PRELIMINARY PRODUCT SPECIFICATION

216C01/2/3

CPU CENTRAL PROCESSING UNIT

FEATURES

® 16 bit advanced real time processor for embedded
control

8 RISC-like Load/Store architecture

B CMOS core cell compatible to ZBUS and Z8000
CPU's

s Regular, easy-to-use extendable register file

® Expandable Off -chip register bus architecture

W 9 Basic Instruction types

® Separate code, data and stack spaces

B Sophisticated interrupt structure

m 716CO1 directly addresses up to 8M bytes of
memory,Z16C02 directly addresses up to 64K bytes
of memory, and Z16C03 directly addresses up to 2M

bytes of memory

® Fight user-selectable addressing modes

m Seven data types that range from bits to-32 bit long
word and bytes to word strings

B System and Normal operating modes
m Fully static device

® Fast hardwired instruction control

B Single step execution

m Resource-sharing capabilities for real time
multiprocessing

=B Multi-programming support
m Compiler support

® 32-bit operations, including signed multiply and
divide

®m 10 and 16 MHz clock rate
m | ow power CMOS

B Available in 40-pin DIP, 48-pin DIP, 44-pin PLCC

GENERAL DESCRIPTION

Designed using a RISC-like Load/Store architecture, the
Z16C00 is the first in a family of 16-bit processors and
controllers. The Z16C0Q coreis an advanced high-end 16-
bitreal time processor. The building blocks of the proces-
sor core include hardwired control, efficientinstruction set,
and large extendable register files. The Z16C00 CPU
(Figure 1) is characterized by abundant resources in reg-
isters, data types,and addressing modes as well as the
addition of a new Superintegration BUS (ZSIB). The ZSIB
allows integration of real time functions at register access
speeds. Future embedded controlflers will expand this
function to allow automatic context switching between 256
register banks in less than one microsecond, as well as off-
chip interface with the ZSIB.

The processor resources include sixteen 16-bit general
purpose registers, seven datatypes that range from bits to
32-bit long words and byte and word strings, plus eight
user-selectable addressing modes. The 9 basic instruc-
tion types can be combined with various data types and
addressing modes to form a powerful set of 414 instruc-
tions. Moreover, the instruction setis regular; mostinstruc-
tions can use any of the five main addressing modes and
can operate on byte, word, and long-word data types.

The CPU can operate in either the system or normal mode.
The distinction between these two modes permits privi-
leged operations, thereby improving operating system
organization and implementation. Mulliprogramming is

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

supported by the “atomic” Test and Set instruction; multi-
processing by a combination of instruction and hardware
features; and compilers by multiple stacks, special in-
structions, and addressing modes.

The Z16C00 CPU is offered in three versions; the Z16C01,
Z16C02, and Z16C03 real time processors (Figure 2). The
differences are in addressing range and packaging op-
tions. The 16CO01 can directly address 8M bytes of
memory, the Z16C02 directly addresses 64K bytes, and
the Z16C03 can address 2M bytes of memory.

Instructions for register banks' switching were included to
allow users to potentially switch from any of 256 register
banks. The two operating modes---system and normatl---
and the distinctions between code, date and stack spaces
within each mode allows memory exiension up to 48M
bytes for the Z16C01, 384K bytes for the Z16C02, and 12M
bytes for the Z16C03.

TIHINO

STATUS

CONTROL

BUS
CONTROL

INTERRUPTS

MULTI-MICRO
CONTROL

Ho ll thit HT

|
|
.
{
|

s I
Bs AD4, fa—o
WRED ADys s
ADqz =
READ/WRITE ADy; ja—a
NORMAU/SYSTEM Ay f—e
BYTE/WORD ADy [
ADg [=—= | ADDRESS/
ST,y AD; l«—» (DATA BUS
ST, O et
st Z16C01 A0; s
sTo Z16C02 AD, f—s
Z16C03 AD; f—s
WA CPU AD; |
§TOP ADy fotni
ADp et
BUSREQ b= ——
i, r Z16C01 |
BUSACK I SNg ot ONLY |
| SN [— |
i || SN sEGMENT |
v | | SN [wumBen |
NI | snz —= i
| SNy bt |
i |} SN Z16c03
WO l only
SEGMENT 1
L SEGT AP _]
+5V GND CLK RESEY

Figure 2. Pin Description

REFRESH
GENERAL ARITHMETIC CONTROL
PURPOSE LOGIC
REGISTERS UNIT
REFRESH
COUNTER
< INTERNAL DATA BUS > INTERPACE
FwsTrucTIoN | | psap |
i BUFFER | PROGRAM
It STATUS
REGISTERS
INSTRUCTION R
EXECUTION e EXCEPTION
CONTROL pc “g‘;ﬁ%”‘s
CONTROL

Figure 1.

Z16C00 CPU Functional Block Diagram

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

PIN DESCRIPTION

ADg |t 40[] AD, AD, 1 48[] ADy
ap, 712 39[] AD, AD,]2 47[] sNe
ap,,E]3 38| AD, AD,, 3 46[] SNs
AD e 37[1 ADe Ao, [}4 4501 AD7
AD, []5 36[1 AD. AD, [15 447 ap,
sTopl]e 3517 ap, AD,, CJs 4[] ao4
M7 34[] AD, sTor Of7 420 sNg
AD, 18 as[] ap2 M e 4111 aps
ap,,[Cle 32 AD, ADys[Jo 403 aDs
+sv[jio Z16C02 311 anp A0, J10 3 AD,
Vijn CcPU 30{1 cLock +sv 1 sl Ao,
wi iz 2007 a5 Vi 12 Z16CO01 37[] SN
waCha 2801 Ne N 13 CPU 36[] aND
RESET |14 2717 BAW SEGT |14 357 cLock
Mo []15 267 wis nw 15 341 as
MREQ |16 201 W RESET |18 3] ne
os 17 24[] BUSAGK Mo 17 32171 sW
sts 18 2071 warm MREQ e 3t NS
572: 19 2|1 susrREG ps [J1e 30] rRW
sty 20 2117 sT sTa] 20 291 BUsACK
st,] 2 2811 wart
st 2 27[] BUSREQ
- R sTol] 2 26071 sN,
Figure 3. Z16C02 Pin Assignments = 507 sn,
Figure 4. Z16C01 Pin Assignments
28 -2 o5 o n - 2 0 r S0 o am o *
ge992¢929928¢ 292929292823

6 5 43 2 1t 4443424140

/ 6 5 4 3 2 144 4342 4140 N\

1o (7 hd 39 [o, stop [17 b 39 [] ap,
w e 38|] aps w1 38[] ap,
ao, [o 37] ap, Aoy o 371] an,
an,, 10 36| | ap, apss [|10 36|] ap,
wsv 11 35[7] GND «sv [350] sne
ne []12 Z16C02 34[] ok v [z Z16C03 aa[] aND
w3 CPU 317 wi 13 CPU a3[7] ax
wi [J14 32[] RESERVED wa []14 2 1%
e []15 31 [] ew reser []1s 31171 aw
reser [_|16 0[] s wo [J1s 30] s
w [z 20[] AW waEa {17 20| 1 W
N\ 18 19 20 21 22 23 24 2528 27 28 /

I I O O |
BE55 55 2 2B 8

Figure 5. Z16C02 Pin Assighments

18 192021 22 23 24 2526 27 28 /'

ER

o © o
3
© 9z Z

S8No
BUSREQ

WAIT
BUSACK

Figure 6. Z16C03 Pin Assignments

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

PIN DESCRIPTION (Reference Figures 3, 4, 5 and 6 for pin numbers of the following descriptions.)

AD15-ADO. Address/Data (inputs/outputs, active High, 3-
state). These multiplexed address and data lines are used
for /O and to address memory.

AS. Address Strobe (output, active Low, 3-state). The
rising edge of AS indicates addresses are valid.

BUSACK. BUS Acknowledge (output active Low). ALow
on this line indicates the CPU has relinquished control of
the bus.

BUSREQ. Bus Request (input, active Low). This linemust
be driven Low to request the bus from the CPU.

BW. Byte/Word (output, Low = Word, 3 - state). This
signal defines the type of memory reference on the 16-bit
address/data bus.

CLK. System Clock (input). CLK is a 5V single-phase time-
base input.

DS. Data Strobe (output, active Low, 3 - state). This fine
times the data in and out of the CPU.

MREQ. Memory Request (output, active Low, 3-state). A
Low on this line indicates that the address/data bus holds
a memory address.

MI, MO. Multi-Micro In, Multi-Micro Out (input and output,
active Low). These two lines form a resource-request
daisy chain that allows one CPU in amuiti-microprocessor
system to access a shared resource.

NMI. Non-Maskable Interrupt (edge triggered, input,
active Low). A high-to-low transition on NMI requests a
non-maskable interrupt. The NMi interrupt has the highest
priority of the three types of interrupts.

N/S. Normal/System Mode {output, Low = System Mode,
3-state). N/S indicates the CPUis in the normal or system
mode.

NVI. Non-Vectored Interrupt (input, active Low). ALow on
this line requests a non-vectored interrupt.

RESET. Reset(input, active Low). ALowon thisline resets
the CPU.

RW. ReadMrite (output, Low = Write, 3 - state). RIW
indicates that the CPU is reading from or writing to memory
or /0.

SEGT. Segment Trap (input, active Low). The Memory
Management Unitinterrupts the CPU with a Low onthis line
when the MMU detects a segmentation trap. Input on
16C0O1 only.

SN6-SNO. Segment Number (output, active High,
3-state). These lines provide the segment number.
The 16C01 outputs all of these signals, the Z16C03
outputs SN4 - SNO. There is no segment output with
the Z16C02.

STO0-ST3. Status (oulputs, active High, 3 - state). These
lines specify the CPU status (see Status Code Lines).

STOP. Stop (input, active Low). Thisinput canbe used to
single-step instruction execution.

