
|                                                                                                          | T                                                      |                                                                          |             |                                     |                                                         |                 |       | RI           | EVIS | LONS    |                            |                 |              |               |                    |                    | 1               |           |        |      |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------|-------------|-------------------------------------|---------------------------------------------------------|-----------------|-------|--------------|------|---------|----------------------------|-----------------|--------------|---------------|--------------------|--------------------|-----------------|-----------|--------|------|
| LTR                                                                                                      | <u> </u>                                               |                                                                          |             |                                     | D                                                       | ESCR            | IPTI  | ON           |      |         |                            |                 | D            | ATE           | (YR-M              | D-DA)              | <b> </b>        |           | OVED   | 7. / |
| A                                                                                                        |                                                        | Add vendor CAGE 34031. Add case outline Y. Editorial changes throughout. |             |                                     |                                                         |                 |       |              |      |         |                            | 92-0            | 1-06         |               | 1.2%               | lo-                | Tel             | îK,       |        |      |
|                                                                                                          | Edi                                                    | LLOTI                                                                    | aı c        | nange                               | es ti                                                   | nroug           | gnout | •            |      |         |                            |                 | L            |               |                    |                    | <u> </u>        |           |        |      |
|                                                                                                          |                                                        |                                                                          |             |                                     |                                                         |                 |       |              |      |         |                            |                 |              |               |                    |                    |                 |           |        |      |
|                                                                                                          |                                                        |                                                                          |             |                                     |                                                         |                 |       |              |      |         |                            |                 |              |               |                    |                    |                 |           |        |      |
|                                                                                                          |                                                        |                                                                          |             |                                     |                                                         |                 |       |              |      |         |                            |                 |              |               |                    |                    |                 |           |        |      |
|                                                                                                          |                                                        |                                                                          |             |                                     |                                                         |                 |       |              |      |         |                            |                 |              |               |                    |                    |                 |           |        |      |
|                                                                                                          |                                                        |                                                                          |             |                                     |                                                         |                 |       |              |      |         |                            |                 |              |               |                    |                    |                 |           |        |      |
|                                                                                                          |                                                        |                                                                          |             |                                     |                                                         |                 |       |              |      |         |                            |                 |              |               |                    |                    |                 |           |        |      |
|                                                                                                          |                                                        |                                                                          |             |                                     |                                                         |                 |       |              |      |         |                            |                 |              |               |                    |                    |                 |           |        |      |
|                                                                                                          |                                                        |                                                                          |             |                                     |                                                         |                 |       |              |      |         |                            |                 |              |               |                    |                    |                 |           |        |      |
|                                                                                                          |                                                        |                                                                          |             |                                     |                                                         |                 |       |              |      |         |                            |                 |              |               |                    |                    |                 |           |        |      |
|                                                                                                          |                                                        |                                                                          |             |                                     |                                                         |                 |       |              |      |         |                            |                 |              |               |                    |                    |                 |           |        |      |
|                                                                                                          |                                                        |                                                                          |             |                                     |                                                         |                 |       |              |      |         |                            |                 |              |               |                    |                    |                 |           |        |      |
|                                                                                                          |                                                        |                                                                          |             |                                     |                                                         |                 |       |              |      |         |                            |                 |              |               |                    |                    |                 |           |        |      |
|                                                                                                          |                                                        |                                                                          |             |                                     |                                                         |                 |       |              |      |         |                            |                 |              |               |                    |                    |                 |           |        |      |
|                                                                                                          |                                                        |                                                                          |             |                                     |                                                         |                 |       |              |      |         |                            |                 |              |               |                    |                    |                 |           |        |      |
