MULtiply as Signed Arithmetic Instruction............ 224
9.21 DMULU.L ..Double-length MULtiply asUnsigned Arithmetic Instruction............ 226
9.22 DT .o Decrement and TeStccovvevevenenceeein Arithmetic Instruction 228
9.23 EXTS ... EXTendasSignedccccoevvvnicnncnienn Arithmetic Instruction............ 229
9.24 EXTU EXTendasUnsignedccccceevvvvvneennnne Arithmetic Instruction 231
9.25 FABS........ Floating-point ABSolute value Floating-Point Instruction...... 232
9.26 FADD Floating-point ADDcccceevevveveereriesiennn, Floating-Point Instruction...... 233
9.27 FCMP Floating-point COMParec.ccoeeervene. Floating-Point Instruction...... 235
9.28 FCNVDS Floating-point CoNVert

Double to Single precisionc.ccceeeeeene. Floating-Point Instruction...... 238
9.29 FCNVSD ... Floating-point CoNVert

Single to Double precisionccccvvveueee Floating-Point Instruction...... 240
9.30 FDIV Floating-point DIVidecccccvevevevecerinnen, Floating-Point Instruction...... 242

Rev. 5.0, 04/01, page x of 12
RENESAS

931
9.32
9.33
9.34
9.35
9.36
9.37
9.38
9.39
9.40
941
9.42
9.43
9.44
9.45
9.46

9.47
9.48
9.49
9.50
9.51
9.52
9.53
9.54
9.55
9.56
9.57
9.58
9.59
9.60
9.61
9.62
9.63
9.64
9.65
9.66
9.67
9.68
9.69
9.70
9.71
9.72

FIPR Floating-point Inner PRoduct Floating-Point Instruction...... 246

FLDIO.......... Floating-point LoaD Immediate 0.0 Floating-Point Instruction...... 248
FLDIT1 Floating-point LoaD Immediate 1.0 Floating-Point Instruction...... 249
FLDS Floating-point LoaD to System register ... Floating-Point Instruction...... 250
FLOAT Floating-point convert from integer Floating-Point Instruction...... 251
FMAC Floating-point Multiply and ACcumulate . Floating-Point Instruction...... 253
FMOV Floating-point MOVEccecveveveeceiesennnn, Floating-Point Instruction...... 259
FMOV Floating-point MOV e extension Floating-Point Instruction...... 263
FMUL Floating-point MULLIPIYccccovirieeninnen Floating-Point Instruction...... 266
FNEG Floating-point NEGate value...................... Floating-Point Instruction...... 268
FRCHG FR-bit CHanGeccccccvvvvveerececeeeees Floating-Point Instruction...... 269
FSCHG Sz-bit CHaNGEccccvvvevreeeeeccere e Floating-Point Instruction...... 270
FSORT Floating-point SQuare ROOTccceveee. Floating-Point Instruction...... 271
FSTS Floating-point STore System register Floating-Point Instruction...... 274
FSUB Floating-point SUBtractc.cccoeeeruennee Floating-Point Instruction...... 275
FTRC Floating-point TRuncate and Convert to integer

.. Floating-Point Instruction...... 277
FTRV ... Floating-point TRansform Vector Floating-Point Instruction...... 280
IMP JUMP e Branch Instruction................. 283
ISR Jump to SUDROULINEccovvveiriiieiieine Branch Instruction................. 284
LDC LoaD to Control registercocoveeererienn System Control Instruction.... 286
LDS ... LoaD to FPU System register System Control Instruction.... 290
LDScc..... LoaD to System registerccocevvvvveernnnne. System Control Instruction.... 292
LDTLB LoaD PTEH/PTEL/PTEAtOo TLB System Control Instruction.... 294
MACLL Multiply and ACcumulate Long Arithmetic Instruction............ 296
MACW Multiply and ACcumulate Word Arithmetic Instruction 300
MOV MOVedataccceeeevenerereeereeee e Data Transfer Instruction....... 303
MOV MOVe constant valuecccceceeveenenenennne. Data Transfer Instruction....... 308
MOV ... MOVeglobal dataccccoevrerveeeiiesenen Data Transfer Instruction....... 311
MOV MOVe structure datacocoveevrereerienenn Data Transfer Instruction....... 314
MOVA ... MOVe effective AAressccoceveevrienn Data Transfer Instruction....... 317
MOVCA.L ..MOVewith Cache block Allocation Data Transfer Instruction....... 318
MOVT MOVET Dt oo Data Transfer Instruction....... 319
MUL.L ... MULLIPIY LONG .o Arithmetic Instruction 320
MULSW MULtiply as Signed Wordc.cccccvveenee Arithmetic Instruction............ 321
MULU.W MULtiply asUnsigned Word Arithmetic Instruction............ 322
NEG NEGEEcovvrieirierieesie e Arithmetic Instruction 323
NEGC NEGate With Carryccccceveveienenecenenens Arithmetic Instruction............ 324
NOP NO OPErationccceveveeereneienineieneeene System Control Instruction.... 325
NOT ..o NOT-logical complementc.coceceeuennee Logical Instruction................. 326
OCBI Operand Cache Block Invalidate Data Transfer Instruction....... 327
OCBP Operand Cache Block Purgecccceueuiee. Data Transfer Instruction....... 329
OCBWEB Operand Cache Block Write Back Data Transfer Instruction....... 329

Rev. 5.0, 04/01, page xi of 12
RENESAS

9.73 ORccceee. (O] 23 oo [[or: Logica Instruction................. 330

9.74 PREF PREFetch datato cachecccccceveriennne Data Transfer Instruction....... 332
9.75 ROTCL ROTate with Carry Leftcooecvvireinenn Shift Instruction............c........ 333
9.76 ROTCR ROTate with Carry Rightcccccceinienene Shift Instruction............c........ 334
9.77 ROTL ROTAELEft ..o Shift Instruction..........c.ce.ee. 335
9.78 ROTR ROTate Rightcccveeevee e Shift Instruction...........c.c....... 336
9.79 RTE ReTurn from EXceptionc.ccevevveveenne System Control Instruction.... 337
9.80 RTS ReTurn from Subroutinec.cccceeevenee. Branch Instruction................. 339
981 SETS ... SET SDIt .o System Control Instruction.... 341
9.82 SETT SET T hit oo System Control Instruction.... 342
9.83 SHAD SHift Arithmetic Dynamicaly Shift Instruction...........cc........ 343
9.84 SHAL ... SHift Arithmetic Left ... Shift Instruction...........ccccveee. 345
9.85 SHAR........ SHift Arithmetic Right ... Shift Instruction...........ccc.e..... 346
9.86 SHLD SHift Logical Dynamicallycccccceeueneee Shift Instruction.................... 347
9.87 SHLL ... SHift Logical Leftccooveeviiiiieiiciieens Shift Instruction..........cc........ 349
9.88 SHLLn ... n bits SHift Logical Leftcccoovveinienne Shift Instruction...........cc........ 350
9.89 SHLR SHift Logical Rightcccccoevevvieiecee Shift Instruction............c........ 352
9.90 SHLRn n bits SHift Logical Rightc.cccccvevenee Shift Instruction...........cc........ 353
991 SLEEP...... SLEEP ..ot System Control Instruction.... 355
992 STC STore Control registercooovevereneenennas System Control Instruction.... 356
993 STS.......... STore System registercoovveeveneeneens System Control Instruction.... 361
994 STS....... STorefrom FPU System register System Control Instruction.... 363
9.95 SUB......... SUBtract binarycccoeeeevveeeveeceereenesenens Arithmetic Instruction............ 365
9.96 SUBC SUBtract with Carryccoceeeveveveveveenen, Arithmetic Instruction............ 366
9.97 SUBV ... SUBtract with (V flag) underflow check.... Arithmetic Instruction............ 367
9.98 SWAP ... SWAP register halvescccccevvvecnineens Data Transfer Instruction....... 369
999 TAS...... Test ANd St ..o Logical Instruction................. 371
9.100 TRAPA TRAP AIWEYS ..o System Control Instruction.... 373
9.101 TSTe..... TeST 10gical ...ccceovvvvveieeceereee e Logica Instruction................. 374
9.102 XOR eXclusve OR logicalcccccevevvnevnniennenn Logica Instruction................. 376
9.103 XTRCT EXTRAECT ..o Data Transfer Instruction....... 378
AppendiX A INSEIUCLION COAES ... 379
A.1 Instruction Set by Addressing MOGE.........cociiiriiiiireeee e 379
Appendix B Instruction Prefetch Side Effects..........cooovicncnncccne, 393

Rev. 5.0, 04/01, page xii of 12
RENESAS

Section 1 Overview

11 SH-4 Features

The SH-4 isa 32-hit RISC (reduced instruction set computer) microprocessor, featuring object
code upward-compatibility with SH-1, SH-2, SH-3, and SH-3E microcomputers. Its 16-bit fixed-
length instruction set enables program code size to be reduced by almost 50% compared with 32-

bit instructions.

The features of the SH-4 are summarized in table 1.1.

Tablel.1 SH-4Features

Item Features

Architecture .

Original Hitachi SH architecture

32-bit internal data bus

General register file:

O Sixteen 32-bit general registers (and eight 32-bit shadow registers)
O Seven 32-bit control registers

O Four 32-bit system registers

RISC-type instruction set (upward-compatible with SH Series)
O Fixed 16-bit instruction length for improved code efficiency
0 Load-store architecture

O Delayed branch instructions

0 Conditional execution

O C-based instruction set

Superscalar architecture (providing simultaneous execution of two
instructions) including FPU

Instruction execution time: Maximum 2 instructions/cycle

Virtual address space: 4 Ghytes (448-Mbyte external memory space)
Space identifier ASIDs: 8 bits, 256 virtual address spaces

On-chip multiplier

Five-stage pipeline

Rev. 5.0, 04/01, page 1 of 394
RENESAS

Tablel.1l SH-4 Features(cont)

Item Features

FPU .

On-chip floating-point coprocessor

Supports single-precision (32 bits) and double-precision (64 bits)
Supports IEEE754-compliant data types and exceptions

Two rounding modes: Round to Nearest and Round to Zero

Handling of denormalized numbers: Truncation to zero or interrupt
generation for compliance with IEEE754

Floating-point registers: 32 bits x 16 words x 2 banks
(single-precision x 16 words or double-precision x 8 words) x 2 banks

32-bit CPU-FPU floating-point communication register (FPUL)

Supports FMAC (multiply-and-accumulate) instruction

Supports FDIV (divide) and FSQRT (square root) instructions

Supports FLDIO/FLDI1 (load constant 0/1) instructions

Instruction execution times

O Latency (FMAC/FADD/FSUB/FMUL): 3 cycles (single-precision), 8
cycles (double-precision)

0 Pitch (FMAC/FADD/FSUB/FMUL): 1 cycle (single-precision), 6 cycles
(double-precision)

Note: FMAC is supported for single-precision only.

3-D graphics instructions (single-precision only):

O 4-dimensional vector conversion and matrix operations (FTRV): 4
cycles (pitch), 7 cycles (latency)

O 4-dimensional vector (FIPR) inner product: 1 cycle (pitch), 4 cycles
(latency)

Five-stage pipeline

Memory .
management
unit (MMU)

4-Gbyte address space, 256 address space identifiers (8-bit ASIDSs)
Single virtual mode and multiple virtual memory mode

Supports multiple page sizes: 1 kbyte, 4 kbytes, 64 kbytes, 1 Mbyte
4-entry fully-associative TLB for instructions

64-entry fully-associative TLB for instructions and operands

Supports software-controlled replacement and random-counter
replacement algorithm

TLB contents can be accessed directly by address mapping

Rev. 5.0, 04/01, page 2 of 394

RENESAS

Tablel.1 SH-4 Features(cont)

Item

Features

Cache memory

Instruction cache (IC)

g
t
g
t

8 kbytes, direct mapping

256 entries, 32-byte block length
Normal mode (8-kbyte cache)
Index mode

Operand cache (OC)

O Ooooogod

16 kbytes, direct mapping

512 entries, 32-byte block length
Normal mode (16-kbyte cache)
Index mode

RAM mode (8-kbyte cache + 8-kbyte RAM)
Choice of write method (copy-back or write-through)

Single-stage copy-back buffer, single-stage write-through buffer

Cache memory contents can be accessed directly by address mapping
(usable as on-chip memory)

Store queue (32 bytes x 2 entries)

RENESAS

Rev. 5.0, 04/01, page 3 of 394

Rev. 5.0, 04/01, page 4 of 394
RENESAS

Section 2 Programming Model

2.1 Data Formats

The data formats handled by the SH-4 are shown in figure 2.1.

7 0
Byte (8 bits)
15 0
Word (16 bits)
31 0
Longword (32 bits)
3130 22 0
Single-precision floating-point (32 bits) s| exp fraction
63 62 51 0
Double-precision floating-point (64 bits) [s| exp fraction

Figure2.1 Data Formats

Rev. 5.0, 04/01, page 5 of 394
RENESAS

2.2 Register Configuration

221 Privileged M ode and Banks

Processor Modes: The SH-4 has two processor modes, user mode and privileged mode. The SH-4
normally operates in user mode, and switches to privileged mode when an exception occurs or an
interrupt is accepted. There are four kinds of registers—general registers, system registers, control
registers, and floating-point registers—and the registers that can be accessed differ in the two
processor modes.

General Registers: There are 16 general registers, designated RO to R15. General registers RO to
R7 are banked registers which are switched by a processor mode change.

In privileged mode, the register bank bit (RB) in the status register (SR) defines which banked
register set is accessed as general registers, and which set is accessed only through the load control
register (LDC) and store control register (STC) instructions.

When the RB hit is 1 (that is, when bank 1 is selected), the 16 registers comprising bank 1 general
registers RO_BANK1 to R7_BANK?1 and non-banked genera registers R8 to R15 can be accessed
as general registers RO to R15. In this case, the eight registers comprising bank 0 general registers
RO_BANKO to R7_BANKO are accessed by the LDC/STC instructions. When the RB bit is O (that
is, when bank 0O is selected), the 16 registers comprising bank 0 general registers RO_ BANKO to
R7_BANKO and non-banked general registers R8 to R15 can be accessed as general registers RO
to R15. In this case, the eight registers comprising bank 1 general registers RO_ BANK1 to
R7_BANK1 are accessed by the LDC/STC instructions.

In user mode, the 16 registers comprising bank 0 general registers RO BANKO to R7_BANKO and
non-banked general registers R8 to R15 can be accessed as general registers RO to R15. The eight
registers comprising bank 1 general registers RO BANK 1 to R7_BANKZ1 cannot be accessed.

Control Registers: Control registers comprise the global base register (GBR) and status register
(SR), which can be accessed in both processor modes, and the saved status register (SSR), saved
program counter (SPC), vector base register (VBR), saved genera register 15 (SGR), and debug
base register (DBR), which can only be accessed in privileged mode. Some hits of the status
register (such asthe RB bit) can only be accessed in privileged mode.

System Registers. System registers comprise the multiply-and-accumul ate registers
(MACH/MACL), the procedure register (PR), the program counter (PC), the floating-point
status/control register (FPSCR), and the floating-point communication register (FPUL). Access to
these registers does not depend on the processor mode.

Rev. 5.0, 04/01, page 6 of 394
RENESAS

Floating-Point Registers. There are thirty-two floating-point registers, FRO—FR15 and XFO—
XF15. FRO—-R15 and XFO—XF15 can be assigned to either of two banks (FPRO_BANKO-
FPR15 BANKO or FPRO_BANK1-FPR15 BANK1).

FRO—FR15 can be used as the eight registers DR0/2/4/6/8/10/12/14 (double-precision floating-

point registers, or pair registers) or the four registers FV0/4/8/12 (register vectors), while XFO—
XF15 can be used as the eight registers XD0/2/4/6/8/10/12/14 (register pairs) or register matrix
XMTRX.

Register values after areset are shown in table 2.1.

Table2.1 Initial Register Values

Type Registers Initial Value*

General registers RO_BANKO0-R7_BANKO, Undefined
RO_BANK1-R7_BANK1,

R8-R15
Control registers SR MD bit=1, RB hit=1, BL bit=1, FD bit=0,
13-10 = 1111 (H'F), reserved bits = 0, others
undefined
GBR, SSR, SPC, SGR, Undefined
DBR
VBR H'00000000
System registers MACH, MACL, PR, FPUL Undefined
PC H'A0000000
FPSCR H'00040001
Floating-point FRO-FR15, XFO—XF15 Undefined

registers

Note: * Initialized by a power-on reset and manual reset.

The register configuration in each processor is shown in figure 2.2.

Switching between user mode and privileged mode is controlled by the processor mode bit (M D)
in the status register.

Rev. 5.0, 04/01, page 7 of 394
RENESAS

31

31

31

RO_BANKQ*%*2 RO_BANK1*1#3 RO_BANKOQ*1*4
R1_BANKO*? R1_BANK1*3 R1_BANKO*4
R2_BANKO*? R2_BANK1*3 R2_BANKO**
R3_BANKO*? R3_BANK1*3 R3_BANKO*
R4_BANKO*? R4_BANK1*3 R4_BANKO**
R5_BANKO*? R5_BANK1*3 R5_BANKO**
R6_BANKO*? R6_BANK1*3 R6_BANKO**
R7_BANKO*? R7_BANK1*3 R7_BANKO**

R8 R8 R8
R9 R9 R9
R10 R10 R10
R11 R11 R11
R12 R12 R12
R13 R13 R13
R14 R14 R14
R15 R15 R15
SR SR SR
SSR SSR
GBR GBR GBR
MACH MACH MACH
MACL MACL MACL
PR PR PR
VBR VBR
PC PC PC
SPC SPC
SGR SGR
DBR DBR
RO_BANKQ*1.*4 RO_BANK1*1*3
R1_BANKO*4 R1_BANK1*3
R2_BANKO* R2_BANK1*3
R3_BANKO*4 R3_BANK1*3
R4_BANKO* R4_BANK1*3
R5_BANKO* R5_BANK1*3
R6_BANKO*4 R6_BANK1*3
R7_BANKO* R7_BANK1*3

(a) Register configuration
in user mode

(b) Register configuration in
privileged mode (RB = 1)

(c) Register configuration in
privileged mode (RB = 0)

Notes: 1. The RO register is used as the index register in indexed register-indirect addressing mode and
indexed GBR indirect addressing mode.

2. Banked registers
3. Banked registers

Accessed as general registers when the RB bit is set to 1 in the SR register. Accessed only by
LDC/STC instructions when the RB bit is cleared to 0.

4. Banked registers

Accessed as general registers when the RB bit is cleared to 0 in the SR register. Accessed only by
LDC/STC instructions when the RB bit is set to 1.

Figure2.2 CPU Register Configuration in Each Processor Mode

Rev. 5.0, 04/01, page 8 of 394

RENESAS

222 General Registers

Figure 2.3 shows the relationship between the processor modes and general registers. The SH-4
has twenty-four 32-bit general registers (RO_BANKO0-R7_BANKO, RO BANK1-R7_BANK1,
and R8-R15). However, only 16 of these can be accessed as general registers RO—R15 in one
processor mode. The SH-4 has two processor modes, user mode and privileged mode, in which
RO-R7 are assigned as shown below.

RO BANKO-R7_BANKO
In user mode (SR.MD = 0), RO—R7 are always assigned to RO BANKO-R7_BANKO.

In privileged mode (SR.MD = 1), RO-R7 are assigned to RO BANKO0-R7_BANKUO0 only when
SR.RB =0.

* RO_BANK1-R7_BANK1
In user mode, RO_BANK1-R7 BANK1 cannot be accessed.
In privileged mode, RO-R7 are assigned to RO_BANK1-R7_BANK1 only when SR.RB = 1.

Rev. 5.0, 04/01, page 9 of 394
RENESAS

SR.MD =0 or

(SR.MD =1, SR.RB =0) (SR.MD =1, SR.RB =1)
RO RO_BANKO RO_BANKO
R1 R1_BANKO R1_BANKO
R2 R2_BANKO R2_BANKO
R3 R3_BANKO R3_BANKO
R4 R4_BANKO R4_BANKO
R5 R5_BANKO R5_BANKO
R6 R6_BANKO R6_BANKO
R7 R7_BANKO R7_BANKO
RO_BANK1 RO_BANK1 RO
R1_BANK1 R1_BANK1 R1
R2_BANK1 R2_BANK1 R2
R3_BANK1 R3_BANK1 R3
R4 _BANK1 R4_BANK1 R4
R5_BANK1 R5_BANK1 R5
R6_BANK1 R6_BANK1 R6
R7_BANK1 R7_BANK1 R7
RS R8 R8
R9 R9 R9
R10 R10 R10
R11 R11 R11
R12 R12 R12
R13 R13 R13
R14 R14 R14
R15 R15 R15

Figure2.3 General Registers

Programming Note: Asthe user's RO-R7 are assigned to RO BANKO-R7_BANKO, and after an
exception or interrupt RO-R7 are assigned to RO BANK1-R7_BANKZ1, it is not necessary for the
interrupt handler to save and restore the user’s RO—R7 (RO_BANKO0-R7_BANKO).

After areset, the values of RO BANKO-R7 BANKO, RO BANK1-R7 BANK1, and R8-R15 are
undefined.

Rev. 5.0, 04/01, page 10 of 394
RENESAS

223 Floating-Point Registers

Figure 2.4 shows the floating-point registers. There are thirty-two 32-bit floating-point registers,
divided into two banks (FPRO_BANKO-FPR15 BANKO and FPRO_BANK1-FPR15 BANK1).
These 32 registers are referenced as FRO-FR15, DR0/2/4/6/8/10/12/14, FV0/4/8/12, X FO-XF15,
XDO0/2/4/6/8/10/12/14, or XMTRX. The correspondence between FPRn_BANKIi and the reference
name is determined by the FR bit in FPSCR (see figure 2.4).

Floating-point registers, FPRn_BANKi (32 registers)

FPRO_BANKO, FPR1_BANKO, FPR2_BANKO, FPR3_BANKO, FPR4_BANKO,
FPR5_BANKO, FPR6_BANKO, FPR7_BANKO, FPR8_BANKO, FPR9_BANKO,
FPR10_BANKO, FPR11_BANKO, FPR12_BANKO, FPR13 BANKO, FPR14 BANKO,
FPR15 BANKO

FPRO_BANK1, FPR1_BANK1, FPR2_BANK1, FPR3_BANK1, FPR4 BANK1,
FPR5_BANK1, FPR6_BANK1, FPR7_BANK1, FPR8_BANK1, FPR9_BANK1,
FPR10_BANK1, FPR11_BANK1, FPR12_BANK1, FPR13 BANK1, FPR14 BANK1,
FPR15_BANK1

Single-precision floating-point registers, FRi (16 registers)
When FPSCR.FR = 0, FRO—FR15 are assigned to FPRO_ BANKO—-FPR15 BANKO.
When FPSCR.FR = 1, FRO-FR15 are assigned to FPRO_ BANK1-FPR15 BANK1.

Double-precision floating-point registers or single-precision floating-point register pairs, DRI
(8 registers): A DR register comprises two FR registers.

DRO ={FR0, FR1}, DR2 = {FR2, FR3}, DR4 = { FR4, FR5}, DR6 = { FR6, FR7},

DR8 ={FR8, FR9}, DR10 = {FR10, FR11}, DR12 = {FR12, FR13}, DR14 = { FR14, FR15}

Single-precision floating-point vector registers, FVi (4 registers): An FV register comprises
four FR registers

FVO0 ={FRO, FR1, FR2, FR3}, FV4 = { FR4, FR5, FR6, FR7},

FV8 = {FR8, FR9, FR10, FR11}, FV12 = { FR12, FR13, FR14, FR15}

Single-precision floating-point extended registers, XFi (16 registers)
When FPSCR.FR = 0, XFO-XF15 are assigned to FPRO_ BANK1-FPR15 BANK1.
When FPSCR.FR = 1, XFO—-XF15 are assigned to FPRO_BANKO0-FPR15 BANKO.

Single-precision floating-point extended register pairs, XDi (8 registers): An XD register
comprisestwo XF registers

XDO0 = {XF0, XF1}, XD2 = { XF2, XF3}, XD4 = { XF4, XF5}, XD6 = { XF6, XF7},

XD8 = {XF8, XF9}, XD10 = {XF10, XF11}, XD12 = { XF12, XF13}, XD14 = { XF14, XF15}

Rev. 5.0, 04/01, page 11 of 394
RENESAS

e Single-precision floating-point extended register matrix, XMTRX: XMTRX comprises all 16
XF registers
XMTRX =| XFO XF4 XF8 XF12
XF1 XF5 XF9 XF13
XF2 XF6 XF10 XF14
XF3 XF7 XF11 XFi15

FPSCR.FR =0 FPSCR.FR=1
FVO DRO FRO FPRO_BANKO XFO XD0 XMTRX
FR1 FPR1_BANKO XF1
DR2 FR2 FPR2_BANKO XF2 XD2
ER3 FPR3_BANKO XF3

FV4 DR4 FR4 FPR4_BANKO XF4 XD4
ER5 FPR5_BANKO XF5
DR6 FR6 FPR6_BANKO XF6 XD6
FR7 FPR7_BANKO XF7
FV8 DRS8 FRS8 FPR8_BANKO XF8 XD8
FR9 FPR9_BANKO XF9
DR10 FR10 FPR10_BANKO XF10 XD10
FR11 FPR11_BANKO XF11
FV12 DR12 FR12 FPR12_BANKO XF12 XD12
FR13 FPR13_BANKO XF13
DR14 FR14 FPR14_BANKO XF14 XD1i4
FR15 FPR15_BANKO XF15
XMTRX XDO XFO FPRO_BANK1 FRO DRO FVO
XF1 FPR1_BANK1 FR1
XD2 XF2 FPR2_BANK1 FR2 DR2
XF3 FPR3_BANK1 FR3
XD4 XF4 FPR4_BANK1 FR4 DR4 FV4
XF5 FPR5_BANK1 FR5
XD6 XF6 FPR6_BANK1 FR6 DR6
XE7 FPR7_BANK1 FR7
XD8 XF8 FPR8_BANK1 FR8 DR8 FV8
XF9 FPR9_BANK1 FR9
XD10 XF10 FPR10_BANK1 FR10 DR10
XF11 FPR11 BANK1 FR11
XD12 XF12 FPR12_BANK1 FR12 DR12 FV12
XF13 FPR13_BANK1 FR13
XD14 XF14 FPR14_BANK1 FR14 DR14
XF15 FPR15_BANK1 FR15

Figure2.4 Floating-Point Registers

Rev. 5.0, 04/01, page 12 of 394
RENESAS

Programming Note: After areset, the values of FPFRO_BANKO-FPR15 BANKO and
FPRO_BANK1-FPR15 BANK1 are undefined.

224 Control Registers

Statusregister, SR (32 bits, privilege protection, initial value = 0111 0000 0000 0000 0000
00XX 1111 00XX (X: Undefined))

31 30 29 28 27 16 15 14 10 9 8 7 4 3 2 1 0
|—|MD|RB|BL| — |FD| — |M|Q| IMASK | — |S|T|
Note: —: Reserved. These bits are always read as 0, and should only be written with 0.

* MD: Processor mode

MD = 0: User mode (some instructions cannot be executed, and some resources cannot be
accessed)

MD = 1: Privileged mode

» RB: General register bank specifier in privileged mode (set to 1 by areset, exception, or
interrupt)
RB = 0: RO_BANKO-R7_BANKO are accessed as general registers RO-R7. (RO_BANK1-
R7_BANKZ1 can be accessed using LDC/STC RO_BANK-R7_BANK instructions.)

RB = 1: RO BANK1-R7 BANK1 are accessed as general registers RO-R7. (RO_BANKO-
R7_BANKO can be accessed using LDC/STC RO_BANK—-R7_BANK instructions.)

» BL: Exception/interrupt block bit (set to 1 by areset, exception, or interrupt)

BL = 1: Interrupt requests are masked. If ageneral exception other than auser break occurs
while BL = 1, the processor switches to the reset state.

» FD: FPU disable bit (cleared to O by areset)

FD = 1. An FPU instruction causes a general FPU disable exception, and if the FPU instruction
isin adelay dot, adot FPU disable exception is generated. (FPU instructions: H'F***
instructions, LDC(.L)/STS(.L) instructions for FPUL/FPSCR)

e M, Q: Used by the DIVOS, DIVOU, and DIV 1 instructions.

e IMASK: Interrupt mask level
External interrupts of asame level or alower level than IMASK are masked.

e S Specifies a saturation operation for aMAC instruction.

e T: True/false condition or carry/borrow bit

Rev. 5.0, 04/01, page 13 of 394
RENESAS

Saved statusregister, SSR (32 bits, privilege protection, initial value undefined): The current
contents of SR are saved to SSR in the event of an exception or interrupt.

Saved program counter, SPC (32 bits, privilege protection, initial value undefined): The
address of an instruction at which an interrupt or exception occursis saved to SPC.

Global baseregister, GBR (32 hits, initial value undefined): GBR isreferenced as the base
addressin a GBR-referencing MOV instruction.

Vector baseregister, VBR (32 bits, privilege protection, initial value = H'0000 0000): VBRis
referenced as the branch destination base address in the event of an exception or interrupt. For
details, see section 5, Exceptions.

Saved general register 15, SGR (32 bits, privilege protection, initial value undefined): The
contents of R15 are saved to SGR in the event of an exception or interrupt.

Debug baseregister, DBR (32 bits, privilege protection, initial value undefined): When the
user break debug function is enabled (BRCR.UBDE = 1), DBR isreferenced as the user break
handler branch destination address instead of VBR.

225 System Registers

Multiply-and-accumulate register high, MACH (32 bits, initial value undefined)
Multiply-and-accumulate register low, MACL (32 bits, initial value undefined)
MACH/MACL isused for the added valuein aMAC instruction, and to store aMAC instruction
or MUL operation result.

Procedureregister, PR (32 bits, initial value undefined): Thereturn addressis storedin PR in a
subroutine call using a BSR, BSRF, or JSR instruction, and PR is referenced by the subroutine
return instruction (RTS).

Program counter, PC (32 bits, initial value = H'A000 0000): PC indicates the instruction fetch
address.

Rev. 5.0, 04/01, page 14 of 394
RENESAS

Floating-point status/control register, FPSCR (32 bits, initial value = H'0004 0001)

31 22 21 20 19 18 17 12 11 7 6 2 1 0
— |FR |SZ |PR |DN | Cause Enable | Flag | RM |
Note: —: Reserved. These bits are always read as 0, and should only be written with 0.

* FR: Floating-point register bank
FR = 0: FPRO_BANKO-FPR15_BANKO are assigned to FRO-FR15; FPRO_BANK1~-
FPR15 BANK1 are assigned to XFO-XF15.

FR = 1: FPRO_BANKO-FPR15 BANKO are assigned to XFO—XF15; FPRO_BANK1—
FPR15_BANK1 are assigned to FRO—FR15.

* SZ: Transfer size mode
SZ = 0: The data size of the FMQOV instruction is 32 bits.
SZ = 1: The data size of the FMQOV instruction is a 32-bit register pair (64 bits).

* PR: Precision mode
PR = 0: Floating-point instructions are executed as single-precision operations.

PR = 1: Floating-point instructions are executed as double-precision operations (the result of
instructions for which double-precision is not supported is undefined).

Do not set SZ and PR to 1 simultaneoudly; this setting is reserved.
[SZ, PR = 11]: Reserved (FPU operation instruction is undefined.)

* DN: Denormalization mode
DN = 0: A denormalized number is treated as such.
DN = 1: A denormalized number is treated as zero.

e Cause: FPU exception cause field
» Enable: FPU exception enable field
e Flag: FPU exception flag field

FPU Invalid Division Overflow Underflow Inexact
Error (E) Operation (V) by Zero (Z) (O)) 0}
Cause FPU exception Bit 17 Bit 16 Bit 15 Bit 14 Bit 13 Bit 12
cause field
Enable FPU exception None Bit 11 Bit 10 Bit 9 Bit 8 Bit 7
enable field
Flag FPU exception None Bit 6 Bit 5 Bit 4 Bit 3 Bit 2
flag field

Rev. 5.0, 04/01, page 15 of 394
RENESAS

When an FPU operation instruction is executed, the FPU exception cause field is cleared to
zero first. When the next FPU exception is occured, the corresponding bits in the FPU
exception cause field and FPU exception flag field are set to 1. The FPU exception flag field
holds the status of the exception generated after the field was last cleared.

* RM: Rounding mode
RM = 00: Round to Nearest
RM = 01: Round to Zero
RM = 10: Reserved
RM = 11: Reserved

* Bits22to 31: Reserved

Floating-point communication register, FPUL (32 bits, initial value undefined): Data transfer
between FPU registers and CPU registersis carried out viathe FPUL register.

Programming Note: When SZ = 1 and big endian mode is selected, FMOV can be used for
double-precision floating-point load or store operations. In little endian mode, two 32-bit data size
moves must be executed, with SZ = 0, to load or store a double-precision floating-point number.

2.3 Memory-M apped Registers

The control registers are double-mapped to the following two memory areas. All registers have
two addresses.

H'1C00 0000-H'1FFF FFFF
H'FC00 0000-H'FFFF FFFF

These two areas are used as follows.

» H'1C00 0000—H'1FFF FFFF

This area must be accessed using the MMU's address translation function. A memory-mapped
register can be accessed by setting the page number of this areain the corresponding field of
the TLB. Operation is not guaranteed if this areais accessed without using the MMU's address
trandation function.

» H'FC00 0000—H'FFFF FFFF
Access to area H'FC00 0000—H'FFFF FFFF in user mode will cause an address error. Memory-

mapped registers can be referenced in user mode by means of access that involves address
trandation.

Note: Do not access undefined locationsin either area The operation of an accessto an
undefined location is undefined. Also, memory-mapped registers must be accessed using a
fixed data size. The operation of an access using an invalid data size is undefined.

Rev. 5.0, 04/01, page 16 of 394
RENESAS

24 Data Format in Registers

Register operands are always longwords (32 bits). When a memory operand is only a byte (8 bits)
or aword (16 hits), it is sign-extended into alongword when loaded into aregister.

31 0
| Longword

2.5 Data Formatsin Memory

Memory data formats are classified into bytes, words, and longwords. Memory can be accessed in
8-hit byte, 16-bit word, or 32-bit longword form. A memory operand less than 32 hitsin length is
sign-extended before being loaded into aregister.

A word operand must be accessed starting from aword boundary (even address of a 2-byte unit:
address 2n), and alongword operand starting from alongword boundary (even address of a 4-byte
unit; address 4n). An address error will result if thisrule is not observed. A byte operand can be
accessed from any address.

Big endian or little endian byte order can be selected for the data format. The endian should be set
with the MD5 external pin in a power-on reset. Big endian is selected when the MD5 pinislow,
and little endian when high. The endian cannot be changed dynamically. Bit positions are
numbered left to right from most-significant to least-significant. Thus, in a 32-bit longword, the
leftmost bit, bit 31, isthe most significant bit and the rightmost bit, bit 0, is the least significant
bit.

The data format in memory is shown in figure 2.5.

A A+l A+2 A+3 A+11 A+10 A+9 A+8
31 23 15 7 0 31 23 15 7 0
7 0|7 0|7 0|7 0 7 0|7 0|7 of7 0
Address A | gyte 0| Byte 1| Byte 2| Byte 3 Byte 3| Byte 2| Byte 1 | Byte 0| Address A +8
15 0|15 0 15 0|15 0
Address A + 4 Word 0 Word 1 Word 1 Word 0 Address A + 4
31 0 31 0
Address A+ 8 Longword Longword Address A
Big endian Little endian

Figure2.5 DataFormats|in Memory

Rev. 5.0, 04/01, page 17 of 394
RENESAS

Note: The SH-4 does not support endian conversion for the 64-bit data format. Therefore, if
double-precision floating-point format (64-bit) accessis performed in little endian mode,
the upper and lower 32 bits will be reversed.

2.6 Processor States

The SH-4 has five processor states: the reset state, exception-handling state, bus-released state,
program execution state, and power-down state.

Reset State: In this state the CPU isreset. There are two kinds of reset state, power-on reset and
manual reset, defined as shown in table 2.6 according to the relevant external pin states.

Table2.6 Reset State

Power-On Reset State Manual Reset State
SH7750 Series RESET =0and MRESET =1 RESET =0 and MRESET =0
SH7751 RESET =0 RESET =1 and MRESET =0

For more information on resets, see section 5, Exceptions.

In the power-on reset state, the internal state of the CPU and the on-chip peripheral module
registers are initialized. In the manual reset state, the internal state of the CPU and registers of on-
chip peripheral modules other than the bus state controller (BSC) are initialized. Since the bus
state controller (BSC) isnot initialized in the manual reset state, refreshing operations continue.
Refer to the register configurations in the relevant sections for further details.

Exception-Handling State: Thisisatransient state during which the CPU’ s processor state flow
isaltered by areset, general exception, or interrupt exception handling source.

In the case of areset, the CPU branches to address H'A000 0000 and starts executing the user-
coded exception handling program.

In the case of agenera exception or interrupt, the program counter (PC) contents are saved in the
saved program counter (SPC), the status register (SR) contents are saved in the saved status
register (SSR), and the R15 contents are saved in saved general register 15 (SGR). The CPU
branches to the start address of the user-coded exception service routine found from the sum of the
contents of the vector base address and the vector offset. See section 5, Exceptions, for more
information on resets, general exceptions, and interrupts.

Program Execution State: In this state the CPU executes program instructions in sequence.

Rev. 5.0, 04/01, page 18 of 394
RENESAS

Power-Down State: In the power-down state, CPU operation halts and power consumption is
reduced. The power-down state is entered by executing a SLEEP instruction. There are two modes
in the power-down state: sleep mode and standby mode. For details, see hardware manual, Power-
Down Modes.

Bus-Released State: In this state the CPU has released the bus to a device that requested it.

SH7750 Series state transitions are shown in figure 2.6, and SH7751 state transitionsin figure 2.7.

From any state when From any state when

RESET =0 and MRESET =1 RESET =0 and MRESET =0
E v E
| Power-on reset state Manual reset state i
RESET =0,
! MRESET =1 !

Reset state
RESET =1,
MRESET =0

RESET =1,
MRESET =1

Exception-handling state

Bus request
q Bus request

clearance
Interrupt Interrupt
Exception End of exception
Bus-released state _ interrupt transition

N \

processing

Bus request

Bus clearance

request

A

Bus request
clearance

Bus request Program execution state

SLEEP instruction
with STBY bit
cleared

Sleep mode Standby mode

SLEEP instruction
with STBY bit set

Power-down state

Figure2.6 Processor State Transitions (SH7750 Series)

Rev. 5.0, 04/01, page 19 of 394
RENESAS

From any state when

From any state when

RESET =0 RESET =1 and MRESET =0
A 4
E Power-on reset state Manual reset state '
E Reset state ,
RESET =1 RESET =1,
MRESET =1
Exception-handling state
[
Bus request
g Bus request
clearance
Interrupt Interrupt
Exception End of exception
Bus-released state _ interrupt transition
- s processing

Bus request

clearance
request

y

Bus request
clearance

Bus request

SLEEP instruction
with STBY bit
cleared

E Sleep mode

Program execution state

SLEEP instruction
with STBY bit set

...

Power-down state

Standby mode '

Figure2.7 Processor State Transitions (SH7751)

2.7 Processor M odes

There are two processor modes: user mode and privileged mode. The processor modeis
determined by the processor mode bit (MD) in the status register (SR). User mode is selected
when the MD bit is cleared to 0, and privileged mode when the MD bit is set to 1. When the reset
state or exception state is entered, the MD hit is set to 1. When exception handling ends, the MD
bit is cleared to 0 and user mode is entered. There are certain registers and bits which can only be
accessed in privileged mode.

Rev. 5.0, 04/01, page 20 of 394
RENESAS

Section 3 Memory Management Unit (MMU)

3.1 Overview

311 Features

The SH-4 can handle 29-bit external memory space from an 8-bit address space identifier and 32-
bit logical (virtual) address space. Address translation from virtual address to physical addressis
performed using the memory management unit (MMU) built into the SH-4. The MMU performs
high-speed address translation by caching user-created address translation table information in an
address trandlation buffer (translation lookaside buffer: TLB). The SH-4 has four instruction TLB
(ITLB) entries and 64 unified TLB (UTLB) entries. UTLB copies are stored in the ITLB by
hardware. A paging system is used for address trandlation, with support for four page sizes (1, 4,
and 64 kbytes, and 1 Mbyte). It is possible to set the virtual address space access right and
implement storage protection independently for privileged mode and user mode.

3.1.2 Role of the MMU

The MMU was conceived as a means of making efficient use of physical memory. As shownin
figure 3.1, when a processis smaller in size than the physical memory, the entire process can be
mapped onto physical memory, but if the process increases in size to the point where it does not fit
into physical memory, it becomes necessary to divide the process into smaller parts, and map the
parts requiring execution onto physical memory on an ad hoc basis ((1)). Having this mapping
onto physical memory executed consciously by the process itself imposes a heavy burden on the
process. The virtual memory system was devised as a means of handling all physical memory
mapping to reduce this burden ((2)). With avirtual memory system, the size of the available
virtual memory is much larger than the actual physical memory, and processes are mapped onto
this virtual memory. Thus processes only have to consider their operation in virtual memory, and
mapping from virtual memory to physical memory is handled by the MMU. The MMU is
normally managed by the OS, and physical memory switching is carried out so asto enable the
virtual memory required by atask to be mapped smoothly onto physical memory. Physical
memory switching is performed via secondary storage, etc.

The virtual memory system that came into being in thisway works to best effect in atime sharing
system (TSS) that allows a humber of processesto run simultaneously ((3)). Running a number of
processesin a TSS did not increase efficiency since each process had to take account of physical
memory mapping. Efficiency isimproved and the load on each process reduced by the use of a
virtual memory system ((4)). In this system, virtual memory is allocated to each process. The task
of the MMU isto map a number of virtual memory areas onto physical memory in an efficient
manner. It isalso provided with memory protection functions to prevent a process from
inadvertently accessing another process' s physical memory.

Rev. 5.0, 04/01, page 21 of 394
RENESAS

When address trand ation from virtual memory to physical memory is performed using the MM U,
it may happen that the translation information has not been recorded in the MMU, or the virtua
memory of adifferent processis accessed by mistake. In such cases, the MMU will generate an
exception, change the physical memory mapping, and record the new address trandlation
information.

Although the functions of the MMU could be implemented by software alone, having address
tranglation performed by software each time a process accessed physical memory would be very
inefficient. For this reason, a buffer for address trand ation (the trandation lookaside buffer: TLB)
isprovided in hardware, and frequently used address trandation information is placed here. The
TLB can be described as a cache for address translation information. However, unlike a cache, if
address trandlation fails—that is, if an exception occurs—switching of the address trandlation
information is normally performed by software. Thus memory management can be performed in a
flexible manner by software.

There are two methods by which the MMU can perform mapping from virtual memory to physical
memory: the paging method, using fixed-length address trandation, and the segment method,
using variable-length address trand ation. With the paging method, the unit of trandationisa
fixed-size address space called a page (usually from 1 to 64 kbytesin size).

In the following descriptions, the address space in virtual memory in the SH-4 is referred to as
virtual address space, and the address space in physical memory as physical address space.

Rev. 5.0, 04/01, page 22 of 394
RENESAS

a Physical h
memory
Process 1
L

-

~

Virtual
memory MMU Physical
(- Physical Process 1 _ memory
Process 1 memory i
()
. J .
s s - N
Physical Virtual
Process 1 memory Process1 memory
“MMU Physical
“JI memory
Process 2, Process 2 i
Process 3, / Process 3 SN
3 4
q ®)) q 4))

Figure3.1 Roleof theMMU

Rev. 5.0, 04/01, page 23 of 394

RENESAS

313 Register Configuration
The MMU registers are shown in table 3.1.

Table3.1 MMU Registers

Abbrevia- Initial P4 Area 7 Access
Name tion R/W Value* Address* Address* Size
Page table entry high PTEH R/W Undefined H'FFO0 0000 H'1F00 0000 32
register
Page table entry low PTEL R/W Undefined H'FF00 0004 H'1F00 0004 32
register
Page table entry PTEA R/W Undefined H'FF00 0034 H'1F00 0034 32
assistance register
Translation table base TTB R/W Undefined H'FFO0 0008 H'1F00 0008 32
register
TLB exception address TEA R/W Undefined H'FF00 000C H'1F00 000C 32
register
MMU control register MMUCR R/W H'0000 0000 H'FF0O0 0010 H'1F00 0010 32

Notes: 1. The initial value is the value after a power-on reset or manual reset.

2. This is the address when using the virtual/physical address space P4 area. The area 7
address is the address used when making an access from physical address space area

7 using the TLB.

314 Caution

Operation is not guaranteed if an area designated as a reserved area in this manual is accessed.

Rev. 5.0, 04/01, page 24 of 394

RENESAS

3.2 Register Descriptions

There are six MMU-related registers.

1. PTEH

31 109 8 7 0

VPN —|— ASID

2. PTEL

31 30 29 28 109 8 7 6 5 43 2 10

—|—|— PPN — |V |[SZ| PR [SZ|C |D |SH|WT]
3. PTEA

31 4 3 2 0

TC SA

4. TTB

31 0

TTB

5. TEA

31

Virtual address at which MMU exception or address error occurred

6. MMUCR

31 26 25 24 23 18 17 16 15 109 8 7 6 5 4 3 2 1 0

LRUI —|— URB —|— URC SV|—|—|—|—|—|TI|— AT
|
SQMD

— indicates a reserved bit: the write value must be 0, and a read will return an undefined value.

Figure3.2 MMU-Related Registers

Rev. 5.0, 04/01, page 25 of 394
RENESAS

1. Pagetableentry high register (PTEH): Longword accessto PTEH can be performed from
H'FFOO0 0000 in the P4 area and H'1F00 0000 in area 7. PTEH consists of the virtual page number
(VPN) and address space identifier (ASID). When an MMU exception or address error exception
occurs, the VPN of the virtual address at which the exception occurred is set in the VPN field by
hardware. VPN varies according to the page size, but the VPN set by hardware when an exception
occurs consists of the upper 22 bits of the virtual address which caused the exception. VPN setting
can also be carried out by software. The number of the currently executing processis set in the
ASID field by software. ASID is not updated by hardware. VPN and ASID are recorded in the
UTLB by means of the LDLTB instruction.

2. Pagetableentry low register (PTEL): Longword accessto PTEL can be performed from
H'FF00 0004 in the P4 area and H'1F00 0004 in area 7. PTEL is used to hold the physical page
number and page management information to be recorded in the UTLB by means of the LDTLB
instruction. The contents of this register are not changed unless a software directiveis issued.

3. Pagetable entry assistanceregister (PTEA): Longword accessto PTEA can be performed
from H'FFO0 0034 in the P4 area and H'1F00 0034 in area 7. PTEL is used to store assistance bits
for PCMCIA accessto the UTLB by means of the LDTLB instruction.

In the SH7750S and SH7751, when accessto a PCMCIA interface areais performed from the
CPU with MMUCR.AT = 0, accessis always performed using the values of the SA bit and TC bit
inthisregister. In the SH7750, it is not possible to access a PCMCIA interface areawith
MMUCR.AT =0.

In the SH7750 series and SH7751, accessto a PCMCIA interface area by the DMAC is aways
performed using the DMAC’'s CHCRn.SSAn, CHCRn.DSAn, CHCRn.STC, and CHCRn.DTC
values. See the DMAC section in hardware manual for details.

The contents of this register are not changed unless a software directive is issued.

4. Trandation table baseregister (TTB): Longword accessto TTB can be performed from
H'FF00 0008 in the P4 area and H'1F00 0008 in area 7. TTB is used, for example, to hold the base
address of the currently used page table. The contents of TTB are not changed unless a software
directiveisissued. Thisregister can be freely used by software.

5. TLB exception addressregister (TEA): Longword accessto TEA can be performed from
H'FF00 000C in the P4 area and H'1F00 000C in area 7. After an MMU exception or address error
exception occurs, the virtual address at which the exception occurred is set in TEA by hardware.
The contents of this register can be changed by software.

6. MMU control register (MMUCR): MMUCR contains the following bits:
LRUI: Least recently used ITLB

URB: UTLB replace boundary

URC: UTLB replace counter

SQMD: Store queue mode bit

Rev. 5.0, 04/01, page 26 of 394
RENESAS

SV

TI:

AT:

Single virtual mode bit
TLB invalidate
Address trandation bit

Longword accessto MMUCR can be performed from H'FFO0 0010 in the P4 area and H'1F00
0010 in area 7. Theindividual bits perform MMU settings as shown below. Therefore, MMUCR
rewriting should be performed by a program in the P1 or P2 area. After MMUCR is updated, an
instruction that performs data access to the PO, P3, UOQ, or store queue area should be located at
least four instructions after the MMUCR update instruction. Also, a branch instruction to the PO,

P3;

or U0 area should be located at least eight instructions after the MMUCR update instruction.

MMUCR contents can be changed by software. The LRUI bits and URC bits may also be updated
by hardware.

LRUI: The LRU (least recently used) method is used to decide the ITLB entry to be replaced
in the event of an ITLB miss. The entry to be purged from the ITLB can be confirmed using
the LRUI bits. LRUI is updated by means of the algorithm shown below. A dash in this table
means that updating is not performed.

LRUI
(5] (4] (3] (2] (1] (0]
When ITLB entry 0 is used 0 0 0 — — —
When ITLB entry 1 is used 1 — — 0 0 —
When ITLB entry 2 is used — 1 — 1 — 0
When ITLB entry 3 is used — — 1 — 1

Other than the above — — — — _ _

When the LRUI bit settings are as shown below, the corresponding ITLB entry is updated by
an ITLB miss. An asterisk in thistable means “don’t care”.

LRUI
(5] (4] (3] (2] (1] (0]
ITLB entry 0 is updated 1 1 1 * * *
ITLB entry 1 is updated 0 * * 1 1 *
ITLB entry 2 is updated * 0 * 0 *
ITLB entry 3 is updated * * 0 * 0 0

Other than the above Setting prohibited

Ensure that values for which “ Setting prohibited” isindicated in the above table are not set at
the discretion of software. After a power-on or manual reset the LRUI bits areinitialized to O,
and therefore a prohibited setting is never made by a hardware update.

Rev. 5.0, 04/01, page 27 of 394
RENESAS

e URB: Bitsthat indicate the UTLB entry boundary at which replacement isto be performed.
Valid only when URB > 0.

» URC: Random counter for indicating the UTLB entry for which replacement isto be
performed with an LDTLB instruction. URC is incremented each time the UTLB is accessed.
When URB > 0, URC isreset to 0 when the condition URC = URB occurs. Also note that, if a
valueiswritten to URC by software which resultsin the condition URC > URB, incrementing
isfirst performed in excess of URB until URC = H'3F. URC is not incremented by an LDTLB
instruction.

» SQMD: Store queue mode bit. Specifies the right of access to the store queues.
0: User/privileged access possible
1: Privileged access possible (address error exception in case of user access)

» SV: Bit that switches between single virtual memory mode and multiple virtual memory mode.
0: Multiple virtual memory mode
1: Single virtual memory mode
When this bit is changed, ensurethat 1 is also written to the T1 hit.

e TI: Writing 1 to thishit invalidates (clearsto 0) all valid UTLB/ITLB bits. This bit aways
returns O when read.

e AT: SpecifiesMMU enabling or disabling.
0: MMU disabled
1: MMU enabled

MMU exceptions are not generated when the AT bit is 0. In the case of software that does not
use the MMU, therefore, the AT bit should be cleared to O.

3.3 Memory Space

331 Physical Memory Space

The SH-4 supports a 32-bit physical memory space, and can access a 4-Gbyte address space.
When the MMUCR.AT bit is cleared to 0 and the MMU is disabled, the address space is this
physical memory space. The physical memory space is divided into a number of areas, as shown
in figure 3.3. The physical memory space is permanently mapped onto 29-bit external memory
space; this correspondence can be implemented by ignoring the upper 3 bits of the physical
memory space addresses. In privileged mode, the 4-Gbyte space from the PO area to the P4 area
can be accessed. In user mode, a 2-Gbyte space in the U0 area can be accessed. Accessing the P1
to P4 areas (except the store queue area) in user mode will cause an address error.

Rev. 5.0, 04/01, page 28 of 394
RENESAS

External

memory space
H'0000 0000 Area 0 | H'0000 0000
| Areal |
/| Area2 |}
| Area3 |:
PO area ‘| Area4d | U0 area
Cacheable ‘[Areas | Cacheable
! | Areas |
.| Area?7 |
H'8000 0000 D L H'8000 0000
P1 area b -
Cacheable
H'A000 0000 P2 area ; ; ! "
Non-cacheable |/ o
. i v Address error
H'C000 0000 P3 area N
Cacheable i
H'EO00 0000 : \ H'E000 0000
N P4 arhea bl Store queue area H'E400 0000
H'EEFE FFEF on-cacheable Address error H'FEEF FEEF

Privileged mode User mode

Figure3.3 Physical Memory Space (MMUCR.AT =0)

Inthe SH7750, it is not possible to access a PCMCIA interface area from the CPU.

In the SH7750S and SH7751, when accessto a PCMCIA interface areais performed from the
CPU, the SA and TC values set in the PTEA register are always used for the access.

Accessto a PCMCIA interface area by the DMAC is aways performed using the DMAC's
CHCRnN.SSANn and CHCRN.STCn values. See the DMAC section for details.

PO, P1, P3, U0 Areas: The PO, P1, P3, and UQ areas can be accessed using the cache. Whether or
not the cache is used is determined by the cache control register (CCR). When the cacheis used,
with the exception of the P1 area, switching between the copy-back method and the write-through
method for write accesses is specified by the CCR.WT bit. For the P1 area, switching is specified
by the CCR.CB hit. Zeroizing the upper 3 bits of an addressin these areas gives the corresponding

external memory space address. However, since area 7 in the external memory space is areserved
area, areserved area also appearsin these areas.

P2 Area: The P2 area cannot be accessed using the cache. In the P2 area, zeroizing the upper 3
bits of an address gives the corresponding external memory space address. However, since area 7
in the external memory space is areserved area, areserved areaalso appearsin this area.

Rev. 5.0, 04/01, page 29 of 394
RENESAS

P4 Area: The P4 areais mapped onto SH-4 on-chip 1/O channels. This area cannot be accessed
using the cache. The P4 areais shown in detail in figure 3.4.

H'EO00 0000
Store queue

H'E400 0000

Reserved area
H'FO00 0000 Instruction cache address array
H'F100 0000 Instruction cache data array
H'F200 0000 Instruction TLB address array
H'F300 0000 Instruction TLB data arrays 1 and 2
H'F400 0000 Operand cache address array
H'F500 0000 Operand cache data array
H'F600 0000 Unified TLB address array
H'F700 0000 Unified TLB data arrays 1 and 2
H'F800 0000

Reserved area
H'FC00 0000

Control register area

H'FFFF FFFF

Figure3.4 P4 Area

The area from H'EO00 0000 to H'E3FF FFFF comprises addresses for accessing the store queues
(SQs). When the MMU isdisabled (MMUCR.AT = 0), the SQ accessright is specified by the
MMUCR.SQMD hit. For details, see section 4.6, Store Queues.

The area from H'FO00 0000 to H'FOFF FFFF is used for direct access to the instruction cache
address array. For details, see section 4.5.1, IC Address Array.

The area from H'F100 0000 to H'F1FF FFFF is used for direct access to the instruction cache data
array. For details, see section 4.5.2, IC Data Array.

The area from H'F200 0000 to H'F2FF FFFF is used for direct access to the instruction TLB
address array. For details, see section 3.7.1, ITLB Address Array.

Rev. 5.0, 04/01, page 30 of 394
RENESAS

The areafrom H'F300 0000 to H'F3FF FFFF is used for direct access to instruction TLB data
arrays 1 and 2. For details, see sections 3.7.2, ITLB DataArray 1, and 3.7.3, ITLB DataArray 2.

The areafrom H'F400 0000 to H'F4FF FFFF is used for direct access to the operand cache address
array. For details, see section 4.5.3, OC Address Array.

The areafrom H'F500 0000 to H'F5FF FFFF is used for direct access to the operand cache data
array. For details, see section 4.5.4, OC Data Array.

The area from H'F600 0000 to H'F6FF FFFF is used for direct access to the unified TLB address
array. For details, see section 3.7.4, UTLB Address Array.

The areafrom H'F700 0000 to H'F7FF FFFF is used for direct accessto unified TLB dataarrays 1
and 2. For details, see sections 3.7.5, UTLB Data Array 1, and 3.7.6, UTLB Data Array 2.

The areafrom H'FC00 0000 to H'FFFF FFFF is the control register area.

332 External Memory Space

The SH-4 supports a 29-hit external memory space. The external memory spaceis divided into
eight areas as shown in figure 3.5. Areas 0 to 6 relate to memory, such as SRAM, synchronous
DRAM, DRAM, and PCMCIA. Area 7 isareserved area. For details, see section 13, Bus State
Controller (BSC), in the Hardware Manual.

H'0000 0000 Area O
H'0400 0000 Area 1
H'0800 0000 Area 2
H'0C00 0000 Area 3
H'1000 0000 Area 4
H'1400 0000 Area 5
H'1800 0000 Area 6
:iggg 2|2?:?: Area 7 (reserved area)

Figure3.5 External Memory Space

Rev. 5.0, 04/01, page 31 of 394
RENESAS

333 Virtual Memory Space

Setting the MMUCR.AT bit to 1 enables the PO, P3, and UO areas of the physical memory spacein
the SH-4 to be mapped onto any external memory space in 1-, 4-, or 64-kbyte, or 1-Mbyte, page
units. By using an 8-bit address space identifier, the PO, U0, P3, and store queue areas can be
increased to a maximum of 256. Thisis called the virtual memory space. Mapping from virtual
memory space to 29-bit external memory spaceis carried out using the TLB. Only when area 7 in
external memory space is accessed using virtual memory space, addresses H'1C00 0000 to H'1FFF
FFFF of area 7 are not designated as a reserved area, but are equivalent to the P4 area control
register areain the physical memory space. Virtual memory spaceisillustrated in figure 3.6.

256 . External 256 %
ﬁ **._ memory space ﬁ
Area 0
Area 1
Area 2

PO area Area 3 U0 area
Cacheable Area 4

- . Cacheable
Address translation possible Area 5 Address translation possible

Area 6
Area 7

P1 area /
Cacheable i
Address translation not possible o

P2 area
Non-cacheable

Address translation not possible Address error

P3 area
Cacheable

___________ Pdarea. . _________| Store queue area i

Address translation possible
Non-cacheable

Address translation not possible Address error

Privileged mode User mode

Figure3.6 Virtual Memory Space (MMUCR.AT = 1)

When areas PO, P3, and U0 are mapped onto PCMCIA interface areas by the TLB in the cache-
enabled state, it is necessary to specify 1 for the WT bit of that page, or to clear the C hit to 0.
Access is performed using the SA and TC values set for individual TLB pages.

It is not possible to access a PCMCIA interface area from the CPU by accessto area P1, P2, or P4.

Rev. 5.0, 04/01, page 32 of 394
RENESAS

Accessto a PCMCIA interface area by the DMAC is aways performed using the DMAC's
CHCRnN.SSANn and CHCRN.STCn values. See the DMAC section for details.

PO, P3, UO Areas: The PO area (excluding addresses H'7C00 0000 to H'7FFF FFFF), P3 area, and
U0 area allow access using the cache and address trandation using the TLB. These areas can be
mapped onto any external memory space in 1-, 4-, or 64-kbyte, or 1-Mbyte, page units. When
CCRisin the cache-enabled state and the TLB enable bit (C bit) is 1, accesses can be performed
using the cache. In write accesses to the cache, switching between the copy-back method and the
write-through method is indicated by the TLB write-through bit (WT bit), and is specified in page
units.

Only when the PO, P3, and UO areas are mapped onto external memory space by means of the
TLB, addresses H'1C00 0000 to H'1FFF FFFF of area 7 in external memory space are allocated to
the control register area. This enables control registers to be accessed from the U0 areain user
mode. In this case, the C bit for the corresponding page must be cleared to 0.

P1, P2, P4 Areas: Address trandation using the TLB cannot be performed for the P1, P2, or P4
area (except for the store queue areq). Accesses to these areas are the same as for physical memory
space. The store queue area can be mapped onto any external memory space by the MMU.
However, operation in the case of an exception differs from that for normal PO, U0, and P3 spaces.
For details, see section 4.6, Store Queues.

334 On-Chip RAM Space

In the SH-4, half (8 kbytes) of the instruction cache (16 kbytes) can be used as on-chip RAM. This
can be done by changing the CCR settings.

When the operand cache is used as on-chip RAM (CCR.ORA = 1), PO area addresses H'7C00
0000 to H'7FFF FFFF are an on-chip RAM area. Data accesses (byte/word/longword/quadword)
can be used in thisarea. This area can only be used in RAM mode.

3.3.5 Address Trandation

When the MMU is used, the virtual address space is divided into units called pages, and
trandation to physical addressesis carried out in these page units. The address trandation table in
external memory contains the physical addresses corresponding to virtual addresses and additional
information such as memory protection codes. Fast address trandation is achieved by caching the
contents of the address trandation table located in external memory into the TLB. In the SH-4,
basicaly, the ITLB isused for instruction accesses and the UTLB for data accesses. In the event

of an access to an area other than the P4 area, the accessed virtual addressistrandated to a
physical address. If the virtual address belongs to the P1 or P2 areg, the physical addressis
uniquely determined without accessing the TLB. If the virtual address belongs to the PO, UO, or P3
area, the TLB is searched using the virtual address, and if the virtual addressisrecorded in the

Rev. 5.0, 04/01, page 33 of 394
RENESAS

TLB, aTLB hit is made and the corresponding physical addressisread from the TLB. If the
accessed virtual addressis not recorded in the TLB, a TLB miss exception is generated and
processing switches to the TLB miss exception routine. In the TLB miss exception routine, the
address trandlation table in external memory is searched, and the corresponding physical address
and page management information are recorded in the TLB. After the return from the exception
handling routine, the instruction which caused the TLB miss exception is re-executed.

336 Single Virtual Memory Mode and Multiple Virtual Memory Mode

There are two virtual memory systems, single virtual memory and multiple virtual memory, either
of which can be selected with the MMUCR.SV hit. In the single virtual memory system, a number
of processes run simultaneously, using virtual address space on an exclusive basis, and the
physical address corresponding to a particular virtual addressis uniquely determined. In the
multiple virtual memory system, a number of processes run while sharing the virtual address
space, and a particular virtual address may be trandated into different physical addresses
depending on the process. The only difference between the single virtual memory and multiple
virtual memory systemsin terms of operation isin the TLB address comparison method (see
section 3.4.3, Address Translation Method).

337 Address Space | dentifier (ASID)

In multiple virtual memory mode, the 8-bit address space identifier (ASID) is used to distinguish
between processes running simultaneously while sharing the virtual address space. Software can
set the ASID of the currently executing processin PTEH in the MMU. The TLB does not have to
be purged when processes are switched by means of ASID.

In single virtual memory mode, ASID is used to provide memory protection for processes running
simultaneously while using the virtual memory space on an exclusive basis.

34 TLB Functions

341 Unified TLB (UTLB) Configuration
The unified TLB (UTLB) is so called because of its use for the following two purposes:

1. Totrandate avirtual addressto a physical addressin a data access

2. Asatable of address trandation information to be recorded in the instruction TLB in the event
of an ITLB miss

Rev. 5.0, 04/01, page 34 of 394
RENESAS

Information in the address trand ation table located in external memory is cached into the UTLB.
The address trandation table contains virtual page numbers and address space identifiers, and
corresponding physical page humbers and page management information. Figure 3.7 shows the
overall configuration of the UTLB. The UTLB consists of 64 fully-associative type entries. Figure
3.8 shows the relationship between the address format and page size.

Entry O
Entry 1
Entry 2

ASID [7:0] | VPN [31:10] | V

PPN [28:10] | SZ [1:0]

SH|C|PR[1:0] | D|WT|SA [2:0]| TC

ASID [7:0] | VPN [31:10] | V

PPN [28:10] | SZ [1:0]

SH|C|PR [1:0] | D|WT|SA [2:0]| TC

ASID [7:0] | VPN [31:10] | V

PPN [28:10] | SZ [1:0]

SH|C|PR[1:0] |D|WT|SA [2:0]| TC

Entry 63 |ASID [7:0] | V.PN [31:10] | v | | PPN [28:10] | SZ[1:0] | SI-.I | c | PR [L:0] | D | WT| SA [2:0] | TC |

Figure3.7 UTLB Configuration

e 1-kbyte page

Virtual address

31 10 9 0
VPN Offset —)
e 4-kbyte page
Virtual address
31 1211 0
VPN Offset —
e 64-kbyte page
Virtual address
31 16 15 0
VPN Offset —)
e 1-Mbyte page
Virtual address
31 2019 0
VPN Offset —

Physical address

28 10 9 0
PPN Offset
Physical address
28 1211 0
PPN Offset
Physical address
28 16 15 0
PPN Offset
Physical address
28 2019 0
PPN Offset

Figure 3.8 Relationship between Page Size and Address Format

RENESAS

Rev. 5.0, 04/01, page 35 of 394

e VPN: Virtua page number
For 1-kbyte page: upper 22 bits of virtual address
For 4-kbyte page: upper 20 bits of virtual address
For 64-kbyte page: upper 16 bits of virtual address
For 1-Mbyte page: upper 12 bits of virtual address

e ASID: Address space identifier
Indicates the process that can access a virtual page.

