

FST3384A

10-Bit Low Power Extended Input Voltage Bus Switch

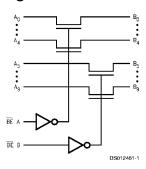
General Description

The FST3384A provides 10 bits of high-speed CMOS TTL-compatible bus switches. The low on resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise. The device is organized as two 5-bit switches with separate bus enable (\overline{BE}) signals. When \overline{BE} is low, the switch is on and port A is connected to port B. When \overline{BE} is high, the switch is open and a high-impedance state exists between the two ports.

The FST3384A 10-bit bus switch is pin-for-pin and function compatible with the FST3384 device. It has the added feature of allowing extended negative input voltages on the I/O pins. The FST3384A bus switch, unlike most bus switches on the market, will not falsely turn on when $\overline{\rm BE}$ is high and negative undershoot voltages are encountered on the I/O pins. Thus it is "undershoot hardened" (see related application note) tolerating undershoots up to –1.5V.

Typical applications include IDE bus connector interfaces, PCI card interfaces, backplane card interfaces, and other noisy environments where switches are needed.

Features


- Extended input voltage design tolerates input undershoots up to −1.5V
- lacksquare 10 Ω switch connection between two ports
- Ultra low power with 2 µA typical I_{CC}
- Zero ground bounce in flow-through mode
- Control inputs compatible with TTL level
- Available in SOIC, QSOP and TSSOP

Ordering Code:

Order Number	Package Number	Package Description				
FST3384AWM	M24B	24-Lead (0.300" Wide) Small Outline Package, SOIC JEDEC				
FST3384AQSC	MQA24	24-Lead (0.150" Wide) Shrink Small Outline Package, QSOP				
FST3384AMTC	MTC24	24-Lead Thin Small Outline Package, TSSOP				

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Diagram

Connection Diagram

Pin Assignment

© 1997 Fairchild Semiconductor Corporation DS012481

Pin Descriptions

Pin Names	Description				
BE A, BE B	Bus Switch Enable				
A _o -A ₉	Bus A				
B _o -B ₉	Bus B				

Truth Table

BE A	BE B	B ₀ -B ₄	B ₅ -B ₉	Function
L	L	A _O -A ₄	A ₅ -A ₉	Connect
L	Н	A ₀ -A ₄	HIGH-Z State	Connect
Н	L	HIGH-Z State	A ₅ -A ₉	Connect
Н	Н	HIGH-Z State	HIGH-Z State	Disconnect

Absolute Maximum Ratings (Note 1)

Recommended Operating Conditions

Supply Voltage (V_{CC}) 4.0V to 5.5V Free Air Operating Temperature (T_A) -40°C to +85°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

DC Electrical Characteristics

Symbol	Parameter	V _{cc}	T _A = -40°C to +85°C			Units	Conditions
		(V)	Min	Typ (Note 5)	Max		
V _{IK}	Maximum Clamp	4.75			-1.2	٧	I _{IN} = -18 mA
	Diode Voltage						
V_{IH}	Minimum High	4.75–5.25	2.0			V	
	Level Input Voltage						
V _{IL}	Maximum Low	4.75–5.25			0.8		
	Level Input Voltage						
I _{IN}	Maximum Input	0			10	μΑ	$0 \le V_{IN} \le 5.25V$
	Leakage Current	5.25			±1		
l _{oz}	Maximum 3-STATE	5.25			±10	μΑ	0 ≤ A, B ≤ V _{CC}
	I/O Leakage						
Ios	Short Circuit Current	4.75	100			mA	$V_i(A), V_i(B) = 0V,$
							$V_{I}(B), V_{I}(A) = 4.75V$
R _{ON}	Switch On	4.75		6	12	Ω	$V_{I} = 0V, I_{ON} = 30 \text{ mA}$
	Resistance (Note 3)			15	25	Ω	$V_1 = 2.4V, I_{ON} = 15 \text{ mA}$
Icc	Maximum Quiescent	5.25		0.2	10	μА	V _I = V _{CC} , GND
	Supply Current						I _O = 0
Δl _{CC}	Increase in I _{CC}	5.25			2.5	mA	$V_{IN} = 3.15V, I_{O} = 0$
	per Input (Note 4)						Per Control Input