|                                                                                                          |                                                        |                                                                          |             |                                     |                                                         |                 |       |              |      |         |                            |                 |              |               |                    |                    |                 |           |        |      |
|                                                                                                          |                                                        |                                                                          |             |                                     |                                                         |                 |       |              |      |         |                            |                 |              |               |                    |                    |                 |           |        |      |
|                                                                                                          |                                                        |                                                                          |             |                                     |                                                         |                 |       |              |      |         |                            |                 |              |               |                    |                    |                 |           |        |      |
|                                                                                                          | 1                                                      | 1                                                                        | <u> </u>    | T                                   | I                                                       |                 | 1     |              | Ī    |         |                            |                 | 1            | ł             | 1                  | 1                  | <del>-</del>    | T         | 1      | T    |
| REV                                                                                                      |                                                        |                                                                          |             |                                     |                                                         |                 |       |              |      |         |                            |                 |              | }             | ļ                  |                    |                 |           |        |      |
| SHEET                                                                                                    |                                                        |                                                                          |             |                                     |                                                         |                 |       |              |      |         |                            |                 |              |               |                    |                    |                 |           |        |      |
| SHEET<br>REV                                                                                             |                                                        |                                                                          |             |                                     |                                                         |                 |       |              |      |         |                            |                 |              |               |                    |                    |                 |           |        |      |
| SHEET<br>REV<br>SHEET                                                                                    |                                                        |                                                                          |             |                                     |                                                         |                 |       |              |      |         |                            |                 |              |               |                    |                    |                 |           |        |      |
| SHEET REV SHEET REV STAT                                                                                 |                                                        |                                                                          |             | RE                                  |                                                         |                 | A     | A            | A    | A       | A                          | A               | A            | A             | A                  | A                  | A               | A         | A      |      |
| SHEET<br>REV<br>SHEET                                                                                    |                                                        |                                                                          |             | <u> </u>                            | v                                                       |                 | A 1   | A 2          | A 3  | A 4     | A 5                        | A 6             | A 7          | A 8           | A 9                | A 10               | A 11            | A 12      | A 13   |      |
| SHEET REV SHEET REV STAT                                                                                 | S                                                      |                                                                          |             | SH                                  | EET ARED E                                              | 3Y<br>Hebei     | 1     | <del> </del> |      | 4       | 5                          |                 | 7            | 8             | 9                  | 10                 | 11              | 12        |        |      |
| SHEET REV SHEET REV STAT OF SHEET PMIC N/A                                                               | S                                                      |                                                                          |             | SH<br>PREP<br>Rob                   | EET<br>ARED E                                           | . Hebe          | 1     | <del> </del> |      | 4       | 5                          | 6<br>SE EI      | 7<br>LECTE   | 8             | 9<br>S SU          | 10<br>PPLY         | 11 CEN          | 12        |        |      |
| SHEET REV SHEET REV STAT OF SHEET PMIC N/A                                                               | S                                                      |                                                                          |             | SH<br>PREP<br>Rob                   | EET ARED E                                              | . Hebe          | 1     | <del> </del> |      | 4       | 5                          | 6<br>SE EI      | 7<br>LECTE   | 8<br>RONIC    | 9<br>S SU          | 10<br>PPLY         | 11 CEN          | 12        |        |      |
| SHEET REV SHEET REV STAT OF SHEET PMIC N/A STAND                                                         | S<br>DARD                                              | RY                                                                       |             | PREP<br>Rob<br>CHECK                | EET  ARED E ert M.  KEDBY y Zahn                        | . Hebei         | 1     | <del> </del> |      | 4<br>D1 | 5<br>EFENS                 | 6<br>SE EI      | 7<br>LECTE   | 8<br>RONIC    | 9<br>SS SU<br>OHIO | 10<br>IPPLY<br>454 | 11<br>CEN<br>44 | 12<br>TER | 13     |      |
| SHEET  REV SHEET  REV STAT OF SHEET  PMIC N/A  STAND MII DR.                                             | DARDI                                                  | R <b>Y</b><br>IG                                                         |             | PREP<br>Rob<br>CHECK                | EET  ARED E ert M.  KEDBY y Zahn                        | . Hebe          | 1     | <del> </del> |      | 4 DI    | 5<br>EFENS                 | 6<br>SE EI<br>I | ZECTE DAYTO  | 8 RONICON, CO | 9<br>CS SU<br>OHIO | 10 PPLY 454 SPEE   | 11<br>CEN<br>44 | 12        | 13     | D    |
| SHEET REV SHEET REV STAT OF SHEET PMIC N/A STAND                                                         | DARDI<br>LITAN<br>AWIN                                 | R <b>Y</b><br>IG<br>AVAILA<br>PARTME                                     | BLE<br>Ents | SH<br>PREP,<br>Rob<br>CHECG<br>Gary | EET  ARED E ert M.  KEDBY y Zahn  OVEDBY                | Heber           | 1 1   | <del> </del> |      | 4 DI    | 5<br>EFENS                 | 6<br>SE EI      | ZECTE DAYTO  | 8 RONICON, CO | 9<br>CS SU<br>OHIO | 10 PPLY 454        | 11<br>CEN<br>44 | 12<br>TER | 13     | D    |
| SHEET REV SHEET REV STAT OF SHEET PMIC N/A STAND MII DR. THIS DRAWII FOR USE BY                          | DARDI<br>LITAR<br>AWIN<br>HG IS A<br>ALL DE            | RY<br>IG<br>AVAILA<br>PARTME<br>DF THE                                   | BLE<br>Ents | SH<br>PREP,<br>Rob<br>CHECG<br>Gary | EET  ARED E ert M.  KEDBY y Zahn  OVEDBY                | . Hebei         | 1 1   | <del> </del> |      | MIC HOD | 5<br>EFENS<br>CROC         | 6 SE EI I       | ZECTE DAYTO  | 8 RONICON, CO | 9<br>CS SU<br>OHIO | 10 PPLY 454 SPEE   | 11 CEN 44       | 12 TER    | 13     | D    |
| SHEET REV SHEET REV STAT OF SHEET  PMIC N/A  STANL MII DR.  THIS DRAWII FOR USE BY AND AGER              | PARDI<br>LITAN<br>AWIN<br>AG IS A<br>ALL DE<br>ICIES C | RY<br>IG<br>AVAILA<br>PARTME<br>DF THE                                   | BLE<br>Ents | SH<br>PREP,<br>Rob<br>CHECC<br>Gary | EET  ARED E ert M.  KEDBY y Zahn  OVEDBY                | Heber<br>Heckin | 1 1   | <del> </del> |      | 4 DI    | 5<br>EFENS<br>CROC         | 6 SE EI I IRCI  | 7 LECTHOMYTO | 8 RONICON, CO | 9<br>CS SU<br>OHIO | 10 PPLY 454 SPEE   | 11 CEN 44       | 12<br>TER | 13     | D    |
| SHEET  REV SHEET  REV STAT OF SHEET  PMIC N/A  STAND MII DR.  THIS DRAWII FOR USE BY AND AGER DEPARTMENT | PARDI<br>LITAN<br>AWIN<br>AG IS A<br>ALL DE<br>ICIES C | RY<br>IG<br>AVAILA<br>PARTME<br>DF THE                                   | BLE<br>Ents | SH<br>PREP,<br>Rob<br>CHECC<br>Gary | ARED E<br>ert M.<br>KEDBY<br>y Zahn<br>OVEDBY<br>LiamK. | Heber<br>Heckin | 1 1   | <del> </del> |      | MIC HOD | 5<br>EFENS<br>CROC<br>LD A | 6 SE EI I IRCI  | ZECTE DAYTO  | 8 RONICON, CO | 9<br>CS SU<br>OHIO | 10 PPLY 454 SPEE   | 11 CEN 44       | 12 TER    | 13 ANI | D    |

