| | REVISIONS | | | |-----|--|-----------------|------------| | LTR | DESCRIPTION | DATE (YR-MO-DA) | APPROVED | | LIK | Changes in accordance with NOR 5962-R062-94. | 93-12-06 | M. A. Frye | | Α | | 95-03-24 | M. A. Frye | | В | Redrawn. Add case outline X. Technical and editorial changes throughout. | | | | | THE | ORIGIN | AL I | IRST | PAG | E OF | THI | S DRA | WING | HAS | BEE | N RE | PLAC | ED. | | i | | | |---|-----|--------|----------------------------|------------|------|--|------------|-------|------|-----|--------------|------|------|-------|------|--------------|------|----| | REV | SHEET | REV | | _ | | | | | | | | | | | | | | | | | | SHEET | | | | | | | | | ļ. — | | | | | | | | | | | REV STATUS | | REV | · | | В | В | В | В | В | В | В | В | В | В | В | В | | | | OF SHEETS | | SHE | ET | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | | | PMIC N/A PREPARED BY Dan Wonnell | | | | | | DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | | | | | | | | | | | | | | STANDARD MICROCIRCUIT DRAWING Sandra Rooney | THIS DRAWING IS AVAILABLE | | | APPROVED BY Michael A Frye | | | | | | | | JIT,
C SI | | | R, Al | NALC | og s | WITC | Н, | | AMSC N/A 93-05-06 | | SIZ | E | | E CO | | 5962-90737 | | | | | | | | | | | | | | | REVIS | SION | LEVEL
B | | | | SH | EET | 1 | 6726
1 | 00 | OF | 12 | 2 | | | | DESC FORM 193 9004708 0004982 444 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 5962-E138-95 #### 1. SCOPE - 1.1 <u>Scope</u>. This drawing forms a part of a one part one part number documentation system (see 6.6 herein). Two product assurance classes consisting of military high reliability (device classes Q and M) and space application (device class V), and a choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). Device class M microcircuits represent non-JAN class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices". When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN. - 1.2 PIN. The PIN shall be as shown in the following example: - 1.2.1 RHA designator. Device class M RHA marked devices shall meet the MIL-I-38535 appendix A specified RHA levels and shall be marked with the appropriate RHA designator. Device classes Q and V RHA marked devices shall meet the MIL-I-38535 specified RHA levels and shall be marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device. - 1.2.2 <u>Device type(s)</u>. The device type(s) shall identify the circuit function as follows: | Device type | Generic number | <u>Circuit function</u> | |-------------|----------------|--------------------------| | 01 | DG417A | CMOS, SPST analog switch | | 02 | DG418A | CMOS, SPST analog switch | | 03 | DG419A | CMOS, SPST analog switch | 1.2.3 <u>Device class designator</u>. The device class designator shall be a single letter identifying the product assurance level as follows: #### Device class ## Device requirements documentation M Vendor self-certification to the requirements for non-JAN class B microcircuits in accordance with 1.2.1 of MIL-STD-883 Q or V Certification and qualification to MIL-I-38535 1.2.4 <u>Case outline(s)</u>. The case outline(s) shall be as designated in MIL-STD-1835 and as follows: | Outline letter | Descriptive designator | <u>Terminals</u> | <u>Package style</u> | |----------------|------------------------|------------------|----------------------| | Р | GDIP1-T8 or CDIP2-T8 | 8 | dual-in-line | | н | GDFP1-F10 or CDFP2-F10 | 10 | flat package | | X | CDFP3-F10 | 10 | flat package | 1.2.5 <u>Lead finish</u>. The lead finish shall be as specified in MIL-STD-883 (see 3.1 herein) for class M or MIL-I-38535 for classes Q and V. Finish letter "X" shall not be marked on the microcircuit or its packaging. The "X" designation is for use in specifications when lead finishes A, B, and C are considered acceptable and interchangeable without preference. | STANDARD MICROCIRCUIT DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE
A | | 5962-90737 | |---|-----------|---------------------|------------| | DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | | REVISION LEVEL
B | SHEET 2 | DESC FORM 193A JUL 91 9004708 0004983 380 📟 1.3 Absolute waximum ratings. 1/ 44 V dc Supply voltage between V+ and V-Supply voltage between GND and V-25 V dc (GND -0.3 V dc) to 44 V dc 2/ Digital inputs range to V-(V-) -2.0 V dc to (V+) +2.0 \overline{V} dc Digital input range V_S, V_D to Vor 30 mA, whichever occurs first $\frac{2}{}$ 30 mA Current (any terminal except for S or D) continuous 100 mA Current (S or D)pulsed, 1.0 ms, 10% duty cycle -65°C to +150°C Storage temperature range . . Lead temperature (soldering, 10 seconds) +300°C Power dissipation, (P_D): Case P, at +75°C . . . 600 mW 421 mW See MIL-STD-1835 Thermal resistance, junction-to-case (Θ_{JC}) +175°C 1.4 Recommended operating conditions. +15 V dc Positive supply voltage (V+) -15 V dc 5 V dc -55°C to +125°C Ambient operating temperature range (TA) 2. APPLICABLE DOCUMENTS Government specification, standards, bulletin, and handbook. Unless otherwise specified, the following specification, standards, bulletin, and handbook of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein. SPECIFICATION MILITARY MIL-I-38535 - Integrated Circuits, Manufacturing, General Specification for. **STANDARDS** MILITARY MIL-STD-883 - Test Methods and Procedures for Microelectronics. MIL-STD-973 - Configuration Management. MIL-STD-1835 - Microcircuit Case Outlines. BULLETIN MILITARY MIL-BUL-103 - List of Standardized Military Drawings (SMD's). 1/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability. Signals on S_χ , D_χ , or IN_χ exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings. For case outline P, denate above $T_A = +75$ °C linearly at 12 mW/°C. For case outline H and X, denate above $T_A = +70^{\circ}C$ linearly at 5.26 mW/°C. 5962-90737 SIZE STANDARD MICROCIRCUIT DRAWING A DEFENSE ELECTRONICS SUPPLY CENTER REVISION LEVEL В SHEET 3 DESC FORM 193A JUL 91 # **=** 9004708 0004984 217 **=** DAYTON, OHIO 45444 HANDBOOK MILITARY MIL-HDBK-780 - Standardized Military Drawings. (Copies of the specification, standards, bulletin, and handbook required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.) 2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence. ## 3. REQUIREMENTS - 3.1 Item requirements. The individual item requirements for device class M shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein. The individual item requirements for device classes Q and V shall be in accordance with MIL-I-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein. - 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-STD-883 (see 3.1 herein) for device class M and MIL-I-38535 for device classes Q and V and herein. - 3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.4 herein. - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1. - 3.2.3 Truth tables. The truth tables shall be as specified on figure 2. - 3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full ambient operating temperature range. - 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I. - 3.5 Marking. The part shall be marked with the PIN listed in 1.2 herein. Marking for device class M shall be in accordance with MIL-STD-883 (see 3.1 herein). In addition, the manufacturer's PIN may also be marked as listed in MIL-BUL-103. Marking for device classes Q and V shall be in accordance with MIL-I-38535. - 3.5.1 <u>Certification/compliance mark</u>. The compliance mark for device class M shall be a "C" as required in MIL-STD-883 (see 3.1 herein). The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-I-38535. - 3.6 <u>Certificate of compliance</u>. For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-BUL-103 (see 6.7.2 herein). For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.7.1 herein). The certificate of compliance submitted to DESC-EC prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device class M, the requirements of MIL-STD-883 (see 3.1 herein), or for device classes Q and V, the requirements of MIL-I-38535 and the requirements herein. - 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device class M in MIL-STD-883 (see 3.1 herein) or for device classes Q and V in MIL-I-38535 shall be provided with each lot of microcircuits delivered to this drawing. - 3.8 Notification of change for device class M. For device class M, notification to DESC-EC of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-STD-973. - 3.9 <u>Verification and review for device class M</u>. For device class M, DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer. - 3.10 Microcircuit group assignment for device class M. Device class M devices covered by this drawing shall be in microcircuit group number 82 (see MIL-1-38535, appendix A). | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-90737 | |--|-----------|---------------------|------------| | DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | | REVISION LEVEL
B | SHEET
4 | DESC FORM 193A JUL 91 🚃 9004708 0004985 153 **m** TABLE I. <u>Electrical performance characteristics</u>. Limits Unit Device Conditions Group A Symbol Test -55°C ≤ T_A ≤ +125°C V+ = +15 V, V- = -15 V V_L = 5 V, GND = 0 V subgroups type Min Max unless otherwise specified I_S = -10 mA, V_D = ± 12.5 V, V_m = 0 8 V 2.5 01 35 Ω 1 Drain-source ON resistance rds(on) VIN = 0.8 V, V+ = +13.5 V, V- = -13.5 V 2.5 45 2, 3 $I_S = -10 \text{ mA}, V_D = \pm 12.5 \text{ V},$ 02 2.5 35 1 v_{IN} = 2.4 v, v^H = +13.5 v, v- = -13.5 v 2.5 45 2, 3 $I_S = -10$ mA, $V_D = \pm 12.5$ V, $V_D = 0.8$ V, 2.4 V $\frac{1}{2}$ V, $\frac{1}{2}$ V $\frac{1}{2}$ V, $\frac{1}{2}$ V $\frac{1}{$ 03 2.5 35 1 2.5 45 2, 3 ±0.25 nA 1 01 | V_D = ±15.5 V, V_S = ±15.5 V | V_I = 2.4 V, | V_I = +16.5 V, V- = -16.5 V Source OFF Leakage current I_{S(OFF)} ±20 2, 3 ±0.25 1 $v_D = \pm 15.5 \text{ V}, v_S = \pm 15.5 \text{ V}$ VIN = 0.8 V, VIN = +16.5 V, V- = -16.5 V ±20 2, 3 v_D = ±15.5 v, v_S = ±15.5 v v_{IN} = 0.8 v, 2.4 v <u>1</u>/ v⁺ = +16.5 v, v- = -16.5 v 03 ±0.25 1 ±20 2, 3 $|V_D = \pm 15.5 \text{ V}, V_S = \pm 15.5 \text{ V}$ $|V_{TM} = 2.4 \text{ V}.$ ±0.25 01 1 Drain OFF leakage current LD(OFF) vD = 2.4 v, vIN = +16.5 v, v- = -16.5 v ±20 2, 3 $V_D = \pm 15.5 \text{ V}, V_S = \pm 15.5 \text{ V}$ 02 ±0.25 1 v_{IN} = 0.8 v, s v_IN = +16.5 v, v₋ = -16.5 v ±20 2, 3 V_D = ±15.5 V, V_S = ±15.5 V V_{IN} = 0.8 V, 2.4 V <u>1</u>/ V[‡] = +16.5 V, V- = -16.5 V ±0.75 1 03 ±60 2, 3 ±0.4 V_D = ±15.5 V, V_S = ±15.5 V V_{IN} = 0.8 V, V[‡] = +16.5 V, V- = -16.5 V 1 01 Drain ON leakage current ID(ON) ±40 2, 3 $v_D = \pm 15.5 \text{ V}, V_S = \pm 15.5 \text{ V}$ ±0.4 02 1 VIN = 2.4 V, V+ = +16.5 V, V- = -16.5 V ±40 2, 3 ±0.75 V_D = ±15.5 V, V_S = ±15.5 V V_{IN} = 0.8 V, 2.4 V <u>1</u>/ V⁺ = +16.5 V, V- = -16.5 V 1 03 ±60 2, 3 μΑ ±0.5 v_{IN} = 0.8 v 1, 2, 3 ALL Logic input current, IL input voltage low ±0.5 v_{IN} = 2.4 v 1, 2, 3 ALL Logic input current, IHI input voltage high See footnotes at end of table. 5962-90737 SIZE STANDARD A REVISION LEVEL В SHEET 5 DESC FORM 193A JUL 91 9004708 0004986 09T 📟 MICROCIRCUIT DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | Test | Symbol | Conditions
-55°C ≤ T _A ≤ +125°C | Group A
subgroups | Device
type | Li | Unit | | | |------------------------------|--------------------|---|----------------------|----------------|-----|------|----|--| | | | -55°C ≤ T _A ≤ +125°C
V+ = +15 V, V- = -15 V
V _L = 5 V, GND = 0 V
unless otherwise specified | | | Min | Max | | | | Turn-ON time | ton | $R_L = 300 \Omega$, $C_L = 35 pF$