VI. Vectored Interrupt (input, active Low). A Low on this
line requests a vectored interrupt.

WAIT. Wait {input, active Low). This line indicates to the
CPU that the memory or /O device is not ready for data
transfer.
NOTE: Theabove pindescriptions applytothe Z16CO1.
The Z16C02 efiminates all segmentoutputs (SNO-
SN6) as well as the Segment Trap Input SEGT.
The Z16CO3 eliminates two segment outputs
(SN6, SN5) as well as the Segment Trap Input
SEGT.

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

REGISTER ORGANIZATION

The Z16C00 CPU is a register-oriented machine that offers
sixteen 16-bit general-purpose registers and a set of speciat
system registers. All general-purpose registers can be used
as accumulators and all but one as index registers or
memory pointers.

Register flexibility is created by grouping and overlapping

multiple registers (Figures 7 and 8). For byte operations. the
first eight 16-bit registers (RO... R7) are treated as sixteen
8-bit registers (RLO, RHO..., RL7, RH7). The sixteen 16-bit
registers are grouped in pairs {RRO... RR14) to form 32-bit
long-word registers. Similarly, the register set is grouped in
quadruples (RQO... RQ12) to form 64-bit registers.

Ro [7 RHO 07 RLO o] nof7 RHO ir ALO o]
RRO - ARO
R1 [15 RH1 ' RLY o] R1{1s RH1 } ALY o]
RQO RGO
Rz [RH2 : RL2] Rz| AH2 1 RL2]
RR2 { RA2
Rra [RH3 ! RL3] raf RM3 H RL3]
Ra [RHa : ALa | e RH4 ; ALe |
RR4 ARA
Rs [RHS v RLS] Rs | RHS H RLS]
RO4 - RO4
re [RH8 :)] ne { AHS 1 RLS 1
RR6 RR& -
ar [RH7 i RLY] r7| RH7 ! RL7]
{ ns [1s o] { ns|1s o]
RR8 ARS
R9 RY
[1 |, [i I
rio [] r1o |]
RR10 RA10
an [] Ri1 |]
R12 R1]
RR12 L J RR12 { L
CIHY | | m3f 1
R4’ SYSTEM STACK POINTER (SEG. NO) RO12 Ria|] Ra12
wne rua | NORMAL STACK POINTER (SEG. NO.) e | piy [svevem STACK POWTER
Ris' [SYSTEM STACK POINTER (OFFSET) ms[NORMAL STACK POINTER
Ris | NORMAL STACK POINTER (OFFSET)

Figure 7. Z16C01/Z16C03
General-Purpose Registers

Figure 8. Z16C02
General-Purpose Registers

STACKS

The Z16C01, Z16C02 and Z16C03 can use stacks
located anywhere in memory. Call and return
instructions as well as interrupts and traps use
implied stacks. The distinction between normal and
system stacks separates system information from the
application program information. Two stack pointers
are available: the system stack pointer and the
normal stack pointer. Because they are part of the
general- purpose register group, the user can

manipulate the stack pointers with any instruction
available for register operations.

in the the Z16C01/3, the register pair RR14 is the
implied stack pointer. Register R14 contains the 16-
bit offset. In the Z16C02, register R15 is the implied
16-bit stack pointer.

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

REFRESH

The Z16C00 CPU contains a counter that can be used to
automatically refresh dynamic memory. The refresh counter
register consists of a 9-bit row counter, a 6-bit rate counter,
and an enable bit (Figure 9). The 9-bit row counter can
address up to 256 rows and is incremented by two each
time the rate counter reaches end-of-count. The rate counter
determines the time between successive refreshes. It
consists of a programmable 6-bit modulo-n prescaler (n = 1
to 64). driven at one-fourth the CPU clock rate. The refresh

pericd can be programmed by 1 to 64 us with a 4 MHz
clock. Refresh can be disabled by programming the refresh
enable/disable bit.

JERL] 8 o

[“lj jkaYEJI_Illj P

Figure 9. Refresh Counter

PROGRAM STATUS INFORMATION

This group of status registers contains the program counter,
flags, and control bits. When an interrupt or trap occurs, the
entire group is saved and a new program status group is
loaded.

Figure 10 illustrates how the program status groups
of the Z16C01/3 and Z16CO02 differ. In the
nonsegmented Z16C02, the program status group
consists of two words: the program counter (PC), and
the flag and control word (FCW). In the segmented
Z16C01/3, the program status group consists of four

15 o

onnnooooooounooa]l““’“""
Illlllll[liJJ}lll‘"o"”

[= | FLAG aND
SEG sul:nlvn: !uvnel o o o I c I z [s [wv[m [H] ° ol CONTROL
el Il WORD

[o I SEGMENT NUMBER
TS N S S

[SEGMENT OFFSET —l
1 | 1 1) B 1 L L | 1 I L {

Z16C01/3 Program Status Registers

15
[OT SEGMENT NUMBER
) S I | S

I UPPER OFFSET
L) i 1 L Il 1

Z16C01/3 Program Status Area Pointer

words: a two-word program counter, the flag and
control word, and an unused word reserved for
future use. Seven bits of the first PC word designate
one of the 128 memory segments. The second word
supplies the 16-bit offset that designates a memory
location within the segment.

With the exception of the segment enable bit in the
Z16C01 program status group, the flags and control
bits are the same for all CPUs.

15 0

Lﬂ] SIN] EPA l VIE INVIE] o o o E c I 1 I S] L l oA [L] 1 a o lCGNTﬂOA
(" 1 | worp

I ADDRESS] | proGram

N W Y [SRS NN U AN NN SN (R O S B | | COuNTER

Z16C02 Program Status Registers

1 3
I UPPER POINTER [uiololulolnlnlnl

L i 1 1 1 1 |
Z16C02 Program Status Area Pointer

Figure 10. Z16C00 CPU Special Registers

INTERRUPT AND TRAP STRUCTURE

The Z16C00 provides a very flexible and powerful interrupt
and trap structure. Interrupts are external asynchronous
events requiring CPU attention, and are generally triggered
by peripherals needing service. Traps are synchronous
events resulting from the execution of certain instructions.
Both are processed in a similar manner by the CPU.

The CPU supports three types of interrupts (non-maskable,
vectored, and non-vectored) and four traps [system call,
Extended Process Architecture (EPA) instruction, privileged
instructions, and segmentation trap). The vectored and
non-vectored interrupts are maskable. Of the four traps, the
only external one is the segmentation trap, which is
generated by the Z8010.

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

FLAG AND

The remaining traps occur when instructions limited to the
system mode are used in the normal mode, or as a result of
the System Call instruction, or for an EPA instruction. The
descending order of priority for traps and interrupts is:
internal traps, nonmaskable interrupt, segmentation trap.
vectored interrupt, and non-vectored interrupt.

When an interrupt or trap occurs, the current program status
is automatically pushed on the system stack. The program
status consists of the processor status (PC and FCW) plus a
16-bit identifier. The identifier contains the reason or source

of the trap or interrupt. For internal traps, the identifier is the
first word of the trapped instruction. For external traps or
interrupts, the identifier is the vector on the data bus read by
the CPU during the interrupt-acknowledge or trap-
acknowledge cycle.

After saving the current program status, the new program
status is automatically loaded from the program status area
in system memory. This area is designated by the program
status area pointer (PSAP).

DATA TYPES

Z16C00 instructions can operate on bits, BCD digits (4 bits),
bytes (8 bits), words (16 bits), long words (32 bits), and byte
strings and word strings {up to 64 kilobytes long). Bitscan be
set, reset, and tested; digits are used in BCD arithmetic
operations; bytes are used for characters or small integer
values; words are used for integer values, instructions and
nonsegmented addresses; long words are used for long
integer values and segmented addresses. All data elements

except strings can reside either in registers or memory.
Strings are stored in memory only.

The basic data element is the byte. The number of bytes
used when manipulating a data element is either implied by

SEGMENTATION AND MEMORY
MANAGEMENT

High-level languages, sophisticated operating systems,
large programs and data bases, and decreasing memory
prices are all accelerating the trend toward larger memory
requirements in microcomputer systems. The Z16C01 meets
this requirement with an eight megabyte addressing space.
This large address space is directly accessed by the CPU
using a segmented addressing scheme and can be
managed by the Z8010 Memaory Management Unit.

Segmented Addressing

A segmented addressing space—compared with linear
addressing—is closer to the way a programmer uses
memory because each procedure and data space resides
in its own segment. The 8 megabytes of Z16C01 addressing
space is divided into 128 relocatable segments up to 64
kilobytes each. A 23-bit segmented address uses a 7-bit
segment address to point to the segment, and a 16-bit offset
to address any location relative to the beginning of the
segment. The two megabytes of 16C03 addressing
space is divided into 32 relocatable segments up to
64 kilobytes each. A 21-bit segmented address uses
a 5-bit segment address to point to the segment, and
a 16-bit offset to address any location relative to the
beginning of the segment. The two parts of the
segmented address may be manipulated separately.
The segmented Z16C01 and Z16C03 can be run by
any code written for the nonsegmented Z16C02 in
any one of its 128 segments, provided it is set to the
nonsegmented mode.

the operation or—for strings and multiple register
operations—explicitly specified in the instruction.
13 [15 8 7 0
tosicaL aooress | seamentno. | I orrser 1

ST

MEMORY
| MANAGMENT |
1 UNIT

BASE
ADDRESS
REGISTER

FILE

i3

U
24-BIT PHYSICAL ADDRESS |
A

——

et

Figure 11. Logical-to-Physical Address
Translation

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

In hardware, segmented addresses are contained in a
register pair or a long-word memory location. The segment
number and offset can be manipulated separately or
together by all the available word and long-word operations.