<u>DISTRIBUTION STATEMENT A.</u> Approved for public release; distribution is unlimited.

**5962-E2**26

## 1. SCOPE

- 1.1 <u>Scope</u>. This drawing forms a part of a one part one part number documentation system (see 6.6 herein). This drawing describes device requirements for hybrid microcircuits to be processed in accordance with MIL-H-38534. Two product assurance classes, military high reliability (device class H) and space application (device class K) and a choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of radiation hardness assurance levels are reflected in the PIN.
  - 1.2 PIN. The PIN shall be as shown in the following example:



- 1.2.1 <u>Radiation hardness assurance (RHA) designator</u>. Device classes H and K RHA marked devices shall meet the MIL-H-38534 specified RHA levels and shall be marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.
  - 1.2.2 <u>Device type(s)</u>. The device type(s) shall identify the circuit function as follows:

Device type Generic number Circuit function

O1 MN376, HCT-0300A High speed track and hold amplifier

1.2.3 <u>Device class designator</u>. This device class designator shall be a single letter identifying the product assurance level as follows:

Device class Device requirements documentation

H or K Certification and qualification to MIL-H-38534

1.2.4 <u>Case outline(s)</u>. The case outline(s) shall be as designated in appendix C of MIL-M-38510, and as follows:

Outline letter

X See figure 1 (24-lead, 1.315" x .810" x .170"),
dual-in-line package.

Y See figure 2 (24-lead, 1.280" x .780" x .175"),
dual-in-line package.

1.2.5 <u>Lead finish</u>. The lead finish shall be as specified in MIL-H-38534 for classes H and K. Finish letter "X" shall not be marked on the microcircuit or its packaging. The "X" designation is for use in specifications when lead finishes A, B, and C are considered acceptable and interchangeable without preference.

| STANDARDIZED<br>MILITARY DRAWING                     | SIZE<br>A |                     | 5962-90730 |
|------------------------------------------------------|-----------|---------------------|------------|
| DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 |           | REVISION LEVEL<br>A | SHEET<br>2 |