In single virtual memory mode and user mode, or in multiple virtual memory mode, if the SH
bit is 0, thisidentifier is compared with the ASID in PTEH when address comparison is
performed.

» SH: Share status bit
When 0, pages are not shared by processes.
When 1, pages are shared by processes.

e SZ: Pagesizehits
Specify the page size.
00: 1-kbyte page
01: 4-kbyte page
10: 64-kbyte page
11: 1-Mbyte page

e V:Validity bit
Indicates whether the entry isvalid.
0: Invaid
1: valid
Cleared to 0 by a power-on reset.
Not affected by a manual reset.

* PPN: Physical page number
Upper 22 bits of the physical address.
With a 1-kbyte page, PPN bits [28:10] are valid.
With a4-kbyte page, PPN bits[28:12] are valid.
With a 64-kbyte page, PPN bits [28:16] are valid.
With a 1-Mbyte page, PPN bits[28:20] are valid.
The synonym problem must be taken into account when setting the PPN (see section 3.5.5,
Avoiding Synonym Problems).

Rev. 5.0, 04/01, page 36 of 394
RENESAS

PR: Protection key data

2-bit data expressing the page access right as a code.

00: Can beread only, in privileged mode

01: Can be read and written in privileged mode

10: Can beread only, in privileged or user mode

11: Can be read and written in privileged mode or user mode

C: Cacheability bit

Indicates whether apage is cacheable.

0: Not cacheable

1: Cacheable

When control register space is mapped, this bit must be cleared to 0.

When performing PCMCIA space mapping in the cache enabled state, either clear thisbit to 0
or set the WT bit to 1.

D: Dirty hit

Indicates whether awrite has been performed to a page.
0: Write has not been performed

1: Write has been performed

WT: Write-through bit
Specifies the cache write mode.
0: Copy-back mode

1: Write-through mode

When performing PCM CIA space mapping in the cache enabled state, either set thisbit to 1 or
clear the C bitto 0.

SA: Space attribute bits

Valid only when the page is mapped onto PCM CIA connected to area 5 or 6.
000: Undefined

001: Variable-size I/O space (base size according to I0IS16 signal)

010: 8-hit I/O space

011: 16-bit 1/0 space

100: 8-bit common memory space

101: 16-bit common memory space

110: 8-hit attribute memory space

111: 16-bit attribute memory space

Rev. 5.0, 04/01, page 37 of 394
RENESAS

e TC: Timing control bit
Used to select wait control register bitsin the bus control unit for areas 5 and 6.
0: WCR2 (A5W2-A5W0) and PCR (A5PCW1-A5PCWO0, ASTED2-A5TEDO, ASTEH2—
AS5TEHO0) are used

1: WCR2 (ABW2-A6W0) and PCR (A6PCW1-A6PCWO, A6TED2-A6TEDO, A6TEH2—
ABTEHO) are used

34.2 Instruction TLB (ITLB) Configuration

The ITLB isused to trandate a virtual addressto a physical address in an instruction access.
Information in the address trand ation table located in the UTLB is cached into the ITLB. Figure
3.9 shows the overall configuration of the ITLB. The ITLB consists of 4 fully-associative type
entries.

Entry 0 |ASID [7:0] | VPN [31:10] | V| |PPN [28:10]|SZ [1:0] | SH
Entry 1 |ASID [7:0] | VPN [31:10] | V| |PPN [28:10]|SZ [1:0] | SH
Entry 2 |ASID [7:0] | VPN [31:10] | V| |PPN [28:10]|SZ [1:0] | SH
Entry 3 |ASID [7:0] | VPN [31:10] | V| |PPN [28:10]|SZ [1:0] | SH

PR [SA[2:0]| TC
PR [SA[2:0]| TC
PR [SA[2:0]| TC
PR [SA[2:0]| TC

O|0|o0|0

Notes: 1. D and WT bits are not supported.
2. There is only one PR bit, corresponding to the upper of the PR bits in the UTLB.

Figure3.9 ITLB Configuration

34.3 Address Trandation Method

Figures 3.10 and 3.11 show flowcharts of memory accesses using the UTLB and ITLB.

Rev. 5.0, 04/01, page 38 of 394
RENESAS

C

Data access to virtual address (VA)

)

VAs VAis
inP4 area | inP2area

On-chip 1/0 access

VAis
in

P1 area

A

VPNs match
andV=1

No

VA s in PO, UO,
or P3 area

VPNs match
and ASIDs match and
v=1

Data TLB miss
exception

0 (User)

Data TLB protection
violation exception

A 4

Data TLB protection
violation exception

Cache access
in copy-back mode

Cache access
in write-through mode

|
> Memory access

(Non-cacheable)

Figure3.10

Flowchart of Memory AccessUsing UTLB

RENESAS

Rev. 5.0, 04/01, page 39 of 394

(Instruction access to virtual address (VA))

VAis VAis VAis
in P4 area | inP2area in P1 area

VAis in PO, UO,
or P3 area

Access prohibited 0 CCR

NO _Zhd (MMUCR.SV = 0 of

VPNs match
and ASIDs match and
V=1

VPNs match No

andV=1

Hardware ITLB E
miss handling

Only one
entry matches

Record in ITLB

Instruction TLB
miss exception

1 (Privileged)

Instruction TLB
multiple hit exception

c=1

Instruction TLB protection
violation exception and CCR.ICE=1

>I Cache access

>I Memory access

(Non-cacheable)

Figure3.11 Flowchart of Memory AccessUsing ITLB

Rev. 5.0, 04/01, page 40 of 394
RENESAS

35 M MU Functions

351 MM U Hardwar e Management

The SH-4 supports the following MMU functions.

1.

The MMU decodes the virtual address to be accessed by software, and performs address
tranglation by controlling the UTLB/ITLB in accordance with the MMUCR settings.

The MMU determines the cache access status on the basis of the page management
information read during address trandlation (C, WT, SA, and TC hits).

If address trandlation cannot be performed normally in a data access or instruction access, the
MMU notifies software by means of an MMU exception.

If address trandation information is not recorded in the ITLB in an instruction access, the
MMU searchesthe UTLB, and if the necessary address trandlation information is recorded in
the UTLB, the MMU copies thisinformation into the ITLB in accordance with
MMUCR.LRUI.

35.2 MMU Software Management

Software processing for the MMU consists of the following:

1.

Setting of MMU-related registers. Some registers are also partially updated by hardware
automatically.

Recording, deletion, and reading of TLB entries. There are two methods of recording UTLB
entries: by using the LDTLB instruction, or by writing directly to the memory-mapped UTLB.
ITLB entries can only be recorded by writing directly to the memory-mapped ITLB. For
deleting or reading UTLB/ITLB entries, it is possible to access the memory-mapped
UTLB/ITLB.

MMU exception handling. When an MMU exception occurs, processing is performed based on
information set by hardware.

353 MMU Instruction (LDTLB)

A TLB load instruction (LDTLB) is provided for recording UTLB entries. When an LDTLB
instruction isissued, the SH-4 copies the contents of PTEH, PTEL, and PTEA to the UTLB entry
indicated by MMUCR.URC. ITLB entries are not updated by the LDTLB instruction, and
therefore address trandation information purged from the UTLB entry may still remain in the
ITLB entry. Asthe LDTLB instruction changes address tranglation information, ensure that it is
issued by aprogramin the P1 or P2 area. The operation of the LDTLB instruction is shown in
figure 3.12.

Rev. 5.0, 04/01, page 41 of 394
RENESAS

MMUCR

31 26 25 24 23 1817 16 15 109 8 7 3210
LRUI — URB — URC \S — TIH—|AT]
——\
Entry specification SQMD
PTEL
31 2928 109 8 7 6543210
—_ PPN —|V[SZ| PR [SZ|C|D |SHWT]
PTEH
31 109 8 7 0
VPN — ASID PTEA
31 4 3 2 0
— TC| SA

v .w

Entry0 |ASID [7:0] | VPN [31:10] | V PPN [28:10] | SZ [1:0] |SH|C |PR[1:0] | D |WT|SA[2:0] | TC

Entryl |ASID [7:0] | VPN [31:10] | V PPN [28:10] | SZ [1:0] |SH|C |PR[1:0] | D |WT|SA[2:0] | TC

Entry2 |ASID [7:0] | VPN [31:10] | V PPN [28:10] | SZ [1:0] |SH|C |PR[1:0] | D |WT|SA[2:0] | TC

Entry 63 | ASID [7:0] | VPN [31:10] |V PPN [28:10] | SZ [1:0] |SH| C |PR[1:0] | D |WT|SA[2:0] | TC

UTLB
Figure3.12 Operation of LDTLB Instruction
354 Hardware I TLB MissHandling

In an instruction access, the SH-4 searches the ITLB. If it cannot find the necessary address

trandation information (i.e. in the event of an ITLB miss), the UTLB is searched by hardware, and

if the necessary address trand ation information is present, it is recorded in the ITLB. This
procedure is known as hardware ITLB miss handling. If the necessary address trandation

information is not found in the UTLB search, an instruction TLB miss exception is generated and
processing passes to software.

Rev. 5.0, 04/01, page 42 of 394

RENESAS

355 Avoiding Synonym Praoblems

When 1- or 4-kbyte pages are recorded in TLB entries, a synonym problem may arise. The
problem isthat, when a number of virtual addresses are mapped onto a single physical address, the
same physical address datais recorded in anumber of cache entries, and it becomes impossible to
guarantee data integrity. This problem does not occur with the instruction TLB or instruction
cache . In the SH-4, entry specification is performed using bits[13:5] of the virtual addressin
order to achieve fast operand cache operation. However, bits[13:10] of the virtual addressin the
case of a 1-kbyte page, and bits [13:12] of the virtual addressin the case of a 4-kbyte page, are
subject to address translation. As aresult, bits[13:10] of the physical address after translation may
differ from bits[13:10] of the virtual address.

Consequently, the following restrictions apply to the recording of address trandation information
in UTLB entries.

1. When address trandation information whereby a number of 1-kbyte page UTLB entries are
trandated into the same physical addressis recorded in the UTLB, ensure that the VPN [13:10]
values are the same.

2. When address trandation information whereby a number of 4-kbyte page UTLB entries are
trandated into the same physical addressis recorded in the UTLB, ensure that the VPN [13:12]
values are the same.

3. Do not use 1-kbyte page UTLB entry physical addresses with UTLB entries of a different page
size.

4. Do not use 4-kbyte page UTLB entry physical addresses with UTLB entries of a different page
size.

The above restrictions apply only when performing accesses using the cache. When cache index
mode isused, VPN [25] isused for the entry address instead of VPN [13], and therefore the above
restrictions apply to VPN [25].

Note: When multiple items of address translation information use the same physical memory to
provide for future SuperH RISC engine family expansion, ensure that the VPN [20:10]
values are the same. Also, do not use the same physical address for address trandation
information of different page sizes.

Rev. 5.0, 04/01, page 43 of 394
RENESAS

3.6 MM U Exceptions

There are seven MMU exceptions: the instruction TLB multiple hit exception, instruction TLB
miss exception, instruction TLB protection violation exception, data TLB multiple hit exception,
data TLB miss exception, data TLB protection violation exception, and initial page write
exception. Refer to figures 3.10 and 3.11 for the conditions under which each of these exceptions
occurs.

361 Instruction TLB Multiple Hit Exception

Aninstruction TLB multiple hit exception occurs when more than one ITLB entry matches the
virtual address to which an instruction access has been made. If multiple hits occur when the
UTLB is searched by hardware in hardware ITLB miss handling, adata TLB multiple hit
exception will result.

When an instruction TLB multiple hit exception occurs areset is executed, and cache coherency is
not guaranteed.

Har dware Processing: In the event of an instruction TLB multiple hit exception, hardware
carries out the following processing:

1. Setsthevirtual address at which the exception occurred in TEA.
2. Setsexception code H'140 in EXPEVT.
3. Branchesto the reset handling routine (H'A000 0000).

Softwar e Processing (Reset Routine): The ITLB entries which caused the multiple hit exception
are checked in the reset handling routine. This exception isintended for use in program
debugging, and should not normally be generated.

Rev. 5.0, 04/01, page 44 of 394
RENESAS

3.6.2 Instruction TLB Miss Exception

An instruction TLB miss exception occurs when address translation information for the virtual
address to which an instruction access is made is not found in the UTLB entries by the hardware
ITLB miss handling procedure. The instruction TLB miss exception processing carried out by
hardware and software is shown below. Thisis the same as the processing for adata TLB miss
exception.

Hardwar e Processing: In the event of an instruction TLB miss exception, hardware carries out
the following processing:

Setsthe VPN of the virtual address at which the exception occurred in PTEH.
Sets the virtual address at which the exception occurred in TEA.
Sets exception code H'040 in EXPEVT.

Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

Sets the SR contents at the time of the exception in SSR. The R15 contents at thistime are
saved in SGR.

Setsthe MD bit in SR to 1, and switches to privileged mode.
Setsthe BL bit in SR to 1, and masks subsequent exception requests.
Setsthe RB bitin SRto 1.

Branches to the address obtained by adding offset H'0000 0400 to the contents of VBR, and
starts the instruction TLB miss exception handling routine.

A 0w NP

o

© ©o N o

Softwar e Processing (I nstruction TLB Miss Exception Handling Routine): Softwareis
responsible for searching the external memory page table and assigning the necessary page table
entry. Software should carry out the following processing in order to find and assign the necessary
page table entry.

1. Writeto PTEL the values of the PPN, PR, SZ, C, D, SH, V, and WT bitsin the page table
entry recorded in the external memory address translation table. If necessary, the values of the
SA and TC bits should be written to PTEA.

2. When the entry to be replaced in entry replacement is specified by software, write that value to
URC in the MMUCR register. If URC is greater than URB at this time, the value should be
changed to an appropriate value after issuing an LDTLB instruction.

3. Executethe LDTLB instruction and write the contents of PTEH, PTEL, and PTEA to the TLB.

4. Finally, execute the exception handling return instruction (RTE), terminate the exception
handling routine, and return control to the normal flow. The RTE instruction should be issued
at least one instruction after the LDTLB instruction.

Rev. 5.0, 04/01, page 45 of 394
RENESAS

3.6.3 Instruction TLB Protection Violation Exception

An instruction TLB protection violation exception occurs when, even though an ITLB entry
contains address translation information matching the virtual address to which an instruction
access is made, the actual access type is not permitted by the access right specified by the PR bit.
Theinstruction TLB protection violation exception processing carried out by hardware and
software is shown below.

Hardwar e Processing: In the event of an instruction TLB protection violation exception,
hardware carries out the following processing:

Setsthe VPN of the virtual address at which the exception occurred in PTEH.
Sets the virtual address at which the exception occurred in TEA.
Sets exception code H'0AQ in EXPEVT.

Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

Sets the SR contents at the time of the exception in SSR. The R15 contents at thistime are
saved in SGR.

Setsthe MD bit in SR to 1, and switches to privileged mode.
Setsthe BL bit in SR to 1, and masks subsequent exception requests.
Setsthe RB bitin SR to 1.

Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, and
startsthe instruction TLB protection violation exception handling routine.

A w NP

o

© ©o N o

Softwar e Processing (Instruction TLB Protection Violation Exception Handling Routine):
Resolve the instruction TLB protection violation, execute the exception handling return instruction
(RTE), terminate the exception handling routine, and return control to the normal flow. The RTE
instruction should be issued at least one instruction after the LDTLB instruction.

Rev. 5.0, 04/01, page 46 of 394
RENESAS

3.64 Data TLB Multiple Hit Exception

A data TLB multiple hit exception occurs when more than one UTLB entry matches the virtual
address to which a data access has been made. A data TLB multiple hit exception is also generated
if multiple hits occur when the UTLB is searched in hardware I TLB miss handling.

When adata TLB multiple hit exception occurs areset is executed, and cache coherency is not
guaranteed. The contents of PPN in the UTLB prior to the exception may also be corrupted.

Hardware Processing: In the event of adata TLB multiple hit exception, hardware carries out the
following processing:

1. Setsthe virtual address at which the exception occurred in TEA.
2. Sets exception code H'140 in EXPEVT.
3. Branches to the reset handling routine (H'A000 0000).

Softwar e Processing (Reset Routine): The UTLB entries which caused the multiple hit
exception are checked in the reset handling routine. This exception isintended for use in program
debugging, and should not normally be generated.

3.65 Data TLB Miss Exception

A data TLB miss exception occurs when address translation information for the virtual address to
which adata accessis madeis not found in the UTLB entries. The data TLB miss exception
processing carried out by hardware and software is shown below.

Hardwar e Processing: In the event of a data TLB miss exception, hardware carries out the
following processing:

1. Setsthe VPN of the virtual address at which the exception occurred in PTEH.
2. Setsthevirtual address at which the exception occurred in TEA.

3. Setsexception code H'040 in the case of aread, or H'060 in the case of awrite, in EXPEVT
(OCBP, OCBWB: read; OCBI, MOV CA.L: write).

4. Setsthe PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

5. Setsthe SR contents at the time of the exception in SSR. The R15 contents at thistime are
saved in SGR.

Setsthe MD bit in SR to 1, and switches to privileged mode.
Setsthe BL bit in SR to 1, and masks subsequent exception requests.
Setsthe RB bitin SRto 1.

Branches to the address obtained by adding offset H'0000 0400 to the contents of VBR, and
starts the data TL B miss exception handling routine.

© © N o

Rev. 5.0, 04/01, page 47 of 394
RENESAS

Softwar e Processing (Data TL B Miss Exception Handling Routine): Softwareis responsible
for searching the external memory page table and assigning the necessary page table entry.
Software should carry out the following processing in order to find and assign the necessary page
table entry.

1. Writeto PTEL the values of the PPN, PR, SZ, C, D, SH, V, and WT bitsin the page table
entry recorded in the external memory address trandlation table. If necessary, the values of the
SA and TC bits should be written to PTEA.

2. When the entry to be replaced in entry replacement is specified by software, write that value to
URC in the MMUCR register. If URC is greater than URB at this time, the value should be
changed to an appropriate value after issuing an LDTLB instruction.

3. Executethe LDTLB instruction and write the contents of PTEH, PTEL, and PTEA to the
UTLB.

4. Finally, execute the exception handling return instruction (RTE), terminate the exception
handling routine, and return control to the normal flow. The RTE instruction should be issued
at least one instruction after the LDTLB instruction.

3.6.6 Data TLB Protection Violation Exception

A data TLB protection violation exception occurs when, even though a UTLB entry contains
address tranglation information matching the virtual address to which a data access is made, the
actual accesstype is not permitted by the access right specified by the PR bit. The data TLB
protection violation exception processing carried out by hardware and software is shown below.

Hardwar e Processing: In the event of a data TLB protection violation exception, hardware
carries out the following processing:

1. Setsthe VPN of the virtual address at which the exception occurred in PTEH.
2. Setsthevirtual address at which the exception occurred in TEA.

3. Setsexception code H'0AOQ in the case of aread, or H'0OCO in the case of awrite, in EXPEVT
(OCBP, OCBWB: read; OCBI, MOV CA.L: write).

4. Setsthe PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

5. Setsthe SR contents at the time of the exception in SSR. The R15 contents at thistime are
saved in SGR.

Setsthe MD bit in SR to 1, and switches to privileged mode.
Setsthe BL bit in SR to 1, and masks subsequent exception requests.
Setsthe RB bitin SRto 1.

Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, and
starts the data TL B protection violation exception handling routine.

© © N o

Rev. 5.0, 04/01, page 48 of 394
RENESAS

Softwar e Processing (Data TL B Protection Violation Exception Handling Routine): Resolve
the data TLB protection violation, execute the exception handling return instruction (RTE),
terminate the exception handling routine, and return control to the normal flow. The RTE
instruction should be issued at least one instruction after the LDTLB instruction.

3.6.7 Initial Page Write Exception

Aninitial page write exception occurs when the D bit is 0 even though a UTLB entry contains
address trandlation information matching the virtual address to which a data access (write) is
made, and the access is permitted. The initial page write exception processing carried out by
hardware and software is shown below.

Hardwar e Processing: In the event of an initial page write exception, hardware carries out the
following processing:

Setsthe VPN of the virtual address at which the exception occurred in PTEH.
Sets the virtual address at which the exception occurred in TEA.
Sets exception code H'080 in EXPEVT.

Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

Sets the SR contents at the time of the exception in SSR. The R15 contents at thistime are
saved in SGR.

Setsthe MD bit in SR to 1, and switches to privileged mode.
Setsthe BL bit in SR to 1, and masks subsequent exception requests.
Setsthe RB bitin SRto 1.

Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, and
startsthe initial page write exception handling routine.

A wDNpR

o

© © N o

Rev. 5.0, 04/01, page 49 of 394
RENESAS

Softwar e Processing (I nitial Page Write Exception Handling Routine): The following
processing should be carried out as the responsibility of software:

1. Retrieve the necessary page table entry from external memory.
2. Write 1 to the D bit in the external memory page table entry.

3. Writeto PTEL the values of the PPN, PR, SZ, C, D, WT, SH, and V bitsin the page table
entry recorded in external memory. If necessary, the values of the SA and TC bits should be
written to PTEA.

4. When the entry to be replaced in entry replacement is specified by software, write that value to
URC inthe MMUCR register. If URC is greater than URB at this time, the value should be
changed to an appropriate value after issuing an LDTLB instruction.

5. Execute the LDTLB instruction and write the contents of PTEH, PTEL, and PTEA to the
UTLB.

6. Finally, execute the exception handling return instruction (RTE), terminate the exception
handling routine, and return control to the normal flow. The RTE instruction should be issued
at least oneinstruction after the LDTLB instruction.

3.7 Memory-Mapped TLB Configuration

To enablethe ITLB and UTLB to be managed by software, their contents can be read and written
by a P2 area program with aMOV instruction in privileged mode. Operation is not guaranteed if
access is made from a program in another area. A branch to an area other than the P2 area should
be made at least 8 instructions after this MOV instruction. The ITLB and UTLB are allocated to
the P4 areain physical memory space. VPN, V, and ASID in the ITLB can be accessed as an
address array, PPN, V, SZ, PR, C, and SH asdataarray 1, and SA and TC as dataarray 2. VPN,

D, V, and ASID inthe UTLB can be accessed as an address array, PPN, V, SZ, PR, C, D, WT, and
SH asdataarray 1, and SA and TC asdataarray 2. V and D can be accessed from both the address
array side and the data array side. Only longword access is possible. Instruction fetches cannot be
performed in these areas. For reserved bits, awrite value of 0 should be specified; their read value
is undefined.

Rev. 5.0, 04/01, page 50 of 394
RENESAS

371 ITLB AddressArray

The ITLB address array is allocated to addresses H'F200 0000 to H'F2FF FFFF in the P4 area. An
address array access requires a 32-bit address field specification (when reading or writing) and a
32-hit data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and VPN, V, and ASID to be written to the address array are
specified in the data field.

In the address field, bits[31:24] have the value H'F2 indicating the ITLB address array, and the
entry is selected by bits[9:8]. Aslongword accessis used, 0 should be specified for address field
bits[1:0].

Inthe datafield, VPN isindicated by bits[31:10], V by bit [8], and ASID by bits[7:0].
The following two kinds of operation can be used on the ITLB address array:

1. ITLB address array read
VPN, V, and ASID are read into the data field from the ITLB entry corresponding to the entry
set in the address field.

2. ITLB address array write
VPN, V, and ASID specified in the data field are written to the ITLB entry corresponding to
the entry set in the address field.

31 2423 109 8 7 0
Address field |1 1[1]2]0]0]1]0] cceoereeveveremmmmiiiiiiieens E | covereiiiineens
31 109 8 7 0
Data field VPN - |V ASID
VPN: Virtual page number ASID: Address space identifier
V: Validity bit ... Reserved bits (0 write value, undefined
E: Entry read value)

Figure3.13 Memory-Mapped I TLB AddressArray

Rev. 5.0, 04/01, page 51 of 394
RENESAS

3.7.2 ITLB DataArray 1

ITLB dataarray 1 isallocated to addresses H'F300 0000 to H'F37F FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
datafield specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and PPN, V, SZ, PR, C, and SH to be written to the data array are
specified in the data field.

In the address field, bits[31:23] have the value H'F30 indicating ITLB dataarray 1, and the entry
is selected by bits[9:8].

In the datafield, PPN isindicated by bits [28:10], V by bit [8], SZ by bits[7] and [4], PR by bit
[6], C by bit [3], and SH by bit [1].

The following two kinds of operation can be used on ITLB dataarray 1:

1. ITLB dataarray 1 read
PPN, V, SZ, PR, C, and SH are read into the data field from the ITLB entry corresponding to
the entry set in the address field.

2. ITLB dataarray 1 write
PPN, V, SZ, PR, C, and SH specified in the datafield are written to the ITLB entry
corresponding to the entry set in the addressfield.

31 24 23 109 8 7 0
Addressfield |1 [1]1[1]0]0| 1|20 rcrvreerermemmeemiii, E | cooeveieiiiiiin,
31302928 109876543210
Data field | PPN ...|V I R Mo 1Y I
| / |
PPN: Physical page number PR: Protection key data PR 5z SH
V: Validity bit C: Cacheability bit

E: Entry SH: Share status bit
SZ: Page size bits ---- 1 Reserved bits (0 write value, undefined
read value)

Figure3.14 Memory-Mapped ITLB Data Array 1

Rev. 5.0, 04/01, page 52 of 394
RENESAS

3.7.3 ITLB Data Array 2

ITLB dataarray 2 is allocated to addresses H'F380 0000 to H'F3FF FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and SA and TC to be written to data array 2 are specified in the data
field.

In the address field, bits[31:23] have the value H'F38 indicating ITLB dataarray 2, and the entry
is selected by bits[9:8].

Inthe datafield, SA isindicated by bits[2:0], and TC by bit [3].
The following two kinds of operation can be used on ITLB dataarray 2:

1. ITLB dataarray 2 read

SA and TC areread into the datafield from the ITLB entry corresponding to the entry setin
the addressfield.

2. ITLB dataarray 2 write

SA and TC specified in the datafield are written to the ITLB entry corresponding to the entry
set in the address field.

31 2423 10987 0
Address field |1 111210101 2]2]2] -covveerereemeii E | coveereiiiii,
31 4320
Data fIeld | ..oeeeeeie e SA
|
I
- .)) TC
TC: Timing control bit SA: Space attribute bits
E: Entry ----: Reserved bits (0 write value, undefined read
value)

Figure3.15 Memory-Mapped ITLB Data Array 2

374 UTLB AddressArray

The UTLB address array is alocated to addresses H'F600 0000 to H'F6FF FFFF in the P4 area. An
address array access requires a 32-bit address field specification (when reading or writing) and a
32-bit data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and VPN, D, V, and ASID to be written to the address array are
specified in the datafield.

Rev. 5.0, 04/01, page 53 of 394
RENESAS

In the address field, bits[31:24] have the value H'F6 indicating the UTLB address array, and the
entry is selected by bits[13:8]. The address array bit [7] association bit (A bit) specifies whether
or not address comparison is performed when writing to the UTLB address array.

Inthe datafield, VPN isindicated by bits[31:10], D by bit [9], V by bit [8], and ASID by bits
[7:0].

The following three kinds of operation can be used on the UTLB address array:

1. UTLB address array read

VPN, D, V, and ASID are read into the data field from the UTLB entry corresponding to the
entry set in the addressfield. In aread, associative operation is not performed regardless of
whether the association bit specified in the addressfield is 1 or 0.

2. UTLB address array write (non-associative)

VPN, D, V, and ASID specified in the data field are written to the UTLB entry corresponding
to the entry set in the addressfield. The A bit in the address field should be cleared to 0.

3. UTLB address array write (associative)

When awrite is performed with the A hit in the address field set to 1, comparison of all the
UTLB entriesis carried out using the VPN specified in the datafield and PTEH.ASID. The
usua address comparison rules are followed, but if a UTLB miss occurs, the result isno
operation, and an exception is not generated. If the comparison identifiesa UTLB entry
corresponding to the VPN specified in the datafield, D and V specified in the datafield are
written to that entry. If there is more than one matching entry, adata TLB multiple hit
exception results. This associative operation is simultaneously carried out on the ITLB, and if
amatching entry isfound in the ITLB, V iswritten to that entry. Even if the UTLB
comparison results in no operation, awriteto the ITLB side only is performed as long as there
isan ITLB match. If thereisamatch in both the UTLB and ITLB, the UTLB information is
also written to the ITLB.

31 2423 1413 8 7 210
Addressfield |1[1[1]1]0]2[1]0] «-errerreremmemmiiiniinnns E Al oo
31302928 109 8 7 0
Data field VPN D|V ASID
VPN: Virtual page humber ASID: Address space identifier
V: Validity bit A: Association bit
E: Entry ----: Reserved bits (0 write value, undefined
D: Dirty bit read value)

Figure3.16 Memory-Mapped UTLB AddressArray

Rev. 5.0, 04/01, page 54 of 394
RENESAS

3.75 UTLB DataArray 1

UTLB dataarray 1 is allocated to addresses H'F700 0000 to H'F77F FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and PPN, V, SZ, PR, C, D, SH, and WT to be written to the data
array are specified in the datafield.

In the address field, bits[31:23] have the value H'F70 indicating UTLB data array 1, and the entry
is selected by bits[13:8].

In the data field, PPN isindicated by bits [28:10], V by bit [8], SZ by bits[7] and [4], PR by bits
[6:5], C by bit [3], D by bit [2], SH by bit [1], and WT by bit [0].

The following two kinds of operation can be used on UTLB data array 1:

1. UTLB dataarray 1read
PPN, V, SZ, PR, C, D, SH, and WT areread into the data field from the UTLB entry
corresponding to the entry set in the address field.

2. UTLB dataarray 1 write
PPN, V, SZ, PR, C, D, SH, and WT specified in the datafield are written to the UTLB entry
corresponding to the entry set in the addressfield.

31 2423 1413 8 7 0
Address field |11 1] 1[0 1]1[1]0] «-rreerrrrereemrmmenennenns E | e,
31302928 109876543210
Data field | PPN vl PRI IlclD
/ |
PPN: Physical page number PR: Protection key data \/ ‘
V: Validity bit C: Cacheability bit Sz SH WT
E: Entry SH: Share status bit
SZ: Page size bits WT: Write-through bit
D: Dirty bit -.-.: Reserved bits (0 write value, undefined
read value)

Figure3.17 Memory-Mapped UTLB Data Array 1

Rev. 5.0, 04/01, page 55 of 394
RENESAS

3.7.6 UTLB Data Array 2

UTLB dataarray 2 is allocated to addresses H'F780 0000 to H'F7FF FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
datafield specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and SA and TC to be written to data array 2 are specified in the data
field.

In the address field, bits[31:23] have the value H'F78 indicating UTLB data array 2, and the entry
is selected by bits[13:8].

In the datafield, TCisindicated by bit [3], and SA by bits[2:0].
The following two kinds of operation can be used on UTLB data array 2:

1. UTLB dataarray 2 read

SA and TC are read into the datafield from the UTLB entry corresponding to the entry set in
the addressfield.

2. UTLB dataarray 2 write

SA and TC specified in the datafield are written to the UTLB entry corresponding to the entry
set in the address field.

31 2423 14 13 8 7 0
Address field |11 (1|2lolala]a]a] «-oooevereremeieieinnnnn. E | e
31 432 0
Data field | «eeneenee i SA
TC: Timing control bit SA: Space attribute bits TC
E: Entry ----: Reserved bits (0 write value, undefined read
value)

Figure3.18 Memory-Mapped UTLB Data Array 2

Rev. 5.0, 04/01, page 56 of 394
RENESAS

4.1 Overview

411 Features

Section4 Caches

The SH-4 has an on-chip 8-kbyte instruction cache (IC) for instructions and 16-kbyte operand
cache (OC) for data. Half of the memory of the operand cache (8 kbytes) can also be used as on-
chip RAM. The features of these caches are summarized in table 4.1.

Table4.1 Cache Features

Item Instruction Cache Operand Cache

Capacity 8-kbyte cache 16-kbyte cache or 8-kbyte cache +
8-kbyte RAM

Type Direct mapping Direct mapping

Line size 32 bytes 32 bytes

Entries 256 512

Write method

Copy-back/write-through selectable

Item Store Queues

Capacity 2 x 32 bytes

Addresses H'E000 0000 to H'E3FF FFFF
Write Store instruction (1-cycle write)
Write-back Prefetch instruction

Access right

MMU off: according to MMUCR.SQMD
MMU on: according to individual page PR

RENESAS

Rev. 5.0, 04/01, page 57 of 394

41.2 Register Configuration
Table 4.2 shows the cache control registers.

Table4.2 CacheControl Registers

Initial P4 Area 7 Access
Name Abbreviation R/W Value* Address* Address* Size
Cache control CCR R/W H'0000 0000 H'FF00001C H'1F00001C 32
register
Queue address QACRO R/W Undefined H'FF00 0038 H'1F00 0038 32
control register 0
Queue address QACR1 R/W Undefined H'FF00 003C H'1F00 003C 32

control register 1

Notes: 1. The initial value is the value after a power-on or manual reset.
2. This is the address when using the virtual/physical address space P4 area. When

making an access from physical address space area 7 using the TLB, the upper 3 bits
of the address are ignored.

4.2 Register Descriptions

There are three cache and store queue related control registers, as shown in figure 4.1.

CCR

31 161514 1211109 8 76 543 2 1 0

... | ceseccsss | eooeee ’ ces | ces | CB/ |
| | A
11X ICI ICE OIX ORA OCI WT OCE

QACRO

31 54 210

.. AREA

QACR1

31 54 210

.. AREA ceeeen

'''''''' indicates reserved bits: 0 must be specified in a write; the read value is undefined.

Figure4.1 Cacheand Store Queue Control Registers

Rev. 5.0, 04/01, page 58 of 394
RENESAS

)

Cache Control Register (CCR): CCR contains the following bits:

IIX: ICindex enable

ICl

: ICinvadidation

ICE: ICenable

OIX: OCindex enable
ORA: OC RAM enable
OCl: OCinvalidation

CB:

Copy-back enable

WT: Write-through enable
OCE: OC enable

Longword access to CCR can be performed from H'FF00 001C in the P4 area and H'1F00 001C in
area7. The CCR bits are used for the cache settings described below. Consequently, CCR
modifications must only be made by a program in the non-cached P2 area. After CCR is updated,
an instruction that performs data access to the PO, P1, P3, or UO area should be located at least
four instructions after the CCR update instruction. Also, a branch instruction to the PO, P1, P3, or

uo

area should be located at least eight instructions after the CCR update instruction.

[1X: IC index enable bit
0: Address bits[12:5] used for IC entry selection
1: Address bits[25] and [11:5] used for IC entry selection

ICl: IC invalidation bit

When 1 iswritten to this bit, the V bits of al IC entries are cleared to 0. This bit always returns
0 when read.

ICE: IC enable bit

Indicates whether or not the IC isto be used. When address trandation is performed, the IC
cannot be used unless the C bit in the page management information is also 1.

0: IC not used
1. IC used

OIX: OC index enable bit
0: Address bits[13:5] used for OC entry selection
1: Address bits[25] and [12:5] used for OC entry selection

ORA: OC RAM enable bit

When the OC is enabled (OCE = 1), the ORA bit specifies whether the 8 kbytes from entry
128 to entry 255 and from entry 384 to entry 511 of the OC are to be used as RAM. When the
OC is not enabled (OCE = 0), the ORA bit should be cleared to 0.

0: 16 kbytes used as cache
1: 8 kbytes used as cache, and 8 kbytes as RAM

Rev. 5.0, 04/01, page 59 of 394
RENESAS

* OCI: OCinvdidation bit

When 1 iswritten to this bit, the V and U bits of all OC entries are cleared to 0. This bit always
returns 0 when read.

» CB: Copy-back bit
Indicates the P1 area cache write mode.
0: Write-through mode
1: Copy-back mode

e WT: Write-through bit

Indicates the PO, U0, and P3 area cache write mode. When address trandation is performed,
the value of the WT bit in the page management information has priority.

0: Copy-back mode
1: Write-through mode

* OCE: OC enable bit
Indicates whether or not the OC is to be used. When address trandlation is performed, the OC
cannot be used unless the C bit in the page management information isalso 1.
0: OC not used
1: OC used

(2) Queue Address Control Register 0 (QACRO0): Longword access to QACRO can be
performed from H'FFO0 0038 in the P4 area and H'1F00 0038 in area 7. QACRO specifies the area
onto which store queue 0 (SQO) is mapped when the MMU is off.

(3) Queue Address Control Register 1 (QACR1): Longword access to QACRL can be
performed from H'FFO0 003C in the P4 area and H'1F00 003C in area 7. QACRL specifiesthe
area onto which store queue 1 (SQ1) is mapped when the MMU s off.

Rev. 5.0, 04/01, page 60 of 394
RENESAS

43 Operand Cache (OC)

43.1 Configuration

Figure 4.2 shows the configuration of the operand cache.

Effective address

31 26 25 131211109 543210
YN \/\
»| RAM area
determination
v [11:5]
OIX —» m

22 -

9 Longword (LW) selection

Address array 3 Data array

s 0 Tag u |V LWO | LW1 | LW2 | LW3|LW4 | LW5 | LW6 | LW7

k3]

Q

[

(2]
MMU 2

c

] .
19

511 19 bits L bit[1 bit 32 hits|32 hits|32 hits|32 hits|32 bits| 32 bits| 32 bits|32 bits
A A A A A A A A
l l A\ A\ A\ v v v A\ v
L
l |
Read data Write data

Hit signal

Figure4.2 Configuration of Operand Cache

Rev. 5.0, 04/01, page 61 of 394
RENESAS

The operand cache consists of 512 cache lines, each composed of a 19-hit tag, V bit, U bit, and 32-
byte data.

. Tag
Stores the upper 19 bits of the 29-bit external memory address of the data line to be cached.
Thetag is not initialized by a power-on or manual reset.

eV hit (validity bit)
Indicatesthat valid datais stored in the cache line. When this bit is 1, the cache line dataiis
valid. The V bit isinitialized to 0 by a power-on reset, but retains its value in amanual reset.

» U bit (dirty bit)
The U hitisset to 1 if dataiswritten to the cache line while the cache is being used in copy-
back mode. That is, the U bit indicates a mismatch between the data in the cache line and the
datain external memory. The U bit is never set to 1 while the cache is being used in write-
through mode, unless it is modified by accessing the memory-mapped cache (see section 4.5,
Memory-Mapped Cache Configuration). The U bit isinitialized to O by a power-on reset, but
retains its value in amanual reset.

» Datafield
The datafield holds 32 bytes (256 bits) of data per cache line. The data array is not initialized
by a power-on or manual reset.

432 Read Operation

When the OC is enabled (CCR.OCE = 1) and datais read by means of an effective address from a
cacheable area, the cache operates as follows:

1. Thetag, V hit, and U bit are read from the cache line indexed by effective address bits [13:5].

2. Thetag is compared with bits[28:10] of the address resulting from effective address
tranglation by the MMU:

e If thetag matchesand the V hitis 1 - (339
¢ If thetag matches and the V bitisO - (3b)
« If thetag does not match and the V bitis0 - (3b)

* If thetag does not match, the V bit is 1, and the U bitisO - (3b)
» If the tag does not match, the V bitis 1, and the U bitis1 - (3¢)

Rev. 5.0, 04/01, page 62 of 394
RENESAS

3a. Cache hit

The dataindexed by effective address bits [4:0] is read from the data field of the cache line
indexed by effective address bits [13:5] in accordance with the access size
(quadword/longword/word/byte).

3b. Cache miss (no write-back)

3c.

Datais read into the cache line from the external memory space corresponding to the effective
address. Data reading is performed, using the wraparound method, in order from the longword
data corresponding to the effective address, and when the corresponding data arrivesin the
cache, the read datais returned to the CPU. While the remaining one cache line of datais being
read, the CPU can execute the next processing. When reading of one line of datais completed,
the tag corresponding to the effective address is recorded in the cache, and 1 iswritten to the V
bit.

Cache miss (with write-back)

The tag and data field of the cache line indexed by effective address bits [13:5] are saved in the
write-back buffer. Then datais read into the cache line from the external memory space
corresponding to the effective address. Data reading is performed, using the wraparound
method, in order from the longword data corresponding to the effective address, and when the
corresponding data arrivesin the cache, the read datais returned to the CPU. While the
remaining one cache line of datais being read, the CPU can execute the next processing. When
reading of one line of datais completed, the tag corresponding to the effective addressis
recorded in the cache, 1 iswritten to the V bit, and O to the U bit. The data in the write-back
buffer is then written back to external memory.

433 Write Operation

When the OC is enabled (CCR.OCE = 1) and data is written by means of an effective addressto a
cacheable area, the cache operates as follows:

1
2.

Thetag, V bit, and U bhit are read from the cache line indexed by effective address bits [13:5].

Thetag is compared with bits[28:10] of the address resulting from effective address
tranglation by the MM U:

Copy-back Write-through

» |f the tag matches and the V bitis 1 - (339 - (3b)
e |f thetag matches and the V bitis0O - (3c) - (3d)
e If thetag does not match and the V bitis0 - (30) - (3d)
 If thetag does not match, the V bit is 1, and the U bitisO - (3c) - (3d)
» If the tag does not match, the V bitis 1, and the U bitis1 - (3¢€) - (3d)

Rev. 5.0, 04/01, page 63 of 394
RENESAS

3a. Cache hit (copy-back)

A data write in accordance with the access size (quadword/longword/word/byte) is performed
for the dataindexed by hits [4:0] of the effective address of the data field of the cache line
indexed by effective address bits [13:5]. Then 1 isset in the U hit.

3b. Cache hit (write-through)

A datawrite in accordance with the access size (quadword/|ongword/word/byte) is performed
for the dataindexed by bits [4:0] of the effective address of the data field of the cache line
indexed by effective address bits [13:5]. A writeis also performed to the corresponding
external memory using the specified access size.

3c. Cache miss (no copy-back/write-back)

A datawrite in accordance with the access size (quadword/longword/word/byte) is performed
for the dataindexed by bits [4:0] of the effective address of the data field of the cache line
indexed by effective address bits [13:5]. Then, datais read into the cache line from the external
memory space corresponding to the effective address. Data reading is performed, using the
wraparound method, in order from the longword data corresponding to the effective address,
and one cache line of datais read excluding the written data. During this time, the CPU can
execute the next processing. When reading of one line of datais completed, the tag
corresponding to the effective address is recorded in the cache, and 1 is written to the V bit and
U hit.

3d. Cache miss (write-through)

A write of the specified access size is performed to the external memory corresponding to the
effective address. In this case, awrite to cache is not performed.

3e. Cache miss (with copy-back/write-back)

The tag and data field of the cache line indexed by effective address bits [13:5] are first saved
in the write-back buffer, and then a data write in accordance with the access size
(quadword/longword/word/byte) is performed for the data indexed by bits[4:0] of the effective
address of the datafield of the cache line indexed by effective address bits [13:5]. Then, dataiis
read into the cache line from the external memory space corresponding to the effective
address. Data reading is performed, using the wraparound method, in order from the longword
data corresponding to the effective address, and one cache line of datais read excluding the
written data. During this time, the CPU can execute the next processing. When reading of one
line of datais completed, the tag corresponding to the effective addressis recorded in the
cache, and 1 iswritten to the V bit and U bit. The data in the write-back buffer isthen written
back to external memory.

Rev. 5.0, 04/01, page 64 of 394
RENESAS

434 Write-Back Buffer

In order to give priority to data reads to the cache and improve performance, the SH-4 has a write-
back buffer which holds the relevant cache entry when it becomes necessary to purge a dirty cache
entry into external memory as the result of a cache miss. The write-back buffer contains one cache
line of data and the physical address of the purge destination.

Physical address bits [28:5] | LWO | LW1 | LW2 | LW3 | LW4 | LW5 | LW6 | LW7

Figure4.3 Configuration of Write-Back Buffer

435 Write-Through Buffer

The SH-4 has a 64-bit buffer for holding write data when writing data in write-through mode or
writing to a non-cacheable area. This allows the CPU to proceed to the next operation as soon as
the write to the write-through buffer is completed, without waiting for completion of the writeto
external memory.

Physical address bits [28:0] | LWO | LW1

Figure4.4 Configuration of Write-Through Buffer

4.3.6 RAM Mode

Setting CCR.ORA to 1 enables 8 kbytes of the operand cache to be used as RAM. The operand
cache entries used as RAM are entries 128 to 255 and 384 to 511 . Other entries can till be used
as cache. RAM can be accessed using addresses H'7C00 0000 to H'7FFF FFFF. Byte-, word-,
longword-, and quadword-size data reads and writes can be performed in the operand cache RAM
area. Instruction fetches cannot be performed in this area.

An example of RAM use is shown below. Here, the 4 kbytes comprising OC entries 128 to 256
are designated as RAM area 1, and the 4 kbytes comprising OC entries 384 to 511 as RAM area 2.

Rev. 5.0, 04/01, page 65 of 394
RENESAS

e When OC index modeis off (CCR.OIX =0)
H'7C00 0000 to H'7C00 OFFF (4 kB): Correspondsto RAM area 1
H'7C00 1000 to H'7C00 1FFF (4 kB): Correspondsto RAM area 1
H'7C00 2000 to H'7C00 2FFF (4 kB): Correspondsto RAM area 2
H'7C00 3000 to H'7C00 3FFF (4 kB): Correspondsto RAM area 2
H'7C00 4000 to H'7C00 4FFF (4 kB): Correspondsto RAM area 1

RAM areas 1 and 2 then repeat every 8 kbytes up to H'7FFF FFFF.

Thus, to secure a continuous 8-kbyte RAM area, the area from H'7C00 1000 to H'7C00 2FFF
can be used, for example.

e When OC index modeison (CCR.OIX =1)
H'7C00 0000 to H'7C00 OFFF (4 kB): Correspondsto RAM area 1
H'7C00 1000 to H'7C00 1FFF (4 kB): Correspondsto RAM area 1
H'7C00 2000 to H'7C00 2FFF (4 kB): Correspondsto RAM area 1

H'7DFF FOO00 to H'7DFF FFFF (4 kB): Correspondsto RAM area 1
H'7E00 0000 to H'7E00 OFFF (4 kB): Corresponds to RAM area 2
H'7E0O 1000 to H'7EQ0 1FFF (4 kB): Correspondsto RAM area 2

H'7FFF FOOO to H'7FFF FFFF (4 kB): Correspondsto RAM area 2

Asthe distinction between RAM areas 1 and 2 isindicated by address bit [25], the areafrom
H'7DFF FO00 to H'7E00 OFFF should be used to secure a continuous 8-kbyte RAM area.

4.3.7 OC Index Mode

Setting CCR.OIX to 1 enables OC indexing to be performed using bit [25] of the effective
address. Thisis called OC index mode. In normal mode, with CCR.OIX cleared to 0, OC indexing
is performed using bits[13:5] of the effective address; therefore, when 16 kbytes or more of
consecutive datais handled, the OC isfully used by this data. Thisresultsin frequent cache
misses. Using index mode allows the OC to be handled as two 8-kbyte areas by means of effective
address bit [25], providing efficient use of the cache.

Rev. 5.0, 04/01, page 66 of 394
RENESAS

438 Coherency between Cache and External Memory

Coherency between cache and external memory should be assured by software. In the SH-4, the
following four new instructions are supported for cache operations. For details of these
instructions, see section 9, Instruction Descriptions.

Invalidate instruction: OCBI @Rn Cache invalidation (no write-back)
Purge instruction: OCBP @Rn Cache invalidation (with write-back)
Write-back instruction: OCBWB @Rn Cache write-back

Allocate instruction: MOVCA.L RO,@Rn Cache allocation

4.3.9 Prefetch Operation

The SH-4 supports a prefetch instruction to reduce the cache fill penalty incurred as the result of a
cache miss. If it isknown that a cache misswill result from aread or write operation, it is possible
to fill the cache with data beforehand by means of the prefetch instruction to prevent a cache miss
due to the read or write operation, and so improve software performance. If a prefetch instruction
is executed for data already held in the cache, or if the prefetch addressresultsinaUTLB miss or
a protection violation, the result is no operation, and an exception is not generated. For details of
the prefetch instruction, see section 9.74, PREF.

Prefetch instruction: PREF @Rn

Rev. 5.0, 04/01, page 67 of 394
RENESAS

44 Instruction Cache (I1C)

441 Configuration

Figure 4.5 shows the configuration of the instruction cache.

Effective address

31 26 25 131211109 543210
/A
A [11:5]
X —» =

22 Longword (LW) selection

8 Address array 3 Data array

5 0 Tag \Y LWO | LW1 | LW2 | LW3 | LW4 | LW5 | LW6 | LW7

2

Q

©

2]
MMU e

<

wl,
19

255 19 bits 1 bit 32 hits|32 bits|32 hits|32 bits|32 bits|32 bits|32 bits|32 bits
3 3 3 2 2 2 2 2
v v v A4 v A\ A\ A\
>
\ 4
Compare l
Read data

Hit signal

Figure4.5 Configuration of Instruction Cache

Rev. 5.0, 04/01, page 68 of 394
RENESAS

The instruction cache consists of 256 cache lines, each composed of a 19-bit tag, V bit, and 32-
byte data (16 instructions).

. Tm
Stores the upper 19 bits of the 29-bit external address of the data line to be cached. Thetagis
not initialized by a power-on or manual reset.

eV bit (validity bit)
Indicates that valid datais stored in the cache line. When this bit is 1, the cache line dataiis
valid. The V bit isinitialized to 0 by a power-on reset, but retains its value in amanual reset.
o Dataarray

The datafield holds 32 bytes (256 bits) of data per cache line. The data array is not initialized
by a power-on or manual reset.

442 Read Operation

When the IC is enabled (CCR.ICE = 1) and instruction fetches are performed by means of an
effective address from a cacheable area, the instruction cache operates as follows:

1. Thetagand V hit are read from the cache line indexed by effective address bits[12:5].

2. Thetag is compared with bits[28:10] of the address resulting from effective address
trangdlation by the MM U:

e If thetag matchesand the V hitis1 - (3a)

» If thetag matches and the V bitisO - (3b)

 If thetag does not match and the V bitis0 - (3b)

» If thetag does not match and the V bitis 1 - (3b)
3a. Cache hit

The dataindexed by effective address bits [4:2] is read as an instruction from the data field of
the cache line indexed by effective address bits[12:5].

3b. Cache miss
Datais read into the cache line from the external memory space corresponding to the effective
address. Data reading is performed, using the wraparound method, in order from the longword
data corresponding to the effective address, and when the corresponding data arrivesin the
cache, the read datais returned to the CPU as an instruction. When reading of one line of data
is completed, the tag corresponding to the effective addressis recorded in the cache, and 1 is
written to the V hit.

Rev. 5.0, 04/01, page 69 of 394
RENESAS

443 IC Index Mode

Setting CCR.I1X to 1 enables | C indexing to be performed using bit [25] of the effective address.
Thisiscalled IC index mode. In normal mode, with CCR.IIX cleared to O, IC indexing is
performed using bits[12:5] of the effective address; therefore, when 8 kbytes or more of
consecutive program instructions are handled, the IC is fully used by this program. Thisresultsin
frequent cache misses. Using index mode allows the IC to be handled as two 4-kbyte areas by
means of effective address bit [25], providing efficient use of the cache.

45 Memory-M apped Cache Configuration

In the SH7750 Series, to enable the IC and OC to be managed by software, their contents can be
read and written by a P2 area program with a MOV instruction in privileged mode.

In privileged mode in the SH7751, the contents of OC can be read and written by a P1 or P2 area
program with aMQV instruction, and the contents of |C can be read and written by a P2 area
program with aMQV instruction.

Operation is not guaranteed if access is made from a program in another area. In this case, a
branch to the other area should be made at least 8 instructions after this MOV instruction. The IC
and OC are alocated to the P4 areain physical memory space. Only data accesses can be used on
both the IC address array and data array and the OC address array and data array, and accesses are
always longword-size. Instruction fetches cannot be performed in these areas. For reserved bits, a
write value of 0 should be specified; their read value is undefined.

451 IC AddressArray

The IC address array is allocated to addresses H'FO00 0000 to H'FOFF FFFF in the P4 area. An
address array access requires a 32-bit address field specification (when reading or writing) and a
32-hit datafield specification. The entry to be accessed is specified in the addressfield, and the
writetag and V bit are specified in the datafield.

In the address field, bits [31:24] have the value H'FO indicating the | C address array, and the entry
is specified by bits[12:5]. CCR.I1X has no effect on this entry specification. The address array bit
[3] association bit (A bit) specifies whether or not association is performed when writing to the IC
address array. As only longword access is used, 0 should be specified for address field bits[1:0].

In the datafield, the tag isindicated by bits[31:10], and the V bit by bit [0]. Asthe IC address
array tag is 19 bitsin length, data field bits [31:29] are not used in the case of awrite in which
association is not performed. Data field bits[31:29] are used for the virtual address specification
only in the case of awrite in which association is performed.

The following three kinds of operation can be used on the IC address array:

Rev. 5.0, 04/01, page 70 of 394
RENESAS

1.

|C address array read

Thetag and V bhit are read into the data field from the IC entry corresponding to the entry set in
the address field. In aread, associative operation is not performed regardless of whether the
association hit specified in the addressfield is 1 or 0.

|C address array write (non-associative)

Thetag and V bit specified in the data field are written to the IC entry corresponding to the
entry set in the addressfield. The A bit in the address field should be cleared to 0.

|C address array write (associative)

When awrite is performed with the A hit in the address field set to 1, the tag stored in the
entry specified in the address field is compared with the tag specified in the datafield. If the
MMU isenabled at thistime, comparison is performed after the virtual address specified by
datafield bits [31:10] has been trandated to a physical address using the ITLB. If the addresses
match and the V bitis 1, the V bit specified in the datafield is written into the IC entry. This
operation is used to invalidate a specific IC entry. If an ITLB miss occurs during address
tranglation, or the comparison shows a mismatch, no operation results and the writeis not
performed. If aninstruction TLB multiple hit exception occurs during address translation,
processing switches to the instruction TLB multiple hit exception handling routine.

Address field |11 [1]2]0[0]0[0] - -cceeereremememiiiiiiiiinns Entry A

31 2423 1312 543210

31 109 10
Data field Tag address 00 e Vv

V : Validity bit
A : Association bit
---: Reserved bits (0 write value, undefined read value)

Figure4.6 Memory-Mapped IC Address Array

452 |C Data Array

The IC data array is allocated to addresses H'F100 0000 to H'F1FF FFFF in the P4 area. A data
array access requires a 32-hit address field specification (when reading or writing) and a 32-bit
data field specification. The entry to be accessed is specified in the address field, and the longword
data to be written is specified in the data field.

In the address field, bits[31:24] have the value H'F1 indicating the IC data array, and the entry is
specified by bits[12:5]. CCR.II X has no effect on this entry specification. Address field bits [4:2]
are used for the longword data specification in the entry. As only longword access is used, O
should be specified for address field bits[1:0].

Rev. 5.0, 04/01, page 71 of 394
RENESAS

The datafield is used for the longword data specification.
The following two kinds of operation can be used on the IC data array:

1. IC dataarray read
Longword datais read into the data field from the data specified by the longword specification
bitsin the address field in the | C entry corresponding to the entry set in the address field.

2. IC dataarray write
The longword data specified in the data field is written for the data specified by the longword
specification bitsin the address field in the IC entry corresponding to the entry set in the
addressfield.

31 2423 1312 54 210
Addressfield |1 11112100 [0]|1] -cccvereeverememeiii. Entry L |-
31 0

Data field Longword data

L : Longword specification bits
: Reserved bits (0 write value, undefined read value)

Figure4.7 Memory-Mapped IC Data Array

453 OC AddressArray

The OC address array is allocated to addresses H'F400 0000 to H'FAFF FFFF in the P4 area. An
address array access requires a 32-bit address field specification (when reading or writing) and a
32-hit datafield specification. The entry to be accessed is specified in the addressfield, and the
writetag, U bit, and V bit are specified in the datafield.

In the address field, bits [31:24] have the value H'F4 indicating the OC address array, and the
entry is specified by bits [13:5]. CCR.OIX and CCR.ORA have no effect on this entry
specification. The address array bit [3] association bit (A bit) specifies whether or not association
is performed when writing to the OC address array. As only longword accessis used, 0 should be
specified for address field bits[1:0].

In the datafield, the tag isindicated by bits[31:10], the U bit by bit [1], and the V bit by bit [0].
Asthe OC address array tag is 19 bitsin length, data field bits[31:29] are not used in the case of a
write in which association is not performed. Data field bits[31:29] are used for the virtual address
specification only in the case of awritein which association is performed.

Rev. 5.0, 04/01, page 72 of 394
RENESAS

The following three kinds of operation can be used on the OC address array:

1. OC address array read
Thetag, U bit, and V bit are read into the data field from the OC entry corresponding to the
entry set in the addressfield. In aread, associative operation is not performed regardless of
whether the association bit specified in the addressfield is 1 or 0.

2. OC address array write (non-associative)

Thetag, U bit, and V bit specified in the datafield are written to the OC entry corresponding to
the entry set in the address field. The A bit in the address field should be cleared to 0.

When awrite is performed to a cache line for which the U bit and V bit are both 1, after write-
back of that cache line, the tag, U bit, and V bit specified in the datafield are written.

3. OC address array write (associative)

When awrite is performed with the A bit in the address field set to 1, the tag stored in the
entry specified in the address field is compared with the tag specified in the data field. If the
MMU is enabled at thistime, comparison is performed after the virtual address specified by
datafield bits [31:10] has been trandated to a physical address using the UTLB. If the
addresses match and the V bit is 1, the U bit and V bit specified in the data field are written
into the OC entry. This operation is used to invalidate a specific OC entry. If the OC entry U
bitis 1, and 0 iswritten to the V bit or to the U bit, write-back is performed. If an UTLB miss
occurs during address tranglation, or the comparison shows a mismatch, no operation results
and the writeis not performed. If adata TLB multiple hit exception occurs during address
translation, processing switches to the data TLB muiltiple hit exception handling routine.

31 2423 1413 543210
Addressfield [1121210 2]0]0] - erereremememeiiiiiins Entry Al
31 109 210
Data field Tag e ulv
V : Validity bit
U : Dirty bit
A : Association bit

. Reserved bits (0 write value, undefined read value)

Figure4.8 Memory-Mapped OC Address Array

Rev. 5.0, 04/01, page 73 of 394
RENESAS

454 OC Data Array

The OC data array is alocated to addresses H'F500 0000 to H'F5FF FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
datafield specification. The entry to be accessed is specified in the address field, and the longword
data to be written is specified in the data field.

In the address field, bits[31:24] have the value H'F5 indicating the OC data array, and the entry is
specified by bits[13:5]. CCR.OIX and CCR.ORA have no effect on this entry specification.
Addressfield bits [4:2] are used for the longword data specification in the entry. As only longword
access is used, 0 should be specified for address field bits[1:0].

The datafield is used for the longword data specification.
The following two kinds of operation can be used on the OC data array:

1. OC dataarray read
Longword datais read into the data field from the data specified by the longword specification
bitsin the address field in the OC entry corresponding to the entry set in the addressfield.

2. OC data array write
The longword data specified in the data field is written for the data specified by the longword
specification bitsin the address field in the OC entry corresponding the entry set in the address
field. Thiswrite does not set the U bit to 1 on the address array side.

31 2423 1413 54 210
Addressfield |1 12120201] - -crerereeremememeniinnannn. Entry L |eeeees
31 0

Data field Longword data

L : Longword specification bits
---: Reserved bits (0 write value, undefined read value)

Figure4.9 Memory-Mapped OC Data Array

Rev. 5.0, 04/01, page 74 of 394
RENESAS

4.6 Store Queues

Two 32-byte store queues (SQs) are supported to perform high-speed writes to external memory.
In the SH7750S and SH7751, when not using the SQs, the low power dissipation power-down
modes, in which SQ functions are stopped, can be used. The queue address control registers
(QACRO0 and QACR1) cannot be accessed while SQ functions are stopped. See section 9, Power-
Down Modes, for the procedure for stopping SQ functions.

46.1 SQ Configuration

There are two 32-byte store queues, SQO and SQL1, as shown in figure 4.10. These two store
gueues can be set independently.

SQO | SQO[0] | SQO[1] | SQO[2] | SQO[3] | SQO[4] | SQO[S] | SQO[6] | SQO[7]

SQ1 | SQ1[0] | SQ1[1] | SQ1[2] | SQ1[3] | SQ1[4] | SQ1[S] | SQ1[6] | SQ1[7]

4B 4B 4B 4B 4B 4B 4B 4B

Figure4.10 Store Queue Configuration

46.2 SQ Writes

A write to the SQs can be performed using a store instruction on P4 area H'E000 0000 to H'E3FF
FFFC. A longword or quadword access size can be used. The meaning of the address bitsis as
follows:

[31:26]: 111000 Store queue specification

[25:6]: Don't care Used for external memory transfer/access right
[5]: 0/1 0: SQO specification 1. SQ1 specification
[4:2]: LW specification Specifieslongword position in SQ0/SQ1

[1:0] 00 Fixed at O

46.3 Transfer to External Memory

Transfer from the SQs to external memory can be performed with a prefetch instruction (PREF).
Issuing a PREF instruction for P4 area H'EO00 0000 to H'E3FF FFFC starts atransfer from the
SQsto external memory. The transfer length isfixed at 32 bytes, and the start addressis always at
a 32-byte boundary. While the contents of one SQ are being transferred to external memory, the
other SQ can be written to without a penalty cycle, but writing to the SQ involved in the transfer
to external memory is deferred until the transfer is completed.

Rev. 5.0, 04/01, page 75 of 394
RENESAS

The SQ transfer destination external memory address bit [28:0] specification is as shown below,
according to whether the MMU is on or off.

« When MMU ison (MMUCRAT = 1)

The SQ area (H'E000 0000 to H'E3FF FFFF) isset in VPN of the UTLB, and the transfer
destination external memory addressin PPN. The ASID, V, SZ, SH, PR, and D bits have the
same meaning as for normal address trandation, but the C and WT hits have no meaning with
regard to this page. It is not possible to perform data transfer to aPCMCIA interface area using
the SQs.

When a prefetch instruction isissued for the SQ area, address trandlation is performed and
external memory address bits [28:10] are generated in accordance with the SZ hit specification.
For external memory address bits [9:5], the address prior to address trandation is generated in
the same way as when the MMU is off. External memory address bits [4:0] are fixed at 0.
Transfer from the SQs to external memory is performed to this address.

« When MMU isoff (MMUCRAT = 0)

The SQ area (H'E000 0000 to H'E3FF FFFF) is specified as the address at which a prefetch is
performed. The meaning of address bits[31:0] is as follows:

[31:26]: 111000 Store queue specification
[25:6]: Address External memory address bits [25:6]
[5]: 0/1 0: SQO specification
1: SQ1 specification and external memory address bit [5]
[4:2]: Don't care No meaning in a prefetch
[1:0] 00 Fixed at 0

External memory address bits [28:26], which cannot be generated from the above address, are
generated from the QACRO/1 registers.

QACRO[4:2]: External memory address bits[28:26] corresponding to SQO
QACRL1[4:2]: Externa memory address bits[28:26] corresponding to SQ1

External memory address bits [4:0] are always fixed at 0 since burst transfer starts at a 32-byte
boundary.

Inthe SH7750, it is not possible to perform data transfer to a PCM CIA interface area using the
SQs.

In the SH7750S and SH7751, datatransfer to a PCMCIA interface areais aways performed
using the values of the SA bit and TC bit in PTEA.

Rev. 5.0, 04/01, page 76 of 394
RENESAS

46.4 SQ Protection

Itis possible to set protection against SQ writes and transfers to external memory. If an SQ write
violates the protection setting, an exception will be generated but the SQ contents will be
corrupted. If atransfer from the SQs to external memory (prefetch instruction) violates the
protection setting, the transfer to external memory will be inhibited and an exception will be
generated.

When MMU ison

Operation is in accordance with the address trandlation information recorded in the UTLB, and
MMUCR.SQMD. Write type exception judgment is performed for writesto the SQs, and read
type for transfer from the SQs to external memory (PREF instruction), and a TLB miss
exception, protection violation exception, or initial page write exception is generated.
However, if SQ accessis enabled, in privileged mode only, by MMUCR.SQMD, an address
error will be flagged in user mode even if address translation is successful.

When MMU is off

Operation isin accordance with MMUCR.SQMD.

