MC33463

Variable Frequency Micropower DC-to-DC Converter

The MC33463 series are micropower step-up switching voltage regulators, specifically designed for handheld and laptop applications, to provide regulated output voltages using a minimum of external parts. A wide choice of output voltages are available. These devices feature a very low quiescent bias current of $4.0 \mu \mathrm{~A}$ typical.

The MC33463H-XXKT1 series features a highly accurate voltage reference, an oscillator, a variable frequency modulation (VFM) controller, a driver transistor (Lx), a comparator and feedback resistive divider.

The MC33463H-XXLT1 is identical to the MC33463H-XXKT1, except that a drive pin (EXT) for an external transistor is provided.

Due to the low bias current specifications, these devices are ideally suited for battery powered computer, consumer, and industrial equipment where an extension of useful battery life is desirable.

MC33463 Series Features:

- Low Quiescent Bias Current of $4.0 \mu \mathrm{~A}$
- High Output Voltage Accuracy of $\pm 2.5 \%$
- Low Startup Voltage of 0.9 V at 1.0 mA
- Wide Output Voltage Range of 2.5 V to 7.5 V Available
- High Efficiency of 80% Typical
- Surface Mount Package

Figure 1. Typical Circuit Configurations for the MC33463H

ON Semiconductor ${ }^{\text {w }}$ http://onsemi.com
MARKING
DIAGRAM

PIN CONNECTIONS
MC33463H-XXKT1

MC33463H-XXLT1

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet.

This device contains 100 active transistors.
Figure 2. Representative Block Diagrams

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage (Transient)	V_{CC}	12	V
Power Supply Voltage (Operating)	V_{CC}	8.0	V
External Pin Voltage	$\mathrm{V}_{\text {EXT }}$	-0.3 to V_{O}	V
Lx Pin Voltage	$\mathrm{V}_{\text {Lx }}$	12	V
EXT Pin Source/Sink Current	IEXT	± 50	mA
Lx Pin Sink Current	LLx	250	mA
Power Dissipation and Thermal Characteristics H Suffix, Plastic Package Case 1213 (SOT-89) Maximum Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Thermal Resistance, Junction-to-Air		$\begin{aligned} & 500 \\ & 200 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ \hline \end{gathered}$
Operating Junction Temperature	T_{J}	125	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	T_{A}	-30 to +80	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OSCILLATOR					
Maximum Oscillator Frequency	$\mathrm{f}_{\text {osc }}$	80	100	120	kHz
Oscillator Minimum Supply Voltage ($\mathrm{l}_{\mathrm{O}}=1.0 \mathrm{~mA}$) KT1 Suffix	V_{CC}	0.7	-	-	V
Oscillator Startup Voltage ($\mathrm{I}=1.0 \mathrm{~mA}$) KT1 Suffix	V_{CC}	-	0.8	0.9	V
Oscillator Startup Voltage ($\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$) LT1 Suffix	V_{CC}	-	0.7	0.8	V
Maximum Oscillator Duty Cycle	$\mathrm{D}_{\text {max }}$	65	75	85	\%

Lx OUTPUT (KT1 SUFFIX)

ON State Sink Current (VLX $=0.4 \mathrm{~V})$	I Lx				mA
30KT1 Suffix		60	-	-	
33KT1 Suffix		63	-	-	
50KT1 Suffix		80	-	-	
$\mathrm{V}_{\text {Lx }}$ Voltage Limit (Note 1)	$\mathrm{V}_{\text {LxLim }}$	0.65	0.8	1.0	V
OFF State Leakage Current $\left(\mathrm{V}_{\mathrm{Lx}}=6.0 \mathrm{~V}\right)$	$\mathrm{I}_{\text {LKG }}$	-	-	0.5	$\mu \mathrm{~A}$

EXT OUTPUT (LT1 SUFFIX)