When contained in an instruction, a segmented address has
two different representations: long offset and short offset.
The long offset occupies two words, whereas the short offset
requires only one and combines in one word the 7-bit
segment number with an 8-bit offset (range 0-256). The
short offset mode allows very dense encoding of addresses
and minimizes the need for long addresses required by
direct accessing of this large address space.

Memory Management

The addresses manipulated by the programmer, used
by the instructions and output by the Z16C01/3, are
called logical addresses. The Memory Management
Unit takes the Jogical addresses and transforms them
into the physical addresses required for addressing
the memory (Figure 11). This address transformation
process is called relocation. Segment relocation
makes user software addresses independent of the
physical memory so the user is freed from specitying

where information is actually located in the physical
memory.

The relocation process is transparent to user software. A
translation table in the Memory Management Unit
associates the 7-bit segment number with the base address
of the physical memory segment. The 16-bit offset is added
to the physical base address to obtain the actual physical
address. The system may dynamically reload translation
tables as tasks are created, suspended, or changed.

In addition to supporting dynamic segment relocation, the
Memory Management Unit also provides segment
protection and other segment management features. The
protection features prevent illegal uses of segments, such as
writing into a write-protected zone.

Each Memory Management Unit stores 64 segment entries
that consist of the segment base address, its attributes, size,
and status. Segments are variable in size from 256 bytes to
64 kilobytes in increments of 256 bytes. Pairs of
Management Units support the 128 segment numbers
available for each of the six CPU address spaces. Within an
address space, several Management Units can be used to
create multiple translation tables.

EXTENDED PROCESSING ARCHITECTURE

The Zilog Extended Processing Architecture (EPA) provides
an extremely flexible and modular approach to expanding
both the hardware and software capabilities of the Z16C00
CPU. Features of the EPA include:

m Specialized instructions for external processors or
software traps may be added to CPU instruction set.

® Increases throughput of the system by using up to four
specialized external processors in parallel with the CPU.

® Permits modular design of Z16C00-based systems.

m Provides easy management of multiple microprocessor
configurations via “single instruction stream”
communication.

m Simple interconnection between extended processing
units and Z16C00 CPU requires no additional external
supporting fogic.

® Supports debugging of suspect hardware against
proven software.

m Standard features on all Zilog Z16C00 CPUs.
Specific benefits include:

m EPUs can be added as the system grows and as EPUs
with specialized functions are developed.

m Contro! of EPUs is accomplished via a “single instruction
stream” in the Z16C00 CPU, eliminating many significant
system software and bus contention management
abstacles that occur in other multiprocessar (e.g.,
master-slave) organization schemes.

The processing power of the Zilog Z16C00 16-bit
microprocessor can be boosted beyond its intrinsic
capability by Extended Processing Architecture. Simply
stated, EPA allows the Z16C00 CPU to accommodate up to
four Extended Processing Units (EPUs), which perform
specialized functions in parallel with the CPU's main
instruction execution stream (Figure 12).

The use of extended processors to boost the main CPU's
performance capability has been proven with large
mainframe computers and minicomputers. In these
systems, specialized functions such as array processing,
special input/output processing. and data communications
processing are typically assigned to extended processor
hardware. These extended processors are complex
computers in their own right.

The Zilog Extended Processing Architecture combines the
best concepts of these proven performance boosters with
the latest in high-density MOS integrated-circuit design. The
result is an elegant expansion of design capability—a
powerful microprocessor architecture capable of
connecting single-chip EPUs that permits very effective
parallel processing and makes for a smoothly integrated
instruction stream from the Z16€00 programmer’s point of
view. A typical addition to the current Z16C00 instruction set is
a set of Floating Point Instructions.

The Extended Processing Units connect directly to the
716C00 Bus {Z-BUS) and continuously monitor the CPU
instruction stream. When an extended instruction is
detected, the appropriate EPU responds, obtaining or

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

placing data or status information on the 2-BUS using the
716C00-generated control signals and performing its
function as directed.

The Z16C00 CPU is responsibie for instructing the EPU and
delivering operands and data to it. The EPU recognizes
instructions intended for it and executes them, using data
supplied with the instruction and/or data within its internai
registers. There are four classes of EPU instructions

® Data transfers between main memory and EPU registers
m Datatransfers between CPU registers and EPU registers
m EPU internal operations

B Status transfers between the EPUs and the 216000 CPU
Filag and Control Word register (FCW)

Four Z16C00 addressing modes may be utilized with
transfers between EPU registers and the CPU and main
memory:

m Register

@ Indirect Register
® Direct Address
u index

In addition to the hardware-implemented capabilities of the
Extended Processing Architecture. there is an extended
instruction trap mechanism to permit software simulation of
EPU functions. A control bit in the Z16C00 FCW register
indicates whether actual EPUs are present or not. If not,
when an extended instruction is detected, the Z16C00 traps
on the instruction, so that a software “trap handler” can
emulate the desred EPU function—a very useful

STOP LI

development tool. The EPA software trap routine supports
the debugging of suspect hardware against proven
software. This feature will increase in significance as
designers become familiar with the EPA capability of the
Z16C00CPU.

This software trap mechanism faciiitates the design of
systems for later addition of EPUs: initially. the extended
function is executed as a trap subroutine; when the EPU 1s
finally attached. the trap subroutine is eliminated and the
EPA control bit is set. Application software is unaware of the
change.

Extended Processing Architecture also offers pratection
against extended instruction overlapping. Each EPU
connects to the Z16C00 CPU via the STOP line so that if an
EPU is requested to perform a second extended instruction
function before it has compieted the previous one, it can put
the CPU into the Stop/Refresh state untit execution of the
previous extended instruction is complete.

EPA and CPU instruction execution are shown in Figure13.
The CPU begins operation by fetching an instruction and
determining whether itis a CPU or an EPU command. The
EPU meanwhiie monitors the Z-BUS for its own instructions

If the CPU encounters an EPU command, it checks to see
whether an EPU is present; if not, the EPU may be simulated
by an EPU instruction trap software routine; if an EPU is
present, the necessary data and/or address is placed on the
Z-BUS. If the EPU is free when the instruction and data for it
appear, the extended instruction is executed. If the EPU s
still processing a previous instruction. it activates the CPU's
STOP line to lock the CPU off at the Z-BUS until execution 1s
complete. After the instruction is finished. the EPU
deactivates the STOP line and CPU transactions continue.

INE

l l

] |

M DEDICATED
I:U EPU

MEMORY

D—l DEDICATED
EPU EPU

Z16C00
cru

U D-—l DEDICATED »yu D—] DEDICATED

2 @ MEMORY

EPU EPU
3 F MEMORY hd F MEMORY

Z-BUS COMPONE!

NT INTERFACE

2\

1

i [C

PERIPHERAL

n

PERIPHERAL

|
1 1

q

MEMORY
MANAGEMENT
UNIT

(=

MEMORY

Figure 12. Typical Exten

ded Processor Configuration

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

‘ l
CPU MONITOR Z-BUS
DLES IN STOP INSTRUCTION
STOP! LINE ACTIVE STREAM
REFRESH 2
STATE l
FETCH INSTRUCTION
NEXT >
INSTRUCTION
[— —_— - == = = - - - =
|
CPU GENERATES ;YES
DATA/ADDRESS
EXECUTES
AND PLACES ON)
Z.BUS INSTRUCTION]
A !
NO
____________ PR
cpPU EPA TRAP LI?QEETAS'PEFP’U
EXECUTES SERVICE UNTIL EPY
INSTRUCTION AOUTINE FREE
A DATA OR ADDRESSES ARE PLACED ON THE BUS AND USED BY THE EPU IN THE
EXECUTION OF AN INSTRUCTION.
Figure 13. EPA and Z16C00 CPU Instruction Execution

A set of O instructions performs 8-bit or 16-bit transfers
between the CPU and /O devices. /O devices are
addressed with a 16-bit 1/O port address. The /O port
address is similar to a memory address; however, /O
address space need not be part of the memory address
space. /O port and memory addresses coexist on the same
bus lines and they are distinguished by the status outputs.

Two types of /O instructions are available: standard and
special. Each has its own address space. The /0O
instructions include a comprehensive set of In, Out, and
Block /0O instructions for both bytes and words. Special I/0
instructions are used for ioading and unloading the Memory
Management Unit. The status information distinguishes
between standard and special I/O references.

MULTI-MICROPROCESSOR SUPPORT

Multi-microprocessor systems are supported in hardware
and software. A pair of CPU pins is used in conjunction with
certain instructions to coordinate multiple microprocessors.
The Multi-Micro Out pin issues a request for the resource,
while the Multi-Micro In pin is used to recognize the state of
the resource. Thus, any CPU in a multipie microprocessor
system can exclude all other asynchronous CPUs from a
critical shared resource.

Multi-microprocessor systems are supported in software by
the instructions Multi-Micro Request, Test Multi-Micro In, Set
Muitti-Micro Out, and Reset Multi-Micro Out. In addition, the
eight megabyte CPU address space is beneficial in multiple
microprocessor systems that have large memory
requirements.

10

Power ed by | Cniner.com El ectronic-Library

Servi ce CopyRi ght 2003

ADDRESSING MODES

The information included in Z16C00 instructions consists of
the function to be performed, the type and size of data
elements to be manipulated, and the location of the data
elements. Locations are designated by register addresses,
memory addresses. or /O addresses. The addressing
mode of a given instruction defines the address space it
references and the method used to compute the address
itseif. Addressing modes are explicitly specified or implied
by the instruction.

Figurei4iliustrates the eight addressing modes: Register
(R)., Immediate (IM), Indirect Register (IR}, Direct Address
(DA), Index (X), Relative Address (RA}, Base Address (BA),
and Base Index (BX). In general, an addressing mode
explicitly specifies either register address space or memory
address space. Program memory address space and 1/O
address space are usually implied by the instruction.

