NEC

Application Note

μ PD784915, 784928, 784928Y Subseries

16-bit Single-chip Microcontrollers

VCR Servo Basics

μ PD784915	μ ΡD784927	μ PD784927Y
μ ΡD784915A	μ PD78F4928	μ PD78F4928Y
μ ΡD784916A		
μ PD784915B		
μ PD784916B		
μ PD78P4916		

Document No. U11361EJ3V0AN00 (3rd edition) Date Published March 1998 N CP(K)

© NEC Corporation 1996 Printed in Japan [MEMO]

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288	NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580	NEC Electronics Hong Kong Tel: 2886-9318 Fax: 2886-9022/9 NEC Electronics
	NEC Electronics (France) S.A.	Seoul Branch
NEC Electronics (Germany) GmbH Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490	Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99	Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411
	NEC Electronics (France) S.A.	NEC Electronics S
NEC Electronics (UK) Ltd.	Spain Office	United Square, Si
Milton Keynes, UK	Madrid, Spain	Tel: 65-253-8311
Tel: 01908-691-133	Tel: 01-504-2787	Fax: 65-250-3583
Fax: 01908-670-290	Fax: 01-504-2860	
NEO Electronico Italiano e n.4		NEC Electronic
NEC Electronics Italiana s.r.1.	NEC Electronics (Germany) GmbH	Taipei, Taiwan
Milano, Italy	Scandinavia Office	Tel: 02-719-2377
Tel: 02-66 75 41	Taeby, Sweden	Fax: 02-719-5951
Fax: 02-66 75 42 99	Tel: 08-63 80 820	
	Fax: 08-63 80 388	NEC do Brasil

s Hong Kong Ltd. 9044

s Hong Kong Ltd. 3 1 Singapore Pte. Ltd.

Singapore 1130 3

cs Taiwan Ltd. -1

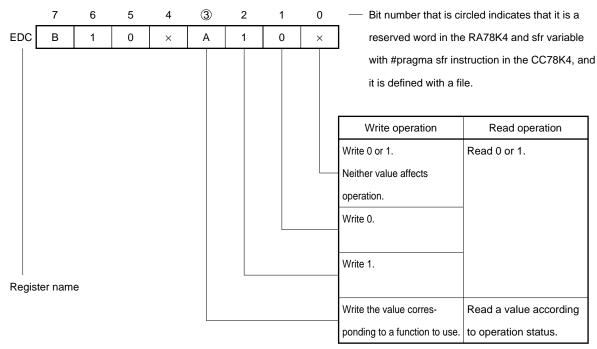
S.A. Cumbica-Guarulhos-SP, Brasil Tel: 011-6465-6810 Fax: 011-6465-6829

Major Revisions in This Edition

Page	Description	
Throughout	The μ PD784928, 784928Y Subseries and the μ PD784915B, 784916B are added.	
Introduction	Document numbers of related documents are added or corrected.	
p. 15	CHAPTER 1 OUTLINE OF NEC VCR SERVO MICROCONTROLLER PRODUCTS is added.	
p. 19	Table 2-1 Differences among μ PD784915 Subseries Products is added.	
p. 25	CHAPTER 3 OUTLINE OF µPD784928, 784928Y SUBSERIES is added.	

The mark \star shows major revised points.

INTRODUCTION


Readers	This application note is intended for user engineers who understand the functions of the μ PD784915, 784928, 784928Y Subseries and wish to design and develop its application systems and programs.		
Purpose	The purpose of this applicati bilities of the target device u	ion note is to help users understand the hardware capa- using application examples.	
Organization	 The main topics of this application note are listed below. Outline of μPD784915 Subseries Outline of μPD784928, 784928Y Subseries Outline of VCR servo Servo control examples of stationary VCR Analog circuit VISS 		
How to Read This Manual	It is assumed that the readers of this manual have a general knowledge of electronics, logical circuits, and microcontrollers. Moreover, readers should also have a general knowledge of VCRs and servo control. When there are no functional differences in the products, the application note mentions the μ PD784915 Subseries as the representative subseries and the μ PD784915 as the representative version, although its descriptions also apply to the versions other than the μ PD784915.		
Quality Grade	Standard (for general electro	onic appliances)	
Legends	Data significance Active low Note Caution Remark Numerical representation Easily confused characters	 Left: higher digit, right: lower digit xxx (top bar over pin or signal name) Footnote explaining items marked with "Note" in the text Description of point that requires particular attention Supplementary information Binary xxxx B or xxxx Decimal xxxx Hexadecimal xxxxH 0 (zero), O (uppercase letter "o") 1 (one), I (lowercase of letter "L"), I (uppercase of letter "i") 	

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

★ Device related documents

Document Name	Document Number	
	Japanese	English
μPD784915 Data Sheet	U11044J	U11044E
μPD784915A, 784916A Data Sheet	U11022J	U11022E
μPD784915B, 784916B Data Sheet	U11930J	To be prepared
μPD78P4916 Data Sheet	U11045J	U11045E
μ PD784915 Subseries Special Function Register Table	U10976J	_
μPD784915 Subseries User's Manual	U10444J	U10444E
μPD784927 Data Sheet	U12255J	To be prepared
µPD78F4928 Preliminary Product Information	U12188J	U12188E
μ PD784928 Subseries Special Function Register Table	U12798J	_
μPD784927Y Data Sheet	U12373J	U12373E
µPD78F4928Y Preliminary Product Information	U12271J	U12271E
μ PD784928Y Subseries Special Function Register Table	U12719J	_
μ PD784928, 784928Y Subseries User's Manual	U12648J	U12648E
μ PD784915, 784928, 784928Y Subseries Application Note — VCR Servo Basics	U11361J	This manual
78K/IV Series User's Manual — Instruction	U10905J	U10905E
78K/IV Series Instruction Table	U10594J	
78K/IV Series Instruction Set	U10595J	
78K/IV Series Application Note — Software Basics	U10095J	U10095E

Register Format

Never write a combination of codes marked "setting prohibited" in the register formats in the text.

CONTENTS

*	CHAPTER	1 OUTLINE OF NEC VCR SERVO MICROCONTROLLER PRODUCTS	15
	1.1	Outline	15
	1.2	Features	17
	CHAPTER	2 OUTLINE OF μ PD784915 SUBSERIES	19
	2.1	Features and Application Fields	20
	2.2	Pin Configuration (Top View)	
	2.3	Block Diagram	23
	2.4	Outline of Functions	24
*	CHAPTER	3 OUTLINE OF μ PD784928, 784928Y SUBSERIES	25
	3.1	Features and Application Fields	26
	3.2	Pin Configuration (Top View)	27
	3.3	Internal Block Diagram	29
	3.4	Outline of Functions	30
	3.5	Differences among μ PD784928, 784928Y Subseries and μ PD784915 Subseries	32
	CHAPTER	4 OUTLINE OF VCR SERVO SYSTEM	33
	4.1	Outline of Software Servo	33
	4.2	Servo Control of VCR	34
	4.3	Servo for Recording	36
	4.4	Servo for Playback	36
	4.5	Motor to be Used	37
	4.6	VCR Control Systems	
	4.7	VCR Servo System Control	38
	CHAPTER	5 EXAMPLES OF STATIONARY TYPE VCR SERVO CONTROL	
	5.1	Examples of System Configuration	
	5.2	Outline of System	
	5.3	Using Example of Super Timer Unit	
	5.4	Head Switching Signal Generation	
		5.4.1 Internal head switching signal (HSW-N) generation	46
		5.4.2 Head switching signal (V-HSW) generation	48
		5.4.3 Audio head switching signal (A-HSW) generation	
	5.5	Drum Speed Control	58
	5.6	Drum Phase Control	60
		5.6.1 Phase reference	60
		5.6.2 Drum phase control for playback	69
		5.6.3 Drum phase control for recording	74
	5.7	Capstan Speed Control	79
	5.8	Capstan Phase Control	83
		5.8.1 Capstan phase control for playback	83
		5.8.2 Capstan phase control for recording	
	5.9	Recording Control Signal Generation	
	5.10) Quasi Vertical Synchronizing Signal (Quasi-Vsync) Generation	100

5.11	Treat	ment of Servo Error Amount	103
	5.11.1	Drum control system processing	103
	5.11.2	Capstan control system processing	107
5.12	Comp	ensation Filter	112
	5.12.1	Filter types	112
	5.12.2	Biprimary conversion method	113
	5.12.3	Digital filter designing method	119
	5.12.4	Primary IIR type digital filter transfer function	120
	5.12.5	Lag-lead filter configuration method	121
	5.12.6	Filter processing method	124
CHAPTER 6	CTL	AMPLIFIER	127
6.1	CTL A	Amplifier Auto Gain Control Processing	127
	6.1.1	CTL amplifier auto gain control method	
	6.1.2	CTL amplifier auto gain control processing	134
			407
7.1		is VISS	
7.2		Detection	
	7.2.1	VISS detection method	
		VISS detection processing	
7.3	VISS	Rewrite	147
	7.3.1	VISS rewrite method	147
	7.3.2	VISS rewrite processing	149
CHAPTER 8	PRO	GRAM LIST	151
APPENDIX	REVIS	ION HISTORY	221

LIST OF FIGURES (1/2)

Figure No.	Title	Page
4-1	Track Pattern on Video Tape	35
5-1	Application to Stationary Type VCR	40
5-2	Software Digital Servo System Block Diagram	
5-3	Super Timer Unit Block Diagram	
5-4	Use of Event Counter (EC)	
5-5	Event Counter (EC) Operation Timing	47
5-6	Use of Timer 0	49
5-7	Head Switching Signal (V-HSW) Timing (PTO00)	50
5-8	Input Control Register (ICR) Format (when generating V-HSW)	51
5-9	Timer 0 Output Mode Register (TOM0) Format (when generating V-HSW)	52
5-10	Timer 0 Output Control Register (TOC0) Format (when generating V-HSW)	52
5-11	Timer Control Register 0 (TMC0) Format (when generating V-HSW)	53
5-12	Assigning A-HSW to Timer 0	54
5-13	V-HSW and A-HSW Timings	55
5-14	Timer 0 Output Mode Register (TOM0) Format (when generating A-HSW)	55
5-15	Timer 0 Output Control Register (TOC0) Format (when generating A-HSW)	56
5-16	Timer Control Register 0 (TMC0) Format (when generating A-HSW)	57
5-17	Drum Speed Error Amount Detection Method	58
5-18	Drum Speed Control Timings	59
5-19	Timer 1 Peripheral Circuit	61
5-20	Example of Timer 1 Operation Timings (for playback)	63
5-21	Timer Control Register 0 (TMC0) Format (drum phase control for playback)	64
5-22	Example of Timer 1 Operation Timings (for recording)	67
5-23	Timer Control Register 0 (TMC0) Format (drum phase control for recording)	68
5-24	Use of Timer for Drum Phase Control (for playback)	69
5-25	Drum Phase Control Timing (for playback)	70
5-26	Capture Mode Register (CPTM) Format	73
5-27	Use of Timer for Drum Phase Control (for recording)	75
5-28	Drum Phase Control Timing (for recording)	76
5-29	Capture Mode Register (CPTM) Format	77
5-30	Capstan Speed Detection Method	81
5-31	Capstan Speed Control Timing	82
5-32	Model of Capstan Phase Control	83
5-33	Capstan Phase Error Detection Method (for playback)	85
5-34	Capture Mode Register (CPTM) Format	86
5-35	Capstan Phase Control Timing (playback mode, phase locked)	87
5-36	Capstan Phase Control Timing (playback mode, phase delayed)	88
5-37	Capstan Phase Control Timing (playback mode, phase advanced)	89
5-38	Capstan Phase Error Detection Method (for recording)	91
5-39	Capture Mode Register (CPTM) Format	92
5-40	Capstan Phase Control Timing (for recording)	93
5-41	Connection of μ PD784915 and Control Head	95

LIST OF FIGURES (2/2)

Figure No.	Title	Page
5-42	RECCTL Driver Block Diagram	
5-43	Example of RECCTL Signal Writing Operation Timings	
5-44	Timer 1 Output Mode Register (TOM1) Format	
5-45	RECCTL Write Timing Using CR11	
5-46	Quasi-Vsync Waveform	101
5-47	Middle Level Generation	101
5-48	Quasi-Vsync Generation Timing	102
5-49	Drum Control System Configuration	103
5-50	Trapezoidal Pattern for Error Value Detection (drum control system)	104
5-51	Capstan Control System Configuration	107
5-52	Trapezoidal Pattern for Error Value Detection (capstan control system)	108
5-53	Fold Error	114
5-54	Pole Location when Sampling Theorem is Satisfied	115
5-55	Pole Location when Sampling Theorem is Not Satisfied	115
5-56	Mapping by Standard z Transform	116
5-57	Mapping by Biprimary Transform	118
5-58	Primary IIR Type Digital Filter Block Diagram	120
5-59	Lag-lead Filter Configuration and Characteristics	121
6-1	CTL Amplifier Configuration	127
6-2	Relationship between CTL Amplifier Output and Each Detection Level/Flag	128
6-3	Gain Change Timing for PLAY or CUE/REV in Forward Direction	130
6-4	Gain Change Timing for PLAY or CUE/REV in Reverse Direction	131
6-5	Gain Change Timing for FF/REW in Forward Direction	132
6-6	Gain Change Timing for FF/REW in Reverse Direction	133
7-1	VISS Cue Code	137
7-2	VISS Detection Circuit (Pulse Width Detection Circuit) Configuration	138
7-3	Data Pattern Discrimination Mode Block Configuration	140
7-4	Addressing and Data Setting in Data Pattern Discrimination Mode	141
7-5	INTCR12 Macro Service Processing in Forward Direction	145
7-6	INTCR12 Macro Service Processing in Reverse Direction	146
7-7	VISS Rewrite	147
7-8	VISS = 1 Signal Rewrite Operation Timing Chart	149

LIST OF TABLES

Table No.	Title	Page
2-1	Differences among μ PD784915 Subseries Products	. 19
3-1	Differences among μ PD784928, 784928Y Subseries Products	. 25
3-2	Differences among μ PD784928, 784928Y Subseries and μ PD784915 Subseries	. 32
5-1	Using Examples of Super Timer Unit	. 43
5-2	RECCTL Driver REC Mode Sequence	. 95
5-3	Capstan Loop Gain in Each Operation Mode	. 110
5-4	Capstan Bias Value in Each Operation Mode	. 111
6-1	CTL Detection Flag Read Value and CTL Amplifier Gain Adjustment	. 128
7-1	VISS Data	. 137
7-2	RECCTL Driver Rewrite Mode Sequence	. 148
7-3	VISS Write Operation Timings	. 150

[MEMO]

1.1 Outline

 \star

NEC's microcontrollers for VCR servos are 78K/IV Series products featuring a high-speed, high-performance 16bit CPU that are improved versions of the 78K/I Series of 8-bit single-chip microcontrollers for VCR software servo control.

Microcontrollers for VCR servo control comprise the following three subseries.

- μPD784915 Subseries
- μPD784928 Subseries
- μPD784928Y Subseries

NEC's lineup of microcontrollers for VCR servo control is shown below. The Y subseries support I^2C bus specifications.

Under mass production Under development

78K/IV Series

μPD784928	μPD784928Y Exp Enh	-pin QFP. Internal flash memory anded on-chip memory capacity anced analog amplifiers. Improved VCR functions. Increased number of I/Os. ge-current port added. I ² C function added (Y products only).
µPD784915 78K/I Series	Exp On-	-pin QFP anded on-chip memory capacity chip analog amplifiers. Enhanced super timer. -power-dissipation mode added.
μPD78148		-pin QFP anded on-chip RAM capacity. On-chip operational amplifier, clock function, multiplier.
μPD78138	7 80-p	bin QFP

15

• Microcontrollers for VCR Servo Control

• µPD784915 Subseries

Part Number	μPD784915, 784915A,	μPD784916A,	μPD78P4916
Parameter	μ PD784915B	μ PD784916B	
Internal ROM capacity	Mask ROM		One-time PROM
	48 Kbytes 62 Kbytes		
Internal RAM capacity	1280 bytes		2048 bytes

• µPD784928, 784928Y Subseries

Part Number Parameter	μΡD784927, μΡD784927Υ	μPD78F4928 ^{Note} , μPD78F4928Y ^{Note}
Internal ROM capacity	Mask ROM	Flash memory
	96 Kbytes	128 Kbytes
Internal RAM capacity	2048 bytes	3584 bytes

Note Under development

1.2 Features

In this section, the μ PD784915 Subseries is explained as the representative subseries, which is enhanced, compared with the 78K/I Series, in the points mentioned below.

(1) Equipped with the 78K/IV core, a 16-bit high-performance CPU

The instruction set of the μ PD784915 Subseries is perfectly upward-compatible with that of the existing 78K/I series. Therefore, the software assets of the 78K/I Series are effectively utilized.

The 78K/IV Series supports 1-Mbyte linear address space, resulting in improved program handlability. Moreover, the instruction set of the 78K/IV Series has been greatly enhanced, and realizes high-speed servo arithmetic processing by using powerful multiplication and 16-bit transmit instructions.

(2) Enhanced power management function

The μ PD784915 Subseries realizes internal 8 MHz (minimum instruction execution time = 250 ns) high-speed operation in 4.5 to 5.5 V voltage range in normal operation. Its CPU guarantees 4.0-V operation. Moreover, the μ PD784915 Subseries is equipped with a low power consumption mode which enables CPU operation using 32.768-kHz subsystem clock. Selection of CPU clock dividing ratio is made possible by onchip clock frequency dividing circuit. Since operation up to 2.7 V is guaranteed, reduction of the power consumption of the whole system is possible using these functions. The use of these functions in combination with the standby function realizes ultra low power consumption according to the operation conditions, that is, back-up supply voltage operation or battery operation.

(3) Realizes low-frequency/high-speed operation for reducing radiation noise

The μ PD784915 Subseries provides a low-frequency oscillation mode which enables internal operation with the clock frequency equal to the external oscillation frequency. It realizes reduction of radiation noise by enabling high-speed operation with a frequency lower than that of conventional products.

(4) On chip VCR servo control timer "Super Timer Unit"

The super timer unit consists of six 16-bit timers, two 8-bit timers, and a 5-bit up/down counter for linear tape in addition to 22-bit free running counter (FRC) to carry out cycle measurement of various VCR motors. Therefore, VCR servo control by software can be performed easily.

The μ PD784915 is incorporated with special circuits such as V_{SYNC} and H_{SYNC} separation circuits required for VCR servo control in addition to three 16-bit resolution PWM outputs and three 8-bit resolution PWM outputs required for motor control.

(5) On-chip analog circuits for VCR

The analog circuits for VCR consist of a CTL amplifier to amplify record signals of the tape with any gain, a RECCTL driver required for writing CTL and VISS signals, and other constituents required for VCR servo control such as a drum FG amplifier, drum PG comparator, DPFG separation circuit (three-value separation circuit), CFG amplifier, reel FG comparator (2 channels), and CSYNC comparator.

The CTL amplifier can switch gain in 32 steps by software. In actuality, the CTL amplifier output gain is controlled by setting the CTL detection plug with software. Compared with conventional CTL amplifiers, the circuit configuration is more optimized, which results in a reduction of the number of pins from eleven to six. The analog circuits for VCR have made it possible to largely reduce the number of parts, enabling system cost reduction.

[MEMO]

CHAPTER 2 OUTLINE OF µ**PD784915 SUBSERIES**

The μ PD784915 Subseries under the 78K/IV Series consists of products provided with an on-chip high-speed, highperformance 16-bit CPU that are improved versions of the 78K/I Series of 8-bit single-chip microcontrollers for VCR software servo control.

The μ PD784915 Subseries provides on chip optimum peripheral hardware for VCR control, including a multifunction timer unit (super timer unit) ideal for software servo control, and analog circuits, thus enabling the realization of VCR system/servo/timer control with a single chip.

Moreover, a product with on-chip one-time PROM, the μ PD78P4916, is also available. This chapter describes the μ PD784915 as the representative product.

*

Part Number Parameter	μPD784915, 784915A, μPD784915B	μPD784916A, μPD784916B	μPD78P4916
Internal ROM capacity	Mask ROM		One-time PROM
	48 Kbytes	62 Kbytes	
Internal RAM capacity	1280 bytes		2048 bytes
Internal memory capacity selection register (IMS)	Not provided		Provided
IC pin	Provided		Not provided
VPP pin	Not provided		Provided
Electrical characteristics	tics Refer to data sheet of individual products.		

Table 2-1. Differences among *µ*PD784915 Subseries Products

2.1 Features and Application Fields

(1) Features

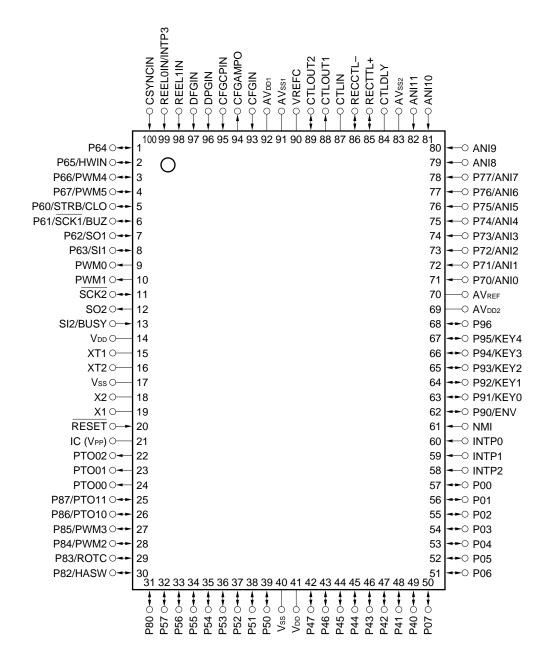
- Minimum instruction execution time: 250 ns (operation when internal clock = 8 MHz)
- On-chip timer unit for VCR servo control (Super timer unit)
- I/O ports: 54
- On-chip VHS-compliant VCR analog circuits

• RECCTL driver (rewrite-capable)

• CTL amplifier

- DPG comparator
- DPFG separation circuit (3-value separation circuit)

CFG amplifierDFG amplifier

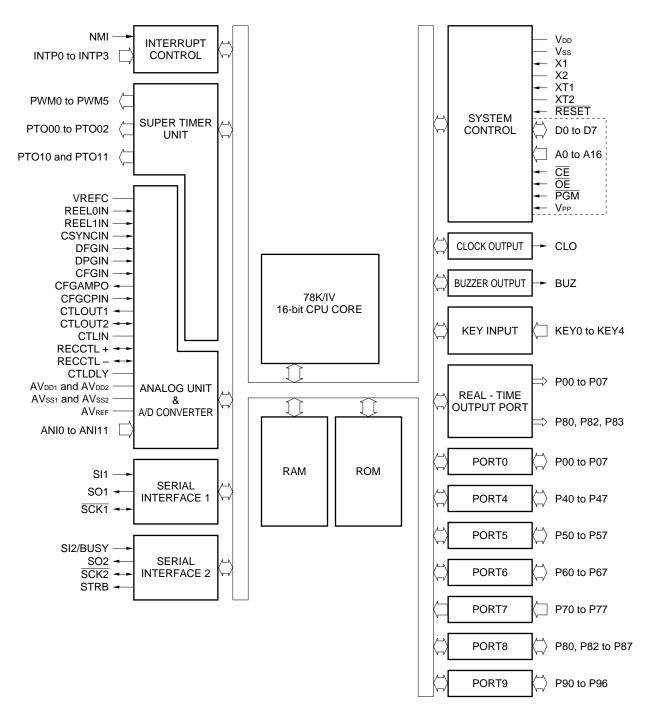

- Reel FG comparator (2 channels)CSYNC comparator
- Serial interface: 2 channels (3-wire serial I/O)
- A/D comparator: 8-bit resolution \times 12 channels (conversion time: 10 μ s)
- PWM output: 16-bit resolution × 3 channels, 8-bit resolution × 3 channels
- Interrupt functions
 - Vectored interrupt function
 - Macro service function
 - Context switching function
- Low-frequency oscillation mode supported: main system clock frequency = internal clock frequency
- Low-power-dissipation mode supported: CPU operation using subsystem clock possible
- Power supply voltage: VDD = 2.7 to 5.5 V
- On-chip hardware clock function: Low voltage (VDD = 2.7 V (MIN.)), low-current-dissipation clock operation possible

(2) Application fields

System/servo/timer control for VCR (stationary type, camcorder)

2.2 Pin Configuration (Top View)

 100-pin plastic QFP (14 × 20 mm) μPD784915GF-xxx-3BA, 784915AGF-xxx-3BA, 784916AGF-xxx-3BA, μPD784915BGF-xxx-3BA, 784916BGF-xxx-3BA, 78P4916GF-3BA



Caution Connect IC (Internally Connected) pin directly to Vss.

Remark (): µPD78P4916

ANI0 to ANI11	: Analog Input	P00 to P07	: Port0
AVdd1, AVdd2	: Analog Power Supply	P40 to P47	: Port4
AVss1, AVss2	: Analog Ground	P50 to P57	: Port5
AVREF	: Analog Reference Voltage	P60 to P67	: Port6
BUSY	: Serial Busy	P70 to P77	: Port7
BUZ	: Buzzer Output	P80, P82 to P87	: Port8
CFGAMPO	: Capstan FG Amplifier Output	P90 to P96	: Port9
CFGCPIN	: Capstan FG Capacitor Input	PTO00 to PTO02,	: Programmable Timer Output
CFGIN	: Analog Unit Input	PTO10, PTO11	
CLO	: Clock Output	PWM0 to PWM5	: Pulse Width Modulation Output
CSYNCIN	: Analog Unit Input	RECCTL+, RECCTL-	: RECCTL Output/PBCLT Input
CTLDLY	: Control Delay Input	REEL0IN, REEL1IN	: Analog Unit Input
CTLIN	: CTL Amplifier Input Capacitor	RESET	: Reset
CTLOUT1, CTLOUT2	: CTL Amplifier Output	ROTC	: Chrominance Rotate Output
DFGIN	: Analog Unit Input	SCK1, SCK2	: Serial Clock
DPGIN	: Analog Unit Input	SI1, SI2	: Serial Input
ENV	: Envelope Input	SO1, SO2	: Serial Output
HASW	: Head Amplifier Switch Output	STRB	: Serial Strobe
HWIN	: Hardware Timer External Input	Vdd	: Power Supply
IC	: Internally Connected	VREFC	: Reference Amplifier Capacitor
INTP0 to INTP3	: Interrupt From Peripherals	Vss	: Ground
KEY0 to KEY4	: Key Return	X1, X2	: Crystal (Main System Clock)
NMI	: Non-maskable Interrupt	XT1, XT2	: Crystal (Subsystem Clock)

2.3 Block Diagram

Remarks 1. Internal ROM capacity and RAM capacity differ depending on the product.

2. The broken line indicates the connection in PROM programming mode.

2.4 Outline of Functions

		Part Number	μPD784915, 784915A,		784916A,		μPD78P4	916			
Parameter			μPD784915B	μΡΟ	784916B						
-	structions		113								
Minimum instruction execution time Internal ROM capacity			250 ns (internal clock: 8 MHz)								
		acity	Mask ROM	_		One-time PROM					
			48 Kbytes	62 Kbytes							
Inte	ernal RAM cap	acity	1280 bytes			2048 I	bytes				
Interrupt			4-level (programmable), v	ectored interro	upts, macro servi	ice, con	ntext switcl	ning			
	External source	e	9 (including NMI)								
	Internal source	Э	19								
	Macro service	available interrupt	25								
F	Number of ma	cro service	10 (4 types)								
1/0) ports	Input	8								
		I/O	46								
Tin	me-based coun	1	• 22-bit FRC								
			Resolution: 125 ns, max	timum count ti	me: 524 ms						
Са	pture register		Input Signal Nu	mber of Bits	Measurement	Cycle	Operatio	n Edge			
			CFG	22	125 ns to 52	4 ms	↑	↓			
			DFG	22	125 ns to 52	4 ms	\uparrow				
			HSW	16	1 <i>µ</i> s to 65.5	i ms	\uparrow	\downarrow			
			VSYNC	22	125 ns to 52	4 ms	\uparrow				
			CTL	16	1 μs to 65.5	i ms	\uparrow	\downarrow			
			TREEL	22	125 ns to 52	4 ms	\uparrow	\downarrow			
			Sreel	22	125 ns to 52	4 ms	\uparrow	\downarrow			
Ge	eneral-purpose	timer	16-bit timer × 3								
PBCTL duty discrimination			Duty discrimination for Play control signal								
ΡВ	BCTL duty discr	imination	• Duty discrimination for F	lay control sig	Jilai			VISS detection, wide aspect detection			
PB	SCTL duty discr	imination			-						
	CTL duty discr			pect detection	-						
Lin		er	• VISS detection, wide as	pect detection	-						
Lin Re	near time count	er	• VISS detection, wide as CTL signal counting with	pect detection 5-bit UDC							
Lin Re Se	near time count cal-time output	er	VISS detection, wide as CTL signal counting with 11	pect detection 5-bit UDC e): 2 channels	- 						
Lin Re Se A/E	near time count eal-time output rial interface	er	VISS detection, wide as CTL signal counting with 11 Clock synchronous (3-wir	pect detection 5-bit UDC e): 2 channels nels, conversi	on time: 10 μs	nnels					
Lin Re Se A/E	near time count cal-time output rial interface D converter	er	VISS detection, wide as CTL signal counting with 11 Clock synchronous (3-wir 8-bit resolution × 12 chan	pect detection 5-bit UDC e): 2 channels nels, conversi annels, 8-bit re	on time: 10 μs	nnels					
Lin Re Se A/I PW	near time count cal-time output rial interface D converter	er	VISS detection, wide as CTL signal counting with 11 Clock synchronous (3-wir 8-bit resolution × 12 chan • 16-bit resolution × 3 chan	pect detection 5-bit UDC e): 2 channels nels, conversi annels, 8-bit re kHz	on time: 10 μ s solution × 3 char						
Lin Re Sel A/I PW Clo	near time count eal-time output irial interface D converter VM output	er	 VISS detection, wide as CTL signal counting with 11 Clock synchronous (3-wir 8-bit resolution × 12 chan 16-bit resolution × 3 chan Carrier frequency: 62.5 	pect detection 5-bit UDC e): 2 channels nels, conversi annels, 8-bit re kHz , low-voltage c	on time: 10 μ s solution × 3 char operation possible	e	sipation HA	LT mo			
Lin Re Se A/I PW Clo Sta	near time count eal-time output rial interface D converter VM output ock function	er	VISS detection, wide as CTL signal counting with 11 Clock synchronous (3-wir 8-bit resolution × 12 chan • 16-bit resolution × 3 chan • Carrier frequency: 62.5 0.5-second measurement	pect detection 5-bit UDC e): 2 channels nels, conversi annels, 8-bit re kHz , low-voltage c	on time: 10 μ s solution × 3 char operation possible	e ower dis	sipation HA	LT mo			
Lin Re Se A/[PW Clc Sta	near time count eal-time output irial interface D converter VM output ock function andby function	er	VISS detection, wide as CTL signal counting with 11 Clock synchronous (3-wir 8-bit resolution × 12 chan • 16-bit resolution × 3 cha • Carrier frequency: 62.5 0.5-second measurement HALT mode/STOP mode/Lo	pect detection 5-bit UDC e): 2 channels nels, conversi annels, 8-bit re kHz , low-voltage c ow power dissip	on time: 10 μs solution × 3 char operation possible ation mode/Low po	e ower dis tor		LT mo			
Lin Re Se A/I PW Clo Sta	near time count eal-time output irial interface D converter VM output ock function andby function	er	VISS detection, wide as CTL signal counting with 11 Clock synchronous (3-wir 8-bit resolution × 12 chan • 16-bit resolution × 3 cha • Carrier frequency: 62.5 0.5-second measurement HALT mode/STOP mode/Lo	pect detection 5-bit UDC e): 2 channels nels, conversi annels, 8-bit re kHz , low-voltage c ow power dissip	on time: 10 μs solution × 3 char operation possible ation mode/Low po	e ower dis tor ion circi	uit	SLT mo			
Lin Re Se A/I PW Clo Sta	near time count eal-time output irial interface D converter VM output ock function andby function	er	VISS detection, wide as CTL signal counting with 11 Clock synchronous (3-wir 8-bit resolution × 12 chan • 16-bit resolution × 3 cha • Carrier frequency: 62.5 0.5-second measurement HALT mode/STOP mode/Lo • CTL amplifier • RECCTL driver (rewrite-	pect detection 5-bit UDC e): 2 channels nels, conversi annels, 8-bit re kHz , low-voltage c ow power dissip	on time: 10 μs solution × 3 char operation possible ation mode/Low po • DPG comparat • DPFG separati (3-value separati	e ower dis tor ion circu ation ci	uit	\LT mo			
Lin Re Se A/[PW Clc Sta	near time count eal-time output irial interface D converter VM output ock function andby function	er	 VISS detection, wide as CTL signal counting with 11 Clock synchronous (3-wir 8-bit resolution × 12 chan 16-bit resolution × 3 chan Carrier frequency: 62.5 0.5-second measurement HALT mode/STOP mode/Loo CTL amplifier RECCTL driver (rewrite- CFG amplifier 	pect detection 5-bit UDC e): 2 channels nels, conversi annels, 8-bit re kHz , low-voltage c ow power dissip	on time: 10 μs solution × 3 char operation possible ation mode/Low po • DPG comparati • DPFG separati (3-value separ • Reel FG comp	e ower dis tor ion circi ation ci arator	uit	ILT mo			
Lin Re Sel A/E PW Clc Sta An	near time count eal-time output irial interface D converter VM output ock function andby function	er port	VISS detection, wide as CTL signal counting with 11 Clock synchronous (3-wir 8-bit resolution × 12 chan • 16-bit resolution × 3 cha • Carrier frequency: 62.5 0.5-second measurement HALT mode/STOP mode/Lo • CTL amplifier • RECCTL driver (rewrite-	pect detection 5-bit UDC e): 2 channels nels, conversi annels, 8-bit re kHz , low-voltage c ow power dissip	on time: 10 μs solution × 3 char operation possible ation mode/Low po • DPG comparat • DPFG separati (3-value separati	e ower dis tor ion circi ation ci arator	uit	LT mo			

CHAPTER 3 OUTLINE OF µPD784928, 784928Y SUBSERIES

The μPD784928, 784928Y Subseries under the 78K/IV Series of products with an on-chip high-speed, highperformance 16-bit CPU consists of products for VCR software servo control.

The μ PD784928, 784928Y Subseries provides on chip optimum peripheral hardware for VCR control, including a multifunction timer unit (super timer unit) ideal for software servo control, and analog circuits, thus enabling the realization of VCR system/servo/timer control with a single chip.

Moreover, products with on-chip flash memory, the μ PD78F4928 and 78F4928Y, are now under development. This chapter describes the μ PD784927 as the representative product.

Part Number Parameter	μΡD784927, μΡD784927Υ	μΡD78F4928 ^{Note} , μΡD78F4928Υ ^{Note}
Internal ROM capacity	96 Kbytes (Mask ROM)	128 Kbytes (Flash memory)
Internal RAM capacity	2048 bytes	3584 bytes
Internal memory capacity selection register (IMS)	Not provided	Provided
IC pin	Provided	Not provided
VPP pin	Not provided	Provided
Electrical characteristics	Refer to data sheet of individual products.	

Table 3-1. Differences among μ PD784928, 784928Y Subseries Products

Note Under development

*

3.1 Features and Application Fields

(1) Features

- Minimum instruction execution time: 250 ns (operation when internal clock = 8 MHz)
- On-chip timer unit for VCR servo control (Super timer unit)
- I/O ports: 74
- On-chip VHS-compliant VCR analog circuits
 - CTL amplifier

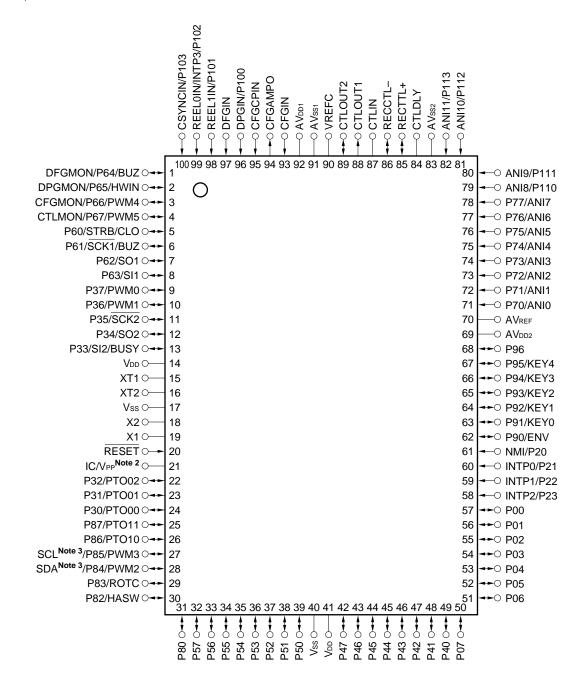
· DFG amplifier

- RECCTL driver (rewrite-capable)
- DPG amplifier
- DPFG separation circuit (3-value separation circuit)

CFG amplifier

CSYNC comparator

• Reel FG comparator (2 channels)


- Serial interface: 3 channels
 - 3-wire serial I/O: 2 channels
 - I²C bus interface: 1 channel (μPD784928Y Subseries only)
- A/D converter: 12 channels (conversion time: 10 µs)
- PWM output: 16-bit resolution × 3 channels, 8-bit resolution × 3 channels
- Interrupt functions
 - Vectored interrupt function
 - Macro service function
 - Context switching function
- Low-frequency oscillation mode supported: main system clock frequency = internal clock frequency
- Low-power-dissipation mode supported: CPU operation using subsystem clock possible
- Power supply voltage: VDD = 2.7 to 5.5 V
- On-chip hardware clock function: Low voltage (VDD = 2.7 V (MIN.)), low-current-dissipation clock operation possible

(2) Application fields

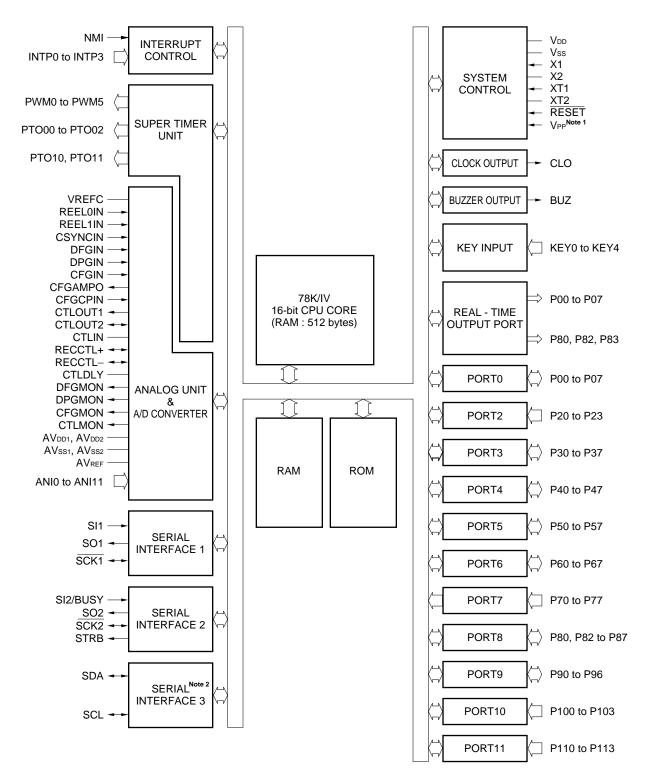
Stationary type VCRs, camcorders, etc.

3.2 Pin Configuration (Top View)

 100-pin plastic QFP (14 × 20 mm) μPD784927GF-×××-3BA, 78F4928GF-3BA^{Note 1}, μPD784927YGF-×××-3BA, 78F4928YGF-3BA^{Note 1}

Notes 1. Under development

- **2.** The VPP pin is provided only for the μ PD78F4928, 78F4928Y.
- **3.** The SCL pin and SDA pin are provided only for the μ PD784928Y Subseries.


Caution In the normal operation mode, connect the IC (Internally Connected)/VPP pin directly to Vss.

ANI0 to ANI11	: Analog Input	P30 to P37	: Port3
AVdd1, AVdd2	: Analog Power Supply	P40 to P47	: Port4
AVss1, AVss2	: Analog Ground	P50 to P57	: Port5
AVREF	: Analog Reference Voltage	P60 to P67	: Port6
BUSY	: Serial Busy	P70 to P77	: Port7
BUZ	: Buzzer Output	P80, P82 to P87	: Port8
CFGAMPO	: Capstan FG Amplifier Output	P90 to P96	: Port9
CFGCPIN	: Capstan FG Capacitor Input	P100 to P103	: Port10
CFGIN	: Analog Unit Input	P110 to P113	: Port11
CFGMON	: Capstan FG Monitor	PTO00 to PTO02,	: Programmable Timer Output
CLO	: Clock Output	PTO10, PTO11	
CSYNCIN	: Analog Unit Input	PWM0 to PWM5	: Pulse Width Modulation Output
CTLDLY	: Control Delay Input	RECCTL+, RECCTL-	: RECCTL Output/PBCLT Input
CTLIN	: CTL Amplifier Input Capacitor	REEL0IN, REEL1IN	: Analog Unit Input
CTLMON	: CTL Amplifier Monitor	RESET	: Reset
CTLOUT1, CTLOUT2	: CTL Amplifier Output	ROTC	: Chrominance Rotate Output
DFGIN	: Analog Unit Input	SCK1, SCK2	: Serial Clock
DFGMON	: DFG Monitor	SCL ^{Note 1}	: Serial Clock
DPGIN	: Analog Unit Input	SDA ^{Note 1}	: Serial Data
DPGMON	: DPG Monitor	SI1, SI2	: Serial Input
ENV	: Envelope Input	SO1, SO2	: Serial Output
HASW	: Head Amplifier Switch Output	STRB	: Serial Strobe
HWIN	: Hardware Timer External Input	Vdd	: Power Supply
IC	: Internally Connected	VPPNote 2	: Programming Power Supply
INTP0 to INTP3	: Interrupt From Peripherals	VREFC	: Reference Amplifier Capacitor
KEY0 to KEY4	: Key Return	Vss	: Ground
NMI	: Non-maskable Interrupt	X1, X2	: Crystal (Main System Clock)
P00 to P07	: Port0	XT1, XT2	: Crystal (Subsystem Clock)
P20 to P23	: Port2		

Notes 1. The SCL pin and SDA pin are provided only for the μ PD784928Y Subseries.