ON State Source Current $\left(\mathrm{V}_{\mathrm{EXT}}=\mathrm{V}_{\mathrm{O}}-0.4 \mathrm{~V}\right)$	$\mathrm{I}_{\text {source }}$				
30LT1 Suffix		1.5	-	-	mA
33LT1 Suffix		1.575	-	-	
50LT1 Suffix		2.0	-	-	
OFF State Sink Current $\left(\mathrm{V}_{\mathrm{EXT}}=0.4 \mathrm{~V}\right)$	$\mathrm{I}_{\text {sink }}$				mA
30LT1 Suffix		1.5	-	-	
33LT1 Suffix		1.575	-	-	
50LT1 Suffix		2.0	-	-	

TOTAL DEVICE

Output Voltage 30KT1 or 30LT1 Suffix 33KT1 or 33LT1 Suffix 50KT1 or 50LT1 Suffix	V_{O}	$\begin{aligned} & 2.925 \\ & 3.218 \\ & 4.875 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.075 \\ & 3.383 \\ & 5.125 \end{aligned}$	V
Quiescent Bias Current ($\mathrm{l}_{\mathrm{O}}=0 \mathrm{~mA}$) 30 KT 1 Suffix $\left(\mathrm{V}_{\text {in }}=1.8 \mathrm{~V}\right)$ 33KT1 Suffix 50KT1 Suffix ($\mathrm{V}_{\text {in }}=3.0 \mathrm{~V}$) Quiescent Bias Current $\left(\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{O}}+0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}\right)$ 30KT1 Suffix 33KT1 Suffix 50KT1 Suffix	I_{Q}		$\begin{aligned} & 4.0 \\ & 4.3 \\ & 6.0 \\ & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 8.0 \\ 8.6 \\ 12 \\ 5.0 \\ 5.0 \\ 5.0 \end{gathered}$	$\mu \mathrm{A}$
Quiescent Bias Current ($\mathrm{l}_{\mathrm{O}}=0 \mathrm{~mA}$) 30LT1 Suffix ($\mathrm{V}_{\text {in }}=1.8 \mathrm{~V}$) 33LT1 Suffix 50LT1 Suffix ($\mathrm{V}_{\text {in }}=3.0 \mathrm{~V}$) Quiescent Bias Current $\left(\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{O}}+0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}\right)$ 30LT1 Suffix 33LT1 Suffix 50LT1 Suffix	I_{Q}	-	$\begin{gathered} 30 \\ 34.5 \\ 60 \\ \\ 2.0 \\ 2.0 \\ 2.0 \end{gathered}$	$\begin{aligned} & 50 \\ & 56 \\ & 90 \\ & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	$\mu \mathrm{A}$

1. When the $L x$ switch is turned on, $I_{L x}$ carried through the $R_{D S(o n)}$ of the $L x$ switch results in $V_{L x}$. When $V_{L x}$ reaches $V_{L x L i m}$, the $L x$ switch is turned off by the Lx switch protection circuit.

Figure 3. Quiescent Current versus Temperature

Figure 5. Oscillator Frequency versus Temperature

Figure 7. Lx Switching Current versus Temperature

Figure 4. Quiescent Current versus Temperature

Figure 6. Oscillator Duty Ratio versus Temperature

Figure 8. V_{Lx} Voltage Limit versus Temperature

Figure 9. Output Voltage versus Output Current

Figure 11. Efficiency versus Output Current

Figure 13. Startup/Hold Voltage versus Output Current

Figure 10. Output Voltage versus Output Current

Figure 12. Efficiency versus Output Current

Figure 14. Startup/Hold Voltage versus Output Current

Figure 15. Output Voltage versus Temperature

DEFINITIONS

Quiescent Bias Current - Current which is used to operate the switching regulator chip and is not delivered to the load.
Leakage Current - Current drawn through a transistor junction, under a specified collector voltage, when the transistor is off.