Addressing Mode

Operand Addressing

Operand Value

In the Instruction In a Register In Memory
R
Regis!er I REGISTER ADDRESS |>—>I OPERAND I The. content of the
register
M
Immediate In the instruction
IR
Indi t The content of the location
n frec [nEoleEn AubnEWﬂnssq I o I whose address is in the
Register register
DA
The content of the location
Direct l ADDRESS } { OPERAND I whaose address is in the
Address instruction
X
The content of the loca-
REGISTER ADDRESS —*{ INDEX _]——' tion whose address is the
Index BASE) { OPERAND ' address in the instruction
~ plus the content of the
working register.
RA The content of the location
e vALUE whose address is the
Relative content of the program
displacement in the
instruction
“BA
The content of the location
Base REGISTER ADDRESS —-»I BASE ADDRESS H whose address is the
dd . .
DISPLACEMENT -—_—,O._E in the reg .
Address olfset by the displacement
in the instruction
.
BX The content of the loca-
Base REGISTER ADDRESS |—{ BASE ADDRESS tion whose address is
Index REGISTER ADORESS J—»] NDEX the address in a register

plus the index value in
another register.

‘Do net us= RG o RRO as indirect, index, or base registers.

Figure 14, Addressing Modes

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

11

INSTRUCTION SET SUMMARY

The Z16C00 provides the following types of instructions: | Bit Manipulation
B Load and Exchange ® Rotate and Shift
B Arithmetic B Block Transfer and String Manipulation
® Logicat B Input/Output
@ Program Control m CPU Control
LOAD AND EXCHANGE
Clock Cycles*
Addr. Word, Byte Long Word
Mnemonics Operands Modes NS Ss SL NS SSs SL Operation
CLR dst R 7 7 7 Clear
CLRB IR B 8 8 dst+ 0
DA 11 12 14
X 12 12 15
EX R, src R 6 6 6 Exchange
EXB IR 12 12 12 R <+ src
DA 15 16 18
X 16 16 19
LD R.src R 3 3 3 5 5 5 Load into Register
LDB M 7 7 7 " AR 11 R« src
LDL iM 5 (byte onty)
IR 7 7 7 11 11 11
DA 9 10 12 12 13 15
X 10 10 13 13 13 16
BA 14 14 14 17 17 17
BX 14 14 14 17 17 17
LD dst, R IR 8 <] 8 11 1 11 Load into Memory (Store)
LDB DA M 12 14 14 15 17 dst+—R
LDL X 12 12 15 15 15 18
BA 14 14 14 17 17 17
BX 14 14 14 17 17 11
LD dst, IM IR 11 11 11 Load Immediate into Memory
LbDB DA 14 15 17 dst < IM
X 15 15 18
LDA R.src DA 12 13 15 Load Address
X 13 13 16 R < source address
BA 15 15 15
BX 15 15 15
LDAR R.src RA 15 15 15 Load Address Relative
R + source address
LDK R, src IM 5 5 5 Load Constant
R+<n(n=0..15)
LDM R.src.n IR 1 11 11+ 3n Load Multiple
DA 14 15 17 + 3n R < src (n consecutive wards)
X 15 15 18 + 3n {n=1..16)

*NS = Non-segmented 3S = Segmented Shart Offset SL = Segmented Long Offset

12

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

LOAD AND EXCHANGE (Continued)

Clock Cycles*
Addr. Word, Byte Long Word
Mnemonics Operands Modes NS SSs SL NS SS SL Operation
LDM dgst. R, n IR 11 1" 11+ 3n Load Multiple (Store Multiple)
DA 14 15 17 + 3n dst « R (n consecutive words)
X 15 15 18 + 3n n=1.16)
LDR R. src RA 14 14 14 17 17 17 Load Relative
LDRB R<+src
LDRL (range ~32768... +32767)
LDR dst, R RA 14 14 14 17 17 17 Load Relative (Store Relative)
LDRB dst<R
LDRL (range —32768... + 32767)
POP dst, IR R 8 8 8 12 12 12 Pop
POPL IR 12 12 12 19 19 19 dst < IR
DA 16 16 18 23 23 25 Autoincrement contents of R
X 16 16 19 23 23 26
PUSH IR, src R 9 9 9 12 12 12 Push
PUSHL IM 12 12 12 19 19 19 Autodecrement contents of R
IR 13 13 13 20 20 20 IR« src
DA 14 14 16 21 21 23
X 14 14 17 21 21 24
ARITHMETIC
ADC R, stc R 5 5 5 Add with Carry
ADCB R<+R + src + carry
ADD R, src R 4 4 4 8 8 8 Add
ADDB IM 7 7 7 14 14 14 R+R + src
ADDL IR 7 7 7 14 14 14
DA 9 10 12 15 16 18
X 10 10 13 16 16 19
CP R, src R 4 4 4 8 8 8 Compare with Register
cPB M 7 7 7 14 14 14 R - src
CPL IR 7 7 7 14 14 14
DA 9 10 12 15 16 18
X 10 10 13 16 16 19
CcP dst, IM IR 1 1 1 Compare with Inmediate
CPB DA 14 15 17 dst — IM
X 15 15 18
DAB dst R 5 5 5 Decimal Adjust
DEC dst, n R 4 4 4 Decremented by n
DECB IR 11 11 1 dst«dst - n
DA 13 14 16 (n=1.16)
X 14 14 17

*NS = Non-segmented SS = Segmented Short Offset SL = Segmented Long Offset

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

ARITHMETIC (Continued)

Clock Cycles*
Addr. Word, Byte Long Word
Mnemonics Operands Modes NS SS SL NS SS SL Operation
DIV R, src R 107 107 107 744 744 744 Divide (signed)
DIVL IM 107 107 107 744 744 744 Word:Rp.q—Rpnpq + S
IR 107 107 107 744 744 744 Rp, < remainder
DA 108 109 111 745 746 748 Long Word: Rn +2.n+3*Rn._ n+3+SsrC
109 109 112 746 746 749 Rn.n+2 + remainder
EXTS dst R 11 11 11 11 11 1 Extend Sign
EXTSB Extend sign of low order half of dst
EXTSL through high order half of dst
INC dst.n R 4 4 4 Increment by n
INCB IR 11 11 i dst+dst + n
DA i3 14 16 (n=1..16)
X 14 14 17
MULT R. src R 70 70 70 2827 2B2T 2821 Multiply (signed)
MULTL M 70 70 70 282t 22t 282t Word: Ran+1 =Ry 1 ®sc -
IR 70 70 70 2821 2821 282t LongWord:Rn ny3*+Rnizn+3
DA 71 72 74 2831 2841 2867 1tPlus seven cycles for each 1 inthe
X 72 72 75 2841 284t 287t multiplicand
NEG dst R 7 7 7 Negate
NEGB IR 12 12 12 dst < 0 — dst —
DA 15 16 18
X 16 16 19
SBC R.src R 5 5 5 Subtract with Carry
SBCB R<+R - src — carry
SuUB R. src R 4 4 4 8 8 8 Subtract
SuUBB IM 7 7 7 14 14 14 R<«R - src
SUBL IR 7 7 7 14 14 14
DA 9 10 12 15 16 18
X 10 10 13 16 16 19
LOGICAL
AND R. src R 4 4 4 AND
ANDB M 7 7 7 R« RANDsrc
IR 7 7 7
DA 9 10 12
X 10 10 13
COM dst R 7 7 7 Complement
CcOoMB IR 12 12 12 dst < NOT dst
DA 15 16 18
X 16 16 19
OR R. src R 4 4 4 OR
ORB IM 7 7 7 R+~ RORsrc
IR 7 7 7
DA 9 10 12
X 10 10 13

‘NS = Non-segmented S8 = Segmented Short Offset SL = Segmented Long Offset

14

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

LOGICAL (Continued)

Clock Cycles*
Addr. Word, Byte Long Word
Mnemonics Operands Modes NS SS SL NS SS SL Operation
TCC cc, dst R 5 5 5 Test Condition Code
TCCB Set LSBif cc s true
TEST dst R 7 7 7 13 13 13 Test
TESTB iR 8 8 8 13 13 13 dst OR O
TESTL DA iR 12 14 16 17 19
X 12 12 15 17 17 20
XOR R, src R 4 4 4 Exclusive OR
XORB M 7 7 7 R+« RXOR src
IR 7 7 7
DA 9 10 12
X 10 10 13
PROGRAM CONTROL
CALL dst IR 10 15 15 Call Subroutine
DA 12. 18 20 Autodecrement SP
X 13 18 21 @SP+PC
PC « dst
CALR dst RA 10 10 15 Call Relative
- Autodecrement SP
@ SP+PC
PC«PC +dst (range — 4094 to + 4086)
DJNZ R, dst RA 11 11 1 Decrement and Jump if Non-Zero
DBJNZ R+<~R -1
f R # 0: PC+-PC + dst(range — 254 to 9)
IRETT — — 13 13 16 Interrupt Return
PS« @ SP
Autoincrement SP
JP cc, dst IR 10 10 15 (taken) Jump Conditionat
IR 7 7 7 (not taken) It ccis true: PC + dst
DA 7 8 10
X 8 8 11
JR cc, dst RA 6 <] 6 Jump Conditional Relative
lfccistrue: PC < PC + dst
(range - 256 to +254)
RET cc — 10 10 13 (taken) Return Conditional
7 7 7 (not taken) lfccistrue: PC+ @ SP
Autoincrement SP
SC sIc M 33 33 39 System Call
Autodecrement SP
@ SP « old PS

Push instruction
PS « System Call PS

*NS = Non-segmented SS = Segmented Short Offset ~ SL = Segmented Long Offset
tPriviteged instruction. Executed in system mode only.