Note 3: Measured by voltage drop between A and B pin at indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins

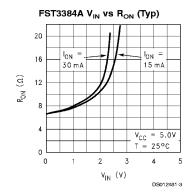
Note 4: Per TTL driven Input (V_{IN} = 3.15V, control inputs only). A and B pins do not contribute to I_{CC} .

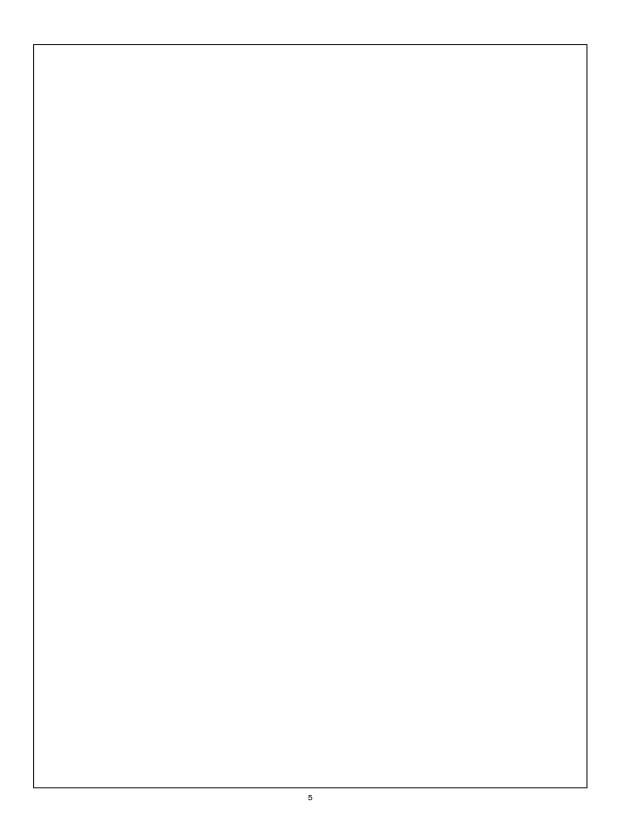
Note 5: All typical values are at V_{CC} = 5.0V, T_A = 25°C.

AC Electrical Characteristics

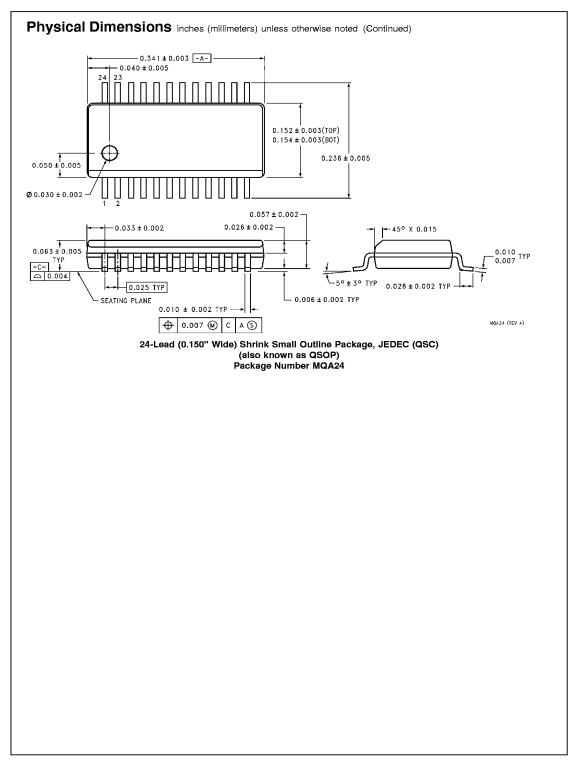
Symbol	Parameter	V _{CC} (V)	T _A = -40°C to +85°C C _L = 50 pF			Units
			Min	Typ (Note 6)	Max	
T _{PLH} T _{PHL}	Data Propagation Delay An to Bn or Bn to An (Note 7)	4.75			0.50	ns
T _{PZL} T _{PZH}	Switch Enable Time BE _A , BE _B to An, Bn	4.75	1.5		6.8	ns
T _{PLZ} T _{PHZ}	Switch Disable Time BE _A , BE _B to An, Bn	4.75	1.5		6.0	ns