FUNCTIONAL DESCRIPTION

Introduction

The MC33463 series are monolithic power switching regulators optimized for dc-to-dc converter applications where power drain must be minimized. The combination of features in this series allows the system designer to directly implement step-up, step-down or flyback converters with a small number of external components. Potential applications include low power consumer products and battery powered portable products. Typical application circuits are shown in Figure 17 and Figure 18.

Operating Description

The MC33463 series converters each operate as a fixed on-time, variable off-time voltage mode ripple regulator. Operation is intended to be in the discontinuous mode, where the inductor current ramps up to a peak value which is greater than or equal to twice the value of the dc input current during the on-time of the transistor switch. During the off-time of the transistor switch, the inductor current ramps down to zero and remains at zero until another switching cycle begins.

Because the output voltage pin is also used as the supply voltage for powering internal circuitry, an external startup circuit is needed in step-down and flyback converter designs to provide initial power to the integrated circuit to begin switching. The startup circuit needed can be three

Figure 16. Startup/Hold Voltage versus Temperature
discrete components, as shown in Figure 19, or a micropower undervoltage sensor, as shown in Figure 20.

Oscillator

The maximum oscillator frequency, is internally programmed to 100 kHz . The duty ratio of the oscillator is designed for a constant value of 0.75 nominal. Hence the nominal on-time of the power switch is:

$$
\mathrm{t}_{\mathrm{on}}=\frac{\mathrm{D}}{\mathrm{f}_{\mathrm{osc}}}=\frac{0.75}{(100 \mathrm{kHz})}=7.5 \mu \mathrm{~s}
$$

Feedback Comparator

The output voltage is sensed and fed to a high speed comparator noninverting input through an internal resistive divider. The comparator inverting input is connected to an internally trimmed to 0.7 V reference.
With a voltage mode ripple converter operating under normal conditions, output switch conduction is initiated and terminated by the oscillator, off-time is controlled by the high speed voltage feedback comparator.

Driver and Output Switch

To aid in system design flexibility and conversion efficiency, two output driver options are provided. The MC33463H-XXKT1 converters have an internal drive transistor which is capable of sinking currents greater than 60 mA into the Lx pin. An internal V_{Lx} limiter circuit senses if the Lx pin voltage exceeds 1.0 V during t_{on} and turns off the drive transistor. The MC33463H-XXLT1 provides output drive for an external transistor.

Applications

The following converter applications show the simplicity and flexibility of the converter architecture. Three main converter topologies are demonstrated in Figures 17 through 21.

MC33463

Figure 17. MC33463H-50KT1 Typical Step-Up Application

Figure 18. MC33463H-50LT1 Typical Step-Up Application

Figure 19. MC33463H-33KT1 Step-Down Application

Test	Conditions	Results
Line Regulation	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}$ to $8.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	$18.5 \mathrm{mV}= \pm 0.3 \%$
Load Regulation	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~mA}$ to 100 mA	$5.7 \mathrm{mV}= \pm 0.1 \%$
Output Ripple	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	40 mVpp
Efficiency	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	60.3%