2. The VPP pin is provided only for the μ PD78F4928, 78F4928Y.

3.3 Internal Block Diagram

Notes 1. The VPP pin is provided only for the μ PD78F4928, 78F4928Y.

2. Provided only for the μ PD784928Y Subseries. Supports the I²C bus interface.

Remark The internal ROM and RAM capacities differ according to the product.

3.4 Outline of Functions

Part Number		μPD7	784927,	µPD78F₄			
Parameter		μPD7	84927Y	μPD78F4928Υ Note			
Instructions			113				
Minimum instruction execution time			250 ns (internal clo	ock: 8 MHz)			
Internal memory capacity Type		Mask ROM Flash memory					
		ROM	96 Kbytes 128 Kbytes				
RAM		RAM	2048 bytes 3584 bytes				
Interrupt sources External		9 (including NMI)					
(µPD784928 Subse	ries)	Internal	22 (including softw	are interrupts)			
			 4-level programmable priority 3 types of servicing: Vectored interrupts, macro service, context switching 				
Interrupt sources		External	9 (including NMI)				
(µPD784928Y Subs	series)	Internal	23 (including softw	are interrupts)			
			 4-level programmable priority 3 types of servicing: Vectored interrupts, macro service, context switching 				
I/O ports	Input		20				
1/O			54 (including 8 LED direct drive ports)				
Time-based counter			 22-bit FRC Resolution: 125 ns, maximum count time: 524 ms 				
Capture register			Input Signal	Number of Bits	Measurement Cycle	Operatio	n Edge
			CFG	22	125 ns to 524 ms	↑ ↑	\downarrow
			DFG	22	125 ns to 524 ms		\downarrow
			HSW Vsync	16 22	1 μs to 65.5 ms 125 ns to 524 ms	T 1	\checkmark
			CTL	16	1 μ s to 65.5 ms	1 1	\downarrow
			TREEL	22	125 ns to 524 ms	1 1	↓ ↓
			SREEL	22	125 ns to 524 ms	1	↓ ↓
General-purpose tir	mer		16-bit timer \times 3				
PBCTL duty discrim		l	Duty discrimination for Play control signal VISS detection, wide aspect detection				
Linear time counter			CTL signal counting with 5-bit UDC				
Real-time output po	ort		11				
			 3-wire serial I/O: 2 channels (including 1 BUSY/STRB function-enabled channel) I²C bus interface (multi-master supported): 1 channel (μPD784928Y Subseries only) 				
Buzzer output function1.95 kHz, 3.91 kHz, 7.81 kHz, 15.6 kHz (Operation when internal 2.048 kHz, 4.096 kHz, 32.768 kHz (Operation when subsystem c				,			
A/D converter			8-bit resolution \times 12 channels, conversion time: 10 μ s				
PWM output			 16-bit resolution × 3 channels, 8-bit resolution × 3 channels Carrier frequency: 62.5 kHz 				
Clock function			0.5-second measurement, low-voltage operation possible (V_DD = 2.7 V)				
Standby function			HALT mode/STOP mode/Low power dissipation mode/Low power dissipation HALT mode				

Note Under development

		(2/2)
Part Number	μPD784927,	μΡD78F4928 ^{Note} ,
Parameter	μPD784927Y	μPD78F4928Υ ^{Note}
Analog circuits	CTL amplifier	DPG amplifier
	 RECCTL driver (rewrite-capable) 	 DPFG separation circuit
		(3-value separation circuit)
	 CFG amplifier 	 Reel FG comparator
	 DFG amplifier 	CSYNC comparator
Power supply voltage	V _{DD} = 2.7 to 5.5 V	
Package	100-pin plastic QFP (14 $ imes$ 20 mm)	

Note Under development

3.5 Differences among μ PD784928, 784928Y Subseries and μ PD784915 Subseries

The μ PD784927 is a VCR software servo control product that includes on-chip a high-speed, high-performance 16-bit CPU, enabling the realization of VCR system/servo/timer control with a single chip. The μ PD784928 Subseries is an enhanced function version of the μ PD784915 Subseries. Moreover, the μ PD784928Y Subseries is a product featuring the addition of the I²C bus interface.

Table 3-2 shows the differences among these three subseries.

Parameter		μ PD784928 Subseries, μ PD784928Y Subseries	μPD784915 Subseries
Internal ROM capacity		96 Kbytes/128 Kbytes	48 Kbytes/62 Kbytes
Internal RAM capacity		2048/3584 bytes	1280/2084 bytes
I/O ports	Total	74	54
	Input	20	8
	I/O	54	46
Serial interface		• 3-wire serial I/O : 2 channels • I ² C bus interface ^{Note} : 1 channel	• 3-wire serial I/O : 2 channels
Analog	CTL amplifier	\checkmark	√
circuit	RECCTL driver	\checkmark	\checkmark
	DPFG separation circuit	\checkmark	\checkmark
	DFG amplifier	\checkmark	\checkmark
	DPG comparator	\checkmark	\checkmark
	DPG amplifier	\checkmark	_
	CFG amplifier	\checkmark	\checkmark
	Reel FG comparator	\checkmark	\checkmark
	CSYNC comparator	\checkmark	\checkmark
Interrupt	External	9 (including NMI)	9 (including NMI)
	Internal	 22 (including software interrupts) 23 (including software interrupts)^{Note} 	19 (including software interrupts)
Flash men	nory/PROM	μPD78F4928, 78F4928Υ	μPD78P4916

Note In the case of the μ PD784928Y Subseries

CHAPTER 4 OUTLINE OF VCR SERVO SYSTEM

4.1 Outline of Software Servo

In the current VCR market, software servo has become the mainstream in VCR servo systems in order to reduce the manufacturing process and improve the reliability of sets. High-performance microcontrollers which can control the whole system with a single chip have been called for to simplify the manufacturing process and lower costs by reducing the number of parts. On the other hand, along with the trend toward sets with high performance and a many functions, microcontrollers with larger memory capacity are increasingly being used.

Analog control servo systems, which have conventionally been the mainstream in VCR servos, present the following problems:

(1) Reliability

The analog servo system uses many components whose characteristics are affected by external environment, such as resistors and capacitors, which makes it difficult to keep the characteristics constant over a long period of time. Moreover, analog servo systems tend to have changing characteristics over-time, which affects reliability.

(2) System adjustment

Due to the uneven characteristics of the resistors/capacitors, a lot of adjustments are required prior to shipment in order to gain desired characteristics.

(3) Number of parts

Analog servos have a large number of parts, which makes it difficult to reduce the size of sets.

VCR servo systems, then, have switched over to digital servos with dedicated ICs. However, servos with dedicated ICs cannot perform flexible control because the servo control algorithm is fixed, and it cannot integrate compensation elements such as digital filter into a device.

In order to solve the above problems, software digital servos using single-chip microcontrollers have come into increasing use in recent years.

Realizing VCR servo systems by software offers the following advantages:

<1> Improved reliability

Because software digital servo systems carry out control using the CPU system clock as a reference, stable operation free from environmental conditions can be realized.

Moreover, software digital servos convert all error amounts to digital values and store them in memory, resulting in accurate sample-and-hold operation. Therefore, unlike analog servo systems, hold values do not change due to capacitor leak.

<2> Compactness and light weight

The number of discrete parts is minimized to enable high-density mounting (reduced mounting space). Moreover, compensation filter is realized as a digital filter, resulting in improved reliability as well as reduction of the number of parts.

<3> Flexible of servo control

Software servos can freely change servo system gain according to the amount of speed error/phase error. Moreover, trick plays such as suspension of control and open loop control for a given time period according to the error amount can be easily realized. Also, Al-related functions such as digital tracking can be integrated.

<4> Easy product development of VCR set

Software servos easily keep up with changes of the drum motor and capstan motor to be used simply by changing software. As a result, design with a high degree of freedom is made possible. Software servos flexibly support various TV broadcasting systems in the world (such as NTSC and PAL), enabling worldwide use of VCR sets.

To realize software servo control of a VCR, the microcontroller to be used is required to have an advanced arithmetic ability and strong timer function.

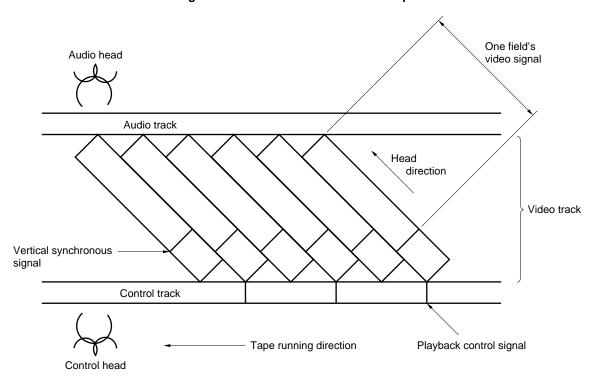
In order to easily realize servo control, the μ PD784915 Subseries incorporates a variety of peripheral hardware such as the super timer unit and analog circuits for VCR, which are ideal for software servo control of VCRs. By incorporating a 16-bit CPU, the μ PD784915 supports high-speed arithmetic instructions and large capacity memory. Therefore, it can easily handle servo processing, which must be real-time, and makes system/servo/timer control of VCRs possible with a single chip.

4.2 Servo Control of VCR

A VCR records video signals forming diagonal patterns on magnetic tape (video tape) using a rotary head. This recording method is called rotary head azimuth recording system.

The recorded pattern of the video signals on the magnetic tape is strictly specified with each format such as VHS system and β system.

Figure 4-1 shows the track pattern of video tapes.


The recording pattern of video signals is as thin as several tens of microns. During VCR playback, the head must accurately trace the recording pattern. This operation is called tracking.

Forming of the recording pattern and playback tracking are controlled by the rotating condition of the rotary head and the running condition of the tape.

A VCR has a drum motor to control the rotation of the rotary head and a capstan motor to control tape running. The VCR carries out record/playback by controlling these two motors.

The servo for recording and playback is explained below.

Figure 4-1. Track Pattern on Video Tape

Remark VHS standard tape speed Standard mode : 33.35 mm/s Triple mode : 11.12 mm/s

4.3 Servo for Recording

A VCR records exactly one field's video signals on each video track recorded diagonally on a video tape. In TV broadcasting, a frame is composed of two fields.

On a video track, positions on which synchronous signals are recorded are specified. Therefore, control should be made so that the recording drum motor servo synchronizes with the frame cycle of the input video signal and the relation of the position of the video head and vertical synchronous signal are kept constant.

On the other hand, the capstan motor rotates at constant speed because it runs tape accurately at the speed defined in each format.

In addition to these, home VCRs of VHS and β system, etc., record control signals synchronized with the rotation of the drum along with the longer direction of the tape when recording is performed.

Control signal is a pulse signal with 30 [Hz] cycle which is used as a mark when performing playback tracking.

- **Remarks 1.** Video tape running speed of VHS system VCR is 33.35 [mm/s] in standard mode and 11.12 [mm/s] in triple mode.
 - 2. For VHS system VCRs, control signal pulse is normally specified as a signal with 60% high level and 40% low level.

4.4 Servo for Playback

When playing back, rotation of a drum motor and control signals played back from the video tape is synchronized with the reference frame cycle generated in the servo control circuit.

Thereby, the drum motor and the control signals are synchronized indirectly using the reference signal as an intermediary so that the relation between them are made the same as when recording.

As a result, the head is controlled to accurately trace the track on the tape, because the running condition of the tape and the rotation of the head become the same as when recording.

In addition, because the recording condition of the control signals are uneven among sets, it needs to be corrected. Thereby, the relation of the position of the control signals and the video head can be externally adjusted. This is called tracking adjustment. When playing back, the amount of the tracking adjustment is set using an external potentiometer (VR).

4.5 Motor to be Used

Generally, a DC motor is used for VCRs (drum motor and capstan motor). DC motors are motors whose rotation speed varies according to the applied voltage.

Direct drive systems, in which no belts and gears are involved, are becoming the mainstream in the driving method of drum and capstan.

The rotation speed of DC motors fluctuates according to variations in the load and the applied voltage. Therefore, servo systems must control the rotation speed and rotation phase.

Rotation speed control keeps the motor rotation constant. Rotation phase control keeps the relationship between the phase signal and reference phase signal of the motor constant.

4.6 VCR Control Systems

VCRs are mainly composed of the following control systems.

(1) System control

Supervises and controls the whole VCR system.

(2) Servo control

Controls drum motor, capstan motor, and related operations.

(3) Timer control

Performs clock function such as timer reservation, front panel control, and display control.

(4) Camera control (camcorder)

Performs camera section control such as AF and AE.

(5) Others

Blurring correction control, etc. (camcorder).

The μ PD784915 is a 16-bit single-chip microcontroller which can perform the three types of control (1) to (3) listed above.

Especially, the super timer unit incorporated in the μ PD784915 is designed to easily realize software digital servo control.

4.7 VCR Servo System Control

Servo systems for VCRs control the drum motor for the rotating head and the capstan motor, which runs the tape in low speed.

The VCR elements controlled by a servo system are shown below.

- (1) Drum motor speed/phase control
- (2) Capstan motor speed/phase control
- (3) Generation of head switching signal
- (4) Generation of quasi-VSYNC signal for special playback
- (5) Generation of recording control signal (RECCTL) (for recording), rewriting (for playback)
- (6) Index search control (VISS detection)
- **Remark** This manual mainly explains the method to perform servo control shown in **4.6 (2)** and other controls shown in **4.7 (1)** to **(6)**.

CHAPTER 5 EXAMPLES OF STATIONARY TYPE VCR SERVO CONTROL

This chapter describes examples of stationary type VCR servo system control.

5.1 Examples of System Configuration

In this chapter, the drum motor whose FG wave number (the number of FG signals generated in one rotation of the motor) is 24 poles and the capstan motor whose FG wave number is 36 poles are assumed to be used.

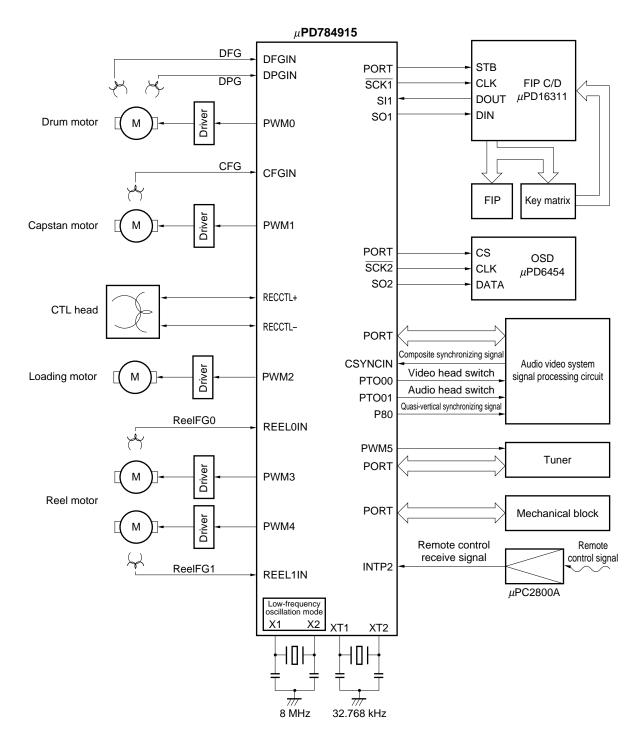
The drum motor is controlled so that the number of rotations is equal to the frame frequency of TV broadcast fF = 29.97 Hz (NTSC) (the number of rotation is 29.97 r.p.s.) with the servo system locked.

Therefore, the drum FG signal frequency fDFG is as follows:

• fDFG = fF × FG wave number = 719.28 [Hz]

Similarly, the capstan motor FG frequency in standard mode (SP mode) is as follows:

```
• fcfgsp = 1080 [Hz]
```


The capstan motor FG frequency in triple mode (EP mode), since it is one third the speed of the standard mode, is as follows:

• fcfgsp = 1080 ÷ 3 = 360 [Hz]

Each motor is driven by PWM output pulse smoothed in external circuit and input to motor driving driver. PWM0 output is used for driving the drum motor and PWM1 output for capstan motor.

PWM output pulse is smoothed (carrier elimination) through external low pass filter (C-R filter, etc.), impedance converted with operation amplifier, etc., and then input to motor driving driver.

Figure 5-1 shows an example of VCR system configuration to be controlled in this manual.

Figure 5-1. Application to Stationary Type VCR

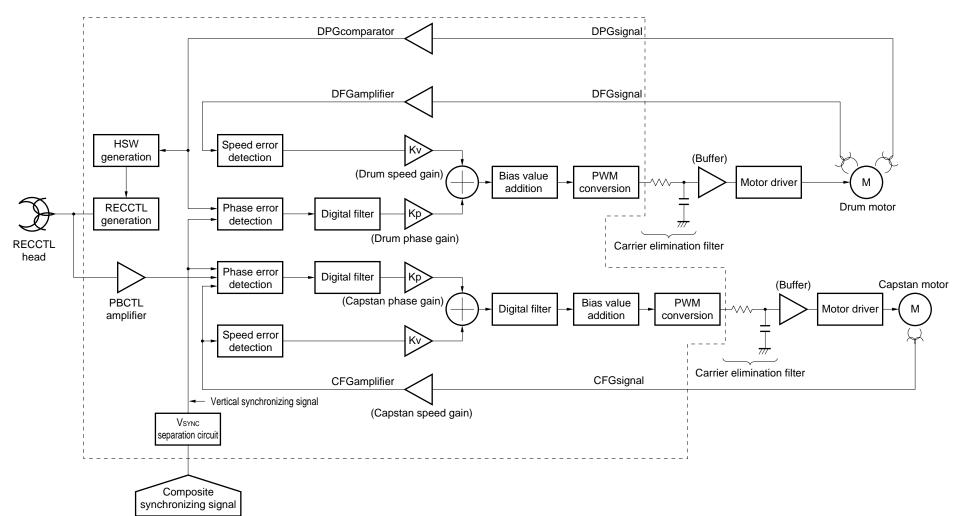
5.2 Outline of System

This system performs VCR servo control using the μ PD784915.

The system executes most of the dedicated digital servo IC functions which have been built in the original sets by software. Moreover the system configures the loop filter, which is a compensation element of the servo system, with a digital filter and realizes it with arithmetic processing by software.

Figure 5-2 shows the processing block diagram in the software digital servo system.

The VCR servo system performs speed/phase control of the drum and capstan motor. Therefore, speed control loop and phase control loop exist in the control loop of each motor.


The FG signal output from the motor is used for detection of the speed error amount and PG signal for detection of the phase error amount. The gains of speed control system and phase control system are set independently from each other.

The detected speed and phase error amount are added respectively and then converted to PWM with bias value added. PWM pulse drives each motor after carriers are eliminated through external low pass filter.

The μ PD784915 is equipped with analog amplifiers so that amplification of FG and PG signal output from each motor is possible.

The value of the servo circuit built in the set is used as it is for the error amount detection gain and the characteristics of loop filter in the servo system.

In addition to the speed/phase control of drum and capstan motor explained above, the system also generates head switching signal, quasi vertical synchronizing signal, etc.

Remark The process in the μ PD784915 is shown in the broken line.

5.3 Using Example of Super Timer Unit

Table 5-1 shows the using examples of the Super Timer Unit, and Figure 5-1 shows the Super Timer Unit block diagram.

Timer/Counter Name	Register	Use				
Event Counter (EC)	ECC0/ECC1/ECC2/ECC3	Generation of internal head switching signal				
Timer 0 (TM0)	CR00	Video head switching signal delay control				
	CR01	Audio head switching signal delay control				
	CR02	Quasi-VSYNC output timing control				
Free Running Counter (FRC)	CPT0	Reference phase detection (for drum phase control)				
	CPT1	Drum motor phase detection (for drum phase control)				
	CPT2	Drum motor speed detection (for drum speed control)				
	CPT3	Capstan motor speed detection (for capstan speed control)				
	CPT4, CPT5	Tape remain detection by reel FG input				
Timer 1 (TM1)	CR10	Generation of internal reference signal (for playback) Buffer oscillator for missing VSYNC (for recording)				
	CR11	RECCTL output timing control				
	CR12	Capstan motor phase control				
		(for capstan phase controller)				
	CR13	Unnecessary VSYNC input mask control				
Timer 3 (TM3)	CR30, CR31	PBCTL signal duty detection timing control				
	CPT30	PBCTL signal cycle measurement				
Timer 2 (TM2)	CR20	Can be used as an interval timer (for system controller)				
Timer 4 (TM4)	CR40	Remote control signal duty detection (for remote control decode)				
	CR41	Remote control signal cycle measurement (for remote control decode)				
Timer 5 (TM5)	CR50	Can be used as internal timer (for system controller)				
Up/Down Counter	UDCC	Generation of linear tape counter				

Table 5.1	Licing Examples of Super Timer	llnit
Table 5-1.	Using Examples of Super Timer	Unit

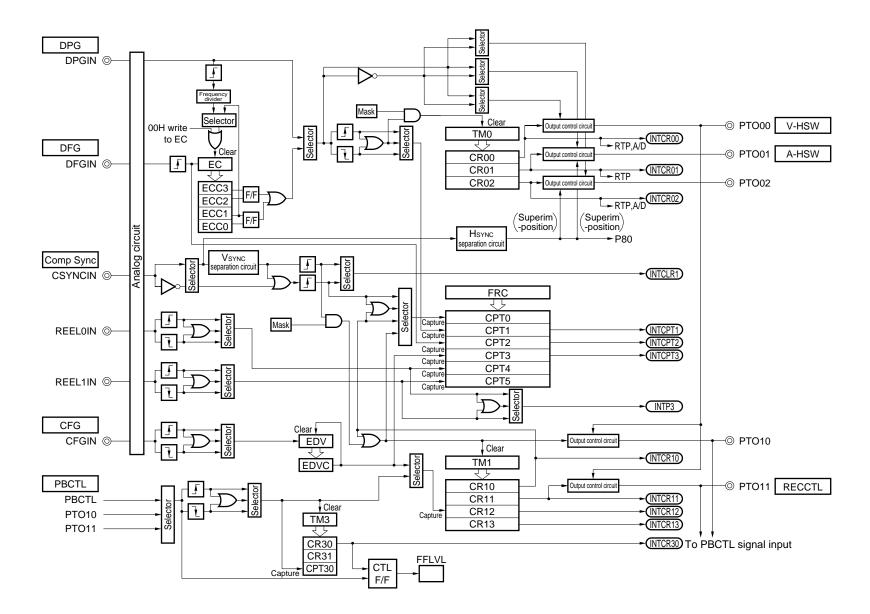
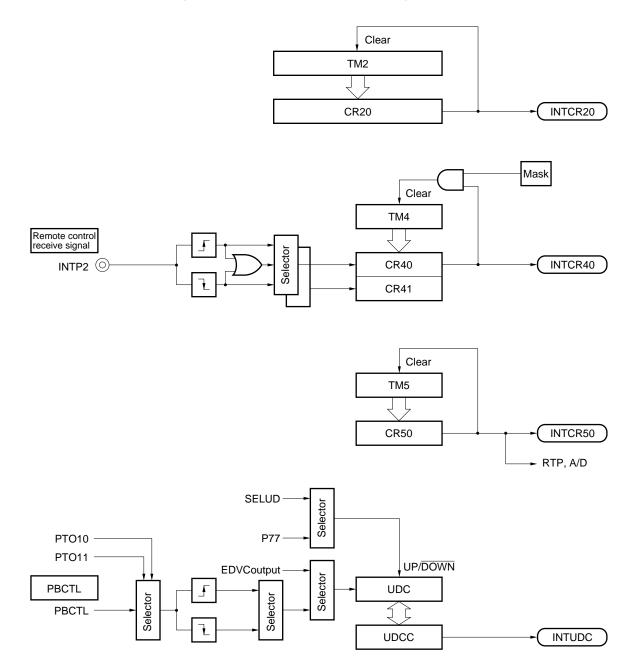



Figure 5-3. Super Timer Unit Block Diagram (2/2)

5.4 Head Switching Signal Generation

5.4.1 Internal head switching signal (HSW-N) generation

(a) HSW-N generation method

This system uses timer 0 clear pulse as phase comparison signal in the drum phase control system. This is called internal head switching signal (HSW-N).

HSW-N is a pulse with 50% duty which is generated from PG and FG signals from the drum motor and synchronizes with the drum rotation.

 μ PD784915 can generate HSW-N from drum FG signal (DFG signal) and drum PG signal (DPG signal) using event counter (EC).

The DPG signal is input to the DPGIN pin and the DFG signal to the DFGIN pin of the μ PD784915.

The pulse generated here is one which is reset, after DPG input, at the rising edge of the second DFG signal and at the falling edge of the fourteenth DFG signal. In this case, the following values are set to the two compare registers of EC.

ECC1...01H ECC0...0DH

EC output changes at the clock after the clock at which the EC coincides with the compare register. Therefore, the value with 1 subtracted is set as the setting value to the compare register.

Figure 5-4 shows the use of EC, and Figure 5-5 shows the operation timing of EC. Timer 0 is cleared at the rising and falling edges of HSW-N generated in EC.

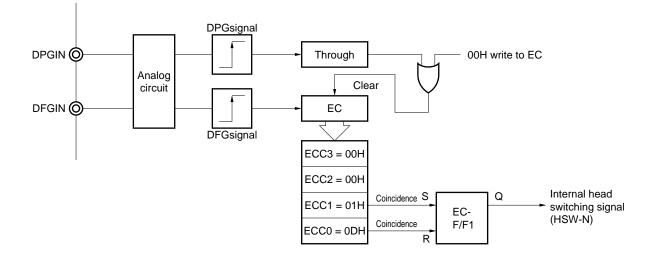
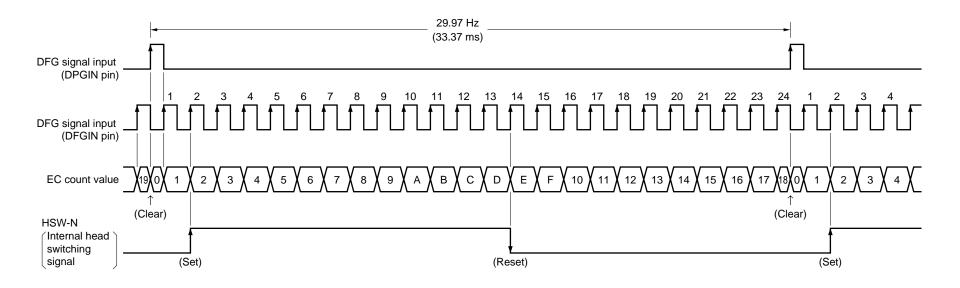



Figure 5-4. Use of Event Counter (EC)

Figure 5-5. Event Counter (EC) Operation Timing

5.4.2 Head switching signal (V-HSW) generation

(a) V-HSW generation method

A VCR is required to externally adjust the head switching signal (V-HSW) and correct the mounting position of the PG signal detector. In order to perform the correction, the internal head switching signal (HSW-N) generated as shown in **5.4.1** is delayed using timer 0 programmable pulse delay circuit.

Figure 5-6 shows the use of timer 0. Figure 5-7 shows the V-HSW timing. Timer 0 is a timer which is cleared at both rising and falling edges of HSW-N.

When a digital value equivalent to the amount of the head switching signal delay is set to compare register 00 (CR00), signals with HSW-N are delayed according to the value set to the compare register are output from the PTO00 output pin. This signal is used as the actual V-HSW.

The relation between the digital value set to CR00 and the delay amount is as follows:

Delay amount = (Setting value to CR00) \times 8/fclk

At 16-MHz operation, $8/f_{CLK} = 1 [\mu s]$, then, this is the resolution of timer 0.

In order to correct the positional relation of the PG signal detector and PG magnet, the delay amount to HSW-N should be externally adjustable. Thereby, the data stored in CR00 should be adjustable with analog voltage externally input using the A/D comparator of the μ PD784915.

The digital value stored in CR00 is set as follows:

• In EP mode/ LP mode

(Setting value to CR00) = (A/D conversion result) \times 11 + 012CH

In SP mode

(Setting value to CR00) = (A/D conversion result) \times 13 + 0190H

When using analog circuit, EC is counted at the reverse edge of the DFG signal, so that correction is required as follows:

• In EP mode/LP mode

(Setting value to CR00) = (A/D conversion result) × 11 + 0120H

In SP mode

(Setting value to CR00) = (A/D conversion result) \times 13 + 0150H

ΕN CLR0 DPGIN pin input Selector F Internal pulse by EC L Internal head switching signal(HSW-N) fclк/8 TM0 Z Ļ Output control circuit -0 PTO00 INTCR00 V-HSW (CR00) Output control circuit • PTO01 A-HSW (CR01) INTCR01 Quasi-VSYNC (CR02) Output control circuit - PTO02 INTCR02 HSYNC separation circuit - RTP

Figure 5-6. Use of Timer 0

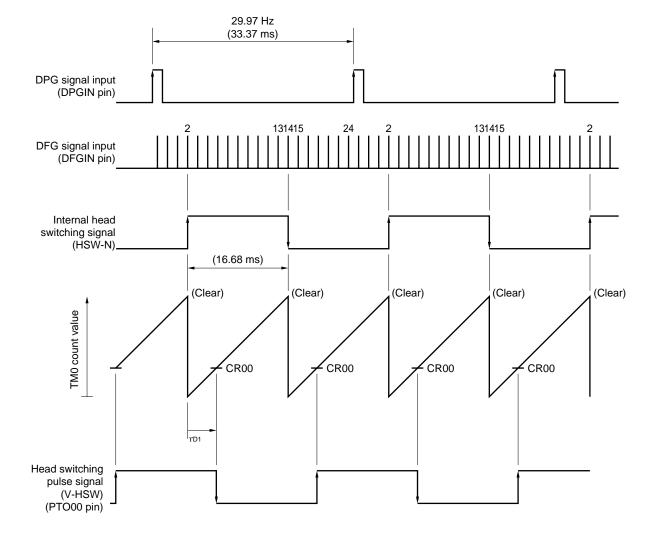
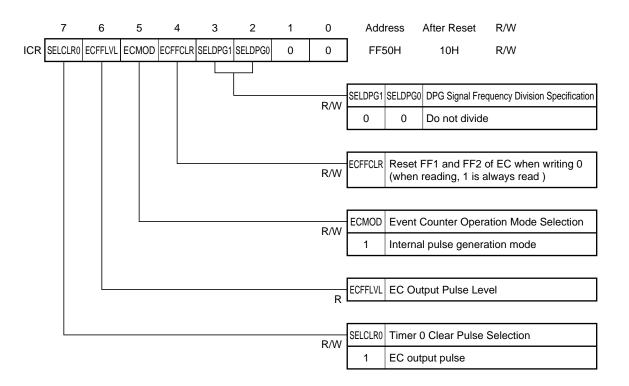
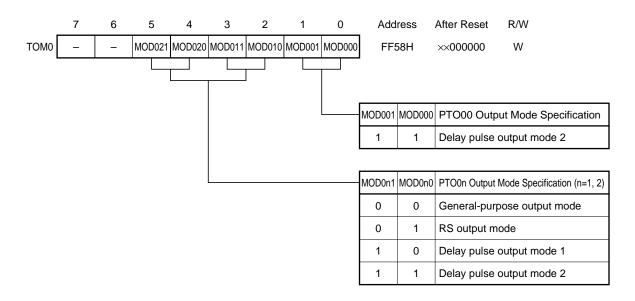
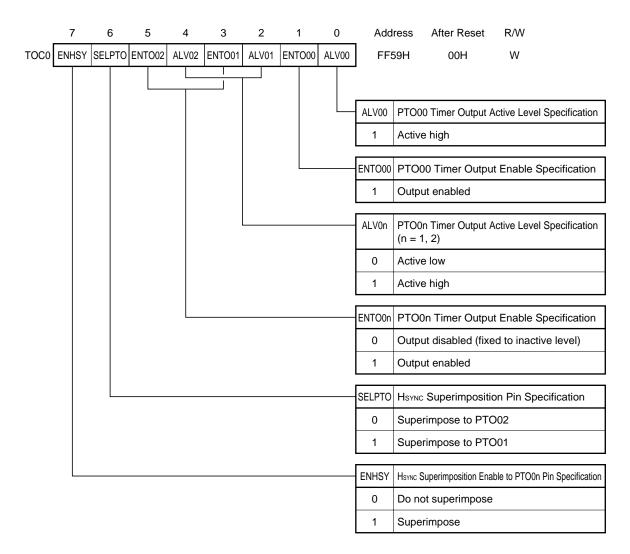



Figure 5-7. Head Switching Signal (V-HSW) Timing (PTO00)


Remark TD1: Head switching signal delay amount

(b) Timer mode setting

The timer mode setting when generating head switching signal (V-HSW) is as shown in Figure 5-8 to 5-11.



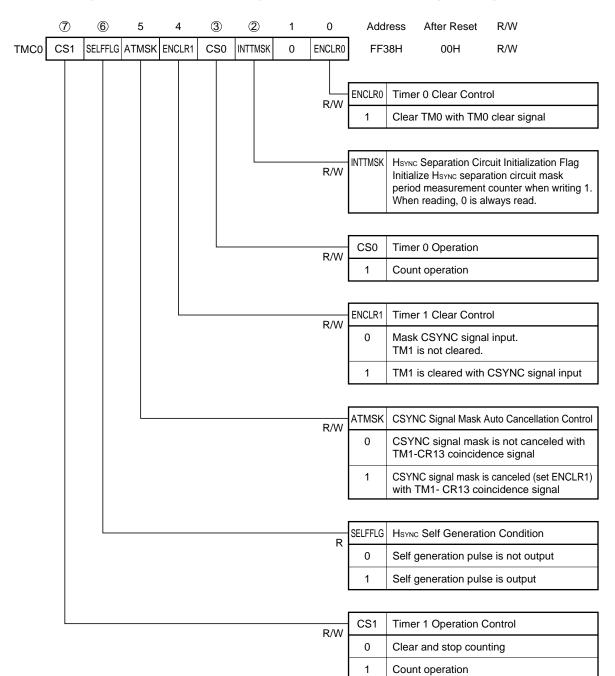
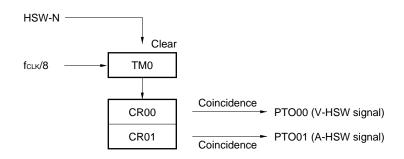


Figure 5-9. Timer 0 Output Mode Register (TOM0) Format (when generating V-HSW)

Figure 5-11. Timer Control Register 0 (TMC0) Format (when generating V-HSW)

5.4.3 Audio head switching signal (A-HSW) generation


(a) A-HSW generation method

A Hi-Fi VCR requires audio head switching signal (A-HSW) because it records audio signals on the video track with a rotating head.

The audio head is tilted at 270° degrees against the video head, so that A-HSW is output at 270° degrees against the head switching signal (V-HSW).

A-HSW is generated, as well as V-HSW, using timer 0 pulse delay circuit. The compare register uses CR01.

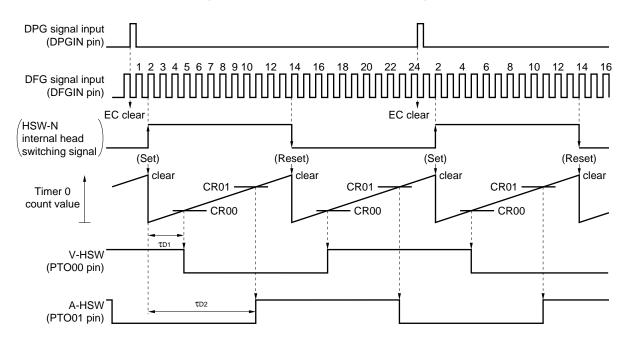
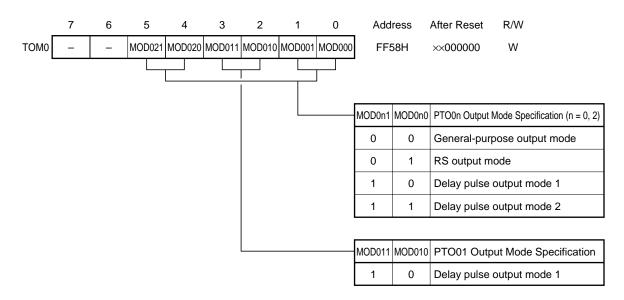
Figure 5-12. Assigning A-HSW to Timer 0

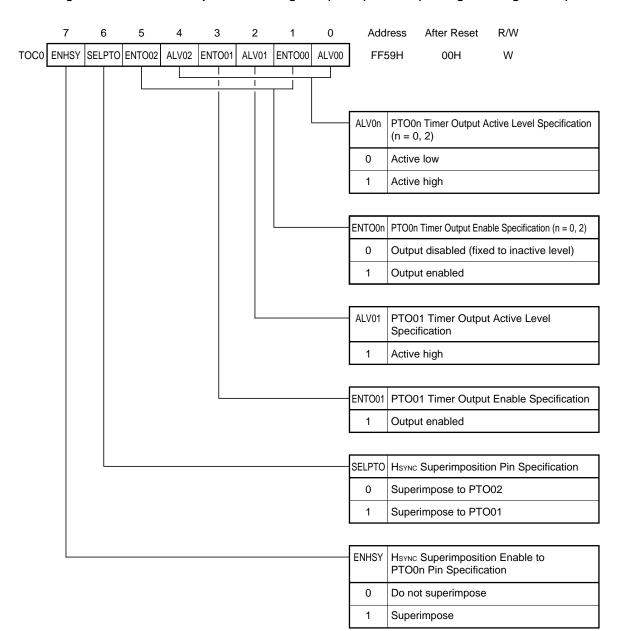
A-HSW is tilted at 270° degrees, so that correction of more than 180° degrees is necessary. The delay pulse output mode 1 is used for 180°-degree correction of A-HSW while the delay pulse output mode 2 is used for V-HSW. Therefore, the delay amount to CR01 is set for the remaining 90° degrees.

The value of V-HSW delay amount with one fourth of a cycle (90° degrees) added is set as the digital value to CR01.

CR01 = CR00 + 1/4 of one V-HSW cycle (1/4 of frame cycle)

Figure 5-13 shows the V-HSW and A-HSW timings.


Figure 5-13. V-HSW and A-HSW Timings

(b) Timer mode settings

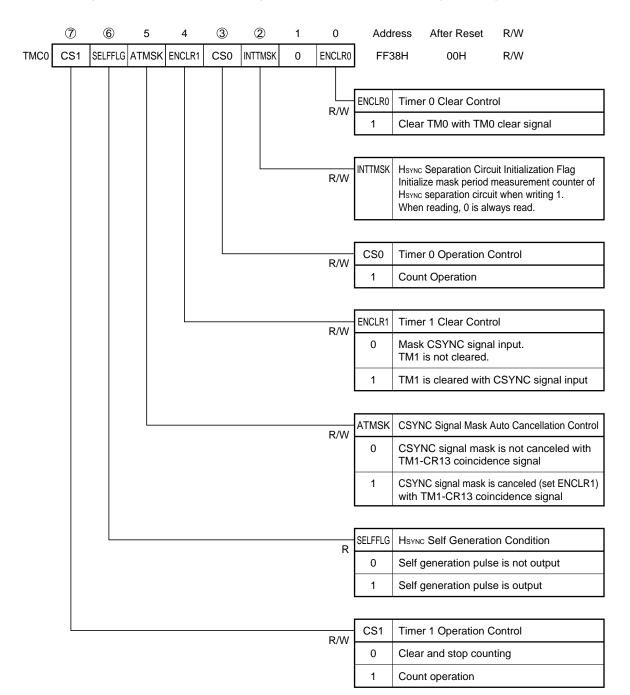

Figures 5-14 to 5-16 show the timer mode settings when generating audio head switching signal (A-HSW).

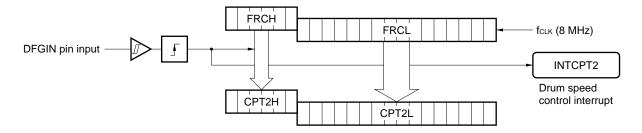
Figure 5-15. Timer 0 Output Control Register (TOC0) Format (when generating A-HSW)

Figure 5-16. Timer Control Register 0 (TMC0) Format (when generating A-HSW)

5.5 Drum Speed Control

The drum FG signal (DFG) from the drum motor is input to DFGIN input pin of the μ PD784915. The value of the free running counter (FRC) is captured to capture register 2 (CPT2H and CPT2L) at the rising edge of DFG and INTCPT2 interrupt request is generated.

Since the FRC of the μ PD784915 is 22-bit configuration and has 6 CPTs (22-bit), the measurement of generation cycle can be carried out for 6 types of capture trigger.


The CPT is configured with CPT2H, which captures the higher 6 bits, and the CPT2L, which captures the lower 16 bits.

The FRC value is stored in CPT2H and CPT2L respectively with DFG input.

This program uses the FRC as speed control information by DFG input.

The drum speed error amount is calculated in INTCPT2 interrupt processing routine. In INTCPT2 interrupt processing routine, the cycle of FG signal is measured by subtracting the current capture value. Then, the speed error amount is detected by comparing the cycle data when the speed control system is locked. The concrete method of finding the drum speed error amount is shown below. Figure 5-18 shows an example of drum speed control timings.

Figure 5-17. Drum Speed Error Amount Detection Method

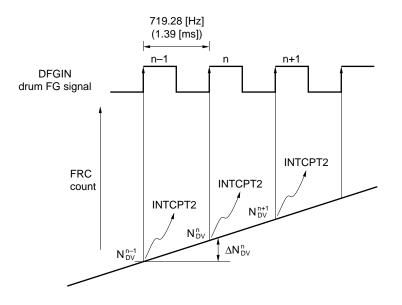


Figure 5-18. Drum Speed Control Timings

When the frame frequency of TV broadcast is assumed as fF, the fF is as follows:

• fF = 29.97 [Hz]

Then, since the drum FG wave number is 24 poles, the drum FG signal frequency in the standard playback is as follows:

• fdfg = 24 × ff = 719.28 [Hz]

Therefore, the drum FG signal cycle NDFG becomes as follows:

$$T_{DFG} = \frac{1}{f_{DFG}}$$

$$N_{DFG} = \frac{T_{DFG}}{T_{FRC}} = \frac{1}{T_{FRC} \times f_{DFG}} = 11122.2 = 2B72H [Count]$$
Where: TFRC = 125 [ns]

The drum speed error amount EDV is represented by the following expression:

 $E_{DV} = (N_{DV^{n}} - N_{DV^{n-1}}) - N_{DFG}$ $= \Delta N_{DV^{n}} - N_{DFG}$

In the above expression, N_{DVⁿ} represents the value of the free running counter (FRC) captured at the n-th FG pulse. The meanings of the signs for the drum speed error amount E_{DV} calculated from the expression above are as follows:

- (1) When DFG cycle is longer than the target value...+(when the rotation of the drum motor is slow)
- (2) When DFG cycle is shorter than the target value...-(when the rotation of the drum motor is fast)

5.6 Drum Phase Control

The drum phase error amount is detected by comparing the capture value (CPT1) of the free running counter (FRC) by the internal head switching signal (HSW-N) and the FRC capture value (CPT0) by the reference frame cycle (VsyNc for recording, the coincidence of timer 0 and compare register 10 (CR10) for playback).

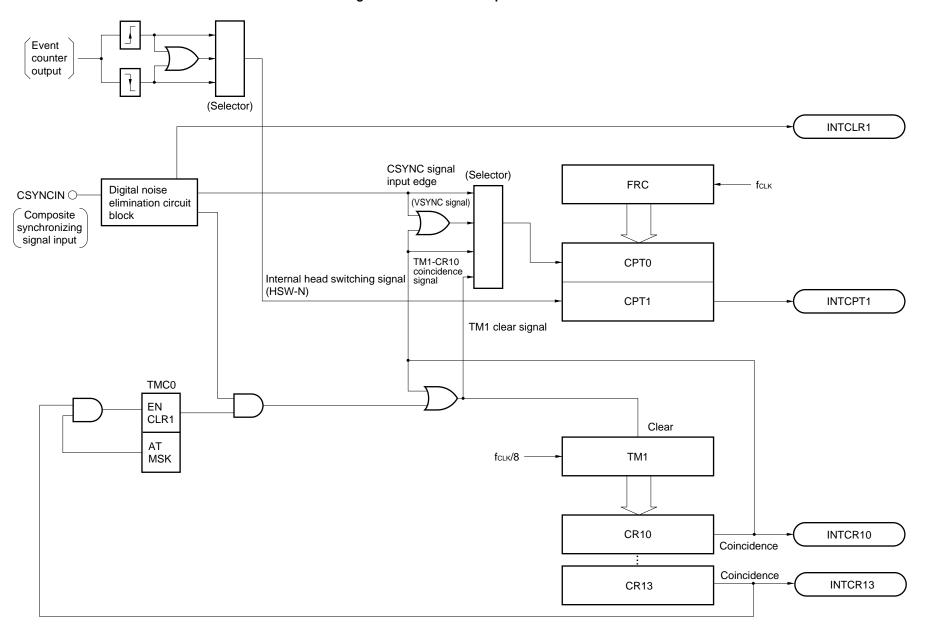
Basically, the only difference between the processing for recording and for playback is that the capture source of the capture 0 (CPT0) of FRC is switched.

5.6.1 Phase reference

Timer 1 of the Super Timer Unit is used to generate the phase/reference signal of the servo system in all the modes. The TM1 operation differs for recording and for playback.

Figure 5-19 shows the TM1 peripheral circuit. The setting of selectors differs for recording and playback.

[For recording]


When recording, TM1 is operated as an interval timer synchronized with the frame cycle of TV broadcast. Composite synchronizing signal is input for CSYNCIN input pin. TM1 is cleared at the rising edge of the composite synchronizing signal using a digital noise elimination circuit incorporated in the CPU. Thus, timer 1 is operated as a frame synchronous interval timer synchronized with vertical synchronous signal input externally. Approximately 90% of the frame sync of the CSYNCIN pin input should be masked so that misoperation caused by noise, etc., is prevented.

[For playback]

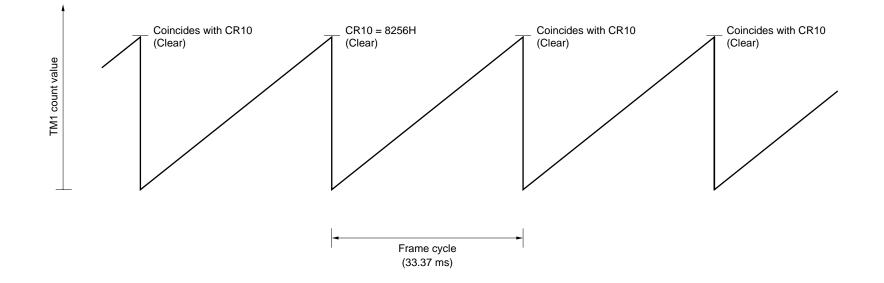
When playing back, TM1 is operated as a free running interval timer which has the frequency equal to the frame cycle of TV broadcast. The value corresponding to the frame cycle is stored in CR10 of TM1 because vertical synchronous signal is not externally input when playing back.

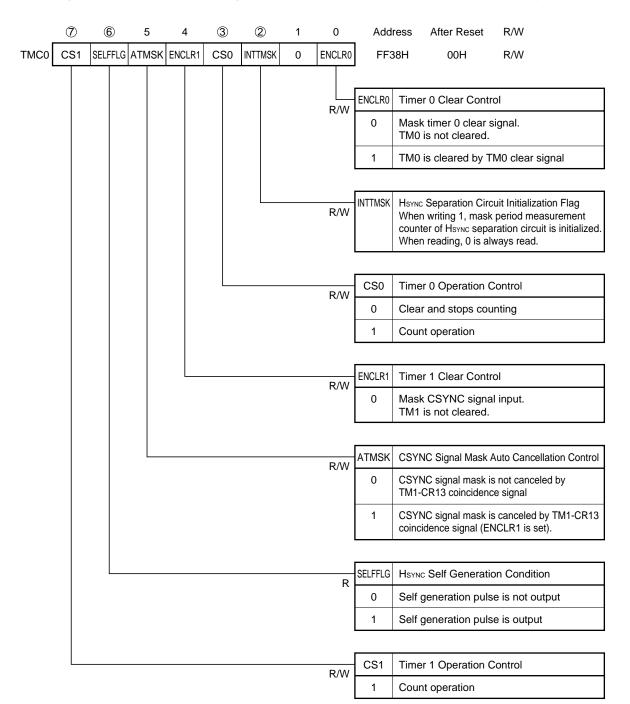
When playing back, TM1 clear timing is the reference signal of phase control. The phase reference signal is the TM1 clear timing.

Figure 5-19. Timer 1 Peripheral Circuit

61

(1) Phase reference for playback


When playing back, ENCLR1 flag is reset and timer 1 (TM1) clear by CLR1 input is always disabled. Data which makes the TM1 clear interval equal to the frame cycle is set to compare register 10 (CR10). Thereby, TM1 is operated as a free running interval timer having the frequency equal to the frame cycle. Figure 5-20 shows the TM1 operation timings for playback.


Since the reference frame cycle is 33.366 [ms], the set value of CR10 is as follows:

 $\mathsf{CR10} = \frac{33.366 \text{ [ms]}}{1.0 \text{ [}\mu \text{s]}} = 33366 = 8256\mathsf{H}$

Figure 5-21 shows the mode settings of timer 1 for playback.

Figure 5-20. Example of Timer 1 Operation Timings (for playback)

Figure 5-21. Timer Control Register 0 (TMC0) Format (drum phase control for playback)

(2) Phase reference for recording

When recording, timer 1 (TM1) is operated as an interval timer synchronized with a vertical synchronizing signal. Figure 5-22 shows an example of TM1 operation timings for recording.

Composite synchronizing signals are input from the video processing circuit to the CSYNCIN input pin. The composite synchronizing signal includes cut-in pulse, equalizing pulse, and horizontal synchronizing signal, as well as vertical synchronizing signal, so that vertical synchronizing signal needs to be separated from these signals. The digital noise elimination circuit incorporated in the μ PD784915 is used for this purpose.

By using the digital noise elimination circuit, it is possible to clear TM1 at the rising edge of the vertical synchronizing signal included in the composite synchronizing signal and generate interrupt for INTCLR1.

TM1 is cleared in synchronization with the falling edge of the vertical synchronizing signal in the composite synchronizing signal input to the CSYNCIN pin. If noise is mixed in the composite synchronizing signal input to the CSYNCIN pin, TM1 clear may be mistakenly carried out. TM1 clear by CSYNCIN input is disabled for the certain period of time using the ENCLR1 flag and compare register 13 (CR13) in CSYNCIN input which controls TM1 clear enable/disable. Figure 5-23 shows the timer 1 mode setting for recording.

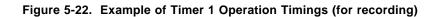
In this program, TM1 clear input disabled time is set to approximately 90% of the frame cycle after inputting a separated vertical synchronizing signal.

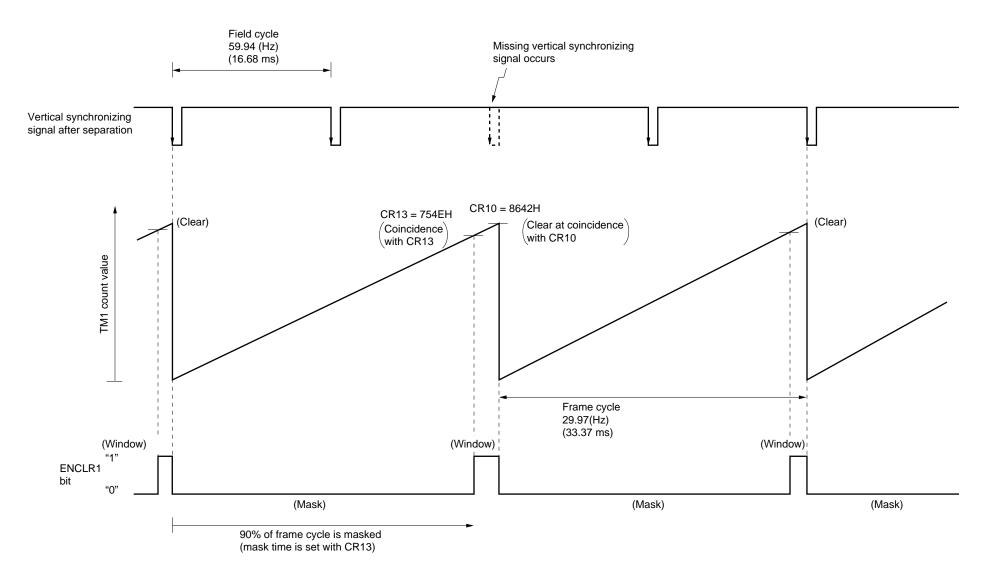
Since the frame cycle is 33.36 [ms], the time 90% of it is calculated as follows:

33.36 × 0.9 = 30.03 [ms]

In this program, the mask period is set with CR13 so that interrupt is generated at a point which is 90% of a field cycle. Since the TM1 count clock frequency is $f_{CLK}/8 = (1.0 \ [\mu s])$, the value set for CR13 is as follows:

 $CR13 = \frac{30.03 \text{ [ms]}}{1.0 \text{ [}\mu\text{s]}} = 30030 = 754\text{EH}$


When the ATMSK flag, which controls CSYNCIN signal mask auto cancellation, is set, 754EH is set to CR13, and the timer is started, ENCLR1 control bit is set when 90% of a field cycle is passed. If ENCLR1 control bit is controlled, CSYNCIN pin input is masked for the 90% period of time of a frame cycle.


If, for some reason, vertical synchronizing signal is not input, the compare register 10 (CR10) value is set so that clear is executed at a cycle approximately equal to the frame cycle by coincidence signal of CR10 of timer 1 and timer 1. In this case, CR10 is set with additional 3% of the frame cycle. Therefore, as the frame frequency is 29.97 [Hz] (33.36 [μ s]), the set cycle is as follows:

33.36 × 1.03 = 34.37 [ms]

Since the count clock frequency of timer 1 is $f_{CLK}/8 = (1.0 \ [\mu s])$, the set value to CR10 is as follows:

CR10 = $\frac{34.37 \text{ [ms]}}{1.0 \text{ [}\mu\text{s]}}$ = 34370 = 8642H

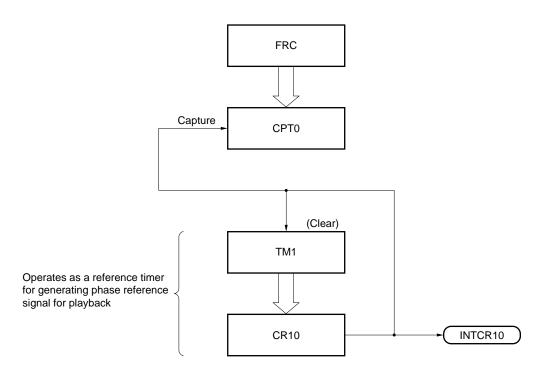
CHAPTER 5 EXAMPLES OF STATIONARY TYPE VCR SERVO CONTROL

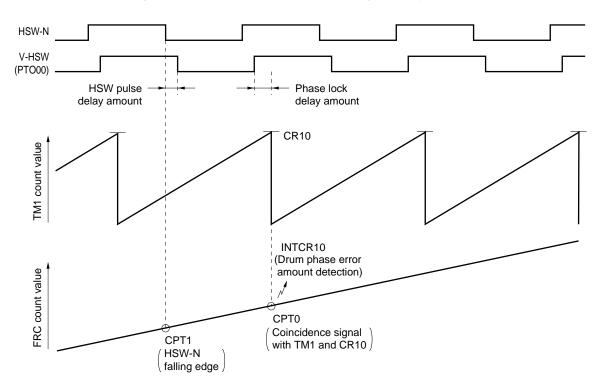
	$\overline{\mathcal{O}}$	6	5	4	3	2	1	0	Add	ress	After Reset	R/W
тмсо	CS1	SELFFLG	ATMSK	ENCLR1	CS0	INTTMSK	0	ENCLR0	FF3	38H	00H	R/W
_									•			
								R/W	ENCLR0	Time	r 0 Clear Conti	rol
								K/ VV	0		timer 0 clear s is not cleared.	signal.
									1	TM0	is cleared by T	M0 clear signal
								R/W	INTTMSK	Wher perio	n writing 1, Hsyn	cuit Initialization Flag c separation circuit mask counter is initialized. Iways read.
								R/W	CS0	Time	er 0 Operation 0	Control
								10,00	0	Clea	r and stops cou	unting
									1	Cour	nt operation	
								R/W	ENCLR1	Time	r 1 Clear Conti	rol
									1	TM1	is cleared by C	CSYNC signal input
								R/W	ATMSK	CSYN	NC Signal Mask	Auto Cancellation Control
									1		NC signal mask i idence signal (El	s canceled by TM1-CR13 NCLR1 is set)
								R	SELFFLG	Hsyno	c Self Generati	on Condition
									0	Self	generation puls	se is not output
									1	Self	generation puls	se is output
								R/W	CS1	Time	r 1 Operation (Control
									1	Cour	nt operation	

Figure 5-23. Timer Control Register 0 (TMC0) Format (drum phase control for recording)

5.6.2 Drum phase control for playback

For drum phase control for playback, drum motor rotation phase is synchronized with a reference timer which has the frequency equal to the TV broadcast frame cycle f_F.


Timer 1 (TM1) of Super Timer Unit is used for the reference timer as mentioned earlier.


For VHS standards, the locking point of the drum phase in this program is specified as 6.5H before the phase reference signal.

1H, here, shows one cycle of horizontal synchronizing signal (1H = 63.56 [μ s]).

Figure 5-24 shows the use of timer for drum phase control for playback. Figure 5-25 shows the drum phase control timing chart for playback.

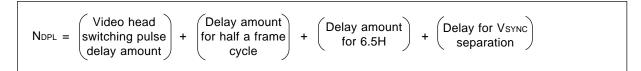
Figure 5-24. Use of Timer for Drum Phase Control (for playback)

The drum phase error amount detection method is shown below.

The count value of free running counter (FRC) is stored in the capture register 1 (CPT1) at the falling edge of internal head switching signal (HSW-N).

INTCR10 interrupt is generated at the coincidence timing with the count value of timer 1 (TM1) and compare register 10 (CR10). The value of FRC is, at the same time, stored in CPT0.

The drum phase error amount EDP is shown in the expression below. Figure 5-26 shows the method to set CPT0 and CPT1 capture trigger source.


EDP = ((CPT0 value) - (CPT1 value)) - NDPL

NDPL, here, is the target value of drum phase control.

The count clock of the capture registers of CPT0 and CPT1 is 125 [ns] of FRC. However, since timer 0 (TM0) to generate head switching signal (V-HSW), which is the object of comparison, is 1 [μ s], CPT1 is subtracted from CPT 0, and then the result is made 1/4 so that data can be handled in 16 bits.

The sampling clock cycle of drum phase error, hereafter, is calculated as 0.5 [µs].

The target value of the drum phase control NDPL is the remainder of the subtraction between CPT0 and CPT1, therefore, calculated with the following expression.

Each value of the above expression is calculated here.

(1) The digital value equivalent to the head switching signal (V-HSW) delay amount

The digital value equivalent to the head switching signal (V-HSW) is calculated. The V-HSW delay is stored in compare register 00 (CR00) of timer 0 as the delay amount from HSW-N. The TM0 sampling clock frequency is twice as large as that of the drum phase error. Therefore, the value equivalent to V-HSW delay amount when counted with FRC is twice as large as the value set in CR00.

(2) The delay amount for half a frame cycle

The half of a frame cycle $T_F/2$ is stored in CR10, therefore:

CR10/2 = 16.68 [ms]

The above value is counted with the sampling clock cycle 0.5 [μ s] of drum phase error as follows:

$$\frac{CR10/2}{0.5 \ [\mu s]} = CR10$$

(3) The delay amount for 6.5H

 $1H = 63.56 [\mu s]$, therefore, the time for 6.5 H is:

 $63.56 \times 6.5 = 413.14 \ [\mu s]$

Therefore, if counted with the drum phase error sampling clock:

$$\frac{413 \ [\mu s]}{0.5 \ [\mu s]} = 826$$

(4) The delay for VSYNC separation

Drum control system for recording uses the vertical synchronizing signal V_{SYNC} as the phase reference signal. V_{SYNC}, here, is acquired by being separated from the composite synchronizing signal in order to make the phase control system program for playback and recording equal.

The delay time for VSYNC separation is with the time for the separation is considered.

 μ PD784915 is equipped with digital noise elimination circuit, so that 13.5 [μ s] (INTTM2.4 = 0) of the delay is the delay for V_{SYNC} separation.

If the time for 13.5 [μ s] necessary for V_{SYNC} separation is counted with the sampling clock of the drum phase error, the value is as follows:

$$\frac{13.5 \ [\mu s]}{0.5 \ [\mu s]} = 27$$

From above, NDPL is calculated as follows:


NDPL = $(CR00 \times 2) + (CR10) + 826 + 27$ = $(CR00 \times 2) + (CR10) + 355H$

The drum phase error amount is calculated from the free running counter (FRC) value (CPT1) captured at the falling edge of the internal head switching signal (HSW-N) and the FRC value (CPT0) captured at the timer 1 (TM1) clear timing.

Therefore, the capture trigger selector of CPT0 is switched so that the CPT0 capture trigger source becomes the coincidence signal of the TM1 value and compare register 10 (CR10).

Timer 1 (TM1) is used as a reference timer which is cleared with frame cycle. The value set to CR10 of TM1 is as follows:

CR10 = <u>33.366 [ms]</u> = 33366 = 8256H
1.0 [µs]

Figure 5-26. Capture Mode Register (CPTM) Format

5.6.3 Drum phase control for recording

For drum phase control for recording, the rotational phase of the drum motor is synchronized with vertical synchronizing signal externally input.

The point of phase lock is where the rising and falling edges of the head switching signal (V-HSW) are 6.5H before the vertical synchronizing signal, which complies with VHS standard. However, the time required for V_{SYNC} separation, as mentioned in the section about the control for playback, must be taken in consideration.

Figure 5-27 shows the use of the timer in drum phase control for recording. Figure 5-28 shows the drum phase control timing chart for recording.

When recording, the phase error amount is calculated from the free running counter (FRC) value (CPT1) captured at the falling edge of internal head switching signal (HSW-N) and the FRC value (CPT0) captured at the falling edge of the vertical synchronizing signal input from the CSYNCIN pin.

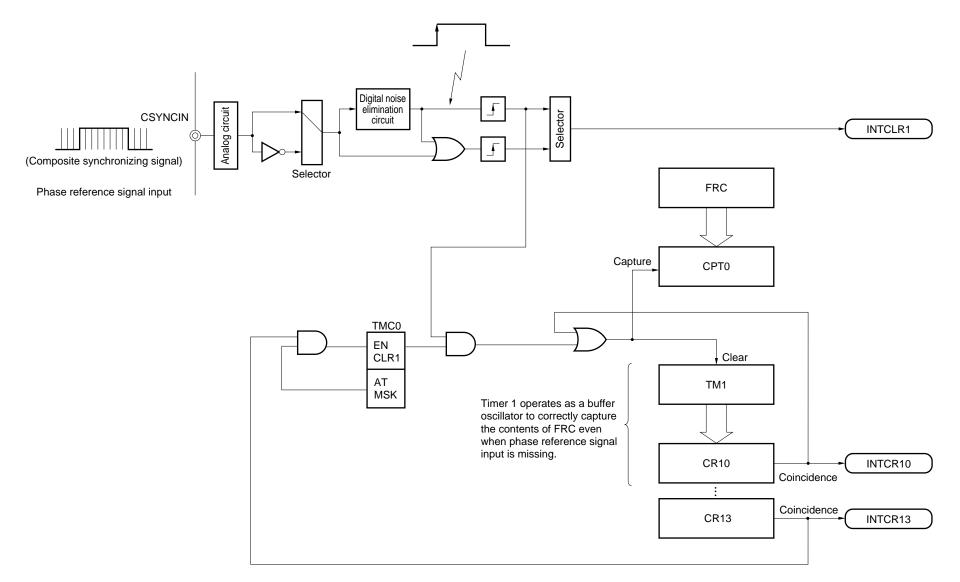
The phase error amount detection method is described below.

The method to capture the FRC value in CPT1 only at the falling edge of HSW-N is the same as for playback. On the other hand, the CPT0 capture operation is performed when the vertical synchronizing signal is input to the CSYNCIN input pin, and TM1 is cleared simultaneously. In fact, the phase error detection is performed in frame cycle,

so that TM1 clearance by inputting CSYNC is masked for the 90% time period of a frame cycle.

Compare register 13 (CR13) is used for the setting of the mask time.

Figure 5-29 shows the CPT0 and CPT1 capture trigger source setting method for recording.


The phase error amount is detected in INTCLR1 interrupt processing. The phase error amount EDP is calculated as follows:

EDP = ((CPT0 value) - (CPT1 value)) - NDPL

NDPL, here, is the difference between CPT0 and CPT1 when the drum phase control is locked, that is, the target value of the phase control.

The difference between CPT0 and CPT1 when the phase is locked, is the sum of head switching signal delay amount, frame half cycle, VHS standard 6.5H delay, and the delay amount for VSYNC separation.

Figure 5-27. Use of Timer for Drum Phase Control (for recording)

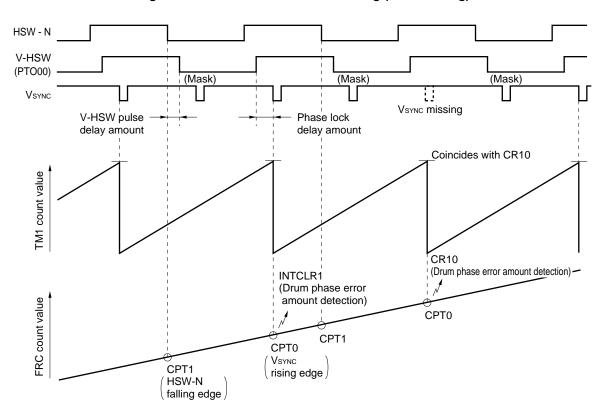
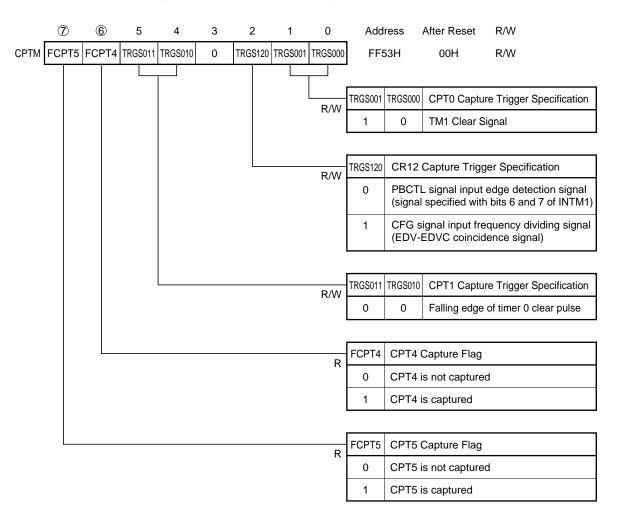
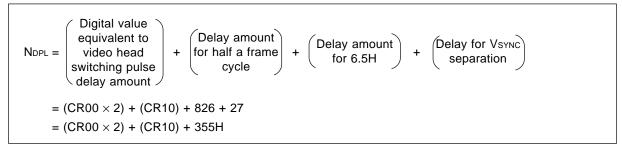



Figure 5-28. Drum Phase Control Timing (for recording)

Remark Phase lock delay amount: value determined by VCR standard

Figure 5-29. Capture Mode Register (CPTM) Format


The μ PD784915 uses vertical synchronizing signal (VsyNc) as phase reference signal. Therefore, digital noise elimination circuit is used to separate only vertical synchronizing signals from composite synchronizing signals. In this application example, the amount of time required for VsyNc of digital noise elimination circuit is 13.5 [μ s].

The count value of drum phase error for 6.5H sampling clock is 826.

The count value for 13.5 [μ s] required for V_{SYNC} separation is shown in the following expression:

 $\frac{13.5 \ [\mu s]}{0.5 \ [\mu s]} = 27$

Therefore, the target value is represented with the expressions as follows:

This expression is the same as that for phase error amount for playback.

5.7 Capstan Speed Control

Delay of capstan speed error amount is carried out, as well as drum speed control, by capturing the free running counter (FRC) value at the capstan FG signal input edge.

The capstan FG signal (CFG) is input to the DFGIN input pin. INTCPT3 interrupt request occurs simultaneously with the capture of the FRC value to CPT3 at the CFG edge input.

The difference from drum speed control is that CFG frequency fcF varies according to the tape running mode. In this set, the CFG frequency for normal playing back is as follows:

- SP mode : 1080.00 [Hz]
- LP mode : 540.00 [Hz]
- EP mode : 360.00 [Hz]

In order to equalize error detection gain in the servo system according to each running mode, CFG is divided with the 8-bit event divider control register (EDVC) incorporated in the CFGIN pin input of the Super Timer Unit.

Since this counter operates as the event divider of the DFGIN pin input pulse, the detection cycle in the SP mode becomes the same as that in the EP mode if CFG is divided by one third.

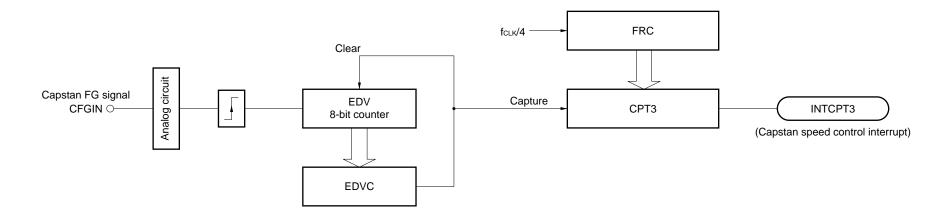
Figure 5-30 shows the capstan speed detection method. Figure 5-31 shows the capstan speed control timing chart. The capstan speed error ECV is calculated in the INTCPT3 interrupt request processing routine. The expression is as follows:

 $\Delta N cv^{n} = \Delta N cv^{n} - N cv^{n}$ Ecv^{n} = N cvL^{n} - \Delta N cv^{n}

 N_{CVL} , here, is the target value of capstan speed control. The CFG frequency fcF in the EP mode is as follows:

```
fcf = 360.00 [Hz]
fcfep = 360.00 [Hz]
```

Therefore, it becomes the CFG frequency in the SP mode, and the CFG cycle fcF is calculated with the following expressions:


fcfsp/3 = 360.00 fcf/3 = 239.7602093 [Hz] Tcf = 2.7778 [ms] The time interval counted by the free running counter (FRC) becomes the target value N_{CFL} of capstan FG signal (CFG). Since the FRC count pulse cycle (T_{FRC}) is 125 [ns], N_{CFL} is as follows:

 $N_{CFL} = \frac{2.778 \text{ [ms]}}{125 \text{ [ns]}} = 22222 = 56CEH$

The meaning of the signs for capstan speed error amount Ecv is shown below:

- (1) When CFG cycle is longer than the target value...-(when the rotation of capstan motor is slow)
- (2) When CFG cycle is shorter than the target value...+ (when the rotation of capstan motor is fast)

Figure 5-30. Capstan Speed Detection Method

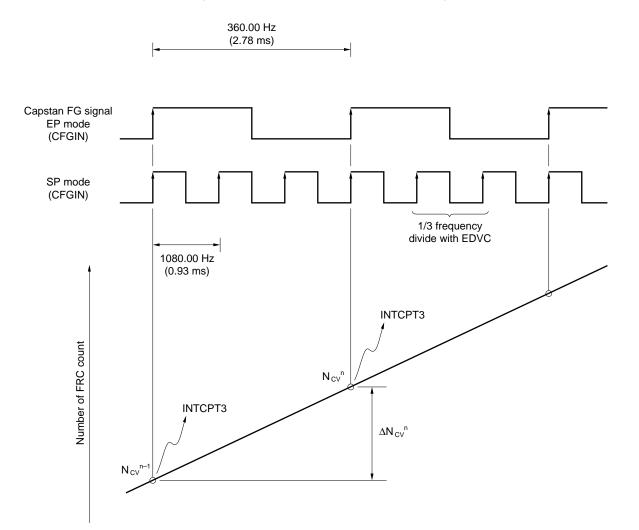


Figure 5-31. Capstan Speed Control Timing

5.8 Capstan Phase Control

The phase detection of the capstan motor is performed by compare register 12 (CR12), and capstan phase control is performed by the INTCR12 interrupt routine.

The control method differs for playback and recording. The control method for each case is explained below.

5.8.1 Capstan phase control for playback

The purpose of capstan phase control for playback is to keep the phase relation constant between the playback control signal (PBCTL) and the head switching signal (V-HSW) acquired when playing back.

The relation between timer 1 (TM1), which is the reference timer in drum phase control, and V-HSW is already kept constant (refer to **5.6.2 Drum phase control for playback**). Therefore, the phase relation between V-HSW and PBCTL is indirectly kept constant by keeping the phase relation between TM1 and PBCTL constant (refer to Figure 5-32).



Figure 5-32. Model of Capstan Phase Control

In capstan phase control for playback, the selector is selected so that PBCTL signal is set to CR12 of timer 1. Figure 5-33 shows the capstan phase error detection method for playback. Figure 5-34 shows how to set the capture trigger source of CR12 for playback.

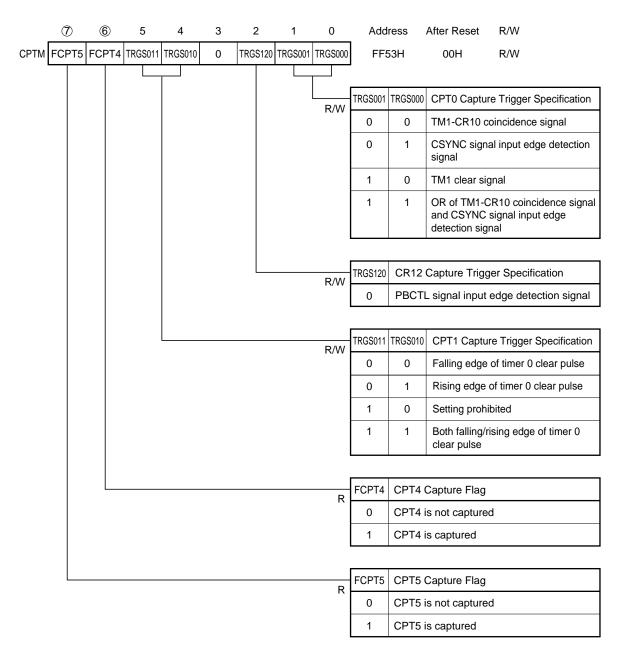
In capstan phase control, the lock point is the point tilted for the amount of time from video head to control head (x value correction amount). The x value correction amount differs according to the VCR sets and the tape running mode.

Figures 5-35 to 5-37 show the phase control timing charts. The phase error amount EcP is calculated from the following expression.

Еср	= (Value captured by PBCTL signal) - NCPL	
	= (CR12 value) - NCPL	

NCPL : capstan phase control target value


The capstan phase control target value (NCPL), here, is the TM1 value captured in CR12 when the phase is locked. Taking it into account that the phase between the video head position (V-HSW timing) and the reference timer is 6.5H, NCPL is calculated as follows:


Ncpl =	$\frac{(x \text{ value correction amount}) - 6.5H}{T_{TM1}} + tracking adjustment amount}$
=	$\frac{(x \text{ value correction amount}) - 6.5H}{8/f_{CLK}} + tracking adjustment amount}$
=	$\frac{(x \text{ value correction amount}) - 6.5H \times 63.55 \ [\mu sec]}{8/8[MHz]} + tracking adjustment amount}$

If the phase control range is set equally for both advance/delay directions centered in the phase lock, the amount of time before the phase lock is shortened. In other words, in the condition of Figure 5-36, the distance to the lock point is shorter if the condition is considered as advanced rather than delayed so that the amount of time before the phase lock is shorter. Concretely, the NF/2 range (NF: the full count value of timer 1: CR10 set value) is regarded as it is, centered in the locking point, and the value corrected by adding NF to (or subtracting NF from) the value captured is used for the other range.

In addition, digital filter arithmetic is performed to the capstan phase error amount acquired here so that the result is used for the phase control.

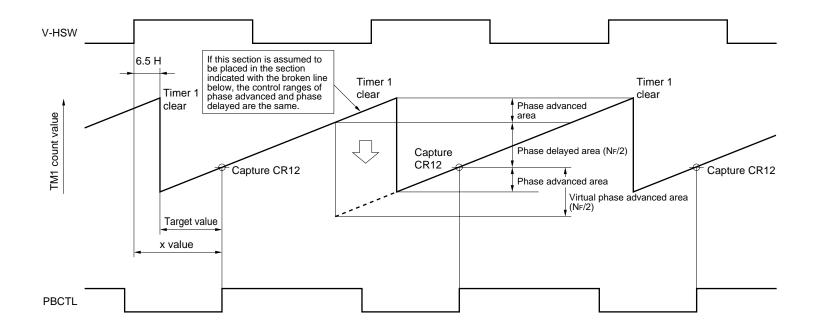

Figure 5-33. Capstan Phase Error Detection Method (for playback)

Figure 5-34. Capture Mode Register (CPTM) Format

Figure 5-35. Capstan Phase Control Timing (playback mode, phase locked)

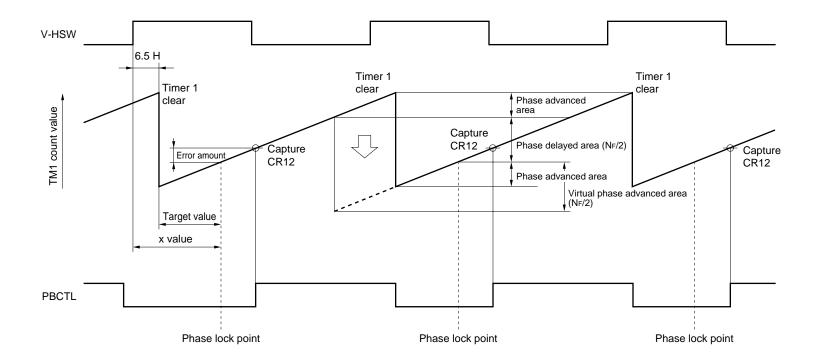
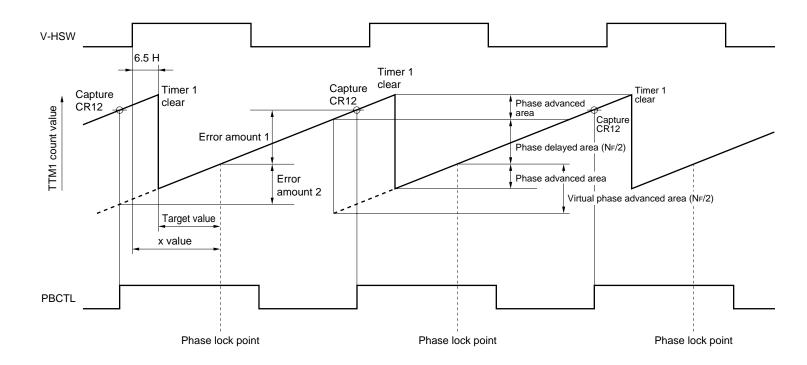



Figure 5-37. Capstan Phase Control Timing (playback mode, phase advanced)

5.8.2 Capstan phase control for recording

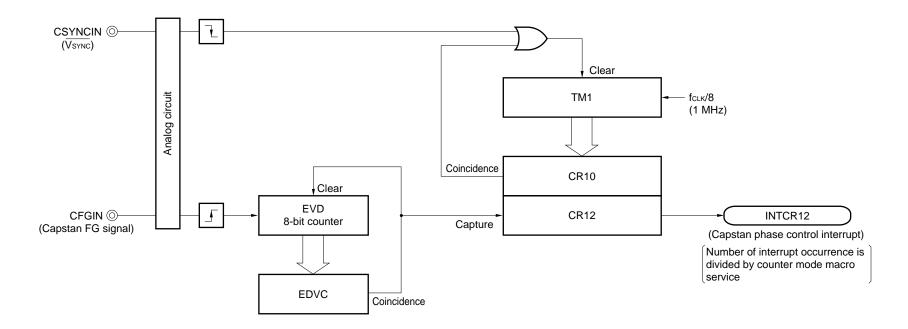
The capstan control for recording is performed by dividing capstan FG signal (CFG). As long as the capstan motor is steadily rotating while recording, it is not necessary to consider absolute phase.

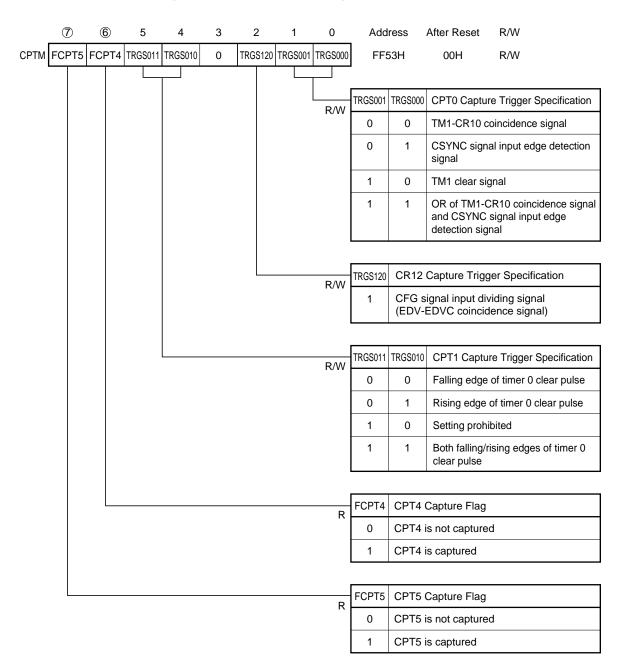
Figure 5-38 shows the capstan phase error detection method for recording. Figure 5-39 shows the method of setting the capture trigger source of compare register 12 (CR12) for recording. The capstan phase control for recording, as well as for playback, uses the CR12 and INTCR12 interrupts. Although a value is captured in CR12 every time CFG is input, CFG has to be divided because only one captured value is needed for one frame. In actuality, the input is not divided but interrupt is divided using the macro service counter mode, and the CR12 value when a vectored interrupt is generated is used. The number of frequency division is the same as the FG wave number (in EP mode). CFG input is triple divided by event divider control register (EDVC) in SP mode. Therefore, the required value is acquired by dividing the interrupt for the capstan FG wave number in EP mode.

Figure 5-40 shows the phase control timing chart.

Capstan phase error amount is calculated in the same way as for playback.

ECP = (Captured value by CFG frequency dividing signal) – NCPL = (CR12 value) – NCPL


Remark NCPL: capstan phase control target value


However, since there is not an absolute phase for recording, target value $N_{\mbox{CPL}}$ can be any value.

Capstan phase control range is determined in the same way as for playback.

Further, digital filter arithmetic is performed to the capstan phase error amount acquired from the above calculation, and the result is used for phase control.

Figure 5-38. Capstan Phase Error Detection Method (for recording)

Figure 5-39. Capture Mode Register (CPTM) Format

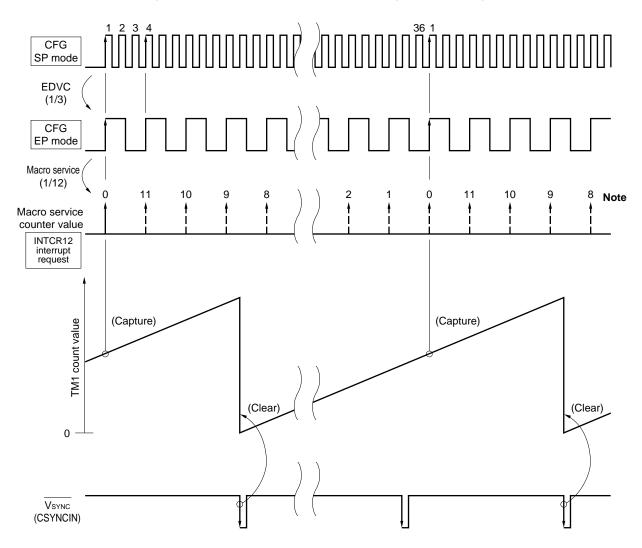


Figure 5-40. Capstan Phase Control Timing (for recording)

Note The arrows have the following meanings.

(Solid line) : vectored interrupt

--- (Broken line): macro service

5.9 Recording Control Signal Generation

Recording control signal (RECCTL) is a signal synchronized with head switching signal (V-HSW) and recorded on the control track for recording. The RECCTL cycle is equal to T_F and the duty is normally 60% (27.5% for index signal, may become other duty).

RECCTL rising timing tRECR is the point tilted for the amount of time from video head to control head (x value correction amount).

The x value correction amount differs according to the VCR sets and the tape running mode. The RECCTL write timing is calculated as follows:

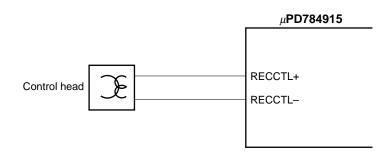
(1) [RECCTL rising timing (trecr)]

RECCTL rising timing (tRECR) is the point tilted for the amount of time from the video head position to control head (x value correction amount). The video head position has the phase tilted for 6.5H from the reference timer. Therefore, tRECR is represented as follows:

 t_{RECR} = (x value correction amount) – 6.5H – τd

Remarkτd : digital noise elimination circuit (VSYNC separation) delay time (80/fcLK or 128/fcLK)0 if not using digital noise elimination circuit

(2) RECCTL falling timing (trecf)


RECCTL falling timing (trecf) is the point tilted for 60% of the frame frequency from rising timing.

tRECF = tRECR + (60% of frame frequency)

- = [(x value correction amount) 6.5H τ d] + (TF × 0.6)
- Remarkτd : digital noise elimination circuit (VSYNC separation) delay time (80/fcLK or 128/fcLK)0 if not using digital noise elimination circuit
 - TF : TV broadcast frame frequency (33.36 msec: NTSC)

First, connect directly the μ PD784915 and control head as shown in Figure 5-41 and set registers so that RECCTL write circuit is used.

Figure 5-41. Connection of μ PD784915 and Control Head

The recording control signal (RECCTL) driver of the μ PD784915 has the REC mode, which is used for RECCTL signal write. Figure 5-42 shows RECCTL driver configuration.

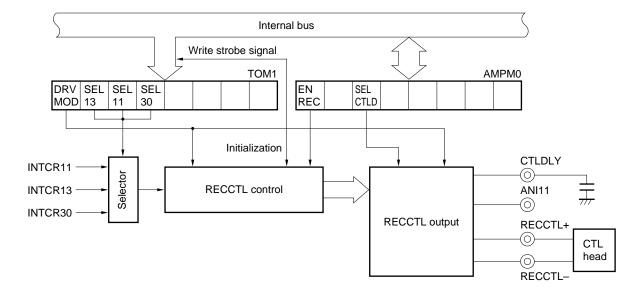


Figure 5-42. RECCTL Driver Block Diagram

The REC mode sequence of RECCTL driver operates RECCTL+ pin and RECCTL- pin as shown in Table 5-2. Therefore, RECCTL signal write is realized taking only the interrupt occurrence timing, which is a trigger signal, into consideration.

Table 5-2. RECCTL Driver REC Mode Sequence	Table 5-2.	RECCTL	Driver	REC	Mode	Sequence
--	------------	--------	--------	-----	------	----------

Sequence	RECCTL+	RECCTL-		
0	Low level	High level		
1	High level	Low level		

Figure 5-43 shows an example of RECCTL signal writing operation timings.

Note R/W to TOM1 register is not executed until approximately 800 μ s from the setting of ENREC = 1 (start of REC mode), or ENREC = 0 (end of REC mode).

Caution Keep CTL amplifier in operation (ENCTL (AMPC.1) = 1) even while REC driver is operating.

The case using only compare register 11 (CR11) as a register for setting timing is explained here.

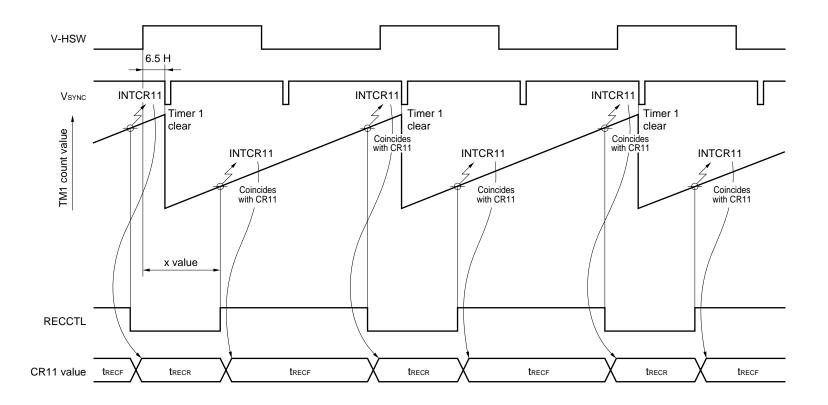

Set Timer 1 output mode register (TOM1) to use CR11 as shown in Figure 5-44. Then, write the value corresponding to rising timing to CR11. When timer register 1 (TM1) coincides with CR11, the rising edge is recorded and INTCR11 interrupt occurs. Rewrite the value to the value corresponding to the falling timing. And the falling edge is recorded at the next coincidence of TM1 and CR11, then write again the value corresponding to the rising timing to CR11. By repeating this procedure, RECCTL can be recorded.

Figure 5-45 shows the timing chart.

	7	6	5	4	3	2	1	0	Add	ress	After Reset	R/W
ТОМ1	DRVMOD	SEL13	SEL11	SEL30	MOD111	MOD110	MOD101	MOD100	FF:	5AH	80H	R/W
L									1			
									MOD101	MOD100	PTO10 Outp	out Mode Specification
								R/W	0	0	General pur	pose output mode
									0	0	Setting proh	ibited
									1	1	Delay pulse	output mode 1
									1	1	Delay pulse	output mode 2
								W	MOD111	MOD110	PTO11 Outp	out Mode Specification
								vv	0	0	General pur	pose output mode
									0	0	Setting proh	ibited
									1	0	Delay pulse	output mode 1
									1	1	Delay pulse	output mode 2
								W	SEL30	RECCT	L Write Circuit	Operation Trigger Setting
								vv	0		R30 coincide ected as a trig	
									1	TM3-C as a tri		nce signal is selected
								W	SEL11	RECCT	L Write Circuit	Operation Trigger Setting
								vv	1	TM1-C as a tri		nce signal is selected
								W	SEL13	RECCT	L Write Circuit	Operation Trigger Setting
								vv	0		R13 coincide ected as a trig	
									1	TM1-C as a tri		nce signal is selected
								W	DRVMOD	RECCT	L Write Circuit	Operation Mode Setting
								vv	0	REC m	iode	

Figure 5-44. Timer 1 Output Mode Register (TOM1) Format

Figure 5-45. RECCTL Write Timing Using CR11

5.10 Quasi Vertical Synchronizing Signal (Quasi-VSYNC) Generation

The method to generate quasi vertical synchronizing signal (quasi-Vsync) for special playback is explained.

There are several types of wave forms for quasi-VSYNC depending on the signal processing circuit to be used. The method to output the wave form shown in Figure 5-48 is explained here.

The wave form shown in Figure 5-46 requires not only "H" and "L" but also "M" (middle level) outputs.

Real-time output port RTP80 incorporated with the μ PD784915 is used, for this port can output "H", "L", and "Hi-Z". For the middle level, the level of Hi-Z output is set with external pull-up and pull-down resistors (refer to **Figure**

5-47).

RTP80 can superimpose HSYNC pulse during Hi-Z period, so that HSYNC does not need to occur for every HSYNC. The procedure is shown below:

- <1> Set P80 in real time output port mode. And select TM0-CR02 coincidence signal as the RTP8 output trigger.
- <2> Set HsyNc output timing (rising (Figure 5-48 <1>)) to CR02. And set 00010001B (superimpose high-level HsyNc to Hi-Z) to P8L.
- <3> The wave form with Hi-Z that have high-level HSYNC superimposed is output from P80 pin by the coincidence of TM0 and CR02. INTCR02 occurs simultaneously.
- <4> Set V_{SYNC} output timing (rising (Figure 5-48 <2>)) to CR02 by the INTCR02 interrupt routine. Set 00000001B (high-level output) to P8L.
- <5> High level is output from P80 pin by the coincidence of TM0 and CR02. INTCR02 occurs simultaneously.
- <6> Set V_{SYNC} output timing (falling (Figure 5-48 <3>)) by the INTCR02 interrupt routine. Set 00000000B (low-level output) to P8L.
- <7> Low level is output from P80 pin by the coincidence of TM0 and CR02. INTCR02 occurs simultaneously.
- <8> Set Hsync output timing (rising (Figure 5-48 <1>)) to CR02 by the INTCR02 interrupt routine. Set 00010001B (superimpose high-level Hsync to Hi-Z) to P8L.
- <9> Go back to <3> (repeat this procedure).

Figure 5-46. Quasi-VSYNC Waveform

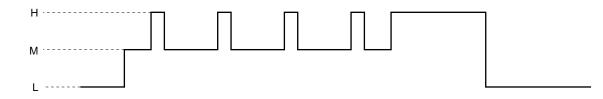
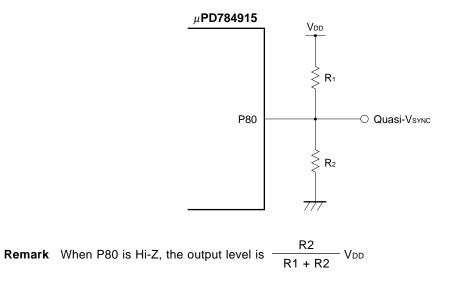
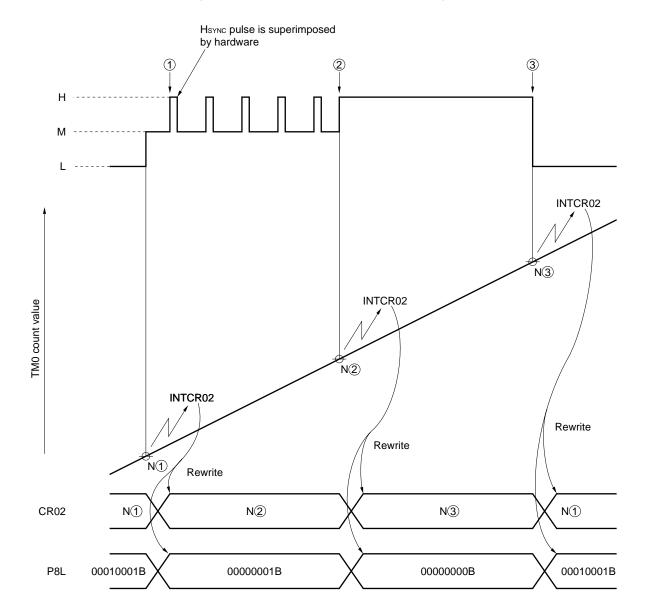
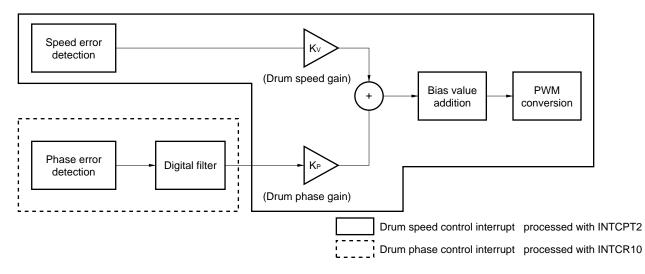



Figure 5-47. Middle Level Generation




Figure 5-48. Quasi-VSYNC Generation Timing

5.11 Treatment of Servo Error Amount

5.11.1 Drum control system processing

Drum control system performs the calculation and filtering processing of drum speed error and phase error and output of drum motor control signal (PWM0).

Figure 5-49 shows the drum control system configuration.

Figure 5-49. Drum Control System Configuration

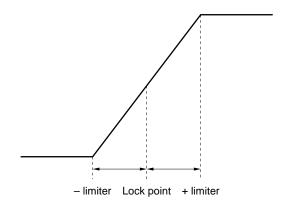
As shown in Figure 5-49, the drum speed control system performs only phase error calculation and phase control system filtering. The drum phase control system reads out the filtered phase error, adds it with speed system error, and performs PWM output.

First, the total error amount of drum motor is calculated from the speed error amount and phase error amount. The speed error amount E_{DV} acquired from drum speed control interrupt and the phase error amount E_{DP} (digital filter arithmetic result) acquired from drum phase control interrupt are multiplied with gains, respectively (the gains are defined as K_{DV} and K_{DP}, respectively). The sum of these results is defined as the drum error amount E_D.

 $E_D = K_{DV} \bullet E_{DV} + K_{DP} \bullet E_{DP}$

The sum of the drum total error amount and the bias value is PWM output.

The bias value is PWM output to control the motor in open loop and output the voltage required to rotate the motor in the approximate target rotation. However, the bias is not necessarily a strict value because the actual control is carried out by feedback control and errors are automatically corrected to a certain extent.


In addition, the servo system characteristics can be improved, such as reduction of motor rising time and improvement of locking stability, by changing the gain according to the speed error amount and phase error amount and canceling phase control.

The speed error gain K_{DV} and phase error gain K_{DP} vary according to the motor characteristics. Set these values according to the characteristics of the motor to be used (in fact, find the value that has the best characteristics in cut and try).

(1) Error amount maximum control processing (limit limiter)

Error amount maximum control processing is the same as trapezoidal pattern for servo IC error value detection, and it controls the maximum of internal error value (error amount) to input to digital filter.

Figure 5-50. Trapezoidal Pattern for Error Value Detection (drum control system)

In this application example, the control range is specified also from loop gain so as to prevent data overflow in the arithmetic processing of digital filter. A maximum limit is set for speed error and phase error, respectively, and each control range is set as follows:

٠	Drum speed control range	\pm 735H (1 count = 125 nsec) \pm 230.625 μ sec
•	Drum phase control range	$\pm 2220H$ (1 count = 500 nsec) $\pm 4368 \ \mu sec$

(2) Special processing in drum control system

(a) Special processing for error amount calculation

By checking the drum speed error amount detected in the drum speed error amount calculation routine, if the drum speed deviates $\pm 5\%$ or more from the target value, 0 is set to the drum phase error amount. The purpose of this processing is to prohibit addition of the drum phase error amount while the drum speed control system is not in operation and to reduce the lock time of the motor by operating the drum motor only with the speed control system.

(b) Special processing in drum phase system digital filter

This special processing limits the maximum of Y_{n-1} data value in the arithmetic processing of drum phase system digital filter. Y_{n-1} is the data to reflect the past output data of the filter. If the drum phase becomes out of phase for a long period of time (when applying load by lightly holding the drum manually, etc.), Y_{n-1} data keeps increasing. The increased Y_{n-1} data will start decreasing gradually when the applied load is removed. However, the lock time is affected because it takes an extremely long time before Y_{n-1} is decreased. In order to avoid this, the lock time should be reduced by setting the maximum limit for Y_{n-1} data.

The limit value for Y_{n-1} is set as follows:

Yn-1 maximum : 13FH

The Yn-1 limit value setting method is adopted according to experimental values.

(3) Loop gain multiplication

Kv and KP shown in Figure 5-50 are loop gains in speed control system and phase control system, respectively. When handling the error amount data (calculated from FRC) which is digital filtering processed as PWM data, the variable range of PWM data is small (the dynamic range is narrow) because the range available for the data is narrow.

Loop gain also has the functions to widen the dynamic range by amplifying the filtered data and to adjust the addition rate of speed system and phase system.

The loop gains of the speed system and phase system are as follows:

```
Speed system loop gain : K_V = 17.76 times
Phase system loop gain : K_P = 46.0 times
Speed/phase addition rate : K_V : K_P = 4.74 :1
```

(4) Bias value addition

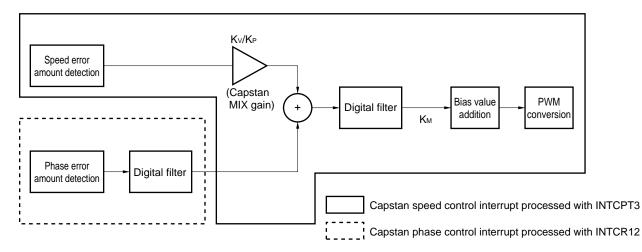
Bias value addition is carried out to keep the motor control voltage at the lock point during servo lock (speed/ phase error amount 0).

The bias value setting method is adopted according to experimental values. PWM output data in the condition that drum is controlled only with speed control and stabilized at the drum speed target value is adopted as the bias value.

The bias value in drum control system is as follows:

Bias value in NTSC : 66F0 [HEX]

Bias value is added to the sum of speed correction amount and phase correction amount. However, the arithmetic result may overflow, so that overflow check is carried out. The arithmetic result is fixed to the maximum if overflow occurs and to the minimum if borrow occurs.


(5) PWM output for drum motor control

The PWM of the data which is the addition of speed/phase correction amount and bias value is output. The data is processed as 16-bit data. However, since the operation range of PWM output unit is 0FF00H to 0100H, when operating outside this range, the maximum or the minimum is written. The PWM for drum motor control is output in the drum speed control interrupt routine.

5.11.2. Capstan control system processing

Capstan control system performs the calculation and filtering processing of capstan speed error and phase error and the output of capstan motor control signal (PWM1).

Figure 5-51 shows the capstan control system configuration.

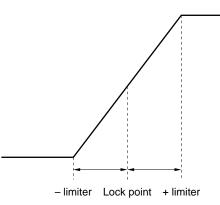
As shown in Figure 5-51, capstan phase control system performs the calculation of phase error amount and filtering of phase system. Capstan speed control system reads out the filtered phase error, adds it with speed system error, and performs PWM output.

First, the capstan motor total error amount is calculated from the speed error amount and phase error amount. Speed error amount Ecv acquired from the capstan speed control interrupt and phase error amount EcP (digital filter arithmetic result) acquired from the capstan phase control interrupt are multiplied with gains, respectively (the gains are defined as Kcv and KcP, respectively). The sum of these results are defined as capstan error amount Ec.

 $Ec = Kcv \bullet Ecv + KcP \bullet EcP$

The sum of the capstan total error amount and bias value is PWM output.

The bias value is PWM output to control the motor in open loop and output the voltage required to rotate the motor in the approximate target rotation. However, the bias is not necessarily a strict value because the actual control is carried out by feedback control and errors are automatically corrected to a certain extent.


In addition, the servo system characteristics can be improved, such as reduction of motor rising time and improvement of locking stability, by changing the gain according to the speed error amount and phase error amount and canceling phase control.

The speed error gain Kcv and phase error gain KcP vary according to the motor characteristics. Set these values according to the characteristics of the motor to be used (in fact, find the value that has the best characteristics in cut and try).

(1) Error amount maximum control processing (limit limiter)

Error amount maximum control processing is the same as trapezoidal pattern for servo IC error value detection, and it controls the maximum of internal error value (error amount) to input to digital filter.

Figure 5-52. Trapezoidal Pattern for Error Value Detection (capstan control system)

This also prevents data overflow in digital filter arithmetic processing.

The limit range is specified by limiting the error maximum.

The maximum limit is set for speed error and phase error, respectively, and each control range is set as follows:

• Capstan speed control range $\pm 1E79H$ (1 count = 125 nsec) $\pm 975.125 \ \mu sec$

• Capstan phase control range $\pm 15A0H$ (1 count = 1 μ sec) $\pm 5536 \mu$ sec

(2) Special processing in capstan control system

(a) Special processing for error amount calculation

<1> Relation with drum speed error amount

In drum speed error calculation, if the drum speed deviates $\pm 10\%$ or more from the target value, 0 is set to the capstan phase error amount. The purpose of this processing is to prohibit addition of the capstan phase error amount while the drum speed control system is not in operation and to reduce the lock time of the motor by operating the capstan motor only with the speed control system.

<2> Relation with capstan speed error amount

By checking the capstan speed error amount detected in the capstan speed error amount calculation routine, if the capstan speed deviates $\pm 5\%$ or more from the target value, 0 is set to the capstan phase error amount. The purpose of this processing is to prohibit addition of the capstan phase error amount while the capstan speed control system is not in operation and to reduce the lock time of the motor by operating the capstan motor only with the speed control system.

<3> Relation with playback control (PBCTL) signal missing

When playback control (PBCTL) signal missing occurs, 0 is set to the capstan phase error amount. PBCTL signal missing is detected by PBCTL signal missing counter. Normally, while PBCTL signal is input, the PBCTL signal missing counter is incremented in the capstan speed control interrupt (INTCPT3), and the PBCTL signal missing counter is reset to 0 in the capstan phase control interrupt (INTCR12).

However, the PBCTL signal missing counter is not reset if the PBCTL signal misses. Therefore, if PBCTL signal missing counter is 28H (40d) by checking during INTCPT3 interrupt processing, it is judged that PBCTL signal missing has occurred and a flag is set.

This processing prevents PBCTL signal missing due to tape damage and misdetection of the phase error amount for playback non-recorded tapes, etc. and keeps the tape speed at the target value.

(b) Capstan extreme high-speed rotation processing

When the capstan rotates in an extremely high speed (when motor control shorts to 5 V, etc.), CFG interrupt occurs extremely frequently, interrupt processing gets behind, and runs out of time to return to main routine. Once lapsed into this condition, even the short circuit is repaired, the speed error amount detection continues to misdetect, keeps high speed rotation, and is unable to return to main routine, so that pushing keys has no effect.

To avoid this, when the capstan rotates faster than at a certain speed, the interrupt processing thereafter is not performed and interrupt processing ends by lowering PWM data (to shorten the processing time). In this program, the processing becomes effective when the CFG cycle becomes 600 μ s or higher.

(3) Loop gain multiplication for each running mode

Kv and KP shown in Figure 5-51 are, as well as drum control system, loop gains for speed control system and phase control system, respectively. KM is the gain correction coefficient corresponding to each operation mode and changes according to VCR playback modes.

As discussed in drum control system, K_V and K_P are for adjusting the addition rate of speed system and phase system.

In the drum control system, there is little speed difference among the operation modes. Accordingly, the entire loop gain is not varied. However, in capstan control system, there is a large difference between the SP and EP modes even in standard playback, and speed difference exists in special playback such as CUE/REVIEW. Therefore, the gain also varies according to each operation mode. K_M is set as the correction coefficient to correct the variation.

 K_V and K_P are used only as adjustment of addition rate, so that they are represented as K_V/K_P . Table 5-3 shows the capstan loop gain in each operation mode.

Operation Mode		Kv/Kp	Км
Standard playback (PB)	SP	4.2	6.0
	LP	1.1	5.25
	EP	1.1	4.25
Fast forward search 1 (CUE1)	SP	4.2	6.0
	LP	3.3	6.0
	EP	3.3	6.0
Fast forward search 2 (CUE2)	SP	4.2	6.0
	LP	3.3	6.0
	EP	3.3	6.0
Rewind search 1 (REV1)	SP	4.2	6.0
	LP	3.3	6.0
	EP	3.3	6.0
Rewind search 2 (REV2)	SP	4.2	6.0
	LP	3.3	6.0
	EP	3.3	6.0
Still, frame (STILL, FRAME)	SP	4.2	6.0
	LP	3.3	5.25
	EP	3.3	4.25

Table 5-3. Capstan Loop Gain in Each Operation Mode

(4) Bias value addition

Bias value addition is carried out to keep the motor control voltage at the lock point during servo lock (speed/ phase error amount 0).

The bias value setting method is adopted according to the experimental values. PWM output data in the condition that capstan is controlled by only speed control and stabilized at the capstan speed target value is adopted as the bias value.

Since capstan speed differs according to each operation mode, different bias value is required in each operation mode.

Table 5-4 shows the capstan bias value in each operation mode.

Operation Mode		Bias Value
Standard playback (PB)	SP	85E0H
	LP	8695H
	EP	86DFH
Fast forward search 1 (CUE1)	SP	8678H
	LP	8695H
	EP	86DFH
Fast forward search 2 (CUE2)	SP	8678H
	LP	8695H
	EP	86DFH
Rewind search 1 (REV1)	SP	8678H
	LP	8695H
	EP	86DFH
Rewind search 2 (REV2)	SP	8678H
	LP	8695H
	EP	86DFH
Still, frame (STILL, FRAME)	SP	8678H
	LP	8695H
	EP	86DFH

 Table 5-4.
 Capstan Bias Value in Each Operation Mode

Bias value is added to the sum of speed correction amount and phase correction amount. However, the arithmetic result may overflow, so that overflow check is carried out. The arithmetic result is fixed to the maximum if overflow occurs and to the minimum if borrow occurs.

(5) PWM output for capstan motor control

PWM output of the data which is the addition of speed/phase correction amount and bias value is performed. The data is processed as 16-bit data. However, since the operation range of the PWM output unit is 0FF00H to 0100H, when operating outside this range, the maximum or the minimum is written. The PWM for capstan motor control is output in the capstan speed control interrupt routine.

5.12 Compensation Filter

The digital servo system only with proportional control element requires a digital filter in the control system for steady-state deviation elimination. The configuration method of the lag-lead type digital filter, which is often used in VCR servo systems, is discussed here.

5.12.1 Filter types

Filters are divided into analog filter and digital filter by the difference of operational principle. Analog filters are configured with circuits such as capacitors (C) and resistors (R) and realize filter characteristics electronically.

Digital filters are configured also with microcontrollers and signal processors, and realize the characteristics equal to analog filters by performing various arithmetic processing on the input signals which are sampled and quantized. Digital filters are divided into FIR type and IIR type by the difference of filter configurations.

(1) FIR type (Finite Impulse Response) filter

The finite impulse response filter is also called acyclic filter. FIR has finite response and no feedback loop due to its filter configuration, that is, <u>the filter output value is</u> determined only with the input value of the present and the past.

(2) IIR type (Infinite Impulse Response) filter

The Infinite impulse response filter is also called cyclic filter.

Since FIR has feedback loop due to its filter configuration, impulse response continues infinitely. Therefore, the filter output value is determined not only with the input of the present and the past but also with the output value of the past. This type of filter realizes steep cut-off characteristics in much lower degree than that of FIR type filter. The VCR servo system mainly uses the IIR type filter.

5.12.2 Biprimary conversion method

(1) Sampling theorem

When using a digital filter, sampling processing is required in the course of converting analog input signals to digital values.

That is, analog signals are converted to discrete numeric sequences in certain constant time intervals Ts. However, if the sampling cycle Ts is made too long, restoration of the original analog signal is impossible. The limit of the cycle that the original analog signal can be restored is described with the well-known sampling theorem below:

 $2f_{max.} \le f_{s} = \frac{1}{T_{s}}$

That is, unless the frequency twice or more of the maximum frequency included in the original analog signal is selected for the sampling frequency fs, it is impossible to restore the original analog signal from the sampled digital signal.

Figure 5-53 shows sampling theorem observed on frequency spectrum. Figure 5-53 (1) shows the case the maximum frequency component f_{max} . satisfies

2fmax. < fs

that is, the original signal is band limited.

In such case, the original signal can be completely restored if the sideband component is eliminated, extracting only the basic spectral component using ideal low-pass filter whose cut-off frequency fc is fc = fs/2. However, in the case that f_{max} does not satisfy sampling theorem, that is,

2fmax. > fs

sections where the original signal spectrum and fold spectrum are overlapped, that is, fold error is generated as shown in Figure 5-53 (2).

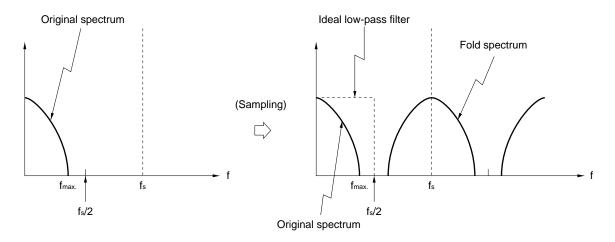
In this case, the restoration of the original signal is impossible even if ideal low-pass filter is used. Next, sampling theorem is examined on s planar.

The time function of the original signal is defined as f (t), and the result of Laplace transform of the function is defined as F (s).

Further, F (s) is sampled with sampling cycle Ts. This is defined as F^* (s).

Now, assuming the maximum frequency f_{max} . of the original signal satisfies sampling theorem, the pole of F (s), as shown in Figure 5-54 (1), is in basic band. The basic band is folded as shown in Figure 5-54 (2) by sampling processing, as a result, sideband whose width is 2 π/Ts is generated, and the pole of F (s) is also folded.

Since the basic band and sideband are exactly the same, the original signal can be completely restored if only the basic band component is extracted using ideal low-pass filter.


On the other hand, the case that the original signal does not satisfy sampling theorem is shown in Figure 5-55.

In this case, the pole of F (s) is located out of the basic band. Therefore, if pole is folded by sampling processing, pole is generated in the basic band, where pole is not originally located.

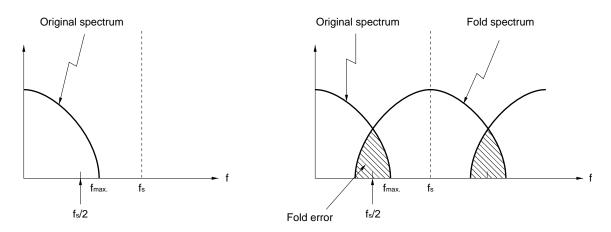

Once this happens, the restoration of the original signal is impossible even if only the basic band component is extracted using ideal low-pass filter, since the basic band component is different from the original one.

Figure 5-53. Fold Error

(1) When 2fmax. < fs

(2) When 2fmax. > fs

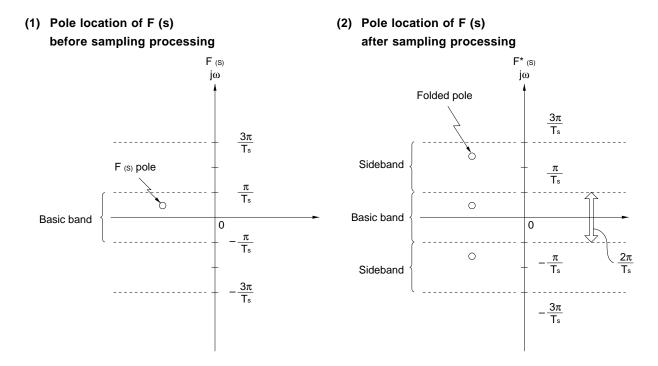
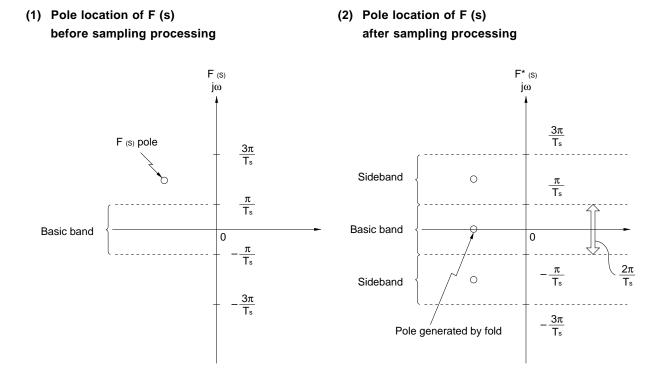



Figure 5-54. Pole Location when Sampling Theorem is Satisfied

Figure 5-55. Pole Location when Sampling Theorem is Not Satisfied

(2) Biprimary transform method

Biprimary transform is a transform method to prevent intrusion of fold errors in the standard z function for analysis of control.

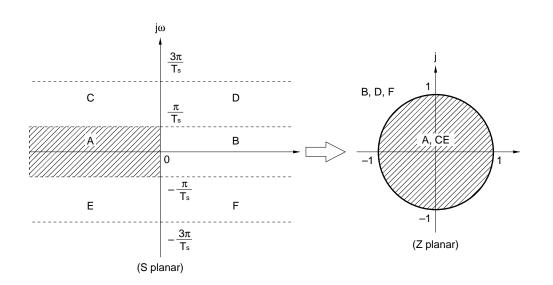
Generally, when analyzing a control system, the analysis in a continuous system is performed on s planar using Laplace transform and the analysis in a discrete system on z planar using z transform. Transform of s planar to z planar is called standard z transform.

When configuring a digital filter, it is easier if the filter is designed in a continuous system before transforming to a discrete system. The issue here is the effect by sampling processing.

That is, if Ts is made too long when transforming analog signal to discrete numeric sequence in certain time interval Ts, the restoration of original signal is impossible.

The limit sampling frequency fS to restore the original analog signal can be described with the well-known sampling theorem below:

$$2 \bullet f_{max.} \le f_{S} = \frac{1}{T_{S}}$$

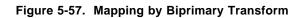

 $f_{\mbox{\scriptsize max.}}$: The maximum frequency included in the original analog signal

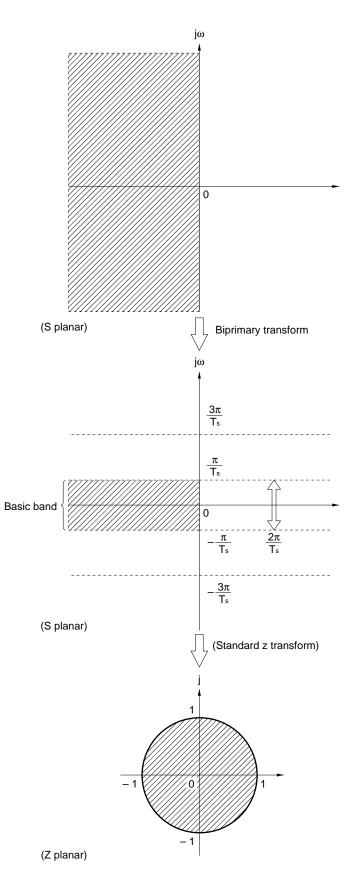
fs : Sampling frequency

Ts : Sampling cycle

The expression above shows that the restoration of the original analog signal from the sampled digital signal unless setting the sampling frequency fs to twice or more of the frequency included in the original analog signal. In the following paragraph, this is considered in the corresponding relation of s planar and z planar. Figure 5-56 shows the mapping by standard z transform. The band of $2\pi/Ts$ width on s planar is generated with sampling processing. The area corresponding to the width of this band is mapped on the whole z planar. That is, block A on s planar (shaded area) is mapped to inside the unit circle on z planar and block B on s planar is mapped to outside the unit circle on z planar, respectively. Therefore, if a pole by fold error exists in the $2\pi/Ts$ band on s planar, the fold error is also mapped on z planar.

Biprimary transform is one of the processing methods to prevent fold errors from intruding into z planar. In biprimary conversion, when sampling processing is performed, the whole s planar is transformed to $2\pi/Ts$ band area before performing standard z transform so that fold errors are not generated. The planar where the whole s planer is transformed to is defined as s planar.


Figure 5-57 shows the mapping by biprimary transform. Since s transform is a cyclic function consisting of the band with $2\pi/Ts$ width, s-z transform with no fold error is acquired if standard z transform is carried out after s transform.


In biprimary transform, the relation between s operator, which is the parameter of a continuous system, and z operator, which is the parameter of a discrete system, is represented in the following expression:

 $s = \frac{2}{T_s} \times \frac{1 - Z^{-1}}{1 + Z^{-1}}$ Ts : Sampling cycle

From the above expression, the following operation is performed to transform transfer function G (s) expressed in a continuous system to transfer function G (z) of a discrete system with no fold error.

G (z) = G (s) | s =
$$\frac{2}{Ts} \times \frac{1 - Z^{-1}}{1 + Z^{-1}}$$

5.12.3 Digital filter designing method

An example of digital filter designing methods is shown below.

(1) Determination of specification

Determine the specification of the digital filter to realize, such as frequency characteristics, cut-off frequency, time area response, and sampling cycle.

(2) Configuration on analog circuit

Design the analog filter satisfying the specification in (1). At this time, transform operation to digital filter is made easier if the analog circuit is configured with passive filter using LCR.

(3) Calculation of transfer function

Find the transfer function G (s) in continuous time area of the analog filter found in (2).

(4) Biprimary transform processing

Transform the analog filter transfer function G (s) to discrete time sequence transfer function G (z). At this time, perform biprimary transform to (s) so that fold errors by sampling processing are avoided.

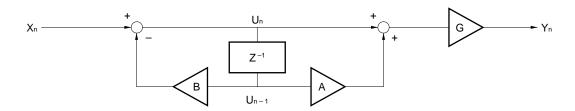
(5) Determination of filter constant

Calculate digital filter constant from the specification in (1) and quantize the filter coefficient. The setting of the coefficient word length of the digital filter is determined according to the filter cut-off frequency, sampling cycle, and dynamic range.

(6) Program generation of digital filter

(7) Measurement of characteristics

Measure whether the digital filter generated in (6) is operating or not as specified using servo analyzer. Also, measure the dynamic range of the digital filter. The dynamic range refers to the maximum digital value which will not cause overflow if input to the filter.


(8) Improvement of characteristics

Change the arithmetic word length and filter configuration to improve the characteristics acquired in (7). Also, shorten the arithmetic word length and change algorithm if the calculation time of the digital filter is too long.

5.12.4 Primary IIR type digital filter transfer function

Figure 5-58 shows primary IIR type digital filter block diagram.

Figure 5-58. Primary IIR Type Digital Filter Block Diagram

In Figure 5-58, A, B, and G are filter constants and the meanings of them are as follows:

- A : non-cyclic filter constant
- B : cyclic filter constant
- G : filter gain constant

Assume n-th input value of this filter as X_n , output value as Y_n , calculation value in n-th filter arithmetic process as U_{n-1} .

From the block diagram in Figure 5-58, the following expression is found:

$$\begin{split} U_n &= X_n - B \times U_{n-1} \\ Y_n &= (U_n + A \times U_{n-1}) \times G \end{split} \tag{Expression 5-1}$$

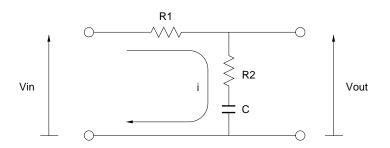
If the expression above is solved for X_n :

$$\begin{aligned} X_n &= U_n + B \times U_{n-1} \\ Y_n &= (U_n + A \times U_{n-1}) \times G \end{aligned} \tag{Expression 5-2}$$

Both parts in the expressions above are z transformed to acquire the following expression:

From the expression above, the transfer function G (z) in the system is as follows:

$$G(z) = \frac{Y(z)}{X(z)} = \frac{G(U(z) + Az^{-1}U(z))}{U(z) + Bz^{-1}U(z)}$$
$$= G \times \frac{1 + Az^{-1}}{1 + Bz^{-1}}$$
(Expression 5-4)


5.12.5 Lag-lead filter configuration method

The lag-lead filter is often used as the drum phase control system compensation filter for VCRs. The purpose is to eliminate the constant deviation and improve the accuracy of the system.

Figure 5-59 shows the lag-lead filter configuration and characteristics.

Figure 5-59. Lag-lead Filter Configuration and Characteristics

(a) Lag-lead filter configuration

Cut-off frequency

$$f1 = \frac{1}{2 \pi C (R1+R2)}$$
$$f2 = \frac{1}{2 \pi CR2}$$

(b) Lag-lead filter board line graph

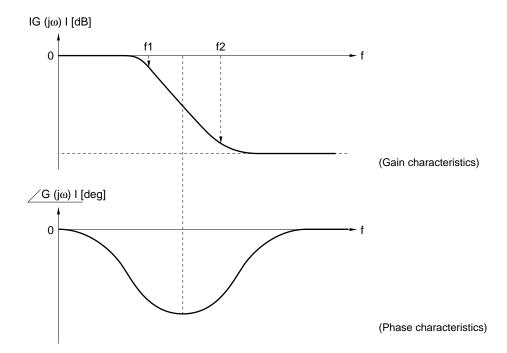


Figure 5-59 (b) shows lag-lead filter gain characteristics and phase characteristics (board line graph) of the analog circuit configuration shown in Figure 5-59 (a).

Lag-lead filter has two segmented point frequencies f1 and f2. By freely setting these, the filter gain characteristics and phase characteristics can be changed.

The method to find the constants (A, B, and G) used in primary IIR type digital filter to realize lag-lead filter characteristics is as follows:

In the case of the filter shown in Figure 5-59 (a), the segmented point frequencies f1 and f2 are found in the following expression:

$$f1 = \frac{1}{2\pi C (R1 + R2)}$$
(Expression 5-5)
$$f2 = \frac{1}{2\pi CR2}$$
(Expression 5-6)

The transfer function of the filter in Figure 5-59 (a) is found as follows (the transfer function is find by plus transforming the relational expressions for Vin and Vout, respectively):

G (s) = $\frac{1 + sCR2}{1 + sC (R1 + R2)}$	
$1 + \frac{1}{2\pi f 1} S$	
$\frac{-\frac{1}{1+\frac{1}{2\pi f^2}}S}{$	(Expression 5-7)

$$a = \frac{1}{2\pi f^2} \qquad b = \frac{1}{2\pi f^1}$$
(Expression 5-8)

Now, if parameter a and b are assumed and assigned as the expression above, the transfer function of lag-lead filter is as follows:

1 + bS	
$G(s) = \frac{1 + bS}{1 + aS}$	(Expression 5-9)

Since the transfer function in the expression above is represented in continuous time system, this is transformed to be represented in discrete time system.

In this case, biprimary transform is used because fold error is generated if standard z transform is performed. That is, S arithmetic operator is replaced as follows:

2 1 – Z ⁻¹		
$S = \frac{T_s}{T_s} \times \frac{1 + Z^{-1}}{1 + Z^{-1}}$	Ts : Sampling cycle	(Expression 5-10)

The S operator is assigned to the transfer function, the expression is reorganized.

$$G(z) = \frac{1 + \frac{2a}{T_{s}} \times \frac{1 - Z^{-1}}{1 + Z^{-1}}}{1 + \frac{2b}{T_{s}} \times \frac{1 - Z^{-1}}{1 + Z^{-1}}} = \frac{T_{s}(1 + Z^{-1}) + 2a(1 - Z^{-1})}{T_{s}(1 + Z^{-1}) + 2b(1 - Z^{-1})}$$
$$= \frac{T_{s} + 2a}{T_{s} + 2b} \times \frac{1 + \frac{T_{s} - 2a}{T_{s} + 2a} Z^{-1}}{1 + \frac{T_{s} - 2b}{T_{s} + 2b} Z^{-1}} = G \times \frac{1 + AZ^{-1}}{1 + BZ^{-1}}$$
(Expression 5-11)

The above transfer function found here has the same configuration as the one found from the primary IIR type digital filter block diagram in Figure 5-58.

G, A, and B in the expression above are filter coefficients, and turn out as follows:

$G = \frac{Ts + 2a}{Ts + 2a}$	
$G = \frac{1}{T_s + 2b}$	
$A = \frac{Ts - 2a}{Ts - 2a}$	
$A = T_s + 2a$	
$B = \frac{Ts - 2b}{Ts - 2b}$	
Ts + 2b	(Expression 5-12)

If G, A, and B are found from sampling cycle Ts [sec] and two segmented point frequencies, f1 and f2, which are filter characteristics, primary IIR type digital filter coefficient can be found. An example of this is shown below.

•	Filter design specification	
	Sampling cycle	Ts: 4.0 [msec] (sampling frequency 250 Hz)
	Segmented point frequency	f1 : 1.0 [Hz]
		f2 : 10.0 [Hz]

Filter coefficients, G, A, and B are found from the above filter design specification. a and b are found from Expression 5-8.

	1	_ 1	= 0.01591549
a =	2π f2	$-=\frac{1}{2\pi\times10}$	= 0.01391349
h_	1	_ 1	= 0.15915494
= u	2π f1	$=$ $\frac{2\pi \times 1}{2\pi \times 1}$	= 0.15915494

If a, b, and Ts found from the above are assigned to Expression 5-12, filter coefficients G, A, and B are found as follows:

G = 0.111169375 A = -0.77672957 B = -0.97517917

5.12.6 Filter processing method

Lag-lead filter is configured with product-sum instruction. Lag-lead filter propagation function is as follows:

$$\begin{split} Y_n &= G \, \left(X_n + A X_{n-1} \right) - B Y_{n-1} \\ &= G \bullet X_n + A G \bullet X_{n-1} + (-B) \bullet Y_{n-1} \end{split}$$

The operation of product-sum instruction when the number of operations is two is as follows:

 $\mathsf{AXDE} \leftarrow (\mathsf{B}) \times (\mathsf{C}) + (\mathsf{B} + 2) \times (\mathsf{C} + 2) + \mathsf{AXDE}$

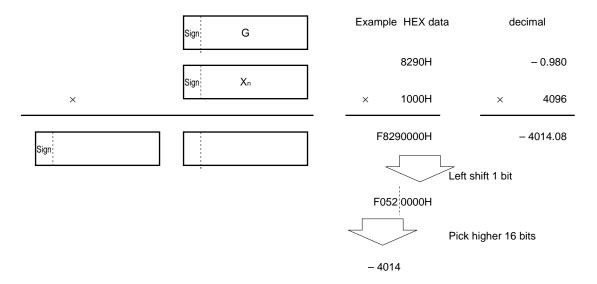
Then each parameter of lag-lead filter is assigned as follows:

AXDE (Left part)	: Yn	signed 32 bits
(B)	: G	signed 16 bits
(C)	: Xn	signed 16 bits
(B + 2)	: AG	signed 16 bits
(C + 2)	: Xn-1	signed 16 bits
AXDE (Right part) : (-B) • Y _{n-1}		signed 32 bits

Signed multiplication is considered here.

First, the coefficients G, AG, and (–B) of lag-lead filter are designed with gain of 1, so that they become values with an absolute value of 1 or less.

| G | <1, | AG | <1, | (–B) | <1


Therefore, the values multiplied with the 15th power of 2 (32768) are actually used for operation. For example,

 $\begin{array}{rl} 0.980 \rightarrow & 0.98 \times 32768 = 32112.64 \rightarrow 7D70H \\ -0.980 \rightarrow -0.98 \times 32768 = -32112.64 \rightarrow 8290H \end{array}$

The data has the following range if the error amount is also dealt with signs.

8000H-7FFFH (-32768 to +32767)

If this is calculated with signed multiplier:

The 1/2 of the actual calculation result enters higher 16 bits of the arithmetic result of signed multiplication.

Therefore, the result is doubled (right shift) after executing product-sum instruction. However, gain multiplication is normally performed after digital filter calculation, so that there is a method which abbreviates the shift processing if the gain is doubled.

The propagation function becomes as follows:

$$Y_n' = G \bullet X_n + AG \bullet X_{n-1} + (-B) \bullet Y_{n-1}'$$

$$Where$$

$$Y_n' = Y_n/2$$

This enables filter calculation only with product-sum instruction.

 $(-B) \bullet Y_{n-1}' = (-B) \bullet Y_{n-1}/2$

However, calculation of (–B) Y_{n-1} is necessary for the following sampling timing, then, singed multiplication is performed again. Since the result is made 1/2 as it is, right shift processing is performed before multiplication.

Filter calculation is summarized as follows:

(1) Set values for each register

- (B) : G
- (C) : Xn
- (B + 2) : AG
- (C + 2) : X_{n-1}

AXDE : (-B) • Y_{n-1}' (Already stored in memory at the previous sampling timing)

(2) Execute product-sum instruction

MACSW 2

The value stored in calculation result AXDE is "Yn"

(3) Right shift AXDE 1 bit to "Yn"

- SHLW DE ROLC X ROLC A
- KOLC .

(4) Find (-B) • Yn'

 $\mathsf{MULW} \quad \mathsf{DE} \qquad ; \, \mathsf{DE} \leftarrow (-\mathsf{B})$

Store calculation result AXDE in memory and use it as (–B) \bullet $Y_{n-1}{}^{\prime}$

CHAPTER 6 CTL AMPLIFIER

6.1 CTL Amplifier Auto Gain Control Processing

CTL amplifier is used for amplifying the playback control (PBCTL) signal which is the playback of the CTL signal recorded on VCR tape. Figure 6-1 shows the CTL amplifier configuration.

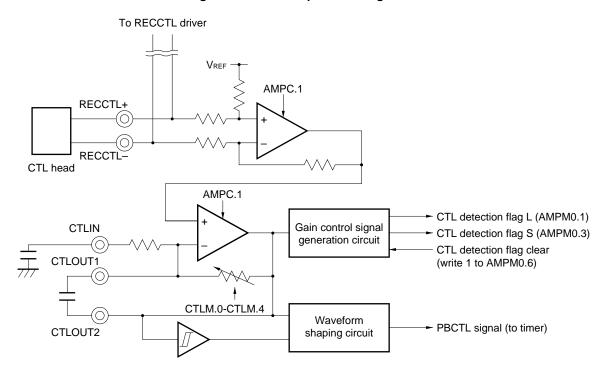


Figure 6-1. CTL Amplifier Configuration

CTL amplifier is configured with two OP amplifiers and the forestage amplifier is fixed to 20 dB. Therefore, gains are adjusted by changing the gain of the second stage amplifier.

The gain setting of CTL amplifier can be changed with CTLM register in 32 steps (by 1.78 dB).

Caution Changing of the gain setting should be avoided while CTL signal is being input.

The μ PD784915 has a gain control signal generation circuit which uses CTL detection flags to discriminate the amplifying state of CTL amplifier output.

CTL detection flags are divided into CTL detection flag S and CTL detection flag L according to the detection level. CTL detection flags S and L can be cleared by writing "1" to FLGCLR (AMPC0.6).

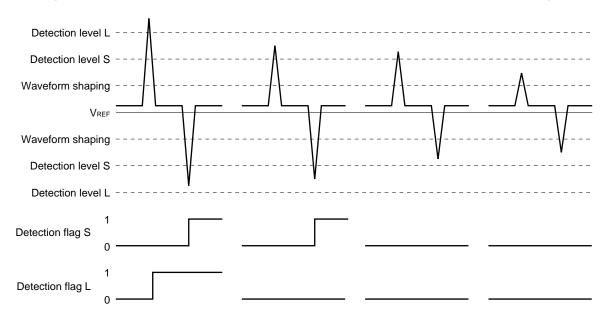

Using these two detection flags, auto gain control of CTL amplifier is carried out.

Table 6-1 shows the relation between the CTL detection flag read value and CTL amplifier gain adjustment.

Table 6-1. CTL Detection Flag Read Value and CTL Amplifier Gain Adjustment

CTL Detection Flag Read		Discrimination	CTL Amplifier Gain Adjustment
Flag L	Flag S		
1	1	Gain large	Lower gain
0	1	Gain optimum	No change
0	0	Gain small	Raise gain

Figure 6-2 shows the relationship between CTL amplifier output and each detection level/flag.

Figure 6-2. Relationship between CTL Amplifier Output and Each Detection Level/Flag

6.1.1 CTL amplifier auto gain control method

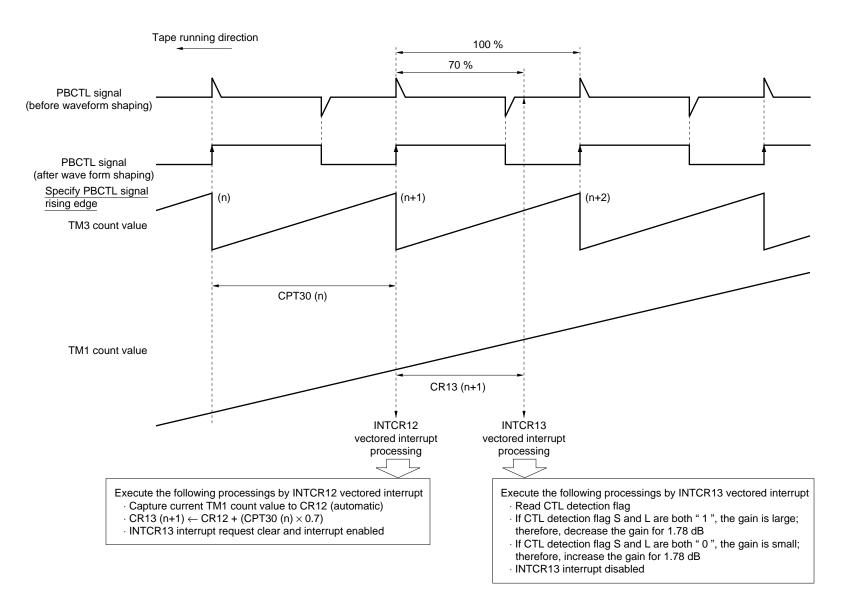
CTL amplifier auto gain control is performed with the timings of CTL detection flag read and the amplifier gain setting which are determined by the playback control (PBCTL) signal edge interrupt.

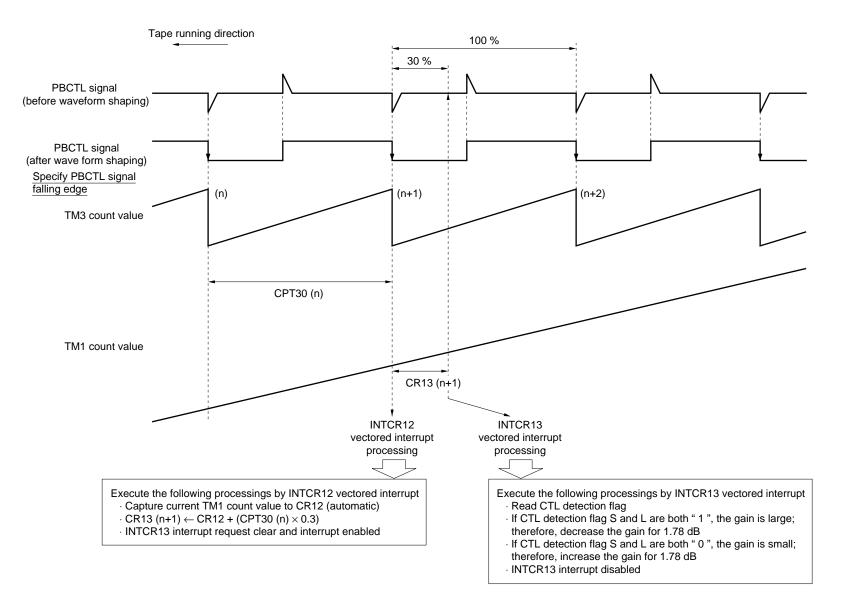
• Timing of CTL detection flag read and CTL amplifier gain setting

As mentioned earlier, change of the gain setting must be done avoiding PBCTL signal input (rising and falling edges of amplifier amplifying point).

Moreover, since CTL detection flag S and L are specified at the rising and falling edges of PBCTL signal, so that after changing CTL amplifier gain, the both edge must be passed more than once before flag is read.

In order to pass both edges avoiding PBCTL signal input, the timings of the CTL detection flag read and the amplifier gain setting are determined by the PBCTL signal edge interrupt (one edge).


• For PLAY, CUE/REV


<In forward direction> (refer to **Figure 6-3**) Gain is changed at 70% point of PBCTL signal. <In reverse direction> (refer to **Figure 6-4**) Gain is changed at 30% point of PBCTL signal.

• For FF/REW

<In forward direction> (refer to **Figure 6-5**) Gain is changed at 180% point of PBCTL signal. <In reverse direction> (refer to **Figure 6-6**) Gain is changed at 120% point of PBCTL signal.

Remark For PLAY or CUE/REV, gain is changed 65% or more of PBCTL signal in forward direction and less than 35% in reverse direction and the order of the signal input has been set so that the rising edge of the PBCTL signal is input first and then the falling edge is input. In addition, for FF/REW, CTL signal input is the fastest, approx. 130 μ s (= 33.37 ms/256) in 256-time speed (when tape mode is EP), and it would take 198 μ s Max. before PBCTL signal input INTCR12 interrupt (due to other priority interrupt), so that the timing has been set at +100%.

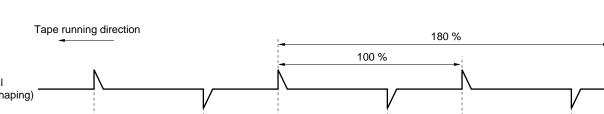
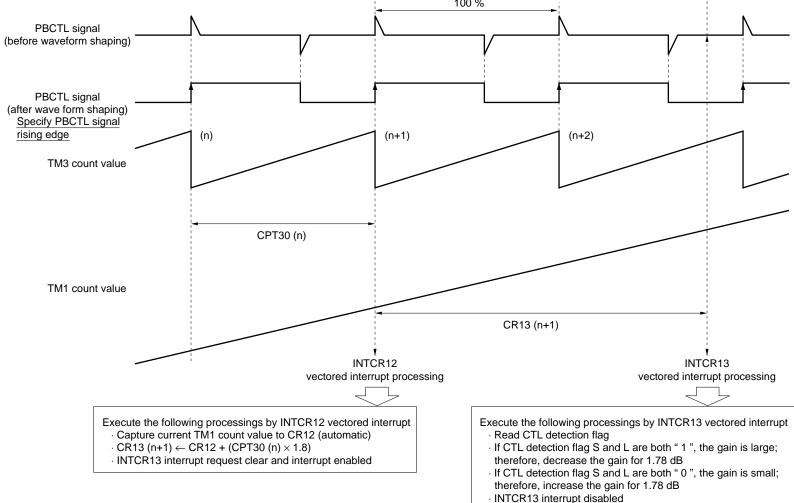
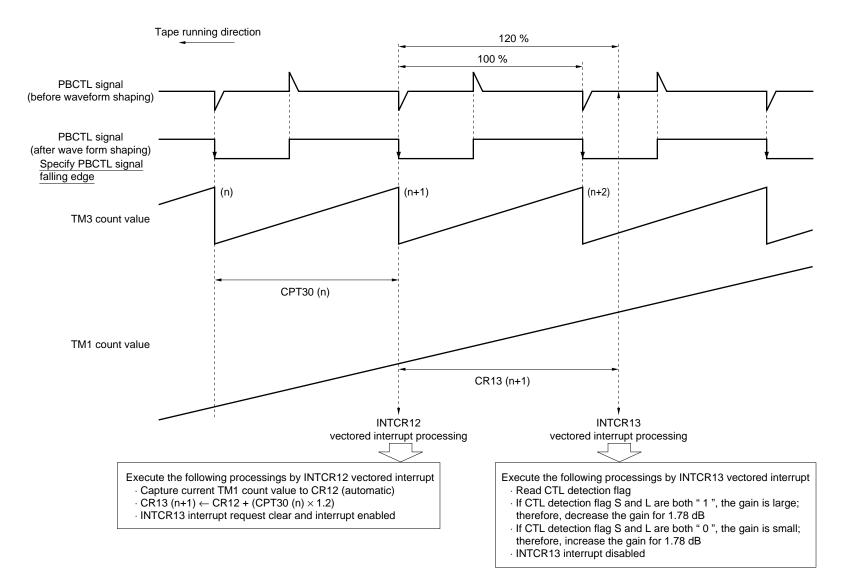




Figure 6-5. Gain Change Timing for FF/REW in Forward Direction

Figure 6-6. Gain Change Timing for FF/REW in Reverse Direction

6.1.2 CTL amplifier auto gain control processing

The following setting and processing are carried out to perform CTL amplifier auto gain control.

(1) The following setting is carried out at every forward/reverse direction change

- PBCTL signal input edge is set as follows:
 - <In forward direction>
 - The input edge is generated at rising edge of PBCTL signal.
 - <In reverse direction>
 - The input edge is generated at falling edge of PBCTL signal.
- **Remark** When the tape mode is EP, INTCR12 vectored interrupt is generated with every PBCTL signal for PLAY, every nine PBCTL signals for CUE/REV, and every eight PBCTL signals for FF/REW at the edge shown above.

(2) The following setting and processing are carried out by INTCR12 vectored interrupt

• The following time is set to compare register 13 (CR13) by INTCR12 vectored interrupt

• For PLAY/CUE/REV

<In forward direction>

Set time 70% of PBCTL signal cycle to CR13

CR13 = CR12 + (CPT30 × 70%)

<In reverse direction>

Set time 30% of PBCTL signal cycle to CR13

 $CR13 = CR12 + (CPT30 \times 30\%)$

• For FF/REW

<In forward direction>

Set time 180% of PBCTL signal cycle to CR13 CR13 = CR12 + (CPT30 × 180%)

<In reverse direction>

Set time 120% of PBCTL signal cycle to CR13 CR13 = CR12 + (CPT30 \times 120%)

Explanation

- CR12 : TM1 count value is captured with every INTCR12 vectored interrupt by PBCTL signal
- CPT30 : TM3 count value is captured with every INTCR12 vectored interrupt by PBCTL signal Since CR12 captures TM1 count value and CR13 captures TM3 count value, value need to be set to CR13 after adding up the input clock ratio of TM1 and TM3 (however, in this time, the setting is unnecessary because both have the same clock [fcLk/8]).
- INTCR13 interrupt request clear and interrupt enabled

(3) Processing at INTCR13

• CTL gain control signal detection and gain change

According to the status of CTL detection flag S and L, gain is changed by ± 1 step as follows:

- If CTL detection flag S and L are both "1", gain is large; therefore, decrease the gain for 1 step (1.78 dB)
- If CTL detection flag S and L are both "0", gain is small; therefore, decrease the gain for 1 step (1.78 dB)
- If CTL detection flag S is "1" and L is "0", gain is optimum; therefore, no change is made for the gain.
- INTCR13 interrupt disabled

(4) Processing at PBCTL

- Increase the gain by +5 steps, every time there is no CTL signal and 40 interrupts does not occur continuously at INTCPT13 interrupt (capstan FG interrupt)
- The gain is maximum (1FH) on non-recorded tape

(5) Processing in each mode transition

• Set the optimum gain previously measured in each mode in every mode transition of each mode (equipment operation such as PLAY and CUE, and tape mode such as EP and SP) (this processing is optional; however, it has the advantage that the optimum gain can be quickly achieved.)

[MEMO]

CHAPTER 7 VISS DETECTION

The following shows the VISS detection method.

7.1 What is VISS

VISS stands for "VHS Index Search System". In VHS, cue code is set by varying the duty ratio of control signal to be recorded on control track.

Each VISS data is specified as shown in Table 7-1. The cue code as index information is set by data sequence of control signal as shown in Figure 7-1.

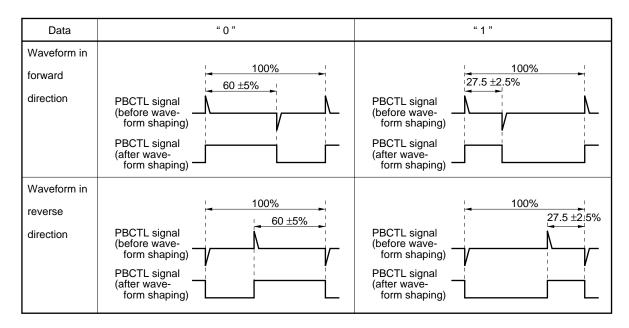
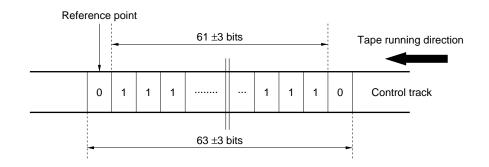



Table 7-1. VISS Data

Figure 7-1. VISS Cue Code

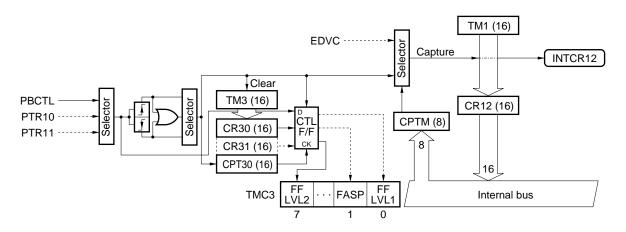
VISS write (cue code write) is carried out at the following timings.

- · When starting recording (except joint recording)
- When starting programmed recording
- · When index writing by pushing down INDEX key

7.2 VISS Detection

7.2.1 VISS detection method

VISS detection is performed using macro service in data pattern discrimination mode by playback control (PBCTL) signal edge interrupt (INTCR12).


INTCR12 interrupt also performs PBCTL signal frequency division.

(1) About VISS detection method

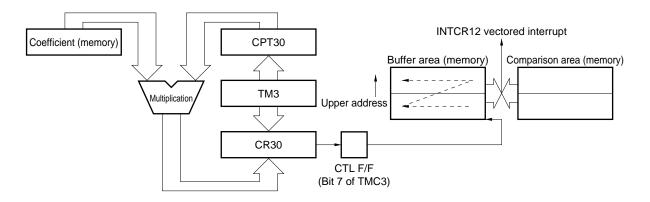
In VISS detection, PBCTL signal level is taken at 43.75% (in forward direction) or 56.25% (in reverse direction) of one PBCTL signal cycle as VISS detection point. According to the level, if the level is high, "0" is set, if it is low, "1" is set. It is judged that VISS signal exists when "0" is detected 10 times after "1" is consecutively detected 15 times (According to the specification of system controller, it may be judged VISS signal exists if "1" is consecutively detected several times).

The μ PD784915 is provided with timer 3 (TM3) and capture register 30 (CPT30) to find a cycle, compare register (CR30) to store VISS detection point, and control flip flop (CTL F/F) to take in control signal level at detection point, in order to keep up with the change of tape running speed, so that it can perform VISS detection.

 μ PD784915 uses macro service in data pattern discrimination mode to perform VISS detection.

The comparison data to perform comparison with the data stored in buffer area is set to an address indicated with comparison area pointer (not only program space in memory but also internal RAM space can be specified as the comparison area).

(2) About macro service in data pattern discrimination mode (VISS detection mode)


This is a macro service to sequentially store the output from control flip flop (CTL F/F) in the pulse detection circuit (timer 3) in the Super Timer Unit into the buffer set in the RAM area with left shift. The timer measures the PBCTL signal pulse duty from the CTL amplifier circuit, and latches "1" to CTL F/F

if the duty is larger than the value previously set, and "0" if the duty is smaller.

Caution Take note that "1" and "0" of the VISS signal are reversed.

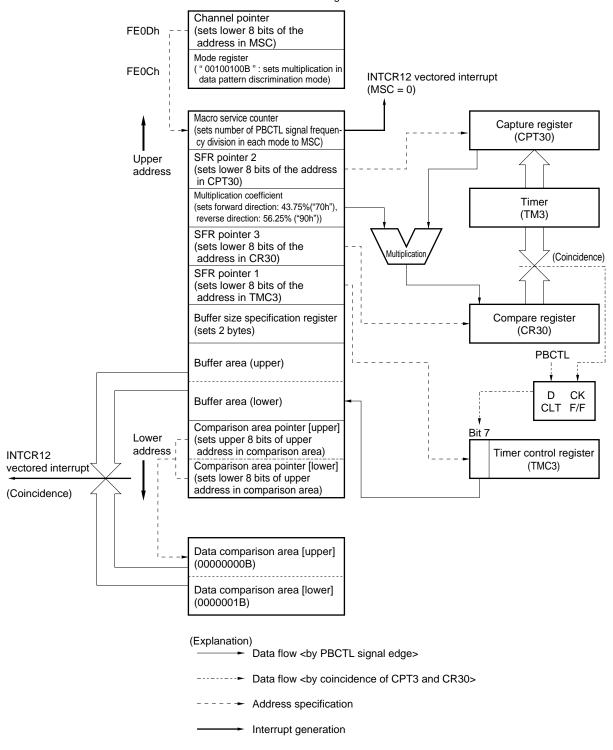
The contents of SFR (bit 7 of timer control 3) specified with SFR pointer 1 is buffer area left shifted at interrupt generation. At the same time, the data of buffer area and comparison area are compared, and a vectored interrupt is generated if they coincide (macro service counter is decremented and if it becomes 0, a vectored interrupt is also generated).

By option specification (bit 5 of macro service mode register = "1"), the operation is made so that the contents of SFR [capture trigger 30 (CPT30)] specified with SFR pointer 2 is multiplied with the coefficient and stored to SFR [compare register 30 (CR30)] specified with SFR pointer 3 (automatic updating of discrimination threshold when tape speed is varying).

Figure 7-3. Data Pattern Discrimination Mode Block Configuration

• Explanation

CPT30	: PBCTL signal cycle enters
Coefficient	: multiplier to find detection point enters
CR30	: detection point (the result of CPT30 multiplied with coefficient) enters
Buffer area	: VISS signal data with left shift enters
Comparison area	: VISS detection pattern enters


Vectored interrupt is generated when either one of the following conditions is satisfied.

- <1> If the contents of macro service counter 8 (MSC) is 0 (if interrupt request is generated for the number of times set in MSC).
- <2> If the data stored in buffer area coincides with the data in the comparison area separately set.

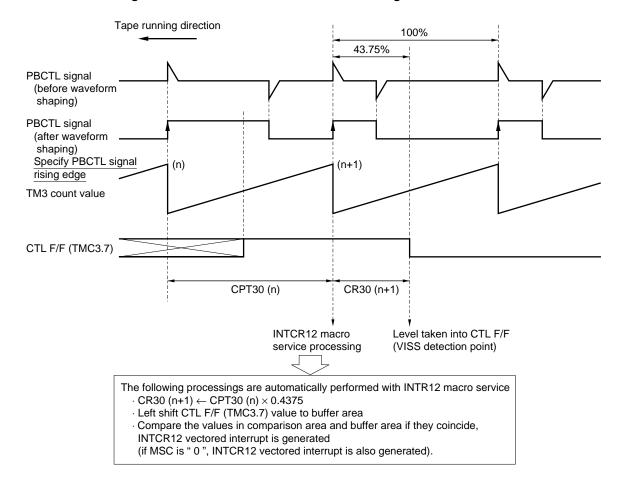
Figure 7-4 shows the addressing and data setting in data pattern discrimination mode.

INTCR12 macro service control register

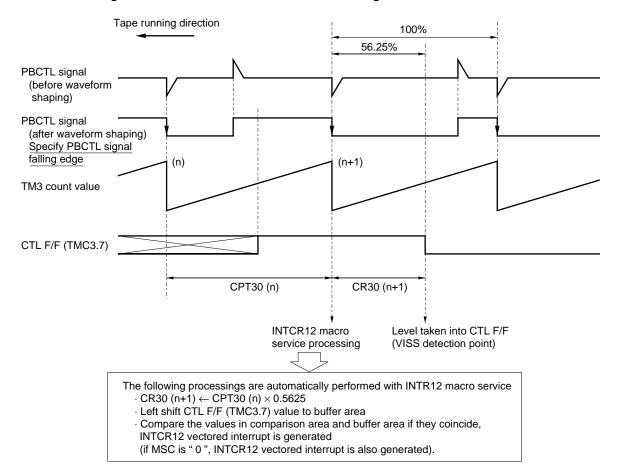
7.2.2 VISS detection processing

The following setting and processing are carried out to perform VISS detection.

- (1) Macro service initialization is performed before starting VISS detection
 - Set data with data pattern discrimination mode multiplication ("14H") to mode register
 - Set lower 8 bits of the address in macro service counter (MSC) to channel pointer
 - Set buffer area size specification register to 2 bytes ("02H")
 - Set clear ("0FFFFH") to 2 bytes of buffer area
 - Set lower 8 bits ("3BH") of the address in timer control register 3 (TMC3) to SFR pointer 1
 - Set lower 8 bits ("56H") of the address in timer 3 capture register 0 (CPT30) to SFR pointer 2
 - Set lower 8 bits ("5CH") of the address in timer 3 compare register 0 (CR30) to SFR pointer 3
 - Set data comparison area address to comparison area pointer
 - Set comparison data ("0001H") in comparison area
 - **Remark** The value in the comparison setting area ("0001H") means that VISS data "0" is entered once after VISS data "1" is entered 15 times.
 - Caution Duty detection malfunction prevent circuit control (TMC3.6) is made operation enable for preventing VISS signal malfunction. Therefore, take note that unless VISS data "0" is entered twice consecutively, it is not judged that data "0" is entered (if VISS "1" data is entered once, it is judged that "1" is entered).
- (2) The frequency division of CTL signal is also set in each mode transition (equipment operation such as PLAY/ CUE, and macro service counter (MSC) of tape mode such as EP and SP)
 - Caution PBCTL signal frequency division is also performed in INTCR12 interrupt. In sets not provided with VISS detection, the counter mode macro service is used for PBCTL signal frequency division while, in sets provided with VISS detection, the data pattern discrimination mode macro service is used.


- (3) The following setting is carried out at every forward/reverse direction change
 - Set each multiplication coefficient as follows:
 <In forward direction>
 Set 0.4375 time multiplier (70H) which is the value of the 43.75% position of PBCTL signal.
 <In reverse direction>
 Set 0.5625 time multiplier (90H) which is the value of the 56.25% position of PBCTL signal.
 - Remark <1> The middle point of the percentage of VISS data "0" and "1" is adopted for multiplication coefficient.
 In forward direction ... (60% + 27.5%) ÷ 2 = 43.75%
 In reverse direction ... (40% + 72.5%) ÷ 2 = 56.25%
 <2> The multiplication coefficient set value is set as follows:
 In forward direction ... 0.4375 × 256 = 112 (70H)
 In reverse direction ... 0.5625 × 256 = 144 (90H)
 - Set PBCTL signal input 4 edge as follows:
 <In forward direction>
 Generated at PBCTL signal rising edge
 <In reverse direction>
 Generated at PBCTL signal falling edge

- (4) INTCR12 macro service processing (automatically executed by macro service) The following INTCR12 macro service processing is automatically executed with trigger by PBCTL signal edge.
 - The result of the automatic multiplication of the value of CPT30 and multiplication coefficient is set to CR30. (VISS detection setting)


<In forward direction> (refer to **Figure 7-5**) Set 43.75% time of PBCTL signal cycle to CR30. CR30 ← CPT30 × 43.75% <In reverse direction> (refer to **Figure 7-6**) Set 56.25% time of PBCTL signal cycle to CR30. CR13 ← CPT30 × 56.25% (Explanation) CPT30: TM3 count value (a cycle of PBCTL signal) is captured at every PBCTL signal edge

interrupt.

- Value of CLT F/F (TMC3.7) is left shifted to buffer area (the entire buffer is also left shifted).
- Compared with the value in comparison area, and if they coincide, INTCR12 vectored interrupt is generated. INTCR12 vectored interrupt is also generated when macro service counter is "0".

Figure 7-5. INTCR12 Macro Service Processing in Forward Direction

Figure 7-6. INTCR12 Macro Service Processing in Reverse Direction

- (5) The following processing is performed at INTCR12 vectored interrupt
 - Since interrupt is generated either at every CTL signal frequency division or coincidence of data comparison, the following method is taken to judge which one is generated.
 - If macro service counter (MSC) is not "00H", it is judged as <interrupt by coincidence of VISS data comparison>
 - If macro service counter (MSC) is "00H" and the contents of buffer area is "0001H" (the same value as that of comparison discrimination area), it is judged as <interrupt by coincidence of VISS data comparison>
 - <In the case of interrupt by coincidence of VISS data comparison>
 - · Set macro service counter value again
 - Set macro service interrupt enable
 - VISS signal is detected. Set VISS detection flag and notify system controller processing
 - <In the case of interrupt not by coincidence of VISS data comparison>
 - Set macro service counter value again
 - Set macro service interrupt enable

7.3 VISS Rewrite

7.3.1 VISS rewrite method

Newly writing VISS signal on recorded tape or erasing VISS signal already written is called VISS rewrite. Rewrite is performed by rewriting PBCTL signal as shown in Figure 7-7.

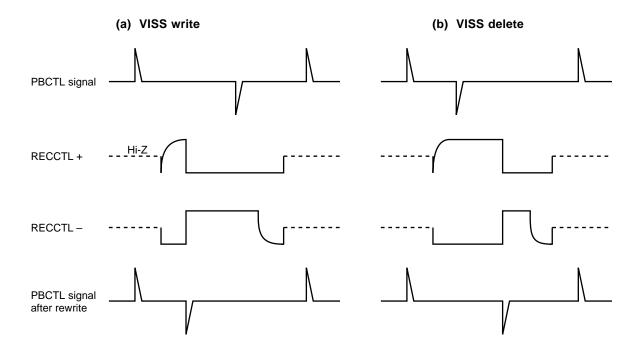
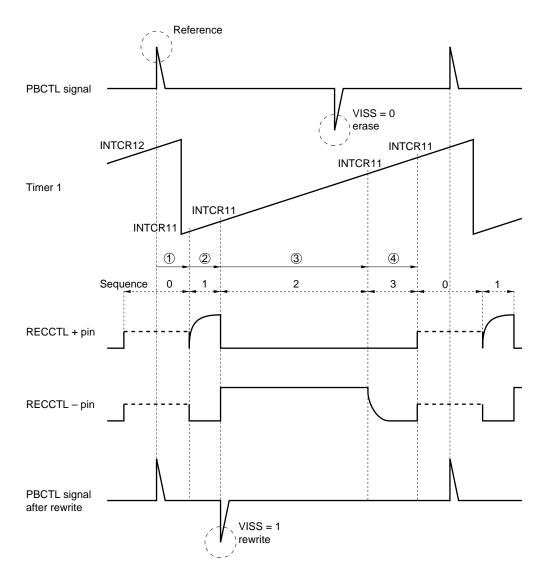


Figure 7-7. VISS Rewrite

The recording control signal (RECCTL) driver of μPD784915 has rewrite mode used for rewriting VISS signal. RECCTL driver internally holds sequence data, and the sequence is updated with specific interrupt as trigger. RECCTL driver sequence in rewrite mode operates RECCTL+ Pin and RECCTL- pin as shown in Table 7-2. Therefore, VISS signal rewrite is realized considering only the interrupt generation timing, which is a trigger signal.

Sequence	RECCTL+	RECCTL-
0	High impedance	
1		Low level
2	Low level	High level
3	High level	


Table 7-2. RECCTL Driver Rewrite Mode Sequence

7.3.2 VISS rewrite processing

Rewrite processing is realized using INTCR11 and INTCR12.

For rewrite timing, trigger timing is set to compare register 11 (CR11) using PBCTL signal interrupt INTCR12 as reference.

Figure 7-8 shows VISS = 1 signal rewrite operation timing.

Timing <1> in Figure 7-8 is PBCTL signal rising. At this point, the sequence is initialized, and the changing point from sequence 0 to sequence 1 is found with timer 1 (TM1) using the captured value as reference value, stored in compare register 11 (CR11), and INTCR11 interrupt is enabled.

For the following timing <2> and <3> INTCR11 interrupt, each changing point to sequence 2 and 3 is found on timer 1 and stored in CR11. Rewrite is completed at timing <4> and INTCR11 interrupt is disabled.

Each timing in NTSC is as shown in Table 7-3. VISS = 1 signal and VISS = 0 signal have different timings.

Timings	VISS = 1 Write	VISS = 0 Write
PBCTL rising <1> \rightarrow <2>	5 ms	5 ms
$\langle 2 \rangle \rightarrow \langle 3 \rangle$	4.176 ms	20.021 ms
$<3> \rightarrow <4>$	16.192 ms	5.345 ms
$<4> \rightarrow PBCTL rising$	5 ms	5 ms

Table 7-3. VISS Write Operation Timings

Hi-Z cancellation timing from PBCTL rising is not specified for the period between the timing to become Hi-Z <4> and PBCTL rising. However, it is set as 5 ms for the sake of convenience, assuming it as the timing approximately a half way from PBCTL high pulse to PBCTL low pulse when VISS is 1.

CHAPTER 8 PROGRAM LIST

This chapter lists programs of this application software.

DEBUG \$ swOLD EQU 0 ;------PUBLIC, EXTRN Declaration ;-----;-----PUBLIC ;-----;///// PROCESS /////// PUBLIC VPT2_000 ; INTCPT2 DRUM FG INTERRUPTION ; PROCESS ROUTINE PUBLIC VR10_000 ; INTCR10 DRUM PHASE ERROR DETECTION ; INTERRUPTION PROCESS PUBLIC VPT3_000 ; INTCRP3 CAPSTAN FG ; INTERRUPTION PUBLIC VR12_000 ; INTCR12 CAPSTAN PHASE ERROR ; DETECTION INTERRUPT PUBLIC VR00 000 ; INTCR00 OUASI Vsvnc ; TIMING SETTING PUBLIC VR02_000 ; INTCR02 QUASI Vsync ; TIMING SETTING PUBLIC VR02_000 ; INTCR02 QUASI Vsync ; TIMING SETTING PUBLIC VR13_000 ; %INTCR13 CTL DETECTION & OUTPUT SETTING ; %CTL ;//// SUBROUTINE ///// PUBLIC YVTBL_00 ; SERVO DATA SETTING SUB ; INTCR12 MACRO SERVICE MODE REGISTER PUBLIC RVSCR12 ; INTCR12 MACRO SERVICE PUBLIC RVCCR12 ; CHANNEL POINTER PUBLIC RVMCMPP ;%INTCR12 MACRO SERVICE COMPARE AREA ; POINTER PUBLIC RVB2CR12 ; INTCR12 MACRO SERVICE BUFFER ; AREA 2(L) PUBLIC RVB1CR12 ; INTCR12 MACRO SERVICE BUFFER ; AREA 1(H) PUBLIC RVBFREG ; INTCR12 MACRO SERVICE BUFFER SIZE REG ;%INTCR12 MACRO SERVICE SFR POINTER 1 PUBLIC RVMSFRP1 PUBLIC RVMSFRP3 ;%INTCR12 MACRO SERVICE SFR POINTER 3 PUBLIC RVMKEISU ;%INTCR12 MACRO SERVICE KEISU AREA PUBLIC RVMSFRP2 ;%INTCR12 MACRO SERVICE SFR POINTER 2 PUBLIC RVMCCR12 ; INTCR12 MACRO SERVICE COUNTER AREA PUBLIC RVMCMPD ;%INTCR12 MACRO SERVICE COMPARE DATA ;//// MACRO SERVICE DATA //// ;% PUBLIC PTN_FF ;%POSITIVE DIRECTION MULTIPLIER COEFFICIENT (0.4375) DATA PUBLIC PTN_REW ;%REVERSE DIRECTION MULTIPLIER COEFFICIENT (0.5625) DATA PUBLIC DT_CMP ;%CR12 COMPARISON DATA ;%VISS

	RVCPT3 ;_L	; C	PT3 LOW DATA MEMORY
	RVSRVCD		SERVO CODE AREA
PUBLIC	RVCPRF ;_L	; C	APSTAN PHASE REFERENCE LOW
PUBLIC	RVCPT2 ;_L	; 0	PT2 LOW DATA MEMORY
			PT2 MIDDLE & HIGH DATA MEMORY
	—		
PUBLIC	RVCPT1		CPT1
PUBLIC	RVCPT0	; %	CPT0
	RVFSRV_2	• •	SERVO DATA FLAG AREA 2
FUBLIC	KVF5KV_2	1 3	DERVO DATA FLAG AREA 2
PUBLIC	RVCEVFG	; S	SP/LP/EP AUTO DETECT CFG DIVIDE
		; C	COUNTER
PUBLIC	RVPSVCNT	; Q	QUASI V SIGNAL COUNTER
PUBLIC	RVCRAM	; M	IACRO SERVICE COUNT DATA
TOPHIC		, 1	
PUBLIC	RVBCR10	; C	R10 DATA BUFFER AREA
;/////	BIT ////////////////////////////////////		
DIIBLTC	FVPBLP	; R	UNNING MODE FPBLP FPBSEP
	FVPBSEP	;	
		;	LP: 1 0
		;	EP: 0 1
		;	PAL: 1 1
PUBLIC		• •	UASI Vsync OUTPUT
PORTIC	FVD001	, Q	JUASI VSYNC OUIPUI
PUBLIC	FVFLCTL	; s	ET PBCTL MISSING FLAG
;/////	CONSTANT /////		
PUBLIC	179D		
PUBLIC			
PUBLIC			
PUBLIC	VPAL		
EJECT			
·			
;	EXTRN		
;			
;/////	PROCESS //////		
EXTRN	SR12_000		
EXIM	SK12_000		
;/////	SUB ////////////////////////////////////		
EXTRN	YPGADCHG	; S	ET PG VALUE
EXTRN	YSA01_R1	; 1	SEC TIMER START FOR AUTO-TRACKING
;/////	RAM ////////////////////////////////////		
EXTRN	RSNOW	; T	RANSITION NOW MODE

\$

EXTRN	RSNEXT	;	TRANSITION NEXT MODE
EXTRN	RSCFG90C	;	CFG 90 PULSE COUNTER CHECK
EXTRN	RNSTIMO	;	TRANSITION TIMER AREA
EXTRN	RSFRSPED	;	CAPSTAN FF/REW SPEED LEVEL
;/////	BIT ////////////////////////////////////		
EXTBIT	FSVMOFRQ	;	V-MUTE OFF REQUEST
EXTBIT	FSMDCHG	;	FLAG DURING MODE TRANSITION
EXTBIT	FSEICPT2	;	INTCPT2 ENABLE REQUEST FLAG
EXTBIT	FSDRMON	;	DRUM ON/OFF FLAG
EXTBIT	FHIFIM	;	Hi-Fi MODE FLAG
EXTBIT	FSVISSI	;	INDEX SEARCH MODE FLAG
EXTBIT	FSVISSO	;	ONCE MORE SEARCH MODE FLAG
EXTBIT	FSVISSME	;	VISS MARK/ERASE MODE FLAG
EXTBIT	FSVISTR	;	VISS SEARCH START FLAG
EXTBIT	FSVISSOK	;	VISS DETECTION FLAG
EXTBIT	FSAFRQ	;	RFS DOWN EDGE FOR AUTO-TRACKING
EXTBIT	FSCAPON	;	CAPSTAN ON FLAG
EXTBIT	FSCRRFRQ		CAPSTAN REVERSE RFS EDGE ON REQUEST FLAG
EXTBIT	FNSTENA	;	SEARCH DETECT DI TIMER END FLAG
EXTBIT	FSAEND	;	AUTO TRACKING END FLAG
EXTBIT	FNSTENO	;	TRANSITION TIMER END FLAG
EXTBIT	FSDFG	;	DFG EDGE DETECTION FLAG
EXTBIT	FSSPDCHG	;	TAPE SPEED CHANGE FLAG
;/////	PORT ////////////////////////////////////		
EXTBIT	PRFS	;	RF SWITCHING PULSE
EXTBIT	PQVD	;	V-MUTE
EXTBIT	PCAPFWD	;	CAPSTAN FORWARD/REVERSE
EXTBIT	PCAPF_R	;	CAPSTAN FORWARD/REVERSE (to DECK)
INCLUDE	(PORT. INC)	;	8
EXTBIT	FPCAPF_R	;	FLAG FOR PORT REFRESH

\$

EXTBIT FPOVD ; FLAG FOR PORT REFRESH ;//// CODE ///////////// ; TAPE LOADING EXTRN CSMLOAD EXTRN ; PLAY CSMPLAY EXTRN CVPLAY ; PLAY EXTRN CVFFRW2H ; 2Hrs PLAY (PH FIX) EXTRN CVFFRW6H ; 6Hrs PLAY (PH FIX) EXTRN CVFFRWX3 ; 3Hrs PLAY x3 (PH FIX) EXTRN CVFFREW ; FF/REW (PH FIX) EXTRN CVCUE ; CUE (VD OUT) EXTRN CVREV ; REVIEW (VD OUT) EXTRN CVSTILL ; STILL (VD OUT) ; CUE \rightarrow PLAY (VD OUT) EXTRN CVCUPL ; RVS PLAY (VD OUT & PH FIX) EXTRN CVRVS EXTRN CVFR6HVD ; 6Hrs PLAY (VD OUT & PH FIX) \$ EJECT ;-----;★★★ SERVO RELATED EQU AREA ;-----;*** SERVO DATA AREA *** VSEOU1 DSEG SADDR ; % ;*** SERVO REFERENCE DATA *** RVDFRF: DS 3 ; DRUM SPEED REFERENCE 3 3 RVCPT2: DS ; CPT2 DATA MEMORY RVCPT22: DS ; FOR DEBUG ;*** CAPTURE DATA MEMORY *** RVCPT0: DS 3 ; CPTO DATA MEMORY RVCPT1: DS 3 ; CPT1 LOW DATA MEMORY ;*** SERVO ERROR DATA *** RVERDF: ; DRUM SPEED ERROR DS 2 RVERDF_1: 2 ; DRUM SPEED ERROR(-1) DS RVERDP: DS 2 ; DRUM PHASE ERROR RVERDP_1: DS 2 ; DRUM PHASE ERROR(-1) ;--- PWM OUTPUT BIAS DATA AREA ---RVDBAS: DS 2 ; DRUM BIAS LOW BYTE ;RVDBAS_L: DS 1 DS ;RVDBAS H: 1 ; DRUM BIAS HIGH BYTE ;--- DRUM PHASE FILTER UNKNOWN-QUANTITY ---RVERDP_Y: 2 DS RVERDP_bY: DS 4 RVERDF_Y DS 2

RVERDF_bY

DS

4

\$ EJECT			
;*** FILTER ;*** FILTER		DATA *	** ; %FILTER PRODUCT-SUM OPERATION WORK AREA
B_buf:	DS	2	; (LOOP GAIN)
2_2041	DS	2	; (FILTER COEFFICIENT " a ") x
			; (LOOP GAIN)
	DS	2	; (FILTER COEFFICIENT " b ") x ; (OUTPUT) x (-1)
RVC_Kmp: \$EJECT	DS	2	; CAPSTAN LOOP GAIN " G1 "
;*** CAPSTA	N DATA ***		
RVCFRF:	DS	3	; CAPSTAN SPEED REFERENCE
RVCPRF:	DS		; CAPSTAN PHASE REFERENCE
;*** SERVO	ERROR DATA *	* *	
RVERCF:	DS	2	; CAPSTAN SPEED ERROR
RVERCP:	DS	2	; CAPSTAN PHASE ERROR
RVERCP_1:	DS	2	; CAPSTAN PHASE ERROR(-1)
RVERCMX:	DS	2	; CAPSTAN SPEED & PHASE MIXED
RVERCMX_1	DS	2	; ERROR : CAPSTAN SPEED & PHASE MIXED
KVERCHA_1	05	2	; ERROR(-1)
;*** CAPTUR	E DATA MEMOR	Y ***	
RVCPT3 :	DS	3	; CPT3 DATA MEMORY
; PWM OU	TPUT BIAS DA	TA AREA	
RVCBAS:	DS	2	; CAPSTAN BIAS LEVEL
; CAPSTA	N PHASE FILT	ER UNKNO	DWN-QUANTITY
RVERCP_Y:	DS	2	; CAPSTAN PHASE " Y "
RVERCP_by:	DS		; CAPSTAN PHASE " b x Y "
; CAPSTA	N SPEED/PHAS	E MIX FI	ILTER UNKNOWN-QUANTITY
RVERCMX_Y:	DS	2	; CAPSTAN SPEED/PHASE MIX
DUED CHU LU.	DC	4	; "Y"
RVERCMX_bY:	DS	4	; CAPSTAN SPEED/PHASE MIX ; " b x Y "
RVSRVCD:	DS	1	; SERVO CODE AREA
FVDOUT EQU			; QUASI Vsync OUTPUT
FVPHFX EQU	RVSRVCD	.6	; PHASE CONTROL IS NOT PERFORMED
RVCRAM:	DS	1	; MACRO SERVICE COUNT DATA
RVCEVFG:	DS	1	; SP/LP/EP AUTO DETECT CFG ; DIVIDE COUNTER

RVSLPCH:	DS 1	; SP/LP/EP CHATTERING COUNT ; AREA
RVFSRV_2:	DS 1	; SERVO DATA FLAG AREA 2
FVCFERR EQU FVCPLCK EQU FVCFE05 EQU FVHQVDT EQU FVFLCTL EQU FVPBLP EQU	RVFSRV_2.6 RVFSRV_2.5 RVFSRV_2.4 RVFSRV_2.3 RVFSRV_2.2 RVFSRV_2.1	<pre>; DRUM SPEED ERROR 10% OVER FLAG ; CAPSTAN SPEED ERROR (+/-)SIGN FLAG ; CAPSTAN PHASE LOCK FLAG ; 0:LOCK 1: UNLOCK ; CAPSTAN SPEED ERROR 5% OVER FLAG ; QVD HIGH TIMING FLAG ; PBCTL ERROR FLAG ; PB LP DATA FLAG ; PB SP/EP DATA FLAG</pre>
; LP: ; EP:	FPBLP FPBSEP 0 0 1 0 0 1 1 1	
RVPSVCNT:	DS 1	; QUASI V SIGNAL COUNTER
;///// CAPST#	AN KV/KP ////////	//////
RVC_Kvp:	DS 2	; ; Kv/Kp REAL NUMBER (1 BYTE) + DECIMAL FRACTION (1 BYTE)
;*** CR10 DA	IA BUFFER AREA ***	
RVBCR10:		; %930 ; CR10 BUFFER REG LOW
; MODE NT:	SC/MODE PAL FOR RO	M READ
MODE PAL	EQU 0 EQU 2 EQU 4	; ; ;
NTSC_PAL:	DS 1	; FOR SPEED UP
;*** INTCR12	MACRO SERVICE DAT.	Ą ***
MCRAREA DSEG RVSCR12: DS RVCCR12: DS	AT OFEOCH 1 1	;% ; INTCR12 MACRO SERVICE MODE REGISTER ; INTCR12 MACRO SERVICE CHANNEL ; POINTER
RVMCMPP: DS	2	;%INTCR12 MACRO SERVICE COMPARE AREA
RVB2CR12:DSRVB1CR12:DSRVBFREG:DSRVMSFRP1:DSRVMKEISU:DSRVMSFRP2:DSRVMCCR12:DS	1 1 1 1 1 1	; POINTER ; INTCR12 MACRO SERVICE BUFFER AREA 2(L) ; INTCR12 MACRO SERVICE BUFFER AREA 1(H) ; INTCR12 MACRO SERVICE BUFFER SIZE REG ;%INTCR12 MACRO SERVICE SFR POINTER 1 ;%INTCR12 MACRO SERVICE SFR POINTER 3 ;%INTCR12 MACRO SERVICE KEISU AREA ;%INTCR12 MACRO SERVICE SFR POINTER 2 ; INTCR12 MACRO SERVICE COUNTER
RVMCMPD: DS	2	;%INTCR12 MACRO SERVICE COMPARE AREA

PTN_FF EQU 70H ; %POSITIVE DIRECTION MULTIPLIER ; COEFFICIENT (0.4375) EQU (PTN_FF XOR 0FFH)+1 ; %REVERSE DIRECTION MULTIPLIER PTN_REW ; COEFFICIENT (0.5625) EQU 0000H or 0001H ; %CR30 COMPARISON DATA DT_CMP ; %VISS ;--- FOR DEBUG ---- %%%% DEB DSEG UNIT ; 256 טג 2 DS 2.5 DS SAVE CNT: SAVE_AREA: ;--- SP/LP/EP PAL MODE CODE ----00H CVSP EQU ; SP MODE CVSLP EQU 01H ; EP MODE CVLP EQU 02H ; LP MODE CVPAL EQU 03H ; SP (PAL) MODE \$ EJECT ; ------SERVO DATA TABLE ;-----VtSRVO CSEG UNIT ;//// 5% of maximum drum speed error amount //// tDF_5per: 022CH ; NTSC 1.3903ms / 125ns * 0.05 = 556.1 DW ; PAL 1.6667ms / 125ns * 0.05 = 666.7 DW 029AH ;//// 10% of maximum drum speed error amount //// tDF_10per: DW 0458H ;NTSC 1.3903ms / 125ns * 0.1 = 1112.2 DW 0535H ; PAL 1.6667ms / 125ns * 0.1 = 1333.3 ;//// Drum speed gain //// tDF Kv: DW 011C2H ; NTSC 32767 / (0.23066ms / 125ns) = 17.76 DW 011C2H ; PAL ;//// Maximum drum speed error amount xx.xx //// tDF_max: ; NTSC 8388607 / 4546 = 1845.3 DW 0735H DW 0735H ; PAL ;//// Minimum drum speed error amount //// tDF_min: DW 10000H - 0735H ;NTSC DW 10000H - 0735H ; PAL ;//// Filter coefficient of drum speed (G) ////

tDF_fG:

015FDH DW ; NTSC 015A0H DW ; PAL ;//// Filter coefficient of drum speed (aG) //// tDF_fAG: 0F2A8H ; NTSC DW DW 0F22CH ; PAL ;//// Filter coefficient of drum speed (-b) //// tDF_fB: DW 0775AH ; NTSC ; PAL DW 07832H Drum phase gain //// ;//// tDP_Kp: ; NTSC 32767 / (5.710ms / 125ns) = 0.717 DW 0FC40H ; NTSC %8/18 ADJUSTMENT DW 0FC40H ; PAL ;//// Maximum drum phase error amount //// tDP_max: DW 2220H ; NTSC 8386607 / OB7 = 45839.4 > 32767 DW 2220H ; NTSC ;//// Minimum drum phase error amount //// tDP_min: DW 10000H - 2220H ; NTSC DW 10000H - 2220H ; PAL ;//// Filter coefficient of drum phase (G) //// tDP_fG: DW 006D2H ; NTSC DW 0086EH ; PAL ;//// Filter coefficient of drum phase (aG) //// tDP_fAG: DW 0F987H ; NTSC DW 0F815H ; PAL ;//// Filter coefficient of drum phase (-b) //// tDP_fB: DW 07FA5H ; NTSC DW 07F7BH ; PAL ;//// 10% of maximum capstan speed error amount //// tCF_10per: DW 0458H ; NTSC 2.7778ms / 125ns * 0.1 = 2222.2 DW 0C60H ; PAL 3.9602ms / 125ns * 0.1 = 3668.2

;//// Capstan speed gain //// ; ;tCF_Kv, tCP_Kp are given in table per mode. ;//// Maximum capstan speed error amount //// tCF_max: 1E79H ; NTSC 8386607 / 433(1075) = 7801.5...4.2 DW DW 1E79H 8386607 / 433(1075) = 7801.5 ; PAL ;//// Minimum capstan speed error amount //// tCF_min: 10000H - 1E79H ; NTSC DW 10000h - 1E79H DW ; PAL ;//// Filter coefficient of capstan speed phase composite (G) //// tCMX_fG: DW 0205FH ; NTSC 01478H ; PAL DW DW 01796H ; LP ;//// Filter coefficient of capstan speed phase composite (aG) //// tCMX_fAG: ; NTSC OEOA1H DW DW 0ECDCH ; PAL DW 0E9C0H ; LP ;//// Filter coefficient of capstan speed phase composite (-b) //// tCMX_fB: 07EFEH ; NTSC DW DW 07EA9H ; PAL DW 07EA9H ; LP ;//// Maximum capstan phase error amount //// tCP_max: DW 15A0H ; NTSC 8386607 / OBD5 = 2768.8 DW 15A0H ; PAL 8386607 / OBD5 = 2768.8 ;//// Minimum capstan phase error amount //// tCP_min: 10000H - 15A0H ; NTSC DW DW 10000H - 15A0H ; PAL ;//// Filter coefficient of capstan phase control (G) //// fCP_fG: 01264H ; 01164H %% ; NTSC DW 010D8H DW ; PAL ;//// Filter coefficient of capstan phase control (aG) //// fCP_fAG: 0EE74H ; NTSC DW 0EFF1H DW ; PAL

;//// Filter coefficient of capstan phase control (-b) //// tCP_fB: ; NTSC 07F57H DW 07F35H ; PAL DW ;----- Data store subroutine -----FOR DEBUG ; SAVE_AX: B, !SAVE_CNT XCH ADD в, #2 MOVW SAVE_AREA[B], AX XCH B, !SAVE_CNT RET EJECT \$ VDFG CSEG UNIT ; $\bigstar \bigstar \bigstar$ INTCPT2 DRUM FG INTERRUPTION PROCESS ROUTINE ; ; VPT2_000 : Interruption initial processing ; VPT2_100 : Drum speed error calculation VPT2_200 : Drum phase error x loop gain (Kp) ; VPT2_300 : Drum speed error x loop gain (Kv) ; VPT2_400 : Drum speed adjustment amount + drum ; phase adjustment degree + bias value VPT2_500 : Save capture value (next CPT2n - 1) ; VPT2_600 : Processing after interruption ; ; Interruption initial process ;-----VPT2_000 :;V :///// Register setting //////// SEL RB2 VPT2_010: ;///// Highest order interruption enable /// MOVW AX,MKO ; SAVE MASK REGISTER PUSH ΑX MOVW AX,MK1 ;%SAVE MASK REGISTER NOP PUSH AX ; % ;%INTCR00 ENABLE MK0L,#11101111b OR мк0н,#01111100b OR ;%INTP2, INTCR02, INTCR11 ENABLE MK1L,#11110111b ;%INTCR13 ENABLE ;%ctl OR ;%INTP3 ENABLE МК1Н,#11111110b OR ΕI SET1 FSDFG ; SET DFG EDGE DETECTION FLAG

; FOR DEBUG %%% MOVG RVCPT22,WHL ; LIMIT THE MAXIMUM VALUE MOVG TDE, RVDFRF TDE,#7FFFH ADDG ; ; SET THE MAXIMUM VALUE TO 7FFFH + TARGET VALUE SUBG TDE,WHL BH \$VPT2_101 ; ADDG WHL, TDE ; VPT2_101 : VPT2_110 : ;///// E DV CALCULATION ////////// SUBG WHL, RVDFEF ; E DV = Δ NDF - NDFL ; DRUM SPEED ERROR = MEASURED SPEED -TARGET SPEED VPT2_120 :;B ;///// Get error amount //////// MOVW AX,HL ; ABSOLUTE VALUE CALCULATION BF A.7,\$VPT2_128 ; MOVW HL,#0 ; ; HL \leftarrow ABSOLUTE VALUE SUBW HL,AX VPT2_128 : VP,AX ; VP \leftarrow ERROR AMOUNT MOVW MOV A,RVFSRV_2 ; READ RUN MODE AND A,#00000011b B,#MODE NTSC MOV ; ; PAL? CMP A,#CVPAL \$VPT2_129 ; No BNE MOV B,#MODE PAL ; VPT2_129 : ; STORE NTSC = 0/PAL = 2 MOV NTSC PAL,B VPT2 130 :;B ;///// Check error amount 5% /// AX, tDF_5per[B] ; MOVW ; DW 022CH ; DW 029AH ; ; CMPW HL,AX ; BC \$VPT2_140 ; kvEkDP_1,#0000H ;%
RVERDP_Y,#0000H ; DRUM PHASE ERROR ← 0000H
RVERDP_bY,#0000H ;% MOVW MOVW MOVW

MOVW RVERDP_bY+2,#0000H ;% VPT2_140 :;B ;///// Check error 10% /// MOVW AX,tDF_10per[B] ; 0458H 0535H DW ; ; ; DW ; VPT2_140_10 : AX,HL CMPWAX,HL;MOV1FVDFE10,CY; SET FLAG IF DRUM SPEED ERROR IS 10% OR MORE CMPW VPT2_150 :;B ;///// Check maximum error value /// MOVW AX,tDF_MAX[B] ; LIMIT MAXIMUM VALUE OF DRUM SPEED ERROR 0735H ; DW ; 0735H DW ; ; ; MAXIMUM VALUE: DRUM SPEED ERROR CMPW AX, HL \$VPT2_160 BNC ; >= CMPW VP,#8000H ; SIGN ; CY = 1 POSITIVE NUMBER BC \$VPT2_151 ; CY = 0 NEGATIVE NUMBER MOVW AX,tDF_MIN[B] ; MINIMUM VALUE: DRUM SPEED ERROR DW 10000н-0735н ; ; DW 10000H-0735H ; ;

VPT2_151 :;B

MOVW VP,AX ;

VPT2_160 :;B

;///// Save speed error ///////

XCHW	VP,RVERDF	;	$RVERDF \leftarrow$	-	ERROR	AMOUNT	OF	THIS	TIME
MOVW	RVERDF_1,VP	;	RVERDF_1	÷	- ERRO	R AMOUN	JΤ	OF LAS	ST TIME

```
;------
   Lag read filter processing
;
;
  0. Set filter coefficient
;
;
     NTSC:
;
        f1 = 8
;
                            f2 = 56
                              🗆 calculation from
;
        DFG = 719.28Hz
;
                             ;
     MAL a = -0.60695401
;
;
     MBL b = -0.93247632
;
     MGL g = 0.17179585
;
;
     PAL:
                           fl = 6
;
                             🗆 calculation from
;
        f2 = 42
        DFG = 600.00Hz
;
                            ;
    MAL a = -0.63946320
;
     MBL b = -0.93908194
;
     MGL g = 0.16896488
;
;
;
_____
VPT2_170 :
      ;/////Set filter coefficient ///
      MOV B,NTSC_PAL
                            ;
      MOVW AX, tDF_fG[B]
                             ;
      MOVW B_buf,AX
                             ;
      MOVW AX, tDF_fAG[B]
                             ;
      MOVW B_buf+2,AX
                             ;
      MOVW AX,tDF_fB[B]
                             ;
      MOVW B_buf+4,AX
                             ;
      ;////Filter calculation processing ///
      MOV
         B,#LOW(B_buf)
                             ;
      MOV C, #LOW(RVERDF)
                            ;
      MOVW DE, RVERDF_bY
                             ;
                             ;
      MOVW AX, RVERDF_bY+2
      MACSW 2
                             ; LAG READ FILTER PROCESSING
      MOVW RVERDF_Y,AX
                             ; DRUM SPEED ERROR AMOUNT
                              (AFTER FILTER CALCULATION)
      MOVW DE,B_buf+4
                             ;
      MULW DE
                             ;
      SHLW DE,1
                             ;
      ROLC X,1
                             ;
      ROLC A,1
                             ;
      MOVW RVERDF_bY,DE ; (-b)•Y
MOVW RVERDF_bY+2,AX ;
```

;------Drum phase error x Loop gain (Kp) ; ;------; 0. Get Kp (Decimal fraction is ignored) ; ; NTSC Kp = -3.75Real number : 0FC40H ; ; PAL Kp = -3.75 Real number : 0FC40H ; ; ; 1. Phase error x Loop gain ; $\text{HL} \leftarrow \text{HL} + \text{AX}$; ; VPT2_200 : ; MOV B,NTSC_PAL MOVW AX, tDP_Kp[B] DW 11C2H DW 11C2H ; ; ; ; ;////Error x Kp /////// MOVW DE, RVERDP_Y ; DRUM PHASE ERROR AMOUNT (AFTER FILTER CALCULATION) MULW DE ; CMPW AX,#0FF80H ; ZERO CHECK BNC \$VPT2_230 ; CMP A,#80H ; BNC \$VPT2_229 ; UNDERFLOW CMPW AX,#0080H ; BC \$VPT2_230 MOVW AX,#7FFFH ; 7fffh \leftarrow Overflow BR VPT2_231 ; VPT2_229 : MOVW AX,#8000H ; 8000H \leftarrow UNDERFLOW VPT2_231 BR ; VPT2_230 : A,X MOV ; A(XD)E MOV X,D ; VPT2_231 : MOVW HL,AX ; HL \leftarrow DRUM PHASE ERROR AMOUNT (AFTER GAIN ADDITION)

VPT2_220 :

```
;------
;
                Drum speed error x Loop gain (Kv)
;------
;
  0. Get Kv (Decimal fraction is ignored)
;
;
                    Real number : 11C2H
   NTSC Kv = 17.76
;
;
   PAL Kv = 17.76
                    Real number : 08E1H
;
;
;
  1. Speed error x Loop gain
;
   AX \leftarrow AX + DE
;
:
;;------
VPT2_300 :;B
      ;////Get Kv ///////////
                        ;
;
      MOV B,NTSC_PAL
      MOVW AX, tDF Kv[B]
      ;////Error x Kv ///////
                            ; DRUM SPEED ERROR AMOUNT
      MOVW DE, RVERDF_Y
                              (AFTER FILTER OPERATION)
      MULW DE
                             ; AX \leftarrow DRUM SPEED ERROR AMOUNT
                              (AFTER GAIN ADDITION)
      MOV
         A,X
                             ; A(XD)E
      MOV
         X,D
                             ;
;------
; Drum speed adjustment + Drum phase adjustment + bias value \rightarrow PWM 0
;
VPT2_400 :;B
      ;///// Speed total + bias + phase total gain /////
      ADDW AX,HL
                             ; DRUM PHASE ERROR ADDITION
      BNV $VPT2_411
                             ;
      MOVW AX,#07FFFH
                            ; 7fffh \leftarrow OVERFLOW
      ADDC X,#0
                            ;
      ADDC A,#0
                            ; 8000H \leftarrow UNDERFLOW
VPT2_411 :
      BT
          A.7,$VPT2_412
                            ;
      ADDW AX, RVDBAS
                            ; BIAS ADDITION (<7FFF)
      BR
          VPT2_420
                            ;
VPT2_412 :
      ADDW AX, RVDBAS
                            ; BIAS ADDITION (<7FFF)
      BC $VPT2_420
                            ;
                            ; 0000H \leftarrow OVERFLOW
     MOVW AX,#0000H
```

VPT2_420 :;B ;//// PWM 0 Output ///////// ;v% PWM limitation items CMPW AX,#0100H BC \$VPT2_421 CMPW AX, #0FF00H BNH \$VPT2_422 MOVW AX,#0FF00H BR VPT2_422 VPT2_421 : MOVW AX,#0100H VPT2_422 : ;^% PWM limitation items MOVW PWM0,AX ; SET DRUM PWM DATA ;------Save capture value (Next CPT2n - 1) ;------VPT2_500 : ;/////Save CPT2 ////// MOVG RVCPT2, UUP ; ; Processing after interrupt VPT2_600 : ;///// Multiple interrupt disable ///// DI POP AX ; %RETURN MASK REGISTER MOVW MK1,AX ; %SET MASK REGISTER ; RETURN MASK REGISTER POP AX MOV1 CY, CRMK02 ; LOAD INTCR0 2 INTERRUPT MASK FLAG ; SAVE INTCR0 2 INTERRUPT MASK FLAG MOV1 A.O,CY MOV1 CY, PMK2 ; %LOAD INTP 2 INTERRUPT MASK FLAG MOV1 A.7,CY ; %SAVE INTP 2 INTERRUPT MASK FLAG MOVW MK0,AX ; SET MASK REGISTER VPT2_EXT : RETI EJECT \$ VDPGP CSEG UNIT

```
;------
;★★★ INTCR10 Drum phase error detection interruption processing
;-----
;
      VR10_000 : Interrupt initial processing
;
      VP10_100 : Calculation of phase control target value
;
      VP10_200 : Calculation of drum phase error
;
      VP10_300 : Lag read filter processing
;
      VP10_400 : Processing after interrupt
;
;
;-----
                    Interrupt initial processing
;
;-----
VR10_000 :;V
      ;////Register setting ////////
      SEL
          RB2
                              ; HIGH-ORDER INTERRUPT
VR10_010 :
      ;////Read CPT0 ////
      MOVW AX, CPTOL
                              ;
      MOVW HL, AX
                              ;
      MOV
          A,CPTOH
                              ;
      MOV
           W,A
                              ;
      MOVG UUP, WHL
                              ;
VR10_020 :
      ;////Drum on check ///
      ΒT
          FSDRMON, $VR10_030
      RETI
VR10_030 :;B
      ;//// Check speed error /////
      BF
           FVDFE10,$VR10_040
                             ; 10% OR MORE DRUM SPEED ERROR? NO
                              ; Yes INTERRUPT END
      RETI
VR10_040 :;B
      ;////High-order interrupt enable ///
      MOVW AX, MKO
                              ; SAVE MASK REGISTER
      PUSH AX
      MOVW AX,MK1
                              ;%SAVE MASK REGISTER
      NOP
                              ; 응응응
      PUSH AX
                              ; %
                             ;%INTCR00 ENABLE
      OR
          MKOL,#11101111B
      OR
          мкон,#01111100в
                             ;%INTP2, INTCR02, INTCR11 ENABLE
                             ;%INTCR13 ENABLE ;%CTL
          MK1L,#11110111B
      OR
          MK1H,#11111110B
      OR
                             ;%INTP3 ENABLE
```

ΕI

Calculation of phase control target value <1>Digital value equal to HSW pulse delay amount ; ; ; CR00 x 4 times (difference between timer 0 and FRC clock frequency) ; <2>Delay amount for half cycle of frame ; ; CR10 value ; ; <3>Delay amount for 6.5 Hrs ; ; ; 6.5 Hrs (0.41 msec) ÷ 125 ns (FRC clock) = 616d ; ; <4>Delay amount for Vsync separation ; SOFT execution time ÷ 125 ns (FRC clock) ;------VR10 100 : ;//// Phase target value calculation ////// ; SET MINIMUM UNIT TO 0.500 us MOVG WHL, #0 MOVW HL, CR00 ; CR00*2 HL,1 SHLW ADDW HL, CR10 ; + CR10 ADDG WHL,#0355H ; + (<3> + <4>) 413.14 + 13.5 ; = $426.64 \ \mu s$ (853) MOVG VVP,WHL ; VVP \leftarrow PHASE TARGET VALUE ; Drum phase error calculation ; 0. Phase error calculation ; EDP = [(CPT0 value) - (CPT1 value)] - NDPL ; ; EDP :Drum phase error amount ; NDPL :Phase control target value ; ; MCPT1 :Capture value of internal HSW falling edge only ; MCPT0 :Capture at CR10 match ; ; ; 1. Check phase error maximum value ; Assume NTSC error \geq 06B1H \rightarrow error = 06B1H (maximum) ; ; Assume PAL error \geq 06B1H \rightarrow error = 06B1H (maximum) ; ;------

VR10_20			
	;////	/ Phase error calculation	///////
	MOVG	WHL,UUP	; (MCPTO - MCPT1)
	MOVG	-	;
	SUBG	WHL, RVCPT1	; DRUM PHASE ERROR
	~		
	MOV	A,W	; DIVIDE DRUM PHASE ERROR INTO 1/2
	AND	A,#03FH	;
	SHR	A,1	;
; 응응	MOV	W,A	;
	RORC	Н,1	;
	RORC	L,1	;
	SHR	A,1	; ? ?
	MOV	W,A	; ? ?
	RORC		; ? ?
	RORC	L,1	; ? ?
	MOV	B,NTSC_PAL	; LIMIT MAXIMUM VALUE
	MOVW	AX, tDP_MAX[B]	;
	MOV	т,#0	;
	MOVW	DE,AX	i
	ADDG	TDE, VVP	; SET MAXIMUM VALUE TO TARGET +
			MAXIMUM LIMITATION VALUE
	SUBG	TDE,WHL	i
	BH	\$VR10_201	i
	ADDG	WHL, TDE	;
VR10_20	1:		
	aupa		
	SUBG	WHL,VVP	; DRUM PHASE ERROR -
			; E DP (TARGET VALUE OF DRUM PHASE ERROR)
	BNC	\$VR10_220	; IS ERROR AMOUNT NEGATIVE VALUE?
	;////	/Check maximum error valu	ue ///
			; NEGATIVE VALUE
	MOTZ	D NTCC DAI	
;;	MOV		
	MOV		; LESS THAN MINIMUM VALUE?
	MOVW		
	MOVW	DE,AX	
	SUBG	TDE, WHL	; MINIMUM VALUE - ERROR AMOUNT
	BC	\$VR10_220	;
	MOVW	HL,AX	;
VR10_22	0:		
vici0_22	хснw	HL, RVERDP	; RVERDP \leftarrow DRUM PHASE ERROR OF THIS TIME
	MOVW	RVERDP_1,HL	; RVERDP \leftarrow DRUM PHASE ERROR OF THIS TIME ; RVERDP_1 \leftarrow DRUM PHASE ERROR OF LAST TIME
	1.10 0 00		, KARKALTI A DIGH HINDE BUKOK OF HADI IIME

```
;
   Lag read filter processing
;------
;
  0. Set filter coefficient
;
;
   NTSC:
;
      f1 = 0.013Hz
                            ;
       f2 = 0.25 Hz
                             🗆 calculation from
;
       DPG = 30Hz
;
                             ;
   MAL a = -0.94897592
;
;
   MBL b = -0.99728098
;
   MGL g = 0.05328881
;
;
   PAL:
      f1 = 0.016Hz
                            ;
;
      f2 = 0.25 Hz
                             🗆 calculation from
      DPG = 25Hz
;
                             ;
   MAL a = -0.93908194
;
;
   MBL b = -0.99598683
   MGL g = 0.06587816
;
VR10_300 :;B
      ;/////Set filter coefficient ///
      MOV
           B,NTSC_PAL
                             ;
          AX,tDP_fG[B]
      MOVW
                             ;
           B_buf,AX
      MOVW
                             ;
          AX,tDP_fAG[B]
      MOVW
                            ;
      MOVW
           B_buf+2,AX
                            ;
      MOVW
          AX,tDP_fB[B]
                            ;
           B_buf+4,AX
      MOVW
                            ;
VR10_310 :;B
      ;///// Filter calculation processing /////
      MOV
           B,#LOW(B_buf)
                            ;
           C, #LOW(RVERDP)
      MOV
                            ;
      MOVW
           DE, RVERDP bY
                            ;
      MOVW
           AX,RVERDP_bY+2
                            ;
     MACSW
            2
                             ;
      MOVW
           RVERDP_Y,AX
                            ; DRUM PHASE ERROR AMOUNT
                              (AFTER FILTER CALCULATION)
      MOVW
           DE,B_buf+4
                             ;
      VR10_YL EQU 13FH
                          ;;;;; MAXIMUM LIMITATION PROCESSING Yn - 1
      ΒT
          A.7,$VR10_312
                            ; POSITIVE NUMBER
      CMPW AX, #VR10_YL
      BC
          $VR10_314
                            ;
      MOVW AX, #VR10_YL
                            ;
      BR
         VR10_314
```

VR10_312: CMPW AX,#10000H - VR10_YL ; NEGATIVE NUMBER BNC \$VR10_314 ; MOVW AX,#10000H - VR10_YL ; VR10_314 : ;;;;; MULW DE ; SHLW DE,1 ROLC X,1 ROLC A,1 ; ; ; MOVW RVERDP_bY+2,AX ; (-b)•Y ; CR10 Revision processing ;------VR10_320: MOVW AX, RVBCR10 ; CR10 \leftarrow CR10 DATA BUFFER AREA MOVW CR10,AX ; ; Note: When write CR10, perform in ; INTCR10 routine. (Unless, TM1 may overflow depending on timing ; of writing!) ; ;------; Processing after interrupt ;-----VR10_400 : ;//// Multiple interrupt disable ///// DI POP AX ; %RETURN MASK REGISTER MOVW MK1,AX ; %SET MASK REGISTER POP AX ; RETURN MASK REGISTER MOV1 CY,CRMK02 ; LOAD INTCR02 INTERRUPT MASK FLAG MOV1 A.O,CY ; SAVE INTCR02 INTERRUPT MASK FLAG MOV1 CY, PMK2 ; %LOAD INTP2 INTERRUPT MASK FLAG MOV1 A.7,CY ; %SAVE INTP2 INTERRUPT MASK FLAG MOVW MK0,AX ; SET MASK REGISTER VR10_EXT : RETI \$ EJECT

VCFG CSEG UNIT

 $; \star \star \star$ INTCPT3 Capstan FG interrupt ;------; ; VRT3_000 : Interrupt initial processing VRT3_100 : PBCTL signal missing detection ; VRT3_200 : Capstan speed error calculation ; VRT3_300 : Error amount calculation special processing ; VRT3_400 : Speed error x loop gain (Kv/Kp) ; VRT3_500 : Capstan speed adjustment amount + Capstan phase ; ; adjustment amount VRT3_600 : MIX error amount digital filter processing ; VRT3_700 : Capstan speed/phase MIX (Yn) x gain adjustment ; VRT3_800 : Capstan speed/phase MIX adjustment value + bias value ; ; VPT3_900 : Capstan PWM output ; VRT3_A00 : Processing after interrupt ; Interrupt initial processing ;-----VPT3_000 :;V ;//// Register setting //////// SEL RB2 ; HIGH ORDER INTERRUPT VPT3_010 : ;//// Multiple interrupt enable //// MOVW AX, MKO ; SAVE MASK REGISTER PUSH AX MOVW AX,MK1 ;%SAVE MASK REGISTER NOP PUSH AX ; % ;%INTCR00 ENABLE OR MKOL,#11101111B ;%INTP2,INTCR02, INTCR11 ENABLE OR МКОН,#01111100В OR MK1L,#11110111B ;%INTCR13 ENABLE ;%ctl OR МК1Н,#11111110В ;%INTP3 ENABLE ΕT VPT3_015 : ;/////Check CFG 90 pulse counter //// CMP RSCFG90C,#00 ΒZ \$VPT3_100 DEC RSCFG90C ;------Increment play run mode automatic judgment counter ; ; PBCTL signal missing detection ; VPT3_100 : INC RVCEVFG ; CFG counter increment @@@ change

VPT3_110 : BT FSMDCHG,\$VPT3_200 ; AT TRANSITION? Yes VPT3_130 : RVCEVFG,#40 ; PBCTL SIGNAL MISSING? @@@ CHANGE CMP BC \$VPT3_200 ; No VPT3_140 : BT FVPHFX,\$VPT3_141 ;%PH FIX ON? Yes (FF/REW) ;%ctl SET1 FVFLCTL ; SET PBCTL SIGNAL MISSING FLAG ;%CTL VPT3_141 : MOV RVCEVFG, #00 ; CLEAR PLAY MODE JUDGMENT COUNTER ;@@@ ; CHANGE ;%ctl v ; % ;%% CTL AMP GAIN INC(+5) ;% AMPLIFY CTL AMP GAIN BY +5 DURING PBCTL SIGNAL MISSING MOV A,CTLM ; % ADD A,#05H ; % CMP A,#1FH ; % BC \$VPT3_150 ; % MOV A,#1FH ; % VPT3_150 :;B ; % MOV CTLM.A ; % ;%ctl ^ ; Calculate capstan speed error ;----------; $\Delta NCF = CPT3n - CPT3n - 1$; ; Δ NCF: Capture value of this time - capture value of last time ; ; ; $ECV = \Delta NCF - NCFL$; ECV : Capstan speed error amount ; NCFL : Capstan speed target value ; ;------VPT3_200 :;B MOVW AX.CPT3L •

MOVW	AX,CPT3L	ï	
MOVW	HL,AX	;	
MOV	А,СРТЗН	;	
MOV	W,A	;	
MOVG	UUP,WHL	;	
SUBG	WHL, RVCPT3	;	$\Delta NCF = CPT3n - CPT3n - 1$
MOV	A,W	;	
AND	A,#003FH	;	
MOV	W,A	;	
MOVG	VVP,WHL	;	
SUBG	WHL,#12C0H	;	Check capstan abnormal high speed rotating
BNC	\$VPT3_201	;	CFG is within 600 μ sec?

; Yes MOVW AX, #1FFFH ; TO AVOID OCCURRING CFG FREQUENT INTERRUPT VPT3_820 BR ; DUE TO MOTOR RUNAWAY, ; AND MICRO CONTROLLER'S RUNAWAY VPT3_201 :;B MOVG WHL, VVP ; TDE, RVCFRF ; LIMIT MAXIMUM VALUE MOVG ADDG TDE, #7FFFH ; SUBG TDE, WHL ; SET MAXIMUM VALUE TO 7FFFH + TARGET VALUE BH \$VPT3_202 ; ADDG WHL, TDE ; VPT3_202 : SUBG WHL, RVCFRF ; ECV = Δ NCF - NCFL MOVW AX, HL ; CALCULATION OF ABSOLUTE VALUE BF A.7,\$VPT3_203 ; NEGATIVE VALUE? MOVW HL,#0 ; SUBW HL,AX ; HL \leftarrow ABSOLUTE VALUE VPT3_203 : MOVW VP,AX ; VP \leftarrow ERROR AMOUNT Error amount calculation special processing ; ;-----; ; When set capstan phase error amount to 0 ; • When drum speed error amount is more than \pm 10% ; ; Flag more than 10%: FSDP10=1 ; ; • When capstan speed error amount is more than \pm 10% ; ; Error amount is calculated by NTSC/PAL PLAY target value. ; ; NTSC5% : 56CEH x 0.10 = 0458H ; PAL 5% : 7BC1H x 0.10 = 0C60H ; ; • When PBCTL signal missing is detected in play ; • At FF/REW mode ; • When capstan phase servo disabled (during loading) ; VPT3_300 :;B MOV A,RVFSRV_2 A,#00000011b ; READ RUN MODE AND MOV B,#MODE NTSC ; A,#CVPAL CMP

; PAL? ; No

BNE

\$VPT3_321

	MOV	B,#MODE PAL	;
VPT3_32	1:		
VI I <u>5</u> _52		NTSC_PAL,B	; ; LESS THAN MAXIMUM VALUE?
	MOVW	AX,tCF_MAX[B]	; LESS THAN MAXIMUM VALUE?
	;	DW 1E79H	
	;	DW 1E79H	
	CMPW	HL,AX	; ERROR AMOUNT (ABSOLUTE VALUE):
			; MAXIMUM VALUE
	BC	\$VPT3_320	; =<
	CMPW	VP,#8000H	; SIGN
	BC		; CY=1 POSITIVE
	MOVW	AX,tCF_MIN[B]	; CY=0 NEGATIVE ;
	110 V W		
VPT3_31			. OR NAVININ VALUE AC OPER EDDOD ANOUNE
	MOVW	VP,AX	; SET MAXIMUM VALUE AS SPEED ERROR AMOUNT
VPT3_32			
		RVERCF,VP AX,tCF_10per[B]	; CAPSTAN SPEED ERROR ;
	MOVW	AX, CCP_10per[B]	,
	;		;
	;	DW OC60H	;
	CLR1	FVCFE05	;
	CMPW	AX,HL	;
	BNC	\$VPT3_330	;
	SET1	FVCFE05	;
	BR	VPT3_340	;
VPT3_33	0:;b		
	BT	FVPHFX,\$VPT3_340	; PH FIX ON? YES(FF/REW)
	BT	FVDFE10,\$VPT3_340	; IS DRUM SPEED ERROR MORE THAN 10%? YES
	BF	FVFLCTL,\$VPT3_400	; PBCTL SIGNAL MISSING? NO
VPT3_34	0 :;B		
_		/ Phase error amount to 0	/////
	MOVW	RVERCP_Y,#0	; CAPSTAN PHASE ERROR \leftarrow 0000H
	MOVW	-	;
	MOVW	RVERCP_1,#0	

MOVW	RVERCP_1,#0	;	
MOVW	RVERCP_bY,#0	;	CAPSTAN PHASE FILTER
MOVW	RVERCP_bY+2,#0	;	CLEAR MEMORY

; Capstan speed error x Loop gain (Kv/Kp) ;------; $AX \leftarrow AX + DE$; VPT3_400 :;B MOVW AX, RVERCF ; CAPSTAN SPEED ERROR MOVW DE, RVC_Kvp ; SPEED PHASE ERROR MIX RATE MULW DE ; A(XD)E ; 8 BITS SHIFT (SET VALID ONLY 16 BITS) MOV A,X MOV X,D ; ; Capstan speed adjustment amount + Capstan phase adjustment amount MOVW DE, RVERCP_Y ; CAPSTAN PHASE ERROR SHLW DE,2 ADDW AX, DE ; CAPSTAN SPEED ERROR AMOUNT + CAPSTAN ; PHASE ERROR BNV \$VPT3_511 ; MOVW AX,#7FFFH ADDC X,#0 ; ; 7fffh \leftarrow Overflow ADDC A,#0 ; 8000H \leftarrow UNDERFLOW VPT3_511 : XCHW AX, RVERCMX ; CAPSTAN SPEED PHASE MIX ERROR MOVW RVERCMX_1,AX ; ; Speed/phase MIX error amount digital filter processing ;------; ; 0. Set filter coefficient ; NTSC SP/EP ; f1 = 0.45 Hz; 🗆 calculation from $f_{2} = 1.8 Hz$; CFG = 360 Hz; ; MAL a = -0.96906992; b = -0.99217674; MBL MGL q = 0.25293372; ; NTSC LP ; f1 = 0.45 Hz ; f2 = 2.5 Hz 🗆 calculation from ; CFG = 270 Hz; ; MAL a = -0.94346684; MBL b = -0.98958257 ;

```
MGL g = 0.18427114
;
;
     PAL
;
              SP
         f1 = 0.42 Hz
                                     ;
         f2 = 2.7 Hz
;
                                       🗆 calculation from
          CFG = 252.51 Hz
;
                                      a = -0.93499961
;
          MAL
          MBL b = -0.98960350
MGL g = 0.15994518
;
;
;
;
VPT3_600 :;B
VPT3_610 :
        ;////Run mode judgment ///////
        MOV B,NTSC_PAL
                                      ;
        MOV
            A,RVFSRV_2
                                      ;
        AND
            A,#00000011B
                                     ; READ RUN MODE
        CMP
             A, #CVLP
                                      ; LP?
                                      ;
        BNE
            $CPT3_611
        MOV
              B,#MODE LP
                                       ;
                                       ; B \leftarrow NTSC(0)/PAL(2)/LP(4)
CPT3_611 :
        MOVW AX, tCMX_fG[B]
                                      ;
        MOVW B_buf,AX
MOVW AX,tCMX_fAG[B]
                                       ;
                                       ;
        MOVW B_buf+2,AX
                                       ;
        MOVW AX,tCMX_fB[B]
                                       ;
        MOVW B_buf+4,AX
                                       ;
        MOV
              B,#LOW(B_buf)
                                       ;
                                      ;
        MOV
             C, #LOW(RVERCMX)
        MOVW DE, RVERCMX_bY
                                       ;
        MOVW AX, RVERCMX_bY+2
                                      ;
        MACSW 2
                                      ;
        MOVW RVERCMX_Y,AX
                                      ; Y
        MOVW DE,B_buf+4
                                      ;
        MULW DE
                                       ;
        SHLW DE,1
                                       ;
        ROLC X,1
                                       ;
        ROLC A,1
                                      ;
                                ; (-b)•Y
        MOVW RVERCMX_bY, DE
        MOVW RVERCMX_bY+2,AX
```

;------; Capstan speed/phase mix (Yn) x gain adjustment ;-----; $AX \leftarrow AX + DE$; ;------VPT3_700: ; MOVW AX, RVC_Kmp MOVW DE, RVERCMX Y ; MULW DE ; A(XD)E CMPW AX,#0FF80H ; ZERO CHECK BNC \$VPT3_730 ; CMP A,#80H ; BNC \$VPT3_729 ; UNDERFLOW CMPW AX, #0080H ; BC \$VPT3_730 MOVW AX, #7FFFH ; 7fffh \leftarrow Overflow VPT3_731 BR ; VPT3_729 : MOVW AX,#8000H ; 8000H \leftarrow UNDERFLOW VPT3_731 BR ; VPT3_730 : MOV A,X ; 8-BIT SHIFT (ONLY FOR 16-BIT) MOV X,D ; VPT3_731 : ;------; Capstan speed/phase MIX adjustment value + bias value ;------VPT3_800 :;B ; swBIAS8 EQU O ; BIAS IS LESS THAN 8000H swBIAS8 EOU 1 ; BIAS IS 8000H OR MORE \$_IF(swBIAS8) Add processing at bias (=> 8000H) ; BF A.7,\$VPT3_812 ; ; NEGATIVE NUMBER BEFORE ADDING ADDW AX, RVCBAS BR VPT3_820 ; VPT3_812: ADDW AX, RVCBAS ; WHEN POSITIVE NUMBER BEFORE ADDING ; OVERFLOW MAY OCCUR BNC \$VPT3_820 ;

\$ELSE ;		Add processing at	bias (=	. <	7FFFH)
,		haa processing at			, ,
	BF	A.7,\$VPT3_812		;	
	ADDW	AX, RVCBAS			WHEN NEGATIVE NUMBER BEFORE ADDING UNDERFLOW MAY OCCUR
	BC	\$VPT3_820		;	
		AX,#0000H VPT3_820		; ;	$0000H \leftarrow UNDERFLOW$
VPT3_812					
	ADDW	AX, RVCBAS		;	POSITIVE NUMBER BEFORE ADDING
\$ENDIF					
;		Canstan gr			judgment at FF/REW
;					
VPT3_820	:;B				
		BC,AX		;	SAVE PWM OUTPUT DATA
	MOV	A, RVSRVCD			
	AND	A,#11110000B		;	CLEAR LOW-ORDER 4 BITS
	CMP	A,#CVFFREW		;	FF/REW?
	BNE	\$VPT3_830		;	No
	MOV	A, RVERCF			CAPTURE HIGH-ORDER BYTE OF CAPSTAN
	вт	A.7,\$VPT3_823			SPEED ADJUSTMENT IS CAPSTAN SPEED ADJUSTMENT AMOUNT (-)?
	DI	11.7,00115_025			No
					%%% MODIFICATION IS REQUIRED
VPT3_821	:				
	CMP	A,#2			
		\$VPT3_823		;	C-ERR OH - 1FFH
	CMP				
		\$VPT3_822		;	C-ERR 200H - 5FFH
				;	C-ERR 600H - MAX
	MOV	A,#0		;	LEVEL 0
	BR	\$VPT3_824			
VPT3_822	:				
	MOV	A,#1		;	LEVEL 1
	BR	\$VPT3_824			
VPT3_823	:				
	MOV	A,#2		;	LEVEL 2
VPT3_824	:				
	MOV	RSFRSPED, A		;	CAPSTAN FF/REW SPEED LEVEL SET
	MOVW	BC,#0FFFFH		;	PWM OUTPUT FULL
VPT3_830	:;R				
.115_050	MOVW	AX,BC		;	PWM OUTPUT DATA RETURN
		,20			

;------Capstan PWM suppression control at PLAY ightarrow REVIEW ; VPT3_840 : MOVW BC,AX ; SAVE PWM OUTPUT DATA A, RVSRVCD MOV AND A,#11110000B ; CLEAR LOW-ORDER 4 BITS CMP A,#CVFR6HVD ; 6Hrs PLAY? (AT SPIN OFF RF GEAR) BE \$VPT3_841 ; Yes CMP A,#CVRVS ; RVS PLAY? (AT REVERSE PLAY) BNE \$VPT3_842 ; No VPT3_841 : MOVW AX, BC ; ; CAPSTAN PWM 0B333H (3.5 V) OR HIGHER? CMPW AX,#0B333H BC \$VPT3_842 ; MOVW BC,#0B333H ; PWM OUTPUT 3.5 V VPT3_842 : MOVW AX, BC ; PWM OUTPUT DATA RETURN ;------Output capstan PWM VPT3_900 :;B ;v%PWM limitations CMPW AX,#0100H BC \$VPT3_901 CMPW AX, #0FF00H BNH \$VPT3_902 MOVW AX,#0FF00H BR VPT3_902 VPT3_901 : MOVW AX,#0100H VPT3_902: ;^%PWM limitations MOVW PWM1,AX ; SET CAPSTAN PWM DATA ;//// SAVE CPT3 ////// MOVG RVCPT3,UUP ; Multiple interruption prohibited ; VPT3_A00 : DI POP AX ; %RETURN MASK REGISTER MOVW MK1,AX ; %SET MASK REGISTER

POP AX ; RETURN MASK REGISTER ; LOAD INTCR02 INTERRUPT MASK FLAG MOV1 CY, CRMK02 MOV1 A.O,CY ; SAVE INTCR02 INTERRUPT MASK FLAG MOV1 CY, PMK2 ; %LOAD INTP2 INTERRUPT MASK FLAG MOV1 A.7,CY ; %SAVE INTP2 INTERRUPT MASK FLAG MOVW MK0,AX ; SET MASK REGISTER RETI ; CAPSTAN FG INTERRUPT PROCESSING END ;%%%ctl v \$ NOLIST \$ SUBTITLE('SRV0.ASM : INTCR13 ROUTINE CTL detection & output interruption') LIST \$ \$ EJECT VCTL CSEG UNIT ;------VR13_000 : Interrupt initial processing ; VR13_100 : CTL detection & output interrupt processing ; _____ Interrupt initial processing ; VR13_000 :;V ;////Register setting //////// SEL RB3 ; HIGHEST-ORDER INTERRUPT!! VR13_100 : ; GAIN CONTROL ; REWRITE GAIN AT PLAY and CUE/REV CALL !GAINADJ ; CTL AMP GAIN ADJUST SET1 CRMK13 ; INTCR13 INTERRUPT DISABLE RETI ; ; GAIN ADJUST SUBROUTINE ;********************************** GAINADJ : MOV A, AMPMO ; SET1 FLGCLR ; CTL FLAG CLEAR MOV1 CY,A.3

XOR1 CY,A.1 BC \$GAIN_E ; X,CTLM MOV AND X,#00011111B ; BF A.3,\$GAIN_UP CMP X,#0 ; DOWN ΒZ \$GAIN_E DEC Х BR GAINSET GAIN_UP : ;UP CMP X,#1FH B7 \$GAIN_E TNC Х GAINSET : MOV CTLM,X GAIN_E : RET ;%%%CTL ^ \$EJECT CSEG UNIT VCPG ;_____ ; $\star \star \star$ INTCR12 Capstan phase error detection interrupt At Play: Interrupt by PBCTL signal ; ;------VR12_000 : Interrupt initial processing ; VR12_020 : VISS signal detection processing ; ; VR12_200 : Play run mode automatic judgment processing ; VR12_300 : Capstan phase error calculation VR12_400 : Lag read filter processing ; VR12_500 : PBCTL signal missing check ; VR12_600 : Processing after interrupt ; VR12_T00 : Run mode judgment table ; ;------; Interruption initial processing ;-----VR12_000 :;V ;///// Register setting //////// SEL RB2 ; High-order interrupt VR12 010 : ;///// Highest-order interrupt enable /// MOVW AX, MK0 ; Save mask register PUSH AX MOVW AX,MK1 ;%Save mask register NOP PUSH AX ; % OR MKOL,#11101111B ;%INTCR00 ENABLE OR MKOH,#01111100B ;%INTP2, INTCR02,

		MK1L,#11110111B	; INTCR11 ENABLE ;%INTCR13 ENABLE ;%CTL ;%INTP3 ENABLE
	EI		
; VR12_020		Macro service ///////	
	CMP BNE	RVMCCR12,#00H \$VR12_032	; IS MSC INTERRUPTING WITH "O"? ; No
	CMPW		; ARE BUFFER 1 AND 2 COMPARISON AREA ; INFORMATION?
	BE	\$VR12_032	; Yes
		CRISM12	; SET MACRO SERVICE COUNTER VALUE ; SET INTCR12 MACRO SERVICE INTERRUPT ;%
VR12_032	MOV		; SET MACRO SERVICE COUNTER VALUE ; SET INTCR12 MACRO SERVICE INTERRUPT
VR12_040			
;	/// SI	EARCH MODE CHECK ///	; %
;	BF BF	FSCAPON, \$VR12_111 FNSTENA, \$VR12_111	; CAPSTAN ON? ; SEARCH DETECT DI? (150 msec)
7		A, RVSRVCD	
	AND		; CLEAR LOW-ORDER 4 BITS
		A,#CVFFRW6H \$VR12_045	; AT FF/REW START? ; No
		VR12_045	; DISABLE VISS!
;	_		
VR12_045		RSNOW, #CSMPLAY	; DURING PLAY?
	BE	\$VR12_050	; Yes ; No
	CMP	RSNEXT, #CSMPLAY	;
	BNE	\$VR12_060	;%a No
	BR ;	VR12_111	;%a Yes
VR12_050	:;B		
	BT	FSVM0FRQ,\$VR12_111	; V_MUTE OFF?("1" PULSE DETECTION?)
	BF	PQVD,\$VR12_111	;
;			; No
VR12_060	BT	FSVISSI,\$VR12_100	; INDEX SEARCH MODE?
	BT		; ONCE MORE SEARCH MODE?
	BF	FSVISSME, \$VR12_111	
VR12_100	;;B		
;		ISS OK ///	; %
	SET1	FSVISSOK	; SET VISS SIGNAL DETECTION FLAG!!
VR12_111 ;%		JFFER AREA CLEAR ///	; %

MOVW RVB2CR12,#0FFFFH ;%BUFFER AREA 1,2 CLEAR ; (REVERSE/FORWARD ALL 1 CLEAR) VR12_120 :;B /// COUNTER FLAG CLEAR /// ; % ; BF FSVISTR, \$VR12_121 CLR1 FSVISTR ; CLEAR VISS SIGNAL DETECTION START FLAG!! FSVISSOK ; CLEAR VISS SIGNAL DETECTION FLAG!! CLR1 MOVW RVB2CR12,#0FFFFH ;%BUFFER AREA 1,2 CLEAR ; (REVERSE/FORWARD ALL 1 CLEAR) /// Set coefficient multiplied by CR30 at Macro Service /// ;* ; VR12_121 :;B ;% (REVERSE) MOV A, #PTN_REW PCAPFWD,\$VR12_122 ;% CAPSTAN FORWARD OR REVERSE ? ВT ;% (FORWARD) MOV A,#PTN_FF VR12_122 :;B MOV RVMKEISU,A ; % ;%VISS ^ EJECT \$;%%%CTL v ;------;-- DETERMINE CTL AMP GAIN SETTING POSITION ;_____ VR12_A000: INTM1.4 ;%a (REVERSE) PBCTL:↓ EDGE PCAPFWD,\$VR12_A00 ;%a CAPSTAN FORWARD OR REVERSE ? CLR1 INTM1.4 BT SET1 INTM1.4 ;%a (FORWARD) PBCTL: ↑ EDGE VR12_A00 :;B ; FSMDCHG,\$VR12_A10 ; AT TRANSITION? Yes BT MOV A,RVSRVCD AND A,#11110000B ; CLEAR LOW-ORDER 4 BITS CMP A,#CVFFREW ; FF/REW ? BNE \$VR12_A01 ; No ; /// CR13 COMPARATOR UPDATE (FF/REW) /// ;% MOVW AX,CPT30 ; LOAD PBCTL CAPTURE DATA MOVW BC,#0133H ;%(REVERSE) CPT30 x 1.2 ; ...(256 x 1.2) BT PCAPFWD,\$VR12_A05 ; CAPSTAN FORWARD OR REVERSE ? ;%(FORWARD) CPT30 x 1.8 MOVW BC,#01CDH ; ...(256 x 1.8) VP12_A05 :;B MULUW BC ; CPT30 x *** ; AX \leftarrow XB MOV A,X MOV X,B ; BR VR12_A04 ; ; ; ;

/// CR13 COMPARATOR UPDATE (PLAY, CUE/REV) ///

VR12_A01 :;B MOVW AX, CPT30 ; LOAD PBCTL CAPTURE DATA MOVW BC, #4CCDH ;%(REVERSE) CPT30 x 0.3 ; ...(65536 x 0.3) PCAPFWD,\$VR12_A02 ; CAPSTAN FORWARD OR REVERSE ? ΒT MOVW BC,#0B333H ;%(FORWARD) CPT30 x 0.7 ; ...(65536 x 0.7) VR12_A02:;B MULUW BC ; CPT30 x *** VR12_A04 :;B ADDW AX, CR12 ; (CPT30 x ***) + CR12 CMPW AX,CR10 ; BC \$VR12_A03 ; SUBW AX, CR10 ; VR12_A03 : MOVW CR13,AX ; CR13 UPDATE ; CLEAR INTCR13 INTERRUPT REQUEST CLR1 CRIF13 CLR1 CRMK13 ; ENABLE INTCR13 INTERRUPT VR12_A10 :;B ;%%%CTL ;______ ;-- VISS MARK/ERASE ;-----CALL !SR12_000 ; VISS MARK/ERASE ;/////Servo mode judgment ////// MOV A, RVSRVCD AND A,#11110000b ; CLEAR LOW-ORDER 4 BITS BF FVPHFX,\$VR12_200 ; PH FIX ON? No BR VR12_500 ; Yes (FF/REW) \$ EJECT ;______ ; PLAY RUN MODE AUTOMATIC JUDGMENT PROCESSING ;______ ; Run mode is judged by the count number ; of capstan FG signals after the event divider division ; that is input into one cycle of PBCTL. ; ; VR12_200 :;B BF FVCFE05,\$VR12_210 ; CAPSTAN SPEED ERROR IS MORE THAN 5%? VR12_2B0 BR ; Yes VR12 210 :;B MOVG WHL, #VR12_T00 ; %REFER TO TABLE

;

		A,RVCEVFG BC,#0900H	; RUN MODE JUDGEMENT CFG COUNTER ; COUNTER INITIALIZATION
VR12_22	0 :;B		
		A,[HL] \$VR12_230	; >=
	CMP	A A,[HL] \$VR12_2B0	; +1 CHECK ; NOT MATCH
VR12_23			
	BE	\$VR12_240	; =
	INCW INC		; SET NEXT DATA ; SET PULSE TYPE COUNTER +1
	DBNZ BR	B,\$VR12_220 \$VR12_2B0	; CHECK COMPLETE? No ; Yes
VR12_24	0 :;B		
		A,RVSLPCH A,#0FH	; JUDGMENT CHATTERING COUNTER ; READ BACK UP DATA
	XCH CMP BE	A , C	; MATCH? ; Yes
	MOV BR	RVSLPCH,A VR12_2C0	; INITIALIZE
VR12_25	0 :;B		
	ADD	RVSLPCH,#10H	; JUDGMENT CHATTERING COUNTER ; H INCREMENT
	CMP BC	RVSLPCH,#30H \$VR12_2C0	; CHATTERING ABSORPTION COMPLETE? ; No ; Yes
VR12_26		Due made act //////	
		Run mode set //////	
	XCH	A,C	; STORE PULSE TYPE COUNTER
	MOV AND	A,RVFSRV_2 A,#3	; GET RUN MODE
	ADD MOV MOVW MOV ADDW MOVW	A,A B,A AX,ttVR12_SPEED[B] B,#0 AX,BC HL,AX	
VR12_26	2 : MOV	A,[HL]	
	CMP	A, #03	; CHANGE TO PAL MODE

BNE \$VR12_264 ; No FHIFIM,\$VR12_264 BF ; PAL MODE ? Yes VR12_2B0 ; NO MODE CHANGE BR VR12_264 :;J MOV A,RVFSRV_2 AND A,#0FCH A,[HL] OR A,RVFSRV_2 XCH ; SET MODE XOR A,RVFSRV_2 AND A,#03 ; NO MODE CHANGE BE \$VR12_2B0 VR12_270 : CALL !YVTBL_00 ; REFER TO SET SERVO CODE & REFER TO TABLE VR12_280 : CALLF !YSA01_R1 ; 1SEC TIMER START FOR AUTO-TRACKING CLR1 FSAEND ; ONE AUTO-TRACKING END ; CLEAR FLAG SET1 FSSPDCHG ; SET MARK/ERASE RELEASE REQUEST FLAG VR12_2B0 :;B MOV RVSLPCH,#00H ; RUN MODE JUDGMENT CHATTERING COUNTER VR12_2C0 : MOV RVCEVFG, #00H ; RUN MODE JUDGMENT CFG COUNTER ; INITIALIZE BR \$VR12_300 EJECT \$;------; Capstan phase error calculation ;------; Value of CR12 ; at PLAY : Capture value of TM1 by PBCTL ; at RECORD : Capture value of TM1 by CFG division signal ; ; E CP = (CR12 value) - N CPL ; ; ; N CPL : Capstan phase target value NF : Internal reference timer value (CR10) ; VR12_300 :;B ;/////Internal reference timer value ////// MOVW DE,CR10 ; INTERNAL REFERENCE TIMER VALUE SHRW DE,1 ; SET HALF CYCLE

VR12_310: ;///	// Phase error calculatior	n ///////
MOVW SUBW MOVW		; LOAD PHASE CAPTURE DATA ; E CP = NP - N CPL ; HL
BC	\$VR12_321	; IS PHASE ERROR (-)?
SUBW BC	AX,DE \$VR12_322	; WHEN (+), ; SUBTRACT HALF CYCLE ; WHEN WITHOUT CARRY, ; SUBTRACT HALF CYCLE AGAIN
SUBW MOVW	AX,DE HL,AX	; ;
BR	VR12_323	; BECAUSE SIGN IS OPPOSITE, ; COMPARE WITH MINIMUM VALUE
VR12_321: ADDW BC	AX,DE \$VR12_323	; WHEN (-), ; ADD HALF CYCLE ; WHEN WITHOUT CARRY, ; ADD HALF CYCLE AGAIN
ADDW MOVW	AX,DE HL,AX	; ;
	B,NTSC_PAL AX,tCP_MAX[B] AX,HL \$VR12_325	; (+) \rightarrow COMPARE WITH MAXIMUM VALUE ; ; ;
MOVW	HL,AX	;
BR	\$VR12_325	;
VR12_323 : MOV MOVW CMPW BNH	AX,tCP_MIN[B]	; (-) \rightarrow COMPARE WITH MINIMUM VALUE ; ; ;
MOVW	HL,AX	;
;; BR	\$VR12_325	;
VR12_325:		
VOUM		· DUFED / DUACE EDDOD AMOUNT OF THIS TIME

XCHW	HL, RVERCP	;	RVERDP	\leftarrow	PHASE	ERROR	AMOUNT	OF	THIS	TIME
MOVW	RVERCP_1,HL	;	RVERDP_	_1 ·	\leftarrow PHAS	E ERRO	R AMOUNT	Г ОF	LAST	TIME

```
;------
; Lag read filter processing
;
 0. Set filer coefficient
;
;
   NTSC
;
;
       f1 = 0.0245 Hz
;
       f2 = 0.180 Hz
;
                                   ;
       DPG = 30 Hz
                                ;
;
      MAL a = -0.96299834
;
      MBL b = -0.99488186
;
      MGL g = 0.13832185
;
;
;
   PAL
;
      f1 = 0.0245 Hz
;
                                  - -
       f2 = 0.190 Hz
                                   ;
;
       DPG = 25 Hz
                                ;
      MAL a = -0.95336134
;
       MBL b = -0.99386137
;
       MGL g = 0.13162089
;
VR12_400 :;B
VR12_410 :
       ; *** Clear filter memory when loading ***
           * Because of inputting error information at loading
       ;
                               ; LOADING?
      CMP RSNEXT, #CSMLOAD
      BNE $VR12_420
                                ; No
      MOVW RVERCP_Y,#0
                                ;
      MOVW RVERCP,#0
                                ;
      MOVW RVERCP_1,#0
                                ;
      MOVW RVERCP_by,#0
                                ;
      MOVW RVERCP_bY+2,#0
                                ;
VR12_420 :;B
      ;////Run mode judgment ///////
      MOV B,NTSC_PAL
                                ;
      MOVW AX, tCP_fG[B]
                                 ;
      MOVW B_buf,AX
                                 ;
      MOVW AX,tCP_fAG[B]
                                ;
      MOVW B_buf+2,AX
MOVW AX,tCP_fB[B]
                                ;
                                ;
      MOVW B_buf+4,AX
                                ;
VR12_426 :;B
      MOV
          B,#LOW(B_buf)
                                ;
      MOV
          C,#LOW(RVERCP)
                               ;
      MOVW DE,RVERCP_bY
                               ;
      MOVW AX, RVERCP_bY+2
```

;

MACSW 2 ; MOVW RVERCP_Y,AX ; CAPSTAN PHASE ERROR AMOUNT ; (AFTER FILTER OPERATION) MOVW DE,B_buf+4 ; MULW DE ; SHLW DE,1 ; ROLC X,1 ; ROLC A,1 ; MOVW RVERCP_by,DE ; MOVW RVERCP_D1, DE , MOVW RVERCP_bY+2, AX ; (-b)•Y ; PBCTL signal missing check counter initialize VR12 500 :;B MOV RVCEVFG,#00H ; Clear CFG counter CLR1 FVFLCTL ; Reset PBCTL missing flag Multiple interruption disable ; ;------VR12_600 : DI POP AX ; %RETURN MASK REGISTER MOV1 CY,CRMK13 ;% LOAD INTCR13 INTERRUPT MASK FLAG ;%CTL ;% SAVE INTCR13 INTERRUPT MASK FLAG MOV1 X.3,CY ;%CTL MOVW MK1,AX ;%SET MASK REGISTER POP AX ; RETURN MASK REGISTER MOV1 CY,CRMK02 ; LOAD INTCR02 INTERRUPT MASK FLAG ; SAVE INTCR02 INTERRUPT MASK FLAG MOV1 A.O,CY MOV1 CY, PMK2 ;%LOAD INTP2 INTERRUPT MASK FLAG MOV1 A.7,CY ;%SAVE INTP2 INTERRUPT MASK FLAG ; LOAD INTCR11 INTERRUPT MASK FLAG MOV1 CY,CRMK11 MOV1 A.1,CY ; SAVE INTCR11 INTERRUPT MASK FLAG MOVW MK0,AX ; RETI ; Vsync OR CR10 match ; INTERRUPT PROCESSING END

; Run mode judgment table ;//// Number of CFG division /////// VR12_T00 : 5,7,9,11,13,16,19,31,37 ; PULSE DATA DB ;//// Run mode conversion table /// ttVR12_SPEED: tVR12_T10_SP DW DW tVR12_T10_SLP DW tVR12_T10_LP DW tVP12_T10_PAL VR12_T10 : tVR12_T10_SP: DB 1,2,0,3,0,0,0,0,0 ; SP mode tVR12 T10 SLP: DB 1,1,1,1,1,1,2,3,0 ; SLP mode tVR12 T10 LP: DB 2,1,2,2,2,3,0,2,2 ; LP mode tVR12_T10_PAL: 1,2,3,3,0,3,3,3,3 ; SP (PAL) mode DB \$ EJECT VCR00 CSEG UNIT ;★★★ INTCR00 QUASI Vsync timing setting VR00_000 : Register setting processing ; VR00_100 : RFS level check ; ; VR00_200 : Quasi Vsync rising edge timing setting VR00_300 : Drum start processing (interrupt enable condition judgment) ; ;------; Register setting processing ;------VR00_000 :;V ;////Register setting //////// SEL RB3 ; HIGHEST-ORDER INTERRUPT!! ;------; RFS level check VR00_100 : ; CAPTURE BY RFS RISING EDGE? No ICR.6,\$VR00_200 BFMOVW AX, CPT1L ; MOVW HL, AX ;

MOV A,CPT1H ; MOV W,A ; MOVG RVCPT1,WHL ; ; DOWN EDGE SET FOR AUTO-TRACKING SET1 FSAFRQ ;-----; Set QUASI Vsync rising timing ;------; QUASI Vsync outputs during search mode ; (CUE/REV), halt, and V.C mode. ; 🛧 Rising timing ; ; ; Fixed value ; τd = HSW delay amount + 3 = (CR00 setting value) + 191 μ sec ; ; = (CR00 setting value) + 191d ; % ; Variable value: CH2 at STILL/FRAME ; τd = HSW delay amount + 2H to 4H (initial value) to 6H ; = (CR00 setting value) + 128 to 255 to 382 μ sec ; % ; = (CR00 setting value) + 128d to 255d to 382d ; ; % ; ; \star Falling edge timing ; $4H = 63.55 \times 4 = 254.2 \ \mu sec$; ; = 254D ; % \therefore 1H = 63.55 μ sec ; ; * Timing match interrupt \rightarrow INTCR02 ;------VR00_200 :;B FVDOUT,\$VR00_300 ; QUASI Vsync OUTPUT MODE? No BF ICR.6,\$VR00_230 ; RFS RISING EDGE? No BT VR00_210 : MOV A,RVSRVCD ; CLEAR LOW-ORDER 4 BIT AND A,#11110000B ; SERVO CODE STILL? CMP A,#CVSTILL BNE \$VR00_230 ; No VR00_220 : ;/////Variable value /////// MOVW AX, #00 ; CLEAR BUFFER MOV A, RVPSVCNT ; VARIABLE VALUE (00-FEH) XCH A,X ADDW AX,#128D ; %BASIC VALUE ADDW AX,CR00 ; RISING TIMING ; SET FALLING TIMING MOVW CR02,AX VR00_240 BR

VR00_230 :;B ;/////Fixed value /////// MOVW AX, CR00 ; RISING TIMING ADDW AX,#191D ;%SET DATA MOVW CR02,AX ; VR00_240 :;B SET1 P8L.0 ;%<DATA OUTPUT TO P80 WITH TRIGGER: "1"> CLR1 CRMK02 ; INTCR02 ENABLE SET1 FVHQVDT ; SET RISING TIMING FLAG ; Drum rising processing (Interrupt enable conditions judgment) VR00_300 :;B BF FSDRMON, \$VR00_400 ; DRUM ON? No BF ICR.6,\$VR00_400 ; RFS FALLING EDGE INPUT? No CLR1 FSEICPT2 ; CLEAR INTCPT2 INTERRUPT ENABLE ; REQUEST FLAG ;------; V-MUTE release RFS synchronization processing ;------VR00_400 :;B BF FSVM0FRQ, \$VR00_500 ; V-MUTE RELEASE REQUEST? No CLR1 FSVM0FRQ ; CLEAR REQUEST CLR1 PQVD ; V-MUTE OFF CLR1 FPQVD ; SET PORT REFRESH FLAG SET1 PMC8.0 ;%P80 PT0 OUTPUT MODE ; Reverse brake at CUE \rightarrow PLAY RFS synchronization processing ;------VR00 500 :; B BF FSCRRFRQ,\$VR00_600 ; REQUEST CAPSTAN REVERSE RFS ; SYNCHRONIZATION? CLR1 FSCRRFRQ SET1 PCAPFWD ; CAPSTAN MOTOR REVERSE START SET1 PCAPF_R SET1 FPCAPF R ; SET PORT REFRESH FLAG MOVG WHL, #RNSTIM0 ; % A,RVFSRV_2 MOV AND A,#00000011B ; READ RUN MODE CMP A, #CVPAL ; PAL?

	BE	\$VR00_510	;	Yes	
	CMP	A,#CVSP	;	NTSC SP?	
	BE	\$VR00_510			
	CMP BE	A,#CVSLP \$VR00_520	;	NTSC SLP?	
	MOV BR	A,#33H \$VR00_530		NTSC LP 70 msec TIMER SET	
VR00_510):;B				
	MOV BR	A,#50H \$VR00_530		PAL SP, NTSC SP 110 msec TIMER SET	
VR00_520):;B				
	MOV	A,#2CH		NTSC SLP 60 msec TIMER SET	
VR00_530		[HL], A FNSTENO	;;	TIMER START	
VR00_600):;B				
	RETI		;	INTCR00 INTERRUPT PROCESSING END	
\$	EJECT				
VCR02	CSEG	UNIT			
;***	Set IN	TCR02 QUASI Vsync timing			
; ; ;	VR02_2	000 : Register set process 100 : Set quasi Vsync fal 200 : INTCR02 interrupt di	li	ng timing	
•		setting processing			
VR02_000		/Register setting //////	//		
	SEL	RB3	;	Highest-order interrupt!!	
; ; Set QUASI Vsync falling edge timing ;					
VR02_100):				
	BTCLR BR	FVHQVDT,\$VR02_110 \$VR02_200		Rising timing interrupt? No	

VR02_110 :;B ; FALLING EDGE TIMING MOVW AX, CR02 ADDW AX,#254D ;%SET DATA MOVW CR02,AX CLR1 P8L.0 ;%<DATA OUTPUT TO P80 WITH TRIGGER: ; "0" > (Addition) BR \$VR02_300 ;------INTCR02 interrupt disable processing ; ;-----VR02_200 : SET1 CRMK02 ; INTCR02 disable VR02_300 : RETI ; INTCR02 interrupt end EJECT \$;----- $; \star \star \star$ SERVO DATA TABLE ;-----; ; • Table description ; ; DB TMC0 (Timer 0 control register setting value) ; DB CPTM (Capture mode register setting value) ; DB INTM1 (External capture input mode register setting value) ; ; [SP/LP/SLP/PAL] ; ; DB Value of EDVC ; DB CR12 Macro service counter ; DW REF30Hz ; (CR10) DW Drum speed target value (CPT2H) ; ; DB Drum speed target value (CPT2L) ; DW Drum bias adding value DW Capstan speed target value (CPT3) ; DW Capstan bias adding value ; DW Capstan gain adjustment value ; ; ;------; PLAY ;-----SDT_PLAY : ; TMCO COUNT:EN TM1:CLR DB 10001001B ; TM0:CLR ;%CPTM CPT0-TRG:TM1=CR10 DB 00110000B ; CR12-TRG:CTI11,CPT1:↑↓ EDGE ;%INTM1 PBCTL:AN_AMP, DB 00010001B ; PBCTL:↑ EDGE CFG:↑ EDGE ; <-(01010001B)

SDT_PLS0 :			
DB	03D	;	EDVC COUNT
SDT_PLS1 :			
DB	01H	;	MACRO COUNT
SDT_PLS2 :			
DW	8256н	;	CR10
SDT_PLS3 :			
DG	2В72Н	;	CPT2
SDT_PLS5 :			
DW	66F0H	;	DRUM BIAS
SDT_PLS6 :			
DG	56CEH	;	CPT3
SDT_PLS7 :			
DW	85E0H	;	CAPSTAN BIAS
SDT_PLS8 :			
DW	600H	;	LOOP GAIN
SDT_PLS9 :			
DW	433H	;	CAPSTAN KV/KP
SDT_PLSA :			
DB	17H	;	CTL AMP GAIN

SDT_PLL0 :		
DB	02D	; EDVC COUNT
SDT_PLL1 :		
DB	01H	; MACRO COUNT
SDT_PLL2 :		
DW	8256H	; CR10
SDT_PLL3 :		
DG	2В72Н	; CPT2
SDT_PLL5 :		
DW	66FFH	; DRUM BIAS
SDT_PLL6 :		
DG	73BDH	; CPT3
SDT_PLL7 :		
DW	8595H	; CAPSTAN BIAS
SDT_PLL8 :		
DW	0540H	; LOOP GAIN
SDT_PLL9 :		
DW	0159Н	; CAPSTAN KV/KP
SDT_PLLA :		
DB	1DH	;%% CTL AMP GAIN

SDT_PLE0 :		
DB	01D	; EDVC COUNT
SDT_PLE1 :		
DB	01H	; MACRO COUNT
SDT_PLE2 :		
DW	8256H	; CR10
SDT_PLE3 :		
DG	2B72H	; CPT2
SDT_PLE5 :		
DW	66FFH	; DRUM BIAS
SDT_PLE6:		
DG	56CEH	; CPT3

SDT_PLE7 :		
DW	86DFH	; CAPSTAN BIAS
SDT_PLE8 :		
DW	0420H	; LOOP GAIN
SDT_PLE9 :		
DW	0119Н	; CAPSTAN KV/KP
SDT_PLEA :		
DB	1DH	;%% CTL AMP GAIN

SDT_PLP():			
	DB	03D	;	EDVC COUNT
SDT_PLP1				
		01H	;	MACRO COUNT
SDT_PLP2				
		9С40н	;	CR10
SDT_PLP3				
_	-	3415н	;	CPT2
SDT_PLP5				
		66FFH	;	DRUM BIAS
SDT_PLP6				
~~~ ~~~~		7BC1H	;	CPT3
SDT_PLP7		0.000		
		863FH	;	CAPSTAN BIAS
SDT_PLP8		0.000		
		0600H	;	LOOP GAIN
SDT_PLP9		01661		
		0166Н	;	CAPSTAN KV/KP
SDT_PLPA	DB	1DH		% CTL AMP GAIN
	лв	TDU	17	66 CIL AMP GAIN
	,			

SDT_RPS0 :			
DB	03D	; EDVC COUNT	
SDT_RPS1 :			
DB	01H	; MACRO COUNT	
SDT_RPS2 :			
DW	83D3H	; CR10	
SDT_RPS3 :			
DG	2BF1H	; CPT2	
SDT_RPS5 :			
DW	66FFH	; DRUM BIAS	
SDT_RPS6 :			
DG	56CEH	; CPT3	
SDT_RPS7 :			
DW	8678H	; CAPSTAN BIAS	
SDT_RPS8 :			
DW	0600H	; LOOP GAIN	

SDT_RPS9	:		
	DW	0233н	; CAPSTAN KV/KP
SDT_RPSA	:		
	DB	17н	;%% CTL AMP GAIN
	;/////	LP ////////////////////////////////////	
SDT_RPL0	:		
	DB	02D	; EDVC COUNT
SDT_RPL1			
		01H	; MACRO COUNT
SDT_RPL2			
		8314H	; CR10
SDT_RPL3		022111	
	-	2BB1H	; CPT2
SDT_RPL5		CCREW	· DDIM DIAG
		66FFH	; DRUM BIAS
SDT_RPL6		73BDH	; CPT3
SDT RPL7		חשפי	, CPIS
SDI_RED/		8595H	; CAPSTAN BIAS
SDT RPL8	211	000011	
551_111 20		0540H	; LOOP GAIN
SDT RPL9			
		0159Н	; CAPSTAN KV/KP
SDT_RPLA	:		
	DB	1DH	;%% CTL AMP GAIN

SDT_RPE0 :		
DB	01D	; EDVC COUNT
SDT_RPE1 :		
DB	01H	; MACRO COUNT
SDT_RPE2 :		
DW	82D5H	; CR10
SDT_RPE3 :		
DG	2B9CH	; CPT2
SDT_RPE5 :		
DW	66FFH	; DRUM BIAS
SDT_RPE6 :		
DG	56CEH	; CPT3
SDT_RPE7 :		
DW DDDD i	86DFH	; CAPSTAN BIAS
SDT_RPE8 : DW	0420H	· LOOD CAIN
SDT RPE9 :	0420H	; LOOP GAIN
DW	0119н	; CAPSTAN KV/KP
SDT_RPEA :	011911	/ CAPSIAN RV/RP
DB	1DH	;%% CTL AMP GAIN
		, CIL AMF GAIN

SDT_RPP(	) :			
	DB	03D	;	EDVC COUNT
SDT_RPP1	:			
	DB	01H	;	MACRO COUNT
SDT_RPP2	2:			
	DW	9DC0H	;	CR10
SDT_RPP3	3 :			

DG	3495н	; CPT2
SDT_RPP5 :		
DW	66FFH	; DRUM BIAS
SDT_RPP6 :		
DG	7BC1H	; CPT3
SDT_RPP7 :		
DW	863FH	; CAPSTAN BIAS
SDT_RPP8 :		
DW	0600H	; LOOP GAIN
SDT_RPP9 :		
DW	0166H	; CAPSTAN KV/KP
SDT_RPPA :		
DB	1DH	;%% CTL AMP GAIN

	;		
	;	FF/REW (2H)	; NTSC PLAY SP
	;		
SDT_FR2H	: :		
	DB	10001001B	; TMC0 COUNT:EN TM1:CLR TM0:CLR
	DB	00110000B	;%CPTM CPT0-TRG:TM1=CR10 CR12-TRG:
			; CTI11, CPT1; $\uparrow \downarrow$ EDGE
	DB	00010001B	;%INTM1 PBCTL:AN_AMP,PBCTL:^EDGE
			; CFG:↑EDGE <-(01010001B)

SDT_2HS0:		
DB	03D	; EDVC COUNT
SDT_2HS1 :		
DB	01H	; MACRO COUNT
SDT_2HS2 :		
DW	8256H	; CR10
SDT_2HS3 :		
DG	2В72Н	; CPT2
SDT_2HS5 :		
DW	66FFH	; DRUM BIAS
SDT_2HS6 :		
DG	56CEH	; CPT3
SDT_2HS7 :		
DW	8678H	; CAPSTAN BIAS
SDT_2HS8 :		
DW	0600H	; LOOP GAIN
SDT_2HS9 :	000011	
DW	0233H	; CAPSTAN KV/KP
SDT_2HSA :	0.511	
DB	OEH	;%%CTL AMP GAIN

SDT_2HL0 :	:			
I	DВ	03D	;	EDVC COUNT
SDT_2HL1 :	:			
I	DВ	01H	;	MACRO COUNT
SDT_2HL2 :	:			
I	DW	8256H	;	CR10
SDT_2HL3 :	:			
I	DG	2В72Н	;	CPT2
SDT_2HL5 :	:			
I	DW	66FFH	;	DRUM BIAS

SDT_2HL6 :		
DG	56CEH	; CPT3
SDT_2HL7 :		
DW	8678H	; CAPSTAN BIAS
SDT_2HL8 :		
DW	0600H	; LOOP GAIN
SDT_2HL9 :		
DW	0233H	; CAPSTAN KV/KP
SDT_2HLA :		
DB	OEH	;%% CTL AMP GAIN

SDT_2HE0:		
DB	03D	; EDVC COUNT
SDT_2HE1 :		
DB	01H	; MACRO COUNT
SDT_2HE2 :		
DW	8256H	; CR10
SDT_2HE3 :		
DG	2B72H	; CPT2
SDT_2HE5 :		
DW	66FFH	; DRUM BIAS
SDT_2HE6 :		
DG	56CEH	; CPT3
SDT_2H1E7 :		
DW	8678H	; CAPSTAN BIAS
SDT_2HE8 :		
DW	0600H	; LOOP GAIN
SDT_2HE9 :		
DW	0233H	; CAPSTAN KV/KP
SDT_2HEA :		
DB	OEH	;%% CTL AMP GAIN

SDT_2HP0 :		
DB	03D	; EDVC COUNT
SDT_2HP1 :		
DB	01H	; MACRO COUNT
SDT_2HP2 :		
DW	9C40H	; CR10
SDT_2HP3 :		
DG	3415H	; CPT2
SDT_2HP5 :		
DW	66FFH	; DRUM BIAS
SDT_2HP6 :		
DG	7BC1H	; CPT3
SDT_2HP7 :		
DW	8678H	; CAPSTAN BIAS
SDT_2HP8 :		
DW	0600H	; LOOP GAIN
SDT_2HP9 :		
DW	0233H	; CAPSTAN KV/KP
SDT_2HPA :		
DB	OEH	;%% CTL AMP GAIN

;		
;	FF/REW (6H)	; CAPSTAN INITIAL SPEED
;		
SDT_FR6H :		
DB	10001001B	; TMC0 COUNT:EN TM1:CLR TM0:CLR
DB	00110000B	;%CPTM CPT0-TRG:TM1=CR10 CR12-TRG:
		; CTI11, CPT1: $\uparrow \downarrow$ EDGE
DB	00010001B	;%INTM1 PBCTL:AN_AMP, PBCTL:↑EDGE
		; CFG:↑ EDGE <-(01010001B)

SDT_6HS0 :		
DB	01D	; EDVC COUNT
SDT_6HS1 :		
DB	01H	; MACRO COUNT
SDT_6HS2 :		
DW	8256H	; CR10
SDT_6HS3 :		
-	2В72Н	; CPT2
SDT_6HS5 :		
DW	66FFH	; DRUM BIAS
SDT_6HS6 :		_
-	56CEH	; CPT3
SDT_6HS7 :		
DW	86DFH	; CAPSTAN BIAS
SDT_6HS8 :	0.0 0.00	
DW	00C0H	; LOOP GAIN
SDT_6HS9 :	01101	
DW CHOR	0119н	; CAPSTAN KV/KP
SDT_6HSA :	0.001	. 9. 9. CITI AMD CATH
DB	OEH	;%% CTL AMP GAIN

SDT_6HL0 :		
DB	01D	; EDVC count
SDT_6HL1 :		
DB	01H	; MACRO count
SDT_6HL2 :		
DW	8256H	; CR10
SDT_6HL3 :		
DG	2B72H	; CPT2
SDT_6HL5 :		
DW	66FFH	; DRUM BIAS
SDT_6HL6 :		
DG	56CEH	; CPT3
SDT_6HL7 :		
DW	86DFH	; CAPSTAN BIAS
SDT_6HL8 :	0.0 0.00	
DW	00C0H	; LOOP GAIN
SDT_6HL9 :	01107	
DW CDW (UL)	0119н	; CAPSTAN KV/KP
SDT_6HLA :	0.001	
DB	OEH	;%% CTL AMP GAIN
• / /	///SLP /////////////////////////////////	//////
, / /	/// ЭШЕ ////////////////////////////////	

SDT_6HE0 :

DB 01D

; EDVC COUNT

SDT_6HE1 :		
DB	01H	; MACRO COUNT
SDT_6HE2 :		
DW	8256H	; CR10
SDT_6HE3 :		
DG	2B72H	; CPT2
SDT_6HE5 :		
DW	66FFH	; DRUM BIAS
SDT_6HE6 :		
DG	56CEH	; CPT3
SDT_6HE7 :		
DW	86DFH	; CAPSTAN BIAS
SDT_6HE8 :		
DW	00C0H	; LOOP GAIN
SDT_6HE9 :		
DW	0119Н	; CAPSTAN KV/KP
SDT_6HEA :		
DB	OEH	;%% CTL AMP GAIN

SDT_6HP0 :		
DB	01D	; EDVC COUNT
SDT_6HP1 :		
DB	01H	; MACRO COUNT
SDT_6HP2 :		
DW	9С40Н	; CR10
SDT_6HP3 :		
	3415н	; CPT2
SDT_6HP5 :		
	66FFH	; DRUM BIAS
SDT_6HP6 :		
DG	56CEH	; CPT3
SDT_6HP7 :	0.65	
	86DFH	; CAPSTAN BIAS
SDT_6HP8 :	0.0 0.0 11	
DW	00C0H	; LOOP GAIN
SDT_6HP9 :	01101	
	0119H	; CAPSTAN KV/KP
SDT_6HPA:	OFU	· · · · · · · · · · · · · · · · · · ·
DB	OEH	;%% CTL AMP GAIN

	:		
	, ; ;	FF/REW (6H) VD OUT	; CAPSTAN FG 90 PULSES DRIVE
SDT_6HVD	:		
	DB	10001001B	; TMC0 COUNT:EN TM1:CLR TM0:CLR
	DB	00110000B	;%CPTM CPT0-TRG:TM1=CR10 CR12-TRG:
			; CTI11,CPT1:↑↓EDGE
	DB	00010001B	;%INTM1 PBCTL:AN_AMP,PBCTL:1 EDGE
			; CFG:↑EDGE <-(01010001B)

SDT_6VS0 :		
DB	01D	; EDVC COUNT
SDT_6VS1 :		
DB	01H	; MACRO COUNT
SDT_6VS2 :		
DW	8315H	; CR10

SDT_6VS3	:		
	DG	2BB1H	; CPT2
SDT_6VS5	:		
	DW	66FFH	; DRUM BIAS
SDT_6VS6	:		
	DG	56CEH	; CPT3
SDT_6VS7	:		
	DW	86DFH	; CAPSTAN BIAS
SDT_6VS8	:		
	DW	0420H	; LOOP GAIN
SDT_6VS9	:		
	DW	0119Н	; CAPSTAN KV/KP
SDT_6VSA	:		
	DB	OEH	;%% CTL AMP GAIN

SDT_6VL0	:		
	DB	01D	; EDVC COUNT
SDT_6VL1	:		
	DB	01H	; MACRO COUNT
SDT_6VL2	:		
	DW	82B5H	; CR10
SDT_6VL3	:		
	DG	2B91h	; CPT2
SDT_6VL5			
	DW	66FFH	; DRUM BIAS
SDT_6VL6	:		
	DG	56CEH	; CPT3
SDT_6VL7	:		
	DW	86DFH	; CAPSTAN BIAS
SDT_6VL8	:		
	DW	0420H	; LOOP GAIN
SDT_6VL9	:		
	DW	0119н	; CAPSTAN KV/KP
SDT_6VLA	:		
	DB	OEH	;%% CTL AMP GAIN

SDT_6VE0 :		
DB	01D	; EDVC COUNT
SDT_6VE1 :		
DB	01H	; MACRO COUNT
SDT_6VE2 :		
DW	8295H	; CR10
SDT_6VE3 :		
DG	2B91H	; CPT2
SDT_6VE5 :		
DW	66FFH	; DRUM BIAS
SDT_6VE6 :		
DG	56CEH	; CPT3
SDT_6VE7 :		
DW	86DFH	; CAPSTAN BIAS
SDT_6VE8 :		
DW	0420H	; LOOP GAIN
SDT_6VE9 :		
DW	0119Н	; CAPSTAN KV/KP
SDT_6VEA :		
DB	OEH	;%% CTL AMP GAIN

SDT_6VP0	:		
	DB	01D	; EDVC COUNT
SDT_6VP1	:		
	DB	01H	; MACRO COUNT
SDT_6VP2			
		9D00H	; CR10
SDT_6VP3			
	DG	3455H	; CPT2
SDT_6VP5			
	DW	66F.F.H	; DRUM BIAS
SDT_6VP6	: DG	E COBU	; CPT3
SDT 6VP7	-	SOCEH	, CP13
_	DW	86754	; CAPSTAN BIAS
SDT 6VP8		00DFII	/ CREDIAN DIAD
521_0010		0420H	; LOOP GAIN
SDT_6VP9		012011	
		0119н	; CAPSTAN KV/KP
SDT_6VPA	:		
	DB	OEH	;%% CTL AMP GAIN
	;		
		FF/REW (2H*3)	
	;		
SDT_FRX3			
			; TMC0 COUNT:EN TM1:CLR TM0:CLR
	DB	00110000В	;%CPTM CPT0-TRG:TM1=CR10 CR12-TRG
		0.001.0001	; CTI11,CPT1:↑↓EDGE
	DB	00010001B	;%INTM1 PBCTL:AN_AMP,PBCTL: Î EDGE
			; CFG:↑EDGE <-(01010001B)

SDT_X3S0:		
DB	03D*3	; EDVC COUNT
SDT_X3S1 :		
DB	09D	; MACRO COUNT
SDT_X3S2 :		
DW	8315H	; CR10
SDT_X3S3 :		
DG	2BB1H	; CPT2
SDT_X3S5 :		
DW	66FFH	; DRUM BIAS
SDT_X3S6 :		
DG	56CEH	; CPT3
SDT_X3S7 :		
DW	8678H	; CAPSTAN BIAS
SDT_X3S8 :		
DW	0600H	; LOOP GAIN
SDT_X3S9 :		
DW	034CH	; CAPSTAN KV/KP
SDT_X3SA :		
DB	OEH	;%% CTL AMP GAIN

DB         03D*3         ; EDVC count           SDT_X3L1:         , MACRO count           DB         09D         ; MACRO count           SDT_X3L2:         .
DB 09D ; MACRO count
SDT_X3L2 :
DW 82B5H ; CR10
SDT_X3L3 :
DG 2B91H ; CPT2
SDT_X3L5 :
DW 66FFH ; DRUM BIAS
SDT_X3L6 :
DG 56CEH ; CPT3
SDT_X3L7 :
DW 8595H ; CAPSTAN BIAS
SDT_X3L8 :
DW 0600H ; LOOP GAIN
SDT_X3L9 :
DW 034CH ; CAPSTAN KV/KP
SDT_X3LA:
DB 0EH ;%% CTL AMP GAIN

SDT_X3E0 :		
DB	03D*3	; EDVC COUNT
SDT_X3E1 :		
DB	09D	; MACRO COUNT
SDT_X3E2 :		
	8295H	; CR10
SDT_X3E3 :		
DG	2BB7H	; CPT2
SDT_X3E5 :		
DW	66FFH	; DRUM BIAS
SDT_X3E6 :		
DG	56CEH	; CPT3
SDT_X3E7 :		
DW	86DFH	; CAPSTAN BIAS
SDT_X3E8 :	0.000	
DW	0600H	; LOOP GAIN
SDT_X3E9 :	0.2.4.00	
DW	034CH	; CAPSTAN KV/KP
SDT_X3EA :	0.71	
DB	OEH	;%%CTL AMP GAIN

SDT_X3P0 :		
DB	03D*3	; EDVC COUNT
SDT_X3P1 :		
DB	09D	; MACRO COUNT
SDT_X3P2 :		
DW	9D00H	; CR10
SDT_X3P3 :		
DG	3455H	; CPT2
SDT_X3P5 :		
DW	66FFH	; DRUM BIAS
SDT_X3P6 :		
DG	56CEH	; CPT3
SDT_X3P7 :		
DW	863FH	; CAPSTAN BIAS

DW       0600H       ; LOOP GAIN         SDT_X3P9 :       DW       034CH       ; CAPSTAN KV/KP         SDT_X3PA :       DB       0EH       ;%% CTL AMP GAIN         ,	SDT_X3P9: DW 034CH ; CAPSTAN KV/KP SDT_X3PA: DB 0EH ;%% CTL AMP GAIN ;	SDT_X3P8	:		
DW 034CH ; CAPSTAN KV/KP SDT_X3PA: DB 0EH ;%% CTL AMP GAIN ;	DW 034CH ; CAPSTAN KV/KP SDT_X3PA: DB 0EH ;%% CTL AMP GAIN ;		DW	0600H	; LOOP GAIN
SDT_X3PA:       DB       0EH       ;%% CTL AMP GAIN         ;	SDT_X3PA: DB 0EH ;%% CTL AMP GAIN ;	SDT_X3P9	:		
DB 0EH ;%% CTL AMP GAIN ;	DB 0EH ;%% CTL AMP GAIN ;		DW	034CH	; CAPSTAN KV/KP
; ; FF/REW ; NTSC SP PLAY ; SDT_FFRW: DB 10001001B ; TMC0 COUNT:EN TM1:CLR TM0:CLR DB 00110000B ;%CPTM CPT0-TRG:TM1=CR10 CR12-TRG: ; CTI11,CPT1:↑↓EDGE DB 00010001B ;%INTM1 PBCTL:AN_AMP,PBCTL:↑EDGE	;	SDT_X3PA	:		
; SDT_FFRW: DB 10001001B ; TMC0 COUNT:EN TM1:CLR TM0:CLR DB 00110000B ;%CPTM CPT0-TRG:TM1=CR10 CR12-TRG: ; CTI11,CPT1:↑↓EDGE DB 00010001B ;%INTM1 PBCTL:AN_AMP,PBCTL:↑EDGE	; SDT_FFRW: DB 10001001B ; TMC0 COUNT:EN TM1:CLR TM0:CLR DB 00110000B ;%CPTM CPT0-TRG:TM1=CR10 CR12-TRG: ; CTI11,CPT1:↑↓EDGE		DB	OEH	;%% CTL AMP GAIN
; SDT_FFRW: DB 10001001B ; TMC0 COUNT:EN TM1:CLR TM0:CLR DB 00110000B ;%CPTM CPT0-TRG:TM1=CR10 CR12-TRG: ; CTI11,CPT1:↑↓EDGE DB 00010001B ;%INTM1 PBCTL:AN_AMP,PBCTL:↑EDGE	; SDT_FFRW: DB 10001001B ; TMC0 COUNT:EN TM1:CLR TM0:CLR DB 00110000B ;%CPTM CPT0-TRG:TM1=CR10 CR12-TRG: ; CTI11,CPT1:↑↓EDGE				
; SDT_FFRW: DB 10001001B ; TMC0 COUNT:EN TM1:CLR TM0:CLR DB 00110000B ;%CPTM CPT0-TRG:TM1=CR10 CR12-TRG: ; CTI11,CPT1:↑↓EDGE DB 00010001B ;%INTM1 PBCTL:AN_AMP,PBCTL:↑EDGE	; SDT_FFRW: DB 10001001B ; TMC0 COUNT:EN TM1:CLR TM0:CLR DB 00110000B ;%CPTM CPT0-TRG:TM1=CR10 CR12-TRG: ; CTI11,CPT1:↑↓EDGE		;		
DB       10001001B       ; TMC0 COUNT:EN TM1:CLR TM0:CLR         DB       00110000B       ;%CPTM CPT0-TRG:TM1=CR10 CR12-TRG:         CTI11,CPT1:↑↓EDGE       ; CTI11,CPT1:↑↓EDGE         DB       00010001B       ;%INTM1 PBCTL:AN_AMP,PBCTL:↑EDGE	DB 10001001B ; TMC0 COUNT:EN TM1:CLR TM0:CLR DB 00110000B ;%CPTM CPT0-TRG:TM1=CR10 CR12-TRG: ; CTI11,CPT1:↑↓EDGE		;	FF/REW	; NTSC SP PLAY
DB       10001001B       ; TMC0 COUNT:EN TM1:CLR TM0:CLR         DB       00110000B       ;%CPTM CPT0-TRG:TM1=CR10 CR12-TRG:         CTI11,CPT1:↑↓EDGE       ; CTI11,CPT1:↑↓EDGE         DB       00010001B       ;%INTM1 PBCTL:AN_AMP,PBCTL:↑EDGE	DB 10001001B ; TMC0 COUNT:EN TM1:CLR TM0:CLR DB 00110000B ;%CPTM CPT0-TRG:TM1=CR10 CR12-TRG: ; CTI11,CPT1:↑↓EDGE		;		
DB       00110000B       ;%CPTM CPT0-TRG:TM1=CR10 CR12-TRG:         ; CTI11,CPT1:↑↓EDGE       ;CTI11,CPT1:↑↓EDGE         DB       00010001B       ;%INTM1 PBCTL:AN_AMP,PBCTL:↑EDGE	DB 00110000B ;%CPTM CPT0-TRG:TM1=CR10 CR12-TRG: ; CTI11,CPT1:↑↓ EDGE	SDT_FFRW	:		
; CTI11,CPT1:↑↓ EDGE DB 00010001B ;%INTM1 PBCTL:AN_AMP,PBCTL:↑ EDGE	; CTI11,CPT1:↑↓EDGE		DB	10001001B	; TMC0 COUNT:EN TM1:CLR TM0:CLR
DB 00010001B ;%INTM1 PBCTL:AN_AMP,PBCTL:^ EDGE			DB	00110000B	
			DB	00010001B	
; CFG:1 EDGE <-(01010001B)	; CFG:↑EDGE <-(01010001B)				; CFG:ÎEDGE <-(01010001B)

SDT_FRS0 :		
DB	40D	; EDVC COUNT
SDT_FRS1 :		
DB	08D	; MACRO COUNT
SDT_FRS2 :		
DW	8256H	; CR10
SDT_FRS3 :		
DG	2B72H	; CPT2
SDT_FRS5 :		
DW	66FFH	; DRUM BIAS
SDT_FRS6 :		
DG	56CEH	; CPT3
SDT_FRS7 :		
DW	8678H	; CAPSTAN BIAS
SDT_FRS8 :		
DW	0600H	; LOOP GAIN
SDT_FRS9 :		
DW	0233н	; CAPSTAN KV/KP
SDT_FRSA :		
DB	OEhH	;%% CTL AMP GAIN

SDT_FRL0:		
DB	40D	; EDVC COUNT
SDT_FRL1 :		
DB	08D	; MACRO COUNT
SDT_FRL2 :		
DW	8256H	; CR10
SDT_FRL3 :		
DG	2В72Н	; CPT2
SDT_FRL5 :		
DW	66FFH	; DRUM BIAS
SDT_FRL6 :		
DG	56CEH	; CPT3
SDT_FRL7 :		
DW	8595H	; CAPSTAN BIAS
SDT_FRL8 :		
DW	0600H	; LOOP GAIN
SDT_FRL9 :		
DW	0233H	; CAPSTAN KV/KP

SDT_FRLA :

DB 0EH

;%% CTL AMP GAIN

# 

SDI_FREU ·			:
------------	--	--	---

	DB	40D	;	EDVC COUNT
SDT_FRE1	:			
	DB	08D	;	MACRO COUNT
SDT_FRE2	:			
	DW	8256H	;	CR10
SDT_FRE3	:			
	DG	2B72H	;	CPT2
SDT_FRE5	:			
	DW	66FFH	;	DRUM BIAS
SDT_FRE6	:			
	DG	56CEH	;	CPT3
SDT_FRE7	:			
	DW	86DFH	;	CAPSTAN BIAS
SDT_FRE8	:			
	DW	0600H	;	LOOP GAIN
SDT_FRE9	:			
	DW	0233H	;	CAPSTAN KV/KP
SDT_FREA	:			
	DB	OEH	; ٩	% CTL AMP GAIN

#### 

SDT_FRP0	:			
	DB	40D	;	EDVC COUNT
SDT_FRP1	:			
	DB	08D	;	MACRO COUNT
SDT_FRP2				
	DW	9С40Н	;	CR10
SDT_FRP3				
	DG	3415H	;	СРТ2Н
SDT_FRP5	: DW	CCRRIT		
SDT FRP6		OOFFH	'	DRUM BIAS
_	DG	7BC1H	;	CPT3
SDT FRP7		/ DCIII	'	
—		863H	;	CAPSTAN BIAS
SDT_FRP8	:			
	DW	0600H	;	LOOP GAIN
SDT_FRP9	:			
	DW	0233H	;	CAPSTAN KV/KP
SDT_FRPA	:			
	DB	OEH	; 9	% CTL AMP GAIN
	-			
		CUE		
SDT CUE				
SDI_CUE		10001001B		TMC0 COUNT:EN TM1:CLR TM
	פט	TOOOTOOTD	'	THEO COUNTIEN THIT CLR IN

DB	10001001B	; TMC0 COUNT:EN TM1:CLR TM0:CLR
DB	00110000B	;%CPTM CPT0-TRG:TM1=CR10 CR12-TRG:
		; CTI11,CPT1:↑↓EDGE
DB	00010001B	;%INTM1 PBCTL:AN_AMP,PBCTL:^ EDGE

; CFG:↑EDGE <-(01010001B)

SDT_CUS0 :		
DB	15D	; EDVC COUNT
SDT_CUS1 :		
DB	05D	; MACRO COUNT
SDT_CUS2 :		
DW	7F5CH	; CR10
SDT_CUS3 :		
DG	2A74H	; CPT2
SDT_CUS5 :		
DW	66FFH	; DRUM BIAS
SDT_CUS6 :		
DG	54E8H	; CPT3
SDT_CUS7 :		
DW	8678H	; CAPSTAN BIAS
SDT_CUS8 :		
DW	0600H	; LOOP GAIN
SDT_CUS9 :		
DW	0433H	; CAPSTAN KV/KP
SDT_CUSA :		
DB	11H	;%% CTL AMP GAIN

#### 

SDT_CUL0 :		
DB	09D*2	; EDVC COUNT
SDT_CUL1 :		
DB	09D	; MACRO COUNT
SDT_CUL2 :		
DW	7F5EH	; CR10
SDT_CUL3 :		
DG	2A74H	; CPT2
SDT_CUL5 :		
DW	66FFH	; DRUM BIAS
SDT_CUL6 :		
DG	54E9H	; CPT3
SDT_CUL7 :		
DW	8595H	; CAPSTAN BIAS
SDT_CUL8 :		
DW	0600H	; LOOP GAIN
SDT_CUL9 :		
DW	034CH	; CAPSTAN KV/KP
SDT_CULA :		
DB	12H	;%% CTL AMP GAIN

SDT_CUE0 :		
DB	09D	; EDVC COUNT
SDT_CUE1 :		
DB	09D	; MACRO COUNT
SDT_CUE2 :		
DW	805CH	; CR10
SDT_CUE3 :		
DG	2AC9H	; CPT2
SDT_CUE5 :		
DW	66FFH	; DRUM BIAS
SDT_CUE6 :		
DG	5592H	; CPT3

SDT_CUE7 :		
DW	86DFH	; CAPSTAN BIAS
SDT_CUE8 :		
DW	0600H	; LOOP GAIN
SDT_CUE9 :		
DW	034CH	; CAPSTAN KV/KP
SDT_CUEA :		
DB	12H	;%% CTL AMP GAIN

SDT_CUP0 :		
DB	21D	; EDVC COUNT
SDT_CUP1 :		
DB	07D	; MACRO COUNT
SDT_CUP2 :		
DW	97C0H	; CR10
SDT_CUP3 :		
DG	3295н	; CPT2
SDT_CUP5 :		
	66FFH	; DRUM BIAS
SDT_CUP6 :		
-	652AH	; CPT3
SDT_CUP7 :		
DW	863FH	; CAPSTAN BIAS
SDT_CUP8 :		
DW	0600H	; LOOP GAIN
SDT_CUP9 :		
DW	034CH	; CAPSTAN KV/KP
SDT_CUPA :	1.0	
DB	12H	;%% CTL AMP GAIN

;-----

; CUE  $\rightarrow$  PLAY ;-----

SDT_CUPL :

DB	10001001B	; TMC0 COUNT:EN TM1:CLR TM0:CLR
DB	00110000B	;%CPTM CPT0-TRG:TM1=CR10 CR12-TRG:
		; CTI11,CPT1: $\uparrow \downarrow$ EDGE
DB	00010001B	;%INTM1 PBCTL:AN_AMP,PBCTL:↑EDGE
		; CFG:↑EDGE <-(01010001B)

SDT_CPS0 :		
DB	15D	; EDVC COUNT
SDT_CPS1 :		
DB	05D	; MACRO COUNT
SDT_CPS2 :		
DW	80D9H	; CR10
SDT_CPS3 :		
DG	2AF3H	; CPT2
SDT_CPS5 :		
DW	66FFH	; DRUM BIAS
SDT_CPS6 :		
DG	54E8H	; CPT3
SDT_CPS7 :		
DW	8678H	; CAPSTAN BIAS
SDT_CPS8 :		
DW	0600H	; LOOP GAIN

SDT_CPS9	:		
	DW	0433H	; CAPSTAN KV/KP
SDT_CPSA	:		
	DB	17н	;%% CTL AMP GAIN
	;/////	LP ////////////////////////////////////	
SDT_CPL0			
	DB	09D*2	; EDVC COUNT
SDT_CPL1			
		09D	; MACRO COUNT
SDT_CPL2			
		80D9H	; CR10
SDT_CPL3			
		2AF3H	; CPT2
SDT_CPL5			
	DW	66FFH	; DRUM BIAS
SDT_CPL6	:		
	DG	7137Н	; CPT3
SDT_CPL7	:		
	DW	8595H	; CAPSTAN BIAS
SDT_CPL8	:		
	DW	0600H	; LOOP GAIN
SDT_CPL9			
	DW	034CH	; CAPSTAN KV/KP
SDT_CPLA	:		
	DB	1DH	;%% CTL AMP GAIN

SDT_CPE0 :		
DB	09D	; EDVC COUNT
SDT_CPE1 :		
DB	09D	; MACRO COUNT
SDT_CPE2 :		
DW	8159Н	; CR10
SDT_CPE3 :		
DG	2B1DH	; CPT2
SDT_CPE5 :		
DW	66FFH	; DRUM BIAS
SDT_CPE6 :		_
DG	55E7H	; CPT3
SDT_CPE7 :		
DW	86DFH	; CAPSTAN BIAS
SDT_CPE8 :	0.000	
DW CDEC :	0600н	; LOOP GAIN
SDT_CPE9 :	0.2.4.00	
DW CDW	034CH	; CAPSTAN KV/KP
SDT_CPEA :	1	
DB	1DH	;%% CTL AMP GAIN

SDT_CPP(	) :			
	DB	21D	;	EDVC COUNT
SDT_CPP1	. :			
	DB	07D	;	MACRO COUNT
SDT_CPP2	2 :			
	DW	9940H	;	CR10
SDT_CPP3	:			

	DG	3315н	; CPT2
SDT_CPP5	:		
_	DW	66FFH	; DRUM BIAS
SDT_CPP6			
bb1_crit		652АН	; CPT3
		0 JZAII	/ CF15
SDT_CPP7			
		863FH	; CAPSTAN BIAS
SDT_CPP8	:		
	DW	0600H	; LOOP GAIN
SDT_CPP9	:		
	DW	034CH	; CAPSTAN KV/KP
SDT CPPA	:		
	DB	104	;%% CTL AMP GAIN
	;		
	;	REVIEW	
	;		
SDTREV	:		
	DB	10001001B	; TMC0 COUNT:EN TM1:CLR TM0:CLR
	DB	00110000B	;%CPTM CPT0-TRG:TM1=CR10 CR12-TRG:
			; CTI11, CPT1: $\uparrow \downarrow$ EDGE
	DB	00010001B	;%INTM1 PBCTL:AN_AMP,PBCTL: TEDGE
	סט	000100010	
			; CFG:↑EDGE <-(01010001B)

SDT_RVS0 :		
DB	15D	; EDVC COUNT
SDT_RVS1 :		
DB	05D	; MACRO COUNT
SDT_RVS2 :		
DW	86CEH	; CR10
SDT_RVS3 :		
DG	2CEFH	; CPT2
SDT_RVS5 :		
DW	66FFH	; DRUM BIAS
SDT_RVS6 :		
DG	59DFH	; CPT3
SDT_RVS7 :		
DW	8678H	; CAPSTAN BIAS
SDT_RVS8 :		
DW	0600н	; LOOP GAIN
SDT_RVS9 :		
DW	0433H	; CAPSTAN KV/KP
SDT_RVSA :		
DB	11H	;%% CTL AMP GAIN

SDT_RVL0 :			
DB	09D*2	;	EDVC COUNT
SDT_RVL1 :			
DB	09D	;	MACRO COUNT
SDT_RVL2 :			
DW	860DH	;	CR10
SDT_RVL3 :			
DG	2CAFH	;	CPT2
SDT_RVL5 :			
DW	66FFH	;	DRUM BIAS

SDT_RVL6 :				
D	G	7728H	;	CPT3
SDT_RVL7 :				
D	W	8595H	;	CAPSTAN BIAS
SDT_RVL8 :				
D'	W	0600н	;	LOOP GAIN
SDT_RVL9 :				
D	W	034CH	;	CAPSTAN KV/KP
SDT_RVLA :				
D	В	12н	; 9	5% CTL AMP GAIN

SDT_RVE0 :				
DB	09D	; EDVC COUNT		
SDT_RVE1 :				
DB	09D	; MACRO COUNT		
SDT_RVE2 :				
DW	84CFH	; CR10		
SDT_RVE3 :				
DG	2C45H	; CPT2		
SDT_RVE5 :				
DW	66FFH	; DRUM BIAS		
SDT_RVE6 :				
DG	588AH	; CPT3		
SDT_RVE7 :				
DW	86DFH	; CAPSTAN BIAS		
SDT_RVE8 :				
DW	0600H	; LOOP GAIN		
SDT_RVE9 :				
DW	034CH	; CAPSTAN KV/KP		
SDT_RVEA :				
DB	12H	;%% CTL AMP GAIN		

SDT_RVP0 :		
DB	21D	; EDVC COUNT
SDT_RVP1 :		
DB	07D	; MACRO COUNT
SDT_RVP2 :		
DW	0A240H	; CR10
SDT_RVP3 :		
DG	3615H	; CPT2
SDT_RVP5 :		
DW	66FFH	; DRUM BIAS
SDT_RVP6 :		
DG	6C2AH	; CPT3
SDT_RVP7 :		
DW	863FH	; CAPSTAN BIAS
SDT_RVP8 :		
DW	0600H	; LOOP GAIN
SDT_RVP9 :		
DW	034CH	; CAPSTAN KV/KP
SDT_RVPA :	1.0	
DB	12н	;%% CTL AMP GAIN

;		
;	STILL	; SP/LP/SLP/PAL PLAY
;		
SDT_STIL :		
DB	10001001B	; TMC0 COUNT:EN TM1:CLR TM0:CLR
DB	00110000B	;%CPTM CPT0-TRG:TM1=CR10 CR12-TRG: ; CTI11,CPT1:↑↓EDGE
DB	00010001B	;%INTM1 PBCTL:AN_AMP,PBCTL:↑EDGE ; CFG:↑EDGE <-(01010001B)

SDT_STS0 :		
DB	03D	; EDVC COUNT
SDT_STS1 :		
DB	01H	; MACRO COUNT
SDT_STS2 :		
DW	8315H	; CR10
SDT_STS3 :		
DG	2BB1H	; CPT2
SDT_STS5 :		
DW	66FFH	; DRUM BIAS
SDT_STS6 :		
DG	56CEH	; CPT3
SDT_STS7 :		
DW	8678H	; CAPSTAN BIAS
SDT_STS8 :		
DW	0600H	; LOOP GAIN
SDT_STS9 :		
DW	0233H	; CAPSTAN KV/KP
SDT_STSA :		
DB	17H	;%% CTL AMP GAIN

SDT_STL0 :		
DB	02D	; EDVC COUNT
SDT_STL1 :		
DB	01H	; MACRO COUNT
SDT_STL2 :		
DW	8265H	; CR10
SDT_STL3 :	<b>- - - -</b>	
DG	2B91H	; CPT2
SDT_STL5 :	66221	
DW	66FFH	; DRUM BIAS
SDT_STL6 :	<b>B</b> 2 <b>D</b> 2 <b>:</b>	
DG	73BDH	; CPT3
SDT_STL7 : DW		
SDT STL8:	8595H	; CAPSTAN BIAS
DW	0540H	; LOOP GAIN
SDT STL9:	054011	/ HOOF GAIN
DW	0159н	; CAPSTAN KV/KP
SDT STLA:	0 1 0 7 11	
DB	1DH	;%% CTL AMP GAIN

SDT_STE0 :

DB	01D

; EDVC COUNT

SDT_STE1 :		
DB	01H	; MACRO COUNT
SDT_STE2 :		
DW	8295H	; CR10
SDT_STE3 :		
DG	2BB7H	; CPT2
SDT_STE5 :		
DW	66FFH	; DRUM BIAS
SDT_STE6 :		
DG	56CEH	; CPT3
SDT_STE7 :		
DW	86DFH	; CAPSTAN BIAS
SDT_STE8 :		
DW	0420H	; LOOP GAIN
SDT_STE9 :		
DW	0119H	; CAPSTAN KV/KP
SDT_STEA :		
DB	1DH	;%% CTL AMP GAIN

SDT_STP0 :		
DB	03D	; EDVC COUNT
SDT_STP1 :		
DB	01H	; MACRO COUNT
SDT_STP2 :		
DW	9D00H	; CR10
SDT_STP3 :		
DG	3455H	; CPT2
SDT_STP5 :		
DW	66FFH	; DRUM BIAS
SDT_STP6 :		
DG	7BC1H	; CPT3
SDT_STP7 :		
DW	863FH	; CAPSTAN BIAS
SDT_STP8 :		
DW	0600H	; LOOP GAIN
SDT_STP9 :		
DW	0166н	; CAPSTAN KV/KP
SDT_STPA :		
DB	1DH	;%% CTL AMP GAIN

\$ EJECT

SERVOSUB CSEG FIXED

;------; ; • TMC0 (Timer 0 Control register) ; • CPTM (Capture mode register) ; • INTM1 (External capture input mode register) ; ; • EDVC (Event divider control register) ; • CR12 Macro service counter ; • REF30Hz (CR10) ; • Drum speed target value (CPT2H) ; • Drum speed target value (CPT2L)

• Drum bias adding value ; • Capstan speed target value (CPT3) ; • Capstan bias adding value ; • Loop gain ; • Clear filter ; ; • Clear capstan error amount ; ;-----YVTBL_00 :;C ;//// Interrupt control //////// DI ; TO BE REFERRED AT SERVO RELATION CONTROL YVTBL_10 : ;///// Address setting //////// MOV A,RVSRVCD AND A,#0F0H ; SERVO CODE LOW-ORDER MASK MOVG WHL, #SDT PLAY ;%SET PLAY A, #CVFFRW2Hrs ; FF/REW(2Hrs)? CMP BNE \$YVTBL_11 ; No MOVG WHL, #SDT_FR2Hrs ;% Yes YVTBL_11 :;B A, #CVFFRW6Hrs ; FF/REW(6Hrs)? CMP BNE \$YVTBL_12 ; No MOVG WHL, #SDT_FR6Hrs :% Yes YVTBL_12 :;B A, #CVFFRWX3 ; FF/REW(2Hrs*3)? CMP \$YVTBL_13 ; No BNE MOVG WHL, #SDT_FRX3 ;% Yes YVTBL_13 :;B CMP A,#CVFFREW BNE \$YVTBL_14 ; FF/REW? ; No MOVG WHL, #SDT_FFRW ;% Yes YVTBL_14 :;B A, #CVCUE ; CUE? CMP BNE \$YVTBL_15 ; No MOVG WHL, #SDT__CUE ;% Yes YVTBL_15 :;B CMP A,#CVREV \$YVTBL_16 ; REVIEW? BNE ; No MOVG WHL, #SDT__REV ;% Yes YVTBL_16 :;B A,#CVSTILL ; STILL? CMP BNE \$YVTBL_17 ; No MOVG WHL, #SDT_STIL ;% Yes YVTBL_17 :;B ; RVS PLAY? ; No CMP A, #CVRVS BNE \$YVTBL_18

```
MOVG WHL_#SDT_RVS
                                      ;% Yes
YVTBL_18 :;B
        CMP
              A, #CVCUPL
                                      : CUE \rightarrow PLAY?
                                      ; No PLAY
        BNE
             $YVTBL_19
        MOVG WHL, #SDT_CUPL
                                      ;% Yes
YVTBL_19 :;B
        CMP
              A,#CVFR6HVD
                                      ; 6Hrs PLAY VD OUT ?
        BNE
              $YVTBL_20
                                      ; NO PLAY
        MOVG WHL, #SDT_6HVD
                                     ;% Yes
YVTBL_20 :
       ;//// TMC0 Read /////
        MOV
             A,[HL+]
        MOV
             TMC0,A
YVTBL 30:
        ;//// CPTM Read /////
        MOV
             A,[HL+]
        MOV
             CPTM,A
YVTBL_40 :
        ;//// INTM1 Read /////
        MOV
              A,[HL+]
        MOV
             INTM1,A
YVTBL_50 :
        ;////Address adjustment ////////
        MOV
              A,RVFSRV_2
                                      ;
        AND
             A,#00000011B ; Read running mode
        MOVW BC,#00H
                                      ; Set address adding value (SP)
        CMP
              A,#CVLP
                                      ; LP?
        BNE
              $YVTBL_51
                                      ; No
        MOVW BC, #SDT_PLL0-SDT_PLS0
                                     ;% Yes (Number of table byte x 1)
YVTBL_51 :;B
        CMP
              A,#CVSLP
                                      ; SLP?
        BNE
              $YVTBL_52
                                      ; No
        MOVW BC, #SDT_PLE0-SDT_PLS0
                                      ;% Yes (Number of table byte x 2)
YVTBL_52 :;B
                                      ; PAL?
        CMP
              A,#CVPAL
        BNE
              $YVTBL_53
                                      ; No
        MOVW BC,#SDT_PLP0-SDT_PLS0 ;% Yes (Number of table byte x 3)
YVTBL_53 :;B
        MOVW DE, BC
                                     ;% Address adding
                                      ; %
        MOV
              т,#О
        ADDG WHL, TDE
```

; SET PG VALUE

YVTBL_60 :;B MOV A,[HL+] ; ;ADD%% DEC Α MOV EDVC,A YVTBL_70 : MOV A,[HL+] MOV RVMCCR12,A MOV RVCRAM,A YVTBL_80 : MOVW AX,[HL+] ; WRITE INTO CR10 IS PERFORMED IN ; INTCR10 ROUTINE. MOVW RVBCR10,AX ; (TM1 MAY OVERFLOW DEPENDING ON WRITE ; TIMING!)

#### YVTBL_90 :

;////CPT2 ///////////

MOVG TDE,WHL MOVG WHL,[TDE+] MOVG RVDFRF,WHL MOVG WHL,TDE

CALL !YPGADCHG

#### YVTBL_B0 :

;////D-BIAS ////////

MOVW AX,[HL+] MOVW RVDBAS,AX

#### YVTBL_C0 :

MOVG TDE,WHL MOVG WHL,[TDE+] MOVG RVCFRF,WHL MOVG WHL,TDE

#### YVTBL_D0 :

;/////C-BIAS ////////

MOVW AX,[HL+] MOVW RVCBAS,AX

#### YVTBL_E0 :

;/////C-GAIN ADJUSTMENT /////

MOVW AX,[HL+] MOVW RVC_Kmp,AX

```
YVTBL_F0 :
       ;///// C-Kv/Kp //////
        MOVW AX,[HL+]
        MOVW RVC_Kvp,AX
                                     ;
YVTBL_F1 :
       ;/////PB_CTL gain //////
        MOV
            A,[HL]
                                      ;
        MOV
            CTLM,A
                                      ;
YVTBL_G0 :
                               =
       ;/////Clear filter /////
                                     ; CAPSTAN SPEED/PHASE
       MOVW RVERCMX,#0
                                     ;
       MOVW RVERCMX_1,#0
                                     ;
        MOVW RVERCMX_bY,#0
                                     ;
        MOVW RVERCMX_bY+2,#0
                                     ;
                              ; CAPSTAN PHASE FILTER
       MOVW RVERCP,#0
        MOVW RVERCP_1,#0
                                     ;
       MOVW RVERCP_by,#0
                                      ;
       MOVW RVERCP_bY+2,#0
                                     ;
YVTBL_H0 :
        ;/////Clear C-Error //////
        MOVW RVERCP_Y,#0
                                     ; CAPSTAN PHASE ERROR
       MOVW RVERCP_1,#0 , CAPSIAN PHASE ERROR
MOVW RVERCMX_Y+2,#0 ; CAPSIAN SPEED ERROR
YVTBL_I0 :
```

```
;/////Interrupt control ////////
```

ΕI RET

END

[MEMO]

# APPENDIX REVISION HISTORY

Edition	Revisions	Chapter	
Second	Addition of $\mu$ PD784915A	Throughout	
	Addition of related document number	Introduction	
	The following figures are changed.	CHAPTER 3	
	Figure 3-4 Use of Event Counter (EC) is corrected.	EXAMPLES OF	
	• Figure 3-5 Event Counter (EC) Operation Timing is corrected.	STATIONARY TYPE	
	Figure 3-6 Use of Timer 0 is corrected.	VCR SERVO CONTROL	
	• Figure 3-7 Head Switching Signal (V-HSW) Timing (PTO00) is corrected.		
	Figure 3-19 Timer 1 Peripheral Circuit is corrected.		
	• Figure 3-27 Use of Timer for Drum Phase Control (for recording) is corrected.		
	• Figure 3-28 Drum Phase Control Timing (for recording) is corrected.		
Third	The $\mu$ PD784928, 784928Y Subseries and the $\mu$ PD784915B, 784916B are added.	Throughout	
	Document numbers of related documents are added or corrected.	Introduction	
	CHAPTER 1 OUTLINE OF NEC VCR SERVO MICROCONTROLLER	CHAPTER 1	
	PRODUCTS is added.	OUTLINE OF NEC	
		VCR SERVO	
		MICROCONTROLLER	
		PRODUCTS	
	Table 2-1 Differences among $\mu$ PD784915 Subseries Products is added.	CHAPTER 2	
		OUTLINE OF	
		$\mu$ PD784915 SUBSERIES	
	CHAPTER 3 OUTLINE OF µPD784928, 784928Y SUBSERIES is added.	CHAPTER 3	
		OUTLINE OF	
		μPD784928, 784928Y	
		SUBSERIES	

The history of revisions hitherto made is shown as follows.

[MEMO]



# Facsimile Message

Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever you'd like to report errors or suggest improvements to us.

Tel.

FAX

Address

From:

Name

Company

Thank you for your kind support.

North America NEC Electronics Inc. Corporate Communications Dept. Fax: 1-800-729-9288 1-408-588-6130	Hong Kong, Philippines, Oceania NEC Electronics Hong Kong Ltd. Fax: +852-2886-9022/9044	Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-250-3583
Europe NEC Electronics (Europe) GmbH Technical Documentation Dept. Fax: +49-211-6503-274	<b>Korea</b> NEC Electronics Hong Kong Ltd. Seoul Branch Fax: 02-528-4411	Japan NEC Corporation Semiconductor Solution Engineering Division Technical Information Support Dept. Fax: 044-548-7900
<b>South America</b> NEC do Brasil S.A. Fax: +55-11-6465-6829	<b>Taiwan</b> NEC Electronics Taiwan Ltd. Fax: 02-719-5951	1 ax. 011 010 7 000

I would like to report the following error/make the following suggestion:

Document title:

Document number: _____ Page number: _____

If possible, please fax the referenced page or drawing.

<b>Document Rating</b>	Excellent	Good	Acceptable	Poor
Clarity				
Technical Accuracy				
Organization				