0: Privileged/user access possible

1: Privileged access possible

If the SQ areais accessed in user mode when MMUCR.SQMD is set to 1, an address error will
be flagged.

Rev. 5.0, 04/01, page 77 of 394
RENESAS

Rev. 5.0, 04/01, page 78 of 394
RENESAS

Section 5 Exceptions

51 Overview

511 Features

Exception handling is processing handled by a special routine, separate from normal program
processing, that is executed by the CPU in case of abnormal events. For example, if the executing
instruction ends abnormally, appropriate action must be taken in order to return to the original
program sequence, or report the abnormality before terminating the processing. The process of
generating an exception handling request in response to abnormal termination, and passing control
to a user-written exception handling routine, in order to support such functions, is given the
generic name of exception handling.

SH-4 exception handling is of three kinds: for resets, general exceptions, and interrupts.

512 Register Configuration
The registers used in exception handling are shown in table 5.1.

Table5.1 Exception-Related Registers

Abbrevia- P4 Area 7 Access
Name tion R/W Initial Value** Address* Address* Size
TRAPA exception TRA R/W Undefined H'FF00 0020 H'1F00 0020 32
register
Exception event EXPEVT R/W H'0000 0000/ H'FFO0 0024 H'1F00 0024 32
register H'0000 0020*
Interrupt event INTEVT R/W Undefined H'FF00 0028 H'1F00 0028 32
register

Notes: 1. H'0000 0000 is set in a power-on reset, and H'0000 0020 in a manual reset.
2. This is the address when using the virtual/physical address space P4 area. When
making an access from physical address space area 7 using the TLB, the upper 3 bits
of the address are ignored.

Rev. 5.0, 04/01, page 79 of 394
RENESAS

52 Register Descriptions

There are three registers related to exception handling. These are allocated to memory, and can be
accessed by specifying the P4 address or area 7 address.

1.

The exception event register (EXPEVT) resides at P4 address H'FF00 0024, and contains a 12-
bit exception code. The exception code set in EXPEVT isthat for areset or general exception
event. The exception code is set automatically by hardware when an exception occurs.
EXPEVT can also be modified by software.

The interrupt event register (INTEVT) resides at P4 address H'FF00 0028, and contains a 12-
bit (SH7750 Series) or 14-bit (SH7751) exception code. The exception code set in INTEVT is
that for an interrupt request. The exception code is set automatically by hardware when an
exception occurs. INTEVT can aso be modified by software.

The TRAPA exception register (TRA) resides at P4 address H'FFO0 0020, and contains 8-bit
immediate data (imm) for the TRAPA instruction. TRA is set automatically by hardware when
aTRAPA ingtruction is executed. TRA can aso be modified by software.

The bit configurations of EXPEVT, INTEVT, and TRA are shown in figure 5.1.

EXPEVT (SH7750 Series, SH7751), INTEVT (SH7750 Series)

31 12 11 0
0 0 Exception code

INTEVT (SH7751)

31 14 13 0
0 0 Exception code

TRA

31 10 9 210
0 0 imm 00

0: Reserved bits. These bits are always read as 0, and should only be written
with 0.
imm: 8-bit immediate data of the TRAPA instruction

Figure5.1 Register Bit Configurations

Rev. 5.0, 04/01, page 80 of 394

RENESAS

5.3 Exception Handling Functions

531 Exception Handling Flow

In exception handling, the contents of the program counter (PC), status register (SR), and R15 are
saved in the saved program counter (SPC), saved status register (SSR), and saved general
register1l5 (SGR), and the CPU starts execution of the appropriate exception handling routine
according to the vector address. An exception handling routine is a program written by the user to
handle a specific exception. The exception handling routine is terminated and control returned to
the original program by executing a return-from-exception instruction (RTE). Thisinstruction
restores the PC and SR contents and returns control to the normal processing routine at the point at
which the exception occurred.

The SGR contents are not written back to R15 by an RTE instruction.

The basic processing flow is as follows. See section 2, Data Formats and Registers, for the
meaning of theindividual SR hits.

The PC, SR, and R15 contents are saved in SPC, SSR, and SGR.
The block bit (BL) in SRisset to 1.

The mode bit (MD) in SRissetto 1.

The register bank bit (RB) in SRissetto 1.

In areset, the FPU disable bit (FD) in SR is cleared to 0.

The exception code is written to bits 11-0 of the exception event register (EXPEVT): SH7750
Series, bits 13-0 of the exception event register (EXPEVT): SH7751 or interrupt event register
(INTEVT).

7. The CPU branches to the determined exception handling vector address, and the exception
handling routine begins.

o 0k wdPR

532 Exception Handling Vector Addresses

The reset vector address is fixed at H'A000 0000. Exception and interrupt vector addresses are
determined by adding the offset for the specific event to the vector base address, which is set by
software in the vector base register (VBR). In the case of the TLB miss exception, for example,
the offset is H'0000 0400, so if H'9C08 0000 is set in VBR, the exception handling vector address
will be H'9C08 0400. If afurther exception occurs at the exception handling vector address, a
duplicate exception will result, and recovery will be difficult; therefore, fixed physical addresses
(P1, P2) should be specified for vector addresses.

Rev. 5.0, 04/01, page 81 of 394
RENESAS

54 Exception Typesand Priorities

Table 5.2 shows the types of exceptions, with their relative priorities, vector addresses, and

exception/interrupt codes.

Table5.2 Exceptions

Exception Execution Priority Priority Vector Exception
Category Mode Exception Level Order Address Offset Code
Reset Abort type Power-on reset 1 1 H'A000 0000 — H’000
Manual reset 1 2 H'A000 0000 — H'020
Hitachi-UDI reset 1 1 H'A000 0000 — H'000
Instruction TLB multiple-hit 1 3 H'A000 0000 — H'140
exception
Data TLB multiple-hit exception 1 4 H'A000 0000 — H'140
General Re- User break before instruction 2 0 (VBR/DBR) H'100/— H'1EO
exception execution execution**
type Instruction address error 2 1 (VBR) H'100 H'OEO
Instruction TLB miss exception 2 2 (VBR) H'400 H'040
Instruction TLB protection 2 3 (VBR) H'100 H'0A0
violation exception
General illegal instruction 2 4 (VBR) H'100 H'180
exception
Slot illegal instruction exception 2 4 (VBR) H'100 H'1A0
General FPU disable exception 2 4 (VBR) H'100 H'800
Slot FPU disable exception 2 4 (VBR) H'100 H'820
Data address error (read) 2 5 (VBR) H'100 H'OEO
Data address error (write) 2 5 (VBR) H'100 H'100
Data TLB miss exception (read) 2 6 (VBR) H'400 H'040
Data TLB miss exception (write) 2 6 (VBR) H'400 H'060
Data TLB protection 2 7 (VBR) H'100 H'0AO0
violation exception (read)
Data TLB protection 2 7 (VBR) H'100 H'0CO
violation exception (write)
FPU exception 2 8 (VBR) H100 H120
Initial page write exception 2 9 (VBR) H'100 H'080
Completion Unconditional trap (TRAPA) 2 4 (VBR) H'100 H'160
type User break after instruction 2 10 (VBR/DBR) H'100/— H'1EO

execution**

Rev. 5.0, 04/01, page 82 of 394

RENESAS

Table5.2

Exceptions (cont)

Exception Execution Priority Priority Vector Exception
Category Mode Exception Level Order Address Offset Code
Interrupt Completion Nonmaskable interrupt 3 — (VBR) H'600 H'1CO
type External IRL3— 0 4 *2 (VBR) H600 H'200

interrupts IRLO T "0

2 H240

3 H260

4 H280

5 H2A0

6 H2c0

7 H2E0

8 H300

9 H320

A H340

B H360

C H380

D H3A0

E H3CO
Peripheral TMUO TUNIO 4 * (VBR) H'600 H'400

ir::’e‘::ﬂzt TMUL TUNIL H420
(module/ TMU2 TUNI2 H'440

source) W W

TMU3* TUNI3 HBOO

TMU4* TUNI4 HBSO

RTC ATI H480

PRI H4A0

cu Haco

SCl ERI H4EO

RXI H500

™ H520

TE H540

WDT Tl H560

REF RCMI H580

ROVI H5A0

H-UDI H-UDI HB00

GPIO GPIOI H620

Rev. 5.0, 04/01, page 83 of 394
RENESAS

Table5.2 Exceptions (cont)

Exception Execution Priority Priority Vector Exception
Category Mode Exception Level Order Address Offset Code
Interrupt Completion Peripheral DMAC DMTEO 4 * (VBR) H'600 H'640

type module W W

interrupt - -
(module/ DMTE2 H'680

source) W W

DMAE H6CO

SCIF ERI H700

RXI H720

BRI H740

I H760

PCIC® PCISERR HAD

PCIERR HAEO

PCIPWDWN HACO

PCIPWON HAAOD

PCIDMAO HAS0

PCIDMAL HAB0

PCIDMA2 HA40

PCIDMA3 HA20

Priority: Priority is first assigned by priority level, then by priority order within each level (the lowest

number represents the highest priority).

Exception transition destination: Control passes to H'A000 0000 in a reset, and to [VBR + offset] in

other cases.

Exception code: Stored in EXPEVT for a reset or general exception, and in INTEVT for an interrupt.
IRL: Interrupt request level (pins IRL3—IRLO).
Module/source: See the sections on the relevant peripheral modules.

Notes: 1. When BRCR.UBDE =1, PC = DBR. In other cases, PC = VBR + H'100.
2. The priority order of external interrupts and peripheral module interrupts can be set by

software.

3. SH7751 exceptions only. Not provided in the SH7750 Series.

Rev. 5.0, 04/01, page 84 of 394

RENESAS

55 Exception Flow

55.1 Exception Flow

Figure 5.2 shows an outline flowchart of the basic operations in instruction execution and
exception handling. For the sake of clarity, the following description assumes that instructions are
executed sequentially, one by one. Figure 5.2 shows the relative priority order of the different
kinds of exceptions (reset/general exception/interrupt). Register settingsin the event of an
exception are shown only for SSR, SPC, SGR, EXPEVT/INTEVT, SR, and PC, but other registers
may be set automatically by hardware, depending on the exception. For details, see section 5.6,
Description of Exceptions. Also, see section 5.6.4, Priority Order with Multiple Exceptions, for
exception handling during execution of a delayed branch instruction and a delay slot instruction,
and in the case of instructions in which two data accesses are performed.

Reset Yes

requested?

Execute next instruction

Is highest-
priority exception
re-exception

General
exception requested?

Yes

type?
yp Cancel instruction execution
No result
Interrupt
requested?
Y A 4
No SSR ~ SR EXPEVT ~ exception code
SPC ~ PC SR. {MD, RB, BL, FD, IMASK} ~ 11101111
SGR ~ R15 PC — H'A000 0000

EXPEVT/INTEVT ~ exception code

SR.{MD,RB,BL} 111

PC ~ (BRCR.UBDE=1 && User_Break?
DBR: (VBR + Offset))

A4 Y A4

Figure5.2 Instruction Execution and Exception Handling

Rev. 5.0, 04/01, page 85 of 394
RENESAS

552 Exception Sour ce Acceptance

A priority ranking is provided for all exceptions for usein determining which of two or more
simultaneously generated exceptions should be accepted. Five of the general exceptions—the
general illegal instruction exception, slot illegal instruction exception, general FPU disable
exception, slot FPU disable exception, and unconditional trap exception—are detected in the
process of instruction decoding, and do not occur simultaneously in the instruction pipeline. These
exceptions therefore all have the same priority. General exceptions are detected in the order of
instruction execution. However, exception handling is performed in the order of instruction flow
(program order). Thus, an exception for an earlier instruction is accepted before that for alater
instruction. An example of the order of acceptance for general exceptionsis shown in figure 5.3.

Rev. 5.0, 04/01, page 86 of 394
RENESAS

Pipeline flow: V TLB miss (data access)

Instruction n IF | ID | EX | MA | WB
Instruction n+1 IE ID | EX | MA | WB
l A General illegal instruction exception
V TLB miss (instruction access)
Instruction n+2 | IF ‘ ID ‘ EX ‘ MA ‘ WB |
IF: Instruction fetch
ID: Instruction decode
Instruction n+3 | IE ‘ D ‘ EX ‘ MA ‘ WB | EX: Instruction execution

MA: Memory access
WB: Write-back

Order of detection:

General illegal instruction exception (instruction n+1) and
TLB miss (instruction n+2) are detected simultaneously

|

TLB miss (instruction n)

Order of exception handling: Program order
TLB miss (instruction n)

l 1

Re-execution of instruction n

General illegal instruction exception
(instruction n+1)

2
Re-execution of instruction n+1
TLB miss (instruction n+2)

3
Re-execution of instruction n+2
Execution of instruction n+3 4

Figure5.3 Example of General Exception Acceptance Order

Rev. 5.0, 04/01, page 87 of 394
RENESAS

553 Exception Requests and BL Bit
When the BL bit in SR is 0, exceptions and interrupts are accepted.

When the BL bit in SR is 1 and an exception other than a user break is generated, the CPU’s
internal registers and the registers of the other modules are set to their states following a manual
reset, and the CPU branches to the same address asin areset (H'A000 0000). For the operation in
the event of a user break, see User Break Controller in the hardware manual. If an ordinary
interrupt occurs, the interrupt request is held pending and is accepted after the BL bit has been
cleared to 0 by software. If anonmaskable interrupt (NM1) occurs, it can be held pending or
accepted according to the setting made by software.

Thus, normally, SPC and SSR are saved and then the BL bit in SR is cleared to O, to enable
multiple exception state acceptance.

554 Return from Exception Handling

The RTE instruction is used to return from exception handling. When the RTE instruction is
executed, the SPC contents are restored to PC and the SSR contents to SR, and the CPU returns
from the exception handling routine by branching to the SPC address. If SPC and SSR were saved
to external memory, set the BL bit in SR to 1 before restoring the SPC and SSR contents and
issuing the RTE instruction.

5.6 Description of Exceptions

The various exception handling operations are described here, covering exception sources,
transition addresses, and processor operation when atransition is made.

56.1 Resets
(1) Power-On Reset

» Sources:
0 SCK2 pin high level and RESET pin low level (SH7750 Series)/RESET pin low level
(SH7751)
0 When the watchdog timer overflows while the WT/IT bit is set to 1 and the RSTS bit is
cleared to 0 in WTCSR. For details, see Clock Oscillation Circuits in hardware manual.
» Transition address: H'A000 0000
« Transition operations:
Exception code H'000 is set in EXPEVT, initialization of VBR and SR is performed, and a
branch is made to PC = H'A000 0000.

Rev. 5.0, 04/01, page 88 of 394
RENESAS

In theinitialization processing, the VBR register is set to H'0000 0000, and in SR, the MD,
RB, and BL hitsare set to 1, the FD bit is cleared to 0, and the interrupt mask bits (13-10) are
setto B'1111.

CPU and on-chip peripheral module initialization is performed. For details, see the register
descriptions in the relevant sections. For some CPU functions, the TRST pin and RESET pin
must be driven low. It is therefore essential to execute a power-on reset and drive the TRST
pin low when powering on.

If the SCK2 pin is changed to the low level whilethe RESET pinislow, a manual reset may
occur after the power-on reset operation. Do not drive the SCK2 pin low during this interval
(see Electrical Characteristics in the hardware manual).

In the SH7750 Series, if the SCK2 pinis changed to the low level while the RESET pinislow,
amanual reset may occur after the power-on reset operation. Do not drive the SCK2 pin low
during thisinterval. For details, see Electrical Characteristicsin the hardware manual.

In the SH7751, if the RESET pin isdriven high before the MRESET pin while both these pins
are low, amanual reset may occur after the power-on reset operation. The RESET pin must be
driven high at the same time as, or after, the MRESET pin.

Power _on_reset ()

{
EXPEVT = H 00000000;
VBR = H 00000000;
SR MD = 1;
SR RB = 1;
SR BL = 1;
SR (10-13) = B 1111;
SR. FD=0;
Initialize_CPU();
Initialize_Mdul e(Power On);
PC = H A0000000;

Rev. 5.0, 04/01, page 89 of 394
RENESAS

(2) Manual Reset

e Sources.

O SCK2 pinlow level and RESET pin low level (SH7750 Series)/MRESET pin low level and
RESET pin high level (SH7751)

O When ageneral exception other than a user break occurs whilethe BL bitissetto 1in SR

0 When the watchdog timer overflows while the WT/IT bit is set to 1 and the RSTS bit is set
to 1in WTCSR. For details, see Clock Oscillation Circuitsin the hardware manual.

» Transition address; H'A000 0000
» Transition operations:

Exception code H'020 is set in EXPEVT, initialization of VBR and SR is performed, and a
branch is made to PC = H'A000 0000.

In theinitialization processing, the VBR register is set to H'0000 0000, and in SR, the MD,
RB, and BL hits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (13-10) are
set to B'1111.

CPU and on-chip peripheral module initialization is performed. For details, see the register
descriptions in the relevant sections.

Manual _reset ()

{
EXPEVT = H 00000020;
VBR = H 00000000;
SR MD = 1;
SR RB = 1;
SR BL = 1;

SR (10-13) = B 1111;

SR. FD = 0;
Initialize_CPU();
Initialize_Mdul e(Manual);
PC = H A0000000;

Rev. 5.0, 04/01, page 90 of 394
RENESAS

Table5.3 Typesof Reset (SH7750 Series)

Reset State Transition

Conditions Internal States
_ On-Chip Peripheral
Type SCK2 RESET CPU Modules
Power-on reset High Low Initialized See Register
Manual reset Low Low Initialized Configuration in

individual sections of
the hardware
manual

Table5.4 Typesof Reset (SH7751)

Reset State Transition

Conditions Internal States
On-Chip Peripheral
Type MRESET RESET CPU Modules
Power-on reset — Low Initialized See Register
Manual reset Low High Initialized Configuration in

individual sections of
the hardware
manual

RENESAS

Rev. 5.0, 04/01, page 91 of 394

(3) H-UDI Reset

e Source: SDIR.TI3-TI0 = B'0110 (negation) or B'0111 (assertion)
» Transition address: H'A000 0000
e Transition operations:

Exception code H'000 is set in EXPEVT, initialization of VBR and SR is performed, and a
branch is made to PC = H'A000 0000.

In theinitialization processing, the VBR register is set to H'0000 0000, and in SR, the MD,
RB, and BL hitsare set to 1, the FD bit is cleared to 0, and the interrupt mask bits (13-10) are
setto B'1111.

CPU and on-chip peripheral module initialization is performed. For details, see the register
descriptions in the relevant sections.

H UDI _reset ()

{
EXPEVT = H 00000000;
VBR = H 00000000;
SR MD = 1;
SR RB = 1;
SR BL = 1;
SR (10-13) = B 1111;
SR FD = 0;
Initialize CPU);
Initialize_Mdul e(Power On);
PC = H A0000000;

Rev. 5.0, 04/01, page 92 of 394
RENESAS

(4) Instruction TLB Multiple-Hit Exception

e Source: Multiple ITLB address matches
» Transition address: H'A000 0000
e Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) isset in PTEH [31:10]. ASID in PTEH indicates

the ASID when this exception occurred.

Exception code H'140 is set in EXPEVT, initialization of VBR and SR is performed, and a

branch is made to PC = H'A000 0000.

In theinitialization processing, the VBR register is set to H'0000 0000, and in SR, the MD,
RB, and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (13-10) are

set to B'1111.

CPU and on-chip peripheral module initialization is performed in the same way asin amanual
reset. For details, see the register descriptions in the relevant sections.

TLB multi_hit()

{
TEA = EXCEPTI ON_ADDRESS;
PTEH. VPN = PAGE_NUMBER;
EXPEVT = H 00000140;
VBR = H 00000000;
SR MD = 1;
SR. RB 1;
SR. BL 1;
SR (10-13) = B 1111;
SR. FD = 0O;
Initialize_CPU();
Initialize_Mdul e(Manual);
PC = H A0000000;

RENESAS

Rev. 5.0, 04/01, page 93 of 394

(5) Operand TLB Multiple-Hit Exception

e Source: Multiple UTLB address matches
» Transition address: H'A000 0000
e Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) isset in PTEH [31:10]. ASID in PTEH indicates

the ASID when this exception occurred.

Exception code H'140 is set in EXPEVT, initialization of VBR and SR is performed, and a

branch is made to PC = H'A000 0000.

In theinitialization processing, the VBR register is set to H'0000 0000, and in SR, the MD,
RB, and BL hits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (13-10) are

set to B'1111.

CPU and on-chip peripheral module initialization is performed in the same way asin amanual
reset. For details, see the register descriptions in the relevant sections.

TLB multi_hit()

{
TEA = EXCEPTI ON_ADDRESS;
PTEH. VPN = PAGE_NUMBER;
EXPEVT = H 00000140;
VBR = H 00000000;
SR MD = 1;
SR. RB 1;
SR. BL 1;
SR (10-13) = B 1111;
SR FD = 0O;
Initialize_CPU();
Initialize_Mdul e(Manual);
PC = H A0000000;

Rev. 5.0, 04/01, page 94 of 394

RENESAS

5.6.2 General Exceptions
(1) Data TLB Miss Exception

e Source: Address mismatch in UTLB address comparison
» Transition address: VBR + H'0000 0400
« Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) isset in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'040 (for aread access) or H'060 (for awrite access) isset in EXPEVT. The
BL, MD, and RB bhitsare set to 1 in SR, and a branch is made to PC = VBR + H'0400.

To speed up TLB miss processing, the offset is separate from that of other exceptions.

Data_TLB_m ss_excepti on()
{
TEA = EXCEPTI ON_ADDRESS;
PTEH. VPN = PAGE_NUMBER;
SPC = PC,
SSR = SR
SGR = R15;
EXPEVT = read_access ? H 00000040 : H 00000060;
SR MD = 1;
SR RB = 1;
SR BL = 1;
PC = VBR + H 00000400;

Rev. 5.0, 04/01, page 95 of 394
RENESAS

(2) Instruction TLB Miss Exception

e Source: Address mismatch in ITLB address comparison
» Transition address: VBR + H'0000 0400
e Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) isset in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'040 is set in EXPEVT. The BL, MD, and RB hitsaresetto 1in SR, and a
branch is made to PC = VBR + H'0400.

To speed up TLB miss processing, the offset is separate from that of other exceptions.

I TLB_mi ss_exception()

{
TEA = EXCEPTI ON_ADDRESS;
PTEH. VPN = PAGE_NUMBER;
SPC = PC,
SSR = SR
SGR = R15;
EXPEVT = H 00000040;
SR MD = 1;
SR RB
SR BL =
PC = VBR + H 00000400;

1
1

Rev. 5.0, 04/01, page 96 of 394
RENESAS

(3) Initial Page Write Exception

e Source: TLB ishitin astore access, but dirty bit D =0
» Transition address: VBR + H'0000 0100
e Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) isset in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'080 is set in EXPEVT. The BL, MD, and RB hitsaresetto 1in SR, and a
branch is made to PC = VBR + H'0100.

Initial _wite_exception()
{
TEA = EXCEPTI ON_ADDRESS;
PTEH. VPN = PAGE_NUMBER;
SPC = PC,
SSR = SR
SGR = R15;
EXPEVT = H 00000080;
SR MD = 1;
SR. RB ;
SR BL 1;
PC = VBR + H 00000100;

Rev. 5.0, 04/01, page 97 of 394
RENESAS

(4) Data TLB Protection Violation Exception

e Source: The access does not accord with the UTLB protection information (PR bits) shown
below.

PR Privileged Mode User Mode

00 Only read access possible Access not possible

01 Read/write access possible Access not possible

10 Only read access possible Only read access possible
11 Read/write access possible Read/write access possible

e Transition address; VBR + H'0000 0100
» Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) isset in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'0AO (for aread access) or H'0OCO (for awrite access) isset in EXPEVT. The
BL, MD, and RB bhitsare set to 1 in SR, and a branch is made to PC = VBR + H'0100.

Data_TLB protection_viol ati on_exception()
{
TEA = EXCEPTI ON_ADDRESS;
PTEH. VPN = PAGE_NUMBER;
SPC = PC,
SSR = SR
SGR = R15;
EXPEVT = read_access ? H 000000A0 : H 000000C0O;
SR MD = 1;
SR RB
SR. BL
PC = VBR + H 00000100;

1
1

Rev. 5.0, 04/01, page 98 of 394
RENESAS

(5) Instruction TLB Protection Violation Exception

|
{

Source: The access does not accord with the ITLB protection information (PR bits) shown
below.

PR Privileged Mode User Mode
0 Access possible Access not possible
1 Access possible Access possible

Transition address; VBR + H'0000 0100
Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) isset in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'0AOQ is set in EXPEVT. The BL, MD, and RB bitsareset to 1 in SR, and a
branch is made to PC = VBR + H'0100.

TLB protection_violation_exception()

TEA = EXCEPTI ON_ADDRESS;
PTEH. VPN = PAGE_NUMBER;

SPC = PC,
SSR = SR
SCR = R15;
EXPEVT = H 000000AQ;
SR.MD = 1;
SR RB = 1;
SR BL = 1;

PC = VBR + H 00000100;

Rev. 5.0, 04/01, page 99 of 394
RENESAS

(6) Data AddressError

* Sources:
O Word data access from other than aword boundary (2n +1)
O Longword data access from other than alongword data boundary (4n +1, 4n + 2, or 4n +3)

0 Quadword data access from other than a quadword data boundary (8n +1, 8n + 2, 8n +3, 8n
+4,8n+5,8n+6,0r8n+7)

0O Accessto area H'8000 0000—H'FFFF FFFF in user mode
» Transition address; VBR + H'0000 0100
« Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) isset in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'OEQ (for aread access) or H'100 (for awrite access) isset in EXPEVT. The
BL, MD, and RB bitsare set to 1 in SR, and a branch is made to PC = VBR + H'0100. For
details, see section 3, Memory Management Unit (MMU).

Dat a_address_error()
{
TEA = EXCEPTI ON_ADDRESS;
PTEN. VPN = PAGE_NUMBER;
SPC = PC,
SSR = SR
SGR = R15;
EXPEVT = read_access? H 000000EO: H 00000100;
SR MD 1;
SR. RB 1;
SR BL 1;
PC = VBR + H 00000100;

Rev. 5.0, 04/01, page 100 of 394
RENESAS

(7) Instruction AddressError

|
{

Sources:

O Instruction fetch from other than aword boundary (2n +1)

O Instruction fetch from area H'8000 0000—H'FFFF FFFF in user mode
Transition address: VBR + H'0000 0100

Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) isset in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'OEQ is set in EXPEVT. The BL, MD, and RB bitsare setto 1 in SR, and a
branch is made to PC = VBR + H'0100. For details, see section 3, Memory Management Unit
(MMU).

nstruction_address_error()

TEA = EXCEPTI ON_ADDRESS;
PTEN. VPN = PACGE_NUMBER;

SPC = PC,
SSR = SR,
SGR = R15;
EXPEVT = H 000000EOQ;
SR.MD = 1;
SRRB =1
SR BL = 1;

PC = VBR + H 00000100;

Rev. 5.0, 04/01, page 101 of 394
RENESAS

(8) Unconditional Trap

e Source: Execution of TRAPA instruction

» Transition address: VBR + H'0000 0100

e Transition operations:
Asthisis a processing-completion-type exception, the PC contents for the instruction
following the TRAPA instruction are saved in SPC. The values of SR and R15 when the
TRAPA instruction is executed are saved in SSR and SGR. The 8-bit immediate value in the
TRAPA instruction is multiplied by 4, and the result is set in TRA [9:0]. Exception code H'160
issetin EXPEVT. The BL, MD, and RB bitsare set to 1 in SR, and a branch is made to PC =
VBR + H'0100.

TRAPA_exception()

{
SPC = PC + 2;
SSR = SR,
SGR = R15;
TRA = imm << 2;
EXPEVT = H 00000160;
SR M =1
SR RB = 1;
SR BL = 1;
PC = VBR + H 00000100;
}

Rev. 5.0, 04/01, page 102 of 394
RENESAS

(9) General lllegal Instruction Exception

* Sources:
O Decoding of an undefined instruction not in adelay slot
Delayed branch instructions: IMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT/S, BF/S
Undefined instruction: H'FFFD
O Decoding in user mode of a privileged instruction not in adelay slot

Privileged instructions: LDC, STC, RTE, LDTLB, SLEEP, but excluding LDC/STC
instructions that access GBR

e Trangtion address; VBR + H'0000 0100

» Transition operations:
The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.
Exception code H'180 is set in EXPEVT. The BL, MD, and RB hitsaresetto 1in SR, and a
branch is made to PC = VBR + H'0100. Operation is not guaranteed if an undefined code other
than H'FFFD is decoded.

General _illegal _instruction_exception()
{

SPC = PC,

SSR = SR,

SGR = R15;

EXPEVT = H 00000180;

SR.MD = 1;

SRRB =1

SR.BL = 1;

PC = VBR + H 00000100;

Rev. 5.0, 04/01, page 103 of 394
RENESAS

(10) Slot Illegal Instruction Exception

» Sources:
O Decoding of an undefined instruction in adelay sot
Delayed branch instructions: IMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT/S, BF/S
Undefined instruction: H'FFFD
O Decoding of an instruction that modifies PC in adelay dot

Instructions that modify PC: IMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT, BF,
BT/S, BF/S, TRAPA, LDC Rm, SR, LDC.L @Rm+,SR

0 Decoding in user mode of a privileged instruction in adelay dot

Privileged instructions: LDC, STC, RTE, LDTLB, SLEEP, but excluding LDC/STC
instructions that access GBR

O Decoding of a PC-relative MOV instruction or MOV A instruction in adelay slot
» Transition address; VBR + H'0000 0100
e Transition operations:

The PC contents for the preceding delayed branch instruction are saved in SPC. The SR and
R15 contents when this exception occurred are saved in SSR and SGR.

Exception code H'1AOQ is set in EXPEVT. The BL, MD, and RB bitsareset to 1 in SR, and a
branch is made to PC = VBR + H'0100. Operation is not guaranteed if an undefined code other
than H'FFFD is decoded.

Slot_illegal _instruction_exception()
{

SPC = PC - 2;

SSR = SR

SGR = R15;

EXPEVT = H 000001A0;

SR MD = 1;

SR RB 1;

SR. BL ;

PC = VBR + H 00000100;

Rev. 5.0, 04/01, page 104 of 394
RENESAS

(11) General FPU Disable Exception

» Source: Decoding of an FPU instruction* not in adelay ot with SR.FD =1
» Transition address: VBR + H'0000 0100
e Transition operations:

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'800 is set in EXPEVT. The BL, MD, and RB hitsaresetto 1in SR, and a
branch is made to PC = VBR + H'0100.

Note: * FPU instructions are instructions in which the first 4 bits of the instruction code are F (but
excluding undefined instruction H'FFFD), and the LDS, STS, LDS.L, and STS.L
instructions corresponding to FPUL and FPSCR.

Gener al _f pu_di sabl e_exception()
{

SPC = PC,

SSR = SR,

SGR = R15;

EXPEVT = H 00000800;

SR.MD = 1;

SR RB = 1;

SR. BL 1;

PC = VBR + H 00000100;

Rev. 5.0, 04/01, page 105 of 394
RENESAS

(12) Slot FPU Disable Exception

» Source: Decoding of an FPU instruction in adelay slot with SR.FD =1
» Transition address: VBR + H'0000 0100
e Transition operations:

The PC contents for the preceding delayed branch instruction are saved in SPC. The SR and
R15 contents when this exception occurred are saved in SSR and SGR.

Exception code H'820 is set in EXPEVT. The BL, MD, and RB hitsaresetto 1in SR, and a
branch is made to PC = VBR + H'0100.

Sl ot _f pu_di sabl e_exception()
{
SPC = PC - 2;
SSR = SR
SGR = R15;
EXPEVT = H 00000820;
SR MD = 1;
SR RB =
SR BL
PC = VBR + H 00000100;

1
1

Rev. 5.0, 04/01, page 106 of 394
RENESAS

(13) User Breakpoint Trap

» Source: Fulfilling of abreak condition set in the user break controller
» Transition address. VBR + H'0000 0100, or DBR
e Transition operations:

In the case of a post-execution break, the PC contents for the instruction following the
instruction at which the breakpoint is set are set in SPC. In the case of a pre-execution bresk,
the PC contents for the instruction at which the breakpoint is set are set in SPC.

The SR and R15 contents when the break occurred are saved in SSR and SGR. Exception code
H'1EQisset in EXPEVT.

The BL, MD, and RB bitsare set to 1 in SR, and a branch is made to PC = VBR + H'0100. It is
also possible to branch to PC = DBR.

For details of PC, etc., when adata break is set, see User Break Controller in the hardware
manual.

User _break_exception()
{
SPC = (pre_execution break? PC: PC + 2);
SSR = SR
SGR = R15;
EXPEVT = H 000001EOQ;
SR MD = 1;
SR RB 1;
SR. BL 1;
PC = (BRCR UBDE==1 ? DBR : VBR + H 00000100);

Rev. 5.0, 04/01, page 107 of 394
RENESAS

(14) FPU Exception

» Source: Exception due to execution of a floating-point operation
» Transition address: VBR + H'0000 0100
e Transition operations:

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR. Exception code H'120 is set in EXPEVT.
TheBL, MD, and RB bitsare set to 1 in SR, and a branch ismade to PC = VBR + H'0100.

FPU_exception()
{
SPC = PC,
SSR = SR
SCR = R15;
EXPEVT = H 00000120;
SR M =1
SR RB = 1;
SR BL = 1;
PC = VBR + H 00000100;

Rev. 5.0, 04/01, page 108 of 394
RENESAS

5.6.3 Interrupts
(1) NMI

e Source: NMI pin edge detection
» Transition address: VBR + H'0000 0600
« Transition operations:

The contents of PC and SR immediately after the instruction at which this interrupt was
accepted are saved in SPC and SSR, and the contents of R15 are saved in SGR.

Exception code H'1CO isset in INTEVT. TheBL, MD, and RB bitsare setto 1in SR, and a
branch is made to PC = VBR + H'0600. When the BL bit in SR is 0, thisinterrupt is not
masked by the interrupt mask bitsin SR, and is accepted at the highest priority level. When the
BL bitin SR is 1, a software setting can specify whether thisinterrupt is to be masked or
accepted. For details, see Interrupt Controller in the hardware manual.

NM ()
{
SPC = PC,
SSR = SR
SCR = R15;
I NTEVT = H 000001C0;
SR.MD = 1;
SR. RB 1;
SR. BL ;
PC = VBR + H 00000600;

Rev. 5.0, 04/01, page 109 of 394
RENESAS

(2) IRL Interrupts

e Source: Theinterrupt mask bit setting in SR is smaller than the IRL (3-0) level, and the BL bit
in SR is 0 (accepted at instruction boundary).

» Transition address; VBR + H'0000 0600

« Transition operations:
The PC contents immediately after theinstruction at which the interrupt is accepted are set in
SPC. The SR and R15 contents at the time of acceptance are set in SSR and SGR.
The code corresponding to the IRL (3-0) level issetin INTEVT. Seetable 19.5, Interrupt
Exception Handling Sources and Priority Order, for the corresponding codes. The BL, MD,
and RB bitsare set to 1 in SR, and abranch is made to VBR + H'0600. The acceptance level is
not set in the interrupt mask bitsin SR. When the BL hit in SR is 1, the interrupt is masked.
For details, see Interrupt Controller in the hardware manual.

I RL()
{
SPC = PG,
SSR = SR
SGR = R15;
I NTEVT = H 00000200 ~ H 000003C0;
SR M =1
SR RB = 1;
SR BL = 1;

PC = VBR + H 00000600;

Rev. 5.0, 04/01, page 110 of 394
RENESAS

(3) Peripheral Module Interrupts

Source: Theinterrupt mask bit setting in SR is smaller than the peripheral module (H-UDI,
GPIO, DMAC, PCIC*, TMU, RTC, SCI, SCIF, WDT, or REF) interrupt level, and the BL hit
in SR is 0 (accepted at instruction boundary).

Note: * SH7751 only

Transition address: VBR + H'0000 0600

Transition operations:

The PC contentsimmediately after the instruction at which the interrupt is accepted are set in
SPC. The SR and R15 contents at the time of acceptance are set in SSR and SGR.

The code corresponding to the interrupt sourceisset in INTEVT. The BL, MD, and RB bits
areset to 1in SR, and abranch is made to VBR + H'0600. The module interrupt levels should
be set as values between B’ 0000 and B’ 1111 in the interrupt priority registers (IPRA-IPRC) in
the interrupt controller. For details, see Interrupt Controller in the hardware manual.

Modul e_i nterruption()

{

SPC = PC,
SSR = SR,
SGR = R15;
I NTEVT = H 00000400 ~ H 00000760;
SR MD = 1,
SRRB =1
SR BL = 1,

PC = VBR + H 00000600;

Rev. 5.0, 04/01, page 111 of 394
RENESAS

564 Priority Order with Multiple Exceptions

With some instructions, such as instructions that make two accesses to memory, and the
indivisible pair comprising a delayed branch instruction and delay slot instruction, multiple
exceptions occur. Care isrequired in these cases, as the exception priority order differs from the
normal order.

1. Instructions that make two accesses to memory
With MAC instructions, memory-to-memory arithmetic/logic instructions, and TAS
instructions, two data transfers are performed by a single instruction, and an exception will be
detected for each of these data transfers. In these cases, therefore, the following order is used
to determine priority.
a. Dataaddress error in first data transfer

TLB missin first data transfer

TLB protection violation in first data transfer

Initial page write exception in first data transfer

Data address error in second data transfer

TLB missin second data transfer

TLB protection violation in second data transfer

Initial page write exception in second data transfer

S@ "o a0 o

2. Indivisible delayed branch instruction and delay slot instruction

Asadelayed branch instruction and its associated delay dot instruction are indivisible, they

are treated as a single instruction. Consequently, the priority order for exceptions that occur in

these instructions differs from the usual priority order. The priority order shown below isfor

the case where the delay dot instruction has only one data transfer.

a. Thedelayed branch instruction is checked for priority level 1 and 2 abort type and re-
execution type exceptions.

b. Thedelay dot instruction is checked for priority level 1 and 2 abort type and re-execution
type exceptions.

c. Thedelayed branch instruction is checked for apriority level 2 completion type exception.

d. Thedelay dlot instruction is checked for apriority level 2 completion type exception.

e. A check isperformed for priority level 3 in the delayed branch instruction and priority
level 3inthedelay dot instruction. (Thereisno priority ranking between these two.)

f. A check is performed for priority level 4 in the delayed branch instruction and priority
level 4inthedelay dot instruction. (Thereis no priority ranking between these two.)

If the delay dot instruction has a second data transfer, two checks are performed in step b, asin
1 above.

Rev. 5.0, 04/01, page 112 of 394
RENESAS

If the accepted exception (the highest-priority exception) isadelay dot instruction re-
execution type exception, the branch instruction PR register write operation (PC - PR
operation performed in BSR, BSRF, JSR) isinhibited.

5.7

Usage Notes

1. Return from exception handling

a

b.

Check the BL bit in SR with software. If SPC and SSR have been saved to external
memory, set the BL hit in SR to 1 before restoring them.

Issue an RTE instruction. When RTE is executed, the SPC contents are set in PC, the SSR
contents are set in SR, and branch is made to the SPC address to return from the exception
handling routine.

2. If an exception or interrupt occurs when SR.BL = 1

a

Exception

When an exception other than a user break occurs, a manual reset is executed. The value in
EXPEVT at thistime is H'0000 0020; the value of the SPC and SSR registersis undefined.
Interrupt

If an ordinary interrupt occurs, the interrupt request is held pending and is accepted after
the BL bit in SR has been cleared to 0 by software. If a nonmaskable interrupt (NMI)
occurs, it can be held pending or accepted according to the setting made by software. In the
sleep or standby state, however, an interrupt is accepted even if the BL bitin SRisset to 1.

3. SPC when an exception occurs

a

Re-execution type exception

The PC value for the instruction in which the exception occurred is set in SPC, and the
instruction is re-executed after returning from exception handling. If an exception occursin
adelay dot instruction, however, the PC value for the delay slot instruction is saved in SPC
regardless of whether or not the preceding delay slot instruction condition is satisfied.
Completion type exception or interrupt

The PC value for the instruction following that in which the exception occurred is set in
SPC. If an exception occurs in abranch instruction with delay slot, however, the PC value
for the branch destination is saved in SPC.

4. An exception must not be generated in an RTE instruction delay slot, as the operation will be
undefined in this case.

Rev. 5.0, 04/01, page 113 of 394
RENESAS

5.8 Restrictions

1. Restrictions on first instruction of exception handling routine
» Donotlocate aBT, BF, BT/S, BF/S, BRA, or BSR instruction at address VBR + H'100, VBR
+ H'400, or VBR + H'600.

e When the UBDE bit in the BRCR register is set to 1 and the user break debug support
function* isused, do not locate aBT, BF, BT/S, BF/S, BRA, or BSR instruction at the address

indicated by the DBR register.

Note: * See User Break Debug Support Function in the hardware manual.

Rev. 5.0, 04/01, page 114 of 394
RENESAS

Section 6 Floating-Point Unit

6.1 Overview
The floating-point unit (FPU) has the following features:

» Conformsto |IEEE754 standard

» 32 single-precision floating-point registers (can also be referenced as 16 double-precision
registers)

« Two rounding modes. Round to Nearest and Round to Zero

» Two denormalization modes: Flush to Zero and Treat Denormalized Number

e Six exception sources: FPU Error, Invalid Operation, Divide By Zero, Overflow, Underflow,
and Inexact

» Comprehensive instructions: Single-precision, double-precision, graphics support, system
control

When the FD bit in SR is set to 1, the FPU cannot be used, and an attempt to execute an FPU
instruction will cause an FPU disable exception.

6.2 Data Formats

6.2.1 Floating-Point For mat
A floating-point number consists of the following threefields:

* Sign(s
e Exponent (e)
» Fraction (f)

The SH-4 can handle single-precision and double-precision floating-point numbers, using the
formats shown in figures 6.1 and 6.2.

31 30 23 22 0

S e f

Figure6.1 Format of Single-Precision Floating-Point Number

Rev. 5.0, 04/01, page 115 of 394
RENESAS

63 62 52 51 0

Figure6.2 Format of Double-Precision Floating-Point Number

The exponent is expressed in biased form, as follows:
e = E + bias

The range of unbiased exponent EisE,;,—1toE + 1. Thetwovaluesg , —1andE, +1are
distinguished asfollows. E_,, — 1 indicates zero (both positive and negative sign) and a
denormalized number, and E,__ + 1 indicates positive or negative infinity or anon-number (NaN).
Table 6.1 showsbias, E,,, and E,, values.

min?

Table6.1 Floating-Point Number Formats and Parameters

Parameter Single-Precision Double-Precision
Total bit width 32 bits 64 bits

Sign bit 1 bit 1 bit

Exponent field 8 bits 11 bits

Fraction field 23 bits 52 bits

Precision 24 bits 53 bits

Bias +127 +1023

E.. +127 +1023

E -126 -1022

min

Floating-point number value v is determined as follows:

IfE=E, +1landf#0,visanon-number (NaN) irrespective of sign s
IfE=E, +1andf=0,v=(-1) (infinity) [positive or negative infinity]
IfE, <E<E_,Vv=(-1)2"(Lf) [normalized number]

IfE=E, —1landf#0,v=(-1)2""(0.f) [denormalized number]
IfE=E,,—1andf=0,v = (-1)0 [positive or negative zero]

Table 6.2 shows the ranges of the various numbers in hexadecimal notation.

Rev. 5.0, 04/01, page 116 of 394
RENESAS

Table 6.2

Type

Floating-Point Ranges

Single-Precision

Double-Precision

Signaling non-number

H'7FFFFFFF to H'7FC00000

H'7FFFFFFF FFFFFFFF to
H'7FF80000 00000000

Quiet non-number

H'7FBFFFFF to H'7F800001

H7FF7FFFF FFFFFFFF to
H'7FF00000 00000001

Positive infinity

H'7F800000

H'7FFO0000 00000

Positive normalized
number

H'7F7FFFFF to H'00800000

H7FEFFFFF FFFFFFFF to
H'00100000 00000000

Positive denormalized
number

H'007FFFFF to H'00000001

H'000FFFFF FFFFFFFF to
H'00000000 00000001

Positive zero

H'00000000

H'00000000 00000000

Negative zero

H'80000000

H'80000000 00000000

Negative denormalized
number

H'80000001 to H'807FFFFF

H'80000000 00000001 to
H'800FFFFF FFFFFFFF

Negative normalized
number

H'80800000 to H'FF7FFFFF

H'80100000 00000000 to
H'FFEFFFFF FFFFFFFF

Negative infinity

H'FF800000

H'FFFO0000 00000000

Quiet non-number

H'FF800001 to H'FFBFFFFF

H'FFF00000 00000001 to
H'FFF7FFFF FFFFFFFF

Signaling non-number

H'FFC00000 to H'FFFFFFFF

H'FFF80000 00000000 to
HFFFFFFFF FFFFFFFF

6.2.2 Non-Numbers (NaN)
Figure 6.3 shows the hit pattern of anon-number (NaN). A valueis NaN in the following case:

e Signbit: Don't care
» Exponent field: All bitsare 1
» Fractionfield: At least onebitis1

The NaN isasignaling NaN (sNaN) if the MSB of the fraction field is 1, and a quiet NaN (gNaN)
if theMSB isO.

Rev. 5.0, 04/01, page 117 of 394
RENESAS

31 30 23 22 0

X 11111111 NIXXXXXXXXX XXX XX XXX XXXKX

N = 1:sNaN
N = 0: gNaN

Figure6.3 Single-Precision NaN Bit Pattern

An sNAN isinput in an operation, except copy, FABS, and FNEG, that generates a floating-point
value.

« When the EN.V hit in the FPSCR register is 0, the operation result (output) is agNaN.

* When the EN.V bit in the FPSCR register is 1, an invalid operation exception will be
generated. In this case, the contents of the operation destination register are unchanged.

If agNaN isinput in an operation that generates a floating-point value, and an sNaN has not been
input in that operation, the output will always be agNaN irrespective of the setting of the EN.V bit
in the FPSCR register. An exception will not be generated in this case.

The gNAN values generated by the SH-4 as operation results are as follows:

» Single-precision gNaN: H'7FBFFFFF
e Double-precision gNaN: H'7FF7FFFF FFFFFFFF

See section 9, Instruction Descriptions, for details of floating-point operations when a non-number
(NaN) isinput.

6.2.3 Denormalized Numbers

For a denormalized number floating-point value, the exponent field is expressed as 0, and the
fraction field as a non-zero value.

When the DN bit in the FPU’ s status register FPSCR is 1, a denormalized number (source operand
or operation result) is always flushed to 0 in a floating-point operation that generates a value (an
operation other than copy, FNEG, or FABS).

When the DN bit in FPSCR is 0, a denormalized number (source operand or operation result) is
processed asit is. See section 9, Description of Instructions, for details of floating-point operations
when a denormalized number isinput.

Rev. 5.0, 04/01, page 118 of 394
RENESAS

6.3 Registers

6.3.1 Floating-Point Registers

Figure 6.4 shows the floating-point register configuration. There are thirty-two 32-bit floating-
point registers, referenced by specifying FRO-FR15, DR0/2/4/6/8/10/12/14, FV0/4/8/12, X FO—
XF15, XD0/2/4/6/8/10/12/14, or XMTRX.

1. Floating-point registers, FPRi_BANK;] (32 registers)
FPRO_BANKO-FPR15 BANKO
FPRO_BANK1-FPR15 BANK1

2. Single-precision floating-point registers, FRi (16 registers)
When FPSCR.FR = 0, FRO-FR15 indicate FPRO_BANKO-FPR15_BANKO;
when FPSCR.FR = 1, FRO-FR15 indicate FPRO_BANK1-FPR15_BANK1.

3. Double-precision floating-point registers, DRi (8 registers): A DR register comprisestwo FR
registers
DRO = {FRO, FR1}, DR2 = { FR2, FR3}, DR4 = { FR4, FR5}, DR6 = { FR6, FR7},
DR8 = {FR8, FR9}, DR10 = { FR10, FR11}, DR12 = { FR12, FR13}, DR14 = { FR14, FR15}

4. Single-precision floating-point vector registers, FVi (4 registers): An FV register comprises
four FR registers
FV0={FRO, FR1, FR2, FR3}, FV4 = {FR4, FR5, FR6, FR7},
FV8 ={FR8, FR9, FR10, FR11}, FV12 = { FR12, FR13, FR14, FR15}

5. Single-precision floating-point extended registers, XFi (16 registers)
When FPSCR.FR = 0, XFO—XF15 indicate FPRO_BANK1-FPR15 BANKZ,;
when FPSCR.FR = 1, XFO—-XF15 indicate FPRO_BANKO—-PR15 BANKO.

6. Double-precision floating-point extended registers, XDi (8 registers): An XD register
comprises two XF registers
XDO0 = {XFO, XF1}, XD2 = { XF2, XF3}, XD4 = { XF4, XF5}, XD6 = { XF6, XF7},
XD8 = {XF8, XF9}, XD10 = { XF10, XF11}, XD12 = { XF12, XF13}, XD14 = { XF14, XF15}

7. Single-precision floating-point extended register matrix, XMTRX: XMTRX comprises all 16
XF registers
XMTRX = [XFO XF4 XF8 XF12 |
XF1 XF5 XF9 XF13
XF2 XF6 XF10 XF14
XF3 XF7 XF11 XF15

Rev. 5.0, 04/01, page 119 of 394
RENESAS

FPSCR.FR=0

FVO DRO

DR2

Fv4 DR4

DR6

Fv8 DRS8

DR10

FvV12 DR12

DR14

XMTRX XDO

XD2

XD4

XD6

XD8

XD10

XD12

XD14

FRO
FR1
FR2
FR3
FR4
FR5
FR6
FR7
FR8
FR9
FR10
FR11
FR12
FR13
FR14
FR15

XFO
XF1
XF2
XF3
XF4
XF5
XF6
XF7
XF8
XF9
XF10
XF11
XF12
XF13
XF14
XF15

FPRO_BANKO

FPR1_BANKO

FPR2_BANKO

FPR3_BANKO

FPR4_BANKO

FPR5_BANKO

FPR6_BANKO

FPR7_BANKO

FPR8_BANKO

FPR9_BANKO

FPR10_BANKO

FPR11_BANKO

FPR12_BANKO

FPR13_BANKO

FPR14_BANKO

FPR15_BANKO

FPRO_BANK1

FPR1_BANK1

FPR2_BANK1

FPR3_BANK1

FPR4_BANK1

FPR5_BANK1

FPR6_BANK1

FPR7_BANK1

FPR8_BANK1

FPR9_BANK1

FPR10_BANK1

FPR11_BANK1

FPR12_BANK1

FPR13_BANK1

FPR14_BANK1

FPR15_BANK1

FPSCR.FR =1
XFO XDO XMTRX
XF1
XF2 XD2
XF3
XF4 XD4
XF5
XF6 XD6
XF7
XF8 XD8
XF9
XF10 XD10
XF11
XF12 XD12
XF13
XF14 XD14
XF15
FRO DRO FVO
FR1
FR2 DR2
FR3
FR4 DR4 FV4
FR5
FR6 DR6
FR7
FR8 DR8 FV8
FR9
FR10 DR10
FR11
FR12 DR12 FV12
FR13
FR14 DR14
FR15

Rev. 5.0, 04/01, page 120 of 394

Figure6.4 Floating-Point Registers

RENESAS

6.3.2 Floating-Point Status/Control Register (FPSCR)

Floating-point status/control register, FPSCR (32 bits, initial value = H'0004 0001)

31 22 21 20 19 18 17 12 11 7 6 2 1 0
— |FR |SZ |PR |DN | Cause Enable | Flag | RM |
Note: —: Reserved. These bits are always read as 0, and should only be written with 0.

* FR: Floating-point register bank
FR = 0: FPRO_BANKO-FPR15_BANKO are assigned to FRO-FR15; FPRO_BANK1-
FPR15 BANK1 are assigned to XFO-XF15.

FR = 1: FPRO_BANKO-FPR15 BANKO are assigned to XFO—-XF15; FPRO_BANK1-
FPR15_BANK1 are assigned to FRO—FR15.

* SZ: Transfer size mode
SZ = 0: The data size of the FMQOV instruction is 32 bits.
SZ = 1: The data size of the FMQOV instruction is a 32-bit register pair (64 bits).

* PR: Precision mode
PR = 0: Floating-point instructions are executed as single-precision operations.

PR = 1: Floating-point instructions are executed as double-precision operations (graphics
support instructions are undefined).

Do not set SZ and PR to 1 simultaneoudly; this setting is reserved.
[SZ, PR = 11]: Reserved (FPU operation instruction is undefined.)

* DN: Denormalization mode
DN = 0: A denormalized number is treated as such.
DN = 1: A denormalized number is treated as zero.

» Cause: FPU exception cause field
» Enable: FPU exception enable field
» Flag: FPU exception flag field

FPU Invalid Division Overflow Underflow Inexact
Error (E) Operation (V) by Zero (Z) (O)) (0}
Cause FPU exception Bit17 Bit 16 Bit 15 Bit 14 Bit 13 Bit 12
cause field
Enable FPU exception None Bit 11 Bit 10 Bit 9 Bit 8 Bit 7
enable field
Flag FPU exception None Bit 6 Bit5 Bit 4 Bit 3 Bit 2
flag field

Rev. 5.0, 04/01, page 121 of 394
RENESAS

When an FPU operation instruction is executed, the FPU exception cause field is cleared to
zero first. When the next FPU exception is occured, the corresponding bits in the FPU
exception cause field and FPU exception flag field are set to 1. The FPU exception flag field
holds the status of the exception generated after the field was last cleared.

e RM: Rounding mode
RM = 00: Round to Nearest
RM = 01: Round to Zero
RM = 10: Reserved
RM = 11: Reserved

* Bits22to 31: Reserved
These bits are aways read as 0, and should only be written with O.

Notes: The following functions have been added to the FPU of the SH-4 (not provided in the FPU
of the SH7718):

1. TheFR, SZ, and PR bits have been added.

2. Exception O (overflow), U (underflow), and | (inexact) bits have been added to the
cause, enable, and flag fields.

3. Anexception E (FPU error) bit has been added to the cause field.

6.3.3 Floating-Point Communication Register (FPUL)

Information is transferred between the FPU and CPU viathe FPUL register. The 32-bit FPUL
register is a system register, and is accessed from the CPU side by means of LDS and STS
instructions. For example, to convert the integer stored in general register R1 to a single-precision
floating-point number, the processing flow is as follows:

R1 - (LDSinstruction) - FPUL - (single-precision FLOAT instruction) — FR1

6.4 Rounding

In afloating-point instruction, rounding is performed when generating the final operation result
from the intermediate result. Therefore, the result of combination instructions such as FMAC,
FTRV, and FIPR will differ from the result when using a basic instruction such as FADD, FSUB,
or FMUL. Rounding is performed oncein FMAC, but twicein FADD, FSUB, and FMUL.

There are two rounding methods, the method to be used being determined by the RM field in
FPSCR.

 RM = 00: Round to Nearest
* RM =01: Round to Zero

Rev. 5.0, 04/01, page 122 of 394
RENESAS

Round to Nearest: The valueis rounded to the nearest expressible value. If there are two nearest
expressible values, the one with an LSB of 0 is selected.

Emax

If the unrounded value is 25™ (2 — 27) or more, the result will be infinity with the same sign as the
unrounded value. The values of Emax and P, respectively, are 127 and 24 for single-precision, and
1023 and 53 for double-precision.

Round to Zero: The digits below the round bit of the unrounded value are discarded.

If the unrounded value is larger than the maximum expressible absolute value, the value will be
the maximum expressible absolute value.

6.5 Floating-Point Exceptions
FPU-related exceptions are as follows:

e Generd illega instruction/dot illegal instruction exception
The exception occursif an FPU instruction is executed when SR.FD = 1.

* FPU exceptions
The exception sources are as follows:
FPU error (E): When FPSCR.DN = 0 and a denormalized number isinput
Invalid operation (V): In case of an invalid operation, such as NaN input
Division by zero (Z): Division with a zero divisor
Overflow (O): When the operation result overflows
Underflow (U): When the operation result underflows
Inexact exception (1): When overflow, underflow, or rounding occurs

The FPSCR cause field contains bits corresponding to all of above sourcesE, V, Z, O, U, and
I, and the FPSCR flag and enable fields contain bits corresponding to sourcesV, Z, O, U, and
I, but not E. Thus, FPU errors cannot be disabled.

When an exception source occurs, the corresponding bit in the cause fieldissetto 1, and 1 is
added to the corresponding bit in the flag field. When an exception source does not occur, the
corresponding hit in the cause field is cleared to 0, but the corresponding bit in the flag field
remains unchanged.

Oo0Oo0oogogo

* FPU exception handling
FPU exception occurs in the following cases:
O FPU error (E): FPSCR.DN = 0 and a denormalized number is input
O Invalid operation (V): FPSCR.EN.V =1 and (instruction = FTRV or invalid operation)
O Division by zero (Z): FPSCR.EN.Z = 1 and division with a zero divisor
O Overflow (O): FPSCR.EN.O = 1 and instruction with possibility of operation result
overflow

Rev. 5.0, 04/01, page 123 of 394
RENESAS

O Underflow (U): FPSCR.EN.U = 1 and instruction with possibility of operation result
underflow
O Inexact exception (I): FPSCR.EN.I = 1 and instruction with possibility of inexact operation
result
These possibilities are shown in the individual instruction descriptions. All exception events
that originate in the FPU are assigned as the same exception event. The meaning of an
exception is determined by software by reading system register FPSCR and interpreting the
information it contains. If no bits are set in the cause field of FPSCR when one or more of bits
O, U, l,and V (in case of FTRV only) are set in the enable field, thisindicates that an actual
FPU exception is nhot generated. Also, the destination register is not changed by any FPU
exception handling operation.
Except for the above, the hit corresponding to source V, Z, O, U, or | isset to 1, and a default
value is generated as the operation result.
O Invalid operation (V): gNAN is generated as the result.
O Division by zero (Z): Infinity with the same sign as the unrounded value is generated.
O Overflow (O):
When rounding mode = RZ, the maximum normalized number, with the same sign as the
unrounded value, is generated.
When rounding mode = RN, infinity with the same sign as the unrounded value is
generated.
O Underflow (U):
When FPSCR.DN = 0, adenormalized number with the same sign as the unrounded value,
or zero with the same sign as the unrounded value, is generated.
When FPSCR.DN = 1, zero with the same sign as the unrounded value, is generated.
O Inexact exception (I): Aninexact result is generated.

6.6 Graphics Support Functions

The supports two kinds of graphics functions: new instructions for geometric operations, and pair
single-precision transfer instructions that enable high-speed data transfer.

6.6.1 Geometric Operation I nstructions

Geometric operation instructions perform approximate-value computations. To enable high-speed
computation with a minimum of hardware, the SH-4 ignores comparatively small valuesin the
partial computation results of four multiplications. Consequently, the error shown below is
produced in the result of the computation:

Maximum error = MAX (individual multiplication result x
2—MIN (number of multiplier significant digits—1, number of multiplicand slgnlflcanldlglts—l)) + MAX (I’esult Value X 2—23’ 2—149)

Rev. 5.0, 04/01, page 124 of 394
RENESAS

The number of significant digitsis 24 for a normalized number and 23 for a denormalized number
(number of leading zeros in the fractional part).

In future version of SH series, the above error is guaranteed, but the same result as SH-4 is not
guaranteed.

FIPR FVm, FVn (m, n: 0, 4, 8, 12): Examples of the use of thisinstruction are shown below.

e Inner product (m # n):

This operation is generally used for surface/rear surface determination for polygon surfaces.
e Sum of sguare of elements (m = n):

This operation is generally used to find the length of a vector.

Since approximate-val ue computations are performed to enable high-speed computation, the
inexact exception (1) bit in the cause field and flag field is aways set to 1 when an FIPR
instruction is executed. Therefore, if the corresponding bit is set in the enable field, enable
exception handling will be executed.

FTRV XMTRX, FVn (n: 0, 4, 8, 12): Examples of the use of thisinstruction are shown below.

* Matrix (4 x 4) Cvector (4):
This operation is generally used for viewpoint changes, angle changes, or movements called
vector transformations (4-dimensional). Since affine transformation processing for angle +
parallel movement basically requires a4 x 4 matrix, the SH-4 supports 4-dimensional
operations.

e Matrix (4 x 4) x matrix (4 x 4):
This operation requires the execution of four FTRV instructions.

Since approximate-val ue computations are performed to enable high-speed computation, the
inexact exception (1) bit in the cause field and flag field is always set to 1 when an FTRV
instruction is executed. Therefore, if the corresponding bit is set in the enable field, FPU exception
handling will be executed. For the same reason, it is not possible to check all datatypesin the
registers beforehand when executing an FTRV instruction. If the V hit is set in the enable field,
FPU exception handling will be executed.

FRCHG: Thisinstruction modifies banked registers. For example, when the FTRV instruction is
executed, matrix elements must be set in an array in the background bank. However, to create the
actual elements of atrandlation matrix, it is easier to use registersin the foreground bank. When
the LDC instruction is used on FPSCR, thisinstruction expends 4 to 5 cyclesin order to maintain
the FPU state. With the FRCHG instruction, an FPSCR.FR bit modification can be performed in
onecycle.

Rev. 5.0, 04/01, page 125 of 394
RENESAS

6.6.2 Pair Single-Precision Data Transfer

In addition to the powerful new geometric operation instructions, the SH-4 also supports high-
speed data transfer instructions.

When FPSCR.SZ = 1, the SH-4 can perform data transfer by means of pair single-precision data
transfer instructions.

* FMOV DRm/XDm, DRn/XDRn (m, n: 0, 2, 4, 6, 8, 10, 12, 14)
« FMOV DRm/XDm, @Rn (m: 0, 2, 4, 6, 8, 10, 12, 14; n: O to 15)

These instructions enable two single-precision (2 x 32-bit) dataitems to be transferred; that is, the
transfer performance of these instructionsis doubled.

* FSCHG
Thisinstruction changes the value of the SZ bit in FPSCR, enabling fast switching between
use and non-use of pair single-precision data transfer.

Programming Note

When FPSCR.SZ = 1 and big-endian mode is used, FMQOV can be used for a double-precision
floating-point load or store. In little-endian mode, a double-precision floating-point load or store
requires execution of two 32-bit data size operations with FPSCR.SZ = 0.

Rev. 5.0, 04/01, page 126 of 394
RENESAS

Section 7 Instruction Set

7.1 Execution Environment
PC: At the start of instruction execution, PC indicates the address of the instruction itself.

Data sizes and data types. The SH-4' sinstruction set isimplemented with 16-bit fixed-length
instructions. The SH-4 can use byte (8-hit), word (16-bit), longword (32-bit), and quadword (64-
bit) data sizes for memory access. Single-precision floating-point data (32 bits) can be moved to
and from memory using longword or quadword size. Double-precision floating-point data (64 bits)
can be moved to and from memory using longword size. When a double-precision floating-point
operation is specified (FPSCR.PR = 1), the result of an operation using quadword access will be
undefined. When the SH-4 moves byte-size or word-size data from memory to aregister, the data
is sign-extended.

L oad-Stor e Architecture: The SH-4 features aload-store architecture in which operations are
basically executed using registers. Except for bit-manipulation operations such as logical AND
that are executed directly in memory, operands in an operation that requires memory access are
loaded into registers and the operation is executed between the registers.

Delayed Branches: Except for the two branch instructions BF and BT, the SH-4's branch
instructions and RTE are delayed branches. In a delayed branch, the instruction following the
branch is executed before the branch destination instruction. This execution sot following a
delayed branch is called adelay dot. For example, the BRA execution sequenceis as follows:

Static Sequence Dynamic Sequence

BRA TARGET BRA TARGET

ADD R1, RO ADD R1, RO ADD in delay slot is executed before
next_2 target_instr branching to TARGET

Delay Slot: Anillegal instruction exception may occur when a specific instruction is executed in a
delay slot. See section 5, Exceptions. The instruction following BF/S or BT/S for which the
branch is not taken is also adelay slot instruction.

T Bit: The T bit in the status register (SR) is used to show the result of a compare operation, and
isreferenced by a conditional branch instruction. An example of the use of a conditional branch
instruction is shown below.

ADD #1, RO ; T bit is not changed by ADD operation
CMP/EQR1, RO ; If RO=R1, Thitissetto 1
BT TARGET ; Branchesto TARGET if T bit=1 (RO=R1)

Rev. 5.0, 04/01, page 127 of 394
RENESAS

Inan RTE delay dlot, status register (SR) bits are referenced as follows. In instruction access, the
MD bit is used before modification, and in data access, the MD bhit is accessed after modification.
The other bits—S, T, M, Q, FD, BL, and RB—after modification are used for delay slot
instruction execution. The STC and STC.L SR instructions access all SR hits after modification.