MC33463

Figure 20. Micropower Step-Down Application

Figure 21. Flyback Application

Calculation	Step-Down	Step-Up	Flyback
$\mathrm{t}_{\text {on }}$	$\frac{\mathrm{D}}{\mathrm{f}_{\text {osc }}}$	$\frac{\mathrm{D}}{\mathrm{f}_{\text {osc }}}$	$\frac{D}{f_{\text {osc }}}$
L	$<\mathrm{t}_{\text {on }}\left[\frac{\left(\mathrm{v}_{\text {in }}-\mathrm{v}_{\text {sat }}-\mathrm{v}_{\mathrm{O}}\right)}{\left(2 \mathrm{l}_{\mathrm{O}}\right)}\right]$	$<\frac{(\mathrm{n})\left(\mathrm{V}_{\mathrm{in}}\right)^{2}\left(\mathrm{t}_{\mathrm{on}}\right)}{\mathrm{P}_{\mathrm{O}}}$	$<\frac{(n)\left(\mathrm{V}_{\mathrm{in}}\right)^{2}\left(\mathrm{t}_{\mathrm{on}}\right)}{\mathrm{P}_{\mathrm{O}}}$
L(avg)	10	$\mathrm{l}_{\text {in }}$	$\mathrm{l}_{\text {in }}$
$\mathrm{I}_{\mathrm{L}(\mathrm{pk})}$	$\frac{\left(\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {sat }}-\mathrm{V}_{\mathrm{O}}\right)\left(\mathrm{t}_{\text {on }}\right)}{\mathrm{L}}$	$\frac{\left(\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {sat }}\right)\left(\mathrm{t}_{\text {on }}\right)}{\mathrm{L}}$	$\frac{\left(V_{\text {in }}-V_{\text {sat }}\right)\left(\mathrm{t}_{\text {on }}\right)}{L}$
$\mathrm{V}_{\text {ripple(}}$ (pp)	$\Delta \mathrm{I}_{\mathrm{L}}\left[\left(\frac{1}{16 \mathrm{fosc} \mathrm{C}_{\mathrm{O}}}\right)^{2}+(E S R)^{2}\right]^{\frac{1}{2}}$	$\approx \frac{\left(\mathrm{t}_{\mathrm{O}}\right)\left(\mathrm{I}_{\mathrm{O}}\right)}{\left(\mathrm{C}_{\mathrm{O}}\right)}$	$\approx \frac{\left(\mathrm{t}_{\mathrm{on}}\right)\left(\mathrm{I}_{\mathrm{O}}\right)}{\left(\mathrm{C}_{\mathrm{O}}\right)}$

The following converter design characteristics must be chosen:
$V_{\text {in }}$ - Nominal Operating dc input voltage
V_{O} - Desired dc output voltage
Io - Desired dc output current
$\mathrm{V}_{\text {ripple(pp) }}$ - Desired peak-to-peak output ripple voltage. For best performance the ripple voltage should be kept to a low value since it will directly affect line and load regulation. Capacitor C_{O} should be a low equivalent series resistance (ESR) electrolytic designed for switching regulator applications.

1. $\mathrm{V}_{\text {sat }}$ - Saturation voltage of the switching transistor.
n -Estimated circuit efficiency.
Figure 22. Design Equations

MC33463

ORDERING INFORMATION

Device	Output Voltage	Type	Operating Temperature Range	Package	Shipping
MC33463H-30KT1	3.0	Int. Switch	$\mathrm{T}_{\mathrm{A}}=-30^{\circ}$ to $+80^{\circ} \mathrm{C}$	SOT-89	1000 Tape \& Reel
MC33463H-33KT1	3.3				
MC33463H-50KT1	5.0				
MC33463H-30LT1	3.0	Ext.			
MC33463H-33LT1	3.3	Switch			
MC33463H-50LT1	5.0				

Other voltages from 2.5 V to 7.5 V , in 0.1 V increments are available. Consult factory for information.

PACKAGE DIMENSIONS

```
SOT-89
H SUFFIX CASE 1213-02
ISSUE C
```


NOTES

1. DIMENSIONING AND TOLERANCING PER ANSI 14.5M, 1982
2. CONTROLLING DIMENSION: MILLIMETERS
3. 1213-01 OBSOLETE, NEW STANDARD 1213-02.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.40	4.60	0.173	0.181
B	2.40	2.60	0.094	0.102
C	1.40	1.60	0.055	0.063
D	0.37	0.57	0.015	0.022
E	0.32	0.52	0.013	0.020
F	1.50	1.83	0.059	0.072
G	1.50 BSC		0.059 BSC	
H	3.00 BSC		0.118 BSC	
J	0.30	0.50	0.012	0.020
K	0.80	---	0.031	---
L	---	4.25	--	0.167

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