$V_S = \pm 10 V$ See figure 3 | 9 | 01,02 | 10 | 175 | ns | | | | | $ V_S^L = \pm 10 \text{ V See figure 3}$ | 10, 11 | | 10 | 250 | | | | Turn-OFF time | t _{OFF} | $\begin{vmatrix} R_L = 300 \Omega, C_L = 35 \text{ pF} \\ V_S = \pm 10 \text{ V} & \text{See figure 3} \end{vmatrix}$ | 99 | 01,02 | _10 | 145 | | | | | 011 | VS = ±10 V See figure 3 | 10, 11 | | 10 | 210 | | | | Transition time | t _{trans} | $R_1 = 300 \Omega$, $C_1 = 35 pF$ | 9 | 03 | 10 | 175 | | | | | Crans | $R_L = 300 \Omega$, $C_L = 35 \text{pF}$
$V_{S1} = \pm 10 \text{V}$, $V_{S2} = \pm 10 \text{V}$
See figures 4 and 6 | 10, 11 | ļ | 10 | 250 | | | | Break-before-make time delay | t _D | R _L =300 Ω, C _L = 36 pF
 V _{S1} = V _{S2} = ±10 V, T _A = +25°C
 See figures 5 and 6 | 9 | 03 | 5 | 150 | | | | Functional tests | FT | See 4.4.1b | 7, 8 | ALL | | | | | | Positive supply current | I+ | V+ = +16.5 V, V- = -16.5 V | 1 | ALL | | ±1 | μА | | | | | V _{IN} = 0 V, 5 V | 2, 3 | ļ <u>.</u> | | ±5 | | | | Negative supply current |
 I- | V+ = +16.5 V, V- = -16.5 V | _11 | ALL | | ±1 | | | | | | V _{IN} = 0 V, 5 V | 2, 3 | | | ±5 | | | | Logic supply current | IL | V+ = +16.5 V, V- = -16.5 V | 1 | ALL | ļ | ±1 | | | | | _ | V _{IN} = 0 V, 5 V | 2, 3 | | | ±5 | | | | Ground current | I _{GND} | V+ = +16.5 V, V- = -16.5 V | 11 | ALL | | ±1 | | | | | GND | V _{IN} = 0 V, 5 V | 2, 3 | | | ±5 | | | $[\]underline{1}$ / v_{IN} = input voltage to perform proper function. #### 4. QUALITY ASSURANCE PROVISIONS | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-90737 | |--|-----------|---------------------|------------| | DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | | REVISION LEVEL
B | SHEET
6 | DESC FORM 193A JUL 91 ## | 9004708 0004987T26 📟 ^{4.1 &}lt;u>Sampling and inspection</u>. For device class M, sampling and inspection procedures shall be in accordance with MIL-STD-883 (see 3.1 herein). For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-I-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein. ^{4.2 &}lt;u>Screening</u>. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. For device classes Q and V, screening shall be in accordance with MIL-I-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. | Device types | 01 | 02 | 03 | 01 | 02 | 03 | | | |-----------------|----------------|-----------------|----------------|----------------|----------------|-----------------|--|--| | Case outline | | Р | | | H and X | | | | | Terminal number | | Terminal symbol | | | | | | | | 1 | s | D | D | s | s | Ð | | | | 2 | NC | NC | s ₁ | NC | NC | s ₁ | | | | 3 | GND | GND | GND | GND | GND | GND | | | | 4 | V+ | V+ | V+ | V+ | V+ | V+ | | | | 5 | v _L | v _L | v _L | NC | NC | NC | | | | 6 | IN | IN | IN | NC | NC | NC | | | | 7 | v - | V- | V- | v _L | v _L | v _L | | | | 8 | D | s | s ₂ | IN | IN | IN | | | | 9 | | | | V- | V- | ٧ | | | | 10 |
 | | | D | D | \$ ₂ | | | FIGURE 1. Terminal connections. ## DEVICE TYPE 01 | Logic | Switch | |-------|-----------| | 0 | ON
OFF | ## DEVICE TYPE 02 | Logic | Switch | |-------|-----------| | 0 | OFF
ON | ## DEVICE TYPE 03 | Logic | Switch 1 | Switch 2 | |-------|-----------|-----------| | 0 | ON
OFF | OFF
ON | NOTE: Logic "0" ≤ 0.8 V, logic "1" ≥ 2.4 V. FIGURE 2. <u>Truth table</u>. | STANDARD MICROCIRCUIT DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | SIZE
A | | 5962-90737 | |--|-----------|---------------------|------------| | | | REVISION LEVEL
B | SHEET
7 | DESC FORM 193A JUL 91 # **■ 9004708 0004988 962** ■ FIGURE 3. <u>Timing diagram</u>. <u>Devive type 03</u> FIGURE 4. Transition time. | STANDARD MICROCIRCUIT DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | SIZE
A | | 5962-90737 | |--|-----------|---------------------|------------| | | | REVISION LEVEL
B | SHEET