Constant Values. An 8-bit constant value can be specified by the instruction code and an
immediate value. 16-bit and 32-bit constant values can be defined as literal constant valuesin
memory, and can be referenced by a PC-relative load instruction.

MOV.W @(disp, PC), Rn
MOV.L @(disp, PC), Rn

There are no PC-relative load instructions for floating-point operations. However, it is possible to
set 0.0 or 1.0 by using the FLDI0 or FLDI 1 instruction on a single-precision floating-point
register.

Rev. 5.0, 04/01, page 128 of 394
RENESAS

7.2 Addressing Modes

Addressing modes and effective address calculation methods are shown in table 7.1. When a
location in virtual memory spaceis accessed (MMUCR.AT = 1), the effective address is trand ated
into a physical memory address. If multiple virtual memory space systems are selected

(MMUCR.SV = 0), the least significant bit of PTEH is aso referenced as the access ASID. See

section 3, Memory Management Unit (MMU).

Table7.1 Addressing Modes and Effective Addresses
Addressing Instruction Calculation
Mode Format Effective Address Calculation Method Formula
Register Rn Effective address is register Rn. —
direct (Operand is register Rn contents.)
Register @Rn Effective address is register Rn contents. Rn - EA
indirect (EA: effective
address)
Register @Rn+ Effective address is register Rn contents. Rn - EA
indirect A constant is added to Rn after instruction After
with post- execution: 1 for a byte operand, 2 for a word instruction
increment operand, 4 for a longword operand, 8 for a execution
quadword operand. Byte:
Word:
Rn + 1/2/4/8
L Rn+2 - Rn
Longword:
1/2/4/8 Rn+4 - Rn
Quadword:
Rn+8 - Rn
Register @-Rn Effective address is register Rn contents, Byte:
indirect decremented by a constant beforehand: Rn—-1 - Rn
with pre- 1 for a byte operand, 2 for a word operand, Word:
decrement 4 for a longword operand, 8 for a quadword Rn-2 - Rn
operand.
Longword:
- Rn—4 - Rn
Rn — 1/2/4/8 _ Quadword:
Rn — 1/2/4/8 Rn—8 - Rn
1/2/4/8 Rn - EA
(Instruction
executed
with Rn after
calculation)

RENESAS

Rev. 5.0, 04/01, page 129 of 394

Table7.1 Addressing Modes and Effective Addr esses (cont)
Addressing Instruction Calculation
Mode Format Effective Address Calculation Method Formula
Register @(disp:4, Rn) Effective address is register Rn contents with Byte: Rn +
indirect with 4-bit displacement disp added. After disp is disp - EA
displacement zero-extended, it is multiplied by 1 (byte), 2 (word), Word: Rn +
or 4 (longword), according to the operand size. disp x 2 - EA
Longword:
- Rn + disp x 4
disp Rn + disp x 1/2/4 - EA
(zero-extended)
Indexed @ (RO, Rn) Effective address is sum of register Rn and RO Rn+ RO - EA
register contents.
indirect
GBR indirect @(disp:8, Effective address is register GBR contents with Byte: GBR +
with GBR) 8-bit displacement disp added. After disp is disp - EA
displacement zero-extended, it is multiplied by 1 (byte), 2 (word), Word: GBR +
or 4 (longword), according to the operand size. disp x 2 EA
Longword:
GBR + disp x
disp _GBR b A
(zero-extended) + disp x 1/2/4
Indexed @(RO, GBR) Effective address is sum of register GBR and RO GBR + RO -
GBR indirect contents. EA

GBR + RO

Rev. 5.0, 04/01, page 130 of 394

RENESAS

Table7.1 Addressing Modes and Effective Addr esses (cont)

Addressing Instruction Calculation
Mode Format Effective Address Calculation Method Formula
PC-relative @(disp:8, PC) Effective address is PC+4 with 8-bit displacement ~ Word: PC + 4
with disp added. After disp is zero-extended, it is +dispx2 -
displacement multiplied by 2 (word), or 4 (longword), according EA
to the operand size. With a longword operand, Longword:
the lower 2 bits of PC are masked. PC &
H'FFFFFFFC
+ 4 + disp x 4
- EA
PC + 4 + disp
x 2
or PC &
: H'FFFFFFFC
disp i
(zero-extended) *+4+dispx4
* With longword operand
PC-relative disp:8 Effective address is PC+4 with 8-bit displacement PC + 4 + disp
disp added after being sign-extended and x 2 - Branch-
multiplied by 2. Target

PC + 4 + disp x 2

disp
(sign-extended)

Rev. 5.0, 04/01, page 131 of 394
RENESAS

Table7.1 Addressing Modes and Effective Addr esses (cont)

Addressing Instruction Calculation

Mode Format Effective Address Calculation Method Formula

PC-relative disp:12 Effective address is PC+4 with 12-bit displacement PC + 4 + disp
disp added after being sign-extended and x 2 - Branch-
multiplied by 2. Target

PC + 4 + disp x 2

disp
(sign-extended)

Rn PC+4+Rn
- Branch-
Target
Immediate #imm:8 8-bit immediate data imm of TST, AND, OR, or —
XOR instruction is zero-extended.
#imm:8 8-bit immediate data imm of MOV, ADD, or —
CMP/EQ instruction is sign-extended.
#imm:8 8-bit immediate data imm of TRAPA instruction is —

zero-extended and multiplied by 4.

Note: For the addressing modes below that use a displacement (disp), the assembler descriptions
in this manual show the value before scaling (x1, x2, or x4) is performed according to the
operand size. This is done to clarify the operation of the chip. Refer to the relevant
assembler notation rules for the actual assembler descriptions.

@ (disp:4, Rn) ; Register indirect with displacement
@ (disp:8, GBR) ; GBR indirect with displacement

@ (disp:8, PC) ; PC-relative with displacement
disp:8, disp:12 ; PC-relative

Rev. 5.0, 04/01, page 132 of 394
RENESAS

7.3 Instruction Set
Table 7.2 shows the notation used in the following SH instruction list.

Table7.2 Notation Used in Instruction List

Item Format Description
Instruction OP.Sz SRC, DEST OFP: Operation code
mnemonic Sz: Size

SRC: Source
DEST: Source and/or destination operand

Summary of - Transfer direction

operation (xx) Memory operand
M/Q/T SR flag bits
& Logical AND of individual bits
| Logical OR of individual bits
O Logical exclusive-OR of individual bits
~ Logical NOT of individual bits
<<n, >>n n-bit shift
Instruction code MSB -~ LSB mmmm: Register number (Rm, FRm)
nnnn: Register number (Rn, FRn)
0000: RO, FRO
0001: R1, FR1
1111: R15, FR15
mmm: Register number (DRm, XDm, Rm_BANK)
nnn: Register number (DRm, XDm, Rn_BANK)
000: DRO, XDO0, RO_BANK
001: DR2, XD2, R1_BANK
111: DR14, XD14, R7_BANK
mm: Register number (FVm)
nn: Register number (FVn)
00: FVO
01: Fv4
10: Fv8
11: FVv12
iiii: Immediate data
dddd: Displacement
Privileged mode “Privileged” means the instruction can only be executed
in privileged mode.
T bit Value of T bitafter = —: No change

instruction execution

Note: Scaling (x1, x2, x4, or x8) is executed according to the size of the instruction operand(s).

Rev. 5.0, 04/01, page 133 of 394
RENESAS

Table7.3

Fixed-Point Transfer Instructions

Instruction Operation Instruction Code Privileged T Bit

MOV #imm,Rn imm - sign extension - Rn 1110nnnniiiiiiii — —

MOV.W @(disp,PC),Rn (disp x 2 + PC + 4) - sign 1001nnnndddddddd — —
extension - Rn

MOV.L @(disp,PC),Rn (disp x4 + PC & HFFFFFFFC 1101nnnndddddddd — —
+4) - Rn

MOV Rm,Rn Rm - Rn 0110nnnnmmm0011 — —

MOV.B Rm,@Rn Rm - (Rn) 0010nnnnnMMmMmMO000 — —

MOV.W Rm,@Rn Rm - (Rn) 0010nnnnmmm0001 — —

MOV.L Rm,@Rn Rm - (Rn) 0010nnnnmmm0010 — —

MOV.B @Rm,Rn (Rm) - sign extension - Rn 0110nnnnnmmm0000 — —

MOV.W @Rm,Rn (Rm) - sign extension - Rn 0110nnnnmmm0001 — —

MOV.L @Rm,Rn (Rm) - Rn 0110nnnnnMMmMmO010 — —

MOV.B Rm,@-Rn Rn-1 - Rn, Rm - (Rn) 0010nnnnmmm0100 — —

MOV.W Rm,@-Rn Rn-2 - Rn, Rm - (Rn) 0010nnnnnMMmMmOD101 — —

MOV.L Rm,@-Rn Rn-4 - Rn, Rm - (Rn) 0010nnnnmmm0110 — —

MOV.B @Rm+,Rn (Rm) - sign extension - Rn, 0110nnnnmmm0100 — —
Rm+1 - Rm

MOV.W @Rm+,Rn (Rm) - sign extension — Rn, 0110nnnnmmmm®D101 — —
Rm+2 - Rm

MOV.L @Rm+,Rn (Rm) -~ Rn,Rm+4 - Rm 0110nnnnnmMmMmOD110 — —

MOV.B RO,@(disp,Rn) RO - (disp + Rn) 10000000nnnndddd — —

MOV.W RO,@(disp,Rn) RO - (disp x 2 + Rn) 10000001nnnndddd — —

MOV.L Rm,@(disp,Rn) Rm - (disp x 4 + Rn) 0001nnnnmmmdddd — —

MOV.B @(disp,Rm),R0 (disp + Rm) - sign extension ~ 10000100mmmdddd — —
- RO

MOV.W @(disp,Rm),RO (disp x 2 + Rm) - sign 10000101mmmdddd — —
extension - RO

MOV.L @(disp,Rm),Rn (disp x4 + Rm) - Rn 0101nnnnmmmdddd — —

MOV.B Rm,@(RO,Rn) Rm - (RO + Rn) 0000nnnnmMmMM0100 — —

MOV.W Rm,@(RO,Rn) Rm - (RO + Rn) 0000nnnnAMMMMOD101 — —

MOV.L Rm,@(RO,Rn) Rm - (RO + Rn) 0000nnnnmmMMO0110 — —

MOV.B @(R0O,Rm),Rn (RO + Rm) - sign extension 0000nnNnnAMMMML100 — —
- Rn

MOV.W @(RO,Rm),Rn (RO + Rm) - sign extension 0000nnnnPMMMML101 — —
- Rn

MOV.L @(RO,Rm),Rn (RO+Rm) - Rn 0000nnnnmMmMML110 — —

Rev. 5.0, 04/01, page 134 of 394

RENESAS

Table7.3

Fixed-Point Transfer Instructions (cont)

Instruction Operation Instruction Code Privileged T Bit

MOV.B RO,@(disp,GBR) RO - (disp + GBR) 11000000dddddddd — —

MOV.W RO,@(disp,GBR) RO — (disp x 2 + GBR) 11000001dddddddd — —

MOV.L RO,@(disp,GBR) RO - (disp x 4 + GBR) 11000010dddddddd — —

MOV.B @(disp,GBR),RO (disp + GBR) — 11000100dddddddd — —
sign extension - RO

MOV.W @(disp,GBR),RO (disp x 2 + GBR) — 11000101dddddddd — —
sign extension - RO

MOV.L @(disp,GBR),R0 (disp x 4 + GBR) - RO 11000110dddddddd — —

MOVA @(disp,PC),R0 disp x 4 + PC & HFFFFFFFC 11000111dddddddd — —
+4 - RO

MOVT Rn T - Rn 0000nnnn00101001 — —

SWAP.B Rm,Rn Rm - swap lower 2 bytes 0110nnnnmmml000 — —
- Rn

SWAP.W Rm,Rn Rm - swap upper/lower 0110nnnnmmml001 — —
words — Rn

XTRCT Rm,Rn Rm:Rn middle 32 bits - Rn 0010nnnnmmmll1l01 — —

RENESAS

Rev. 5.0, 04/01, page 135 of 394

Table7.4 Arithmetic Operation Instructions

Instruction Operation Instruction Code Privileged T Bit

ADD Rm,Rn Rn+Rm - Rn 0011nnnnmmmll00 — —

ADD #imm,Rn Rn +imm - Rn Ollinnnniiiiiiii — —

ADDC Rm,Rn Rn+Rm+T - Rn,carry - T 001lnnnnmmilll0 — Carry

ADDV Rm,Rn Rn +Rm - Rn, overflow - T 0011lnnnnmmmllll — Overflow

CMP/EQ #imm,RO When RO =imm,1 - T 10001000iiiiiiii — Comparison
Otherwise, 0 - T result

CMP/EQ Rm,Rn WhenRn=Rm,1 - T 0011nnnnmmm0000 — Comparison
Otherwise, 0 - T result

CMP/HS Rm,Rn When Rn = Rm (unsigned), 0011nnnnmmm0010 — Comparison
1-T result
Otherwise, 0 - T

CMP/GE Rm,Rn When Rn = Rm (signed), 1 - T 0011nnnnmmm®0011 — Comparison
Otherwise, 0 - T result

CMP/HI Rm,Rn When Rn > Rm (unsigned), 0011nnnnmmm0110 — Comparison
1-T result
Otherwise, 0 - T

CMP/GT Rm,Rn When Rn > Rm (signed), 1 - T 0011nnnnnmmm®0111 — Comparison
Otherwise, 0 - T result

CMP/PZ Rn WhenRn=20,1 T 0100nnnn00010001 — Comparison
Otherwise, 0 - T result

CMP/PL Rn WhenRn>0,1 - T 0100nnnn00010101 — Comparison
Otherwise, 0 - T result

CMP/STR Rm,Rn When any bytes are equal, 0010nnnnnMMmmM1100 — Comparison
1T result
Otherwise, 0 - T

DIV1 Rm,Rn 1-step division (Rn + Rm) 0011nnnnmmm0100 — Calculation

result

DIVOS Rm,Rn MSB of Rn - Q, 0010nnnnnMmMmMmO111l — Calculation
MSB of Rm - M,M"Q - T result

DIVOU 0 - M/QIT 0000000000011001 — 0

DMULS.L Rm,Rn Signed, Rn x Rm - MAC, 0011nnnnmmmll0l — —
32 x 32 - 64 bits

DMULU.L Rm,Rn Unsigned, Rn x Rm - MAC, 0011nnnnmmm0101 — —
32 x 32 - 64 bits

DT Rn Rn—-1 - Rn; when Rn =0, 0100nnnn00010000 — Comparison
1-T result
WhenRNn#0,0 - T

EXTS.B Rm,Rn Rm sign-extended from 0110nnnnmmml110 — —
byte » Rn

Rev. 5.0, 04/01, page 136 of 394
RENESAS

Table7.4 Arithmetic Operation Instructions (cont)

Instruction Operation Instruction Code Privileged T Bit

EXTS.W Rm,Rn Rm sign-extended from 0110nnnnmmmml11l — —
word - Rn

EXTU.B Rm,Rn Rm zero-extended from 0110nnnnnMMmm1100 — —
byte » Rn

EXTUW Rm,Rn Rm zero-extended from 0110nnnnnmmml101 — —
word - Rn

MAC.L @Rm+,@Rn+ Signed, (Rn) x (Rm) + MAC -~ 0000nnnnnmMmMML111 — —
MAC

Rn+4 - Rn,Rm+4 - Rm
32 x 32 + 64 - 64 bits

MAC.W @Rm+,@Rn+ Signed, (Rn) x (Rm) + MAC -~ 0100nnnnnmm1111 — —
MAC
Rn+2 - Rn,Rm+2 - Rm
16 x 16 + 64 - 64 bits

MUL.L Rm,Rn Rn x Rm - MACL 0000nnNNnMMMO111 — —

32 x 32 - 32 bits
MULS.W Rm,Rn Signed, Rn x Rm - MACL 0010nnnnnmMmmi11l — —

16 x 16 — 32 hits
MULUW Rm,Rn Unsigned, Rn x Rm - MACL 0010nnnnmmmmi110 — —

16 x 16 — 32 bits
NEG Rm,Rn 0-Rm - Rn 0110nnnnmmm1011 — —
NEGC Rm,Rn O-RmM-T - Rn,borrow - T 0110nnnnmmml010 — Borrow
SUB Rm,Rn Rn—-Rm - Rn 0011nnnnmMmm1000 — —
SUBC Rm,Rn Rn—Rm-T - Rn, borrow - T 0011nnnnnmm1010 — Borrow
SUBV Rm,Rn Rn—Rm - Rn, underflow - T 001lnnnnnmmi1l011 — Underflow

Rev. 5.0, 04/01, page 137 of 394
RENESAS

Table7.5

Logic Operation Instructions

Instruction Operation Instruction Code Privileged T Bit

AND Rm,Rn Rn & Rm - Rn 0010nnnnnmMm1001 — —

AND #imm,R0O RO & imm - RO 1100100%iiiiiiii — —

AND.B #imm,@(R0,GBR) (RO + GBR) & imm - (RO + 1100110%iiiiiiii — —
GBR)

NOT Rm,Rn ~Rm - Rn 0110nnnnnmm®O0111 — —

OR Rm,Rn Rn|Rm - Rn 0010nnnnnmmm1011 — —

OR #imm,R0O RO | imm - RO 1100101%iiiiiiii — —

OR.B #imm,@(R0O,GBR) (RO + GBR) |imm - (RO + 1100111diiiiiiii —
GBR)

TAS.B @Rn When (Rn)=0,1 - T 0100nnnn00011011 — Test result
Otherwise, 0 - T
In both cases, 1 -~ MSB of (Rn)

TST Rm,Rn Rn & Rm; when result = 0, 0010nnnnnmMm000 — Test result
1-T
Otherwise, 0 - T

TST #imm,R0 RO & imm; when result = 0, 11001000iiiiiiii — Test result
1-T
Otherwise, 0 - T

TST.B #mm,@(R0O,GBR) (RO + GBR) & imm; when result 11001100iiiiiiii — Test result
=0,1-T
Otherwise, 0 - T

XOR Rm,Rn RnORmM - Rn 0010nnnnmMmmm1 010 — —

XOR #imm,RO RO Oimm - RO 11001010iiiiiiii — —

XOR.B #imm,@(R0,GBR) (RO + GBR) Oimm - (RO + 11001110iiiiiiii — —

GBR)

Rev. 5.0, 04/01, page 138 of 394

RENESAS

Table7.6 Shift Instructions

Instruction Operation Instruction Code Privileged T Bit
ROTL Rn T -« Rn -« MSB 0100nnnn00000100 — MSB
ROTR Rn LSB - Rn - T 0100nnnn00000101 — LSB
ROTCL Rn T-RnT 0100nnnn00100100 — MSB
ROTCR Rn T-Rn-T 0100nnnn00100101 — LSB
SHAD Rm,Rn When Rn =0, Rn<<Rm - Rn 0100nnnnmmmm1100 — —

When Rn <0, Rn >>Rm -

[MSB - Rn]
SHAL Rn T-Rn-0 0100nnnn00100000 — MSB
SHAR Rn MSB - Rn - T 0100nnnn00100001 — LSB
SHLD Rm,Rn When Rn 20, Rn<<Rm - Rn 0100nnnnnmmml101 — —

When Rn <0, Rn >>Rm -

[0 - Rn]
SHLL Rn T<Rn-0 0100nnnn00000000 — MSB
SHLR Rn 0O-Rn-T 0100nnnn00000001 — LSB
SHLL2 Rn Rn<<2 - Rn 0100nnnn00001000 — —
SHLR2 Rn Rn>>2 - Rn 0100nnnn00001001 — —
SHLLS8 Rn Rn<<8 - Rn 0100nnnn00011000 — —
SHLR8 Rn Rn>>8 - Rn 0100nnnn00011001 — —
SHLL16 Rn Rn<<16 - Rn 0100nnnn00101000 — —
SHLR16 Rn Rn>>16 - Rn 0100nnnn00101001 — —

Rev. 5.0, 04/01, page 139 of 394
RENESAS

Table7.7 Branch Instructions

Instruction Operation Instruction Code Privileged T Bit
BF label When T =0, disp x2 + PC + 10001011dddddddd — —

4 - PC

When T =1, nop
BF/S label Delayed branch; when T = 0, 10001111dddddddd — —

dispx2+PC+4 - PC
When T =1, nop

BT label WhenT=1,dispx2+PC+ 10001001dddddddd — —
4 . PC
When T =0, nop

BT/S label Delayed branch; when T =1, 10001101dddddddd — —

dispx2+PC+4 - PC
When T =0, nop

BRA label Delayed branch, disp x 2 + 1010dddddddddddd — —
PC+4 - PC

BRAF Rn Rn+PC+4 - PC 0000nnnn00100011 — —

BSR label Delayed branch, PC +4 - PR, 10l1ldddddddddddd — —
dispx2+PC+4 - PC

BSRF Rn Delayed branch, PC + 4 - PR, 0000nnnn00000011 — —
Rn+PC+4 - PC

JMP @Rn Delayed branch, Rn - PC 0100nnnn00101011 — —

JSR @Rn Delayed branch, PC + 4 . PR, 0100nnnn00001011 — —
Rn - PC

RTS Delayed branch, PR - PC 0000000000001011 — —

Rev. 5.0, 04/01, page 140 of 394
RENESAS

Table7.8

System Control Instructions

Instruction Operation Instruction Code Privileged T Bit
CLRMAC 0 - MACH, MACL 0000000000101000 — —
CLRS 0-S 0000000001001000 — —
CLRT 0T 0000000000001000 — 0
LDC Rm,SR Rm - SR 0100mMmMm00001110 Privileged LSB
LDC Rm,GBR Rm - GBR 0100nmMMD0011110 — —
LDC Rm,VBR Rm - VBR 0100nMmmMm00101110 Privileged —
LDC Rm,SSR Rm - SSR 0100nmMmMDO0111110 Privileged —
LDC Rm,SPC Rm - SPC 0100nMmMm01001110 Privileged —
LDC Rm,DBR Rm - DBR 0100nmMM11111010 Privileged —
LDC Rm,Rn_BANK Rm - Rn_BANK (n=0to 7) 0100mMmmLlnnn1110 Privileged —
LDC.L @Rm+,SR (Rm) - SR,Rm+4 . Rm 0100nMm00000111 Privileged LSB
LDC.L @Rm+,GBR (Rm) - GBR,Rm+4 -~ Rm 0100mmmD0010111 — —
LDC.L @Rm+,VBR (Rm) - VBR,Rm+4 - Rm 0100nMmmm00100111 Privileged —
LDC.L @Rm+,SSR (Rm) - SSR,Rm+4 - Rm 0100mmMmD0110111 Privileged —
LDC.L @Rm+,SPC (Rm) - SPC,Rm+4 - Rm 0100nMmmMm01000111 Privileged —
LDC.L @Rm+,DBR (Rm) -~ DBR,Rm+4 - Rm 0100mmm11110110 Privileged —
LDC.L @Rm+,Rn_BANK (Rm) - Rn_BANK, 0100nMMmmLlnnn0111 Privileged —
Rm+4 - Rm
LDS Rm,MACH Rm - MACH 0100mMmmMmMD0001010 — —
LDS Rm,MACL Rm - MACL 0100nmMMD0011010 — —
LDS Rm,PR Rm - PR 0100mMmmMmD0101010 — —
LDS.L @Rm+,MACH (Rm) - MACH,Rm+4 -~ Rm 0100mmmD0000110 — —
LDS.L @Rm+,MACL (Rm) - MACL,Rm+4 - Rm 0100mm00010110 — —
LDS.L @Rm+,PR (Rm) - PR,Rm+4 -, Rm 0100mmm®D0100110 — —
LDTLB PTEH/PTEL - TLB 0000000000111000 Privileged —
MOVCA.L RO,@Rn RO - (Rn) (without fetching 0000nnnn11000011 — —
cache block)
NOP No operation 0000000000001001 — —
OCBI @Rn Invalidates operand cache block 0000nnnn10010011 — —
OCBP @Rn Writes back and invalidates 0000nnnn10100011 — —
operand cache block
OCBWB @Rn Writes back operand cache 0000nnnn10110011 — —
block
PREF @Rn (Rn) - operand cache 0000nnnn10000011 — —
RTE Delayed branch, SSR/SPC - 0000000000101011 Privileged —

SR/PC

RENESAS

Rev. 5.0, 04/01, page 141 of 394

Table7.8 System Contral Instructions (cont)

Instruction Operation Instruction Code Privileged T Bit
SETS 1.8 0000000001011000 — —
SETT 1-T 0000000000011000 — 1
SLEEP Sleep or standby 0000000000011011 Privileged —
STC SR,Rn SR - Rn 0000nnnn00000010 Privileged —
STC GBR,Rn GBR - Rn 0000nnNNn00010010 — —
STC VBR,Rn VBR - Rn 0000nnnn00100010 Privileged —
STC SSR,Rn SSR - Rn 0000nnnn00110010 Privileged —
STC SPC,Rn SPC - Rn 0000nnnn01000010 Privileged —
STC SGR,Rn SGR - Rn 0000nnnn00111010 Privileged —
STC DBR,Rn DBR - Rn 0000nnnn11111010 Privileged —
STC Rm_BANK,Rn Rm_BANK - Rn(m=0to7) 0000nnnnlnmmDO010 Privileged —
STC.L SR,@-Rn Rn-4 - Rn, SR - (Rn) 0100nnnn00000011 Privileged —
STC.L GBR,@-Rn Rn—-4 - Rn, GBR - (Rn) 0100nnnn00010011 — —
STC.L VBR,@-Rn Rn-4 - Rn, VBR - (Rn) 0100nnnn00100011 Privileged —
STC.L SSR,@-Rn Rn—-4 - Rn, SSR - (Rn) 0100nnnn00110011 Privileged —
STC.L SPC,@-Rn Rn-4 - Rn, SPC - (Rn) 0100nnnn01000011 Privileged —
STC.L SGR,@-Rn Rn—-4 - Rn, SGR - (Rn) 0100nnnn00110010 Privileged —
STC.L DBR,@-Rn Rn-4 - Rn, DBR - (Rn) 0100nnnn11110010 Privileged —
STC.L Rm_BANK,@-Rn Rn-4 - Rn, 0100nnnn1lnmm0011 Privileged —
Rm_BANK - (Rn) (m=0to7)
STS MACH,Rn MACH - Rn 0000nnnn00001010 — —
STS MACL,Rn MACL - Rn 0000nnNnn00011010 — —
STS PR,Rn PR - Rn 0000nnnn00101010 — —
STS.L MACH,@-Rn Rn—-4 - Rn, MACH - (Rn) 0100nnnn00000010 — —
STS.L MACL,@-Rn Rn—-4 - Rn, MACL - (Rn) 0100nnnn00010010 — —
STS.L PR,@-Rn Rn-4 - Rn, PR - (Rn) 0100nnnn00100010 — —
TRAPA #imm PC+2 - SPC, SR - SSR, 1100001%iiiiiiii — —

#imm << 2 - TRA,
H'160 - EXPEVT,
VBR + H'0100 - PC

Rev. 5.0, 04/01, page 142 of 394
RENESAS

Table7.9 Floating-Point Single-Precision Instructions

Instruction Operation Instruction Code Privileged T Bit
FLDIO FRn H'00000000 — FRn 1111nnnn10001101 — —
FLDI1 FRn H'3F800000 — FRn 1111nnnn10011101 — —
FMOV FRm,FRn FRm - FRn 1111nnnnnmmm1100 — —
FMOV.S @Rm,FRn (Rm) - FRn 1112nnnnmmm1000 — —
FMOV.S @(RO,Rm),FRn (RO + Rm) - FRn 1111nnnnmmmD110 — —
FMOV.S @Rm+,FRn (Rm) -~ FRn,Rm+4 - Rm 111lnnnnnmmml001 — —
FMOV.S FRm,@Rn FRm - (Rn) 1111nnnnnmmm1010 — —
FMOV.S FRm,@-Rn Rn-4 - Rn, FRm - (Rn) 1111nnnnmmm1011 — —
FMOV.S FRm,@(RO,Rn) FRm - (RO + Rn) 1111nnnnmmmD111l — —
FMOV DRm,DRn DRm - DRn 1111nnnOmMD1100 — —
FMOV @Rm,DRn (Rm) - DRn 1112nnnOMmmm1000 — —
FMOV @(RO,Rm),DRn (RO + Rm) -~ DRn 1111nnnOnMmmMmD110 — —
FMOV @Rm+,DRn (Rm) -~ DRn,Rm+8 - Rm 1111nnnOnmmml001 — —
FMOV DRm,@Rn DRm - (Rn) 1111nnnnnmm01010 — —
FMOV DRm,@-Rn Rn-8 - Rn, DRm - (Rn) 1112nnnnmmo01011 — —
FMOV DRm,@(RO,Rn) DRm - (RO + Rn) 111innnnmm00111 — —
FLDS FRm,FPUL FRm - FPUL 111100011101 — —
FSTS FPUL,FRn FPUL - FRn 1111nnnn00001101 — —
FABS FRn FRn & H7FFF FFFF -~ FRn 1111nnnn01011101 — —
FADD FRm,FRn FRn + FRm - FRn 1111nnnnnmMmm©D000 — —
FCMP/EQ FRm,FRn When FRn=FRm,1 - T 1112nnnnmm0100 — Comparison
Otherwise, 0 - T result
FCMP/GT FRm,FRn When FRn>FRm,1 - T 1112nnnnmm0101 — Comparison
Otherwise, 0 - T result
FDIV FRm,FRn FRn/FRm - FRn 1111nnnnmMmm©0011 — —
FLOAT FPUL,FRn (float) FPUL - FRn 1111nnnn00101101 — —
FMAC FRO,FRm,FRn FRO*FRm + FRn - FRn 111Innnnmmmi110 — —
FMUL FRm,FRn FRn*FRm - FRn 1111nnnnnmMmm©0010 — —
FNEG FRn FRn O H'80000000 - FRnN 1111nnnn01001101 — —
FSQRT FRn VFRn - FRn 1111nnnn01101101 — —
FSUB FRm,FRn FRn - FRm - FRn 11121nnnnmMmm©0001 — —
FTRC FRm,FPUL (long) FRm - FPUL 111100111101 — —

Rev. 5.0, 04/01, page 143 of 394

RENESAS

Table7.10 Floating-Point Double-Precision Instructions

Instruction Operation Instruction Code Privileged T Bit
FABS DRn DRn & H'7FFF FFFF FFFF 1111nnn001011101 — —
FFFF - DRn
FADD DRm,DRn DRn + DRm - DRn 1111nnnOmMOO000 — —
FCMP/EQ DRm,DRn When DRn=DRm, 1 - T 1112nnnOMmmoO0100 — Comparison
Otherwise, 0 - T result
FCMP/GT DRm,DRn When DRn>DRm, 1 - T 1111nnnOnMMD0101 — Comparison
Otherwise, 0 - T result
FDIV DRm,DRn DRn /DRm - DRn 1111nnnOMMO0011 — —
FCNVDS DRm,FPUL double_to_ floatiDRm] - FPUL 1111mm010111101 — —
FCNVSD FPUL,DRn float_to_ double [FPUL] - DRn 1111nnn010101101 — —
FLOAT FPUL,DRn (float)FPUL - DRn 1111nnn000101101 — —
FMUL DRm,DRn DRn *DRm - DRn 1111nnnOMMMO0010 — —
FNEG DRn DRn ~ H'8000 0000 0000 0000 1111nnn001001101 — —
- DRn
FSQRT DRn vDRn - DRn 1111nnn001101101 — —
FSUB DRm,DRn DRn - DRm - DRn 1111nnnOMMMO0001 — —
FTRC DRm,FPUL (long) DRm - FPUL 1111000111101 — —
Table7.11 Floating-Point Control Instructions
Instruction Operation Instruction Code Privileged T Bit
LDS Rm,FPSCR Rm - FPSCR 0100mMmM®D1101010 — —
LDS Rm,FPUL Rm - FPUL 0100mMmmD1011010 — —
LDS.L @Rm+,FPSCR (Rm) - FPSCR, Rm+4 -~ Rm 0100mmm01100110 — —
LDS.L @Rm+,FPUL (Rm) - FPUL, Rm+4 - Rm 0100mMmmD1010110 — —
STS FPSCR,Rn FPSCR - Rn 0000nnNnn01101010 — —
STS FPUL,Rn FPUL - Rn 0000nnnn01011010 — —
STS.L FPSCR,@-Rn Rn—-4 - Rn, FPSCR - (Rn) 0100nnnn01100010 — —
STS.L FPUL,@-Rn Rn-4 - Rn, FPUL - (Rn) 0100nnnn01010010 — —

Rev. 5.0, 04/01, page 144 of 394

RENESAS

Table7.12 Floating-Point Graphics Acceleration Instructions

Instruction Operation Instruction Code Privileged T Bit
FMOV DRm,XDn DRm - XDn 1111nnnlnmm01100 — —
FMOV XDm,DRn XDm - DRn 1111nnnOmM11100 — —
FMOV XDm,XDn XDm - XDn 1111nnnlnmm11100 — —
FMOV @Rm,XDn (Rm) - XDn 1112nnn1mm1000 — —
FMOV @Rm+,XDn (Rm) - XDn, Rm +8 - Rm 1111nnn1pmm1001 — —
FMOV @(RO,Rm),DRn (RO +Rm) — DRn 1111nnninmmmo0110 — —
FMOV XDm,@Rn XDm - (Rn) 1111nnnnnmm11010 — —
FMOV XDm,@-Rn Rn -8 - Rn, XDm - (Rn) 1111nnnnmmml1011 — —
FMOV XDm,@(RO,Rn) XDm - (RO+Rn) 111innnnmmmil0111 — —
FIPR FVm,FVn inner_product [FVm, FVn] - 1111nnnm11101101 — —
FR[n+3]
FTRV ~ XMTRX,FVn transform_vector [XMTRX, FVn] 1111nn0111111101 — —
- FVn
FRCHG ~FPSCR.FR - FPSCR.FR 1111101111111101 — —
FSCHG ~FPSCR.SZ - FPSCR.SZ 1111001111111101 — —

Rev. 5.0, 04/01, page 145 of 394
RENESAS

Rev. 5.0, 04/01, page 146 of 394
RENESAS

Section 8 Pipelining

The SH-4 isa 2-1LP (instruction-level-parallelism) superscalar pipelining microprocessor.
Instruction execution is pipelined, and two instructions can be executed in parallel. The execution
cycles depend on the implementation of a processor. Definitionsin this section may not be
applicable to SH-4 Series models other than the SH-4.

8.1 Pipelines

Figure 8.1 shows the basic pipelines. Normally, a pipeline consists of five or six stages: instruction
fetch (1), decode and register read (D), execution (EX/SX/FO/F1/F2/F3), data access (NA/MA),
and write-back (S/FS). Aninstruction is executed as a combination of basic pipelines. Figure 8.2
shows the instruction execution patterns.

Rev. 5.0, 04/01, page 147 of 394
RENESAS

1. General Pipeline

| D EX NA S
« Instruction fetch ¢ Instruction « Operation * Non-memory « Write-back
decode data access
* Issue
* Register read
« Destination address calculation
for PC-relative branch
2. General Load/Store Pipeline
| D EX MA S
« Instruction fetch « Instruction » Address * Memory data « Write-back
decode calculation access
* Issue
* Register read
3. Special Pipeline
| D SX NA S
« Instruction fetch < Instruction « Operation * Non-memory « Write-back
decode data access
* Issue
* Register read
4. Special Load/Store Pipeline
| D SX MA S
« Instruction fetch < Instruction * Address « Memory data * Write-back
decode calculation access
« Issue
* Register read
5. Floating-Point Pipeline
[D F1 F2 FS
« Instruction fetch < Instruction * Computation 1 « Computation 2 « Computation 3
decode » Write-back
« Issue
« Register read
6. Floating-Point Extended Pipeline
| D FO F1 F2 FS
« Instruction fetch ¢ Instruction « Computation 0 « Computation 1 « Computation 2+ Computation 3
decode » Write-back

« Issue
 Register read

7. FDIV/IFSQRT Pipeline

Computation: Takes several cycles

Figure8.1 Basic Pipelines

Rev. 5.0, 04/01, page 148 of 394
RENESAS

. 1-step operation: 1 issue cycle

EXT[SU].[BW], MOV, MOV#, MOVA, MOVT, SWAP.[BW], XTRCT, ADD*, CMP*,
DIV*, DT, NEG*, SUB*, AND, AND#, NOT, OR, OR#, TST, TST#, XOR, XOR#,
ROT*, SHA*, SHL*, BF*, BT*, BRA, NOP, CLRS, CLRT, SETS, SETT,

LDS to FPUL, STS from FPUL/FPSCR, FLDIO, FLDI1, FMOV, FLDS, FSTS,
single-/double-precision FABS/FNEG

[[T o [ex | na | s |

. Load/store: 1 issue cycle
MOV.[BWL]. FMOV*@, LDS.L to FPUL, LDTLB, PREF, STS.L from FPUL/FPSCR

[[o [ex | ma | s |

. GBR-based load/store: 1 issue cycle
MOV.[BWL]@(d,GBR)

[1 T o [sx [ma | s |

. JMP, RTS, BRAF: 2 issue cycles

[7 [o EX NA S
D EX NA s |

. TST.B: 3 issue cycles

[7 T o SX MA s
D SX NA s
D SX NA s |

. AND.B, OR.B, XOR.B: 4 issue cycles

[7+ T o SX MA s
D SX NA s
D SX NA s
D] sx MA s |

. TAS.B: 5 issue cycles

[7 T o EX MA s
D EX MA S
D EX NA S
D EX NA S
D | EX MA s |
. RTE: 5 issue cycles
[+ [o EX NA s
D EX NA S
D EX NA S
D EX NA S
D_ || EX NA s]
. SLEEP: 4 issue cycles
[7 T o EX NA s
D EX NA S
D EX NA S
D | EX NA s |

Figure8.2 Instruction Execution Patterns

Rev. 5.0, 04/01, page 149 of 394
RENESAS

10. OCBI: 1 issue cycle
C 7 T o [ex [wa s |

11. OCBP, OCBWSB: 1 issue cycle

[T T b | ex | wma s]
[L_ma
MA
MA
MA
12. MOVCA.L: 1 issue cycle
[0 [o J ex | ma s |
MA
MA
MA
MA
MA
MA
13. TRAPA: 7 issue cycles
[T b EX NA S
D EX NA S
D EX NA S
D EX NA S
D EX NA S
D EX NA S
D EX NA

14. LDC to DBR/Rp_BANK/SSR/SPC/VBR, BSR: 1 issue cycle

L+ [o [ex Na [s]
[SX
|| SX
15. LDC to GBR: 3 issue cycles
[1 T o EX NA [s]
D SX
[D] SX
16. LDC to SR: 4 issue cycles
[1 T o EX NA [s]
D SX
D SX
[D || sx
17. LDC.L to DBR/Rp_BANK/SSR/SPC/VBR: 1 issue cycle
L+ [o [ex MAa [s |
SX
T Lsx
18. LDC.L to GBR: 3 issue cycles
[1 T o EX MA [s]
D SX
D || SX

Figure8.2 Instruction Execution Patterns (cont)

Rev. 5.0, 04/01, page 150 of 394
RENESAS

19

. LDC.L to SR: 4 issue cycles

[T T o EX MA | s |
D SX
D SX
D [l sx
20. STC from DBR/GBR/Rp_BANK/SR/SSR/SPC/VBR: 2 issue cycles
[7 T o SX NA s
D SX NA s]
21. STC.L from SGR: 3 issue cycles
[1 T o SX NA s
D SX NA S
D SX NA s |
22. STC.L from DBR/GBR/Rp_BANK/SR/SSR/SPC/VBR: 2 issue cycles
[7 T o SX NA s
D SX MA s |
23. STC.L from SGR: 3 issue cycles
[+ [o SX NA s
D SX NA S
D SX MA s |
24. LDS to PR, JSR, BSRF: 2 issue cycles
[1 T o EX NA [s]
[o SX
[sx
25. LDS.L to PR: 2 issue cycles
[T T o EX MA | s |
Lo SX
| sx
26. STS from PR: 2 issue cycles
[7 T o SX NA s
D SX NA s |
27. STS.L from PR: 2 issue cycles
[7 T o SX NA S
D SX MA s |
28. CLRMAC, LDS to MACHY/L: 1 issue cycle
[7 | b [ex NA [s]
1 F1
[A [F2 T Fs]
29. LDS.L to MACHY/L: 1 issue cycle
[[o [ex Ma | s |
| F1
[Fr [F2 [Fs]
30. STS from MACHY/L: 1 issue cycle
1T I o [ex [~na [s |

Figure8.2 Instruction Execution Patterns (cont)

RENESAS

Rev. 5.0, 04/01, page 151 of 394

31.

32.

33.

34.

35.

36.

37.

38.

39.

STS.L from MACHJ/L: 1 issue cycle

[T T o T ex | ma | s |
LDS to FPSCR: 1 issue cycle
[T [b | ex NA | s |
F1
F1
LDS.L to FPSCR: 1 issue cycle
[+ [o | Ex MA [s]
[L_F1
F1

Fixed-point multiplication: 2 issue cycles
DMULS.L, DMULU.L, MUL.L, MULS.W, MULU.W

[+ [b EX NA

D EX

NA

[]

fl

MAC.W, MAC.L: 2 issue cycles

fi

(CPU)

(FPU)

fl

| F2

| Fs

|) EX MA

D EX

MA

[]

fl

(CPU)

(FPU)

fl

[F2

[Fs

Single-precision floating-point computation: 1 issue cycle
FCMP/EQ,FCMP/GT, FADD,FLOAT,FMAC,FMUL,FSUB,FTRC,FRCHG,FSCHG

[7 T o T | e

[Fs

Single-precision FDIV/SQRT: 1 issue cycle

[+ [o FL [2 [Fs | .
F3
[R F2 [Fs |
Double-precision floating-point computation 1: 1 issue cycle
FCNVDS, FCNVSD, FLOAT, FTRC
[+ [D F1 F2 FS
d F1 F2 Fs |
Double-precision floating-point computation 2: 1 issue cycle
FADD, FMUL, FSUB
[+ [b F1 F2 FS
d F1 F2 FS
d F1 F2 FS
d F1 F2 FS
d F1 F2 ES
F1 F2 FS

Figure8.2 Instruction Execution Patterns (cont)

Rev. 5.0, 04/01, page 152 of 394

RENESAS

40. Double-precision FCMP: 2 issue cycles
FCMP/EQ,FCMP/GT

[+ [T o F1 F2 FS
D F1 F2 Fs |

41. Double-precision FDIV/SQRT: 1 issue cycle

FDIV, FSQRT
) F1 F2 FS
d F1 F2 |
F3 .
[k1 F2 FS
F1 F2 FS
) F1 F2 Fs |
42. FIPR: 1 issue cycle
L + I o T ro T 2 | F2] Fs |
43. FTRV: 1 issue cycle
[7 T o FO F1 F2 FS
d FO F1 F2 FS
d FO F1 F2 FS
d FO F1 F2 Fs |
Notes: : Cannot overlap a stage of the same kind, except when two instructions are
executed in parallel.
: Locks D-stage
[d__| : Register read only
|| ?2? : Locks, but no operation is executed.
: Can overlap another 1, but not another F1.

Figure8.2 Instruction Execution Patterns (cont)

Rev. 5.0, 04/01, page 153 of 394
RENESAS

8.2 Par allel-Executability

Instructions are categorized into six groups according to the internal function blocks used, as
shown in table 8.1. Table 8.2 shows the parallel-executability of pairs of instructionsin terms of
groups. For example, ADD in the EX group and BRA in the BR group can be executed in parallel.

Table8.1 Instruction Groups

1. MT Group

CLRT CMP/HI Rm,Rn MOV Rm,Rn
CMP/EQ #imm,R0O CMP/HS Rm,Rn NOP

CMP/EQ Rm,Rn CMP/PL Rn SETT

CMP/GE Rm,Rn CMP/PZ Rn TST #imm,R0O
CMP/GT Rm,Rn CMP/STR Rm,Rn TST Rm,Rn
2. EXGroup

ADD #imm,Rn MOVT Rn SHLL2 Rn
ADD Rm,Rn NEG Rm,Rn SHLL8 Rn
ADDC Rm,Rn NEGC Rm,Rn SHLR Rn
ADDV Rm,Rn NOT Rm,Rn SHLR16 Rn
AND #imm,R0O OR #imm,R0O SHLR2 Rn
AND Rm,Rn OR Rm,Rn SHLR8 Rn
DIVOS Rm,Rn ROTCL Rn SUB Rm,Rn
DIVOU ROTCR Rn SUBC Rm,Rn
DIVl Rm,Rn ROTL Rn SUBV Rm,Rn
DT Rn ROTR Rn SWAP.B Rm,Rn
EXTS.B Rm,Rn SHAD Rm,Rn SWAP.W Rm,Rn
EXTS.W Rm,Rn SHAL Rn XOR #mm,RO
EXTU.B Rm,Rn SHAR Rn XOR Rm,Rn
EXTU.W Rm,Rn SHLD Rm,Rn XTRCT Rm,Rn
MOV #imm,Rn SHLL Rn

MOVA @(disp,PC),R0 [SHLL16 RN

3. BR Group

BF disp BRA disp BT disp
BF/S disp BSR disp BT/S disp

Rev. 5.0, 04/01, page 154 of 394
RENESAS

Table8.1

Instruction Groups (cont)

4. LS Group

FABS DRn FMOV.S @Rm+,FRn MOV.L RO,@(disp,GBR)
FABS FRn FMOV.Ss FRm,@(RO,Rn) |MOV.L Rm,@(disp,Rn)
FLDIO FRn FMOV.S FRmM,@-Rn MOV.L Rm,@(RO,Rn)
FLDI1 FRn FMOV.S FRmM,@Rn MOV.L Rm,@-Rn
FLDS FRm,FPUL FNEG DRn MOV.L Rm,@Rn
FMOV @(RO,Rm),DRn |FNEG FRN MOV.W @(disp,GBR),R0
FMOV @(RO,RmM),XDn |FSTS FPUL,FRn MOV.W @(disp,PC),Rn
FMOV @Rm,DRn LDS Rm,FPUL MOV.W @(disp,Rm),R0
FMOV @Rm,XDn MOV.B @(disp,GBR),R0 |[MOV.W @(RO,Rm),Rn
FMOV @Rm+,DRn MOV.B @(disp,Rm),R0 |MOV.W @Rm,Rn
FMOV @Rm+,XDn MOV.B @(RO,Rm),Rn MOV.W @Rm+,Rn
FMOV DRm,@(RO,Rn) |MOV.B @RmM,Rn MOV.W RO,@(disp,GBR)
FMOV DRm,@-Rn MOV.B @Rm+,Rn MOV.W RO,@(disp,Rn)
FMOV DRmM,@Rn MOV.B RO,@(disp,GBR) |MOV.W Rm,@(RO,Rn)
FMOV DRm,DRn MOV.B RO,@(disp,Rn) |MOV.W Rm,@-Rn
FMOV DRm,XDn MOV.B Rm,@(RO,Rn) MOV.W Rm,@Rn
FMOV FRm,FRn MOV.B Rm,@-Rn MOVCA.L RO,@Rn

FMOV XDm,@(RO,Rn) [(MOV.B Rm,@Rn OCBI @Rn

FMOV XDm,@-Rn MOV.L @(disp,GBR),R0 |OCBP @Rn

FMOV XDm,@Rn MOV.L @(disp,PC),Rn |OCBWB @Rn

FMOV XDm,DRn MOV.L @(disp,Rm),Rn |PREF @Rn

FMOV XDm,XDn MOV.L @(RO,Rm),Rn STS FPUL,Rn
FMOV.S @(RO,Rm),FRn |MOV.L @Rm,Rn

FMOV.S @Rm,FRn MOV.L @Rm+,Rn

RENESAS

Rev. 5.0, 04/01, page 155 of 394

Table8.1

Instruction Groups (cont)

5. FE Group

FADD DRm,DRn FIPR FVm,FVn FSQRT DRn

FADD FRm,FRn FLOAT FPUL,DRn FSQRT FRn
FCMP/EQ FRm,FRn FLOAT FPUL,FRn FSUB DRm,DRn
FCMP/GT FRm,FRn FMAC FRO,FRm,FRn [FSUB FRm,FRn
FCNVDS DRm,FPUL FMUL DRm,DRnN FTRC DRm,FPUL
FCNVSD FPUL,DRn FMUL FRm,FRn FTRC FRm,FPUL
FDIV DRm,DRnN FRCHG FTRV XMTRX,FVn
FDIV FRm,FRn FSCHG

Rev. 5.0, 04/01, page 156 of 394

RENESAS

Table8.1 Instruction Groups (cont)

6. CO Group

AND.B #imm,@(R0,GBR) (LDS Rm,FPSCR STC SR,Rn

BRAF Rn LDS Rm,MACH STC SSR,Rn

BSRF Rn LDS Rm,MACL STC VBR,Rn
CLRMAC LDS Rm,PR STC.L DBR,@-Rn
CLRS LDS.L @Rm+,FPSCR STC.L GBR,@-Rn
DMULS.L Rm,Rn LDS.L @Rm+,FPUL STC.L Rp_BANK,@-Rn
DMULU.L Rm,Rn LDS.L @Rm+,MACH STC.L SGR,@-Rn
FCMP/EQ DRm,DRn LDS.L @Rm+,MACL STC.L SPC,@-Rn
FCMP/GT DRm,DRn LDS.L @Rm+,PR STC.L SR,@-Rn

JMP @Rn LDTLB STC.L SSR,@-Rn

JSR @Rn MAC.L @Rm+,@Rn+ STC.L VBR,@-Rn
LDC Rm,DBR MAC.W @Rm+,@Rn+ STS FPSCR,RnN
LDC Rm,GBR MUL.L Rm,Rn STS MACH,Rn

LDC Rm,Rp_BANK MULS.W Rm,Rn STS MACL,Rn

LDC Rm,SPC MULU.W Rm,Rn STS PR,Rn

LDC Rm,SR OR.B #imm,@(R0,GBR) [STS.L FPSCR,@-Rn
LDC Rm,SSR RTE STS.L FPUL,@-Rn
LDC Rm,VBR RTS STS.L MACH,@-Rn
LDC.L @Rm+,DBR SETS STS.L MACL,@-Rn
LDC.L @Rm+,GBR SLEEP STS.L PR,@-Rn
LDC.L @Rm+,Rp_BANK [STC DBR,Rn TAS.B @Rn

LDC.L @Rm+,SPC STC GBR,Rn TRAPA #imm

LDC.L @Rm+,SR STC Rp_BANK,Rn TST.B #imm,@(RO,GBR)
LDC.L @Rm+,SSR STC SGR,Rn XOR.B #imm,@(R0,GBR)
LDC.L @Rm+,VBR STC SPC,Rn

Rev. 5.0, 04/01, page 157 of 394
RENESAS

Table8.2 Parallel-Executability

2nd Instruction

MT EX BR LS FE CcO

1st MT (¢} (¢} o ¢} ¢} X
Instruction EX o X o o o X
BR (¢} e} X (0] o X

LS (¢} (¢} o X ¢} X

FE ¢} ¢} o ¢} X X

CcoO X X X X X X

O: Can be executed in parallel
X: Cannot be executed in parallel

8.3 Execution Cycles and Pipeline Stalling

There are three basic clocks in this processor: the I-clock, B-clock, and P-clock. Each hardware
unit operates on one of these clocks, as follows:

* |-clock: CPU, FPU, MMU, caches
» B-clock: External bus controller
e P-clock: Periphera units

The frequency ratios of the three clocks are determined with the frequency control register
(FRQCR). In this section, machine cycles are based on the I-clock unless otherwise specified. For
details of FRQCR, see Clock Oscillation Circuits in the hardware manual.

Instruction execution cycles are summarized in table 8.3. Penalty cycles due to a pipeline stall or
freeze are not considered in thistable.

* Issuerate: Interval between the issue of an instruction and that of the next instruction

» Latency: Interval between the issue of an instruction and the generation of its result
(completion)

» Instruction execution pattern (see figure 8.2)

* Locked pipeline stages

« Interval between the issue of an instruction and the start of locking

» Lock time: Period of locking in machine cycle units

Rev. 5.0, 04/01, page 158 of 394
RENESAS

The instruction execution sequence is expressed as a combination of the execution patterns shown
in figure 8.2. Oneinstruction is separated from the next by the number of machine cyclesfor its
issue rate. Normally, execution, data access, and write-back stages cannot be overlapped onto the
same stages of another instruction; the only exception is when two instructions are executed in
parallel under parallel-executability conditions. Refer to (a) through (d) in figure 8.3 for some
simple examples.

Latency istheinterval between issue and completion of an instruction, and is also the interval
between the execution of two instructions with an interdependent relationship. When there is
interdependency between two instructions fetched simultaneously, the latter of the two is stalled
for the following number of cycles:

« (Latency) cycleswhen thereisflow dependency (read-after-write)
* (Latency —1) or (latency — 2) cycles when there is output dependency (write-after-write)
0 Single/double-precision FDIV, FSQRT isthe preceding instruction (latency — 1) cycles
O The other FE group isthe preceding instruction (latency — 2) cycles
e 5or2cycleswhen there is anti-flow dependency (write-after-read), asin the following cases:
0 FTRV isthe preceding instruction (5 cycle)
O A double-precision FADD, FSUB, or FMUL isthe preceding instruction (2 cycles)

In the case of flow dependency, latency may be exceptionally increased or decreased, depending
on the combination of sequential instructions (figure 8.3 (€)).

e When afloating-point (FPU) computation is followed by an FPU register store, the latency of
the floating-point computation may be decreased by 1 cycle.

» |If thereisaload of the shift amount immediately before an SHAD/SHLD instruction, the
latency of theload isincreased by 1 cycle.

» If aninstruction with alatency of less than 2 cycles, including write-back to an FPU register, is
followed by a double-precision FPU instruction, FIPR, or FTRV, the latency of thefirst
instruction isincreased to 2 cycles.

The number of cyclesin apipeline stall due to flow dependency will vary depending on the
combination of interdependent instructions or the fetch timing (see figure 8.3. (€)).

Output dependency occurs when the destination operands are the same in a preceding FE group
instruction and afollowing LS group instruction.

For the stall cycles of an instruction with output dependency, the longest latency to the last write-
back among all the destination operands must be applied instead of “latency” (see figure 8.3 (f)).
A stall due to output dependency with respect to FPSCR, which reflects the result of afloating-
point operation, never occurs. For example, when FADD follows FDIV with no dependency
between FPU registers, FADD is not stalled even if both instructions update the cause field of
FPSCR.

Rev. 5.0, 04/01, page 159 of 394
RENESAS

Anti-flow dependency can occur only between a preceding double-precision FADD, FMUL,
FSUB, or FTRV and afollowing FMQOV, FLDIO, FLDI1, FABS, FNEG, or FSTS. Seefigure 8.3
(9).

If an executing instruction locks any resource—i.e. afunction block that performs a basic
operation—a following instruction that attempts to use the locked resource must be stalled (figure
8.3 (h)). Thiskind of stall can be compensated by inserting one or more instructions independent
of the locked resource to separate the interfering instructions. For example, when aload
instruction and an ADD instruction that references the |oaded value are consecutive, the 2-cycle
stall of the ADD is eliminated by inserting three instructions without dependency. Software
performance can be improved by such instruction scheduling.

Other penalties arise in the event of exceptions or external data accesses, as follows.

e Instruction TLB miss

» Instruction access to external memory (instruction cache miss, etc.)
» Dataaccessto external memory (operand cache miss, etc.)

» Dataaccess to a memory-mapped control register

During the penalty cycles of an instruction TLB miss or external instruction access, no instruction
isissued, but execution of instructions that have already been issued continues. The penalty for a
data access is a pipeline freeze: that is, the execution of uncompleted instructionsisinterrupted
until the arrival of the requested data. The number of penalty cyclesfor instruction and data
accessesis largely dependent on the user’ s memory subsystems.

Rev. 5.0, 04/01, page 160 of 394
RENESAS

(a) Serial execution: non-parallel-executable instructions

-<—> lissue cycle

SHAD RO,R1 | D EX NA S EX-group SHAD and EX-group ADD
ADD R2,R3 | D EX NA s | cannot be executed in parallel. Therefore,
next «— 1stall cycle SHAQ is issueq first, qnd the following
ADD is recombined with the next
instruction.
(b) Parallel execution: parallel-executable and no dependency
<—> lissue cycle
ADD R2,R1 | D EX NA S EX-group ADD and LS-group MOV.L can
MOV.L @R4,R5 | D EX MA S be executed in parallel. Overlapping of

stages in the 2nd instruction is possible.