| 1.3 Absolute maximum ratings. 1/                                                                                                                                                                                       |                                      |                                                   |                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------|--------------------------|
| Positive supply voltage (V <sub>CC</sub> )                                                                                                                                                                             | +18<br>18                            | 3 V dc<br>3 V dc                                  |                          |
| Logic supply voltage (V <sub>DD</sub> ) E                                                                                                                                                                              |                                      | .5 V dc to +7 V dc                                |                          |
| Digital input                                                                                                                                                                                                          |                                      | /cc<br>.5°V dc to +5.5 V dc<br>)25 W              |                          |
| Power dissipation                                                                                                                                                                                                      | 50                                   | ,c\m                                              |                          |
| Lead temperature (soldering, 10 seconds)                                                                                                                                                                               | ~ ~ ~ ~ . JUI                        | °C/W<br>D°C                                       |                          |
| Storage temperature range Junction temperature (T <sub>J</sub> )                                                                                                                                                       |                                      | 5°C to +150°C<br>75°C                             |                          |
| 1.4 Recommended operating conditions.                                                                                                                                                                                  |                                      |                                                   |                          |
| Positive supply voltage range (V)                                                                                                                                                                                      | +14                                  | 4.55 V to +15.45 V dc                             |                          |
| Positive supply voltage range (V <sub>CC</sub> ) Negative supply voltage range (V <sub>EC</sub> ) Logic supply voltage range (V <sub>DD</sub> ) Case operating temperature range (T <sub>C</sub> ) Input voltage range |                                      | 4.55 V to -15.45 V dc<br>.75 V dc to +5.25 V dc   |                          |
| Case operating temperature range $(T_c)$                                                                                                                                                                               |                                      | 5°C to +125°C                                     |                          |
| Output current                                                                                                                                                                                                         | ±20                                  | ).0 V dc to +10.0 V dc<br>) mA                    |                          |
| 2. APPLICABLE DOCUMENTS                                                                                                                                                                                                |                                      |                                                   |                          |
| 2.1 <u>Government specifications, standards, and handbook</u> specifications, standards, and handbook of the issue liste                                                                                               | ed in that issue                     | of the Department of Def                          | ense Index of            |
| Specifications and Standards specified in the solicitation herein.                                                                                                                                                     | n, form a part o                     | f this drawing to the ext                         | ent specified            |
| SPECIFICATIONS                                                                                                                                                                                                         |                                      |                                                   |                          |
| MILITARY                                                                                                                                                                                                               |                                      |                                                   |                          |
| MIL-M-38510 – Microcircuits, General Spe<br>MIL-H-38534 – Hybrid Microcircuits, Gene                                                                                                                                   |                                      | on for.                                           |                          |
| STANDARDS                                                                                                                                                                                                              | ·                                    |                                                   |                          |
| MILITARY                                                                                                                                                                                                               |                                      |                                                   |                          |
| MIL-STD-480 - Configuration Control-Eng<br>MIL-STD-883 - Test Methods and Procedure                                                                                                                                    |                                      |                                                   |                          |
| HANDBOOK                                                                                                                                                                                                               |                                      |                                                   |                          |
| MILITARY                                                                                                                                                                                                               |                                      |                                                   |                          |
| MIL-HDBK-780 - Standardized Military Draw                                                                                                                                                                              | rings.                               |                                                   |                          |
| (Copies of the specifications, standards, and handbook a acquisition functions should be obtained from the contract activity.)                                                                                         | required by manu<br>ting activity or | facturers in connection was directed by the contr | vith specific<br>racting |
|                                                                                                                                                                                                                        |                                      |                                                   |                          |
|                                                                                                                                                                                                                        |                                      |                                                   |                          |
|                                                                                                                                                                                                                        |                                      |                                                   |                          |
|                                                                                                                                                                                                                        |                                      |                                                   |                          |
| 1/ Stresses above the absolute maximum rating may cause<br>operation at the maximum levels may degrade perform                                                                                                         | se permanent dam<br>mance and affect | age to the device. Exter<br>reliability.          | nded                     |
|                                                                                                                                                                                                                        | SIZE                                 |                                                   |                          |
| STANDARDIZED<br>MILITARY DRAWING                                                                                                                                                                                       | A                                    |                                                   | 5962-90730               |
| DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444                                                                                                                                                                   |                                      | REVISION LEVEL                                    | SHEET                    |
|                                                                                                                                                                                                                        |                                      | I A :                                             | . 2                      |

Α

DESC FORM 193A

TABLE I. Electrical performance characteristics.

| Test                                           | Symbol            | Conditions 1/<br>  -55°C ≤ T <sub>C</sub> ≤ +125°C<br>  unless otherwise specified | Device<br>type | Group A<br>subgroups | Li<br>Min          | mits<br>  Max   | Unit         |
|------------------------------------------------|-------------------|------------------------------------------------------------------------------------|----------------|----------------------|--------------------|-----------------|--------------|
| ANALOG INPUTS                                  |                   |                                                                                    |                |                      |                    |                 |              |
| Input voltage range                            | VIN               |                                                                                    | 01             | 1<br>2, 3 <u>2</u> / | -10.3<br> -10.3    | +10.2<br> +10.2 | V            |
| Input resistance                               | RIN               | V <sub>IN</sub> = +10 V                                                            | 01             | 4                    | <br> 0.75<br> <br> | 2.00            | <br> kΩ<br>  |
| DIGITAL INPUTS                                 |                   |                                                                                    |                |                      |                    |                 |              |
| Input voltage (high)                           | V <sub>IH</sub>   | Logic "1"                                                                          | 01             | 1, 2, 3              | +2.0               | <br>            | v            |
| (low)                                          | V <sub>IL</sub>   | for all digital Logic "O" inputs                                                   | <br> -<br> -   | <br> <br>            |                    | +0.8            |              |
| Input current (high)                           | І                 | V <sub>IH</sub> = +2.4 V                                                           | 01             | 1, 2, 3              |                    | +1.0            | mA .         |
| (low)                                          | IIL               | V <sub>IL</sub> = +0.4 V                                                           | †              | ļ                    | -1.0               |                 | †            |
| TRANSFER CHARACTERI                            | STICS             |                                                                                    |                | <del></del>          |                    |                 |              |
| Input offset                                   | v <sub>IO</sub>   | Initial -55°C ≤ T <sub>C</sub> ≤ +125°C                                            | 01             | 2, 3                 | -35                | +35             | mV           |
| volt <b>a</b> ge                               |                   | T <sub>C</sub> = +25°C                                                             | 1              | 1                    | -5.0               | +5.0            |              |
|                                                |                   | End points                                                                         | †<br>          | 1                    | -12.5              | +12.5           | <u> </u>     |
| Hold step<br>(pedestal voltage)                | V <sub>HS</sub>   | T <sub>C</sub> = +25°C                                                             | 01             | 4                    | <br> -20<br>       | <br> +20<br>    | mV           |
| Pedestal voltage<br>temperature<br>sensitivity | V <sub>HS</sub> / |                                                                                    | 01             | 4, 5, 6              | -80                | +200            | uV<br>/°C    |
| Gain error                                     | AE                | Initial -55°C ≤ T <sub>C</sub> ≤ +125°C                                            | 01             | 5, 6                 | <u> </u>           | <br> ±0.15      | <br>  %      |
|                                                |                   | T <sub>C</sub> = +25°C                                                             | 1              | 4                    |                    | ±0.1            | <u> </u><br> |
|                                                |                   | End points T <sub>C</sub> = +25°C                                                  | İ              | 4                    |                    | ±0.2            | Ť            |
| Gain linearity<br>error                        | AL                | <br> Best straight line<br> (5 points)                                             | 01             | 4, 5, 6              |                    | ±0.01           | %FSR         |
| ANALOG OUTPUTS                                 |                   | •                                                                                  |                |                      |                    |                 |              |
| Output resistance                              | R <sub>O</sub>    |                                                                                    | 01             | <br>  1, 2, 3        |                    | <br> 1.0        | Ω            |