8 | DESC FORM 193A JUL 91 ## 9004708 0004989 879 🖿 ## Device type 03 FIGURE 5. Break-before-make time delay. FIGURE 6. Transition time and break-before-make time delay test circuit. | STANDARD MICROCIRCUIT DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | SIZE
A | | 5962-90737 | |--|-----------|---------------------|------------| | | | REVISION LEVEL
B | SHEET
9 | DESC FORM 193A JUL 91 **= 9004708 0004990 510 ==** - 4.2.1 Additional criteria for device class M. - a. Burn-in test, method 1015 of MIL-STD-883. - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015. - (2) $T_A = +125$ °C, minimum. - b. Interim and final electrical test parameters shall be as specified in table II herein. - 4.2.2 Additional criteria for device classes Q and V. - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-I-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-I-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015. - b. Interim and final electrical test parameters shall be as specified in table II herein. - c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in appendix B of MIL-I-38535. - 4.3 Qualification inspection for device classes Q and V. Qualification inspection for device classes Q and V shall be in accordance with MIL-I-38535. Inspections to be performed shall be those specified in MIL-I-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). - 4.4 <u>Conformance inspection</u>. Quality conformance inspection for device class M shall be in accordance with MIL-STD-883 (see 3.1 herein) and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). Technology conformance inspection for classes Q and V shall be in accordance with MIL-I-38535 including groups A, B, C, D, and E inspections and as specified herein except where option 2 of MIL-I-38535 permits alternate in-line control testing. - 4.4.1 Group A inspection. - a. Tests shall be as specified in table II herein. - b. For device class M, Q, and V subgroups 7 and 8 tests shall be sufficient to verify the truth table. - 4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table II herein. - 4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883: - a. Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005. - b. $T_A = +125$ °C, minimum. - c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883. - 4.4.2.2 <u>Additional criteria for device classes Q and V</u>. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-I-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB, in accordance with MIL-I-38535, and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005. - 4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table II herein. | STANDARD MICROCIRCUIT DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | SIZE
A | | 5962-90737 | |--|-----------|---------------------|-------------| | | | REVISION LEVEL
B | SHEET
10 | DESC FORM 193A JUL 91 **=** 9004708 0004991 457 **=** #### TABLE II. <u>Electrical test requirements</u>. | Test requirements | Subgroups
(in accordance with
MIL-STD-883,
TM 5005, table I) | Subgroups
(in accordance with
MIL-I-38535, table III) | | |--|---|---|---------------------------------| | | Device class M |
 Device class Q | Device class V | | Interim electrical parameters (see 4.2) | 1 | 1 | 1 | | Final electrical parameters (see 4.2) | 1/ 1, 2, 3,
7, 8, 9, 10, 11 | 1/ 1, 2, 3,
7, 8, 9, 10, 11 | 2/ 1, 2, 3,
 7, 8, 9, 10, 11 | | Group A test
requirements (see 4.4) | 1, 2, 3,
1, 8, 9, 10, 11 | 1, 2, 3,
17, 8, 9, 10, 11 | 1, 2, 3,
7, 8, 9, 10, 11 | | Group C end-point electrical | 1 | 1 | 1, 2, 3 | | Group D end-point electrical parameters (see 4.4) | 1 | 1 | 1 | | Group E end-point electrical
parameters (see 4.4) | |
 | | - 1/ PDA applies to subgroup 1. - 2/ PDA applies to subgroups 1 and 7. - 4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). RHA levels for device classes Q and V shall be M, D, F, G, L, R, and H and for device class M shall be M and D. - a. End-point electrical parameters shall be as specified in table II herein. - b. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-I-38535, appendix A, for the RHA level being tested. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-I-38535 for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table I at T_A = +25°C ±5°C, after exposure, to the subgroups specified in table II herein. - c. When specified in the purchase order or contract, a copy of the RHA delta limits shall be supplied. - 5. PACKAGING - 5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-STD-883 (see 3.1 herein) for device class M and MIL-I-38535 for device classes Q and V. - 6. NOTES - 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes. - 6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing. - 6.1.2 Substitutability. Device class Q devices will replace device class M devices. - 6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal. - 6.3 <u>Record of users</u>. Microcircuit and industrial users shall inform Defense Electronics Supply Center when a system application requires configuration control and which SMD's are applicable to that system. DESC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DESC-EC, telephone (513) 296-6047. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-90737 | |--|-----------|---------------------|-------------| | DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | | REVISION LEVEL
B | SHEET
11 | DESC FORM 193A JUL 91 **=** 9004708 0004992 393 **==** - 6.4 Comments on this drawing should be directed to DESC-EC, Dayton, Ohio 45444-5270, or telephone (513) 296-5377. - 6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-I-38535 and MIL-STD-1331. - 6.6 One part one part number system. The one part one part number system described below has been developed to allow for transitions between identical generic devices covered by the three major microcircuit requirements documents (MIL-H-38534, MIL-I-38535, and 1.2.1 of MIL-STD-883) without the necessity for the generation of unique PIN's. The three military requirements documents represent different class levels, and previously when a device manufacturer upgraded military product from one class level to another, the benefits of the upgraded product were unavailable to the Original Equipment Manufacturer (OEM), that was contractually locked into the original unique PIN. By establishing a one part number system covering all three documents, the OEM can acquire to the highest class level available for a given generic device to meet system needs without modifying the original contract parts selection criteria. | Military documentation format | Example PIN
under new system | Manufacturing source listing | Document
<u>Listing</u> | |--|---------------------------------|------------------------------|----------------------------| | New MIL-H-38534 Standard Microcircuit
Drawings | 5962-XXXXXZZ(H or K)YY | QML-38534 | MIL-BUL-103 | | New MIL-I-38535 Standard Microcircuit
Drawings | 5962-XXXXXZZ(Q or V)YY | QML-38535 | MIL-BUL-103 | | New 1.2.1 of MIL-STD-883 Standard
Microcircuit Drawings | 5962-XXXXXZZ(M)YY | MIL-BUL-103 | MIL-BUL-103 | ## 6.7 Sources of supply. - 6.7.1 Sources of supply for device classes Q and V. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DESC-EC and have agreed to this drawing. - 6.7.2 <u>Approved sources of supply for device class M</u>. Approved sources of supply for class M are listed in MIL-BUL-103. The vendors listed in MIL-BUL-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DESC-EC. | STANDARD MICROCIRCUIT DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | SIZE
A | | 5962-90737 | |---|-----------|---------------------|-------------| | | | REVISION LEVEL
B | SHEET
12 | DESC FORM 193A JUL 91 ■ 9004708 0004993 22T 📟 46203