(c) Issue rate: multi-step instruction
< » 4 issue cycles AND.B and MOV are fetched
AND.B#1,@(R0,GBR) | | | D SX MA S simultaneously, but MOV is stalled due to
D SX NA S resource locking. After the lock is released,
SX MOV is refetched together with the next
D NA S instruction.
5 D SX MA S
vov iRz 1] T olelals]
next — w0
4 stall cycles —
(d) Branch
BT/S L_far | D EX NA S No stall occurs if the branch is not taken.
ADD RO,R1 | D EX NA S
SUB R2,R3 I D [EX[NA| s |

<+— > 2-cycle latency for I-stage of branch destination

BT/S L_far | D EX NA S If the branch is taken, the I-stage of the
ADD RO,R1 | D EX NA S branch destination is stalled for the period

1 stall cycle gf :atenIC)t/..Thtis s:all ca'r:_ bhe _covetred wlilthI a
L far _ elay slot instruction which is not parallel-

- ““ executable with the branch instruction.
BT L_skip [D | EX][Na s | Even if the BT/BF branch is taken, the I-
ADD_#l,RO | | D — — — stage of the branch destination is not
L_skip: | D | stalled if the displacement is zero.
No stall

Figure 8.3 Examplesof Pipelined Execution

Rev. 5.0, 04/01, page 161 of 394
RENESAS

(e) Flow dependency

Zero-cycle latency The following instruction, ADD, is not

MOV RO,R1 | D EX| NA| S stalled when executed after an instruction
ADD R2,R1 | D EX NA S with zero-cycle latency, even if there is
dependency.
<— 1-cycle latency
ADD R2.R1 | D EX NA S ADD and MOV.L are not executed in
MOV.L @él R1 | i D EX MA s | parallel, since MOV.L references the result
next ' P mm— of ADD as its destination address.
1 stall cycle
<«——» 2-cycle latency
MOV.L @R1,R1 | | D EX MA S Because MOV.L and ADD are not fetched
ADD RO REL | D [+—>{A\EX NA | s | simultaneously in this example, ADD is
next] 1 stall cycle stalled for only 1 cycle even though the
4 latency of MOV.L is 2 cycles.
<«——» 2-cycle latency
-<«+— 1-cycle increase
MOV.L @R1,R1 | D EX MA S Due to the flow dependency between the
SHAD RI1,R2 | D d EX | NA [s | load and the SHAD/SHLD shift amount,
next | L —— the latency of the load is increased to 3
2 stall cycles cycles.
<+——» 4-cycle latency for FPSCR
FADD FR1,FR2 | | D F1 F2 FS
STS FPUL,R1 | D EX NA S
STS FPSCR,R2 > > D | EXx [NA] S |
2 stall cycles
< » 7-cycle latency for lower FR
< » 8-cycle latency for upper FR
FADD DRODR2 | I | D [FA | F2] Fs
d F1 F2 | Fs
d F1 F2 ES
d F1 F2 FS
d F1 F2 ES. | FR3 write
F1 F2 N\ FS | FR2 write
X
FMOV FR3,FR5 | D EX § NA S
FMOV FR2,FR4 I D EX[Na| s]
<«+— - 3-cycle latency for upper/lower FR
FLOAT FPULDRO | I [D [F1 | F2 | Fs | FR1 wite
FMOV.S FRO,@-R15 d F1 F2 Fs || FRO write
I D ExY| MmA] s |
Zero-cycle latency
<+—— > 3-cycle increase
FLDI1 FR3 | D EX][NA] s
FIPR FVO,FV4 | D d [Fo]l] 2] Fs]
<«—— » 3stallcycles
<«——» 2-cycle latency
<«—» l-cycle increase
FMOV @R1,XD14 I D | EX] mA] s
FTRV XMTRX,FVO | D d FO F1 F2 ES

d Fo [FL | F2 [Fs
d | Fo [Fa [F2] Fs
d Fo[Fr [Fr2 [Fs |

3 stall cycles

Figure 8.3 Examplesof Pipelined Execution (cont)

Rev. 5.0, 04/01, page 162 of 394
RENESAS

(e) Flow dependency (cont)

-—» Effectively 1-cycle latency for consecutive LDS/FLOAT instructions

tps RrofpuL L1 | D [EXJ NA] s
FLOAT FPUL,FRO I D |AF1 | F2 | FS
LDS R1,FPUL | D EX NA S
FLOAT FPUL,R1 | D F1 F2 FS |
| | D F1 E2 FS |<«— Effectively 1-cycle latency for consecutive
?.I—.FSQC EESEE&L | D EX NA S FTRC/STS instructions
FTRC FR1,FPUL | D F1 F2 FS
STS FPULR1 | D | EX | NA [Xs]
(f) Output dependency
< » 11-cycle latency
FSQRT FR4 Li [ofrm[r[F]
F3
[Fr] 2] Fs
FMOV FROFR4 [| | D |« »[F1 [F2] FS |
10 stall cycles = latency (11) - 1 The registers are written-back
in program order.
< » 7-cycle latency for lower FR
FADD DRO,DR2 < > 8-cycle latency for upper FR
I | o[] 2] Fs
d F1 F2 FS
d F1 F2 FS
d F1 F2 FS
d F1 E2 FS | FR3 write
F1 E2 Es | FR2 write
FMOV FROFR3 [1 | D |« > ex [Nna] s |
6 stall cycles = longest latency (8) - 2
(g) Anti-flow dependency
FTRV xMTRxFvo I [D[FO] P [F2 [s
d FO F1 F2 FS
d FO F1 F2 ES
d FO F1 F2 FS
FMOV @R1xD0 [I | D e > Ex [mMA | s |
5 stall cycles
FADD DRODR2 |1 | D[Fi| F2] Fs
d F1 F2 FS
d F1 F2 FS
d F1 F2 FS
d F1 F2 FS
F1 | F2 Fs |
FMOV FR4FRL 1 | NA] S
2 stall cycles

Figure 8.3 Examplesof Pipelined Execution (cont)

RENESAS

Rev. 5.0, 04/01, page 163 of 394

(h) Resource conflict

H3 #8 #9 #0 #11

<«—» 1 cyclefissue Latency

FDIV FR6,FR7 |) I F1 [r2 | Fs | -<—> F1 stage locked for 1 cycle
F3
F1 F2 FS

FMAC FRO,FR8,FR9 I I I N S
FMAC FRO,FR10,FR11 T T o[l] F]
FMAC FRO,FR12,FR13 ' [] b J«=[A [F2 [Fs |

1 stall cycle (F1 stage resource conflict)

FIPR FV8,FVO L1 T ofJrJFrA]F]F]
FADD FR15FR4 [D J«—{ F1 [F2 [Fs |
1 stall cycle
LDS.L @R15+PR [F T o] ex]ma]Fs |
D | sXx
SX
STC GBR\R2] o] [sx[na] s |
< [o [sx] na]| s |
3 stall cycles
FADD DRO,DR2 [T oplrmTFr]es
[d F1 | F2 | Fs
d F1 [F2 | Fs
d F1 [F2 [Fs
d F1 | F2 | Fs
F1L | F2 [Fs |
MAC.W @R1+@R2+ [[o} > Ex [wmal s |
5 stall cycles 1
D | Ex[mA] s |
f1
f1 [F2] Fs |
f1 F2 | Fs
MACW @R1+@R2+[| | D EX mMal s | f1 stage can overlap preceding f1,
1 but F1 cannot overlap f1.

f1 F2 | Fs
f1 F2 | Fs |

MACW @R1+,@R2+ [| |e—[D [EX| MA[s
1 stall 1
cycle D EX] mMa[s |

1

f1 | F2 | Fs
[n F2 | FS

FADD DR4,DR6 > »| D le > F1 2 | Fs
3 stall cycles 2 stall cycles d F1l F2 FS

F1

Figure 8.3 Examplesof Pipelined Execution (cont)

Rev. 5.0, 04/01, page 164 of 394
RENESAS

Table8.3

Execution Cycles

Instruc- Execu- Lock
Functional tion Issue tion
Category No. Instruction Group Rate Latency Pattern Stage Start Cycles
Data 1 EXTS.B Rm,Rn EX 1 1 #1 — — —
:r']"f‘s’t‘rstt'ions 2 EXTSW Rm,Rn EX 1 1 # - - -
3 EXTU.B Rm,Rn EX 1 1 #1 — — —
4 EXTUW Rm,Rn EX 1 1 #1 — — —
5 MOV Rm,Rn MT 1 0 #1 — — —
6 MOV #imm,Rn EX 1 1 #1 — — —
7 MOVA @(disp,PC),RO EX 1 1 #1 — — —
8 MOV.W @(disp,PC),Rn LS 1 2 #2 — S —
9 MOV.L @(disp,PC),Rn LS 1 2 #2 — — —
10 MOV.B @RmM,Rn LS 1 2 #2 — — —
11 MOV.W @Rm,Rn LS 1 2 #2 — — —
12 MOV.L @RmM,Rn LS 1 2 #2 — — —
13 MOV.B @Rm+,Rn LS 1 1/2 #2 — — —
14 MOV.W @Rm+,Rn LS 1 1/2 #2 — — —
15 MOV.L @Rm+,Rn LS 1 1/2 #2 — — —
16 MOV.B @(disp,Rm),R0 LS 1 2 #2 — S —
17 MOV.W @(disp,Rm),RO LS 1 2 #2 — — —
18 MOV.L @(disp,Rm),Rn LS 1 2 #2 — S —
19 MOV.B @(RO,Rm),Rn LS 1 2 #2 — — —
20 MOV.W @(RO,Rm),Rn LS 1 2 #2 — — —
21 MOV.L @(RO,Rm),Rn LS 1 2 #2 — — —
22 MOV.B @(disp,GBR),RO LS 1 2 #3 — — —
23 MOV.W @(disp,GBR),RO LS 1 2 #3 — S —
24 MOV.L @(disp,GBR),RO LS 1 2 #3 — — —
25 MOV.B Rm,@Rn LS 1 1 #2 — — —
26 MOV.W Rm,@Rn LS 1 1 #2 — — —
27 MOV.L Rm,@Rn LS 1 1 #2 — — —
28 MOV.B Rm,@-Rn LS 1 11 #2 — — —
29 MOV.W Rm,@-Rn LS 1 1/1 #2 — — —
30 MOV.L Rm,@-Rn LS 1 11 #2 — — —
31 MOV.B RO, @(disp,Rn) LS 1 1 #2 — — —

RENESAS

Rev. 5.0, 04/01, page 165 of 394

Table8.3 Execution Cycles (cont)

Instruc- Execu- Lock
Functional tion Issue tion
Category No. Instruction Group Rate Latency Pattern Stage Start Cycles
Data 32 MOV.W RO,@(disp,Rn) LS 1 1 #2 — S —
:r']"f‘s’t‘rstt'ions 33 MOV.L Rm,@(disp,Rn) LS 1 1 #2 - - =
34 MOV.B Rm,@(RO,Rn) LS 1 1 #2 — — —
35 MOV.W Rm,@(RO,Rn) LS 1 1 #2 — — —
36 MOV.L Rm,@(RO,Rn) LS 1 1 #2 — — —
37 MOV.B RO,@(disp,GBR) LS 1 1 #3 — — —
38 MOV.W RO,@(disp,GBR) LS 1 1 #3 — — —
39 MOV.L RO,@(disp,GBR) LS 1 1 #3 — S —
40 MOVCA.L RO,@Rn LS 1 3-7 #12 MA 4 3-7
41 MOVT RN EX 1 1 #1 — — —
42 OCBI @Rn LS 1 1-2 #10 MA 4 1-2
43 OCBP @RnN LS 1 1-5 #11 MA 4 1-5
44 OCBWB @Rn LS 1 1-5 #11 MA 4 1-5
45 PREF @RnN LS 1 1 #2 — — —
46 SWAP.B Rm,Rn EX 1 1 #1 — — —
47 SWAP.W Rm,Rn EX 1 1 #1 — — —
48 XTRCT Rm,Rn EX 1 1 #1 — — —
Fixed-point 49 ADD Rm,Rn EX 1 1 #1 — — —
arithmetic —“g5™"x 5y #imm,Rn EX 1 1 #1 - - -
instructions
51 ADDC Rm,Rn EX 1 1 #1 — — —
52 ADDV Rm,Rn EX 1 1 #1 — — —
53 CMP/EQ #imm,RO MT 1 1 #1 — — —
54 CMP/EQ Rm,Rn MT 1 1 #1 — — —
55 CMP/GE Rm,Rn MT 1 1 #1 — — —
56 CMP/GT Rm,Rn MT 1 1 #1 — — —
57 CMP/HI Rm,Rn MT 1 1 #1 — — —
58 CMP/HS Rm,Rn MT 1 1 #1 — — —
59 CMP/PL Rn MT 1 1 #1 — — —
60 CMP/PZ Rn MT 1 1 #1 — — —
61 CMP/STR Rm,Rn MT 1 1 #1 — — —
62 DIVOS Rm,Rn EX 1 1 #1 — — —

Rev. 5.0, 04/01, page 166 of 394
RENESAS

Table 8.3

Execution Cycles (cont)

Instruc- Execu- Lock
Functional tion Issue tion
Category No. Instruction Group Rate Latency Pattern Stage Start Cycles
Fixed-point 63 DIVOU EX 1 1 #1 — — —
;”:‘;{:{1?;3 64 DIVl RM,RN EX 1 1 # - - -
65 DMULS.L Rm,Rn CO 2 4/4 #34 F1 4 2
66 DMULU.L Rm,Rn CcO 2 4/4 #34 F1 4 2
67 DT RN EX 1 1 #1 — — —
68 MAC.L @Rm+,@Rn+ CcO 2 2/2/4/4 #35 F1 4 2
69 MACW @Rm+@Rn+ CcO 2 2/2/4/4 #35 F1 4 2
70 MUL.L Rm,Rn CO 2 4/4 #34 F1 4 2
71 MULS.W Rm,Rn CcO 2 4/4 #34 F1 4 2
72 MULUW Rm,Rn CcOo 2 4/4 #34 F1 4 2
73 NEG Rm,Rn EX 1 1 #1 — — —
74 NEGC Rm,Rn EX 1 1 #1 — — —
75 SUB Rm,Rn EX 1 1 #1 — — —
76 SUBC Rm,Rn EX 1 1 #1 — — —
77 SUBV Rm,Rn EX 1 1 #1 — — —
Logical 78 AND Rm,Rn EX 1 1 #1 — — —
instructions Z9™ AN #imm,RO EX 1 1 #1 - - =
80 AND.B #imm,@(R0,GBR) CO 4 4 #6 — — —
81 NOT Rm,Rn EX 1 1 #1 — — —
82 OR Rm,Rn EX 1 1 #1 — — —
83 OR #imm,RO EX 1 1 #1 — — —
84 OR.B #imm,@(R0,GBR) CO 4 4 #6 — — —
85 TAS.B @RnN CcO 5 5 #1 — — —
86 TST Rm,Rn MT 1 1 #1 — — —
87 TST #imm,R0O MT 1 1 #1 — — —
88 TST.B #imm,@(R0,GBR) CO 3 3 #5 — — —
89 XOR Rm,Rn EX 1 1 #1 — — —
90 XOR #imm,RO EX 1 1 #1 — — —
91 XOR.B #imm,@(R0,GBR) CO 4 4 #6 — — —

RENESAS

Rev. 5.0, 04/01, page 167 of 394

Table8.3 Execution Cycles (cont)

Instruc- Execu- Lock
Functional tion Issue tion
Category No. Instruction Group Rate Latency Pattern Stage Start Cycles
Shift 92 ROTL RN EX 1 1 #1 — — —
instructions ‘93" 2oTR Rn EX 1 1 #1 — — -
94 ROTCL RN EX 1 1 #1 — — —
95 ROTCR Rn EX 1 1 #1 — — —
96 SHAD Rm,Rn EX 1 1 #1 — — —
97 SHAL Rn EX 1 1 #1 — — —
98 SHAR Rn EX 1 1 #1 — — —
99 SHLD Rm,Rn EX 1 1 #1 — — —
100 SHLL Rn EX 1 1 #1 — — —
101 SHLL2 RN EX 1 1 #1 — — —
102 SHLLS8 Rn EX 1 1 #1 — — —
103 SHLL16 RN EX 1 1 #1 — — —
104 SHLR Rn EX 1 1 #1 — — —
105 SHLR2 RN EX 1 1 #1 — — —
106 SHLR8 Rn EX 1 1 #1 — — —
107 SHLR16 Rn EX 1 1 #1 — — —
Branch 108 BF disp BR 1 2(rl) #1 — — —
Instructions 7369 BF/s disp BR 1 2(r1) # - - -
110 BT disp BR 1 2(r1) # - - =
111 BT/S disp BR 1 2(orl) #1 — — —
112 BRA disp BR 1 2 #1 — — —
113 BRAF Rn CcO 2 3 #4 — — —
114 BSR disp BR 1 2 #14 SX 3 2
115 BSRF Rn CcoO 2 3 #24 SX 3 2
116 JMP @RnN CcO 2 3 #4 — — —
117 JSR @Rn CcoO 2 3 #24 SX 3 2
118 RTS CcO 2 3 #4 — — —

Rev. 5.0, 04/01, page 168 of 394
RENESAS

Table 8.3

Execution Cycles (cont)

Instruc- Execu- Lock
Functional tion Issue tion
Category No. Instruction Group Rate Latency Pattern Stage Start Cycles
System 119 NOP MT 1 0 #1 — — —
fnc;';:g::'tions 120 CLRMAC co 1 3 #8 F1 3 2
121 CLRS CcO 1 1 #1 — — —
122 CLRT MT 1 1 #1 — — —
123 SETS CcO 1 1 #1 — — —
124 SETT MT 1 1 #1 — — —
125 TRAPA #imm CcO 7 7 #13 — — —
126 RTE CcO 5 5 #8 — — —
127 SLEEP CcO 4 4 #9 — — —
128 LDTLB CcO 1 1 #2 — — —
129 LDC Rm,DBR CcO 1 3 #14 SX 3 2
130 LDC Rm,GBR CcO 3 3 #15 SX 3 2
131 LDC Rm,Rp_BANK CcO 1 3 #14 SX 3 2
132 LDC Rm,SR CcO 4 4 #16 SX 3 2
133 LDC Rm,SSR CcO 1 3 #14 SX 3 2
134 LDC Rm,SPC CcO 1 3 #14 SX 3 2
135 LDC Rm,VBR CcO 1 3 #14 SX 3 2
136 LDC.L @Rm+,DBR CcO 1 1/3 #17 SX 3 2
137 LDC.L @Rm+,GBR CO 3 3/3 #18 SX 3 2
138 LDC.L @Rm+,Rp_BANK CO 1 1/3 #17 SX 3 2
139 LDC.L @Rm+,SR CcO 4 4/4 #19 SX 3 2
140 LDC.L @Rm+,SSR CcO 1 1/3 #17 SX 3 2
141 LDC.L @Rm+,SPC CcO 1 1/3 #17 SX 3 2
142 LDC.L @Rm+,VBR CcoO 1 1/3 #17 SX 3 2
143 LDS Rm,MACH CO 1 3 #28 F1 3 2
144 LDS Rm,MACL CcoO 1 3 #28 F1 3 2
145 LDS Rm,PR CcO 2 3 #24 SX 3 2
146 LDS.L @Rm+,MACH CcoO 1 1/3 #29 F1 3 2
147 LDS.L @Rm+,MACL CO 1 1/3 #29 F1 3 2
148 LDS.L @Rm+,PR CcoO 2 2/3 #25 SX 3 2
149 STC DBR,Rn CcO 2 2 #20 — — —
150 STC SGR,Rn CcO 3 3 #21 — — —

RENESAS

Rev. 5.0, 04/01, page 169 of 394

Table8.3 Execution Cycles (cont)

Instruc- Execu- Lock
Functional tion Issue tion
Category No. Instruction Group Rate Latency Pattern Stage Start Cycles
System 151 STC GBR,Rn CcO 2 2 #20 — — —
control 152 STC Rp_BANK,Rn co 2 2 #o - - —
instructions
153 STC SR,Rn CcO 2 2 #20 — — —
154 STC SSR,Rn CcO 2 2 #20 — — —
155 STC SPC,Rn CcO 2 2 #20 — — —
156 STC VBR,Rn CcO 2 2 #20 — — —
157 STC.L DBR,@-Rn CcO 2 2/2 #22 — — —
158 STC.L SGR,@-Rn CcO 3 3/3 #23 — — —
159 STC.L GBR,@-Rn CcO 2 2/2 #22 — — —
160 STC.L Rp_BANK,@-Rn CO 2 2/2 #22 — — —
161 STC.L SR,@-Rn CcO 2 2/2 #22 — — —
162 STC.L SSR,@-Rn CcO 2 2/2 #22 — — —
163 STC.L SPC,@-Rn CcO 2 2/2 #22 — — —
164 STC.L VBR,@-Rn CcO 2 2/2 #22 — — —
165 STS MACH,Rn CcO 1 3 #30 — — —
166 STS MACL,Rn CcO 1 3 #30 — — —
167 STS PR,Rn CcO 2 2 #26 — — —
168 STS.L MACH,@-Rn CcO 1 1/1 #31 — — —
169 STS.L MACL,@-Rn CcO 1 1/1 #31 — — —
170 STS.L PR,@-Rn CcO 2 2/2 #27 — — —
Single- 171 FLDIO FRn LS 1 0 #1 — — —
ﬁg;ﬁ;’goimﬂz FLDI1 FRn LS 1 0 #1 - - -
instructions 173 FMOV FRm,FRn LS 1 0 #1 — — —
174 FMOV.S @Rm,FRn LS 1 2 #2 — — —
175 FMOV.S @Rm+,FRn LS 1 1/2 #2 — — —
176 FMOV.S @(RO,Rm),FRn LS 1 2 #2 — — —
177 FMOV.S FRm,@Rn LS 1 1 #2 — — —
178 FMOV.S FRm,@-Rn LS 1 11 #2 — — —
179 FMOV.S FRm,@(RO,Rn) LS 1 1 #2 — — —
180 FLDS FRm,FPUL LS 1 #1 — — —
181 FSTS FPUL,FRn LS 1 0 #1 — — —

Rev. 5.0, 04/01, page 170 of 394
RENESAS

Table 8.3

Execution Cycles (cont)

Instruc- Execu- Lock
Functional tion Issue tion

Category No. Instruction Group Rate Latency Pattern Stage Start Cycles

Single- 182 FABS FRn LS 1 0 #1 — — —

ﬁgf;iiﬁ;goim FADD FRm,FRn FE 1 3/4 #06 - - —

instructions 184 FCMP/EQ FRm,FRn FE 1 2/4 #36 — — —

185 FCMP/GT FRm,FRn FE 1 2/4 #36 — — —

186 FDIV FRm,FRn FE 1 12/13 #37 F3 2 10

F1 11 1

187 FLOAT FPUL,FRn FE 1 3/4 #36 — — —

188 FMAC FRO,FRm,FRn FE 1 3/4 #36 — — —

189 FMUL FRm,FRn FE 1 3/4 #36 — — —

190 FNEG FRn LS 1 0 #1 — — —

191 FSQRT FRn FE 1 11/12 #37 F3 2 9

F1 10 1

192 FSUB FRm,FRn FE 1 3/4 #36 — — —

193 FTRC FRm,FPUL FE 1 3/4 #36 — — —

194 FMOV DRm,DRn LS 1 0 #1 — — —

195 FMOV @Rm,DRn LS 1 2 #2 — — —

196 FMOV @Rm+,DRn LS 1 1/2 #2 — — —

197 FMOV @(RO,Rm),DRn LS 1 2 #2 — — —

198 FMOV DRm,@Rn LS 1 1 #2 — — —

199 FMOV DRm,@-Rn LS 1 11 #2 — — —

200 FMOV DRm,@(RO,RnN) LS 1 1 #2 — — —

Double- 201 FABS DRn LS 1 0 #1 — — —

ﬁgi‘;:ﬁg’_’;oin 202 FADD DRm,DRn FE 1 (7,8)/9 #39 F1 2 6

instructions 203 FCMP/EQ DRm,DRn CcO 2 3/5 #40 F1 2 2

204 FCMP/GT DRm,DRn CcO 2 3/5 #40 F1 2 2

205 FCNVDS DRm,FPUL FE 1 4/5 #38 F1 2 2

206 FCNVSD FPUL,DRn FE 1 (3,4)/5 #38 F1 2 2

207 FDIV DRm,DRn FE 1 (24, 25)/ #41 F3 2 23

26 F1 22 3

F1 2 2

208 FLOAT FPUL,DRn FE 1 (3,4)/5 #38 F1 2 2

209 FMUL DRm,DRn FE 1 (7,8)9 #39 F1 2 6

RENESAS

Rev. 5.0, 04/01, page 171 of 394

Table8.3 Execution Cycles (cont)

Instruc- Execu- Lock
Functional tion Issue tion
Category No. Instruction Group Rate Latency Pattern Stage Start Cycles
Double- 210 FNEG DRn LS 1 0 #1 — — —
ﬁg;ﬁ;’;oim FSQRT DRn FE 1 (2253 24)) #41 F3 2 22
instructions F1 21 3
F1 2 2
212 FSUB DRm,DRn FE 1 (7,8)9 #39 F1 2 6
213 FTRC DRm,FPUL FE 1 4/5 #38 F1 2 2
FPU system 214 LDS Rm,FPUL LS 1 1 #1 — — —
control LDS Rm,FPSCR co 1 4 #32 F1 3 3
instructions
216 LDS.L @Rm+,FPUL CcoO 1 1/2 #2 — — —
217 LDS.L @Rm+,FPSCR CcOo 1 1/4 #33 F1 3 3
218 STS FPUL,Rn LS 1 3 #1 — — —
219 STS FPSCR,Rn CcO 1 3 #1 — — —
220 STS.L FPUL,@-Rn CcoO 1 1/1 #2 — — —
221 STS.L FPSCR,@-Rn CcO 1 1/1 #2 — — —
Graphics 222 FMOV DRm,XDn LS 1 0 #1 — — —
f:\csctrelﬂf’;:]‘;” FMOV XDm,DRn LS 1 0 # - - —
224 FMOV XDm,XDn LS 1 0 #1 — — —
225 FMOV @Rm,XDn LS 1 2 #2 — — —
226 FMOV @Rm+,XDn LS 1 1/2 #2 — — —
227 FMOV @(RO,Rm),XDn LS 1 2 #2 — — —
228 FMOV XDm,@Rn LS 1 1 #2 — — —
229 FMOV XDm,@-Rm LS 1 1/1 #2 — — —
230 FMOV XDm,@(R0,Rn) LS 1 1 #2 — — —
231 FIPR FVm,Fvn FE 1 4/5 #42 F1 3 1
232 FRCHG FE 1 1/4 #36 — — —
233 FSCHG FE 1 1/4 #36 — — —
234 FTRV XMTRX,FVn FE 1 (5,5,6, #43 FO 2
e F1 3 4

Notes: 1. See table 8.1 for the instruction groups.

2. Latency “L1/L2...": Latency corresponding to a write to each register, including
MACH/MACL/FPSCR.

Example: MOV.B @Rm+, Rn “1/2": The latency for Rm is 1 cycle, and the latency for
Rn is 2 cycles.

3. Branch latency: Interval until the branch destination instruction is fetched

Rev. 5.0, 04/01, page 172 of 394

RENESAS

9.

Conditional branch latency “2 (or 1)": The latency is 2 for a nonzero displacement, and
1 for a zero displacement.

Double-precision floating-point instruction latency “(L1, L2)/L3": L1 is the latency for FR
[n+1], L2 that for FR [n], and L3 that for FPSCR.

FTRV latency “(L1, L2, L3, L4)/L5": L1 is the latency for FR [n], L2 that for FR [n+1], L3
that for FR [n+2], L4 that for FR [n+3], and L5 that for FPSCR.

Latency “L1/L2/L3/L4” of MAC.L and MAC.W instructions: L1 is the latency for Rm, L2
that for Rn, L3 that for MACH, and L4 that for MACL.

Latency “L1/L2" of MUL.L, MULS.W, MULU.W, DMULS.L, and DMULU.L instructions:
L1 is the latency for MACH, and L2 that for MACL.

Execution pattern: The instruction execution pattern number (see figure 8.2)

10. Lock/stage: Stage locked by the instruction
11. Lock/start: Locking start cycle; 1 is the first D-stage of the instruction.
12. Lock/cycles: Number of cycles locked

Exceptions:

1.

When a floating-point computation instruction is followed by an FMOV store, an STS

FPUL, Rn instruction, or an STS.L FPUL, @-Rn instruction, the latency of the floating-

point computation is decreased by 1 cycle.

When the preceding instruction loads the shift amount of the following SHAD/SHLD, the

latency of the load is increased by 1 cycle.

When an LS group instruction with a latency of less than 3 cycles is followed by a

double-precision floating-point instruction, FIPR, or FTRV, the latency of the first

instruction is increased to 3 cycles.

Example: In the case of FMOV FR4,FRO and FIPR FVO,FV4, FIPR is stalled for 2
cycles.

When MAC*/MUL*/DMUL* is followed by an STS.L MAC*, @-Rn instruction, the latency

of MAC*/MUL*/DMUL* is 5 cycles.

In the case of consecutive executions of MAC*/MUL*/DMUL*, the latency is decreased

to 2 cycles.

When an LDS to MAC* is followed by an STS.L MAC*, @-Rn instruction, the latency of

the LDS to MAC* is 4 cycles.

. When an LDS to MAC* is followed by MAC*/MUL*/DMUL*, the latency of the LDS to

MAC* is 1 cycle.

When an FSCHG or FRCHG instruction is followed by an LS group instruction that
reads or writes to a floating-point register, the aforementioned LS group instruction[s]
cannot be executed in parallel.

. When a single-precision FTRC instruction is followed by an STS FPUL, Rn instruction,

the latency of the single-precision FTRC instruction is 1 cycle.

Rev. 5.0, 04/01, page 173 of 394
RENESAS

Rev. 5.0, 04/01, page 174 of 394
RENESAS

Section 9 Instruction Descriptions

Instructions are listed in this section in alphabetical order. The following format is used for the

instruction descriptions.

Instruction Name Full Name Instruction Type
Function (Indication of delayed branch
instruction or interrupt-disabling
instruction)
Execution
Format Summary of Operation Instruction Code States T Bit
The assembler input Summarizes the operation Shown in MSB — -~ Theno- Shows the

format is shown. imm of the instruction.

LSB order.

wait value T bit value

and disp are numeric is shown. after
values, expressions, execution
or symbols. of the

instruction.
Description

Describes the operation of the instruction.

Notes

I dentifies points to be noted when using the instruction.

Operation

Shows the operation in C. Thisis given as reference material to help understand the operation of
the instruction. Use of the following resources is assumed.

char 8-bit integer

short 16-bit integer

i nt 32-bit integer

| ong 64-bit integer

fl oat singl e-precision floating point
doubl e doubl e-precision floating point
These are data types.

nunber (32 bits)
nunber (64 bits)

Rev. 5.0, 04/01, page 175 of 394

RENESAS

unsi gned char Read_Byte(unsigned | ong Addr);
unsi gned short Read_Word(unsi gned | ong Addr);
unsi gned | ong Read_Long(unsigned | ong Addr);

These reflect the respective sizes of address Addr. A word read from other than a 2n address, or a
longword read from other than a 4n address, will be detected as an address error.

unsi gned char Wite_Byte(unsigned | ong Addr, unsigned |ong Data);
unsi gned short Wite_Word(unsigned | ong Addr, unsigned |ong Data);
unsi gned | ong Wite_Long(unsigned | ong Addr, unsigned |ong Data);

These write data Data to address Addr, using the respective sizes. A word write to other than a 2n address,
or alongword write to other than a4n address, will be detected as an address error.

Del ay_Sl ot (unsi gned | ong Addr);
Shifts to execution of the slot instruction at address (Addr).

unsi gned | ong R[16];

unsi gned | ong SR, GBR, VBR;
unsi gned | ong MACH, MACL, PR;
unsi gned | ong PC;

Registers

struct SRO {
unsi gned | ong dumyO: 22;
unsi gned | ong MD: 1;
unsi gned | ong Q: 1;
unsi gned | ong 10: 4,
unsi gned | ong dumyl: 2;
unsi gned | ong SO: 1;
unsi gned | ong TO: 1;

I
SR structure definitions

define M ((*(struct SRO *)(&SR)). M)
#define Q ((*(struct SRO *)(&SR)). Q0)
#define S ((*(struct SRO *)(&SR)). S0)
#define T ((*(struct SRO *)(&SR)). T0)
Definitions of bitsin SR

Rev. 5.0, 04/01, page 176 of 394
RENESAS

Error(char *er);

Error display function

These are floating-point number definition statements.

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne

ne
ne

ne

PZERO
NZERO
DENORM
NORM

Pl NF

NI NF
gNaN
sNaN
EQ

GT

LT

uo

I NVALI D
FADD
FSuB

CAUSE
SET_E
SET_V
SET_Z
SET_O
SET_U

SET |
ENABLE_VOUI
ENABLE_V
ENABLE_Z
ENABLE_OUI
ENABLE_|
FLAG

FPSCR_FR
FPSCR PR
FPSCR_DN

P O B WO N PFP O NO OO B WONPF O

0x0003f 000
0x00020000
0x00010040
0x00008020
0x00004010
0x00002008
0x00001004
0x00000b80
0x00000800
0x00000400
0x00000380
0x00000080
0x0000007C

FPSCR>>21&1
FPSCR>>19&1
FPSCR>>18&1

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

FPSCR(bi t 17-12) */
FPSCR(bi t 17) */
FPSCR(bi t 16, 6)
FPSCR(bi t 15, 5)
FPSCR(bi t 14, 4)
FPSCR(bi t 13, 3) */
FPSCR(bi t 12, 2) */
FPSCR(bi t 11, 9-7) */
FPSCR(bi t 11) */
FPSCR(bi t 10) */
FPSCR(bi t 9-7) */
FPSCR(bi t7) */
FPSCR(bi t 6- 2)

*/
*/
*/

*/

Rev. 5.0, 04/01, page 177 of 394

RENESAS

FPSCR>>12&1
FPSCR&1

frf
frf

frf.
frf.
frf.
frf.

1

#defi ne FPSCR_I
#defi ne FPSCR_RM
#defi ne FR_HEX
#define FR
#define DR
#defi ne XF_HEX
#define XF
#define XD
uni on {
int [[2][16];
float f[2][16
double d[2][8];
} frf;
int FPSCR;

int sign_of (int n)

{

}

.I[FPSCR FR|
.f[FPSCR FR|
d[FPSCR FR]
| [~FPSCR_FR]
f [~FPSCR_FR]
d[~FPSCR_FR]

ret ur n(FR_HEX[n] >>31) ;

int data_type_of (int

i nt abs;

Rev. 5.0, 04/01, page 178 of 394

abs

n)

{

= FR HEX[n] & Ox7fffffff;
i f(FPSCR PR == 0) { /* Single-precison */
i f(abs < 0x00800000) {
i f((FPSCR_.DN == 1) || (abs == 0x00000000)) {
if(sign_of(n) == 0) {zero(n, 0); return(PZERO;}

els

}

el se

}

e

{zero(n, 1); return(NZERO;}

r et ur n(DENORM ;

el se if(abs < 0x7f800000) return(NORM ;

el se if(abs
if(sign
el se

}

of

0x7f 800000) {
(n) == 0) return(PlNF);
return(N NF);

el se if(abs < 0x7fc00000) return(gNaN) ;

RENESAS

el se

}

return(sNaN);

el se { /* Double-precison */
i f(abs < 0x00100000){
i f((FPSCR_ DN == 1) ||

((abs

== 0x00000000) && (FR_HEX[n+1]

if(sign_of(n) == 0) {zero(n, 0);
el se {zero(n, 1);

}

el se

}

el se if(abs

else if((abs

r et ur n(DENORM ;

< 0x7ff00000) return(NORM;
== 0x7ff00000) &&

(FR_HEX[n+1] == 0x00000000)) {
i f(sign_of(n) == 0) return(PINF);

1) FRn+1]

return(N NF);

< 0Ox7ff80000) return(gNaN);
return(sNaN);

FRIn] FRON ;

FR[m+1] ;

el se
}
el se if(abs
el se
}
}
voi d register_copy(int mn)
{
i f (FPSCR_PR ==
}
voi d nornmal _faddsub(int mn,type)
{
uni on {
float f;
int |;
} dstf, srcf;
uni on {
long d;

int 1[2];
} dstd, srcd;
uni on {

/* *“long double” format: */

Rev.

RENESAS

== 0x00000000)){
return(PZERO) ;}
r et ur n(NZERO) ; }

5.0, 04/01, page 179 of 394

| ong doubl e x; [* 1-bitsign */

int 1[4]; /* 15-bit exponent */
} dst x; /* 112-bit mantissa */
i f(FPSCR_PR == 0) {
i f(type == FADD) srcf.f = FR[N;
el se srcf.f = -FR[n;

dstd.d = FR[n]; /* Conversionfrom single-precision to double-precision */
dstd.d += srcf.f;
if(((dstd.d == FR[n]) && (srcf.f !'=0.0)) ||
((dstd.d == srcf.f) & (FR[n] !'=0.0))) {
set _1();
if(sign_of(m~” sign_of(n)) {
dstd.I[1] -= 1;
if(dstd.I[1] == Oxffffffff) dstd.I[0] -= 1;

}

if(dstd.I1[1] & Ox1fffffff) set_I();

dstf.f += srcf.f; /* Roundtonearest */

i f(FPSCR_RM == 1) {
dstd.l[1] &= 0xe0000000; /* Roundtozero */
dstf.f = dstd.d;

}

check_si ngl e_exception(&-R[n], dstf.f);
} else {

if(type == FADD) srcd.d = DR m>1];

el se srcd.d = -DR[m>>1];

dstx.x = DR[n>>1];
/ * Conversion from double-precision to extended double-precision */

dstx.x += srcd. d;
if(((dstx.x == DRIn>>1]) && (srcd.d !'=0.0)) ||

((dstx.x == srcd.d) & (DR[n>>1] != 0.0))) {

set _1();

if(sign_of(m~ sign_of(n)) {

dstx.1[3] -= 1;

if(dstx.[[3] == Oxffffffff) {dstx.1[2] -= 1;
if(dstx.[[2] == Oxffffffff) {dstx.I[1] -= 1;
if(dstx.[[1] == Oxffffffff) {dstx.1[0] -= 1;}}}

Rev. 5.0, 04/01, page 180 of 394
RENESAS

}
if((dstx.1[2] & OXOfffffff) || dstx.1[3]) set_I();

dst.d += srcd.d; /* Roundtonearest */

i f(FPSCR_RM == 1) {
dstx.1[2] &= 0xf0000000; /* Roundtozero */
dstx.1[3] = 0x00000000;
dst.d = dstx.x;

}
check_doubl e_excepti on(&DR[n>>1] , dst.d);
}
}
voi d nornal _frul (int mn)
{
uni on {
float f;
int |;
} t npf ;
uni on {
doubl e d;
int 1[2];
} t mpd;
uni on {
| ong doubl e x;
int 1[4];
} t npx;

i f(FPSCR_PR == 0) {
tnmpd.d = FR[n]; /* Single-precision to double-precision */
tnpd.d *= FRIm; /* Precisecreaion */
tmpf.f *= FRInj; /* Roundtonearest */
if(tnpf.f !'= tnpd.d) set_I();
if((tnpf.f > tnpd.d) & & (FPSCR RM == 1)) {
tmpf.1 -=1; /* Roundtozero */
}
check_singl e_exception(&R n],tnpf.f);
} else {
tnpx.x = DRI n>>1]; /* Single-precisionto double-precision */

Rev. 5.0, 04/01, page 181 of 394
RENESAS

tmpx.x *= DR m>>1]; /* Precisecreation */
tnmpd.d *= DR[nm>>1]; /* Roundtonearest */
if(tnmpd.d !'= tnpx.x) set_I();
if(tmpd.d > tnpx.x) && (FPSCR RM == 1)) {
tompd. 1 [1] -=1; /* Roundtozero */
if(tnpd. I[1] == Oxffffffff) tnpd.1[0] -= 1,

}
check_doubl e_excepti on(&R[n>>1], tnpd.d);
}
}
void fipr(int mn)
{
uni on {
doubl e d;
int 1[2];
} mt[4];
float dstf;

if((data_type_of (m == sNaN) || (data_type_of(n) == sNaN ||
(data_type_of (mtl) == sNaN) || (data_type_of(n+1l) == sNaN) ||
(data_type_of (mt2) == sNaN) || (data_type_of(n+2) == sNaN) ||
(data_type_of (m3) == sNaN) || (data_type_of(n+3) == sNaN) ||
(check_product _invalid(mn)) ||
(check_product _i nvalid(m+l, n+1)) ||
(check_product _i nvalid(m+2, n+2)) ||
(check_product _i nval i d(m+3, n+3))) i nval i d(n+3);

else if((data_type_of(m == gNaN)|| (data_type_of(n) == gNaN)| |
(data_type_of (mtl) == gNaN) || (data_type_of (n+l) == gNaN) ||
(data_type_of (mt2) == gNaN) || (data_type_of(n+2) == gNaN) ||

(data_type_of (m3) == gNaN) || (data_type_of(n+3) == gNaN))
gnan(n+3);

else if (check_ positive_infinity() &

(check_ negative_infinity()) i nvalid(n+3);
else if (check_ positive_infinity()) i nf (n+3,0);
else if (check_ negative_infinity()) inf(n+3,1);

el se {
for(i=0;i<4;i++) {
[* If FPSCR_DN == 1, zeroize */
i f (data_type of (m+i) == PZERO FR[m+i] = +0.0;

Rev. 5.0, 04/01, page 182 of 394
RENESAS

else if(data_type_of (mti) == NZERO) FR[mti] -0.0;
i f (data_type_of (n+i) == PZERO) FR[n+i] = +0.0;
else if(data_type_of (n+i) == NZERO) FR[n+i] -0.0;
mt[i].d = FRRm+i];

mtl[i].d *= FR[n+i];

/* To be precise, with FIPR, the lower 18 bits are discarded; therefore, this description
issimplified, and differs from the hardware. */
mt[i].I[1] &= Oxff000000;
mt[i].I[1] |= 0x00800000;
}
mt[0].d += mt[1].d + mMt[2].d + mMt[3].d;
mt[0].I[1] &= Oxff800000;
dstf = mt[0].d;
set _1();
check_si ngl e_excepti on(&R n+3], dstf);

}
}
voi d check_si ngl e_exception(float *dst,result)
{
uni on {
float f;
int |;
} t n;
fl oat abs;

if(result < 0.0) tnp.l Oxf f 800000; /* —infinity */

0x7f 800000; /* +infinity */

el se tmp. |
if(result == tnp.f) {
set_Q(); set_I();
i f(FPSCR_RM == 1) {
tmp. 1 -=1; /* Maximum vaue of normalized number */
result = tnp.f;

}
}
if(result < 0.0) abs = -result;
el se abs = result;
tmp. | = 0x00800000; /* Minimum value of normalized number */

Rev. 5.0, 04/01, page 183 of 394
RENESAS

if(abs < tnmp.f) {
i f((FPSCR_DN == 1) && (abs !=0.0)) {

set _1();
if(result < 0.0) result = -0.0; /* Zeroizedenormalized number */
el se result = 0.0;
}
i f(FPSCR I == 1) set_U();
}
i f(FPSCR & ENABLE_QUI') fpu_exception_trap();
el se *dst = result;
}
voi d check_doubl e_excepti on(doubl e *dst, result)
{
uni on {
doubl e d;
int 1[2];
} t n;
doubl e abs;
if(result < 0.0) tnmp.I[0] = Oxfff00000; /* —infinity */
el se tnp. 1 [0] = Ox7ff00000; /* +infinity */

tnp. 1[1] 0x00000000;
if(result == tnp.d)
set_Q(); set_I();
i f(FPSCR_RM == 1) {
tmp. 1 [0] -= 1,
tnp. 1[1] = Oxffffffff;
result = tnp.d; /* Maximum valueof normaized number */

}
}
if(result < 0.0) abs = -result;
el se abs = result;
tnp. 1 [0] = 0x00100000; /* Minimum vaue of normalized number */
tmp.1[1] = 0x00000000;

if(abs < tnp.d) {
i f((FPSCR_DN == 1) && (abs !'= 0.0)) {
set _1();
if(result < 0.0) result = -0.0;

Rev. 5.0, 04/01, page 184 of 394
RENESAS

| * Zeroize denormalized number */

el se result = 0.0;
}
i f(FPSCR_|I == 1) set_U();

}

i f(FPSCR & ENABLE_QUI') fpu_exception_trap();

el se *dst = result;
}
i nt check_product_invalid(int mn)
{

return(check_product _infinity(mn) &&

((data_type_of (m) == PZERO) || (data_type_of(n) ==
(data_type_of (m == NZERO) || (data_type_of (n) ==

}
int check_ product_infinity(int mn)
{

return((data_type_of (nm) == PINF) || (data_type_of(n) ==

(data_type_of (n) == NINF) || (data_type_of(n) ==

}
int check_ positive_infinity(int mn)
{

return(((check_ product_infinity(mn) & (~sign_of(m~
sign_of(n))) ||

((check_ product _infinity(mtl, n+1) && (~sign_of (m+1)~"
sign_of (n+1))) ||

((check_ product _infinity(mt2, n+2) && (~sign_of (mt2)"
sign_of (n+2))) ||

((check_ product _infinity(mt3,n+3) && (~sign_of (m+3)"
sign_of (n+3))));
}

int check_ negative_infinity(int mn)

{

return(((check_ product_infinity(mn) && (sign_of (m~” sign_of(n)))

((check_ product _infinity(m+l, n+l) && (sign_of (m+1)"
sign_of (n+l1))) ||

((check_ product _infinity(mt2, n+2) && (sign_of (m+2)"
sign_of (n+2))) ||

((check_ product_infinity(m3,n+3) && (sign_of (m3)"
sign_of (n+3))));

Rev. 5.0, 04/01, page 185 of 394

RENESAS

voi d cl ear_cause () {FPSCR &= ~CAUSE; }

void set _E() {FPSCR | = SET_E; fpu_exception_trap();}
void set_V() {FPSCR | = SET_V;}

void set_Z() {FPSCR | = SET_Z;}

void set_Q() {FPSCR |= SET_O}

void set_U() {FPSCR |= SET_U;}

void set_I() {FPSCR | = SET_I;}

void invalid(int n)

{
set _V();
i f((FPSCR & ENABLE V) == 0 gnan(n);
el se fpu_exception_trap();

}

voi d dz(int n,sign)

{
set _Z();
i f((FPSCR & ENABLE _Z) == 0 inf(n,sign);
el se fpu_exception_trap();
}
void zero(int n,sign)
{
if(sign == 0) FR_HEX [n] = 0x00000000;
el se FR_HEX [n] = 0x80000000;
i f (FPSCR_PR==1) FR_HEX [n+1] = 0x00000000;
}

void inf(int n,sign) {
i f (FPSCR_PR==0) {
if(sign == 0) FR HEX [n]

0x7f 800000;

el se FR_HEX [n] = 0xf f800000;

} else {
if(sign == 0) FR_HEX [n] = 0x7ff00000;
el se FR_HEX [n] = Oxf ff00000;
FR_HEX [n+1] = 0x00000000;

}

Rev. 5.0, 04/01, page 186 of 394
RENESAS

voi d gnan(int n)

{
if (FPSCR PR==0) FR[n] = Ox7fbfffff;
el se { FR[n] = Ox7ff7ffff;
FRIn+1] = Oxffffffff;
}
}
Example

An example is shown using assembler mnemonics, indicating the states before and after execution
of the instruction.

Italics (e.g., .align) indicate an assembler control instruction. The meaning of the assembler
control instructionsis given below. For details, refer to the Cross-Assembler User’s Manual.

.org Location counter setting

.data.w Word integer data allocation
.data.l Longword integer data allocation
.sdata String data allocation

align 2 2-byte boundary alignment

align 4 4-byte boundary alignment

align 32 32-byte boundary alignment

.arepeat 16 16-times repeat expansion

.arepeat 32 32-timesrepeat expansion

.aendr Count-specification repeat expansion end

Note: SH Series cross-assembler version 1.0 does not support conditional assembler functions.

Rev. 5.0, 04/01, page 187 of 394
RENESAS

9.1 ADD ADD binary Arithmetic Instruction
Binary Addition
Execution
Format Summary of Operation Instruction Code States T Bit
ADD Rm,Rn Rn+Rm - Rn 001llnnnnmmmi1100 1 —
ADD #imm,Rn Rn+imm - Rn Ol1innnniiiiiiii 1 —
Description

Thisinstruction adds together the contents of general registers Rn and Rm and stores the result in

Rn.

8-hit immediate data can also be added to the contents of general register Rn.

8-hit immediate data is sign-extended to 32 bits, allowing use in decrement operations.

Operation

ADD(long m long n) /* ADD Rm Rn */

{
R{n] +=R{ni ;
PC+=2;
}
ADDI (long i, long n) /* ADD #immRn */
{
if ((i&x80)==0)

R[n] +=(0x000000FF & (long)i);
el se R n] +=(OxFFFFFFOO | (long)i);
PC+=2;

}

Rev. 5.0, 04/01, page 188 of 394

RENESAS

Example

ADD RO, R1 ; Before execution RO = H'7FFFFFFF, R1 = H'00000001
; After execution R1 = H'80000000

ADD #H 01, R2 ; Before execution R2 = H'00000000
; After execution R2 = H'00000001

ADD #H FE, R3 ; Before execution R3 = H'00000001

; After execution R3 = H'FFFFFFFF

Rev. 5.0, 04/01, page 189 of 394
RENESAS

9.2 ADDC ADD with Carry Arithmetic Instruction
Binary Addition

with Carry
Execution
Format Summary of Operation Instruction Code States T Bit
ADDC Rm,Rn Rn+RmM+T - Rn, carry - T 0011lnnnnmmmmi110 1 Carry
Description

Thisinstruction adds together the contents of general registers Rn and Rm and the T bit, and stores
theresultin Rn. A carry resulting from the operation isreflected in the T bit. Thisinstruction is
used for additions exceeding 32 hits.

Operation

ADDC(1 ong m | ong n) /* ADDC Rm Rn */

{
unsi gned | ong tnpO, t np1;
tmpl=R[n] +R{n{ ;
tmpO=R{ n] ;
R[n] =t mp1+T,;
if (tnmp0>tnpl) T=1;
el se T=0;
if (tnpl>R(n]) T=1;
PC+=2;
}
Example
CLRT ; RO:R1(64 bits) + R2:R3(64 bits) = RO:R1(64 bits)
ADDC R3, R1 ; Before execution T =0, R1 = H'00000001, R3 = H'FFFFFFFF
; After execution T =1, R1 =H'00000000
ADDC R2, RO ; Before execution T = 1, RO = H'00000000, R2 = H'00000000

; After execution T =0, RO = H'00000001

Rev. 5.0, 04/01, page 190 of 394
RENESAS

9.3 ADDV ADD with (V flag) overflow check Arithmetic Instruction
Binary Addition
with Overflow Check

Execution
Format Summary of Operation Instruction Code States T Bit
ADDV Rm,Rn Rn+Rm - Rn, 001lnnnnnmmmillll 1 Overflow

overflow - T

Description

Thisinstruction adds together the contents of general registers Rn and Rm and stores the result in
Rn. If overflow occurs, the T bit is set.

Operation

ADDV(1 ong m |ong n) /* ADDV Rm Rn */

{

| ong dest, src, ans;

if ((long)R n]>=0) dest=0;

el se dest =1;

if ((long) QM >=0) src=0;

el se src=1;

src+=dest ;

R n] +=R{ni ;

if ((long)R n]>=0) ans=0;

el se ans=1;

ans+=dest ;

if (src==0 || src==2) {
if (ans==1) T=1;
el se T=0;

}

el se T=0;

PC+=2;

}

Rev. 5.0, 04/01, page 191 of 394
RENESAS

Example

ADDV RO, R1 ; Before execution RO = H'00000001, R1 = H'7FFFFFFE, T=0
; After execution R1=H'7FFFFFFF, T=0
ADDV RO, R1 ; Before execution RO = H'00000002, R1 = H'7FFFFFFE, T=0

; After execution R1 = H'80000000, T=1

Rev. 5.0, 04/01, page 192 of 394
RENESAS

9.4 AND AND logical Logical Instruction
Logica AND
Execution
Format Summary of Operation Instruction Code States T Bit
AND Rm,Rn Rm &Rm - Rn 0010nnnnmmm1001 1 —

AND #imm,RO RO & imm - RO

AND.B #imm,@(R0,GBR) (RO+GBR) & imm —
(RO+GBR)

1100100%iiiiiiii 1 —
1100110%iiiiiiii 4 —

Description

Thisinstruction ANDs the contents of general registers Rn and Rm and stores the result in Rn.

Thisinstruction can be used to AND general register RO contents with zero-extended 8-bit
immediate data, or, in indexed GBR indirect addressing mode, to AND 8-bit memory with 8-hit

immediate data.

Notes

With AND #mm,RO0, the upper 24 bits of RO are always cleared as aresult of the operation.

Operation
AND(1 ong m | ong n) /* AND Rm Rn */
{
Rin] &R ni;
PC+=2,
}
ANDI (1 ong i) /* AND #i nm RO */
{
R[0] & (0x000000FF & (long)i);
PC+=2;
}
ANDM | ong i) /* AND. B #i nm @R0O, GBR) */
{
| ong tenp;

t enp=(| ong) Read_Byt e(GBR+R[0]) ;

Rev. 5.0, 04/01, page 193 of 394

RENESAS

t enp&=(0Xx000000FF & (long)i);
Wite_ Byte(GBR+R 0],tenp);

PC+=2;
}
Example
AND RO, R1 ; Before execution RO = HAAAAAAAA, R1=H'55555555
; After execution R1 = H'00000000
AND #H OF, RO ; Before execution RO = H'FFFFFFFF

; After execution RO = H'0000000F
AND. B #H 80, @ R0, GBR) ; Beforeexecution (RO,GBR) = H'A5
; After execution (R0,GBR) = H'80

Rev. 5.0, 04/01, page 194 of 394
RENESAS

9.5 BF Branch if False
Conditional Branch

Branch Instruction

Execution
Format Summary of Operation Instruction Code States T Bit
BF label fT=0 10001011dddddddd 1 —
PC+4 +dispx2 - PC
If T=1, nop
Description

Thisisaconditional branch instruction that referencesthe T bit. The branch istaken if T =0, and
not taken if T = 1. The branch destination is address (PC + 4 + displacement x 2). The PC source
value isthe BF instruction address. As the 8-hit displacement is multiplied by two after sign-
extension, the branch destination can be located in the range from —256 to +254 bytes from the BF

instruction.

Notes

If the branch destination cannot be reached, the branch must be handled by using BF in
combination with aBRA or JIMP instruction, for example.

Operation

BF(int d)
{

/* BF disp */

int disp;

i f ((d&0x80)==0)

di sp=(0x000000FF & d);
el se di sp=(OxFFFFFFOO | d);
if (T==0)

PC=PC+4+(di sp<<1);
el se PC+=2;

Rev. 5.0, 04/01, page 195 of 394

RENESAS

Example

CLRT ; Normaly T=0
BT TRGET_T ; T =0, so branch is not taken.
BF TRGET_F ; T=0, so branch to TRGET_F.
NOP .
NOP ;
TRGET_F: ; « BFinstruction branch destination

Rev. 5.0, 04/01, page 196 of 394
RENESAS

9.6 BF/S Branch if False with delay Slot Branch Instruction

Conditional Branch with Delay Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
BF/S label fT=0 10001111dddddddd 1 —
PC+4 +dispx2 - PC
If T=1, nop
Description

Thisisadelayed conditional branch instruction that referencesthe T bit. If T = 1, the next
instruction is executed and the branch is not taken. If T = 0, the branch is taken after execution of
the next instruction.

The branch destination is address (PC + 4 + displacement x 2). The PC source value isthe BF/S
instruction address. As the 8-bit displacement is multiplied by two after sign-extension, the branch
destination can be located in the range from —256 to +254 bytes from the BF/S instruction.

Notes

Asthisis adelayed branch instruction, when the branch condition is satisfied, the instruction
following thisinstruction is executed before the branch destination instruction.

Interrupts are not accepted between thisinstruction and the following instruction.
If the following instruction is a branch instruction, it isidentified as aslot illegal instruction.

If thisinstruction islocated in the delay slot immediately following a delayed branch instruction, it
isidentified asadlot illegal instruction.

If the branch destination cannot be reached, the branch must be handled by using BF/Sin
combination with aBF, BRA, or IMP instruction, for example.

Rev. 5.0, 04/01, page 197 of 394
RENESAS

Operation

BFS(i nt d) /* BFS disp */

{
int disp;
unsi gned int tenp;
t enp=PC;
i f ((d&0x80)==0)

di sp=(0x000000FF & d);
el se di sp=(OxFFFFFFOO | d);
if (T==0)
PC=PC+4+(di sp<<1);

el se PC+=4;
Del ay_Sl ot (t enmp+2) ;

}

Example

CLRT ; Normaly T=0
BT/S TRGET_T ; T =0, so branch is not taken.
NOP ;
BF/ S TRGET_F ; T=0, so branch to TRGET.
ADD RO,R1 ; Executed before branch.
NOP ;

TRGET_F: ; « BF/Sinstruction branch destination

Rev. 5.0, 04/01, page 198 of 394
RENESAS

9.7 BRA BRAnNch Branch Instruction

Unconditional Branch Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
BRA label PC+4+dispx2 - PC 1010dddddddddddd 1 —
Description

Thisisan unconditional branch instruction. The branch destination is address (PC + 4 +
displacement x 2). The PC source value is the BRA instruction address. Asthe 12-bit
displacement is multiplied by two after sign-extension, the branch destination can be located in the
range from —4096 to +4094 bytes from the BRA instruction. If the branch destination cannot be
reached, this branch can be performed with a IMP instruction.

Notes

Asthisisadelayed branch instruction, the instruction following thisinstruction is executed before
the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following
instruction is a branch instruction, it isidentified asa dot illegal instruction.

Operation

BRA(i nt d) /* BRA disp */
{

int disp;

unsi gned int tenp;

t enp=PC;
i f ((d&0x800)==0)

di sp=(0x00000FFF & d);
el se di sp=(OxFFFFF000 | d);
PC=PC+4+(di sp<<l);
Del ay_Sl ot (t enp+2) ;

Rev. 5.0, 04/01, page 199 of 394
RENESAS

Example

BRA TRGET ; Branch to TRGET.
ADD RO, R1 ; ADD executed before branch.
NOP ;
TRGET: ; « BRA instruction branch destination

Rev. 5.0, 04/01, page 200 of 394
RENESAS

9.8 BRAF BRAnNch Far Branch Instruction

Unconditional Branch Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
BRAF Rn PC+4+Rn - PC 0000nnnn00100011 2 —
Description

Thisisan unconditional branch instruction. The branch destination is address (PC + 4 + Rn). The
branch destination address is the result of adding 4 plus the 32-bit contents of general register Rn
to PC.

Notes

Asthisisadelayed branch instruction, the instruction following thisinstruction is executed before
the branch destination instruction.

Interrupts are not accepted between thisinstruction and the following instruction. If the following
instruction is a branch instruction, it isidentified asa dot illegal instruction.

Operation

BRAF(int n) /* BRAF Rn */
{

unsi gned int tenp;

t enp=PC;

PC=PC+4+R[n] ;

Del ay_Sl ot (t enp+2) ;
}

Example

MOV. L #(TRGET- BRAF_PC), RO ; Set displacement.

BRAF RO ; Branch to TRGET.

ADD RO, R1 ; ADD executed before branch.
BRAF_PC:

NOP
TRGET: ; « BRAF instruction branch destination

Rev. 5.0, 04/01, page 201 of 394
RENESAS

9.9 BSR Branch to SubRoutine Branch Instruction

Branch to Subroutine Procedure Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
BSR label PC+4 - PR, 1011dddddddddddd 1 —

PC+4+dispx2 — PC

Description

Thisinstruction branches to address (PC + 4 + displacement x 2), and stores address (PC + 4) in
PR. The PC source value isthe BSR instruction address. As the 12-hit displacement is multiplied
by two after sign-extension, the branch destination can be located in the range from —4096 to
+4094 bytes from the BSR instruction. If the branch destination cannot be reached, this branch can
be performed with a JSR instruction.

Notes

Asthisisadelayed branch instruction, the instruction following thisinstruction is executed before
the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following
instruction is a branch instruction, it isidentified asa dot illegal instruction.

Operation

BSR(i nt d) /* BSR disp */
{

int disp;

unsi gned int tenp;

t enp=PC;
i f ((d&0x800)==0)

di sp=(0x00000FFF & d);
el se di sp=(0xFFFFFO00 | d);
PR=PC+4;
PC=PC+4+(di sp<<1);
Del ay_Sl ot (t enp+2);

Rev. 5.0, 04/01, page 202 of 394
RENESAS

Example

BSR

TRGET
R3, R4
RO, R1

R2, R3

#1, RO

; Branch to TRGET.
; MOV executed before branch.
; Subroutine procedure return destination (contents of PR)

; « Entry to procedure
; Return to above ADD instruction.
; MOV executed before branch.

Rev. 5.0, 04/01, page 203 of 394
RENESAS

910 BSRF Branch to SubRoutine Far Branch Instruction

Branch to Subroutine Procedure Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
BSRF Rn PC+4 - PR, 0000nnnn00000011 2 —

PC+4+Rn - PC

Description

Thisinstruction branches to address (PC + 4 + Rn), and stores address (PC + 4) in PR. The PC
source value is the BSRF instruction address. The branch destination address is the result of
adding the 32-bit contents of general register Rnto PC + 4.

Notes

Asthisisadelayed branch instruction, the instruction following thisinstruction is executed before
the branch destination instruction.

Interrupts are not accepted between thisinstruction and the following instruction. If the following
instruction is a branch instruction, it is identified asa ot illegal instruction.

Operation

BSRF(i nt n) /* BSRF Rn */
{

unsi gned int tenp;

t emp=PC;

PR=PC+4;

PC=PC+4+R[n] ;

Del ay_Sl ot (t enp+2) ;

Rev. 5.0, 04/01, page 204 of 394
RENESAS

Example

MOV. L #(TRCGET- BSRF_PC), RO ; Set displacement.

BSRF RO ; Branch to TRGET.

MoV R3, R4 ; MOV executed before branch.
BSRF_PC:

ADD RO, R1 ;
TRCET: ; — Entry to procedure

MoV R2, R3 ;

RTS ; Return to above ADD instruction.

MoV #1, RO ; MOV executed before branch.

Rev. 5.0, 04/01, page 205 of 394
RENESAS

9.11 BT Branch if True
Conditional Branch

Branch Instruction

Execution
Format Summary of Operation Instruction Code States T Bit
BT label fT=1 10001001dddddddd 1 —
PC+4+dispx2 - PC
If T=0, nop
Description

Thisisaconditional branch instruction that referencesthe T bit. The branch istaken if T =1, and

not takenif T = 0.

The branch destination is address (PC + 4 + displacement x 2). The PC source valueisthe BT
instruction address. As the 8-bit displacement is multiplied by two after sign-extension, the branch
destination can be located in the range from —256 to +254 bytes from the BT instruction.

Notes

If the branch destination cannot be reached, the branch must be handled by using BT in
combination with aBRA or IMP instruction, for example.

Operation

BT(int d)
{

/* BT disp */

int disp;

i f ((d&0x80)==0)

di sp=(0x000000FF & d);
el se di sp=(OxFFFFFFOO0 | d);
if (T==1)

PC=PC+4+(di sp<<1);
el se PC+=2;

Rev. 5.0, 04/01, page 206 of 394

RENESAS

Example

SETT ; Normally T=1
BF TRGET_F ; T =1, so branch is not taken.
BT TRGET_T ; T=1, sobranchto TRGET_T.
NOP ;
NOP ;
TRGET_T: ; « BT instruction branch destination

Rev. 5.0, 04/01, page 207 of 394
RENESAS

912 BT/S Branch if Truewith delay Slot Branch Instruction

Conditional Branch with Delay Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
BT/S label fT=1 10001101dddddddd 1 —
PC+4 +dispx2 - PC
If T=0, nop
Description

Thisisaconditional branch instruction that referencesthe T bit. The branch istaken if T =1, and
not takenif T = 0.

The PC source valueis the BT/S instruction address. As the 8-bit displacement is multiplied by
two after sign-extension, the branch destination can be located in the range from —256 to +254
bytes from the BT/S instruction. If the branch destination cannot be reached, the branch must be
handled by using BT/S in combination with aBRA or JIMP instruction, for example.

Notes

Asthisis adelayed branch instruction, when the branch condition is satisfied, the instruction
following thisinstruction is executed before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction.

If the following instruction is a branch instruction, it isidentified as aslot illegal instruction.

Rev. 5.0, 04/01, page 208 of 394
RENESAS

Operation

BTS(int d) /* BTS disp */

{
int disp;
unsi gned tenp;
t enp=PC;
i f ((d&0x80)==0)
di sp=(0x000000FF & d);
el se di sp=(0xFFFFFFOO | d);
if (T==1)
PC=PC+4+(di sp<<1);
el se PC+=4;
Del ay_Sl ot (t enp+2) ;
}
Example
SETT ; Normally T=1
BF/S TRGET_F ; T =1, so branch is not taken.
NOP ;
BT/S TRGET_T ; T=1, sobranchto TRGET_T.
ADD RO, R1 ; Executed before branch.
NOP ;
TRGET_T: ; « BT/Sinstruction branch destination

Rev. 5.0, 04/01, page 209 of 394
RENESAS

9.13 CLRMAC CleaR MAC register System Control Instruction
MAC Register Clear

Execution
Format Summary of Operation Instruction Code States T Bit
CLRMAC 0 - MACH, MACL 0000000000101000 1 —

Description
Thisinstruction clearsthe MACH and MACL registers.
Operation

CLRVAC() /* CLRVAC */

{
MACH=0;
MACL=0;
PC+=2,

}

Example

CLRVMAC ; Clear MAC register to initialize.
MAC. W @RO+, @R1+ ; Multiply-and-accumul ate operation

MAC. W @RO+, @R1+

Rev. 5.0, 04/01, page 210 of 394
RENESAS

9.14 CLRS CleaR Shit System Control Instruction
S Bit Clear
Execution
Format Summary of Operation Instruction Code States T Bit
CLRS 0-S 0000000001001000 1 —
Description

Thisinstruction clears the S bit to 0.
Operation

CLRS() /* CLRS */
{

S=0;

PC+=2;
}

Example

CLRS ; Beforeexecution S=1
; After execution S=0

Rev. 5.0, 04/01, page 211 of 394

RENESAS

9.15 CLRT CleaR T bit System Control Instruction
T Bit Clear
Execution
Format Summary of Operation Instruction Code States T Bit
CLRT 0-T 0000000000001000 1 0
Description

Thisinstruction clearsthe T bit.
Operation

CLRT() /* CLRT */
{

T=0;

PC+=2;
}

Example

CLRT ; Beforeexecution T=1
; After execution T=0

Rev. 5.0, 04/01, page 212 of 394

RENESAS

9.16 CMP/cond CoM Par e conditionally Arithmetic I nstruction

Compare
Execution
Format Summary of Operation Instruction Code States T Bit
CMPIEQ RmRn IfRn=Rm,1 - T 001lnnnnmmmOD000 1 Result of
comparison
CMP/GE Rm,Rn IfRn=Rm,signed,1 -~ T 001lnnnnmmm®O011l 1 Result of
comparison
CMP/GT Rm,Rn IfRn>Rm,signed,1 - T 001lnnnnmmm0111 1 Result of
comparison
CMP/HI Rm,Rn If Rn >Rm, unsigned, 1 - T 0011lnnnnmmm®0110 1 Result of
comparison
CMP/HS Rm,Rn IfRn=Rm, unsigned,1 - T 0011nnnnmmm®0010 1 Result of
comparison
CMP/PL Rn IfRN>0,1-T 0100nnnn00010101 1 Result of
comparison
CMP/PZ Rn IfRN=0,1-T 0100nnnn00010001 1 Result of
comparison
CMP/STR Rm,Rn If any bytes are equal, 1 - T 0010nnnnmmmi100 1 Result of
comparison
CMP/EQ #imm,RO IfRO=imm,1 - T 10001000iiiiiiii 1 Result of
comparison
Description

Thisinstruction compares general registers Rn and Rm, and setsthe T bit if the specified condition
(cond) istrue. If the condition isfalse, the T bit is cleared. The contents of Rn are not changed.
Nine conditions can be specified. For the two conditions PZ and PL, Rn is compared with O.

With the EQ condition, sign-extended 8-bit immediate data can be compared with RO. The
contents of RO are not changed.

Rev. 5.0, 04/01, page 213 of 394
RENESAS

Mnemonic Description

CMP/EQ Rm,Rn fRN=Rm, T=1

CMP/GE Rm,Rn If Rn = Rm as signed values, T =1
CMP/GT Rm,Rn If Rn > Rm as signed values, T=1
CMP/HI Rm,Rn If Rn > Rm as unsigned values, T =1
CMP/HS Rm,Rn If Rn = Rm as unsigned values, T =1
CMP/PL Rn fRNn>0,T=1

CMP/PZ Rn IfRN=0,T=1

CMP/STR Rm,Rn If any bytes are equal, T =1
CMP/EQ #imm,RO IfRO=imm, T=1

Operation

CVMPEQ | ong m long n) /* CVWP_EQ RmRn */
{

if (REn]==R[n) T=1;

el se T=0;

PC+=2,
}
CVMPGE(l ong m long n) /* CVWP_GE RmRn */
{

if ((long)RIn]>=(long)Rinj) T=1;

el se T=0;

PC+=2,

CMPGT(l ong m long n) /* CWP_GT RmRn */
{

if ((long)RIn]>(long)Rinj) T=1;

el se T=0;

PC+=2;

CWPHI (l ong m long n) /* CW_H RmRn */

{
if ((unsigned | ong) R n]>(unsigned long)RIn) T=1,
el se T=0;

Rev. 5.0, 04/01, page 214 of 394
RENESAS

PC+=2;

}

CWPHS(l ong m long n) /* CWP_HS RmRn */

{
if ((unsigned | ong) R n]>=(unsigned long) RIn) T=1,;
el se T=0;
PC+=2,

}

CVMPPL(| ong n)
{

/* CMP_PL Rn */

if ((long)RIn]>0) T=1,
el se T=0;
PC+=2;

CMPPZ(| ong n)
{

/* CMP_PZ Rn */

if ((long)R n]>=0) T=1;
el se T=0;
PC+=2;

CMPSTR(1 ong m
{

I ong n) /* CMP_STR Rm Rn */
unsi gned | ong tenp;
I ong HH, HL, LH, LL;

tenp=R[n] *R{n ;

HH=(t enp&0xFFO000000) >>24;
HL=(t enp&x00FF0000) >>16;
LH=(t enp&x0000FF00) >>8;
LL=t enp&x000000FF;
HH=HH&&HL &&L H&&L L ;

if (HH==0) T=1,;

el se T=0;

RENESAS

Rev. 5.0, 04/01, page 215 of 394

PC+=2;

CWIMlong i) /* CVP_EQ #i mMmm RO */

{
| ong i nm
if ((i&x80)==0) i mr(0x000000FF & (long i));
el se i mm=(OXFFFFFFOO | (long i));
if (RRO]==imm T=1;
el se T=0;
PC+=2;
}
Example
CW/ CGE RO, RL ; RO = H'7FFFFFFF, R1 = H'80000000
BT TRGET_T ; T =0, so branch is not taken.
CW/HS RO, RL ; RO = H'7FFFFFFF, R1 = H'80000000
BT TRGET_T ; T=1, so branch istaken.
CW/ STR R2,R3 ; R2="ABCD", R3="XYCZ"
BT TRGET_T ; T =1, so branch istaken.

Rev. 5.0, 04/01, page 216 of 394
RENESAS

9.17 DIVOS DIVide (step 0) as Signed Arithmetic Instruction
Initialization for

Signed Division
Execution
Format Summary of Operation Instruction Code States T Bit
DIVOS Rm,Rn MSB of Rn - Q, 0010nnnnmmmD111 1 Result of
MSB of Rm - M, calculation
MMQ - T
Description

Thisinstruction performsinitial settings for signed division. Thisinstruction is followed by a
DIV1instruction that executes 1-digit division, for example, and repeated divisions are executed
to find the quotient. See the description of the DIV 1 instruction for details.

Operation

DI VOS(long m long n) /* DIVOS Rm Rn */

{
if ((Rin] & 0x80000000)==0) Q=O0;
el se (¥1;
if ((Rlni & 0x80000000)==0) M=O0;
el se M-1;
T=1 (M=Q;
PC+=2;

}

Example

See the examples for the DIV 1 instruction.

Rev. 5.0, 04/01, page 217 of 394
RENESAS

918 DIVOU DIVide (step 0) asUnsigned Arithmetic Instruction
Initialization for Unsigned Division

Execution
Format Summary of Operation Instruction Code States T Bit
DIVOU 0 - M/QIT 0000000000011001 1 0

Description

Thisinstruction performsinitial settings for unsigned division. Thisinstruction is followed by a
DIV1instruction that executes 1-digit division, for example, and repeated divisions are executed
to find the quotient. See the description of the DIV 1 instruction for details.