15

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

BIT MANIPULATION

Clock Cycles*
Addr. Word, Byte Long Word
Mnemonics Operands Modes NS SS SL NS SS SL Operation
BIT dst. b R 4 4 4 Test Bit Static
BITB IR 8 8 8 Z flag < NOT dst bit specified by b
DA 10 " 13
X 11 11 14
BIT dst, R R 10 10 10 Test Bit Dynamic
BITB Z flag < NOT dst bit specified by
contents of R
RES dst. b R 4 4 4 Reset Bit Static
RESB IR 11 11 11 Reset dst bit specified by b
DA 13 14 16
X 14 14 17
RES dst, R R 10 10 10 Reset Bit Dynamic
RESB Reset dst bit specified by contents R
SET dst. b R 4 4 4 Set Bit Static
SETB IR 11 11 11 Set dst bit specified by b
DA 13 14 16
X 14 14 17
SET dst, R R 10 10 10 Set Bit Dynamic
SETB Set dst bit specified by contents of R
TSET dst R 7 7 7 Test and Set
TSETB IR 11 11 11 Sflag < MSB of dst
DA 14 15 17 dst«all 1s
X 15 15 18
ROTATE AND SHIFT
RL dst, n R 6forn=1 Rotate Left
RLB R 7forn=2 by nbits(n = 1, 2)
RLC dst, n R 6forn=1 Rotate Left through Carry
RLCB R 7forn=2 by nbits(n = 1,2)
RLDB R, src R 9 9 9 Rotate Digit Left
RR dst, n R 6forn=1 Rotate Right
RRB R 7forn=2 bynbits(n = 1,2)
RRC dst, n R 6forn=1 Rotate Right through Carry
RRCB R 7forn=2 by nbits(n = 1, 2)
RRDB R, src R 9 9 9 Rotate Digit Right
SDA dst, R R (15 + 3n) {15 + 3n) Shift Dynamic Arithmetic
SDAB Shift dst left or right by
SDAL contents of R
SDL ast. R R 15+ 3n) (15 + 3n) Shift Dynamic Logical
SDLB Shift dst ieft or right by
SDLL contents of R

*NS = Non-segmented SS = Segmented Short Offset

SL = Segmented Long Offset

16

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

ROTATE AND SHIFT (Continued)

Clock Cycles*

Addr. Word, Byte Long Word
Mnemonics Operands Modes NS SS SL NS SS SL Operation
SLA dst. n R (13 + 3n) (13 +3n) Shift Left Arithmetic
SLAB by n bits
SLAL
SLL dst.n R (13 + 3n) (13 +3n) Shift Left Logica!
SLLB by n bits
SLLL
SRA dst. n R (13 + 3n) (13 +3n) Shift Right Arithmetic
SRAB by n bits
SRAL
SAL dst. n R (13+ 3n) (13 + 3n) Shitft Right Logical
SALB by n bits
SRLL

BLOCK TRANSFER AND STRING MANIPULATION

CPD Ry.src.Ry.cc IR 20 20 20 Compare and Decrement
CPDB Ry - src

Autcdecrement src address

Ry <= Ry -1
CPDR Rx.src.Ry.cc IR (11 +9n) Compare, Decrement, and Repeat
CPDRB Ry - src

Autodecrement src address

Ry <Ry - 1

Repeat untii ccistrue or Ry = 0
CPI Ry.src.Ry.cc iR 20 20 20 Compare and Increment
CPIB Rx — src

Autaincrement src address

RY - RY -1
CPIR Ryx.src.Ry.cc IR (11 + 9n) Compare, Increment, and Repeat
CPIRB Rx - src

Autoincrement src address

Ry <Ry — 1

Repeat until ccistrue or Ry = 0
CPSD dst,src.R.cc IR 25 25 25 Compare String and Decrement
CPSDB dst — src

Autodecrement dst and src addresses

R+-R -1
CPSDR dst.src.R,cc iR (11 + 14n) Compare String, Decrement, and
CPSDRB Repeat

dst - src

Autodecrement dst and src addresses
R<-R -1
Repeat untilccistrueorR = 0

"NS = Non-segmented

8S = Segmented Short Offset

SL = Segmented Long Offset

17

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

BLOCK TRANSFER AND STRING MANIPULATION (Continued)

-
Clock Cycles* |
Addr. Word, Byte Long Word |
Mnemonics Operands Modes NS SS SL NS SS SL Operation
CPSI dst.src.R.cc IR 25 25 25 Compare String and Increment
CPSIB dst — src
Autoincrement dst and src addresses
R+<R -1
CPSIR dst,src.R,cc IR (11 + 14n) Compare String, Increment and
CPSIRB Repeat
dst - src
Autoincrement dst and src addresses
R<R -1
Repeat untilccistrue orR = 0
LDD dst,src,R IR 20 20 20 Load and Decrement
LDDB dst « src
Autodecrement dst and src addresses
R<R -1 -
LDDR dst,src.R IR (11 +9n) Load, Decrement and Repeat
LDDRB dst + src
Autodecrement dst and src addresses
R+<R -1
Repeatunti R = 0 -
LDI dst,src,R IR 20 20 20 Load and Increment
LDIB dst < src
Autoincrement dst and src addresses
R«R -1
LDIR dst,src.R IR (11 +9n) Load, Increment and Repeat
LDIRB dst < src
Autoincrement dst and src addresses
R+<R-1
RepeatuntilR = 0
TRDB dst,src.R IR 25 25 25 Translate and Decrement
dst < src (dst)
Autodecrement dst address
R<R -1
TRDRB dst,src,R IR (11 + 14n) Translate, Decrement and Repeat
dst < src (dst)
Autodecrement dst address
R+<R-1
RepeatuntiiR = 0
TRIB dst.src,R IR 25 25 25 Translate and Increment

dst < src {dst)
Autoincrement dst address
R«<R -1

*NS = Non-segmented SS = Segmented Short Offset SL = Segmented Long Offset
*Privileged instruction. Executed in system mode only.

18

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

BLOCK TRANSFER AND STRING MANIPULATION (Continued)

Clock Cycles*
Addr. Word, Byte Long Word
Mnemonics Operands Modes NS SS SL NS SS SL Operation

TRIRB dst,src,R IR {11 + 14n) Translate, Increment and Repeat
dst = src (dst)
Autoincrement dst address
R+<R-1
RepeatuntiiR = 0

TRTDB srcl,src2.R IR 25 25 25 Translate and Test, Decrement
RH1 «src2 (src1)
Autodecrement src 1 address
R+<R -1

TRTDRB srcl,src2.R IR (11 + 14n) Transliate and Test, Decrement, and
Repeat
RH1 < src2 (src1)
Autodecrement src1 address
R«<R-1
RepeatunttR = OorRH1 = 0

TRTIB src1,src2.R R 25 25 25 Translate and Test, Increment
RH1 < src2 (src)
Autoincrement src1 address
. R<R -1

TRTIRB srct.src2 R IR (11 + 14 n) Translate and Test, Increment and
Repeat
RH1 + src2 (src)
Autoincrement src 1 address
R<R -1
Repeatuntif R = Dor RH1 = 0

INPUT/OUTPUT

INt R.src IR 10 10 10 Input
INB? DA 12 12 12 R <« src

IND* dst.src.R IR 21 21 21 Input and Decrement
INDB? dst < src
Autodecrement dst address
R—R -1

INDR* dst,src.R IR (11 + 10n) Input, Decrement and Repeat
INDRB* dst < src
Autodecrement dst address
R<R-1
Repeat untiiR = 0

INIT dst.src,R IR 21 21 21 Input and Increment
INIBT dst < src
Autoincrement dst address
R<R -1

“NS = Non-segmented SS = Segmented Short Offset SL = Segmented Long Offset
TPrivileged instruction. Executed in system mode only.

19

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

INPUT/OUTPUT (Continued)

Clock Cycles*
Addr. Word, Byte Long Word
Mnemonics Operands Modes NS SS SL NS SSs SL Operation
INIR? dst.src.R iR (11 +10n) Input, Increment and Repeat
INIRB™ dst < src
Autoincrement dst address
R+-—R -1
Repeat untiR = 0
ouTt dst.R IR 10 10 10 Output
ouTB* DA 12 12 12 dst < R
OouTD! dst.src.R IR 21 21 21 Output and Decrement
ouTDB” dst < src
Autodecrement src address
R<~R-~1
OTDR® dst.src.R IR (11 +10n) Output, Decrement and Repeat
OTDRB" dst < src
Autodecrement src address
R+<R -1
RepeatuntilR = 0
ouTI” dst.src.R IR 21 21 21 Output and Increment
ouTIB™ dst < src
Autoincrement src address
R+<R -1
OTIR™ dst.src.R IR (11 + 10n) Output, Increment, and Repeat
OTIRB* dst ~ src
Autoincrement src address
R+<R -1
Repeatuntil R = 0
SIN? R.src DA 12 12 12 Special Input
SINB? R« src
SIND* dst.src,R IR 21 21 21 Special Input and Decrement
SINDB* dst « src
Autodecrement dst address
R«<R -1
SINDR™ dst,src.R IR 11 +10n) Special input, Decrement, and
SINDRB* Repeat
dst < src
Autodecrement dst address
R«<R -1
Repeat untitR = 0
SINIT dst.src.R IR 21 21 21 Special input and Increment
SINIB? dst = src

Autoincrement dst address
R+R -1

*NS = Non-segmented SS = Segmented Short Oftset SL = Segmented Long Offset

TPrivileged instruction. Executed in system mode only

20

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

INPUT/OUTPUT (Continued)