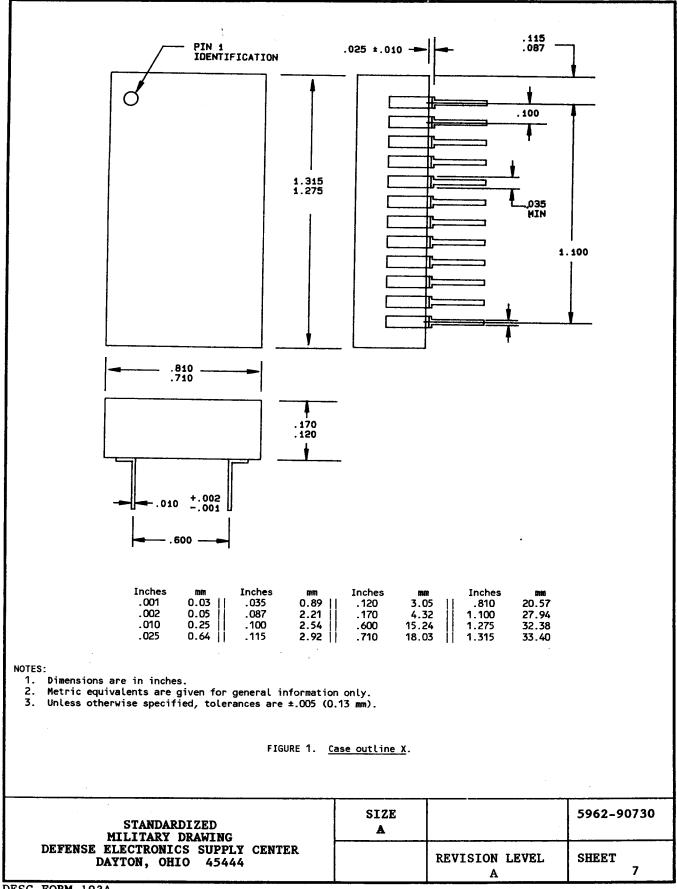
See footnotes at end of table.

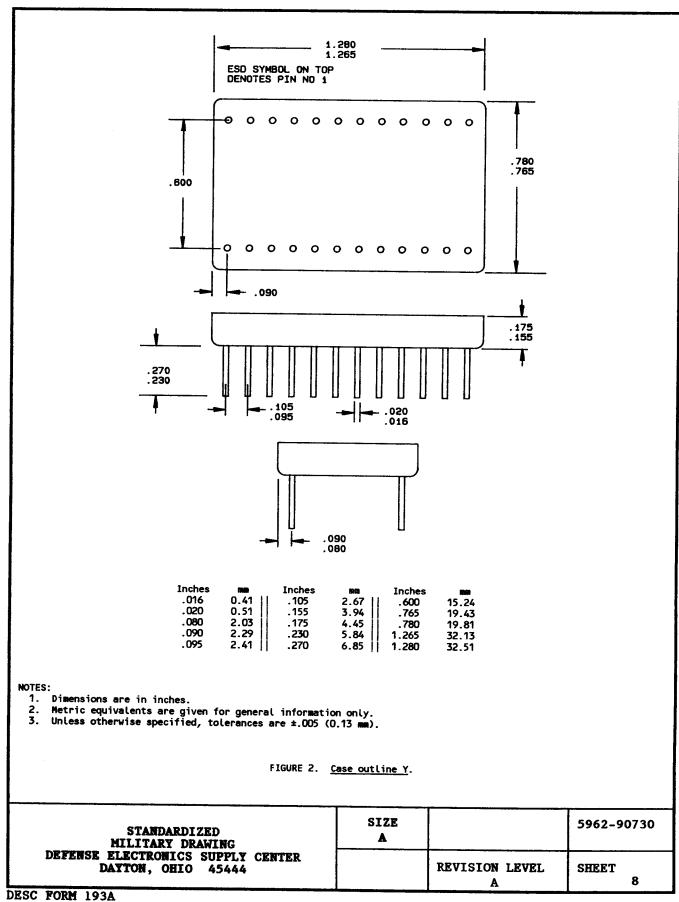
| STANDARDIZED<br>MILITARY DRAWING                     | SIZE<br>A |                     | 5962-90730 |
|------------------------------------------------------|-----------|---------------------|------------|
| DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 |           | REVISION LEVEL<br>A | SHEET<br>4 |