Operation

DI VOU() /* DIVOU */

{
M=Q=T=0;
PC+=2;

}

Example

See the examples for the DIV 1 instruction.

Rev. 5.0, 04/01, page 218 of 394
RENESAS

919 DIVl DIVide1 step Arithmetic Instruction

Division
Execution
Format Summary of Operation Instruction Code States T Bit
DIV1 Rm,Rn 1-step division 001lnnnnmmmD100 1 Result of
(Rn + Rm) calculation
Description

Thisinstruction performs 1-digit division (1-step division) of the 32-bit contents of general
register Rn (dividend) by the contents of Rm (divisor). The quotient is obtained by repeated
execution of thisinstruction alone or in combination with other instructions. The specified
registers and the M, Q, and T bits must not be modified during these repeated executions.

In 1-step division, the dividend is shifted 1 bit to the left, the divisor is subtracted from this, and
the quotient bit is reflected in the Q bit according to whether the result is positive or negative.

The remainder can be found as follows after first finding the quotient using the DIV 1 instruction:
(Remainder) = (dividend) — (divisor) x (quotient)

Detection of division by zero or overflow is not provided. Check for division by zero and overflow
division before executing the division. A remainder operation is not provided. Find the remainder
by finding the product of the divisor and the obtained quotient, and subtracting this value from the
dividend.

Initial settings should first be made with the DIVOS or DIVOU instruction. DIV 1 is executed once
for each bit of the divisor. If aquotient of more than 17 bitsis required, place an ROTCL
instruction before the DIV 1 instruction. See the examples for details of the division sequence.

Operation

DI Vi(long m |ong n) /* DIV1I RmRn */
{

unsi gned | ong tnmpO, tnp2;

unsi gned char old_q, tnpil;

ol d_q=Q@Q

Q=(unsi gned char) ((0x80000000 & R[n])!=0);
tm2= R n;

Rl n] <<=1;

R n] | =(unsi gned | ong) T;

Rev. 5.0, 04/01, page 219 of 394
RENESAS

switch(old_q){
case 0:switch(M/{
case 0:tnmpO0=R[n];

R n] - =t np2;

t mp1=(R[n] >t np0) ;

switch(Q{

case 0: Q=t np1l;
br eak;

case 1: Q=(unsigned char) (tnpl==0);
br eak;

}

br eak;

case 1:tnmpO0=R[n];

R[n] +=t np2;

t mp1=(R n] <t np0) ;

switch(Q{

case 0: Q=(unsigned char) (tnmpl==0);
br eak;

case 1: Q=t np1l;
br eak;

br eak;
}
br eak;
case l:switch(M{
case 0:tnmpO=R[n];
R n] +=t mp2;
t mp1=(R[n] <t np0) ;
switch(Q({
case 0: Q=t np1;
br eak;
case 1: Q=(unsigned char) (tnmpl==0);
br eak;
}
br eak;
case 1:tnmpO=R[n];

Rev. 5.0, 04/01, page 220 of 394
RENESAS

R n] - =t np2;

t mp1=(R[n] >t np0) ;

switch(Q{

case 0: Q=(unsigned char) (tnmpl==0);
br eak;

case 1: Q=t np1l;

br eak;
}
br eak;
}
br eak;

}

T=(Q=M ;

PC+=2;
}

Example 1
; R1 (32 hits) + RO (16 bits) = R1 (16 bits); unsigned

SHLL16 RO ; Set divisor in upper 16 bits, clear lower 16 bitsto 0
TST RO, RO ; Check for division by zero
BT ZERO DI V ;
CWP/ HS RO, R1 ; Check for overflow
BT OVER DI V ;
Dl VOU ; Flag initialization
.arepeat 16 ;
DI V1 RO, R1 ; Repeat 16 times
.aendr ;
ROTCL R1 ;
EXTU. W R1, R1 ; R1=quotient

Rev. 5.0, 04/01, page 221 of 394
RENESAS

Example 2

TST RO, RO
BT ZERO DI V
CWP/ HS RO, R1
BT OVER DI V
DI VOU
.arepeat 32
ROTCL R2
DI V1 RO, R1
.aendr
ROTCL R2
Example 3
SHLL16 RO
EXTS. W R1, R1
XOR R2, R2
MOV R1, R3
ROTCL R3
SUBC R2, R1
Dl VOS RO, R1
.arepeat 16
DI V1 RO, R1
. aendr
EXTS. W R1, R1
ROTCL R1
ADDC R2, R1

EXTS. W R1, Rl

; R1:R2 (64 bits) + RO (32 bits) = R2 (32 hits); unsigned

; Check for division by zero

; Check for overflow
; Flag initialization

; Repeat 32 times

; R2 = quotient

; R1 (16 bits) + RO (16 bits) = R1 (16 bits); signed
; Set divisor in upper 16 bits, clear lower 16 bitsto 0
; Dividend sign-extended to 32 hits
iR2=0

; If dividend is negative, subtract 1
; Flag initialization

; Repeat 16 times

; R1 = quotient (one's complement notation)

; 1f MSB of quotient is 1, add 1 to convert to two’s complement notation

; R1 = quotient (two’s complement notation)

Rev. 5.0, 04/01, page 222 of 394

RENESAS

Example4

MOV
ROTCL
SUBC
XOR
SUBC
Dl VOS
. ar epeat
ROTCL
DI V1
.aendr
ROTCL
ADDC

R2, R3

R1, R1
R3, R3
R3, R2
RO, R1
32

R2

RO, R1

; R2 (32 bits) + RO (32 bits) = R2 (32 bits); signed

; Dividend sign-extended to 64 bits (R1:R2)

;i R3=0

; If dividend is negative, subtract 1 to convert to one's complement notation

; Flag initialization
; Repeat 32 times

; R2 = quotient (one's complement notation)

; 1f MSB of quotient is 1, add 1 to convert to two’s complement notation

; R2 = quotient (two’s complement notation)

RENESAS

Rev. 5.0, 04/01, page 223 of 394

9.20

DMULSL Double-length

MULtiply as Signed

Signed Double-Length
Multiplication

Format

Summary of Operation

DMULS.L Rm,Rn Signed,

Rn x Rm -
MACH, MACL

Description

Thisinstruction performs 32-bit multiplication of the contents of general register Rn by the
contents of Rm, and stores the 64-bit result in the MACH and MACL registers. The multiplication

is perfol
Operat

DMVUL
{

rmed as a signed arithmetic operation.
ion
S(long m long n) /* DMILS.L RmRn */

unsi gned | ong RnL, RnH, R, RnH, ResO, Res1, Res2;
unsi gned | ong tenpO, tenpl, tenp2, t enp3;

| ong tenpm tenpn, f nLni;

tempn=(long) R n];

tenpme(l ong) R[n ;

if (tenpn<0) tenpn=0-tenpn;

if (tenpnx0) tenpm=0-tenpm

if ((long)(RInN]*"R[n)<0) fnLnlL=-1;
el se fnLnlL=0;

tenpl=(unsi gned | ong)tenpn;
tenp2=(unsi gned | ong)tenpm

RnL=t enp1&0x0000FFFF;
RnH=(t enp1>>16) &0X0000FFFF;
RL=t enp2&0x0000FFFF;

RH=(t enp2>>16) &0X0000FFFF;

Rev. 5.0, 04/01, page 224 of 394

RENESAS

Arithmetic | nstruction

Instruction Code
0011nnnnmmmmi101 2-5

t enpO=RnL* RnL,;
t enpl=RmH* RnL;
t enp2=RnlL* RnH,
t enp3=RntH* RnH;

Res2=0;

Resl1l=t enpl+t enp2;

if (Resl<tenpl) Res2+=0x00010000;
t enpl=(Res1<<16) &xFFFF0000;
ResO=t enpO+t enp1l;

i f (ResO<tenmpO) Res2++;

Res2=Res2+((Res1>>16) &0x0000FFFF) +t enp3;

if (fnLnl<0) {
Res2="Res2;
i f (Res0==0)
Res2++;
el se
Res0=("Res0) +1;

}
MACH=Res2;
MACL=ResO;
PC+=2;
}
Example
DMULS. L RO, R1 ; Before execution RO = H'FFFFFFFE, R1 = H'00005555
; After execution MACH = H'FFFFFFFF, MACL = H'FFFF5556
STS MACH, RO ; Get operation result (upper)
STS MACL, R1 ; €t operation result (lower)

Rev. 5.0, 04/01, page 225 of 394
RENESAS

921 DMULU.LL Double-length M UL tiply

asUnsigned Arithmetic Instruction
Unsigned Double-Length
Multiplication
Execution
Format Summary of Operation Instruction Code States T Bit
DMULU.L Rm,Rn Unsigned, 001l1lnnnnmmmD101 2-5 —
Rn xRm -
MACH, MACL
Description

Thisinstruction performs 32-bit multiplication of the contents of general register Rn by the
contents of Rm, and stores the 64-bit result in the MACH and MACL registers. The multiplication
is performed as an unsigned arithmetic operation.

Operation

DMULU(long m long n) /* DMULU.L RmRn */

{
unsi gned | ong RnL, RnH, R, RnH, ResO, Res1, Res2;
unsi gned | ong tenpO, tenpl, tenp2, t enp3;

RnL=R[n] &x0000FFFF;
RnH=(R n] >>16) &0x0000FFFF;

RL=R[nj &0x0000FFFF;
RH=(R[] >>16) &0x0000FFFF;

t enpO=RnL* RnL;
t enpl=RntH* RnL;
t enp2=RnlL* RnH,
t enp3=RmH* RnH;

Res2=0
Resl=t enpl+t enp2;
if (Resl<tenpl) Res2+=0x00010000;

t enpl=(Res1<<16) &0xFFFF0000;

Rev. 5.0, 04/01, page 226 of 394
RENESAS

ResO=t enpO+t enp1l;
i f (ResO<tenp0) Res2++;

Res2=Res2+((Res1>>16) &0x0000FFFF) +t enp3;

MACH=Res2;

MACL=ResO;

PC+=2;
}

Example
DMULU. L RO, R1 ; Before execution RO = H'FFFFFFFE, R1 = H'00005555
; After execution MACH = H'00005554, MACL = H'FFFF5556

STS MACH, RO ; Get operation result (upper)
STS MACL, R1 ; Get operation result (lower)

Rev. 5.0, 04/01, page 227 of 394
RENESAS

922 DT Decrement and Test Arithmetic Instruction
Decrement and Test

Execution
Format Summary of Operation Instruction Code States T Bit
DT Rn Rn—-1 - Rn; 0100nnnn00010000 1 Test
ifRn=0,1-T result

ifRN20,0 - T

Description

Thisinstruction decrements the contents of general register Rn by 1 and compares the result with
zero. If theresult is zero, the T bit is set to 1. If the result is nonzero, the T bit is cleared to 0.

Operation

DT(long n)/* DT Rn */

{
RIn]--;
if (Rn]==0) T=1;
el se T=0;
PC+=2;

}

Example

MOV #4,R5 ; Set loop count

LOOP:
ADD RO, R1 ;
DT R5 ; Decrement R5 value and check for O.
BF LOOP ; If T =0, branch to LOOP (in this example, 4 loops are executed).

Rev. 5.0, 04/01, page 228 of 394
RENESAS

9.23 EXTS EXTend as Signed Arithmetic Instruction

Sign Extension
Execution
Format Summary of Operation Instruction Code States T Bit
EXTS.B Rm,Rn Rm sign-extended from 0110nnnnmmmi110 1 —
byte -~ Rn
EXTS.W Rm,Rn Rm sign-extended from 0110nnnnmmmilll 1 —
word - Rn
Description

This instruction sign-extends the contents of general register Rm and stores the result in Rn.

For a byte specification, the value of Rm hit 7 is transferred to Rn bits 8 to 31. For aword
specification, the value of Rm bit 15 istransferred to Rn bits 16 to 31.

Operation

EXTSB(long m long n) /* EXTS.B RmRn */

{
RIn] =R ;
i f ((R[n &x00000080) ==0) R[n] &0x000000FF;
el se R[n] | =0xFFFFFFOO;
PC+=2;
}

EXTSWIlong m long n) /* EXTS. WRmRn */

{
RIn] =R ;
i f ((R[n &x00008000) ==0) R[n] &0x0000FFFF;
el se R[n] | =0xFFFF0000;
PC+=2;
}

Rev. 5.0, 04/01, page 229 of 394
RENESAS

Example

EXTS.B RO, R1L ; Before execution RO = H'00000080
; After execution R1 = H'FFFFFF80
EXTS. W RO, R1L ; Before execution RO = H'00008000

; After execution R1 = H'FFFF8000

Rev. 5.0, 04/01, page 230 of 394
RENESAS

924 EXTU EXTend as Unsigned Arithmetic Instruction
Zero Extension

Execution
Format Summary of Operation Instruction Code States T Bit
EXTU.B Rm,Rn Rm zero-extended from 0110nnnnmmmi100 1 —
byte -~ Rn
EXTU.W Rm,Rn Rm zero-extended from 0110nnnnmmmill101 1 —
word - Rn

Description
Thisinstruction zero-extends the contents of general register Rm and stores the result in Rn.

For a byte specification, 0 istransferred to Rn bits 8 to 31. For aword specification, O is
transferred to Rn bits 16 to 31.

Operation

EXTUB(long m long n) /* EXTU B RmRn */

{
Rin]=Rni;
R[n] &=0x000000FF;
PC+=2;

}

EXTUW(long m long n) [/* EXTUWRmMRn */

{
Rin]=Rn;
R[n] &=0x0000FFFF;
PC+=2;
}
Example
EXTU. B RO, Rl ; Before execution RO = H'FFFFFF80
; After execution R1 = H'00000080
EXTU. W RO, R1L ; Before execution RO = H'FFFF8000

; After execution R1 = H'00008000

Rev. 5.0, 04/01, page 231 of 394
RENESAS

9.25 FABS Floating-point ABSolute value Floating-Point Instruction

Floating-Point
Absolute Value
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FABS FRn [FRn| - FRn 1111nnnn01011101 1 —
FABS DRn IDRn| - DRn 1111nnn001011101 1 —
Description

Thisinstruction clears the most significant bit of the contents of floating-point register FRn/DRn
to 0, and stores the result in FRn/DRn.

The cause and flag fields in FPSCR are not updated.
Operation

voi d FABS (int n){
FRIn] = FR{n] & Ox7fffffff;
pc += 2;

}

[* Same operation is performed regardless of precision. */

Possible Exceptions:
None

Rev. 5.0, 04/01, page 232 of 394
RENESAS

9.26 FADD Floating-point ADD Floating-Point Instruction

Floating-Point
Addition
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FADD FRm,FRn FRn+FRmM - FRn 1111nnnnmmm0000 1 —
FADD DRm,DRn DRn+DRm - DRn 1111nnnOmMmDO000 6 —
Description

When FPSCR.PR = 0: Arithmetically adds the two single-precision floating-point numbersin FRn
and FRm, and storesthe result in FRn.

When FPSCR.PR = 1: Arithmetically adds the two double-precision floating-point numbersin
DRn and DRm, and stores the result in DRn.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information isreflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Operation

void FADD (int mn)
{
pc += 2;
cl ear _cause();
if((data_type_of(m) == sNaN) ||
(data_type_of (n) == sNaN)) invalid(n);
else if((data_type_of (m == gNaN) ||
(data_type_of (n) == gNaN)) qnan(n);
else if((data_type_of (m) == DENORM ||
(data_type_of (n) == DENORM) set E();
el se switch (data_type_of (m){
case NORM switch (data_type_of(n)){

case NORM nor mal _f addsub(m n, ADD) ; br eak;
case PZERO
case NZERO regi ster_copy(mn); break;
defaul t: br eak;
} br eak;

Rev. 5.0, 04/01, page 233 of 394
RENESAS

case PZERO switch (data_type_of(n)){
case NZERC zero(n, 0); break;

defaul t: br eak

} br eak;

case NZERO br eak

case PINF: switch (data_type_of(n)){
case NI NF: i nvalid(n); br eak
def aul t: inf(n,0); br eak

} br eak;

case NINF: switch (data_type_of(n)){
case PI NF: i nvalid(n); br eak
def aul t: inf(n,1); br eak

} br eak;

}

FADD Special Cases

FRm,DRm FRn,DRN

NORM‘ +0] 0 +INF _INF

DENORM

gNaN

sNaN

NORM ADD —INF

+0 +0

-0 0 |

+INF +INF Invalid

_INF _INF] Invalid | —INF

DENORM

Error

gNaN

gNaN

sNaN

Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:
* FPU error

* Invalid operation
e Overflow

* Underflow

* |nexact

Rev. 5.0, 04/01, page 234 of 394
RENESAS

9.27 FCMP Floating-point CoM Pare Floating-Point Instruction

Floating-Point

Comparison

Execution

No. PR Format Summary of Operation Instruction Code States T Bit
1. 0 FCMP/EQFRmM,FRn (FRn==FRm)?1:.0 - T 111lnnnnmmmD100 1 1/0
2. 1 FCMP/EQ DRm,DRn (DRn==DRm)?1:0 -~ T 1111nnnOmm00100 1 1/0
3. 0 FCMP/GT FRm,FRn (FRn>FRm)?1:.0 - T 1111nnnnmm0101 2 1/0
4. 1 FCMP/GT DRm,DRn (DRn>DRmM)?1:0 - T 1111nnnOmmD0101 2 1/0
Description
1. When FPSCR.PR = 0: Arithmetically compares the two single-precision floating-point

numbersin FRn and FRm, and stores 1 in the T hit if they are equal, or O otherwise.

. When FPSCR.PR = 1: Arithmetically compares the two double-precision floating-point

numbersin DRn and DRm, and stores 1 in the T bit if they are equal, or O otherwise.
When FPSCR.PR = 0: Arithmetically compares the two single-precision floating-point
numbersin FRn and FRm, and stores 1 in the T bit if FRn > FRm, or 0 otherwise.
When FPSCR.PR = 1: Arithmetically compares the two double-precision floating-point
numbersin DRn and DRm, and stores 1 in the T bit if DRn > DRm, or O otherwise.

Operation

voi d

{

voi d

FCMP_EQint mn) /* FOW/ EQ FRm FRn */

pc += 2;

cl ear_cause();

if(fcmp_chk (mn) == INVALID) fcnp_invalid();
else if(fcnp_chk (mn) == EQ T = 1,

el se T =0;

FCMP_GT(int mn) /* FOMP/ GT FRm FRn */

pc += 2;

cl ear _cause();

if ((fcnp_chk (mn) == INVALID) ||
(femp_chk (mn) == UQ) fcrp_invalid();

else if(fcnmp_chk (mn) == GI) T = 1;

Rev. 5.0, 04/01, page 235 of 394
RENESAS

el se T=0;

}
int fcnp_chk (int mn)
{
if((data_type_of(m == sNaN) ||
(data_type_of (n) == sNaN)) return(!l NVALI D) ;
else if((data_type_of (m == gNaN) ||
(data_type_of (n) == gNaN)) return(UO;
el se switch(data_type_of (m){
case NORM switch(data_type_of (n)){

case PINF :return(GTl); break;
case N NF :return(LT); break;

defaul t: br eak;
} br eak;
case PZERC
case NZERC switch(data_ type_of (n)){
case PZERO
case NZERO :return(EQ; break;
defaul t: br eak;
} br eak;
case PINF : switch(data_type_of (n)){
case PINF :return(EQ; break;
defaul t:return(LT); br eak;
} br eak;
case NI NF : switch(data_type_of (n)){
case NI NF :return(EQ; break;
default:return(GrT); br eak;
} br eak;
}
i f(FPSCR_PR == 0) {
if(FRIn] == FR[) return(EQ;
else if(FRIn] > FRInM) return(Gr);
el se return(LT);
lelse {

i f(DR[n>>1] == DR np>1]) return(EQ;
else i f(DR[n>>1] > DR[n>>1]) return(GT);

Rev. 5.0, 04/01, page 236 of 394
RENESAS

el se return(LT);

}
}
void fcnp_invalid()
{
set _V(); if((FPSCR & ENABLE V) == 0) T = 0;
el se fpu_exception_trap();
}

FCMP Special Cases

FCMP/EQ FRn,DRnN

FRm,DRm| NORM ‘DNORM’ +0] -0 +INF] —INF] gNaN

sNaN

NORM CMP
DNORM
+0 EQ
-0
+INF EQ
—INF EQ
gNaN IEQ

sNaN

Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

FCMP/GT FRn,DRnN

FRm,DRm| NORM ‘DENORM’ +0] -0 +INF —INF gNaN

sNaN

NORM CMP GT IGT
DENORM
+0 IGT
-0
+INF IGT IGT
—INF GT IGT
gNaN uo

sNaN

Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.
UO means unordered. Unordered is treated as false (IGT).

Possible Exceptions:
Invalid operation

Rev. 5.0, 04/01, page 237 of 394

RENESAS

9.28 FCNVDS Floating-point CoNVert
Doubleto Singleprecision Floating-Point Instruction
Double-Precision
to Single-Precision

Conversion
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 — — — — —
1 FCNVDS DRm,FPUL (float)DRm - FPUL 1111n,mm010111101 2 —
Description

When FPSCR.PR = 1: Thisinstruction converts the double-precision floating-point number in
DRm to a single-precision floating-point number, and stores the result in FPUL.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FPUL is not updated. Appropriate processing should therefore
be performed by software.

Operation

void FCNVDS(int m float *FPUL){
case((FPSCR PR){
0: undefined_operation(); /* reserved */
1. fcnvds(m *FPUL); break; /* FCNVDS */

}
}
void fcnvds(int m float *FPUL)
{

pc += 2;

cl ear _cause();
case(data_type_of (m *FPUL)){

NORM

PZERO :

NZERO : normal _ fcnvds(m *FPUL); break;
DENORM : set E();

PINF *FPUL = Ox7f 800000; break;

NI NF *FPUL = Oxff800000; break;

Rev. 5.0, 04/01, page 238 of 394
RENESAS

gNaN *FPUL = Ox7fbfffff; break;

sNaN set _V();
i f((FPSCR & ENABLE V) == 0) *FPUL = Ox7fbfffff;
el se fpu_exception_trap(); br eak;
}
}
voi d normal _fcnvds(int m float *FPUL)
{
int sign;
float abs;
uni on {
float f;
int |;
} dstf, t mpf;
uni on {
doubl e d;
int 1[2];
} dstd;
dstd.d = DR np>1];
if(dstd.I[1] & OxAfffffff)) set_I();
i f(FPSCR_RM == 1) dstd.l[1] &= 0xe0000000; /* round toward zero*/
dstf.f = dstd.d;
check_singl e_exception(FPUL, dstf.f);
}

FCNVDS Special Cases

FRn +NORM —-NORM +0 -0 +INF | —INF | gNaN | sNaN

FCNVDS(FRn FPUL) |FCNVDS FCNVDS +0 -0 +INF |-INF gNaN |Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:
* FPU error

e Invalid operation
* Overflow

e Underflow

* Inexact

Rev. 5.0, 04/01, page 239 of 394
RENESAS

9.29 FCNVSD Floating-point CoNVert
Singleto Double precison Floating-Point I nstruction
Single-Precision
to Double-Precision
Conversion

Execution
PR Format Summary of Operation Instruction Code States T Bit

0 — — — — —
1 FCNVSD FPUL, DRn (double) FPUL - DRn 1111nnn010101101 2 —

Description

When FPSCR.PR = 1: Thisinstruction converts the single-precision floating-point number in
FPUL to a double-precision floating-point number, and stores the result in DRn.

Operation

void FCNVSD(int n, float *FPUL){
pc += 2;
cl ear _cause();
case((FPSCR_PR){
0: undefined_operation(); /* reserved */
1. fcnvsd (n, *FPUL); break; /* FCNVSD */

}
}
void fcnvsd(int n, float *FPUL)
{
case(fpul _type(FPUL)){
PZERO :
NZERO :
Pl NF
NI NF DR[n>>1] = *FPUL; br eak;
DENORM : set E(); br eak;
gNaN gnan(n); br eak;
sNaN invalid(n); br eak;
}
}

int fpul _type(int *FPUL)

Rev. 5.0, 04/01, page 240 of 394
RENESAS

int abs;
abs = *FPUL & Ox7fffffff;
i f(abs < 0x00800000) {

i f((FPSCR_ DN == 1) || (abs == 0x00000000)) {
if(sign_of(src) == 0) return(PZERO;
el se r et ur n(NZERO) ;

}

el se r et ur n(DENORM ;

}

el se if(abs < 0x7f800000) return(NORM ;

el se if(abs == 0x7f800000) ({
if(sign_of(src) == 0) return(PINF);

el se return(NI NF);
}
el se if(abs < 0x7fc00000) return(gNaN);
el se return(sNaN);
}
FCNVSD Special Cases
FRn +NORM | —NORM +0 -0 +INF —INF gNaN sNaN
FCNVSD(FPUL FRn) |+NORM |-NORM +0 -0 +INF —INF gNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:
* FPU error

* Invalid operation

Rev. 5.0, 04/01, page 241 of 394
RENESAS

9.30 FDIV Floating-point DIVide Floating-Point Instruction

Floating-Point
Division
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FDIV FRm,FRn FRn/FRm - FRn 111innnnmmm0011 10 —
FDIV DRm,DRn DRn/DRm - DRn 1111nnnOmmD0011 23 —
Description

When FPSCR.PR = 0: Arithmetically divides the single-precision floating-point number in FRn by
the single-precision floating-point number in FRm, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically divides the double-precision floating-point number in DRn
by the double-precision floating-point number in DRm, and stores the result in DRn.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information isreflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. A ppropriate processing should
therefore be performed by software.

Operation

void FDIV(int mn) /* FDIV FRm FRn */
{
pc += 2;
cl ear _cause();
if((data_type_of(m) == sNaN) ||
(data_type_of (n) == sNaN)) invalid(n);
else if((data_type_of (m == gNaN) ||
(data_type_of (n) == gNaN)) qnan(n);
el se switch (data_type_of (m){
case NORM switch (data_type_of(n)){

case PINF:

case NI NF: i nf(n,sign_of (mM~sign_of(n)); break;
case PZERC

case NZERO zero(n, si gn_of (m ~sign_of (n)); break;
case DENORM set E(); br eak;

defaul t: normal _fdiv(mn); break;

} br eak;

Rev. 5.0, 04/01, page 242 of 394
RENESAS

case PZERO switch (data_type_of (n)){

case PZERC
case NZERO invalid(n); break;
case PINF:
case NI NF: break;
defaul t: dz(n, si gn_of (m ~si gn_of (n)); break;
} br eak;
case NZERO switch (data_type_of (n)){
case PZERC
case NZEROC invalid(n); break;
case PINF: inf(n,1); br eak;
case NI NF: inf(n,0); br eak;
defaul t: dz(FR[n], sign_of (m~sign_of (n)); break;
} br eak;
case DENORM set _E(); br eak;
case PINF :
case NINF : switch (data_type_of (n)){
case DENORM set E(); break;
case PI NF:
case NINF: invalid(n); br eak;
defaul t: zero(n, si gn_of (m~sign_of(n)); break

} br eak;

}

voi d nornal _fdiv(int

{

m n)

uni on {
float f;
int |;
} dstf, t mpf;
uni on {
doubl e d;
int 1[2];
} dstd, t mpd;
uni on {

int double x;

int 1[4];

Rev. 5.0, 04/01, page 243 of 394
RENESAS

} t mpx;
i f(FPSCR_PR == 0) {
tmpf.f = FR[n]; /* save destination value */
dstf.f /= FR[n; /* round toward nearest or even */
tmpd.d = dstf.f; /* convert single to double */
tnpd.d *= FR[n;
if(tnpf.f !'= tnpd.d) set_I();
if((tnpf.f < tnpd.d) && (SPSCR_RM == 1))
dstf.l -=1; /* round toward zero */
check_singl e_exception(&R[n], dstf.f);
} else {
tnmpd.d = DRI n>>1]; /* save destination value */
dstd.d /= DRI np>1]; /* round toward nearest or even */
tnpx.x = dstd.d; /* convert double to int double */
tmpx. x *= DR[m>>1];
if(tnmpd.d !'= tnpx.x) set_I1();
if((tnpd.d < tnpx.x) &% (SPSCR RM == 1)) {
dstd.I[1] -=1; /* round toward zero */
if(dstd.I[1] == Oxffffffff) dstd.I[0] -= 1;

}
check_doubl e_exception(&DR[n>>1], dstd.d);
}
}
FDIV Special Cases
FRm,DRm FRn,DRN
NORM +0 -0 +INF —INF |DENORM| qgNaN sNaN
NORM DIV 0 INF Error
+0 Dz Invalid +INF —INF Dz
-0 —INF +INF
+INF 0 +0 -0 Invalid
—INF -0 +0
DENORM Error
gNaN gNaN
sNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Rev. 5.0, 04/01, page 244 of 394
RENESAS

Possible Exceptions:

FPU error
Invalid operation
Divide by zero
Overflow
Underflow
Inexact

RENESAS

Rev. 5.0, 04/01, page 245 of 394

931 FIPR Floating-point Inner

PRoduct Floating-Point I nstruction
Floating-Point
Inner Product
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FIPR FVm,FVn FVn [FVm - FR[n+3] 1111nnmm11101101 1 —

Notes: FVO = {FRO, FR1, FR2, FR3}

FV4 = {FR4, FR5, FR6, FR7}
FV8 = {FR8, FRY, FR10, FR11}
FV12 = {FR12, FR13, FR14, FR15}

Description

When FPSCR.PR = 0: Thisinstruction calculates the inner products of the 4-dimensional single-
precision floating-point vector indicated by FVn and FVm, and stores the resultsin FR[n + 3].

The FIPR instruction is intended for speed rather than accuracy, and therefore the results will
differ from those obtained by using a combination of FADD and FMUL instructions. The FIPR
execution sequenceis asfollows:

A wDNpR

Multiplies all terms. The results are 28 hits long.
Aligns these results, rounding them to fit within 30 bits.
Adds the aligned values.

Performs normalization and rounding.

Special processing is performed in the following cases:

If an input valueis an sNaN, an invalid exception is generated.

If theinput values to be multiplied include a combination of 0 and infinity, an invalid

exception is generated.

In cases other than the above, if the input valuesinclude a gNaN, the result will be agNaN.

In cases other than the above, if the input values include infinity:

a If multiplication resultsin two or more infinities and the signs are different, an invalid
exception will be generated.

b. Otherwise, correct infinities will be stored.

If the input values do not include an sNaN, gNaN, or infinity, processing is performed in the

normal way.

Rev. 5.0, 04/01, page 246 of 394

RENESAS

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Operation

void FIPR(int mn) /* FI PR FVm Fvn */

{
i f(FPSCR PR == 0) {
pc += 2;
cl ear _cause();
fipr(mn);
}
el se undefi ned_operation();
}

Possible Exceptions:
e Invalid operation

* Overflow
e Underflow
¢ |nexact

Rev. 5.0, 04/01, page 247 of 394
RENESAS

932 FLDIO Floating-point

LoaD Immediate 0.0 Floating-Point Instruction
0.0 Load
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FLDIO FRn 0x00000000 — FRn 1111nnnn10001101 1 —
Description

When FPSCR.PR = 0, thisinstruction |oads floating-point 0.0 (0x00000000) into FRn.
Operation

voi d FLDI O(int n)

{
FR[n] = 0x00000000;

pc += 2;
}

Possible Exceptions:
None

Rev. 5.0, 04/01, page 248 of 394
RENESAS

933 FLDI1 Floating-point L oaD

Immediate 1.0 Floating-Point Instruction
1.0 Load
Execution
Format Summary of Operation Instruction Code States T Bit
FLDI1 FRn 0x3F800000 — FRn 1111nnnn10011101 1 —
Description

When FPSCR.PR = 0, thisinstruction loads floating-point 1.0 (0x3F800000) into FRn.
Operation

void FLDI 1(int n)

{
FRIn] = Ox3F800000;

pc += 2;
}

Possible Exceptions:
None

Rev. 5.0, 04/01, page 249 of 394
RENESAS

934 FLDS Floating-point
LoaD to System register Floating-Point Instruction

Transfer to System
Register
Execution
Format Summary of Operation Instruction Code States T Bit
FLDS FRm,FPUL FRm - FPUL 1111nmmmD0011101 1 —
Description

This instruction loads the contents of floating-point register FRm into system register FPUL.
Operation

void FLDS(int m float *FPUL)

{
*FPUL = FRImM ;
pc += 2;

}

Possible Exceptions:
None

Rev. 5.0, 04/01, page 250 of 394
RENESAS

9.35 FLOAT Floating-point

convert from integer Floating-Point Instruction
Integer to Floating-Point
Conversion
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FLOAT FPUL,FRn (float)FPUL - FRn 1111nnnn00101101 1 —

1 FLOAT FPUL,DRn (double)FPUL - DRn 1111nnn000101101 2 —

Description

When FPSCR.PR = 0: Taking the contents of FPUL as a 32-bit integer, converts thisinteger to a
single-precision floating-point number and stores the result in FRn.

When FPSCR.PR = 1: Taking the contents of FPUL as a 32-bit integer, converts thisinteger to a
double-precision floating-point number and stores the result in DRn.

When FPSCR.enable.l = 1, an FPU exception trap is generated regardless of whether or not an
exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Rev. 5.0, 04/01, page 251 of 394
RENESAS

Operation

void FLOAT(int n, float *FPUL)

{
uni on {
doubl e d;
int 1[2];
} t n;
pc += 2;
cl ear _cause();
i f (FPSCR. PR==0) {
FRIn] = *FPUL; /* convert frominteger to float */
tnp.d = *FPUL;
if(tmp.I[1] & Ox1fffffff) inexact();
} else {
DR n>>1] = *FPUL; /* convert frominteger to double */
}
}

Possible Exceptions:
Inexact: Not generated when FPSCR.PR = 1.

Rev. 5.0, 04/01, page 252 of 394
RENESAS

936 FMAC Floating-point Multiply
and ACcumulate Floating-Point I nstruction
Floating-Point Multiply
and Accumulate

Execution
PR Format Summary of Operation Instruction Code States T Bit

0 FMAC FRO,FRm,FRn FRO*FRm+FRn - FRn 1111nnnnmmmill110 1 —

R — — — —

Description

When FPSCR.PR = 0: Thisinstruction arithmetically multiplies the two single-precision floating-
point numbersin FRO and FRm, arithmetically adds the contents of FRn, and stores the result in
FRn.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Operation

void FMAC(int mn)
{
pc += 2;
cl ear _cause();
i f(FPSCR_PR == 1) undefined_operation();
else if((data_type_of (0) == sNaN) ||
(data_type_of (n) == sNaN) ||
(data_type_of (n) == sNaN)) invalid(n);
else if((data_type_of (0) == gNaN) ||
(data_type_of (m == gNaN)) gnan(n);
else if((data_type_of (0) == DENORM ||
(data_type_of (m == DENORM) set E();
el se switch (data_type_of (0){
case NORM switch (data_type_of (m){
case PZERC
case NZERO switch (data_type_of (n)){
case DENORM set E(); break;

Rev. 5.0, 04/01, page 253 of 394
RENESAS

case gNaN: gnan(n); break;
case PZERO

case NZERO zero(n,sign_of (0)”~ sign_of (m”"sign_of(n));
br eak;

defaul t: br eak;
}
case PI NF:
case NINF: switch (data_type_of(n)){
case DENORM set_E(); break;
case qNaN: gnan(n); break;
case PI NF:
case NINF: if(sign_of (0)" sign_of(m~sign_of(n)) invalid(n);
el se inf(n,sign_of (0)" sign_of(m); break;
def aul t: inf(n,sign_of (0)" sign_of(m); break;
}
case NORM switch (data_type_of(n)){
case DENORM set_E(); break;
case qNaN: gnan(n); break;

case PI NF:
case NI NF: inf(n,sign_of(n)); break;
case PZERO
case NZERC
case NORM normal _frmac(mn); break;
} br eak;
case PZERO
case NZERO switch (data_type_of (m){
case PI NF:
case NINF: invalid(n); break;
case PZERO
case NZERC
case NORM switch (data_type_of(n)){
case DENORM set E(); br eak;
case gqNaN: gnan(n); br eak;
case PZERC
case NZERQ zero(n, sign_of (0)”~ sign_of (m~sign_of(n)); break;
defaul t: br eak;
} br eak;
} br eak;

Rev. 5.0, 04/01, page 254 of 394
RENESAS

case PINF :

case NINF : switch (data_type_of (m){
case PZERC
case NZERG invalid(n); break;
default: switch (data_type_of(n)){
case DENORM set E(); break;

case gNaN: gnan(n); break;
defaul t: i nf(n,sign_of (0)”sign_of (mM~sign_of(n)); break
} br eak;
} br eak;
}
}
voi d nornmal _frmac(int mn)
{
uni on {
int double x;
int 1[4];
} dst x, t mpx;

float dstf,srcf;
if((data_type_of(n) == PZERO)|| (data_type_of(n) == NZERO))
srcf = 0.0; /* flush denornalized val ue */
el se srcf = FR[n];
tnpx.x = FR[O]; /* convert single to int double */
tmpx.x *= FR[nj; /* exact product */
dstx.x = tnmpx.x + srcf;
if(((dstx.x == srcf) && (tnmpx.x !'=0.0)) ||
((dstx.x == tnpx.x) && (srcf !'=0.0))) {

set _1();
i f(sign_of(0)" sign_of(mM~ sign_of(n)) {
dstx.1[3] -=1; /* correct result */

if(dstx.1[3] == Oxffffffff) dstx.1[2] -= 1;
if(dstx.1[2] == Oxffffffff) dstx.1[1] -= 1;
if(dstx.I[1] == Oxffffffff) dstx.1[0] -= 1;
}
el se dstx.1[3] | = 1;

}
if((dstx.1[1] & OXOLffffff) || dstx.1[2] || dstx.1[3]) set_I();

Rev. 5.0, 04/01, page 255 of 394
RENESAS

i f(FPSCR_RM == 1) {
dstx.l1[1] &= Oxfe000000; /* round toward zero */
dstx.1[2] = 0x00000000;
dstx.1[3] = 0x00000000;

}

dstf = dstx.x;

check_singl e_exception(&R[n], dstf);

Rev. 5.0, 04/01, page 256 of 394
RENESAS

FMAC Special Cases

FRn FRO FRm
+Norm‘—Norm‘ +0 ‘ -0 +INF —INF |[Denorm| gNaN | sNaN
Norm | Norm MAC INF
0 Invalid
INF INF Invalid INF
+0 Norm | MAC
0 +0 Invalid
INF INF Invalid INF
-0 +Norm | MAC +0 -0 +INF —INF
—Norm -0 +0 —INF +INF
+0 +0 -0 +0 -0 Invalid
-0 -0 +0 -0 +0
INF INF Invalid INF
+INF | +Norm | +INF Invalid
—Norm +INF
0 Invalid
+INF Invalid +INF
—INF | Invalid | +INF +INF
-INF | +Norm | —INF | —INF
—Norm
0
+INF | Invalid Invalid —INF
-INF | -INF ‘—INF Invalid
Denorm| Norm
0 Invalid |
INF | Invalid
IsNaN |Denorm Error
gNaN 0 Invalid ‘
INF | Invalid
Norm
IsNaN | gNaN gNaN

All types| sNaN

SNaN |all types Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Rev. 5.0, 04/01, page 257 of 394
RENESAS

Possible Exceptions:

Rev. 5.0, 04/01, page 258 of 394

FPU error
Invalid operation
Overflow
Underflow
Inexact

RENESAS

9.37 FMOV Floating-point MOVe Floating-Point Instruction

Floating-Point
Transfer
Summary of Execution

No. SZ Format Operation Instruction Code States T Bit
1. 0 FMOV FRm,FRn FRm - FRn 1111nnnnrmmmill100 1 —
2. 1 FMOV DRm,DRn DRm - DRn 1111nnnOmmD1100 1 —
3. 0 FMOV.S FRm,@Rn FRm - (Rn) 1111nnnnmmmil010 1 —
4. 1 FMOV DRm,@Rn DRm - (Rn) 1111nnnnmm01010 1 —
5. 0 FMOV.S @Rm,FRn (Rm) - FRn 11121nnnnmmmi000 1 —
6. 1 FMOV @Rm,DRn (Rm) - DRn 11121nnnOmmmi000 1 —
7. 0 FMOV.S @Rm+,FRn (Rm) - FRn,Rm+=4 1111nnnnmmmmi1001 1 —
8. 1 FMOV @Rm+,DRn (Rm) - DRn,Rm+=81111nnnOmmmi1001 1 —
9. 0 FMOV.S FRm,@-Rn Rn-=4,FRm - (Rn) 111lnnnnmmmil011 1 —
10. 1 FMOV DRm,@-Rn Rn-=8,DRm - (Rn) 1111lnnnnmm01011 1 —
11. 0 FMOV.S @(RO,Rm),FRn (RO+Rm) - FRn 1111nnnnmmm0110 1 —
12. 1 FMOV @(RO,Rm),DRn (RO+Rm) — DRn 11121nnnOmm0110 1 —
13. 0 FMOV.S FRm, @(RO,Rn) FRm - (RO+Rn) 1111lnnnnmmm0111 1 —
14. 1 FMOV DRm, @(RO,Rn) DRm - (RO+Rn) 111lnnnnmm00111 1 —
Description
1. Thisinstruction transfers FRm contents to FRn.
2. Thisinstruction transfers DRm contents to DRn.
3. Thisinstruction transfers FRm contents to memory at addressindicated by Rn.
4. Thisingtruction transfers DRm contents to memory at address indicated by Rn.
5. Thisinstruction transfers contents of memory at address indicated by Rm to FRn.
6. Thisinstruction transfers contents of memory at address indicated by Rm to DRn.
7. Thisinstruction transfers contents of memory at address indicated by Rm to FRn, and adds 4 to

Rm.

8. Thisinstruction transfers contents of memory at address indicated by Rm to DRn, and adds 8
to Rm.

9. Thisinstruction subtracts 4 from Rn, and transfers FRm contents to memory at address
indicated by resulting Rn value.

10. Thisinstruction subtracts 8 from Rn, and transfers DRm contents to memory at address
indicated by resulting Rn value.

11. Thisinstruction transfers contents of memory at address indicated by (RO + Rm) to FRn.

Rev. 5.0, 04/01, page 259 of 394
RENESAS

12. Thisinstruction transfers contents of memory at address indicated by (RO + Rm) to DRn.
13. Thisinstruction transfers FRm contents to memory at address indicated by (RO + Rn).
14. Thisinstruction transfers DRm contents to memory at address indicated by (RO + Rn).

Operation
void FMOV(int mn) /* FMOV FRm FRn */
{
FRIn] = FRIN;
pc += 2;
}
void FMOV_DR(i nt mn) /* FMOV DRm DRn */
{
DR[n>>1] = DR[n>>1];
pc += 2;
}
voi d FMOV_STORE(i nt mn) /* FMOV.S FRm @Rn */
{
store_int(FR[mM,Rn]);
pc += 2;
}
void FMOV_STORE DR(int mn) /* FMOV DRm @n */
{
store_quad(DR[m>>1], R n]);
pc += 2;
}
void FMOV_LQAD(i nt mn) /* FMOV. S @m FRn */
{
load int(R[n,FRN]);
pc += 2,
}
void FMOV_LOAD DR(int mn) /* FMOV @m DRn */
{
| oad_quad(R[m , DR[n>>1]);
pc += 2;
}
voi d FMOV_RESTORE(i nt m n) /* FMOV. S @m+, FRn */
{

Rev. 5.0, 04/01, page 260 of 394
RENESAS

|l oad_int (R[n{,FR[Nn]);

Rinm += 4
pc += 2;
}
voi d FMOV_RESTORE_DR(int mn) /* FMOV @m+, DRn */
{
| oad_quad(R[n, DR n>>1]) ;
Rin += 8;
pc += 2;
}
voi d FMOV_SAVE(i nt mn) /* FMOV.S FRm @Rn */
{
store_int(FR nl,R n]-4);
Rin] -= 4
pc += 2;
}
voi d FMOV_SAVE DR(int mn) /* FMOV DRm @Rn */
{
store_quad(DR[m>>1], R n]-8);
Rin] -= 8;
pc += 2;
}

void FMOV_I NDEX_LOAD(int mn) /* FMOV.S @RO, Rm), FRn */

load_int(R0] + Rinj,FR[n]);
pc += 2;

voi d FMOV_I NDEX_LOAD DR(int mn) /*FMOV @RO, R), DRn */

| oad_quad(R[0] + R nj, DR[n>>1]);
pc += 2;

voi d FMOV_I NDEX_STORE(i nt mn) /*FMOV. S FRm @ RO, Rn) */

store_int(FRIn{, RO + R[n]);
pc += 2;

Rev. 5.0, 04/01, page 261 of 394
RENESAS

voi d FMOV_I NDEX_STORE_DR(int mn)/*FMOV DRm @ RO, Rn) */
{

store_quad(DR[m>>1], R 0] + R n]);

pc += 2;
}

Possible Exceptions:
e DataTLB miss exception

» Data protection violation exception
 Initial write exception
* Addresserror

Rev. 5.0, 04/01, page 262 of 394
RENESAS

938 FMOV Floating-point

MOVe extension Floating-Point Instruction
Floating-Point
Transfer
Summary of Execution

No. PR Format Operation Instruction Code States T Bit
1. 1 FMOV XDm,@Rn XRm - (Rn) 1111nnnnmm11010 1 —
2. 1 FMOV @Rm,XDn (Rm) - XDn 1111nnn1nmmil000 1 —
3. 1 FMOV @Rm+,XDn (Rm) - XDn,Rm+=8 1111nnnlnmmi001l 1 —
4, 1 FMOV XDm,@-Rn Rn-=8,XDm - (Rn) 111innnnnmml1011 1 —
5. 1 FMOV @(RO,Rm),XDn (RO+Rm) — XDn 1111nnnlmmo0110 1 —
6. 1 FMOV XDm,@(R0O,Rn) XDm - (RO+Rn) 1111nnnnmmm10111 1 —
7. 1 FMOV XDm,XDn XDm - XDn 1111nnnlmml1100 1 —
8 1 FMOV XDm,DRn XDm - DRn 1111nnnOmm11100 1 —
9. 1 FMOV DRm,XDn DRm - XDn 1111nnn1lmm01100 1 —
Description

1. Thisinstruction transfers XDm contents to memory at addressindicated by Rn.
2. Thisinstruction transfers contents of memory at address indicated by Rm to XDn.

3. Thisinstruction transfers contents of memory at address indicated by Rm to XDn, and adds 8
to Rm.

4. Thisinstruction subtracts 8 from Rn, and transfers XDm contents to memory at address
indicated by resulting Rn value.

Thisinstruction transfers contents of memory at address indicated by (RO + Rm) to XDn.
Thisinstruction transfers XDm contents to memory at address indicated by (RO + Rn).
Thisinstruction transfers XDm contents to XDn.

Thisinstruction transfers XDm contents to DRn.

Thisinstruction transfers DRm contents to XDn.

© © N o o»

Rev. 5.0, 04/01, page 263 of 394
RENESAS

Operation

voi d FMOV_STORE_XD(int mn) /* FMOV XDm @Rn */
{
store_quad(XD[n>>1], R[n]);
pc += 2;
}
voi d FMOV_LOAD XD(int mn) /* FMOV @m XDn */
{
| oad_quad(R[M, XD[n>>1]);
pc += 2;
}

void FMOV_RESTORE XD(int mn) /* FMOV @m+, DBn */

{
| oad_quad(R[n, XD[n>>1]);

RnM += 8;

pc += 2;
}
voi d FMOV_SAVE_XD(int mn) /* FMOV XDm @Rn */
{

store_quad(XD[m>>1], R[n] - 8);

Rin] -=8;

pc += 2;
}
voi d FMOV_I NDEX_LQAD XD(int mn) /* FMOV @RO, Rm), XDn */
{

|l oad_quad(R[0] + R m, XD n>>1]);

pc += 2;
}
voi d FMOV_| NDEX_STORE_XD(i nt m n) /* FMOV XDm @ RO, Rn) */
{

store_quad(XD[nm>>1], R 0] + R n]);
pc += 2;

}
voi d FMOV_XDXD(i nt mn) /* FMOV XDm XDn */
{

XD n>>1] = XD me>1] ;
pc += 2;

Rev. 5.0, 04/01, page 264 of 394
RENESAS

}
void FMOV_XDDR(int mn) /* FMOV XDm DRn */

{
DR n>>1] = XD np>1];
pc += 2;
}
void FMOV_DRXD(int mn) /* FMOV DRm XDn */
{
XD[n>>1] = DR mp>1];
pc += 2;
}

Possible Exceptions:
e DataTLB miss exception

» Data protection violation exception
« Initial write exception
* Addresserror

Rev. 5.0, 04/01, page 265 of 394
RENESAS

939 FMUL Floating-point MUL tiply Floating-Point I nstruction

Floating-Point
Multiplication
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FMUL FRm,FRn FRN*FRmM - FRn 111Innnnmmm0010 1 —
1 FMUL DRm,DRn DRn*DRm - DRn 1111nnnOmMmDO0010 6 —
Description

When FPSCR.PR = 0: Arithmetically multiplies the two single-precision floating-point humbers
in FRn and FRm, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically multiplies the two double-precision floating-point numbers
in DRn and DRm, and stores the result in DRn.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information isreflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. A ppropriate processing should
therefore be performed by software.

Operation

void FMIL(int mn)
{
pc += 2;
cl ear _cause();
if((data_type_of(m) == sNaN) ||
(data_type_of (n) == sNaN)) invalid(n);
else if((data_type_of (m == gNaN) ||
(data_type_of (n) == gNaN)) qnan(n);
else if((data_type_of (m) == DENORM ||
(data_type_of (n) == DENORM) set E();
el se switch (data_type_of (m{
case NORM switch (data_type_of(n)){

case PZERC

case NZERO zero(n,sign_of (m~sign_of(n)); break;
case PINF:

case NI NF: inf(n,sign_of (mM~sign_of(n)); break;
def aul t: normal _frmul (mn); break;

Rev. 5.0, 04/01, page 266 of 394
RENESAS

} br eak;

case PZERC
case NZERO switch (data_type_of (n)){
case PI NF:
case NINF: invalid(n); break;
defaul t: zero(n, sign_of (mM~sign_of(n)); break;
} br eak;
case PINF :
case NINF : switch (data_type_of (n)){
case PZERC
case NZERO invalid(n); br eak;
def aul t: i nf(n,sign_of(mM~"sign_of(n)); break
} br eak;

}

FMUL Special Cases

FRm,DRm FRn,DRn
NORM +0 -0 +INF —INF |DENORM| ¢gNaN sNaN
NORM MUL 0 INF
+0 0 +0 -0 Invalid
-0 -0 +0
+INF INF Invalid +INF —INF
—INF —INF +INF
DENORM Error
gNaN gNaN
sNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:
* FPU error

* Invalid operation
e Overflow

* Underflow

* |nexact

Rev. 5.0, 04/01, page 267 of 394
RENESAS

940 FNEG Floating-point NEGate value Floating-Point I nstruction
Floating-Point
Sign Inversion

Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FNEG FRn -FRn - FRn 1111nnnn01001101 1 —
FNEG DRn -DRn - DRn 1111nnn001001101 1 —

Description

Thisinstruction inverts the most significant bit (sign bit) of the contents of floating-point register
FRn/DRn, and stores the result in FRn/DRn.

The cause and flag fields in FPSCR are not updated.
Operation

voi d FNEG (int n){

FRIn] = -FRIn];
pc += 2,

/* Same operation is performed regardl ess of precision. */

Possible Exceptions:
None

Rev. 5.0, 04/01, page 268 of 394
RENESAS

941 FRCHG FR-bit CHanGe Floating-Point I nstruction

FR Bit
Inversion
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FRCHG FPSCR.FR=~FPSCR.FR 1111101111111101 1 —
Description

Thisinstruction inverts the FR bit in floating-point register FPSCR. When the FR bit in FPSCR is
changed, FRO to FR15 in FPRO_BANKO to FPR15_BANKO and FPRO_BANK1 to

FPR15 BANK1 become XRO0 to XR15, and XR0 to XR15 become FRO to FR15. When
FPSCR.FR = 0, FPRO_BANKO to FPR15_BANKO correspond to FRO to FR15, and
FPRO_BANK1 to FPR15_BANK1 correspond to XR0 to XR15. When FPSCR.FR = 1,
FPRO_BANK1 to FPR15 BANK1 correspond to FRO to FR15, and FPRO_BANKO to

FPR15 _BANKO correspond to XRO0 to XR15.

Operation

void FRCHE) /* FRCHG */

{
i f(FPSCR_PR == 0){
FPSCR ~= 0x00200000; /* bit 21 */
PC += 2;
}
el se undefi ned_operation();
}

Possible Exceptions:
None

Rev. 5.0, 04/01, page 269 of 394
RENESAS

942 FSCHG Sz-bit CHanGe Floating-Point I nstruction

SZ Bit
Inversion
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FSCHG FPSCR.SZ=~FPSCR.SZ 1111001111111101 1 —
Description

Thisinstruction invertsthe SZ bit in floating-point register FPSCR. Changing the SZ bit in

FPSCR switches FMOV instruction data transfer between one single-precision data unit and a data
pair. When FPSCR.SZ = 0, the FMOV instruction transfers one single-precision data unit. When
FPSCR.SZ = 1, the FMQV instruction transfers two single-precision data units as a pair.

Operation

void FSCHX) /* FSCHG */

{
i f (FPSCR_PR == 0){
FPSCR ~= 0x00100000; /* bit 20 */
PC += 2,
}
el se undefi ned_operation();
}

Possible Exceptions:
None

Rev. 5.0, 04/01, page 270 of 394
RENESAS

943 FSQRT Floating-point SQuare RooT Floating-Point Instruction

Floating-Point
Square Root
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FSQRT FRn VFRn - FRn 1111nnnn01101101 9 —
FSQRT DRn VvDRn - DRn 1111nnnn01101101 22 —
Description

When FPSCR.PR = 0: Finds the arithmetical square root of the single-precision floating-point
number in FRn, and storesthe result in FRn.

When FPSCR.PR = 1: Finds the arithmetical square root of the double-precision floating-point
number in DRn, and stores the result in DRn.

When FPSCR.enable.l is set, an FPU exception trap is generated regardless of whether or not an
exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Operation

void FSQRT(int n){
pc += 2,
cl ear _cause();
swi tch(data_type_of (n)){

case NORM : if(sign_of(n) == 0) normal _ fsqrt(n);
el se i nval i d(n); break;

case DENORM if(sign_of(n) == 0) set_E();
el se i nval i d(n); break;

case PZERO :

case NZERO :

case PINF : br eak;

case NINF : i nval id(n); break;

case gqNaN : gnan(n); br eak;

case sNaN : i nval id(n); break;

}

void normal _fsqrt(int n)

Rev. 5.0, 04/01, page 271 of 394
RENESAS

{

uni on {
float f;
int |;
} dstf, t mpf;
uni on {
doubl e d;
int 1[2];
} dstd, t mpd;
uni on {

int double x;
int 1[4];
} t mpx;

i f(FPSCR_PR == 0) {
tmpf.f = FR[n]; /* save destination value */
dstf.f = sqrt(FR[n]); /* round toward nearest or even */
tmpd.d = dstf.f; /* convert single to double */
tnmpd.d *= dstf.f;
if(tmpf.f !'= tnpd.d) set_I();
if((tnpf.f < tnpd.d) && (SPSCR RM == 1))

dstf.l -=1; /* round toward zero */
i f(FPSCR & ENABLE |) fpu_exception_trap();
el se FR[n] = dstf.f;
} else {

tmpd.d = DR[n>>1]; /* save destination value */
dstd.d = sqrt(DR[n>>1]); /* round toward nearest or even */
t mpx. X dstd.d; /* convert double to int double */
tnpx. x *= dstd. d;
if(tnmpd.d !'= tnpx.x) set_I();
if((tnpd.d < tnpx.x) && (SPSCR RM == 1)) {
dstd.I[1] -=1; /* round toward zero */
if(dstd.I[1] == Oxffffffff) dstd.1[0] -= 1;

}
i f(FPSCR & ENABLE |) fpu_exception_trap();
el se DR[n>>1] = dstd. d;

}

Rev. 5.0, 04/01, page 272 of 394
RENESAS

FSQRT Special Cases

FRn +NORM —NORM +0 -0 +INF —INF gNaN sNaN

FSQRT(FRn) | SQRT Invalid +0 -0 +INF Invalid gNaN Invalid
Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

e FPU error
* Invalid operation
e |nexact

Rev. 5.0, 04/01, page 273 of 394
RENESAS

944 FSTS Floating-point STore

System register Floating-Point Instruction
Transfer from
System Register
Execution
Format Summary of Operation Instruction Code States T Bit
FSTS FPUL,FRn FPUL - FRn 1111nnnn00001101 1 —
Description

Thisinstruction transfers the contents of system register FPUL to floating-point register FRn.
Operation

void FSTS(int n, float *FPUL)

{
FRI n] = *FPUL;
pc += 2;

}

Possible Exceptions:
None

Rev. 5.0, 04/01, page 274 of 394
RENESAS

945 FSUB Floating-point
SUBtract Floating-Point Instruction
Floating-Point
Subtraction
PR Format Summary of Operation Instruction Code
0 FSUB FRm,FRn FRn-FRm - FRn 1111nnnnnmmmO001 1
1 FSUB DRm,DRn DRn-DRm - DRn 11121nnnOmMmD0001 6
Description

When FPSCR.PR = 0: Arithmetically subtracts the single-precision floating-point number in FRm
from the single-precision floating-point number in FRn, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically subtracts the double-precision floating-point number in
DRm from the double-precision floating-point number in DRn, and stores the result in DRn.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should

therefore be performed by software.

Operation

void FSUB (int mn)

{

pc += 2;
cl ear _cause();
if((data_type_of (m == sNaN) ||
(data_type_of (n) == sNaN)) invalid(n);
else if((data_type_of (m == gNaN) ||
(data_type_of (n) == gNaN)) qgnan(n);
else if((data_type_of (m == DENORM ||
(data_type_of (n) == DENORM) set E();
el se switch (data_type_of (m){
case NORM switch (data_type_of (n)){
case NORM nornmal _faddsub(m n, SUB); break;
case PZERC

case NZERO register_copy(mn); FR[n] = -FRn]; break;

defaul t: br eak;

Rev. 5.0, 04/01, page 275 of 394

RENESAS

} br eak;

case PZERO break;

case NZERO switch (data_type_of (n)){
case NZERO zero(n, 0); break;

defaul t: br eak;

} br eak;

case PINF: switch (data_type_of(n)){
case PINF: i nvalid(n); br eak
defaul t: inf(n,1); br eak

} br eak;

case NINF: switch (data_type_of(n)){
case NI NF: i nvalid(n); br eak
defaul t: inf(n,0); br eak

} br eak;

}

FSUB Special Cases

FRm,DRm FRn,DRN

NORM \ +0 0 +INF —INF

DENORM

gNaN

sNaN

NORM SUB +INF —INF
+0 -0

0 +0

+INF —INF Invalid

—INF +INF Invalid

DENORM

Error

gNaN

gNaN

sNaN

Invalid

Note: When DN = 1, the value of a denormalized number is treate

Possible Exceptions:
* FPU error

e Invalid operation
* Overflow

e Underflow

* Inexact

Rev. 5.0, 04/01, page 276 of 394
RENESAS

d as 0.

946 FTRC Floating-point TRuncate

and Convert to integer Floating-Point Instruction
Conversion
to Integer
Execution

PR Format Summary of Operation Instruction Code States T Bit
0 FTRC FRm,FPUL (long)FRm - FPUL 1111mm©00111101 1 —
1 FTRC DRm,FPUL (long)DRm - FPUL 1111nm©000111101 2 —
Description

When FPSCR.PR = 0: Converts the single-precision floating-point number in FRm to a 32-bit
integer, and stores the result in FPUL.

When FPSCR.PR = 1: Converts the double-precision floating-point number in FRm to a 32-bit
integer, and stores the result in FPUL.

The rounding mode is always truncation.
Operation

#define N_INT_SI NGLE_RANGE Oxcf000000 & Ox7fffffff /* -1.000000 * 2731 */
#define P_INT_SINGLE RANGE Oxdef fffff /* 1.fffffe * 2730 */

#define N_I NT_DOUBLE_RANGE Oxc1e0000000200000 & Ox7fffffffffffffff
#define P_I NT_DOUBLE RANGE 0x41e0000000000000

void FTRC(int m int *FPUL)
{
pc += 2;
cl ear _cause();
i f (FPSCR. PR==0) {
case(ftrc_single_ type_of(m){

NCORM *FPUL = FRI n; br eak;
Pl NF: ftrc_invalid(0); br eak;
NI NF: ftrc_invalid(1); break;
}
}
el se{ /* case FPSCR PR=1 */

case(ftrc_doubl e_type_of (m){

Rev. 5.0, 04/01, page 277 of 394
RENESAS

NORM *FPUL = DR np>1]; break;

Pl NF: ftrc_invalid(0); br eak;
NI NF: ftrc_invalid(1); br eak;
}
}
}
int ftrc_signle_type_of(int m
{
if(sign_of(m == 0){
i f(FR_.HEX[nj > 0x7f800000) return(N NF); /* NaN */
else i f(FR_HEX[n] > P_I NT_SI NGLE_RANGE)
return(PlNF); /* out of range, +I NF */
el se return(NORM ; /* +0, +NORM */
} else {
if((FRHEX[mM & Ox7fffffff) > N_I NT_SI NGLE_RANGE)
return(NINF); /* out of range , -+l NF, NaN*/
el se return(NORM ; /* -0, - NORM */
}
}
int ftrc_double_type_of (int m
{
if(sign of(m == 0){
i f((FR_HEX[n] > 0x7ff00000) ||
((FR_HEX[M == 0x7ff00000) &&
(FR_HEX[m+1] !'= 0x00000000))) return(N NF); /* NaN */
el se i f(DR_HEX[m>>1] >= P_I NT_DOUBLE_RANCGE)
return(Pl NF); /* out of range, +I NF */
el se return(NORM ; /* +0, +NORM */
} else {
i f((DR.HEX[m>>1] & Ox7fffffffffffffff) >= N_|I NT_DOUBLE RANGE)
return(NI NF); /* out of range , +I NF, NaN*/
el se return(NORM ; /* -0, - NORM */
}
}
void ftrc_invalid(int sign, int *FPUL)
{
set _V();

Rev. 5.0, 04/01, page 278 of 394
RENESAS

i f ((FPSCR & ENABLE V) == 0){
if(sign == 0) * FPUL
el se * FPUL

Ox7fffffff;
0x80000000;

}

el se fpu_exception_trap();

}

FTRC Special Cases

Positive | Negative
Outof | Out of

FRn,DRN NORM +0 -0 Range | Range +INF —INF gNaN sNaN
FTRC TRC 0 0 Invalid Invalid Invalid Invalid Invalid Invalid
(FRn,DRn) +MAX —MAX +MAX —MAX —MAX —MAX

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:
* Invalid operation

Rev. 5.0, 04/01, page 279 of 394
RENESAS

947 FTRV Floating-point

TRansform Vector Floating-Point Instruction
Vector
Transformation
Execution
PR Format Summary of Operation Instruction Code States T Bit

0 FTRV XMTRX,FVn XMTRX*FVn - FVn 1111nn0111111101 4 —

1 — — — — —

Description

When FPSCR.PR = 0: This instruction takes the contents of floating-point registers XF0 to XF15

indicated by XMTRX asa4-row x 4-column matrix, takes the contents of floating-point registers
FR[N] to FR[n + 3] indicated by FVn as a4-dimensional vector, multiplies the array by the vector,
and storesthe resultsin FV[n].

XMTRX FVn FVn
XF[O] XF[4] XF[8 XF[12] FR[n] FR[n]
XF[1] XF5 XF9 XF13] | x | FRIn+1] | - | FR[n+1]
XF[2] XF[6] XF10] XF[14] FR[N+2] FR[N+2]
XF[3] XF[7] XF11] XF[15] FR[N+3] FR[N+3]

The FTRV ingtruction isintended for speed rather than accuracy, and therefore the results will
differ from those obtained by using a combination of FADD and FMUL instructions. The FTRV
execution sequenceis asfollows:

Multiplies all terms. The results are 28 hits long.
Aligns these results, rounding them to fit within 30 bits.
Adds the aligned values.

Performs normalization and rounding.

A w DN

Special processing is performed in the following cases:

1. If aninput valueisan sNaN, an invalid exception is generated.

2. If the input values to be multiplied include a combination of 0 and infinity, an invalid
operation exception is generated.

3. In cases other than the above, if the input values include a gNaN, the result will be a gNaN.

4. In cases other than the above, if the input valuesinclude infinity:

a If multiplication resultsin two or more infinities and the signs are different, an invalid
exception will be generated.

b. Otherwise, correct infinities will be stored.

Rev. 5.0, 04/01, page 280 of 394
RENESAS

5. If theinput values do not include an sNaN, gNaN, or infinity, processing is performed in the
normal way.

When FPSCR.enable.V/O/U/I is set, an FPU exception trap is generated regardless of whether or
not an exception has occurred. When an exception occurs, correct exception information is
reflected in FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate
processing should therefore be performed by software.

Operation

void FTRV (int n) /[* FTRV Fvn */

{

float saved_vec[4],result_vec[4];

int saved_f pscr;
int dst,i;
i f(FPSCR PR == 0) {

}

PC += 2;

cl ear _cause();

saved_fpscr = FPSCR

FPSCR &= ~ENABLE VOUI; /* mask VOUl enable */

dst = 12 - n; /* select other vector than Fvn */
for(i=0;i<4;i++)saved_vec [i] = FR{dst+i];
for(i=0;i<4;i++){

for(j=0;j<4;j++) FRIdst+j] = XF[i+4j];
fipr(n,dst);

saved_f pscr | = FPSCR & (CAUSE| FLAG
result_vec [i] = FR dst+3];

}

for(i=0;i<4;i++)FR dst+i] = saved_vec [i];

FPSCR = saved_f pscr;

i f (FPSCR & ENABLE_VQUI') fpu_exception_trap();

el se for(i=0;i<4;i++) FRIn+i] = result _vec [i];

el se undefined_operation();

Rev. 5.0, 04/01, page 281 of 394
RENESAS

Possible Exceptions:
e Invalid operation

* Overflow
e Underflow
¢ |nexact

Rev. 5.0, 04/01, page 282 of 394
RENESAS

948 JMP JuMP Branch Instruction

Unconditional Branch Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
JMP @Rn Rn - PC 0100nnnn00101011 2 —
Description

Unconditionally makes a delayed branch to the address specified by Rn.
Notes

Asthisisadelayed branch instruction, the instruction following thisinstruction is executed before
the branch destination instruction.

Interrupts are not accepted between thisinstruction and the following instruction. If the following
instruction is a branch instruction, it isidentified asa dot illegal instruction.

Operation

JMP(int n)/* JVWP @n */

{
unsi gned int tenp;
t enp=PC;
PC=R[n] ;
Del ay_Sl ot (t enp+2) ;
}
Example
MOV. L JMP_TABLE, RO ; RO = TRGET address
JIMP @ro : Branch to TRGET.
MoV RO, R1 ; MOV executed before branch.
.align 4
JMP_TABLE: .data.l TRGET ; Jump table
TRCET: ADD #1, Rl ; « Branch destination

Rev. 5.0, 04/01, page 283 of 394
RENESAS

949 JSR Jump to SubRoutine Branch Instruction

Branch to Subroutine Procedure Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
JSR @Rn PC+4 - PR,Rn - PC 0100nnnn00001011 2 —
Description

Thisinstruction makes a delayed branch to the subroutine procedure at the specified address after
execution of the following instruction. Return address (PC + 4) issaved in PR, and abranch is
made to the address indicated by general register Rn. JSR is used in combination with RTS for
subroutine procedure calls.

Notes

Asthisisadelayed branch instruction, the instruction following thisinstruction is executed before
the branch destination instruction.

Interrupts are not accepted between thisinstruction and the following instruction. If the following
instruction is a branch instruction, it isidentified asa dot illegal instruction.

Operation

JSR(int n)/* JSR @n */

{
unsi gned int tenp;
t enp=PC;
PR=PC+4;
PC=R[n] ;
Del ay_Sl ot (t enp+2) ;
}

Rev. 5.0, 04/01, page 284 of 394
RENESAS

Example

MOV. L JSR TABLE, RO ; RO=TRGET address
JSR @ro : Branch to TRGET.
XOR R1, Rl ; XOR executed before branch.
ADD RO, RL ; « Procedure return destination (PR contents)
align 4
JSR TABLE: .data.l TRCGET ; Jump table
TRGET: NOP ; « Entry to procedure
MOV R2, R3 ;
RTS ; Return to above ADD instruction.
MoV #70, R1 ; MOV executed before RTS.

Rev. 5.0, 04/01, page 285 of 394
RENESAS

950 LDC LoaD to Control register ~ System Control Instruction

Load to Control
Register (Privileged Instruction)
Execution

Format Summary of Operation Instruction Code States T Bit
LDC Rm, SR Rm - SR 0100mmMmD0001110 4 LSB
LDC Rm, GBR Rm - GBR 0100mMmM®D0011110 3 —
LDC Rm, VBR Rm - VBR 0100mMmm®D0101110 1 —
LDC Rm, SSR Rm - SSR 0100mMmm®D0111110 1 —
LDC Rm, SPC Rm - SPC 0100mMmM®D1001110 1

LDC Rm, DBR Rm - DBR 0100mMmm11111010 1 —
LDC Rm, RO_BANK Rm - RO_BANK 0100mMmm10001110 1 —
LDC Rm, R1_BANK Rm - R1_BANK 0100mM0011110 1 —
LDC Rm, R2_BANK Rm - R2_BANK 0100mMmm10101110 1 —
LDC Rm, R3_BANK Rm - R3_BANK 0100mMmm10111110 1 —
LDC Rm, R4_BANK Rm - R4_BANK 0100mMM11001110 1 —
LDC Rm, R5_BANK Rm - R5_BANK 0100mMmm11011110 1 —
LDC Rm, R6_BANK Rm - R6_BANK 0100mMmm11101110 1 —
LDC Rm, R7_BANK Rm - R7_BANK 0100mMM11111110 1 —
LDC.L @Rm+, SR (Rm) - SR, Rm+4 - Rm 0100mmm®D0000111 4 LSB
LDC.L @Rm+, GBR (Rm) - GBR, Rm+4 - Rm 0100mMmm®D0010111 3 —
LDC.L @Rm+, VBR (Rm) - VBR, Rm+4 - Rm 0100mMmM®D0100111 1 —
LDC.L @Rm+, SSR (Rm) - SSR, Rm+4 - Rm 0100mMmm®D0110111 1 —
LDC.L @Rm+, SPC (Rm) - SPC, Rm+4 . Rm 0100mMmm®D1000111 1 —
LDC.L @Rm+, DBR (Rm) - DBR, Rm+4 - Rm 0100mM1L1110110 1 —
LDC.L @Rm+, RO_BANK (Rm) - RO_BANK, Rm+4 . Rm 0100mmm10000111 1 —
LDC.L @Rm+, R1_BANK (Rm) - R1_BANK, Rm+4 . Rm 0100mmm10010111 1 —
LDC.L @Rm+, R2_BANK (Rm) - R2_BANK, Rm+4 —~ Rm 0100mmml0100111 1 —
LDC.L @Rm+, R3_BANK (Rm) - R3_BANK, Rm+4 . Rm 0100mmm10110111 1 —
LDC.L @Rm+, R4_BANK (Rm) - R4_BANK, Rm+4 . Rm 0100mmm11000111 1 —
LDC.L @Rm+, R5_BANK (Rm) - R5_BANK, Rm+4 -~ Rm 0100mmml1010111 1 —
LDC.L @Rm+, R6_BANK (Rm) - R6_BANK, Rm+4 . Rm 0100mmm11100111 1 —
LDC.L @Rm+, R7_BANK (Rm) - R7_BANK, Rm+4 . Rm 0100mmm11110111 1 —

Description

These instructions store the source operand in the control register SR, GBR, VBR, SSR, SPC,
DBR, or RO_BANK to R7_BANK.

Rev. 5.0, 04/01, page 286 of 394
RENESAS

Notes

With the exception of LDC Rm,GBR and LDC.L @Rm+,GBR, the LDC/LDC.L instructions are
privileged instructions and can only be used in privileged mode. Use in user mode will cause an
illegal instruction exception. However, LDC Rm,GBR and LDC.L @Rm+,GBR can also be used
in user mode.

With the LDC Rm, Rn_BANK and LDC.L @Rm, Rn_BANK instructions, Rn_BANKO is
accessed when the RB hit in the SR register is 1, and Rn_BANK1 is accessed when this bit is 0.

Operation

LDCSR(i nt m /* LDC Rm SR : Privileged */
{

SR=R[n] &0x700083F3;

PC+=2;

LDCGBR(i nt m /* LDC Rm GBR */
{

GBR=R[N ;

PC+=2;

LDCVBR(i nt m /* LDC Rm VBR : Privileged */
{

VBR=R[1 ;

PC+=2;

LDCSSR(i nt m /* LDC Rm SSR : Privileged */
{

SSR=R[n{,

PC+=2;

LDCSPC(i nt m) /* LDC Rm SPC : Privileged */

{
SPC=R[] ;

Rev. 5.0, 04/01, page 287 of 394
RENESAS

PC+=2;

LDCDBR(i nt m /* LDC RmDBR : Privileged */
{

DBR=R[] ;

PC+=2;

LDCRn_BANK(int m) /* LDC RmRn_BANK : Privileged */

[* n=0-7 */

{

Rn_BANK=R[n ;

PC+=2;
}
LDCVSR(i nt m /* LDC.L @m+, SR : Privileged */
{

SR=Read_Long(R m) &x700083F3;

Rl +=4;

PC+=2;
}
LDCMGBR(i nt m) /* LDC. L @m+, GBR */
{

GBR=Read_Long(R M) ;

R +=4;

PC+=2;
}
LDCWBR(i nt m /* LDC.L @mt+, VBR : Privileged */
{

VBR=Read_Long(R[n1);

R +=4;

PC+=2;
}

Rev. 5.0, 04/01, page 288 of 394
RENESAS

LDCVSSR(i nt m
{
SSR=Read_Long(R M) ;
R +=4;
PC+=2;

LDCVSPC(i nt m
{
SPC=Read_Long(R[) ;
R M +=4;
PC+=2;

LDCVDBR(i nt m)
{
DBR=Read_Long(R mM) ;
R +=4;
PC+=2;

/* LDC.L @rmt, SSR :

/* LDC.L @mt, SPC :

/* LDC.L @mmt, DBR :

Privileged */

Privileged */

Privileged */

LDCVRn_BANK(Long m) /* LDC.L @m+ Rn_BANK : Privileged */

1* n=0-7 */
{
Rn_BANK=Read_Long(R[nj);
R nj +=4;
PC+=2;
}

Possible Exceptions:

General illegal instruction exception
Illegal dot instruction exception

Data TLB miss exception

Data TLB protection violation exception
Address error

RENESAS

Rev. 5.0, 04/01, page 289 of 394

951 LDS LoaD to FPU System

register System Control Instruction
Load to FPU
System Register
Execution

Format Summary of Operation Instruction Code States T Bit
LDS Rm,FPUL Rm - FPUL 0100mMmmMmMD1011010 1 —
LDS.L. @Rm+,FPUL (Rm) - FPUL, Rm+4 -~ Rm 0100mmm01010110 1 —
LDS Rm,FPSCR Rm - FPSCR 0100mMmmMmD1101010 1 —
LDS.L @Rm+,FPSCR (Rm) - FPSCR, Rm+4 -~ Rm 0100mmm01100110 1 —

Description
This instruction loads the source operand into FPU system registers FPUL and FPSCR.
Operation

#defi ne FPSCR_MASK OxO003FFFFF

LDSFPUL(int m int *FPUL) /* LDS Rm FPUL */
{
*FPUL=R] nj ;
PC+=2;
}
LDSMFPUL(int m int *FPUL) /* LDS.L @m+, FPUL */
{
*FPUL=Read_Long(R[M);
R +=4;
PC+=2;
}
LDSFPSCR(int m /* LDS Rm FPSCR */
{
FPSCR=R[n] & FPSCR_MASK;
PC+=2;
}
LDSMFPSCR(i nt m) /* LDS.L @m+, FPSCR */

{
FPSCR=Read_Long(R[n]) & FPSCR_NMASK;

Rev. 5.0, 04/01, page 290 of 394
RENESAS

R i +=4;
PC+=2;

}

Possible Exceptions:
e DataTLB miss exception

» Data access protection exception
* Addresserror

Rev. 5.0, 04/01, page 291 of 394
RENESAS

952 LDS L oaD to System register System Control Instruction

Load to System

Register

Execution

Format Summary of Operation Instruction Code States T Bit
LDS Rm,MACH Rm - MACH 0100mMmmmMO00001010 1 —
LDS Rm,MACL Rm - MACL 0100mMmmmM00011010 1 —
LDS Rm,PR Rm- PR 0100mmmMO00101010 2 —
LDS.L @Rm+,MACH (Rm) - MACH, Rm+4 - Rm 0100nmmm00000110 1 —
LDS.L @Rm+MACL (Rm) - MACL,Rm +4 - Rm 0100nmmmm00010110 1 —
LDS.L @Rm+,PR (Rm) - PR,Rm+4 - Rm 0100mMmmmM00100110 2 —

Description

Stores the source operand into the system registers MACH, MACL, or PR.

Operation

LDSMACH(i nt m)
{
MACH=R[n] ;
PC+=2;

LDSMACL(i nt)
{

MACL=R[n] ;
PC+=2;

}

LDSPR(i nt m

{
PR=R{] ;
PC+=2,

}

LDSMVACH(i nt)
{

/* LDS Rm MACH */

/*

LDS Rm MACL */

/* LDS Rm PR */

/* LDS.L @m+, MACH */

Rev. 5.0, 04/01, page 292 of 394

RENESAS

MACH=Read_Long(R[i) ;
Rl n +=4;
PC+=2;

LDSMVACL(i nt m)

{
MACL=Read_Long(R[M) ;
R M +=4;
PC+=2;

}

LDSMPR(i nt m)

{
PR=Read_Long(R[nl);
Rl nj +=4;
PC+=2;
}
Example
LDS RO, PR ; Before execution
; After execution
LDS. L @R15+, MACL ; Before execution

. After execution

/* LDS.L @mt, PR */

/* LDS.L @m+, MACL */

RO = H'12345678, PR = H'00000000
PR = H'12345678

R15 = H'10000000

R15 = H'10000004, MACL = (H'10000000)

Rev. 5.0, 04/01, page 293 of 394

RENESAS

953 LDTLB LoaD PTEH/PTEL/PTEA

toTLB System Control Instruction
Loadto TLB (Privileged Instruction)
Execution
Format Summary of Operation Instruction Code States T Bit
LDTLB PTEH/PTEL/PTEA -~ TLB 0000000000111000 1 —

Description

Thisinstruction loads the contents of the PTEH/PTEL/PTEA registersinto the TLB (trandation
lookaside buffer) specified by MMUCR.URC (random counter field in the MMC control register).

LDTLB isaprivileged instruction, and can only be used in privileged mode. Use of this
instruction in user mode will cause an illegal instruction exception.

Notes

Asthisinstruction loads the contents of the PTEH/PTEL/PTEA registersinto a TLB, it should be
used either with the MMU disabled, or in the P1 or P2 virtual space with the MMU enabled (see
section 3, Memory Management Unit, for details). After thisinstruction isissued, there must be at
least one instruction between the LDTLB instruction and issuance of an instruction relating to
addressto areas PO, UO, and P3 (i.e. BRAF, BSRF, IMP, JSR, RTS, or RTE).

Rev. 5.0, 04/01, page 294 of 394
RENESAS

Operation

LDTLB() /*LDTLB */

{
TLB[MMUCR. URC] . ASI D=PTEH & 0x000000FF;
TLB[MMUCR. URC] .VPN=(PTEH & OxFFFFFC00) >>10;
TLB[MMUCR. URC] .PPN=(PTEH & O0x1FFFFC00) >>10;
TLB[MMUCR. URC] .SZ=(PTEL & 0x00000080)>>6 |
(PTEL & 0x00000010) >>4;
TLB[MMUCR. URC] . SH=(PTEH & 0x00000002) >>1;
TLB[MMUCR. URC] .PR=(PTEH & 0x00000060) >>5;
TLB[MMUCR. URC] .W=(PTEH & 0x00000001);
TLB[MMUCR. URC] . C=(PTEH & 0x00000008) >>3;
TLB[MMUCR. URC] . D=(PTEH & 0x00000004) >>2;
TLB[MMUCR. URC] .V=(PTEH & 0x00000100) >>8;
TLB[MMUCR. URC] . SA=(PTEA & 0x00000007);
TLB[MMUCR. URC] . TC=(PTEA & 0x00000008) >>3;
PC+=2;
}
Example
MOV @RO, R1 ; Load page table entry (upper) into R1
MV Rl @2 ; Load R1 into PTEH; R2 is PTEH address (H'FFO00000)
LDTLB ; Load PTEH, PTEL, PTEA registersinto TLB

Rev. 5.0, 04/01, page 295 of 394
RENESAS

954 MAC.L Multiply and ACcumulate

Long Arithmetic Instruction
Double-Precision
Multiply-and-Accumul ate

Operation
Execution
Format Summary of Operation Instruction Code States T Bit
MAC.L @Rm+,@Rn+ Signed, 0000nnnnnmMMM1L111 2-5 —
(Rn) x (Rm) + MAC - MAC
Rn+4 - Rn,Rm+4 - Rm
Description

Thisinstruction performs signed multiplication of the 32-bit operands whose addresses are the
contents of general registers Rm and Rn, adds the 64-bit result to the MAC register contents, and
stores the result in the MAC register. Operands Rm and Rn are each incremented by 4 each time
they are read.

If the Shitis 0, the 64-bit result is stored in the linked MACH and MACL registers.

If the Shitis 1, the addition to the MAC register contents is a saturation operation at the 48th bit
from the LSB. In a saturation operation, only the lower 48 bits of the MAC register are valid, and
the result range is limited to H'FFFF800000000000 (minimum value) to H'00007FFFFFFFFFFF
(maximum value).

Operation

MACL(l ong m long n) /* MAC. L @+, @Rn+ */

{
unsi gned | ong RnL, RnH, RnL, RnH, ResO0, Res1, Res2;
unsi gned | ong tenpO0, tenpl, tenp2,tenp3;
| ong tenpmtenpn, f nLni;

tenmpn=(1| ong) Read_Long(R[n]);
Rl n] +=4;
tenmpn=(| ong) Read_Long(R[M) ;
R M +=4;

if ((long)(tenpn™tenpn)<0) fnLmi=-1,;
el se fnLnL=0;

Rev. 5.0, 04/01, page 296 of 394
RENESAS

if (tenpn<0) tenpn=0-tenpn;
if (tenpnx0) tenpm=0-tenpm

tenpl=(unsi gned | ong)tenpn;
tenp2=(unsi gned | ong)tenpm

RnL=t enp1&0x0000FFFF;
RnH=(t enp1>>16) &0X0000FFFF;
RrL=t enp2&0x0000FFFF;

RH=(t enp2>>16) &0X0000FFFF;
t enpO=RL* RnL;

t enpl=RrH RnL;

t enmp2=RnL* RnH;

t enp3=RH* RnH;

Res2=0;

Resl=t enpl+t enp2;
if (Resl<tenpl) Res2+=0x00010000;

templ=(Res1<<16) &0xFFFF000O0;
ResO=t enpO+t enp1l;
i f (ResO<tenp0) Res2++;

Res2=Res2+((Res1>>16) &0x0000FFFF) +t enp3;

i f(fnLnl<0){
Res2="Res2;
i f (Res0==0) Res2++;
el se Res0=(Res0) +1;
}
i f(S==1){
ResO0=MACL+ResO0;
if (MACL>Res0) Res2++;
i f (MACH&0x00008000) ;
el se Res2+=MACH OxFFFF000O;

RENESAS

Rev. 5.0, 04/01, page 297 of 394

Res2+=NMACH&0x00007FFF;

i f (((1 ong) Res2<0) &&(Res2<0xFFFF8000)) {
Res2=0xFFFF8000;
Res0=0x00000000;

}

i £ (((1 ong) Res2>0) && Res2>0x00007FFF)) {
Res2=0x00007FFF;
Res0=0x FFFFFFFF;

MACH=(Res2&0x0000FFFF) | (MACH&OX FFFF0000) ;

MACL=ResO;
}
el se {
Res0=MACL+ResO0;
i f (MACL>ResO) Res2++;
Res2+=MACH;
MACH=Res2;
MACL=ResO;
}
PC+=2;
}

Rev. 5.0, 04/01, page 298 of 394
RENESAS

Example

MOVA TBLM RO ; Get table address

MOV RO, R1 ;

MOVA TBLN, RO ; Get table address
CLRMAC ; MAC register initialization

MAC. L @R0+, @R1+ :
MAC. L @0+, @1+ ;
STS MACL, RO ; Get result in RO

.align 2 :
TBLM .data.l H 1234ABCD

.data.l H 5678EF01 ;
TBLN .data.l H 0123ABCD

.data.l H 4567DEFO ;

Rev. 5.0, 04/01, page 299 of 394
RENESAS

955 MAC.W Multiply and
ACcumulate Word Arithmetic Instruction
Single-Precision
Multiply-and-Accumulate

Operation
Execution
Format Summary of Operation Instruction Code States T Bit
MAC.W @Rm+,@Rn+ Signed, 0100nnnnnmmmil111 2-5 —

MAC @Rm+ @Rn+ (Rn) x (Rm) + MAC - MAC
Rn+2 - Rn,Rm+2 - Rm

Description

Thisinstruction performs signed multiplication of the 16-bit operands whose addresses are the
contents of general registers Rm and Rn, adds the 32-bit result to the MAC register contents, and
stores the result in the MAC register. Operands Rm and Rn are each incremented by 2 each time
they are read.

If the Shitis0,al16 x 16 + 64 — 64-bit multiply-and-accumulate operation is performed, and the
64-bit result is stored in the linked MACH and MACL registers.

If theShitis1,al6 x 16 + 32 - 32-bit multiply-and-accumulate operation is performed, and the
addition to the MAC register contents is a saturation operation. In a saturation operation, only the
MACL register isvalid, and the result rangeis limited to H'80000000 (minimum value) to
H'7FFFFFFF (maximum value). If overflow occurs, the LSB of the MACH register isset to 1.
H'80000000 (minimum value) is stored in the MACL register if the result overflowsin the
negative direction, and H'7FFFFFFF (maximum value) is stored if the result overflowsin the
positive direction

Notes

If the Shitis0,al6 x 16 + 64 — 64-bit multiply-and-accumulate operation is performed.

Rev. 5.0, 04/01, page 300 of 394
RENESAS

Operation

MACW I ong m |ong n) /* MAC. W @mt+, @Rn+ */
{
| ong tenpm tenpn, dest, src, ans;
unsi gned | ong tenpl;
tempn=(1 ong) Read_Word(R[n]);
R n] +=2;
tempn=(| ong) Read_Word(R[m) ;
RIm +=2;
tenmpl =MACL;
tempnm=((I ong) (short)tenpn*(l ong) (short)tenpm;
if ((long) MVACL>=0) dest =0;
el se dest =1,
if ((long)tenpnr=0) {
src=0;
t empn=0;
}
el se {
src=1;
t enpn=0xFFFFFFFF;
}
src+=dest ;
MACL+=t enrpm
if ((long) MACL>=0) ans=0;
el se ans=1;
ans+=dest ;
if (S==1) {
if (ans==1) {
i f (src==0) MACL=0x7FFFFFFF;
if (src==2) MACL=0x80000000;

}
}
el se {

MACH+=t enpn;

if (tenpl >MACL) MACH+=1;
}

Rev. 5.0, 04/01, page 301 of 394
RENESAS

PC+=2;

}
Example
MOVA TBLM RO ; Get table address
MOV RO, R1 ;
MOVA TBLN, RO ; Get table address
CLRMAC ; MAC register initialization
MAC. W @0+, @1+ ;
MAC. W @R+, @RL+
STS MACL, RO ; Get result in RO
align 2 ;

TBLM .data.w H 1234
.data.w H 5678 ;

TBLN .data.w H 0123
.data.w H 4567 ;

Rev. 5.0, 04/01, page 302 of 394
RENESAS

956 MOV MOVedata Data Transfer Instruction
Data Transfer
Execution
Format Summary of Operation Instruction Code States T Bit
MOV Rm,Rn Rm - Rn 0110nnnnmmmD011 1 —
MOV.B Rm,@Rn Rm - (Rn) 0010nnnnmmmD000 1 —
MOV.W Rm,@Rn Rm - (Rn) 0010nnnnmmmD001 1 —
MOV.L Rm,@Rn Rm - (Rn) 0010nnnnmmmD010 1 —
MOV.B @Rm,Rn (Rm) sign extension Rn 0110nnnnmmmODO000 1 —
MOV.W @Rm,Rn (Rm) sign extension Rn 0110nnnnmmmD001 1 —
MOV.L @Rm,Rn (Rm) - Rn 0110nnnnmmm®O010 1 —
MOV.B Rm,@-Rn Rn-1 -~ Rn,Rm - (Rn) 0010nnnnmmmD100 1 —
MOV.W Rm,@-Rn Rn-2 -~ Rn, Rm - (Rn) 0010nnnnmmmD101 1 —
MOV.L Rm,@-Rn Rn-4 - Rn, Rm - (Rn) 0010nnnnmmmO110 1 —
MOV.B @Rm+,Rn (Rm) sign extension Rn, 0110nnnnmmm®OD100 1 —
Rm+1 - Rm
MOV.W @Rm+,Rn (Rm) sign extension Rn, 0110nnnnmmmD101 1 —
Rm+2 - Rm
MOV.L @Rm+,Rn (Rm) - Rn, Rm+4 — Rm 0110nnnnmmmOD110 1 —
MOV.B Rm,@(RO,Rn) Rm - (RO+Rn) 0000nnNnNNMMO100 1 —
MOV.W Rm,@(RO,Rn) Rm - (RO+Rn) 0000nnNNmMMMOD101 1 —
MOV.L Rm,@(RO,Rn) Rm - (RO+Rn) 0000nnNNmMMO110 1 —
MOV.B @(R0O,Rm),Rn (RO+Rm) sign extension Rn 0000nnnnnmmm1.100 1 —
MOV.W @(RO,Rm),Rn (RO+Rm) sign extension Rn 0000nnnnnmmm1101 1 —
MOV.L @(RO,Rm),Rn (RO+Rm) - Rn 0000nnnnmMmMMIL110 1 —

Description

Thisinstruction transfers the source operand to the destination. When an operand is memory, the
data size can be specified as byte, word, or longword. When the source operand is memory, the
loaded data is sign-extended to longword before being stored in the register.

Rev. 5.0, 04/01, page 303 of 394
RENESAS

Operation

MOV(Ilong m |ong n) /* MOV RmRn */
{

RIn]=Rn;

PC+=2;

MOVBS(long m long n) /* MOV.B Rm @n */
{

Wite Byte(RIn],Rn);

PC+=2;

MOWS(long m long n) /* MOW. WRm @n */
{

Wite Wrd(Rn],Rn);
PC+=2;

MOVLS(long m long n) /* MOW.L Rm @un */
{

Wite_Long(Rn],R n);
PC+=2;

MOVBL(long m long n) /* MOW.B @m Rn */
{
R n] =(1 ong) Read_Byte(R[n) ;
i f ((R[n] &x80)==0) R[n] &0x000000FF;
el se R[n] | =0xFFFFFFOO;
PC+=2;

MOWAL(long m long n) /* MOWV.W@mRn */
{

R[n] =(1 ong) Read_Word(R[i) ;

if ((Rn] &0x8000)==0) R[n] & 0x0000FFFF;

Rev. 5.0, 04/01, page 304 of 394
RENESAS

el se R[n]| =0xFFFF000O;
PC+=2;

MOVLL(long m long n) /* MOW.L @mRn */
}

R{n] =Read_Long(R(M) ;
PC+=2;

MOVBMlong m long n) /* MOW.B Rm @Rn */
{

Wite_Byte(RIn]-1,R[nl);

R n]-=1;

PC+=2;

MWW long m long n) /* MV.WRm @Rn */
{

Wite Wrd(R[n]-2,Rn);

R n]-=2;

PC+=2;

MWVLM 1 ong m |ong n) /* MOV.L Rm @Rn */
{

Wite_Long(R[n]-4,Rn);

R n] - =4;

PC+=2;

MOVBP(long m long n) /* MOV.B @m+, Rn */
{
R[n] =(1 ong) Read_Byte(R[n);
i f ((R[n] &x80)==0) R[n] &0x000000FF;
el se R n] | =OxFFFFFFOO;
if (n'=m R[nj+=1;

RENESAS

Rev. 5.0, 04/01, page 305 of 394

PC+=2;

}
MOWWP(1 ong m | ong n) /[* MOV. W @nmt, Rn */
{
R n] =(1 ong) Read_Word(R[n) ;
i f ((R[n]&x8000)==0) R[n]&=0x0000FFFF;
el se R[n] | =0xFFFF000O;
if (nt=m RN +=2;
PC+=2;
}

MOVLP(l ong m |ong n) /* MOV.L @m+, Rn */
{

R[n] =Read_Long(R[n]);

if (n'=m R[nj+=4;

PC+=2;

MOVBSO(long m long n) /* M. B Rm @ RO, Rn)
{

Wite Byte(Rn]+R[0], Rn);

PC+=2;

MOWA0(long m long n) /* MOV. WRm @ RO, Rn)
{

Wite Wrd(Rin]+R[0], R nj);

PC+=2;

MOWVLSO(long m long n) /* MOV.L Rm @RO, Rn)
{

Wite_Long(R[n]+R[0], R mM);

PC+=2;

MOVBLO(long m long n) /* MOWV.B @RO, R, Rn

Rev. 5.0, 04/01, page 306 of 394
RENESAS

*/

*/

*/

*/

R n] =(I ong) Read_Byt e(R[n] +R[0]) ;
i f ((R[n] &x80)==0) R[n] &0x000000FF;
el se R[n] | =0xFFFFFFOO;

PC+=2;

MOWALO(I ong m | ong n)

{

/* MOV. W @RO, Ry, Rn */

R n] =(| ong) Read_Wor d(R[n] +R[0]) ;
if ((R n]&0x8000)==0) R n]&=0x0000FFFF;
el se R[n] | =0xFFFF0000;

PC+=2;

MOVLLO(l ong m 1ong n)

/* MOV.L @RO, R, Rn */

{
Rl n] =Read_Long(R n{ +R{ 0]) ;
PC+=2;
}
Example
MoV RO, R1

MOV, W RO, @1

MOV. B @0, RL

MOV. W RO, @R1

MOV. L @0+, Rl

MOV. B Rl, @RO, R2)

MOV. W @R0, R2), RL

; Before execution
; After execution
; Before execution
; After execution
; Before execution
; After execution
; Before execution
; After execution
; Before execution
; After execution
; Before execution
; After execution
; Before execution
; After execution

RO = H'FFFFFFFF, R1 = H'00000000
R1 = H'FFFFFFFF

RO = H'FFFF7F80

(R1) = H'7F80

(RO) = H'80, R1 = H'00000000

R1 = H'FFFFFF80

RO = H'AAAAAAAA, (R1) = HFFFF7F80
R1=H'FFFF7F7E, (R1) = HAAAA

RO = H'12345670

RO = H'12345674, R1 = (H'12345670)

R2 = H'00000004, RO = H'10000000

R1 = (H'10000004)

R2 = H'00000004, RO = H'10000000

R1 = (H'10000004)

Rev. 5.0, 04/01, page 307 of 394

RENESAS

957 MOV MOVe constant value Data Transfer I nstruction

Immediate Data
Transfer
Execution
Format Summary of Operation Instruction Code States T Bit
MOV #imm,Rn imm sign extension Rn 1110nnnniiiiiiii 1 —
MOV.W @(disp,PC),Rn (dispx2+PC+4) - sign 1001nnnndddddddd 1 —
extension Rn

MOV.L @(disp,PC),Rn (dispx4+PC+4) - Rn 1101nnnndddddddd 1 —
Description

Thisinstruction stores immediate data, sign-extended to longword, in general register Rn. In the
case of word or longword data, the data is stored from memory address (PC + 4 + displacement x
2) or (PC + 4 + displacement x 4).

With word data, the 8-bit displacement is multiplied by two after zero-extension, and so the
relative distance from the tableis in the range up to PC + 4 + 510 bytes. The PC value is the
address of thisinstruction.

With longword data, the 8-bit displacement is multiplied by four after zero-extension, and so the
relative distance from the operand isin the range up to PC + 4 + 1020 bytes. The PC value isthe
address of thisinstruction. A value with the lower 2 bits adjusted to B'00 is used in address
calculation.

Notes

If aPC-relative load instruction is executed in adelay slot, anillegal slot instruction exception will
be generated.

Rev. 5.0, 04/01, page 308 of 394
RENESAS

Operation

MM (int i, int n) /* MOV #inmmRn */

{
if ((i&x80)==0) R n]=(0x000000FF & i);
el se R n] =(OxFFFFFFOO | i);
PC+=2;

MOW (d, n) /* MOV.W @disp, PC), Rn */
{

unsi gned int disp;

di sp=(unsi gned i nt)(0x000000FF & d);

R[n] =(i nt) Read_Wor d(PC+4+(di sp<<1));

i f ((R[n] &x8000) ==0) R[n] &0x0000FFFF;
el se R n]| =0xFFFF0000;

PC+=2;

MOVLI (int d, int n)/* MOV.L @disp, PC),Rn */

unsi gned int disp;

di sp=(unsi gned int)(0x000000FF & (int)d);

R[n] =Read_Long((PC&OXxFFFFFFFC) +4+(di sp<<2));
PC+=2;

Rev. 5.0, 04/01, page 309 of 394
RENESAS

Example

Addr ess

1000
1002
1004
1006
1008
100A
100C
100E
1010
1012
1014

1018
101C

NEXT

MOV. W
ADD
TST
MOV. L
BRA

.data.w
.data.w
JWP

CVP/ EQ
.align
.data.l
.data.l

#H 80, R1

I MM R2

1, RO

RO, RO
@3,PC, R3
NEXT

H 9ABC

H 1234

a3

#0, RO

4

H 12345678
H 9ABCDEFO

Rev. 5.0, 04/01, page 310 of 394

R1 = H'FFFFFF80
R2 = HFFFFOABC IMM means (PC + 4 + H'08)

R3 = H'12345678
Delayed branch instruction

; BRA branch instruction

RENESAS

958 MOV MOVeglobal data Data Transfer Instruction

Globa Data
Transfer
Execution
Format Summary of Operation Instruction Code States T Bit
MOV.B @(disp,GBR),R0 (disp+GBR) - sign 11000100dddddddd 1 —

extension RO

MOV.W @(disp,GBR), RO (dispx2+GBR) - sign 11000101dddddddd 1 —
extension RO

MOV.L @(disp,GBR),R0 (dispx4+GBR) -~ RO 11000110dddddddd
MOV.B RO,@(disp,GBR) RO - (disp+GBR) 11000000dddddddd
MOV.W RO,@(disp,GBR) RO - (dispx2+GBR) 11000001dddddddd
MOV.L RO,@(disp,GBR) RO - (dispx4+GBR) 11000010dddddddd

N

Description

Thisinstruction transfers the source operand to the destination. Byte, word, or longword can be
specified as the data size, but the register is always RO. If the transfer data is byte-size, the 8-bit
displacement is only zero-extended, so arange up to +255 bytes can be specified. If the transfer
datais word-size, the 8-hit displacement is multiplied by two after zero-extension, enabling a
range up to +510 bytes to be specified. With longword transfer data, the 8-bit displacement is
multiplied by four after zero-extension, enabling a range up to +1020 bytes to be specified.

When the source operand is memory, the loaded data is sign-extended to longword before being
stored in the register.

Notes

When loading, the destination register is always RO.

Rev. 5.0, 04/01, page 311 of 394
RENESAS

Operation

MOVBLG(i
{

MOVLLG i

MOVBSG i

nt d) /* MOV.B @disp, GBR), RO */

unsi gned int disp;

di sp=(unsi gned int)(0x000000FF & d);
R[0] =(i nt) Read_Byt e(GBR+di sp) ;

i f ((R0]&0x80)==0) R[0] &0x000000FF;
el se R[0] | =OxFFFFFFOO;

PC+=2;

int d) /* MOV.W@disp, GBR), RO */

unsi gned int disp;

di sp=(unsi gned i nt)(0x000000FF & d);

R[0] =(ii nt) Read_Wor d(GBR+(di sp<<1));

i f ((R 0] &x8000)==0) R[] 0] &0x0000FFFF;

el se R[0] | =0xFFFF0000;
PC+=2;

nt d) /* MV.L @disp, GBR), RO */

unsi gned int disp;

di sp=(unsi gned i nt)(0x000000FF & d);
R[0] =Read_Long(GBR+(di sp<<2));

PC+=2;

nt d) /* MOV.B RO, @disp, GBR) */

unsi gned int disp;

Rev. 5.0, 04/01, page 312 of 394

RENESAS

di sp=(unsi gned int)(0x000000FF & d);
Wite_Byte(GBR+di sp, R0]);
PC+=2;

MOWSG(i nt d) /* MOV. WRO, @di sp, GBR) */

{
unsi gned int disp;
di sp=(unsi gned i nt)(0x000000FF & d);
Wite_Word(GBR+(di sp<<l),R0]);
PC+=2,

}

MOVLSG(int d) /* MOV.L RO, @disp, GBR) */

{
unsi gned int disp;
di sp=(unsi gned i nt)(0x000000FF & (I ong)d);
Wite_Long(GBR+(di sp<<2),R0]);
PC+=2;
}
Example

MV.L @2,GBR), RO ; Beforeexecution (GBR+8)=H'12345670
; After execution RO = (H'12345670)
MOV. B RO, @1, GBR) ; Beforeexecution RO =H'FFFF7F80
; After execution (GBR+1) = H'80

Rev. 5.0, 04/01, page 313 of 394
RENESAS

959 MOV MOVe structure data Data Transfer Instruction

Structure Data
Transfer
Execution
Format Summary of Operation Instruction Code States T Bit
MOV.B RO,@(disp,Rn) RO - (disp+Rn) 10000000nnnndddd 1 —
MOV.W RO,@(disp,Rn) RO - (dispx2+Rn) 10000001nnnndddd 1 —
MOV.L Rm,@(disp,Rn) Rm - (dispx4+Rn) 0001nnnnmmmdddd 1 —
MOV.B @(disp,Rm),R0 (disp+Rm) - sign 10000100mMmmmdddd 1 —
extension RO
MOV.W @(disp,Rm),R0O (dispx2+Rm) - sign 10000101nmmmdddd 1 —
extension RO
MOV.L @(disp,Rm),Rn (dispx4+Rm) - Rn 0101nnnnmmmudddd 1 —
Description

Thisinstruction transfers the source operand to the destination. It isideal for accessing datainside
astructure or stack. Byte, word, or longword can be specified as the data size, but with byte or
word data the register is aways RO.

If the datais byte-size, the 4-bit displacement is only zero-extended, so arange up to +15 bytes
can be specified. If the data is word-size, the 4-bit displacement is multiplied by two after zero-
extension, enabling a range up to +30 bytesto be specified. With longword data, the 4-bit
displacement is multiplied by four after zero-extension, enabling a range up to +60 bytesto be
specified. If amemory operand cannot be reached, the previoudly described @(R0,Rn) mode must
be used.

When the source operand is memory, the loaded datais sign-extended to longword before being
stored in the register.

Notes

When loading byte or word data, the destination register is aways RO. Therefore, if the following
instruction attempts to reference RO, it is kept waiting until completion of the load instruction.
This allows optimization by changing the order of instructions.

MV.B @2, Rl), R0 MOV.B @2, Rl), RO
AND #80, RO ADD #20, Rl
ADD #20,R1 AND #80, RO

Rev. 5.0, 04/01, page 314 of 394
RENESAS

Operation

MOVBS4(1 ong d, long n /* MOV.B RO, @disp, Rn) */

{
| ong disp;
di sp=(0x0000000F & (long)d);
Wite Byte(R[n]+disp, R0]);
PC+=2;

}

MOWWB4(long d, long n) /* MOV.WRO, @disp, Rn) */

{
| ong disp;
di sp=(0x0000000F & (long)d);
Wite Word(R[n] +(di sp<<1l),R0]);
PC+=2;
}

MWVLS4(long m long d, long n) /* MOV.L Rm @disp, Rn) */

{
| ong disp;

di sp=(0x0000000F & (long)d);

Wite_Long(R[n] +(disp<<2),Rn);
PC+=2;

MOVBL4(long m long d) /* MOV.B @disp, R, RO */

{
| ong disp;
di sp=(0x0000000F & (long)d);
R[0] =Read_Byt e(R[m] +di sp) ;
i f ((R[0]&x80)==0) R[0] &0x000000FF;
el se R 0] | =OxFFFFFFOO;
PC+=2;
}

Rev. 5.0, 04/01, page 315 of 394
RENESAS

MOWAL4(long m long d) /* MOV.W@di sp, Ri), RO */

{
| ong disp;

di sp=(0x0000000F & (long)d);

R 0] =Read_Wor d(R[n] +(di sp<<1));

if ((R 0] &0x8000)==0) R[0] &0x0000FFFF;
el se R 0] | =0xFFFF0O000;

PC+=2;

MOVLL4(long m long d, long n) /* MOW.L @disp,Ry,Rn */

{
| ong disp;

di sp=(0x0000000F & (long)d);
R[n] =Read_Long(R m +(di sp<<2));

PC+=2;
}
Example
MOV. L @2,R0),R1 ; Before execution (RO+8) = H'12345670
; After execution R1 = (H'12345670)
MOV. L RO, @H F, R1) ; Before execution RO = H'FFFF7F80

; After execution (R1+60) = H'FFFF7F80

Rev. 5.0, 04/01, page 316 of 394
RENESAS

960 MOVA MOVeeffective Address Data Transfer I nstruction

Effective Address
Transfer
Execution
Format Summary of Operation Instruction Code States T Bit
MOVA @(disp,PC),R0 dispx4+PC+4 — RO 11000111dddddddd 1 —
Description

Thisinstruction stores the source operand effective address in general register RO. The 8-bit
displacement is multiplied by four after zero-extension. The PC value is the address of this
instruction, but a value with the lower 2 bits adjusted to B'00 is used in address calculation.

Notes

If thisinstruction is executed in adelay slot, anillegal slot instruction exception will be generated.

Operation
MOVA(i nt d) /* MOVA @disp, PO, RO */
{
unsi gned i nt disp;
di sp=(unsi gned int)(0x000000FF & d);
R[0] =(PC&OXxFFFFFFFC) +4+(di sp<<2);
PC+=2;
}
Example

Address . org H 1006

1006 MOVA STR, RO ; STR address - RO

1008 MOV.B @0, R1 ; RL="X" ~ Position after adjustment of lower 2 bits of PC

100A ADD R4, R5 ; « Origina PC position in MOV A instruction address calculation
.align 4

100C STR .sdata "XYzP12"

Rev. 5.0, 04/01, page 317 of 394
RENESAS

961 MOVCA.L MOVewith Cache
block Allocation Data Transfer I nstruction
Cache Block Allocation

Execution
Format Summary of Operation Instruction Code States T Bit
MOVCA.L RO,@Rn RO - (Rn) 0000nnnNn11000011 1 —

Description

Thisinstruction stores the contents of genera register RO in the memory location indicated by
effective address Rn. Thisinstruction differs from other store instructions as follows.

If write-back is selected for the accessed memory, and a cache miss occurs, the cache block will
be allocated but an RO data write will be performed to that cache block without performing a block
read. Other cache block contents are undefined.

Operation

MOVCAL(i nt n) /*MWCA.L RO, @Rn */
{
if ((is_wite_back _nenory(R[n]))
&& (1 ook_up_in_operand_cache(R[n]) == M SS))
al | ocat e_operand_cache_bl ock(R[n]);
Wite_Long(RIn], RO0]);
PC+=2;
}

Possible Exceptions:
e DataTLB miss exception

» DataTLB protection violation exception
« Initia page write exception
* Addresserror

Rev. 5.0, 04/01, page 318 of 394
RENESAS

962 MOVT MOVeT bit Data Transfer I nstruction

T Bit Transfer
Execution
Format Summary of Operation Instruction Code States T Bit
MOVT Rn T - Rn 0000nnnn00101001 1 —
Description

Thisinstruction storesthe T bit in general register Rn. When T =1, Rn=1; when T =0, Rn=0.

Operation
MOVT(| ong n) /* MOVT Rn */
{
R[n] =(0x00000001 & SR);
PC+=2;
}
Example
XOR R2, R2 ;R2=0
CVP/ PZ R2 ;T=1
MOVT RO RO=1
CLRT T=0
MOVT RL R1=0

Rev. 5.0, 04/01, page 319 of 394
RENESAS

963 MUL.L MULtiply Long Arithmetic I nstruction
Double-Precision

Multiplication
Execution
Format Summary of Operation Instruction Code States T Bit
MUL.L Rm,Rn RnxRm - MACL 0000nnnnmMmMMD111 2-5 —
Description

This instruction performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the lower 32 bits of the result in the MACL register. The contents of MACH are not
changed.

Operation

MJLL(long m long n) /* MJL.L RmRn */

{
MACL=R[n] *R[n] ;
PC+=2;
}
Example
MJL. L RO, R1 ; Before execution RO = H'FFFFFFFE, R1 = H'00005555
; After execution MACL = H'FFFF5556
STS MACL, RO ; Get operation result

Rev. 5.0, 04/01, page 320 of 394
RENESAS

964 MULSW MULtiply as Signed Word ~ Arithmetic Instruction

Signed
Multiplication
Execution
Format Summary of Operation Instruction Code States T Bit
MULS.W Rm,Rn Signed, Rn x Rm - MACL 0010nnnnmmmi111l 2-5 —

MULS Rm,Rn

Description

Thisinstruction performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The multiplication is performed as a signed
arithmetic operation. The contents of MACH are not changed.

Operation

MULS(long m long n) /* MJLS RmRn */

{
MACL=((Il ong) (short)R n] *(l ong) (short)R[n});
PC+=2;
}
Example
MJULS. W RO,R 1 ; Before execution RO = H'FFFFFFFE, R1 = H'00005555
; After execution MACL = H'FFFF5556
STS MACL, RO ; Get operation result

Rev. 5.0, 04/01, page 321 of 394
RENESAS

965 MULUW MULtiply asUnsigned Word Arithmetic Instruction
Unsigned Multiplication

Execution
Format Summary of Operation Instruction Code States T Bit

MULU.W Rm,Rn Unsigned, Rn x Rm - MACL 0010nnnnmmmi110 2-5 —
MULU Rm,Rn

Description

Thisinstruction performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The multiplication is performed as an unsigned
arithmetic operation. The contents of MACH are not changed.

Operation

MULU(long m long n) /* MJLU RmRn */

{
MACL=((unsi gned | ong) (unsi gned short)R[n] *
(unsigned | ong) (unsigned short)R mM;
PC+=2,
}
Example
MJULU. W RO, R1 ; Before execution RO = H'00000002, R1 = H'FFFFAAAA
; After execution MACL = H'00015554
STS MACL, RO ; Get operation result

Rev. 5.0, 04/01, page 322 of 394
RENESAS

966 NEG NEGate Arithmetic Instruction
Sign Inversion

Execution
Format Summary of Operation Instruction Code States T Bit
NEG Rm,Rn 0-Rm - Rn 0110nnnnmmmi011 1 —

Description

Thisinstruction finds the two’ s complement of the contents of general register Rm and stores the
resultin Rn. That is, it subtracts Rm from 0 and stores theresult in Rn.

Operation

NEG(long m long n) /* NEG RmRn */

{
R n] =0-R{ nj;
PC+=2;
}
Example
NEG RO, R1 ; Before execution RO = H'00000001

; After execution R1 = H'FFFFFFFF

Rev. 5.0, 04/01, page 323 of 394
RENESAS

9.67 NEGC NEGatewith Carry Arithmetic Instruction
Sign Inversion with Borrow

Execution
Format Summary of Operation Instruction Code States T Bit
NEGC Rm,Rn O0-Rm-T - Rn, 0110nnnnmmm010 1 Borrow

borrow - T

Description

Thisinstruction subtracts the contents of general register and the T bit from 0 and stores the result
in Rn. A borrow resulting from the operation is reflected in the T bit. The NEGC instruction is
used for sign inversion of avalue exceeding 32 bits.

Operation

NEGCC(long m long n) /* NEGC Rm Rn */

{
unsi gned | ong tenp;
tenp=0-R{ nj;
Rl n] =tenp-T;
if (O<tenp) T=1;
el se T=0;
if (tenp<R[n]) T=1,
PC+=2;
}
Example
CLRT ; Sign inversion of RO:R1 (64 hits)
NEGC R1,R1 ; Before execution R1=H'00000001, T=0
; After execution R1=H'FFFFFFFF, T=1
NEGC RO, RO ; Before execution RO = H'00000000, T =1

; After execution RO =H'FFFFFFFF, T=1

Rev. 5.0, 04/01, page 324 of 394
RENESAS

9.68 NOP No OPeration System Control Instruction

No Operation
Execution
Format Summary of Operation Instruction Code States T Bit
NOP No operation 0000000000001001 1 —
Description

Thisinstruction simply increments the program counter (PC), advancing the processing flow to
execution of the next instruction.

Operation

NOP() /* NOP */
{
PC+=2;

}
Example

NOP ; Time equivalent to one execution state el apses.

Rev. 5.0, 04/01, page 325 of 394
RENESAS

9.69 NOT NOT-logical complement Logical Instruction

Bit Inversion
Execution
Format Summary of Operation Instruction Code States T Bit
NOT Rm,Rn [Rm - Rn 0110nnnnmmmO0111 1 —
Description

Thisinstruction finds the one's complement of the contents of general register Rm and stores the
resultin Rn. That is, it inverts the Rm bits and stores the result in Rn.

Operation

NOT(long m long n) /* NOT RmRn */

{
Rl n] =[R[nj;
PC+=2;
}
Example
NOT RO, R1 ; Before execution RO = HAAAAAAAA

; After execution R1 = H'55555555

Rev. 5.0, 04/01, page 326 of 394
RENESAS

9.70 OCBI Operand Cache Block
Invalidate Data Transfer | nstruction
Cache Block Invalidation

Execution
Format Summary of Operation Instruction Code States T Bit
OCBI @Rn Operand cache block 0000nnnn10010011 1 —

invalidation

Description

Thisinstruction accesses data using the contents indicated by effective address Rn. In the case of a
hit in the cache, the corresponding cache block isinvalidated (the V bit is cleared to 0). If thereis
unwritten information (U bit = 1), write-back is not performed even if write-back mode is selected.
No operation is performed in the case of a cache miss or an accessto a non-cache area

Operation
QCBI (i nt n) /* OCBI @ */
{

i nval i dat e_operand_cache_bl ock(R[n]);
PC+=2;
}

Possible Exceptions:
» DataTLB miss exception

« DataTLB protection violation exception
* Initial page write exception
* Addresserror

Note that the above exceptions are generated even if OCBI does not operate.

Rev. 5.0, 04/01, page 327 of 394
RENESAS

9.71 OCBP Operand Cache Block
Purge Data Transfer Instruction
Cache Block Purge

Execution
Format Summary of Operation Instruction Code States T Bit
OCBP @Rn Operand cache block purge 0000nnnn10100011 1 —

Description

This instruction accesses data using the contents indicated by effective address Rn. If the cacheis
hit and there is unwritten information (U bit = 1), the corresponding cache block is written back to
external memory and that block isinvalidated (the V bit is cleared to 0). If thereis no unwritten
information (U bit = 0), the block is simply invalidated. No operation is performed in the case of a
cache miss or an access to a non-cache area.

Operation

OCBP(i nt n) /* OCBP @un */

{
if(is_dirty_block(Rn])) wite_back(Rn])
i nval i dat e_operand_cache_bl ock(R[n]);
PC+=2;

}

Possible Exceptions:
» DataTLB miss exception

« DataTLB protection violation exception
» Addresserror

Note that the above exceptions are generated even if OCBP does not operate.

Rev. 5.0, 04/01, page 328 of 394
RENESAS

9.72 OCBWB Operand Cache Block
Write Back Data Transfer Instruction
Cache Block Write-Back

Execution
Format Summary of Operation Instruction Code States T Bit
OCBWB @Rn Operand cache block write- 0000nnnn10110011 1 —

back

Description

Thisinstruction accesses data using the contents indicated by effective address Rn. If the cacheis
hit and thereis unwritten information (U bit = 1), the corresponding cache block is written back to
external memory and that block is cleaned (the U bit is cleared to 0). In other cases (i.e. in the case
of acache miss or an access to a non-cache area, or if the block is already clean), no operation is
performed.

Operation
OCBWB(i nt n) /* OCBWB @un */
{
if(is_dirty _block(R[n])) wite_back(R n]);
PC+=2;
}

Possible Exceptions:
» DataTLB miss exception

« DataTLB protection violation exception
» Addresserror

Note that the above exceptions are generated even if OCBWB does not operate.

Rev. 5.0, 04/01, page 329 of 394
RENESAS

973 OR OR logical Logical Instruction
Logical OR
Execution
Format Summary of Operation Instruction Code States T Bit
OR Rm,Rn Rn|Rm - Rn 0010nnnnmmm1011 1 —
OR #imm,R0O RO |imm - RO 1100101%iiiiiiii 1 —
OR.B #imm,@(R0,GBR) (RO+GBR) | imm 1100111%iiiiiiii 4 —

(RO+GBR)

Description

Thisinstruction ORs the contents of general registers Rn and Rm and stores the result in Rn.

Thisinstruction can be used to OR general register RO contents with zero-extended 8-bit
immediate data, or, in indexed GBR indirect addressing mode, to OR 8-hit memory with 8-bit

immediate data.

Rev. 5.0, 04/01, page 330 of 394

RENESAS

Operation

OR(long m

{
RIn| =R ;
PC+=2,

}

ORI (long i)

{

long n) /* OR RmMRn */

/* OR #imm RO */

R[0] | =(OXxO00000FF & (long)i);

PC+=2,

ORMlong i) /* OR B #inm @R0, GBR) */

{

Example

OR B

| ong tenp;

t enp=(1 ong) Read_Byt e(GBR+R[0]) ;
t enp| =(0x000000FF & (long)i);
Wite Byte(GBR+R[0], tenp);

PC+=2;

RO, R1

#H FO, RO

#H 50, @ RO, GBR)

; Before execution RO = H'AAAAS5S55, R1 = H'55550000
; After execution R1 = H'FFFF5555
; Before execution RO = H'00000008
; After execution RO = H'000000F8
; Before execution (RO,GBR) = H'A5
; After execution (RO,GBR) = H'F5

Rev. 5.0, 04/01, page 331 of 394
RENESAS

974 PREF PREFetch data to cache Data Transfer Instruction

Prefetch to Data
Cache
Execution
Format Summary of Operation nstruction Code States T Bit
PREF @Rn Prefetch cache block 0000nnnn10000011 1 —
Description

Thisinstruction reads a 32-byte data block starting at a 32-byte boundary into the operand cache.
The lower 5 bits of the address specified by Rn are masked to zero.

Thisinstruction does not generate address-related errors. In the event of an error, the PREF
instruction is treated as an NOP (no operation) instruction.

Operation

PREF(int n) /* PREF */

{
PC+=2;
}
Example

MOV. L #SOFT_PF, R1 ; R1 addressis SOFT_PF
PREF arl ; Load SOFT_PF datainto on-chip cache
.align 32

SOFT_PF: .data.l H 12345678
.data.l H 9ABCDEFO
.data.l H AAAA5555
.data.l H 5555AAAA
.data.l H 11111111
.data.l H 22222222
.data.l H 33333333
.data.l H 44444444

Rev. 5.0, 04/01, page 332 of 394
RENESAS

9.75 ROTCL ROTatewith Carry Left Shift Instruction
One-Bit Left Rotation
through T Bit

Execution
Format Summary of Operation Instruction Code States T Bit
ROTCL Rn T<Rn T 0100nnnn00100100 1 MSB

Description

Thisinstruction rotates the contents of general register Rn one bit to the left through the T bit, and
stores the result in Rn. The bit rotated out of the operand istransferred to the T bit.

MSB LSB

Operation

ROTCL(long n) /* ROTCL Rn */

{
| ong tenp;
i f ((R[n]&x80000000)==0) tenp=0;
el se tenp=1;
R[n] <<=1;
if (T==1) R n]|=0x00000001;
el se R[n] &0xFFFFFFFE;
if (tenp==1) T=1,
el se T=0;
PC+=2;

}

Example
ROTCL RO ; Before execution RO = H'80000000, T =0

; After execution RO =H'00000000, T =1

Rev. 5.0, 04/01, page 333 of 394
RENESAS

9.76 ROTCR ROTatewith Carry Right Shift Instruction
One-Bit Right Rotation
through T Bit

Execution
Format Summary of Operation Instruction Code States T Bit
ROTCR Rn T-Rn-T 0100nnnn00100101 1 LSB

Description

Thisinstruction rotates the contents of general register Rn one hit to the right through the T bit,
and stores the result in Rn. The bit rotated out of the operand is transferred to the T hit.

MSB LSB

ROTCR I—V

ROTCR(l ong n) /* ROTCR Rn */

Operation

{
I ong tenp;
i f ((R[n] &x00000001) ==0) tenp=0;
el se tenp=1;
R n] >>=1;
if (T==1) R[n]|=0x80000000;
el se R[n] &0x7FFFFFFF;
if (tenp==1) T=1,
el se T=0;
PC+=2;

}

Example
ROTCR RO ; Before execution RO =H'00000001, T =1

; After execution RO =H'80000000, T =1

Rev. 5.0, 04/01, page 334 of 394
RENESAS

9.77 ROTL ROTate L eft Shift Instruction

One-Bit Left
Rotation
Execution
Format Summary of Operation Instruction Code States T Bit
ROTL Rn T « Rn « MSB 0100nnnn00000100 1 MSB
Description

This instruction rotates the contents of general register Rn one bit to the left, and stores the result
in Rn. The bit rotated out of the operand istransferred to the T bit.

MSB LSB

ROTL 4—‘

ROTL(long n) /* ROTL Rn */

Operation

{
i f ((R[n] &x80000000)==0) T=0;
el se T=1;
R n] <<=1;
if (T==1) R[n]|=0x00000001;
el se R n] &=0xFFFFFFFE;
PC+=2,

}

Example
ROTL RO ; Before execution RO = H'80000000, T =0

; After execution RO =H'00000001, T =1

Rev. 5.0, 04/01, page 335 of 394
RENESAS

978 ROTR ROTate Right Shift Instruction

One-Bit Right
Rotation
Execution
Format Summary of Operation Instruction Code States T Bit
ROTR Rn LSB - Rn - T 0100nnnn00000101 1 LSB
Description

Thisinstruction rotates the contents of general register Rn one bit to the right, and stores the result
in Rn. The bit rotated out of the operand istransferred to the T bit.

MSB LSB

ROTR |—>

ROTR(l1 ong n) /* ROTR Rn */

Operation

{
i f ((R[n] &x00000001) ==0) T=0;
el se T=1;
R n] >>=1;
if (T==1) R[n]|=0x80000000;
el se R n] &=0x7FFFFFFF;
PC+=2,

}

Example
ROTR RO ; Before execution RO = H'00000001, T=0

; After execution RO =H'80000000, T =1

Rev. 5.0, 04/01, page 336 of 394
RENESAS

979 RTE ReTurn from Exception ~ System Control Instruction
Return from Exception Handling (Privileged Instruction)
Delayed Branch Instruction

Execution
Format Summary of Operation Instruction Code States T Bit
RTE SSR - SR, SPC- PC 0000000000101011 5 —

Description

Thisinstruction returns from an exception or interrupt handling routine by restoring the PC and
SR values from SPC and SSR. Program execution continues from the address specified by the
restored PC value.

RTE isaprivileged instruction, and can only be used in privileged mode. Use of thisinstruction in
user mode will cause an illegal instruction exception.

Notes

Asthisisadelayed branch instruction, the instruction following the RTE instruction is executed
before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. An exception
must not be generated by theinstruction in thisinstruction’s delay slot. If the following instruction
isabranch instruction, it isidentified asadlot illegal instruction.

If thisinstruction is located in the delay slot immediately following a delayed branch instruction, it
isidentified asadlot illegal instruction.

The SR value accessed by the instruction in the RTE delay dot is the value restored from SSR by
the RTE instruction. The SR and MD values defined prior to RTE execution are used to fetch the
instruction in the RTE delay dlot.

Rev. 5.0, 04/01, page 337 of 394
RENESAS

Operation

RTE() /* RTE */

{
unsi gned int tenp;
t enp=PC;
SR=SSR;
PC=SPC;
Del ay_Sl ot (t enp+2) ;
}
Example
RTE ; Return to original routine.
ADD #8, R14 ; Executed before branch.

Note: Inadelayed branch, the actual branch operation occurs after execution of the slot
instruction, but instruction execution (register updating, etc.) isin fact performed in
delayed branch instruction — delay dot instruction order. For example, even if the register
holding the branch destination address is modified in the delay slot, the branch destination
address will still be the register contents prior to the modification.

Rev. 5.0, 04/01, page 338 of 394
RENESAS

980 RTS ReTurn from Subroutine Branch Instruction

Return from Subroutine Procedure Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
RTS PR - PC 0000000000001011 2 —
Description

This instruction returns from a subroutine procedure by restoring the PC from PR. Processing
continues from the address indicated by the restored PC value. Thisinstruction can be used to
return from a subroutine procedure called by a BSR or JSR instruction to the source of the call.

Notes

Asthisisadelayed branch instruction, the instruction following thisinstruction is executed before
the branch destination instruction.

Interrupts are not accepted between thisinstruction and the following instruction. If the following
instruction is a branch instruction, it isidentified asa dot illegal instruction.

The instruction that restores PR must be executed before the RTS instruction. This restore
instruction cannot be in the RTS delay slot.

Operation

RTS() /* RTS */

{
unsi gned int tenp;
t enp=PC;
PC=PR;
Del ay_Sl ot (t enp+2) ;
}

Rev. 5.0, 04/01, page 339 of 394
RENESAS

Example

MOV. L TABLE, R3 ; R3=TRGET address

JSR @3 : Branchto TRGET.

NOP ; NOP executed before branch.

ADD RO, RL ; « Subroutine procedure return destination (PR contents)
TABLE: .data.l TRGET ; Jump table
TRGET: MOV R1, RO ; « Entry to procedure

RTS ; PR contents - PC

MOV #12, RO ; MOV executed before branch.

Rev. 5.0, 04/01, page 340 of 394
RENESAS

981 SETS SET Shit System Control Instruction
S Bit Setting
Execution
Format Summary of Operation Instruction Code States T Bit
SETS 1-S 0000000001011000 1 —
Description

Thisinstruction sets the S bit to 1.
Operation

SETS() /* SETS */

{
S=1;
PC+=2;
}
Example
SETS ; Beforeexecution S=0

; After execution S=1

Rev. 5.0, 04/01, page 341 of 394

RENESAS

982 SETT SET T bit System Control Instruction
T Bit Setting
Execution
Format Summary of Operation Instruction Code States T Bit
SETT 1-T 0000000000011000 1 1
Description

Thisinstruction setsthe T bit to 1.

Operation
SETT() [/* SETT */
{
T=1;
PC+=2;
}
Example
SETT ; Beforeexecution T=0

; After execution T=1

Rev. 5.0, 04/01, page 342 of 394

RENESAS

9.83 SHAD SHift Arithmetic Dynamically Shift Instruction

Dynamic Arithmetic Shift
Execution
Format Summary of Operation Instruction Code States T Bit
SHAD Rm, Rn When Rm =0, 0100nnnnmmMmm1100 1 —
Rn << Rm - Rn
When Rm < 0,

Rn>>Rm - [MSB - Rn]

Description

Thisinstruction arithmetically shifts the contents of general register Rn. General register Rm
specifies the shift direction and the number of bits to be shifted.

Rn register contents are shifted to the left if the Rm register valueis positive, and to the right if
negative. In a shift to theright, the MSB is added at the upper end.

The number of bits to be shifted is specified by the lower 5 bits (bits 4 to 0) of the Rm register. If
the value is negative (MSB = 1), the Rm register is represented as atwo’s complement. The left
shift range is 0 to 31, and the right shift range, 1 to 32.

Rm=>0 MSB LSB

/

Rm <0 MSB LSB

MSB >

Rev. 5.0, 04/01, page 343 of 394
RENESAS

Operation

SHAD(int mn) /*SHAD Rm Rn */

{
int sgn=R[n] & 0x80000000;
i f (sgn==0)
Rin] <<= (RinM & Ox1F);
else if ((RIn & Ox1F) == 0) {
if ((REn] & 0x80000000) == 0)
Rln] =0
el se
RIn] = OxFFFFFFFF;
}
el se
RIn]=(long)RIn] >> ((~R[n{ & Ox1F)+1);
PC+=2;
}
Example
SHAD R1,R2 ; Before execution R1 = H'FFFFFFEC, R2 = H'80180000
; After execution R1=H'FFFFFFEC, R2 = H'FFFFF801
SHAD R3, R4 ; Before execution R3 = H'00000014, R4 = H'FFFFF801

; After execution R3 =H'00000014, R4 = H'80100000

Rev. 5.0, 04/01, page 344 of 394
RENESAS

984 SHAL SHift Arithmetic L eft Shift Instruction

One-Bit Left
Arithmetic Shift
Execution
Format Summary of Operation Instruction Code States T Bit
SHAL Rn T~<Rn<O0 0100nnnn00100000 1 MSB
Description

Thisinstruction arithmetically shifts the contents of general register Rn one bit to the left, and
stores the result in Rn. The bit shifted out of the operand istransferred to the T bit.