Clock Cycles*
Addr. Word, Byte Long Word
Mnemonics Operands Modes NS 53] SL NS Ss SL Operation
INIRt dst,src,R IR (11 + 10n) input, Increment and Repeat
INIRB? dst < src
Autoincrement dst address
R<R -1
RepeatuntilR = 0
ouTtt dst,R IR 10 10 10 Output
ouTB? DA 12 12 12 dst+—R
ouTD? dst.src.R IR 21 21 21 Output and Decrement
ouTDB? dst = src
Autodecrement src address
R+~R -1
OTDR? dst.src.R IR (11 + 10n) Output, Decrement and Repeat
OTDRB™ dst < src
Autodecrement src address
R<R~1
RepeatuntiiR = 0
ouTit dst.src.R IR 21 21 21 Output and increment
ouTiB* dst < src
- Autoincrement src address
R+R -1
OTIRT dst.src.R IR (11 + 10n) Output, increment, and Repeat
OTIRB™ dst < src
Autoincrement src address
R<R -1
Repeat untilR = 0
SIN' R.src DA 12 12 12 Special Input
SINB? R+ src
SIND™ dst.src.R IR 21 21 21 Special Input and Decrement
SINDB' dst < src
Autodecrement dst address
R«~R -1
SINDR' dst.src.R IR 11 + 10n) Special Input, Decrement, and
SINDRB* Repeat
dst < src
Autodecrement dst address
R<R -1
Repeat untilR = 0
SINI* dst,src.R IR 21 21 21 Special Input and Increment
SINIBt dst < src
Autoincrement dst address
R«<R -1

21

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

INPUT/OUTPUT (Continued)

Clock Cycles*
Addr. Word, Byte Long Word
Mnemonics Operands Modes NS SS SL NS SS SL Operation
SINIR? dst.src.R IR (11 + 10n) Special Input, Increment, and
SINIRB? Repeat
dst < src
Autoincrement dst address
R+R -1
RepeatuntiiR = 0
SouT?! dst.src DA 12 12 12 Special Output
SOuUTB? dst +src
SOUTD?! dst.src.R IR 21 21 21 Special Output and Decrement
SOuUTDB* dst + src
Autodecrement src address
R<R -1
SOTDR™ dst,src.R IR (11 + 10n) Special Output, Decrement, and
SOTDRB' Repeat -
dst « src
Autodecrement src address
R+~R -1
Repeat untiR = 0
souTIt dst,src,R IR 21 21 21 Special Output and Increment —
SOuUTIBT dst + src
Autoincrement src address
R«<R -1
SOTIR™ dst.src.R R (1t + 10n) Special Output, Increment, and
SOTIRB* Repeat
dst + src
Autoincrement src address
R<R -1
Repeat untilR = 0
CPU CONTROL
COMFLG flags — 7 7 7 Complement Flag
(Any combination of C, Z, S, P/V)
DIt int — 7 7 7 Disable Interrupt
(Any combination of NVI, V1)
EIT int — 7 7 7 Enable Interrupt
(Any combination of NVI, Vi)
HALT? — — (8 + 3n) HALT
LoCTLt CTLR.src R 7 7 7 Load into Control Register
CTLR «src
LDCTLT dst,CTLR R 7 7 7 Load from Control Register

dst < CTLR

"NS = Non-segmented SS = Segmented Short Offset
tPrivileged instruction. Executed in system mode onty.

SL = Segmented Long Offset

22

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

CPU CONTROL (Continued)

Clock Cycles*
Addr. Word, Byte Long Word

Mnemonics Operands Modes NS SS SL NS SS SL Operation

LDCTLB FLGR.src R 7 7 7 Load into Flag Byte Register
FLGR <« src

LDCTLB dst.FLGR R 7 7 7 Load from Flag Byte Register
dst = FLGR

LDPS™ src IR 12 16 16 Load Program Status

DA 16 20 22 PS «src
X 17 20 23

MBIT? — — 7 7 7 Test Multi-Micro Bit
Set Sif Mlis Low; reset S if Ml is High

MREQ" dst R (12 + n) Multi-Micro Request

MRESt — — 5 5 5 Multi-Micro Reset

MSET? — - 5 7 7 Multi-Micro Set

NOP — — 7 7 7 No Operation

RESFLG flag — 7 7 7 Reset Flag
(Any combination of C, Z, S, P/V)

SETFLG flag — 7 7 7 Set Flag

(Any combination of C, Z, S, P/V)

“NS = Non-segmented SS = Segmented Short Ofiset
TPrvileged instruction. Executed in system mode only.

SL = Segmented Long Offset

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

23

CONDITION CODES

Code Meaning Flag Settings CC Field
F Always false — 0000
T Always true — 1000
Z Zero Z=1 0110
NZ Not zero Z=0 1110
C Carry Cc=1 0111
NC No Carry C=0 1111
PL Plus S=0 1101
Mt Minus S=1 0101
NE Not equal Z=0 1110
EQ Equal Z=1 0110
ov Overflow PV =1 0100
NGV No overflow PNV =0 1100
PE Parity is even PV =1 0100
PO Parity is odd PV =0 1100
GE Greater than or equal (signed) (SXORP/NV) =0 1001
LT Less than (signed) (SXORP/NV) = 1 0001
GT Greater than (signed) [ZOR(SXORP/NV) =0 1010
LE Less than or equal (signed) {ZOR(SXORP/NV)] = 1 0010
UGE Unsigned greater than or equal C=0 1111
ULT Unsigned less than C=1 0111
UGT Unsigned greater than [{(C=0AND{Z =0)] =1 1011
ULE Unsigned less than or equal (CORZ)=1 0011

Note that some condition codes have identical flag settings and binary fields in the instructian:
Z = EQ.NZ = NE.C = ULT.NC = UGE. QV = PE, NOV = PO

STATUS CODE LINES
ST¢-ST3 Definition
0000 Internal operation
0001 Memory refresh
0010 110 reference
0011 Special I/0 reference (e.g., to an MMU)
0100 Segment trap acknowledge
0101 Non-maskable interrupt acknowledge
0110 Non-vectored interrupt acknowledge
o111 Vectored interrupt acknowledge
1000 Data memory request
1001 Stack memory request
1010 Data memory request (EPU)
1011 Stack memory request (EPU)
1100 Program reference, nth word
1101 Instruction fetch, first word

1110
1111

Extension processor transfer
Reserved

24

Power ed by | Cmri ner.com El ectronic-Library Service CopyRi ght

2003

Z16C00 CPU Timing

The Z16C00 CPU executes instructions by stepping through
sequences of basic machine cycles, such as memory read
or write, I/O device read or write, interrupt acknowledge,
and internal execution. Each of these basic cycles requires
three to ten clock cycles to execute. Instructions that require
mare clock cycles to execute are broken up into several
machine cycles. Thus no machine cycle is longer than ten
clock cycles and fast response to a Bus Request is
guaranteed.

The instruction opcode is fetched by a normal memory read
operation. A memory refresh cycle can be inserted just after
the completion of any first instruction fetch {IF;) cycle and
can also be inserted while the following instructions are
being executed: MULT, MULTL, DIV, DIVL, HALT, all Shift
instructions, all Block Move instructions, and the Multi-Micro

Request instruction (MREQ).

The following timing diagrams show the relative timing
relationships of all CPU signals during each of the basic
operations. When a machine cycle requires additional clock
cycles for CPU internal operation, one to five clock cycles
are added. Memory and I/O read and write, as well as
interrupt acknowledge cycles, can be extended by
activating the WAIT input. For exact timing information, refer
to the composite timing diagram.

Note that the WAIT input is not synchronized in the Z16C00
and that the setup and hold times for WAIT, relative to the
clock, must be met. If asynchronous WAIT signals are
generated, they must be synchronized with the CPU clock
before entering the Z16C00.

MEMORY READ AND WRITE

Memory read and instruction fetch cycles are
identical, except for the status information on the
ST3-STg outputs. During a memory read cycle, a 16-
bit address is placed on the AD15-ADQ output early
in the first clock period, as shown in Figure 12. In
the Z16C01 and Z16C03, the 7-bit segment number
is output on SNg_SNp (SN4-SNg in the 16C03) one
clock period earlier than the 16-bit address offset.

A valid address is indicated by the rising edge of Address
Strobe. Status and mode information become valid earty in
the memory access cycle and remain stable throughout.
The state of the WAIT input is sampled in the middle of the
second clock cycle by the falling edge of Clock. If WAIT is

Low, an additional clock period is added between Tg and T3.
WAIT is sampled again in the middle of this wait cycle, and
additional wait states can be inserted: this allows interfacing
slow memories. No control outputs change during wait
states.

Although Z16C00 memory is word organized, memory is
addressed as bytes. All instructions are word-aligned, using
even addresses. Within a 16-bit word, the most significant
byte (Dg-D15) is addressed by the low-order address (Ag =
Low), and the least significant byte (Dg-D7) is addressed by
the high-order address {Ag = High).

25

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

CLOCK l
[

WAIT

STATUS
{BIW. NS,
STo-STy)

SNo-SNg

MREQ

Tn

Ta

T2

T

(k._*

DATA SAMPLED
FOR READ

WAIT
SAMPLED

WAIT CYCLES ADDED

X

SEGMENT NUMBER

n_/

L

S

AD
READ

oS
READ

RIW
READ

x MEMORY ADDRESS

/

AD
WRITE

oS

WRITE

RIW
WRITE

—XTORY ADDRESS

DATA OUT

\

.

/]

‘il

Figure 15. Memory Read and Write Timing

26

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

INPUT/OUTPUT

1/O timing is similar to memory read/write timing, except Z16C01/Z216C03 and the nonsegmented Z16C02 use
that one wait state is automatically (Twa) inserted between 16-bit /O addresses.
To and T3 (Figure 18). Both the segmented

T, T2 Twa T3
—
CLOCX | | <—————+ DATA SAMPLED
— } | | FOR READ
WaIT
SAMPLED WAIT CYCLES ADDED

£
»
3

_STATUS
(B/W, ST,-STy

NIS

ST/

MREQ

LOW

HIGH

\
AD
INPUT X PORT ADDRESS| Yo = em e mm = -
-
3
INPUT

RIW
INPUT

M

OUH:l? x PORY ADDRESS X DATA OUT
DS
OuUTPUT
RIW
OUTPUT

N N

Figure 16. Input/Output Timing

27

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

INTERRUPT AND SEGMENT TRAP
REQUEST AND ACKNOWLEDGE

The Z16C00 CPU recognizes three interrupt inputs
(non-maskable, vectored. and nonvectored) and a
segmentation trap input. Any High-to-Low transition on the
NMI input is asynchronously edge detected and sets the
internal NMI latch. The Vi, NVI, and SEGT inputs, as well as
the state of the internal NMI latch, are sampled at the end of
T2 in the last machine cycle of any instruction.