TABLE I. <u>Electrical performance characteristics</u> - Continued.

| Test                               | Symbol            | Conditions 1/                                                                                                  | Device       | Group A   | Li        | mits     | Unit      |
|------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------|--------------|-----------|-----------|----------|-----------|
|                                    |                   | -55°C ≤ T <sub>C</sub> ≤ +125°C<br>  unless otherwise specified                                                | type         | subgroups | Min       | Max      | Ī         |
| DYNAMIC CHARACTE                   | RISTICS           |                                                                                                                |              |           | ,         | ľ        | ,         |
| Hold mode droop                    | v <sub>HD</sub>   | <br> Initial -55°C ≤ T <sub>C</sub> ≤ +25°C<br>                                                                | 01           | 4, 6      | -5.0      | +5.0     | uV/u      |
|                                    | İ                 | T <sub>C</sub> = +125°C                                                                                        | Ī            | 5         | -1.8      | +3.0     | mV/us     |
|                                    |                   | End points T <sub>C</sub> = +25°C                                                                              |              | 4         | -10       | <u> </u> | <u> </u>  |
| Track-to-hold<br>transient voltage | V <sub>TTHT</sub> | 2/                                                                                                             | <br>  01<br> | 9,10,11   |           | 380      | m/b-i     |
| Acquisition time                   | ta                | 10 V step to ±1 mV 2/<br>  10 V step to ±10 mV 2/                                                              | 01           | 9,10,11   | ļ         | 200      | │<br>│ ns |
|                                    |                   | 1 V step to ±10 mV 2/                                                                                          |              |           |           | 100      | †<br>     |
| Transient response (settling time, | <br>  t<br> (t,   | Settling to ±1 mV 2/<br>  Settling to ±10 mV 2/                                                                |              | 9,10,11   | <br> <br> | 100      | ns        |
| track-to-hold)                     | ``s'              |                                                                                                                | <u> </u>     | <u> </u>  |           |          | <u> </u>  |
| Feedthrough<br>rejection ratio     | FRR               | V <sub>IN</sub> = 20 Vp-p at 2.5 MHz<br>  T <sub>C</sub> = +25°C                                               | 01           | 4         | 64        |          | dB        |
| Slew rate                          | SR                | V <sub>IN</sub> = -5 V to +5 V step, <u>2</u> /<br>V(pin 11) = 0 V,<br>V(pin 12) = 0 V, T <sub>C</sub> = +25°C | 01           | 4         | 120       |          | V/us      |
| Bandwidth, small<br>signal (-3 dB) | BW                | V <sub>IN</sub> = 1 Vp-p,                                                                                      | 01           | 4         | 8         |          | MHZ       |
| Aperature time                     | tap               | 2/                                                                                                             | 01           | 9,10,11   |           | 16       | ns        |
| Aperature jitter                   | j <sub>ap</sub>   | 7 <sub>c</sub> = +25°C                                                                                         | 01           | 4         | -50       | +50      | ps        |

See footnotes at end of table.


| STANDARDIZED<br>MILITARY DRAWING                     | SIZE<br>A |                     | 5962-90730 |
|------------------------------------------------------|-----------|---------------------|------------|
| DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 |           | REVISION LEVEL<br>A | SHEET<br>5 |


TABLE I.  $\underline{\textbf{Electrical performance characteristics}} \ - \ \textbf{Continued}.$ 

| Test                            | Symbol          | Conditions 1/                                                 | Device | Group A   | L.           | imits       | Unit |
|---------------------------------|-----------------|---------------------------------------------------------------|--------|-----------|--------------|-------------|------|
|                                 |                 | -55°C ≤ T <sub>C</sub> ≤ +125°C<br>unless otherwise specified | type   | subgroups | Min          | Max         | 1    |
| POWER SUPPLY                    |                 |                                                               |        | *****     |              | <del></del> |      |
| Supply current:                 |                 |                                                               | ļ<br>[ |           | <b> </b><br> |             |      |
| pos supply (V <sub>CC</sub> )   | 1 cc            |                                                               | 01     | 1, 2, 3   | İ            | +30         | mA   |
| neg supply (V <sub>EE</sub> )   | 1 <sub>EE</sub> |                                                               |        |           |              | -30         | †    |
| logic supply (V <sub>DD</sub> ) | I <sub>DD</sub> |                                                               |        |           |              | +25         | †    |
| Power consumption               | PD              | τ <sub>C</sub> = +25°c                                        | 01     | 1         | <br> <br>    | 1025        | mW   |
| Power supply                    |                 |                                                               |        |           |              | Ì           | 1    |
| rejection ratio:                | İ               |                                                               | i      | i         | i            | i           | i    |
| pos supply (V <sub>CC</sub> )   | PSSR1           |                                                               | 01     | 1, 2, 3   | <b>–</b> 5   | +5          | mV/V |
| neg supply (V <sub>EE</sub> )   | PSSR2           |                                                               |        |           | -5           | +5          | †    |
| logic supply (V <sub>DD</sub> ) | PSSR3           |                                                               | !<br>  | _         | -5           | 1 +5        | 1    |

 $\frac{1}{2}$ /  $\frac{1}{2}$  = +15 V,  $\frac{1}{2}$  = -15 V,  $\frac{1}{2}$  = 5 V unless otherwise specified.  $\frac{1}{2}$ / Parameter shall be tested as part of device initial characterization and after design and process changes. Parameter shall be guaranteed to the limits specified in table 1 for all lots not specifically tested.

| STANDARDIZED<br>MILITARY DRAWING                     | SIZE<br>A |                     | 5962-90730 |
|------------------------------------------------------|-----------|---------------------|------------|
| DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 |           | REVISION LEVEL<br>A | SHEET<br>6 |





## Device Type 01 Case outlines X and Y

| Pin | <br>  Function<br> | <br>   Pin | Function           |
|-----|--------------------|------------|--------------------|
| 1   | Analog output      | 13         | <br>  Analog input |
| 2   | N/C                | 14         | N/C                |
| 3   | N/C                | 15         | Input ground       |
| 4   | N/C                | 16         | N/C                |
| 5   | N/C                | 17         | N/C                |
| 6   | N/C                | j j 18     | N/C                |
| 7   | N/C                | 19         | N/C                |
| 8   | N/C                | 20         | N/C                |
| 9   | V <sub>00</sub>    | 21         | Ground             |
| 10  | VDD<br>  Ground    | 22         | Vec                |
| 11  | <u>Hold</u>        | 23         | Ground             |
| 12  | Hold               | 24         | V <sub>CC</sub>    |

FIGURE 3. Terminal connections.

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE
A
5962-90730

REVISION LEVEL
SHEET
A
9

DESC FORM 193A

- 2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.
  - REQUIREMENTS
- 3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-H-38534 and as specified herein.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-H-38534 and herein.
  - 3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.4 herein and figure 1 and 2.
  - 3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 3.
- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full specified operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.
- 3.5 <u>Marking</u>. Marking shall be in accordance with MIL-H-38534. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in QML-38534.
- 3.6 <u>Manufacturer eligibility</u>. In addition to the general requirements of MIL-H-38534, the manufacturer of the part described herein shall submit for DESC-ECT review and approval electrical test data (variables format) on 22 devices from the initial quality conformance inspection group A lot sample, produced on the certified line, for each device type listed herein. The data should also include a summary of all parameters manually tested, and for those which, if any, are guaranteed.
- 3.7 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to supply to this drawing. The certificate of compliance submitted to DESC-ECT shall affirm that the manufacturer's product meets the requirements of MIL-H-38534 and the requirements herein.
- 3.8 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-H-38534 shall be provided with each lot of microcircuits delivered to this drawing.
  - 4. QUALITY ASSURANCE PROVISIONS
  - 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with MIL-H-38534.
- 4.2 <u>Screening</u>. Screening shall be in accordance with MIL-H-38534. The following additional criteria shall apply:
  - a. Burn-in test, method 1015 of MIL-STD-883.
    - (1) Test condition A, B, C or D using the circuit submitted with the certificate of compliance (see 3.7 herein).
    - (2)  $T_a$  as specified in accordance with table I of method 1015 of MIL-STD-883.
  - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

| STANDARDIZED<br>MILITARY DRAWING                     | SIZE<br>A |                     | 5962-90730  |
|------------------------------------------------------|-----------|---------------------|-------------|
| DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 |           | REVISION LEVEL<br>A | SHEET<br>10 |

DESC FORM 193A

TABLE II. Electrical test requirements.

| <br>  MIL-STD-883 test requirements<br> <br>       | Subgroups<br>(per method<br>5008, group A<br>test table) |
|----------------------------------------------------|----------------------------------------------------------|
| <br>  Interim electrical parameters<br>            |                                                          |
| <br>  Final electrical test parameters<br>         | <br>  1*,2,3,4,5,6,<br>  9,10,11                         |
| <br>  Group A test requirements                    | <br>  1,2,3,4,5,6,<br>  9,10,11                          |
| <br>  Group C end-point electrical<br>  parameters | 1                                                        |
| MIL-STD-883 test requirements                      | Subgroups<br>(per method<br>5008, table X)               |
| Group E end-point electrical parameters            |                                                          |

<sup>\*</sup>PDA applies to subgroup 1.

- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with MIL-H-38534 and as specified herein.
  - 4.3.1 Group A inspection. Group A inspection shall be in accordance with MIL-H-38534 and as follows:
    - a. Tests shall be as specified in table II herein.
    - b. Subgroups 7 and 8 shall be omitted.
  - 4.3.2 Group B inspection. Group B inspection shall be in accordance with MIL-H-38534.
  - 4.3.3 Group C inspection. Group C inspection shall be in accordance with MIL-H-38534 and as follows:
    - a. End-point electrical parameters shall be as specified in table II herein.
    - b. Steady-state life test conditions, method 1005 of MIL-STD-883.
      - (1) Test condition A, B, C or D using the circuit submitted with the certificate of compliance (see 3.7 herein).
      - (2)  $T_A$  as specified in accordance with table I of method 1005 of MIL-STD-883.
      - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

| STANDARDIZED<br>MILITARY DRAWING<br>DEFENSE ELECTRONICS SUPPLY CENTER<br>DAYTON, OHIO 45444 | SIZE<br>A |                | 5962-90730  |
|---------------------------------------------------------------------------------------------|-----------|----------------|-------------|
|                                                                                             |           | REVISION LEVEL | SHEET<br>11 |

DESC FORM 193A

- 4.3.4 Group D inspection. Group D inspection shall be in accordance with MIL-H-38534.
- 4.3.5 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). RHA levels for device classes H and K shall be M, D, R, and H. RHA quality conformance inspection sample tests shall be performed at the RHA level specified in the acquisition document.
  - a. RHA tests for device classes H and K for levels M, D, R, and H shall be performed through each level to determine at what levels the devices meet the RHA requirements. These RHA tests shall be performed for initial qualification and after design or process changes which may affect the RHA performance of the device.
  - b. End-point electrical parameters shall be as specified in table II herein.
  - c. Prior to total dose irradiation, each selected sample shall be assembled in its qualified package. It shall pass the specified group A electrical parameters in table I for subgroups specified in table II herein.
  - d. For device classes H and K, the devices shall be subjected to radiation hardness assured tests as specified in MIL-H-38534 for RHA level being tested, and meet the postirradiation end-point electrical parameter limits as defined in table I at  $T_A$  = +25°C ±5 percent, after exposure.
  - e. Prior to and during total dose irradiation testing, the devices shall be biased to establish a worst case condition as specified in the radiation exposure circuit.
  - f. For device classes H and K, subgroups 1 and 2 in table V, method 5005 of MIL-STD-883 shall be tested as appropriate for device construction.
  - g. When specified in the purchase order or contract, a copy of the RHA delta limits shall be supplied.
  - 5. PACKAGING
  - 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-H-38534.
  - 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-481 using DD Form 1693, Engineering Change Proposal (Short Form).
- 6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Electronics Supply Center when a system application requires configuration control and the applicable SMD. DESC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DESC-ECT, telephone (513) 296-6047.
- 6.5 <u>Comments</u>. Comments on this drawing should be directed to DESC-ECT, Dayton, Ohio 45444, or telephone (513) 296-5374.

| STANDARDIZED<br>MILITARY DRAWING<br>DEFENSE ELECTRONICS SUPPLY CENTER<br>DAYTON, OHIO 45444 | SIZE<br>A |                     | 5962-90730  |
|---------------------------------------------------------------------------------------------|-----------|---------------------|-------------|
|                                                                                             |           | REVISION LEVEL<br>A | SHEET<br>12 |

DESC FORM 193A

6.6 One part — one part number system. The one part — one part number system described below has been developed to allow for transitions between identical generic devices covered by the four major microcircuit requirements documents (MIL-M-38510, MIL-H-38534, MIL-I-38535, and 1.2.1 of MIL-STD-883) without the necessity for the generation of unique PIN's. The four military requirements documents represent different class levels, and previously when a device manufacturer upgraded military product from one class level to another, the benefits of the upgraded product were unavailable to the Original Equipment Manufacturer (OEM), that was contractually locked into the original unique PIN. By establishing a one part number system covering all four documents, the OEM can acquire to the highest class level available for a given generic device to meet system needs without modifying the original contract parts selection criteria.

| Military documentation format                                         | Example PIN under new system | Manufacturing source listing | Document<br>Listing |
|-----------------------------------------------------------------------|------------------------------|------------------------------|---------------------|
| New MIL-M-38510 Military Detail<br>Specifications (in the SMD format) | 5962-XXXXXZZ(B or S)YY       | QPL-38510<br>(Part 1 or 2)   | MIL-BUL-103         |
| New MIL-H-38534 Standardized Military<br>Drawings                     | 5962-XXXXXZZ(H or K)YY       | QML-38534                    | MIL-BUL-103         |
| New MIL-I-38535 Standardized Military<br>Drawings                     | 5962-XXXXXZZ(Q or V)YY       | QML~38535                    | MIL-BUL-103         |
| New 1.2.1 of MIL-STD-883 Standardized<br>Military Drawings            | 5962-XXXXZZ(M)YY             | MIL-BUL~103                  | MIL-BUL-103         |

6.7 <u>Sources of supply for device classes H and K</u>. Sources of supply for device classes H and K are listed in QML-38534. The vendors listed in QML-38534 have submitted a certificate of compliance (see 3.7 herein) to DESC-ECT and have agreed to this drawing.

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE
A 5962-90730

REVISION LEVEL A 13

DESC FORM 193A