MSB LSB

SHAL
[s

Operation

SHAL(long n) /* SHAL Rn (Sanme as SHLL) */

{
i f ((R[n]&0x80000000)==0) T=0;
el se T=1;
R n] <<=1;
PC+=2,

}

Example
SHAL RO ; Beforeexecution RO = H'80000001, T =0

; After execution RO =H'00000002, T =1

Rev. 5.0, 04/01, page 345 of 394
RENESAS

985 SHAR SHift Arithmetic Right Shift Instruction

One-Bit Right
Arithmetic Shift
Execution
Format Summary of Operation Instruction Code States T Bit
SHAR Rn MSB - Rn - T 0100nnnn00100001 1 LSB
Description

Thisinstruction arithmetically shifts the contents of general register Rn one bit to the right, and
stores the result in Rn. The bit shifted out of the operand is transferred to the T bit.

MSB LSB

SHAR >
]

Operation

SHAR(long n) /* SHAR Rn */

{
| ong tenp;
i f ((R[n] &x00000001) ==0) T=0;
el se T=1;
i f ((R[n]&0x80000000)==0) tenp=0;
el se tenp=1;
R n] >>=1;
if (tenmp==1) R[n]|=0x80000000;
el se R n] &=0x7FFFFFFF;
PC+=2,

}

Example
SHAR RO : Before execution RO = H'80000001, T = 0

; After execution RO =H'C0000000, T=1

Rev. 5.0, 04/01, page 346 of 394
RENESAS

986 SHLD SHift Logical Dynamically Shift Instruction

Dynamic Logica
Shift
Execution
Format Summary of Operation Instruction Code States T Bit
SHLD Rm, Rn When Rm =0, 0100nnnnmmmm1101 1 —
Rn << Rm - Rn
When Rm < 0,

Rn>>Rm - [0 - Rn]

Description

Thisinstruction logically shifts the contents of general register Rn. General register Rm specifies
the shift direction and the number of bits to be shifted.

Rn register contents are shifted to the left if the Rm register valueis positive, and to the right if
negative. In a shift to theright, Os are added at the upper end.

The number of bits to be shifted is specified by the lower 5 bits (bits 4 to 0) of the Rm register. If
the valueis negative (MSB = 1), the Rm register is represented as a two’ s complement. The | eft
shift rangeis 0 to 31, and the right shift range, 1 to 32.

Rm=>0 MSB LSB

/

Rm<0 MSB LSB

Rev. 5.0, 04/01, page 347 of 394
RENESAS

Operation

SHLD(i nt mn)/*SHLD Rm Rn */

{
int sgn = Rlm & 0x80000000;
if (sgn == 0)
Rin] <<= (RInM & Ox1F);
else if ((RIn & Ox1F) == 0)
R[n] = 0;
el se
R n] =(unsigned)Rin] >> ((~R[mM & Ox1F)+1);
PC+=2;
}
Example
SHLD R1, R2 ; Before execution R1=H'FFFFFFEC, R2 = H'80180000
; After execution R1=HFFFFFFEC, R2 =H'00000801
SHLD R3, R4 ; Before execution R3 =H'00000014, R4 = H'FFFFF801

; After execution R3 =H'00000014, R4 =H'80100000

Rev. 5.0, 04/01, page 348 of 394
RENESAS

987 SHLL SHift Logical L eft Shift Instruction

One-Bit Left
Logica Shift
Execution
Format Summary of Operation Instruction Code States T Bit
SHLL Rn T<Rn<O0 0100nnnn00000000 1 MSB
Description

Thisinstruction logically shifts the contents of general register Rn one bit to the left, and stores the
result in Rn. The hit shifted out of the operand istransferred to the T hit.

MSB LSB

G e

Operation

SHLL(long n) /* SHLL Rn (Sane as SHAL) */

{
i f ((R[n] &x80000000) ==0) T=0;
el se T=1;
Rl n] <<=1;
PC+=2,

}

Example
SHLL RO ; Before execution RO = H'80000001, T =0

; After execution RO =H'00000002, T =1

Rev. 5.0, 04/01, page 349 of 394
RENESAS

9.88 SHLLn n bits SHift Logical L eft Shift Instruction

n-Bit Left
Logica Shift
Execution

Format Summary of Operation Instruction Code States T Bit
SHLL2 Rn Rn<<2 - Rn 0100nnnn00001000 1 —
SHLL8 Rn Rn<<8 - Rn 0100nnnn00011000 1 —
SHLL16 Rn Rn<<16 - Rn 0100nnnn00101000 1 —
Description

Thisinstruction logically shifts the contents of general register Rn 2, 8, or 16 hits to the left, and
stores the result in Rn. The bits shifted out of the operand are discarded.

SHLL2 MSB LSB

SHLLS8 MSB LSB

SHLL16 MSB LSB

Rev. 5.0, 04/01, page 350 of 394
RENESAS

Operation

SHLL2(long n) /* SHLL2 Rn */
{

R n] <<=2;

PC+=2;

SHLL8(long n) /* SHLL8 Rn */

{
R[n] <<=8;
PC+=2;

SHLL16(1 ong n) /* SHLL16 Rn */

{
R n] <<=16;
PC+=2;
}
Example
SHLL2 RO ; Before execution RO = H'12345678
; After execution RO = H'48D159E0
SHLL8 RO ; Before execution RO = H'12345678
; After execution RO = H'34567800
SHLL16 RO ; Before execution RO = H'12345678

; After execution RO = H'56780000

Rev. 5.0, 04/01, page 351 of 394
RENESAS

989 SHLR SHift Logical Right Shift Instruction

One-Bit Right
Logica Shift
Execution
Format Summary of Operation Instruction Code States T Bit
SHLR Rn 0O-Rn-T 0100nnnn00000001 1 LSB
Description

Thisinstruction logically shifts the contents of general register Rn one bit to the right, and stores
the result in Rn. The bit shifted out of the operand is transferred to the T bit.

MSB LSB

o

SHLR

Operation

SHLR(long n) /* SHLR Rn */

{
i f ((R[n] &x00000001) ==0) T=0;
el se T=1;
R n] >>=1;
R[n] &0x7FFFFFFF;
PC+=2;

}

Example
SHLR RO : Before execution RO = H'80000001, T = 0

; After execution RO =H'40000000, T =1

Rev. 5.0, 04/01, page 352 of 394
RENESAS

990 SHLRn n bits SHift Logical Right Shift Instruction

n-Bit Right
Logica Shift
Execution

Format Summary of Operation Instruction Code States T Bit
SHLR2 Rn Rn>>2 - Rn 0100nnnn00001001 1 —
SHLR8 Rn Rn>>8 - Rn 0100nnnn00011001 1 —
SHLR16 Rn Rn>>16 - Rn 0100nnnn00101001 1 —
Description

Thisinstruction logically shifts the contents of general register Rn 2, 8, or 16 bitsto the right, and
stores the result in Rn. The bits shifted out of the operand are discarded.

SHLR2 MSB LSB

SHLRS8 MSB LSB

SHLR16 MSB LSB

Rev. 5.0, 04/01, page 353 of 394
RENESAS

Operation

SHLR2(| ong n) /* SHLR2 Rn */
{
R n] >>=2;
R[n] &0x3FFFFFFF;
PC+=2;
}
SHLR8(| ong n) /* SHLR8 Rn */
{
R n] >>=8;
R[n] &=0x00FFFFFF;
PC+=2;
}
SHLR16(| ong n) /* SHLR16 Rn */
{
R n] >>=16;
R[n] &=0x0000FFFF;
PC+=2;
}
Example
SHLR2 RO ; Before execution RO = H'12345678
; After execution RO = H'048D159E
SHLR8 RO ; Before execution RO = H'12345678
; After execution RO = H'00123456
SHLR16 RO ; Before execution RO = H'12345678

; After execution RO = H'00001234

Rev. 5.0, 04/01, page 354 of 394
RENESAS

991 SLEEP SLEEP System Control Instruction

Transition to Power-Down Mode (Privileged Instruction)
Execution
Format Summary of Operation Instruction Code States T Bit
SLEEP Sleep 0000000000011011 4 —
Description

Thisinstruction places the CPU in the power-down state.

In power-down mode, the CPU retainsitsinternal state, but immediately stops executing
instructions and waits for an interrupt request. When it receives an interrupt request, the CPU exits
the power-down state.

SLEEP isaprivileged instruction, and can only be used in privileged mode. Use of thisinstruction
in user mode will cause an illegal instruction exception.

Notes

SLEEP performance depends on the standby control register (STBCR). See Power-Down Modes
in hardware manual, for details.

Operation

SLEEP() /* SLEEP */

{
Sl eep_st andby();

}
Example

SLEEP ; Transition to power-down mode

Rev. 5.0, 04/01, page 355 of 394
RENESAS

9.92

STC

SToreControl register

Store from Control Register

(Privileged Instruction)

System Control Instruction

Execution
Format Summary of Operation Instruction Code States T Bit
STC SR,Rn SR - Rn 0000nnNnn00000010 2 —
STC GBR, Rn GBR - Rn 0000nnnn00010010 2 —
STC VBR,Rn VBR - Rn 0000nnnn00100010 2 —
STC SSR,Rn SSR - Rn 0000nnNnn00110010 2 —
STC SPC, Rn SPC - Rn 0000nnnn01000010 2 —
STC SGR, Rn SGR - Rn 0000nnnn00111010 3 —
STC DBR,Rn DBR - Rn 0000nnNnn11111010 2 —
STC RO_BANK, Rn RO_BANK - Rn 0000nnnn10000010 2 —
STC R1_BANK, Rn R1_BANK - Rn 0000nnnn10010010 2 —
STC R2_BANK, Rn R2_BANK - Rn 0000nnNnn10100010 2 —
STC R3_BANK, Rn R3_BANK - Rn 0000nnnn10110010 2 —
STC R4_BANK, Rn R4 _BANK - Rn 0000nnnn11000010 2 —
STC R5_BANK, Rn R5_BANK - Rn 0000nnNnn11010010 2 —
STC R6_BANK, Rn R6_BANK - Rn 0000nnnn11100010 2 —
STC R7_BANK, Rn R7_BANK - Rn 0000nnnn11110010 2 —
STC.L SR, @-Rn Rn-4 - Rn, SR - (Rn) 0100nnnn00000011 2 —
STC.L GBR, @-Rn Rn-4 - Rn, GBR - (Rn) 0100nnnn00010011 2 —
STC.L VBR, @-Rn Rn-4 - Rn, VBR - (Rn) 0100nnnn00100011 2 —
STC.L SSR, @-Rn Rn-4 - Rn, SSR - (Rn) 0100nnnn00110011 2 —
STC.L SPC, @-Rn Rn-4 -, Rn, SPC - (Rn) 0100nnnn01000011 2 —
STC.L SGR, @-Rn Rn-4 . Rn, SGR - (Rn) 0100nnnn00110010 3 —
STC.L DBR, @-Rn Rn-4 - Rn, DBR - (Rn) 0100nnnn11110010 2 —
STC.L RO_BANK, @-Rn Rn-4 - Rn, RO_BANK - (Rn) 0100nnnn10000011 2 —
STC.L R1_BANK, @-Rn Rn-4 - Rn, R1_BANK - (Rn) 0100nnnn10010011 2 —
STC.L R2_BANK, @-Rn Rn-4 -~ Rn, R2_BANK - (Rn) 0100nnnn10100011 2 —
STC.L R3_BANK, @-Rn Rn-4 - Rn, R3_BANK - (Rn) 0100nnnn10110011 2 —
STC.L R4_BANK, @-Rn Rn-4 - Rn, R4_BANK - (Rn) 0100nnnn11000011 2 —
STC.L R5_BANK, @-Rn Rn-4 -~ Rn, R5_BANK - (Rn) 0100nnnn11010011 2 —
STC.L R6_BANK, @-Rn Rn-4 - Rn, R6_BANK - (Rn) 0100nnnn11100011 2 —
STC.L R7_BANK, @-Rn Rn-4 - Rn, R7_BANK - (Rn) 0100nnnn11110011 2 —

Rev. 5.0, 04/01, page 356 of 394

RENESAS

Description

Thisinstruction stores control register SR, GBR, VBR, SSR, SPC, SGR, DBR or Rm_BANK (m
= 0-7) in the destination.

Rm_BANK operands are specified by the RB bit of the SR register:
when the RB bitis 1 Rm_BANKO is accessed,
when the RB bitis 0 Rm_BANK1 is accessed.

Notes

STC/STC.L can only be used in privileged mode excepting STC GBR, Rn/STC.L GBR, @-Rn.
Use of these instructionsin user mode will causeillegal instruction exceptions.

Operation
STCSR(i nt n) /* STC SR Rn : Privileged */
{
R n] =SR;
PC+=2;
}
STCGBR(i nt n) /* STC GBR, Rn */
{
R n] =SGR,
PC+=2;
}
STCVBR(i nt n) /* STC VBR,Rn : Privileged */
{
R[n] =VBR;
PC+=2;
}
STCSSR(i nt n) /* STC SSR,Rn : Privileged */
{
R[n] =SSR,
PC+=2;
}

Rev. 5.0, 04/01, page 357 of 394
RENESAS

STCSPC(i nt n) /* STC SPC,Rn : Privileged */
{

R[n] =SPC,
PC+=2;
}
STCSGR(i nt n) /* STC SGR,Rn : Privileged */
{
R[n] =SGR;
PC+=2;
}
STCDBR(i nt n) /* STC DBR, Rn : Privileged */
{
Rl n] =DBR,
PC+=2;
}
STCRm _BANK(i nt n) /* STC Rm BANK, Rn : Privileged */
/* me0-7 */
{
R[n] =Rm BANK;
PC+=2;
}
STCVBR(i nt n) /* STC.L SR @Rn : Privileged */
{
Rl n] —=4;
Wite_Long(R[n], SR);
PC+=2;
}
STCMEBR(i nt n) /* STC.L GBR @FRn */
{
R n] —=4;
Wite_Long(R[n], GBR);
PC+=2;

Rev. 5.0, 04/01, page 358 of 394
RENESAS

STCWBR(i nt n) /* STC.L VBR, @Rn : Privileged */
{
R n] —=4;
Wite_Long(R[n], VBR);
PC+=2;
}
STCMSSR(i nt n) /* STC.L SSR @Rn : Privileged */
{
Rl n] —=4;
Wite_Long(R[n], SSR);
PC+=2;
}
STCMSPC(i nt n) /* STC.L SPC,@Rn : Privileged */
{
Rl n] —=4;
Wite_Long(R[n], SPC);
PC+=2;
}
STCVSGR(i nt n) /* STC.L SGR @Rn : Privileged */
{
Rl n] —=4;
Wite_Long(R[n], SGR);
PC+=2;
}
STCVDBR(i nt n) /* STC.L DBR, @Rn : Privileged */
{
Rl n] —=4;
Wite_Long(R[n], DBR);
PC+=2;
}

Rev. 5.0, 04/01, page 359 of 394
RENESAS

STCMRm BANK(i nt n) /* STC.L RmBANK, @Rn : Privileged */

[* mr0-7 */
{
Rl n] —=4;
Wite_Long(R n], Rm BANK) ;
PC+=2;
}

Possible Exceptions:
e Generd illegal instruction exception

» Slotillegal instruction exception

e DataTLB miss exception

» DataTLB protection violation exception
* Addresserror

Rev. 5.0, 04/01, page 360 of 394
RENESAS

993 STS STore System register System Control Instruction

Store from
System Register
Execution
Format Summary of Operation Instruction Code States T Bit
STS MACH,Rn MACH - Rn 0000nnnn00001010 1 —
STS MACL,Rn MACL - Rn 0000nnnn00011010 —

1
STS PR,Rn PR - Rn 0000nnnn00101010 1 —
STS.L MACH,@-Rn Rn-4 - Rn, MACH - (Rn) 0100nnnn00000010 1 —
1
1

STS.L MACL,@-Rn Rn-4 - Rn, MACL - (Rn) 0100nnnn00010010
STS.L PR,@-Rn Rn-4 - Rn, PR - (Rn) 0100nnnn00100010

Description

Thisinstruction stores system register MACH, MACL, or PR in the destination.

Operation
STSMACH(i nt n) /* STS MACH, Rn */
{
R[n] =MACH;
PC+=2;
}
STSMACL(i nt n) /* STS MACL, Rn */
{
R[n] =MACL;
PC+=2;
}
STSPR(int n) /* STS PR Rn */
{
R n] =PR;
PC+=2;
}
STSMMACH(i nt n) /* STS.L MACH @Rn */
{

Rev. 5.0, 04/01, page 361 of 394
RENESAS

Rl n] —=4;
Wite_Long(R[n], MACH);

PC+=2;
}
STSMVACL(i nt n) /* STS.L MACL, @Rn */
{
Rl n] —=4;
Wite_Long(R[n], MACL);
PC+=2;
}
STSMPR(i nt n) /* STS.L PR @Rn */
{
R n] —=4;
Wite_Long(R[n], PR);
PC+=2;
}

Possible Exceptions:
» DataTLB miss exception

« DataTLB protection violation exception
» Addresserror

Example
STS MACH, RO ; Beforeexecution RO = H'FFFFFFFF, MACH = H'00000000
; After execution RO = H'00000000
STS.L PR, @ R15 ; Beforeexecution R15 = H'10000004

; After execution R15 = H'10000000, (R15) = PR

Rev. 5.0, 04/01, page 362 of 394
RENESAS

994 STS STorefrom FPU

System register System Control Instruction
Store from FPU
System Register
Execution
Format Summary of Operation Instruction Code States T Bit
STS FPUL,Rn FPUL - Rn 0000nnNnNn01011010 1 —
STS FPSCR,Rn FPSCR - Rn 0000nnNnNNn01101010 —

1
STS.L FPUL,@-Rn Rn-4 - Rn, FPUL - (Rn) 0100nnnn01010010 1 —
STS.L FPSCR,@-Rn Rn-4 - Rn, FPSCR - (Rn) 0100nnnn01100010 1

Description

Thisinstruction stores FPU system register FPUL or FPSCR in the destination.

Operation
STS(int n, int *FPUL) /* STS FPUL, Rn */
{
R n] = *FPUL;
PC+=2;
}
STS _SAVE(int n, int *FPUL) /* STS.L FPUL, @Rn */
{
R n] - =4;
Wite_Long(R[n], *FPUL)
PC+=2;
}
STS(int n) /* STS FPSCR, Rn */
{
R[n] =FPSCR&0x003FFFFF;
PC+=2;
}
STS RESTORE(int n) /* STS.L FPSCR @Rn */
{
R n] - =4;

Wite_Long(R[n], FPSCR&OXx003FFFFF)

Rev. 5.0, 04/01, page 363 of 394
RENESAS

PC+=2;
}

Possible Exceptions:

Data TLB miss exception
Data TLB protection violation exception
Address error

Examples

STS

Example 1:

MOV. L #H 12ABCDEF, R12

LDS R12, FPUL

STS FPUL, R13
; After executing the STS instruction:
; R13 = 12ABCDEF

Example 2;
STS FPSCR, R2
; After executing the STSinstruction:
; The current content of FPSCR is stored in register R2

STSL
Example 1:
MOV.L #H 0C700148, R7
STS.L FPUL, @R7
; Before executing the STS.L instruction:
; R7 =0C700148
; After executing the STS.L instruction:
; R7 = 0C700144, and the content of FPUL is saved at memory
; locatio\n 0C700144.

Example 2:
MOV.L #H 0C700154, R8
STS.L FPSCR, @R8
; After executing the STS.L instruction:
; The content of FPSCR is saved at memory location 0C700150.

Rev. 5.0, 04/01, page 364 of 394

RENESAS

995 SUB SUBtract binary Arithmetic Instruction
Binary Subtraction

Execution
Format Summary of Operation Instruction Code States T Bit
SUB Rm,Rn Rn-Rm - Rn 001lnnnnmmmi1000 1 —

Description

This instruction subtracts the contents of general register Rm from the contents of general register
Rn and stores the result in Rn. For immediate data subtraction, ADD #imm,Rn should be used.

Operation

SUB(long m long n) /* SUB RmRn */
{

R n]-=R{nj;

PC+=2;

}

Example

SuB RO, R1 ; Before execution RO = H'00000001, R1 = H'80000000
; After execution R1 = H'7FFFFFFF

Rev. 5.0, 04/01, page 365 of 394
RENESAS

996 SUBC SUBtract with Carry Arithmetic Instruction
Binary Subtraction with Borrow

Execution
Format Summary of Operation Instruction Code States T Bit
SUBC Rm,Rn Rn-RmM-T - Rn, borrow - T 0011nnnnmmmm1010 1 Borrow

Description

This instruction subtracts the contents of general register Rm and the T bit from the contents of
general register Rn, and stores the result in Rn. A borrow resulting from the operation is reflected
inthe T bit. Thisinstruction is used for subtractions exceeding 32 hits.

Operation

SUBC(long m long n) /* SUBC Rm Rn */

{
unsi gned | ong t npO, t npl;
tmpl=R(n]-R(ni;
t mpO=R{ n] ;
Rin] =tnpl-T;
if (tnpO<tnpl) T=1,
el se T=0;
if (tmpl<R[n]) T=1;
PC+=2;
}
Example
CLRT ; RO:R1(64 bits) — R2:R3(64 bits) = R0:R1(64 bits)
SUBC R3,R1 ; Before execution T =0, R1 = H'00000000, R3 = H'00000001
; After execution T =1, R1 = H'FFFFFFFF
SUBC R2, RO ; Before execution T =1, RO = H'00000000, R2 = H'00000000

; After execution T =1, RO = H'FFFFFFFF

Rev. 5.0, 04/01, page 366 of 394
RENESAS

9.97 SUBV SUBtract with (V flag)
under flow check Arithmetic I nstruction

Binary Subtraction
with Underflow Check

Execution
Format Summary of Operation Instruction Code States T Bit
SUBV Rm,Rn Rn-Rm - Rn, underflow -~ T 001lnnnnmmmi1l011 1 Underflow

Description

This instruction subtracts the contents of general register Rm from the contents of general register
Rn, and stores the result in Rn. If underflow occurs, the T hit is set.

Operation

SUBV(long m long n) /* SUBY Rm Rn */
{

| ong dest, src, ans;

if ((long)R n]>=0) dest=0;
el se dest=1;
if ((long) Rl mM >=0) src=0;
el se src=1;
src+=dest;
R n]-=R(ni;
if ((long)R n]>=0) ans=0;
el se ans=1;
ans+=dest ;
if (src==1) {
if (ans==1) T=1;
el se T=0;
}
el se T=0;
PC+=2;

Rev. 5.0, 04/01, page 367 of 394
RENESAS

Example

SUBV RO, R1 ; Before execution RO = H'00000002, R1 = H'80000001
; After execution R1=H7FFFFFFF, T=1
SUBV R2,R3 ; Before execution R2 = H'FFFFFFFE, R3 = H'7FFFFFFE

; After execution R3 =H'80000000, T =1

Rev. 5.0, 04/01, page 368 of 394
RENESAS

998 SWAP SWAP register halves Data Transfer Instruction
Upper-/Lower-Half

Swap
Execution
Format Summary of Operation Instruction Code States T Bit
SWAP.B Rm,Rn Rm - lower-2-byte upper-/ 0110nnnnmmmi000 1 —
lower-byte swap - Rn
SWAP.W Rm,Rn Rm - upper-/lower-word 0110nnnnmmmi001 1
swap - Rn
Description

Thisinstruction swaps the upper and lower parts of the contents of general register Rm, and stores
theresultin Rn.

In the case of a byte specification, the 8 bits from bit 15 to bit 8 of Rm are swapped with the 8 bits
from bit 7 to bit 0. The upper 16 bits of Rm are transferred directly to the upper 16 bits of Rn.

In the case of aword specification, the 16 bits from bit 31 to bit 16 of Rm are swapped with the 16
bits from bit 15 to bit O.

Operation

SWAPB(long m [ong n) /* SWAP.B Rm Rn */

{
unsi gned | ong tenpO, tenpl;

t enp0=R[n] &xFFFF0000;
t enpl=(R[n] &x000000FF) <<8;
R n] =(R nj &0x0000FF00) >>8;
RIn] =R n] | tenpl]| t enpO;

PC+=2;
}
SWAPW | ong m |ong n) /* SWAP. WRm Rn */
{

unsi gned | ong tenp;

t enp=(R[nj >>16) &0X0000FFFF;
Rl n] =R[n{ <<16;

Rev. 5.0, 04/01, page 369 of 394
RENESAS

R n]| =t enp;

PC+=2;
}
Example
SWAP.B RO, R1 ; Before execution RO = H'12345678
; After execution R1=H'12347856
SWAP. W RO, R1 ; Before execution RO = H'12345678

; After execution R1=H'56781234

Rev. 5.0, 04/01, page 370 of 394
RENESAS

999 TAS Test And Set Logical Instruction

Memory Test
and Bit Setting
Execution
Format Summary of Operation Instruction Code States T Bit
TAS.B @Rn If(Rn)=0,1 - T,else0 - T 0100nnnn00011011 5 Test
result

1 - MSB of (Rn)

Description

Thisinstruction purges the cache block corresponding to the memory area specified by the
contents of general register Rn, reads the byte data indicated by that address, and setsthe T bitto 1
if that datais zero, or clearsthe T bit to O if the data is nonzero. The instruction then sets bit 7 to 1
and writes to the same address. The busis not released during this period.

The purge operation is executed as follows.

In a purge operation, data is accessed using the contents of general register Rn as the effective
address. If there is a cache hit and the corresponding cache block is dirty (U bit = 1), the contents
of that cache block are written back to external memory, and the cache block is then invalidated
(by clearing the V bit to 0). If thereis a cache hit and the corresponding cache block is clean (U bit
= 0), the cache block is simply invalidated (by clearing the V bit to 0). A purgeis not executed in
the event of a cache miss, or if the accessed memory location is hon-cacheable.

The two TAS.B memory accesses are executed automatically. Another memory accessis not
executed between the two TAS.B accesses.

Operation

TAS(int n) /* TAS.B @n */

{
int tenp;

tenp=(int)Read_Byte(R[n]); /* Bus Lock */
if (tenp==0) T=1;

el se T=0;

t enp| =0x00000080;

Wite_Byte(Rn],tenp); /* Bus unlock */
PC+=2;

Rev. 5.0, 04/01, page 371 of 394
RENESAS

Possible Exceptions:
e DataTLB miss exception

» DataTLB protection violation exception
« Initia page write exception
* Addresserror

Exceptions are checked taking a data access by this instruction as a byte store.

Rev. 5.0, 04/01, page 372 of 394
RENESAS

9.100 TRAPA TRAP Always System Control Instruction

Trap Exception
Handling
Execution
Format Summary of Operation Instruction Code States T Bit
TRAPA #imm imm - TRA, PC+2 - SPC, 1100001%iiiiiiii 7 —

SR - SSR, R15 - SGR,
1 - SR.MD/BL/RB,
0x160 - EXPEVT,
VBR+H'00000100 -~ PC

Description

Thisinstruction starts trap exception handling. The values of (PC + 2), SR, and R15 are saved to
SPC and SSR, and 8-bit immediate datais stored in the TRA register (bits 9 to 2). The processor
mode is switched to privileged mode (the MD bit in SR isset to 1), and the BL bit and RB hit in
SR are set to 1. Asaresult, exception and interrupt requests are masked (not accepted), and the
BANK1 registers (RO BANK1to R7_BANK1) are selected. Exception code 0x160 iswritten to
the EXPEVT register (bits 11 to 0). The program branches to address (VBR + H'00000100),
indicated by the sum of the VBR register contents and offset H'00000100.

Operation

TRAPA(int i) /* TRAPA #imm */
{
int inmm

i me(0x000000FF & i);
TRA=I M<2;

SSR=SR;

SPC=PC+2;

SGR=R15;

SR MD=1;

SR. BL=1;

SR RB=1;
EXPEVT=0x00000160;
PC=VBR+H 00000100;

Rev. 5.0, 04/01, page 373 of 394
RENESAS

9101 TST TeST logical Logical Instruction

AND Operation
T Bit Setting
Execution
Format Summary of Operation Instruction Code States T Bit
TST Rm,Rn Rn & Rm; if result is O, 0010nnnnmmm1000 1 Test
1-5T,else0 > T result
TST #imm,RO RO & imm; if result is 0, 11001000iiiiiiii 1 Test
1-T,else0 - T result
TST.B #imm,@(R0,GBR) (RO + GBR) & imm; 11001100iiiiiiii 3 Test
ifresultis0,1 - T, result
else0 - T
Description

Thisinstruction ANDs the contents of general registers Rn and Rm, and setsthe T bit if the result
is zero. If theresult is nonzero, the T bit is cleared. The contents of Rn are not changed.

Thisinstruction can be used to AND general register RO contents with zero-extended 8-bit
immediate data, or, in indexed GBR indirect addressing mode, to AND 8-bit memory with 8-bit
immediate data. The contents of RO or the memory are not changed.

Operation

TST(long m long n) /* TST RmRn */
{

if ((RIn]&Rni)==0) T=1;

el se T=0;

PC+=2;

TSTI(long i) /* TST #imm RO */

{
| ong tenp;
t emp=R[0] & 0x000000FF & (long)i);
if (tenp==0) T=1,
el se T=0;
PC+=2;
}

Rev. 5.0, 04/01, page 374 of 394
RENESAS

TSTMlong i) /* TST.B #i mm @R0, GBR) */

{
| ong tenp;
t emp=(1 ong) Read_Byt e(GBR+R[0]) ;
t enp&=(0x000000FF & (long)i);
if (tenmp==0) T=1;
el se T=0;
PC+=2;
}
Example
TST RO, RO ; Before execution RO = H'00000000
; After execution T=1
TST #H 80, RO ; Before execution RO = H'FFFFFF7F

; After execution T=1
TST.B #H A5, @ R0, GBR) ; Beforeexecution (RO,GBR)=H'A5
; After execution T=0

Rev. 5.0, 04/01, page 375 of 394
RENESAS

9.102 XOR eXclusive OR logical Logical Instruction

Exclusive
Logical OR
Execution
Format Summary of Operation Instruction Code States T Bit
XOR Rm,Rn Rn”~"Rm - Rn 0010nnnnmmm1010 1 —
XOR #imm,RO RO~ imm - RO 11001010iiiiiiii 1 —
XOR.B #imm,@(R0,GBR) (RO+GBR)"imm - 11001110iiiiiiii 4 —
(RO+GBR)

Description

Thisinstruction exclusively ORs the contents of genera registers Rn and Rm, and stores the result
inRn.

Thisinstruction can be used to exclusively OR register RO contents with zero-extended 8-bit
immediate data, or, in indexed GBR indirect addressing mode, to exclusively OR 8-bit memory
with 8-bit immediate data.

Operation

XOR(long m long n) /* XOR Rm Rn */
{

RIn]"=Rni;

PC+=2;

XORI (long i) /* XOR #inmR0 */

{
R[0] ~=(0x000000FF & (Il ong)i);
PC+=2;

XORMlong i) /* XOR B #inmm @RO, GBR) */

{
int tenp;

t emp=(1 ong) Read_Byt e(GBBR+R[0]) ;
t emp”"=(0x000000FF &(1ong)i);

Rev. 5.0, 04/01, page 376 of 394
RENESAS

Wite Byte(GBR+R[0], tenp);

PC+=2;
}

Example

XOR RO, R1

XOR #H FO, RO

XOR. B #H A5, @ R0, GBR)

; Before execution RO =HAAAAAAAA, R1 = H'55555555
; After execution R1 = H'FFFFFFFF

; Before execution RO = H'FFFFFFFF

; After execution RO = H'FFFFFFOF

; Before execution (RO,GBR) = H'AS

; After execution (RO,GBR) = H'00

RENESAS

Rev. 5.0, 04/01, page 377 of 394

9.103 XTRCT eXTRaCT Data Transfer Instruction
Middle Extraction
from Linked Registers

Execution
Format Summary of Operation Instruction Code States T Bit

XTRCT Rm,Rn Middle 32 bits of Rm:Rn - Rn 0010nnnnnmmmmil101 1 —

Description

Thisinstruction extracts the middle 32 bits from the 64-bit contents of linked general registers Rm
and Rn, and stores the result in Rn.

MSB LSB MSB LSB
Rm Rn
\ /
Rn
Operation
XTRCT(1 ong m 1ong n) [* XTRCT Rm Rn */
{

unsi gned | ong tenp;

t emp=(R M <<16) &0xFFFFO0000;
R[n] =(R[n] >>16) &0x0000FFFF;

R n] | =t enp;
PC+=2;

}

Example

XTRCT RO, R1 ; Before execution RO = H'01234567, R1 = H'89ABCDEF
;. After execution R1=H'456789AB

Rev. 5.0, 04/01, page 378 of 394
RENESAS

Appendix A Instruction Codes

Al Instruction Set by Addressing Mode

TableA.1 Instruction Set by Addressing Mode

Addressing Mode Category Sample Instruction Type
No operand — NOP 13
Register direct Destination operand only MOVT Rn 24
Source and destination ADD Rm,Rn 56
operands
Transfer to control register or LDC Rm,SR 16
system register
Transfer from control register or STS MACH,Rn 17
system register
Register indirect Destination operand only JMP @Rn 7
Register direct data transfer MOV.L Rm,@Rn 13
Register indirect with Multiply-and-accumulate MAC.W @Rm+,@Rn+ 2
post-increment operation
Direct data transfer from MOV.L @Rm+,Rn 6
register
Load to control register or LDC.L @Rm+SR 12
system register
Register indirect with Direct data transfer from MOV.L Rm,@-Rn 6
pre-decrement register
Store from control register or STC.L SR,@-Rn 13

system register

Register indirect with Register direct data transfer MOV.L Rm,@(disp,Rn) 6
displacement

Indexed register Register direct data transfer MOV.L Rm,@(RO,Rn) 12
indirect

GBR indirect with Register direct data transfer MOV.L RO,@(disp,GBR) 6
displacement

Indexed GBR indirect Immediate data transfer AND.B #imm,@(R0,GBR) 4
PC relative with Direct data transfer to register MOV.L @(disp,PC),Rn 3
displacement

PC relative using Rn Branch instruction BRAF Rn

PC relative Branch instruction BRA label 6

Rev. 5.0, 04/01, page 379 of 394
RENESAS

TableA.1 Instruction Set by Addressing Mode (cont)

Addressing Mode Category Sample Instruction Type
Immediate Load to register FLDIO FRn 2
Register direct arithmetic/logic ~ ADD #imm,Rn 7
operation
Exception vector specification ~ TRAPA #imm 1
Total 234

(1) No Operand

TableA.2 NoOperand

Instruction Operation Instruction Code Privileged T Bit
DIVOU 0 - M/IQIT 0000000000011001 — 0
RTS Delayed branch, PR - PC 0000000000001011 — —
CLRMAC 0 -~ MACH, MACL 0000000000101000 — —
CLRS 0-S 0000000001001000 — —
CLRT 0-T 0000000000001000 — 0
LDTLB PTEH/PTEL - TLB 0000000000111000 Privileged —
NOP No operation 0000000000001001 — —
RTE Delayed branch, SSR/SPC -~ 0000000000101011 Privileged —
SR/PC
SETS 1-5S 0000000001011000 — —
SETT 1T 0000000000011000 — 1
SLEEP Sleep or standby 0000000000011011 Privileged —
FRCHG ~FPSCR.FR - FPSCR.FR 1111101111111101 — —
FSCHG ~FPSCR.SZ - FPSCR.SZ 1111001111111101 — —

Rev. 5.0, 04/01, page 380 of 394

RENESAS

(2) Register Direct

Table A.3 Destination Operand Only

Instruction Operation Instruction Code Privileged T Bit
MOVT Rn T-Rn 0000nnNnn00101001 — —
CMP/PZ Rn WhenRn=0,1 - T 0100nnnn00010001 — Comparison
Otherwise, 0 - T result
CMP/PL Rn WhenRn>0,1-T 0100nnnn00010101 — Comparison
Otherwise, 0 - T result
DT Rn Rn -1 - Rn; when Rn =0, 0100nnnn00010000 — Comparison
1-T result
WhenRn#0,0 - T
ROTL Rn T « Rn -« MSB 0100nnnn00000100 — MSB
ROTR Rn LSB - Rn -~ T 0100nnnn00000101 — LSB
ROTCL Rn T<Rn T 0100nnnn00100100 — MSB
ROTCR Rn T-Rn-T 0100nnnn00100101 — LSB
SHAL Rn T<Rn-0 0100nnnn00100000 — MSB
SHAR Rn MSB - Rn - T 0100nnnn00100001 — LSB
SHLL Rn T-Rn-0 0100nnnn00000000 — MSB
SHLR Rn O-Rn-T 0100nnnn00000001 — LSB
SHLL2 Rn Rn<<2 -~ Rn 0100nnnn00001000 — —
SHLR2 Rn Rn>>2 - Rn 0100nnnn00001001 — —
SHLLS8 Rn Rn<<8 -~ Rn 0100nnnn00011000 — —
SHLRS8 Rn Rn>>8 - Rn 0100nnnn00011001 — —
SHLL16 Rn Rn<<16 - Rn 0100nnnn00101000 — —
SHLR16 Rn Rn>>16 - Rn 0100nnnn00101001 — —
FABS FRn FRn & H'7FFF FFFF - FRn 1111nnnn01011101 — —
FNEG FRn FRn O H'80000000 - FRnN 1111nnnn01001101 — —
FSQRT FRn VFRn - FRn 1111nnnn01101101 — —
FABS DRn DRn & H'7FFF FFFF FFFF 1111nnn001011101 — —
FFFF - DRn
FNEG DRn DRn ~ H'8000 0000 0000 0000 1111nnn001001101 — —
- DRn
FSQRT DRn vDRn - DRn 1111nnn001101101 — —

Rev. 5.0, 04/01, page 381 of 394

RENESAS

TableA.4 Sourceand Destination Operands

Instruction Operation Instruction Code Privileged T Bit
MOV Rm,Rn Rm - Rn 0110nnnnnMmMmMmOO011l — —
SWAP.B Rm,Rn Rm - swap lower 2 bytes 0110nnnnnMMmm1000 — —
- Rn
SWAP.W Rm,Rn Rm - swap upper/lower 0110nnnnnmMmm1001 — —
words - Rn
XTRCT Rm,Rn Rm:Rn middle 32 bits — Rn 0010nnnnnMMmMm1101 — —
ADD Rm,Rn Rn+Rm - Rn 0011nnnnmmmmm1100 — —
ADDC Rm,Rn Rn+Rm+T - Rn,carry - T 001lnnnnmmmill1l0 — Carry
ADDV Rm,Rn Rn +Rm - Rn, overflow - T 0011nnnnmmmillll — Overflow
CMP/EQ Rm,Rn WhenRn=Rm,1 - T 0011nnnnnmMmmOD000 — Comparison
Otherwise, 0 - T result
CMP/HS Rm,Rn When Rn = Rm (unsigned), 0011nnnnmmm0010 — Comparison
1-T result
Otherwise, 0 - T
CMP/GE Rm,Rn When Rn = Rm (signed), 1 -~ T 001lnnnnmm®O0011 — Comparison
Otherwise, 0 - T result
CMP/HI Rm,Rn When Rn > Rm (unsigned), 001lnnnnnmmMmO0110 — Comparison
1-T result
Otherwise, 0 - T
CMP/GT Rm,Rn When Rn > Rm (signed), 1 - T 0011nnnnmmm?0111 — Comparison
Otherwise, 0 - T result
CMP/STR Rm,Rn When any bytes are equal, 0010nnnnnMMmMmM1100 — Comparison
1-T result
Otherwise, 0 - T
DIVl Rm,Rn 1-step division (Rn + Rm) 001lnnnnnmmMmOD100 — Calculation
result
DIVOS Rm,Rn MSB of Rn - Q, 0010nnnnnmmmM™D111 — Calculation
MSB of Rm -~ M,M"Q - T result
DMULS.L Rm,Rn Signed, Rn x Rm - MAC, 001lnnnnnmmmll101 — —
32 x 32 - 64 bits
DMULU.L Rm,Rn Unsigned, Rn x Rm - MAC, 0011nnnnmmm0101 — —
32 x 32 - 64 bits
EXTS.B Rm,Rn Rm sign-extended from 0110nnnnmmmml110 — —
byte - Rn
EXTS.W Rm,Rn Rm sign-extended from 0110nnnnmmmml11l — —
word - Rn
EXTU.B Rm,Rn Rm zero-extended from 0110nnnnmmml100 — —
byte » Rn
EXTUW Rm,Rn Rm zero-extended from 0110nnnnnmmm1101 — —

word —» Rn

Rev. 5.0, 04/01, page 382 of 394

RENESAS

TableA.4 Sourceand Destination Operands (cont)

Instruction Operation Instruction Code Privileged T Bit
MUL.L Rm,Rn Rn x Rm - MACL 0000NnnNnMMMO111 — —
32 x 32 - 32 bits
MULS.W Rm,Rn Signed, Rn x Rm - MACL 0010nnnnnmMmmi11l — —
16 x 16 — 32 bits
MULU.W Rm,Rn Unsigned, Rn x Rm - MACL 0010nnnnmmmmi110 — —
16 x 16 — 32 bits
NEG Rm,Rn 0-Rm - Rn 0110nnnnmm 011 — —
NEGC Rm,Rn O—Rm-T - Rn, borrow - T 0110nnnnmmm1010 — Borrow
SUB Rm,Rn Rn—-Rm - Rn 0011nnnnmMmm1000 — —
SuUBC Rm,Rn Rn—Rm-T - Rn, borrow - T 0011nnnnnmm1010 — Borrow
SUBV Rm,Rn Rn—Rm - Rn, underflow - T 001lnnnnnmmi1011 — Underflow
AND Rm,Rn Rn & Rm - Rn 0010nnnnmmM1 001 — —
NOT Rm,Rn ~Rm - Rn 0110nnnnmmmD111l — —
OR Rm,Rn Rn|Rm - Rn 0010nnnnmMmmMmM1 011 — —
TST Rm,Rn Rn & Rm; when result = 0, 0010nnnnPMmMmMM1000 — Test result
1-T
Otherwise, 0 - T
XOR Rm,Rn RnORmM - Rn 0010nnnnmmM1010 — —
SHAD Rm,Rn When Rn =20, Rn<<Rm - Rn 0100nnnnmmm1100 — —
When Rn <0, Rn>>Rm -
[MSB - Rn]
SHLD Rm,Rn When Rn =0, Rn << Rm - Rn 0100nnnnnmm1101 — —
When Rn <0, Rn>>Rm -
[0 - Rn]
FMOV FRm,FRn FRm - FRn 1111nnnnnmmmil100 — —
FMOV DRm,DRn DRm - DRn 1111nnnOmMD1100 — —
FADD FRm,FRn FRn + FRm - FRn 1111nnnnnmm0000 — —
FCMP/EQ FRm,FRn When FRn=FRm,1 - T 1111nnnnnmMmm0100 — Comparison
Otherwise, 0 - T result
FCMP/GT FRm,FRn When FRn >FRm, 1 - T 1111nnnnnmMmm0101 — Comparison
Otherwise, 0 - T result
FDIV FRm,FRn FRnN/FRm - FRn 1111nnnnmmm0011 — —
FMAC FRO,FRm,FRn FRO*FRm + FRn - FRn 1111nnnnnmmmmil110 — —
FMUL FRmM,FRn FRn*FRm - FRn 1111nnnnmmm0010 — —
FSUB FRm,FRn FRn — FRm - FRn 1111nnnnnmmm0001 — —
FADD DRm,DRn DRn + DRm - DRn 1111nnnOmMO0000 — —
FCMP/EQ DRm,DRn When DRn=DRm, 1 - T 1112nnnOMmmO0100 — Comparison
Otherwise, 0 - T result

Rev. 5.0, 04/01, page 383 of 394

RENESAS

TableA.4 Sourceand Destination Operands (cont)

Instruction Operation Instruction Code Privileged T Bit
FCMP/GT DRm,DRn When DRn>DRm, 1 - T 1111nnnOnMMD0101 — Comparison
Otherwise, 0 - T result
FDIV DRm,DRn DRn /DRm - DRn 1111nnnOmMD0011 — —
FMUL DRm,DRn DRn *DRm - DRn 1111nnnOmmMD0010 — —
FSUB DRm,DRn DRn - DRm - DRn 1111nnnOMMMO0001 — —
FMOV DRm,XDn DRm - XDn 1111nnn1mmD1100 — —
FMOV XDm,DRn XDm - DRn 1111nnnOmMMM11100 — —
FMOV XDm,XDn XDm - XDn 1111nnn1mm11100 — —
FIPR FVm,FVn inner_product [FVm, FVn] - 1111nnnm11101101 — —
FR[n+3]
FTRV XMTRX,FVn transform_vector [XMTRX, FVn] 1111nn0111111101 — —
- FVn
Table A5 Transfer to Control Register or System Register
Instruction Operation Instruction Code Privileged T Bit
LDC Rm,SR Rm - SR 0100mmmD0001110 Privileged LSB
LDC Rm,GBR Rm - GBR 0100mMmM®D0011110 — —
LDC Rm,VBR Rm - VBR 0100mmmD0101110 Privileged —
LDC Rm,SSR Rm - SSR 0100mmMmM®D0111110 Privileged —
LDC Rm,SPC Rm - SPC 0100mmmD1001110 Privileged —
LDC Rm,DBR Rm - DBR 0100mmMm1111010 Privileged —
LDC Rm,Rn_BANK Rm - Rn_BANK (n=0to7) 0100mmmilnnn1110 Privileged —
LDS Rm,MACH Rm - MACH 0100mMMD0001010 — —
LDS Rm,MACL Rm - MACL 0100mMmmD0011010 — —
LDS Rm,PR Rm - PR 0100mMmM®D0101010 — —
FLDS FRm,FPUL FRm - FPUL 111100011101 — —
FTRC FRm,FPUL (long) FRm - FPUL 111100111101 — —
FCNVDS DRm,FPUL double_to_ floatfDRm] - FPUL 1111nmm010111101 — —
FTRC DRm,FPUL (long) DRm - FPUL 1111000111101 — —
LDS Rm,FPSCR Rm - FPSCR 0100mMmM®D1101010 — —
LDS Rm,FPUL Rm - FPUL 0100mMmmD1011010 — —

Rev. 5.0, 04/01, page 384 of 394

RENESAS

Table A.6 Transfer from Control Register or System Register

Instruction Operation Instruction Code Privileged T Bit
STC SR,Rn SR - Rn 0000nnnn00000010 Privileged —
STC GBR,Rn GBR - Rn 0000nnnn00010010 — —
STC VBR,Rn VBR - Rn 0000nnnn00100010 Privileged —
STC SSR,Rn SSR - Rn 0000nnnn00110010 Privileged —
STC SPC,Rn SPC - Rn 0000nnnn01000010 Privileged —
STC SGR,Rn SGR - Rn 0000nnnn00111010 Privileged —
STC DBR,Rn DBR - Rn 0000nnnn11111010 Privileged —
STC Rm_BANK,Rn Rm_BANK - Rn(m=0to7) 0000nnnnlnmm®D010 Privileged —
STS MACH,Rn MACH - Rn 0000nnnn00001010 — —
STS MACL,Rn MACL - Rn 0000nnnn00011010 — —
STS PR,Rn PR - Rn 0000nnnn00101010 — —
FSTS FPUL,FRn FPUL - FRn 1111nnnn00001101 — —
FLOAT FPUL,FRn (float) FPUL - FRn 1111nnnn00101101 — —
FCNVSD FPUL,DRn float_to_ double [FPUL] - DRn 1111nnn010101101 — —
FLOAT FPUL,DRn (float)FPUL - DRn 1111nnn000101101 — —
STS FPSCR,Rn FPSCR - Rn 0000nnNnn01101010 — —
STS FPUL,Rn FPUL - Rn 0000nnnn01011010 — —

(3) Register Indirect

Table A.7 Destination Operand Only

Instruction Operation Instruction Code Privileged T Bit

TAS.B @Rn When (Rn)=0,1 - T 0100nnnn00011011 — Test result
Otherwise, 0 - T
In both cases, 1 -~ MSB of (Rn)

JMP @Rn Delayed branch, Rn - PC 0100nnnn00101011 — —

JSR @Rn Delayed branch, PC +4 - PR, 0100nnnn00001011 — —
Rn - PC

OCBI @Rn Invalidates operand cache block 0000nnnn10010011 — —

OCBP @Rn Writes back and invalidates 0000nnnn10100011 — —
operand cache block

OCBWB @Rn Writes back operand cache block 0000nnnn10110011 — —

PREF @Rn (Rn) — operand cache 0000nnnn10000011 — —

Rev. 5.0, 04/01, page 385 of 394
RENESAS

Table A.8 Register Direct Data Transfer

Instruction Operation Instruction Code Privileged T Bit
MOV.B Rm,@Rn Rm - (Rn) 0010nnnnmmm0000 — —
MOV.W Rm,@Rn Rm - (Rn) 0010nnnnnMMmMmMO001 — —
MOV.L Rm,@Rn Rm - (Rn) 0010nnnnmmm0010 — —
MOV.B @Rm,Rn (Rm) - sign extension - Rn 0110nnnnnmmm0000 — —
MOV.W @Rm,Rn (Rm) - sign extension - Rn 0110nnnnmmm0001 — —
MOV.L @Rm,Rn (Rm) - Rn 0110nnnnnMMmMmO010 — —
MOVCA.L RO,@Rn RO - (Rn) (without fetching 0000nnnn11000011 — —
cache block)
FMOV.S @Rm,FRn (Rm) - FRn 1111nnnnnmmm1000 — —
FMOV.S FRm,@Rn FRm - (Rn) 11121nnnnmmm1010 — —
FMOV @Rm,DRn (Rm) - DRn 1111nnnOnMmMmM1000 — —
FMOV DRm,@Rn DRm - (Rn) 1112nnnnmm01010 — —
FMOV @Rm,XDn (Rm) - XDn 1111nnn1pmm1000 — —
FMOV XDm,@Rn XDm - (Rn) 1112nnnnmmml1010 — —

(4) Register Indirect with Post-Increment

Table A.9 Multiply-and-Accumulate Operation

Instruction

Operation

Instruction Code

Privileged T Bit

MAC.L

@Rm+,@Rn+

Signed, (Rn) x (Rm) + MAC -~ MAC 0000nnnnnmmmi11l — —

Rn+4 - Rn,Rm+4 - Rm
32 x 32+ 64 - 64 bhits

MAC.W @Rm+ @Rn+

Signed, (Rn) x (Rm) + MAC -~ MAC 0100nnnnnmmmilll — —

Rn+2 - Rn,Rm+2 - Rm
16 x 16 + 64 — 64 bits

Table A.10 Direct Data Transfer from Register

Instruction Operation Instruction Code Privileged T Bit

MOV.B @Rm+,Rn (Rm) - sign extension — Rn, 0110nnnnnmmD100 — —
Rm+1 - Rm

MOV.W @Rm+,Rn (Rm) - sign extension — Rn, 0110nnnnnmmD101 — —
Rm+2 - Rm

MOV.L @Rm+,Rn (Rm) - Rn,Rm+4 - Rm 0110nnnnnmMmMm0110 — —

FMOV.S @Rm+,FRn (Rm) -~ FRn,Rm+4 - Rm 1111nnnnnmmm1001 — —

FMOV @Rm+,DRn (Rm) - DRn, Rm+8 - Rm 1112nnnOmmm1001 — —

FMOV @Rm+,XDn (Rm) - XDn,Rm +8 - Rm 11121nnn1mmmm1001 — —

Rev. 5.0, 04/01, page 386 of 394

RENESAS

Table A.11 Load to Control Register or System Register

Instruction Operation Instruction Code Privileged T Bit
LDC.L @Rm+SR (Rm) - SR, Rm +4 - Rm 0100mmMmM®D0000111 Privileged LSB
LDC.L @Rm+,GBR (Rm) - GBR,Rm+4 - Rm 0100mMmm®D0010111 — —
LDC.L @Rm+,VBR (Rm) - VBR,Rm+4 -~ Rm 0100mmmD0100111 Privileged —
LDC.L @Rm+,SSR (Rm) -~ SSR,Rm+4 -, Rm 0100mmmD0110111 Privileged —
LDC.L @Rm+,SPC (Rm) - SPC,Rm+4 - Rm 0100mmmD1000111 Privileged —
LDC.L @Rm+,DBR (Rm) - DBR,Rm +4 - Rm 0100mmm11110110 Privileged —
LDC.L @Rm+,Rn_BANK (Rm) - Rn_BANK, 0100mmmmlnnn0111 Privileged —
Rm+4 - Rm
LDS.L @Rm+,MACH (Rm) -~ MACH,Rm+4 -~ Rm 0100mmm00000110 — —
LDS.L @Rm+,MACL (Rm) -~ MACL,Rm+4 - Rm 0100mm00010110 — —
LDS.L @Rm+PR (Rm) - PR, Rm +4 - Rm 0100mMMD0100110 — —
LDS.L @Rm+,FPSCR (Rm) -~ FPSCR, Rm+4 - Rm 0100mmm®01100110 — —
LDS.L @Rm+,FPUL (Rm) - FPUL, Rm+4 - Rm 0100mMmM®D1010110 — —
(5) Register Indirect with Pre-Decrement
Table A.12 Direct Data Transfer from Register
Instruction Operation Instruction Code Privileged T Bit
MOV.B Rm,@-Rn Rn-1 - Rn, Rm - (Rn) 0010nnnnnMMmMmMOD100 — —
MOV.W Rm,@-Rn Rn-2 -~ Rn, Rm - (Rn) 0010nnnnmmm0101 — —
MOV.L Rm,@-Rn Rn-4 -, Rn, Rm - (Rn) 0010nnnnnMMmMmMO110 — —
FMOV.S FRm,@-Rn Rn-4 - Rn, FRm - (Rn) 1111nnnnnmmm1011 — —
FMOV DRm,@-Rn Rn-8 - Rn, DRm - (Rn) 1112nnnnmmo01011 — —
FMOV XDm,@-Rn Rn -8 - Rn, XDm - (Rn) 1111nnnnnmm11011 — —

Rev. 5.0, 04/01, page 387 of 394

RENESAS

Table A.13 Storefrom Control Register or System Register

Instruc Operation Instruction Code Privileged T Bit
tion
STC.L SR,@-Rn Rn-4 - Rn, SR - (Rn) 0100nnnn00000011 Privileged —
STC.L GBR,@-Rn Rn-4 - Rn, GBR - (Rn) 0100nnnn00010011 — —
STC.L VBR,@-Rn Rn—-4 - Rn, VBR - (Rn) 0100nnnn00100011 Privileged —
STC.L SSR,@-Rn Rn-4 - Rn, SSR - (Rn) 0100nnnn00110011 Privileged —
STC.L SPC,@-Rn Rn -4 - Rn, SPC - (Rn) 0100nnnn01000011 Privileged —
STC.L SGR,@-Rn Rn-4 - Rn, SGR - (Rn) 0100nnnn00110010 Privileged —
STC.L DBR,@-Rn Rn—-4 - Rn, DBR - (Rn) 0100nnnn11110010 Privileged —
STC.L Rm_BANK,@-Rn Rn-4 - Rn, 0100nnnnlmm0011 Privileged —
Rm_BANK - (Rn) (m=0to7)
STS.L MACH,@-Rn Rn—-4 - Rn, MACH - (Rn) 0100nnnn00000010 — —
STS.L MACL,@-Rn Rn -4 - Rn, MACL - (Rn) 0100nnnn00010010 — —
STS.L PR,@-Rn Rn-4 - Rn, PR - (Rn) 0100nnnn00100010 — —
STS.L FPSCR,@-Rn Rn—-4 - Rn, FPSCR - (Rn) 0100nnnn01100010 — —
STS.L FPUL,@-Rn Rn-4 - Rn, FPUL - (Rn) 0100nnnn01010010 — —
(6) Register Indirect with Displacement
Table A.14 Register Direct Data Transfer
Instruction Operation Instruction Code Privileged T Bit
MOV.B RO,@(disp,Rn) RO - (disp + Rn) 10000000nnnndddd — —
MOV.W RO,@(disp,Rn) RO - (disp x 2 + Rn) 10000001nnnndddd — —
MOV.L Rm,@(disp,Rn) Rm - (disp x 4 + Rn) 0001nnnnnmmmmdddd — —
MOV.B @(disp,Rm),R0 (disp + Rm) - sign extension ~ 10000100nmmudddd — —
- RO
MOV.W @(disp,Rm),RO (disp x 2 + Rm) - sign 10000101nmmmdddd — —
extension - RO
MOV.L @(disp,Rm),Rn (disp x4 + Rm) - Rn 0101nnnnnmmmmdddd — —

Rev. 5.0, 04/01, page 388 of 394

RENESAS

(7) Indexed Register Indirect

Table A.15 Register Direct Data Transfer

Instruction Operation Instruction Code Privileged T Bit
MOV.B Rm,@(RO,Rn) Rm - (RO + Rn) 0000nnnnmMmMmM0100 — —
MOV.W Rm,@(RO,Rn) Rm - (RO + Rn) 0000nnnnAMMMMO101 — —
MOV.L Rm,@(RO,Rn) Rm - (RO + Rn) 0000nnnnmmMmMmM0110 — —
MOV.B @(RO,Rm),Rn (RO + Rm) - sign extension 0000nnNnNnPMMMML100 — —
- Rn
MOV.W @(RO,Rm),Rn (RO + Rm) - sign extension 0000nnnnAMMMML101 — —
- Rn
MOV.L @(RO,Rm),Rn (RO + Rm) - Rn 0000nnnnPMMML110 — —
FMOV.S @(RO,Rm),FRn (RO + Rm) - FRn 1111nnnnmmmD110 — —
FMOV.S FRm,@(RO,Rn) FRm - (RO + Rn) 111lnnnnnmmo111 — —
FMOV @(RO,Rm),DRn (RO + Rm) - DRn 1111nnnOmMmmD110 — —
FMOV DRm,@(RO,Rn) DRm - (RO + Rn) 1111nnnnnMm00111 — —
FMOV @(RO,Rm),DRn (RO + Rm) - DRn 1111nnnlnmmo0110 — —
FMOV XDm,@(RO,Rn) XDm - (RO+Rn) 1111nnnnnmMml0111 — —

(8) GBR Indirect with Displacement

Table A.16 Register Direct Data Transfer

Instructi Operation Instruction Code Privileged T Bit

on

MOV.B RO,@(disp,GBR) RO - (disp + GBR) 11000000dddddddd — —

MOV.W RO,@(disp,GBR) RO - (disp x 2 + GBR) 11000001dddddddd — —

MOV.L RO,@(disp,GBR) RO - (disp x 4 + GBR) 11000010dddddddd — —

MOV.B @(disp,GBR),R0 (disp + GBR) — 11000100dddddddd — —
sign extension - RO

MOV.W @(disp,GBR),R0 (disp x 2 + GBR) — 11000101dddddddd — —
sign extension - RO

MOV.L @(disp,GBR),R0 (disp x 4 + GBR) — RO 11000110dddddddd — —

Rev. 5.0, 04/01, page 389 of 394

RENESAS

(9) Indexed GBR Indirect

Table A.17 Immediate Data Transfer

Instructi Operation Instruction Code Privileged T Bit

on

AND.B #imm,@(R0,GBR) (RO + GBR) & imm - (RO + 1100110%iiiiiiii — —
GBR)

OR.B #imm,@(R0O,GBR) (RO + GBR) | imm - (RO + 1100111%iiiiiiii —

GBR)

TST.B #mm,@(RO,GBR)

=0,1-T
Otherwise, 0 - T

Test result

XOR.B #imm,@(RO,GBR)

(RO + GBR) Oimm - (RO +
GBR)

(10) PC Relative with Displacement

Table A.18 Direct Data Transfer to Register

Instruction Operation Instruction Code Privileged T Bit

MOV.W @(disp,PC),Rn (disp x2 + PC + 4) - sign 1001nnnndddddddd — —
extension - Rn

MOV.L @(disp,PC),Rn (disp x4 + PC & H'FFFFFFFC 1101nnnndddddddd — —
+4) - Rn

MOVA @(disp,PC),R0 disp x4+ PC & H'FFFFFFFC 11000111ldddddddd — —

+4 5 RO

(11) PC Relative Using

Rn

TableA.19 Branch Instructions

Instruction Operation Instruction Code Privileged T Bit
BRAF Rn Rn+PC+4 - PC 0000nnNnn00100011 — —
BSRF Rn Delayed branch, PC + 4 - PR, 0000nnnn00000011 — —

Rn+PC+4 - PC

Rev. 5.0, 04/01, page 390 of 394

RENESAS

(12) PC Relative

Table A.20 Branch Instructions

Instruction Operation Instruction Code Privileged T Bit
BF label When T =0, disp x2 + PC + 10001011dddddddd — —

4 . PC

When T =1, nop
BF/S label Delayed branch; when T = 0, 10001111dddddddd — —

dispx2+PC+4 - PC
When T =1, nop

BT label When T =1, dispx2+PC+ 10001001dddddddd — —
4 - PC
When T =0, nop

BT/S label Delayed branch; when T =1, 10001101dddddddd — —

dispx2+PC+4 - PC
When T =0, nop

BRA label Delayed branch, disp x 2 + 1010dddddddddddd — —
PC+4 - PC
BSR label Delayed branch, PC + 4 - PR, 10l1ldddddddddddd — —

dispx2+PC+4 - PC

(13) Immediate

Table A.21 Load to Register

Instruction Operation Instruction Code Privileged T Bit
FLDIO FRn H'00000000 - FRn 1111nnnn10001101 — —
FLDI1 FRn H'3F800000 — FRn 1111nnnn10011101 — —

Table A.22 Register Direct Arithmetic/Logic Operation

Instruction Operation Instruction Code Privileged T Bit

MOV #imm,Rn imm - sign extension - Rn 1110nnnniiiiiiii — —

ADD #mm,Rn Rn +imm - Rn Ollilnnnniiiiiiii — —

CMP/EQ #imm,RO When RO =imm,1 - T 10001000iiiiiiii — Comparison
Otherwise, 0 - T result

AND #imm,RO RO & imm - RO 1100100%iiiiiiii — —

OR #imm,R0O RO | imm - RO 1100101%iiiiiiii — —

TST #mm,RO RO & imm; when result = 0, 11001000iiiiiiii — Test result
1T

Otherwise, 0 - T

XOR #imm,RO RO Oimm - RO 11001010iiiiiiii — —

Rev. 5.0, 04/01, page 391 of 394
RENESAS

Table A.23 Exception Vector Specification

Instruction Operation Instruction Code Privileged T Bit

TRAPA #imm PC +2 - SPC, SR - SSR, 1100001%iiiiiiii — —
#imm << 2 - TRA,
H'160 — EXPEVT,
VBR + H'0100 - PC

Rev. 5.0, 04/01, page 392 of 394
RENESAS

Appendix B Instruction Prefetch Side Effects

The SH-4 is provided with an internal buffer for holding pre-read instructions, and always
performs pre-reading. Therefore, program code must not be located in the last 20-byte area of any
memory space. If program code is located in these areas, the memory areawill be exceeded and a
bus access for instruction pre-reading may beinitiated. A case in which thisis a problem is shown
below.

Address :
H'03FFFFF8 ADD R1,R4 «—— PC (program counter)
H'03FFFFFA JMP @R2
Area 0 H'O3FFFFFC NOP
H'03FFFFFE NOP
Area 1l H'04000000
H'04000002 - Instruction prefetch address

FigureB.1 Instruction Prefetch

Figure B.1 presupposes a case in which the instruction (ADD) indicated by the program counter
(PC) and the address H'0400002 instruction prefetch are executed simultaneoudly. It isalso
assumed that the program branches to an area outside area 1 after executing the following IMP
instruction and delay dot instruction.

In this case, the program flow is unpredictable, and a bus access (instruction prefetch) to area 1
may be initiated.

Instruction Prefetch Side Effects
1. Itispossiblethat an external bus access caused by an instruction prefetch may result in
misoperation of an external device, such as a FIFO, connected to the area concerned.

2. If thereisno deviceto reply to an external bus request caused by an instruction prefetch,
hangup will occur.

Remedies
1. Theseillegal instruction fetches can be avoided by using the MMU.

2. The problem can be avoided by not locating program code in the last 20 bytes of any area.

Rev. 5.0, 04/01, page 393 of 394
RENESAS

Rev. 5.0, 04/01, page 394 of 394
RENESAS

SH-4 Programming Manual

Publication Date: 1st Edition, August 1998
5th Edition, April 2001
Published by: Customer Service Division
Semiconductor & Integrated Circuits
Hitachi, Ltd.
Edited by: Technical Documentation Group
Hitachi Kodaira Semiconductor Co., Ltd.
Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.