In response io an interrupt or trap, the subsequent
IF1 cycle is exercised but ignored. The internal state
of the CPU is not altered and the instruction will be
refetched and executed after the return from the
interupt routine. The program counter is not
updated, but the system stack pointer is
decremented in preparation for pushing start
information into the system stack.

The next machine cycle is the interrupt acknowiedge cycle.

LAST MACHINE

METRUETION
———— CYCLE OF ARY FETC

This cycle has five automatic wait states, with additional wait
states possible. as shown in Figure 17.

After the last wait state, the CPU reads the information on
AD;y5-ADg and temporarily stores it, to be saved on the stack
later in the acknowiedge sequence. This word identifies the
source of the interrupt or trap. For the nonvectored and
nonmaskabie interrupts, ail 16 bits can represent peripheral
device status information. For the vectored interrupt. the low
byte is the jump vector, and the high byte can be extra user
status. For the segmentation trap, the high byte is the
Memory Management Unit identifier and the low byte is
undefined.

After the acknowledge cycle, the N/S output indicates the
automatic change to system mode.

sTATUS

INSTRUCTION (ABORTED)

ACKNOWLEDGE
CYCLE SAVING
AUTOMATIC WAIT STATES

/ \

i 87, /.

|
|
le—sampLe i

INTERNAL :&
[

.
%

-7
-2

ACKNOWLEDGE

\ T
|

Figure 17. Interrupt and Segment Trap Request/Acknowledge Timing

28

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

STATUS SAVING SEQUENCE

The machine cycles, following the interrupt
acknowledge or segmentation trap acknowledge
cycle, push the old status information on the system
stack in the following order: the t6-bit program
counter; the 7-bit segment number Z16C01/Z16C03

{5-bit segment); the flag control word; and finally the
interrupt/trap identifier. Subsequent machine cycles
fetch the new program status from the program
status area, and then branch to the interrupt/trap
service routine.

BUS REQUEST ACKNOWLEDGE TIMING

A Low on the BUSREQ input indicates tc the CPU that
another device is requesting the Address/Data and control
buses. The asynchronous BUSREQ input is synchronized
atthe beginning of any machine cycle (Figure 18). BUSREQ
fakes priority over WAIT. If BUSREQ is Low, an internal
synchronous BUSREQ signal is generated, which—after
completion of the current machine cycle—causes the
BUSACK output to go Low and all bus outputs to go into the

<————ANY M CYCLE

high-impedance state. The requesting device—typically a
DMA—can then control the bus.

When BUSREQ s released, itis synchronized with the rising
clock edge; the BUSACK output goes High one clock
period later, indicating that the CPU will again take control of
the bus.

Ta Tx

ninln

CLOCK I

N

BUS AVAILABLE ————

Tx Tx Tx Tx Tx

—

INTERNAL
BUSREQ

BUSACK \

SN i ey e e et

e R

Y
)-——q-———— '——————-—-—-——-(SAME AS PREVIOUSCYCLX
v 4 -

AD Y——t-

MREQ, DS,
ST5-STa,
BIW, RIW, NIS

——eee S

I !

Figure 18. Bus Request/Acknowledge Timing

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

STOP

The STOP input is sampled by the last falling clock edge
immediately preceding any IFy cycle (Figure 19) and before
the second word of an EPA instruction is fetched. If STOP is
found Low during the IF cycie, a stream of memory refresh
cycles is inserted after T3, again sampling the STOP input on
each falling clock edge in the middie of the T3 states. During
the EPA instruction, both EPA instruction words are fetched
but any data transfer or subsequent instruction fetch is

postponed until STOP is sampled High. This refresh
operation does not use the refresh prescaler or its
divide-by-four clock prescaler; rather, it double-increments
the refresh counter every three clock cycles. When STOP is
found High again, the next refresh cycle is completed. any
remaining T states of the IFy cycle are then executed, and
the CPU continues its operation.

\/
oo - (:;»

XX

REFRESH -
AoDRESS

|

; i
f-—m- REFAESH ————————a-| |
Tir Tin Tin Ta T I

/ \

INSTRUCTION
ﬁ__\\g/i _/

REFRESH -
ADDRESS

I

$To-8Ts

MEMORY REFRESH X

w__ /N[
X X
/

W HIGH

Figure 19.Stop Timing

30

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Bujwij 1989y -0z ainbi4

AT

P B N

HOIH 1Y

x3

w

»ovsnse

tis-%1s

31

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

COMPOSITE AC TIMING DIAGRAM

sTOP

WAIT

BUSREQ

BUSACK

€LOCK ;

SNo-8SNe

ADo~-AD1s

“©)
5t
52 Tnis composite iming dia-
N gram does nol show actual
> timing sequences. Reler 1o
__@. _@’_ this diagram only tor the
detaied timing relationships
C of individual egges. Use tne
preceding iliustrations as an
'—@—’ @ explanation of the vanous
); C timing sequences
Fe(G D]
59 Timing measutements are
mage at the 1oLowing
voitages
D o Higr Low
Loock 40V [oR-3%
Outpui 2.0V CEaY
52 5 Input Z20V LBV
_X Ll Fi0at Vooox0EV
RO ! LG <
« AT
Y ®
05
7 *_/_! A
—(E)—~ 3 D
P —
ey ~—t®
ADDRESS P« > _$
0 (D~ :
DATA IN &) =
D o | =)
L
DATA OUT @ :b < '
D
W) 0;
; ® ® ® -
G
—/r 2 /?r T
u —®- @
|
wOay N
:B [-Gir | (=G I~
He—| —o -
(3 e
MEMORY READ _/) N ,ﬁ’ S ——
—® 0 !
MEMORY WRITE / -
@
:I
t——=1
INPUTIOUTPUT _/ d ﬁ/‘ e = —
h—
- @ @ @&— | @~
5 ——— s
INTERAUPT - ——
ACKNOWLEDGE ® £ f >
F‘.—‘ (@ —— I
S$To-ST
REACIWRITE, |
NORMALISYSTEM,)g

BYTE/WORD

Figure 21.

32

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

AC CHARACTERISTICSt

Z16C01/2/3 Z16C01/2/3
10 MHZ 16 MHz
Number Symbol Parameter Min Max Min Max
1 TcC Clock Cycle Time 100 hd TBD
2 TwCh Clock Width (High) 40 -
3 TwCl Clock Width (Low) 40 bl
4 TiC Clock Fall Time 10
5 TC Clock Rise Time 10
6 TAC(SNv) Clack t to Segment Number Vaiid (50 pf load) 50
7 TdC(SNn) Clock 1 to Segment Number Not Vaiid 0
8 TdC(Bz) Clock 1 to Bus Float 50
9 TdC(A) Clock 1 to Address Valid 50
10 TdC(AZ) Ciock t to Address Float 50
11 TdA(DR) Address Valid to Read Data Required Valid 180 *
12 TsDR(C) Read Data to Clock Setup time 20
13 TADS(A) DS t to Address Active 45*
14 TdC(DW) Clock * to Write Data Valid 60
15 ThDR(DS) Read Data to DS 1 Hold Time 0
16 TdDW(DS) Write Data Valid to BS t Delay 110*
17 TdA(MR) Address Valid to MREQ ¢ Delay 20"
18 TdC(MR) Clock 4 to MREQ ¢ Delay 50
19 TwMRh MREQ Width (High) 80"
20 TdMR(A) MREQ to Address Not Active 20*
21 TdDW(DSW) Write Data Valid to DS 4 (Write) Delay 15«
22 TAMR(DR}) MREQ ¢ to Read Data Required Valid 140*
23 TdC(MR) Clock + MREQ * Delay 50
24 TdC(ASH Clock tto AS 4 Delay 35
25 TdA(AS) Address Valid to AS 1 Delay 20*
26 TdC(ASr) Clock 4 to AS 1 Delay 25
27 TJAS(DR) AS t to Read Data Required Valid 140*
28 TdDS(AS) DS 110 AS 4 Delay 20"
29 TwAS AS Width (Low} 35*
30 TdAS(A) AS 110 Address Not Active Delay 30*
31 TdAz(DSR) Address Float to DS (Read) 4 Delay 0
32 TdAS(DSR) AS 110 DS (Read) ¢ Delay 35*
33 TdDSR(DR) DS {Read) } to Read Data Required Valid 80*
34 TdC(DSH Clock 4 to DS 1 Delay 30
35 TdDS(DW) DS t to Write Data Not Valid 25* v
*Clock-cycle time-dependent characteristics. See Footnotes 1o AC Characteristics
tUnits in nanoseconds (ns)
** Clock may be stopped
33

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

AC CHARACTERISTICST (Continued)

Z16C01/2/3 Z16C01/2/3
10Mhz 16MHz
Number Symbol Parameter Min Max Min Max
36 TAA(DSR) Address Valid to DS (Read) + Delay 65 * 8D
37 TdC(DSR) Clock tto DS (Read} } Delay 45
38 TwDSR DS (Read) Width (Low) 110 *
39 TdC(DSW) Clock 4 to DS (Write) + Delay 45
40 TwDSW DS (Write) Width (Low) 75+
41 TdDSI(DRy DS (110} ¢ to Read Data Required Valid 120*
42 TdC(DSH) Clock + to DS (IfO) ¢ Delay 45
43 TwDS DS (1/0) Width (Low) 160*
44 TdAS(DSA) AS 110 DS (Acknowledge) Delay 410*
45 TdC(DSA) Clock t to DS {Acknowledge) + Delay 45
46 TdDSA(DR) DS {Acknowledge) 4 to Read Data Required
Delay 165*
47 TdC(S) Clock t to Status Valid Delay 50
48 TdS(AS) Status Valid to AS t Delay 20*
49 TsR(C) RESET to Clock t Setup Time 35
50 ThR(C) RESET to Clock t Hold Time 0
51 TwNMI NM: Width (Low) 35
52 TsNMIC) NMI to Ctock t Setup Time 35
53 TsVIC) VI. NVito Clock t Setup Time 35
54 ThvIC) VI. NV to Clock t Hold Time 10
55 TsSGT(C) SEGT 10 Clock 1 Setup Time 35
56 ThSGT(C) SEGT to Clock t Hold Time 10
57 TsMIC) Mt to Clock 1 Setup Time 35
58 ThMIC) Mi to Clock t Hold Time 0
59 TdC(MO) Clock * to MO Delay 50
60 TsSTP(C) STOP to Clock + Setup Time 35
61 ThSTP(C) STOP to Clock + Mold Time 0
62 TsW(C) WAIT to Clock ¢ Setup Time 20
63 Thw(C) WAIT to Clock 4 Hold Time 5
64 TsBRQ(C) BUSREQ to Clock 1 Setup Time 35
65 ThBRQ(C) BUSREQ to Clock 1 Hold Time 5
66 TdC(BAKM Clock 1 to BUSACK t Delay 35
67 TdC(BAK) Clock t to BUSACK ¥ Delay 35
68 TwA Address Valid Width 50*
69 TdDS(S) 55 1 to STATUS Not Valid 30* v

*Clock-cycle ime-dependent characleristics. See Footnotes to AC Characteristics
TUnits in nanoseconds (ns)

** Clock may be stopped

Powered by | Cniner.com El ectronic-Library Service

CopyRi ght 2003

FOOTNOTES TO AC CHARACTERISTICS

Z16C01/2/3 Z16C01/2/3
10 MHz 16 MHz
Number Symbol Equation Equation
1 TJADR) 2TcC + WCh ~ 60 ns TBD
13 TdDS(A) TwCl — 20 ns
16 TdDW(DS) TcC + TwCh -~ 30 ns
17 TdA(MR) TwCh ~ 20 ns
19 TwMRh TcC - 20ns
20 TdMR(A) TwCIl — 20 ns
21 TdDW(DSW) TwCh — 25 ns
22 TdMR(DR) 2TcC - 60ns
25 TdA(AS) TwCh - 20 ns
27 TdAS(DR) 2TcC - 80 ns
28 TADS(AS) TwCl — 25 ns
29 TWAS TWCh - 5ns
30 TdAS(A) TwCl — 20 ns
32 TdAS(DSR) TwCi — 10 ns
33 TdDSR(DR) TeC + TwCh - 70ns
35 TdDS(DW) TwCi —15ns
36 TdA(DSR) TcC - 35ns
38 TwDSR TcC + TwCh - 30 ns
40 TwDSW JcC - 25ns
a1 TdDSI(DR) 2TcC - 80 ns
43 TwDS 27cC - 40ns
44 TAAS(DSA) 4TcC + WCi - 30 ns
46 TdOSA(DR) 2TcC + WCh — 75 ns
48 TdS(AS) TwCh — 20 ns
68 TwA TcC - 80ns
69 TdDS(s) TwCl - 10ns v
AC Timing Test Conditions
VoL = 08V
Von = 2.0V
vV =08V
Vig = 2.4V
ViLc = 0.45V

ViHe = Vec - 04V

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

ABSOLUTE MAXIMUM RATINGS

Voltages on V with respectto Vss.......... -0.3Vto +7.0vV
Voltages on all inputs with respect

TO Vg oo -0.3V 10 V, +0.3V
Storage Temperaturecocooen..... -65° to +150°C

Stresses greater than those listed under Absolute Maximum
Ratings may cause permanent damage to the device. This is a
stress rating only; operation of the device at any condition above
these indicated in the operational sections of these specifica-
tions is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.

STANDARD TEST CONDITIONS

The DC characteristics below apply for the following test
conditions, unless otherwise noted. All voltages are
referenced to GND (0V). Positive current flows into the
referenced pin.

Available operating temperature ranges are:
B S =0°Cto +70°C, 4.5V +5.5V
@ E=-40'Cto+100°C, +45V <Vccg +55V

< Vo<

All ac parameters assume a total load capacitance

21K

FROM OUTPUT
UNDER TEST

250

100ng Y

The Ordering Information section lists package temperature

(including parasitic capacitances) or 100 pf max, except for ranges and product numbers. -
parameter 6 (50 pf max). Timing references between two
output signals assume a load difference of 50 pf max.
DC CHARACTERISTICS

Symbol Parameter Min Max Unit Condition

VcH Clock input High Voltage Voc-0.4 Vec +0.3 \% Driven by Externat Clock Generator

Veo Clock Input Low Voltage -03 0.45 \ Driven by External Clock Generator

VIH Input High Voltage 2.0 Vee +0.3 v

ViHRESET Input High Voltage on RESET pin 24 Voc+03 v

ViK NMI Input High Voltage on NMI pin 2.4 Vec +0.3 \

ViL Input Low Voltage -03 0.8 \

VoR Output High Voltage 2.4 \ loH = — 250 uA

VoL Output Low Voltage 0.4 v lop = +2.0mA

i Input Leakage +10 pA 0.4<Vn<+2.4V

hLseGgT Input Leakage on SEGT pin -100 100 uA

loL Output Leakage + 10 uA 0.4V NS +2.4V

lcc Vce Power Suppty Current 35 mA 10 MHZ

T

36

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

PACKAGE INFORMATION

1
Db g . o.n 000 .0.0.00.0n000 040

| —062 RAD.

A

&
|

oo oo oo o
2 @0

5

E LY

o1
£ 000

nnnnnhnhnI'Jn

9 30 3 3 3 M
3

OUU0UU0U0pPguUooUuU
3
-

RN T g 6 0 e i i

ms.oot a5 x D5 W
4575 DONAX ~ : . /

o532 003
693 1 005

OIIT 008]
B birey
WG P LOCATION L6102 DO

(DWENSION FROM CHTR TO CATR OF MADSI)

44-Pin Plastic Chip Carrier (PCC)

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

37

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

ORDERING INFORMATION

Z16C01 CPU 10MHz
48-Pin DIP
Z16C0110PSC

Z16C02 CPU 10MHz
40-Pin DIP
Z18C0210 PSC

44-Pin PLCC
Z18C0210VSC

Z16C03 CPU 10MHz
44-Pin PLCC
Z16C0310VSC

All parts listed above are Plastic Standard Flow.

Package

P = Plastic DiP

V = Plastic Chip Carrier
C = Ceramic DIP

L = Ceramic LCC

Longer Lead Time
F = Plastic Quad Flat Pack

Temperature
E =-40°C to + 105°C
S =0°C to 70°C

Speed
10 = 10 MHz

Environmental
C = Plastic Standard

Example: Z16C0110PSC is a Z16C01 10 MHz, DIP, 0°C to +70°C, Plastic Standard Flow.

Z 16CO01 10 P S C
I——— Environmental Flow
Temperature
Package
Speed

Product Number

Zilog Prefix

39

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

ZILOG DOMESTIC SALES OFFICES AND
TECHNICAL CENTERS

CALIFORNIA

AQOUTZ ..o e 818-707-2160
Campbell ..408-370-8120
TUSHIN .o 714-838-7800
COLORADO

Boukder. ... 303-494-2905
FLORIDA _

Largo ..o 813-585-2533
GEORGIA

NOFCIOSSoviiiieeeiiieieie e 404-448-9370
{LLINOIS

Schaumburgccoeoiiiii 312-517-8080
NEW HAMPSHIRE

Nashua ..., 603-888-8590
MINNESOTA

Edina ..o 612-831-7611
NEW JERSEY

Clark ..o 201-382-5700
OHIO

Seven Hills ..o 216-447-1480
PENNSYLVANIA

AMbBIer ..o 215-653-0230
TEXAS

Dallasooovevieiiie e 214-987-9987
WASHINGTON

Seattle ..o 206-523-3591

© 1990 by Zilog, Inc. All rights reserved. No part of this publica-
tion may be reproduced, stored in aretrieval system, or transmit-
ted, in any form or by any means, electronic, mechanical, photo-

copying, recording, orotherwise, without the prior written permis-.

sion of Zilog.

The information contained herein is subject to change without
notice. Zilog will not be responsible for any such changes. Zilog
will not be responsible for notifying any user of changes. Zilog
assumes no responsibility for the use of any circuitry or other
technology embodied in a Zilog product. No patent licenses,
industriai property rights, or other rights are implied.

INTERNATIONAL SALES OFFICES

CANADA

TOroNtO .oviieice e 416-673-0634
GERMANY

MUNICH L. 49-89-672-045
JAPAN

TOKYO o 81-3-587-0528
HONG KONG

KOWIOON ..o 852-3-723-8979
KOREA

SEOUl ..o 82-2-552-5401
SINGAPORE

SiNGAPOIeoooiiiiiicieiie 65-235-7155
TAIWAN

Taipeicocoovvennnnn DRSS 886-2-741-3125

UNITED KINGDOM
Maidenhead...........ccc.c.ccooii 44-628-392-00

Zilog will not be responsibie for any damage to the user that may
result from accidents or any other reasons during operations of
the products described herein.

All specifications (parameters) are subject to change without
notice. Zilog will not be responsible for any such changes. Zilog
will not be responsible for notifying any user of changes. The ap-
plicable Zilog test documentation will specify which parameters
are tested.

Zilog, Inc. 210 Hacienda Ave., Campbell, CA 95008-6609
Telephone (408) 370-8000 TWX 910-338-7621

00-2504-02
40

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

7~