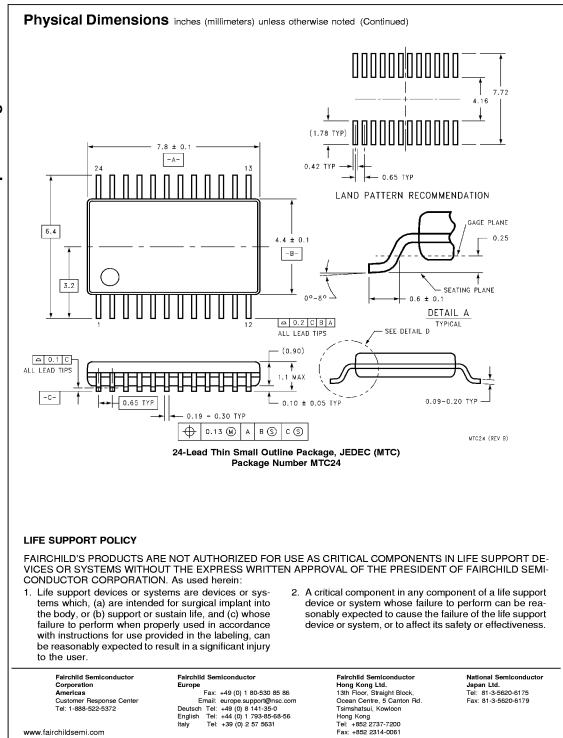
Note 6: All typical values are at V_{CC} = 5.0V, T_A = 25°C.


Note 7: This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On resistance of the switch and the load capacitance. The time constant for the switch and alone is of the order of 0.5 ns for 50 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.


Capacitance

(Note 8)


Symbol	Parameter	Тур	Max	Units	Conditions
C _{IN}	Control Input Capacitance	4	6	pF	$V_{CC} = 5.0V$
C _{I/O} (OFF)	Input/Output Capacitance	9	13	pF	V _{CC} = 5.0V


Note 8: Capacitance is characterized but not tested.

Ordering Information The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows: Fairchild Semiconductor's Switch CMOS Commercial (-40°C to +85°C) Special Variations Designator X = Tape and Reel Blank = Rail/Tube T = TTL-Compatible Package Designator M = 14/16L SOIC WM = 20/24L SOIC QSC = 20/24L Quarter-size SOIC MTC = 14/16/20/24L TSSOP MEA = 48/56L SSOP MTD = 48/56L TSSOP Device Type DS012481-4 Physical Dimensions inches (millimeters) unless otherwise noted LEAD NO 1 IDENTIFICATION $\begin{array}{c} 0.0200 \\ 0.0138 \\ \hline 0.508 \\ 0.350 \\ \end{array} \text{TYP} \quad \boxed{ \Phi \, \left| \begin{array}{c} 0.010 \\ \hline 0.25 \\ \end{array} \right. \text{M} \, \left| \text{A} \, \right| \text{C} \, \left| \text{B} \right| } \\ \end{array}$ $0.1043 \\ \underline{0.0926} \\ 2.65 \\ 2.35$ TYP ALL LEADS -A-SEATING PLANE 🛉 0.0500 ALL LEADS 0.0160 1.27 0.40 24-Lead (0.300" Wide) Small Outline Package, JEDEC Package Number M24B

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications