ZNREF040

4V LOW POWER PRECISION REFERENCE SOURCE

The ZNREF040 is a monolithic integrated circuit providing a precise stable reference voltage of 4.01V at 500 μ A.

The circuit features a knee current of 150µA and operation over a wide range of temperatures and currents.

The ZNREF040 is available in a 3-pin metal can package with pin 2 offering a trim facility whereby the output voltage can be adjusted as shown in Fig.1. This facility is used when compensating for system errors or setting the reference output to a particular value. When the trim facility is not used, pin 2 should be left open circuit.

FEATURES

- Trimmable Output
- Excellent Temperature Stability
- Low Output Noise Figure
- Available in Two Temperature Ranges
- 1 and 2% Initial Voltage Tolerance Versions Available
- No External Stabilising Capacitor required in most cases
- Low Slope Resistance

Pin connections (bottom view)

ORDERING INFORMATION

Device type Tol. (%)		Temperature Range					
ZNREF040 A1	1	-55°C to +125°C					
ZNREF040 C1	1	0°C to +70°C					
ZNREF040 C2	2	0°C to +70°C					

ABSOLUTE MAXIMUM RATINGS

Reference current
Power dissipation
Operating temperature range
Storage temperature range
Soldering temperature for a

75mA*
300mW
See ordering information
-55°C to +175°C

maximum time of 10s Within $\frac{1}{16}$ in of the seating plane Within $\frac{1}{32}$ in of the seating plane $\frac{300 \, ^{\circ}\text{C}}{265 \, ^{\circ}\text{C}}$

*Above 25°C this figure should be linearly derated to 20mA at +125°C.

Fig.1 ZNREF040 application circuit

2-54

TEMPERATURE DEPENDENT ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Initial voltage tolerance %	Grade A - 55 to 125°C		Grade C 0 to 70°C		Units
			Typ.	Max.	Тур.	Max.	
Output voltage change over relevant temperature range (See note (a))	ΔV_{REF}	1 & 2	25.6	36	4.2	14	mV
Output voltage temperature coefficient (See note (b))	TCV _{REF}	1 & 2	35	50	15	50	ppm/°C

ELECTRICAL CHARACTERISTICS (at T_{amb} = 25 °C and Pin 2 o/c unless otherwise specified).

Parameter	Symbol	Min.	Тур.	Max.	Units	Comments
Output voltage 1% tolerance (A1 C1) 2% tolerance (C2)	V _{REF}	3.97 3.93	4.01 4.01	4.05 4.09	V	I _{REF} = 500μA
Output voltage adjustment range	ΔV _{TRIM}	-	± 5	_	%	$R_T = 100k\Omega$
Change in TCV _{REF} with output adjustment	TC _Δ V _{TRIM}	_	0.8	-	ppm/°C/%	
Operating current range	I _{REF}	0.15	-	75	mA	See note (c)
Turn-on time Turn-off time	t _{on} t _{off}	_ _	40 0.3	-	μs	$R_L = 1k\Omega$
Output voltage noise (over the range 0.1 to 10Hz)	e _{np-p}	-	50	_	μV	Peak to peak measurement
Slope resistance	R _{REF}	_	2	3	Ω	I _{REF} 0.5mA to 5mA, See note (d)

NOTES

(a) Output change with temperature (ΔVREF) The absolute maximum difference between the maximum output voltage and the minimum output voltage over the specified temperature range

$$\Delta V_{REF} = V_{max} - V_{min}$$

(b) Output temperature coefficient (TCVREF) The ratio of the output change with temperature to the specified temperature range expressed in ppm/°C.

$$TCV_{REF} = \frac{\Delta V_{REF} \times 10^6}{V_{REF} \times \Delta T} ppm/^{\circ}C$$

 ΔT = Full temperature change.

(c) Operating current (IREF)

Maximum operating current must be derated as indicated in maximum ratings.

(d) Slope resistance (RREF)

The slope resistance is defined as RREF = change in VREF overspecified current range Δ IREF = 5 - 0.5 = 4.5mA (typically)

(e) Line regulation

The ratio of change in output voltage to the change in input voltage producing it.

$$\frac{R_{REF} \times 100}{V_{REF} \times R_{S}}$$
 %/V Rs = Source resistance

Fig.4 IREF derating for ZNREF040