ZNREF040 ## **4V LOW POWER PRECISION REFERENCE SOURCE** The ZNREF040 is a monolithic integrated circuit providing a precise stable reference voltage of 4.01V at 500 μ A. The circuit features a knee current of 150µA and operation over a wide range of temperatures and currents. The ZNREF040 is available in a 3-pin metal can package with pin 2 offering a trim facility whereby the output voltage can be adjusted as shown in Fig.1. This facility is used when compensating for system errors or setting the reference output to a particular value. When the trim facility is not used, pin 2 should be left open circuit. #### **FEATURES** - Trimmable Output - Excellent Temperature Stability - Low Output Noise Figure - Available in Two Temperature Ranges - 1 and 2% Initial Voltage Tolerance Versions Available - No External Stabilising Capacitor required in most cases - Low Slope Resistance Pin connections (bottom view) #### ORDERING INFORMATION | Device type Tol. (%) | | Temperature Range | | | | | | |----------------------|---|-------------------|--|--|--|--|--| | ZNREF040 A1 | 1 | -55°C to +125°C | | | | | | | ZNREF040 C1 | 1 | 0°C to +70°C | | | | | | | ZNREF040 C2 | 2 | 0°C to +70°C | | | | | | #### **ABSOLUTE MAXIMUM RATINGS** Reference current Power dissipation Operating temperature range Storage temperature range Soldering temperature for a 75mA* 300mW See ordering information -55°C to +175°C maximum time of 10s Within $\frac{1}{16}$ in of the seating plane Within $\frac{1}{32}$ in of the seating plane $\frac{300 \, ^{\circ}\text{C}}{265 \, ^{\circ}\text{C}}$ *Above 25°C this figure should be linearly derated to 20mA at +125°C. Fig.1 ZNREF040 application circuit 2-54 #### **TEMPERATURE DEPENDENT ELECTRICAL CHARACTERISTICS** | Parameter | Symbol | Initial
voltage
tolerance
% | Grade A
- 55 to 125°C | | Grade C
0 to 70°C | | Units | |--|--------------------|--------------------------------------|--------------------------|------|----------------------|------|--------| | | | | Typ. | Max. | Тур. | Max. | | | Output voltage change over relevant temperature range (See note (a)) | ΔV_{REF} | 1 & 2 | 25.6 | 36 | 4.2 | 14 | mV | | Output voltage
temperature coefficient
(See note (b)) | TCV _{REF} | 1 & 2 | 35 | 50 | 15 | 50 | ppm/°C | ### ELECTRICAL CHARACTERISTICS (at T_{amb} = 25 °C and Pin 2 o/c unless otherwise specified). | Parameter | Symbol | Min. | Тур. | Max. | Units | Comments | |---|-------------------------------------|--------------|--------------|--------------|----------|---| | Output voltage
1% tolerance (A1 C1)
2% tolerance (C2) | V _{REF} | 3.97
3.93 | 4.01
4.01 | 4.05
4.09 | V | I _{REF} = 500μA | | Output voltage adjustment range | ΔV _{TRIM} | - | ± 5 | _ | % | $R_T = 100k\Omega$ | | Change in TCV _{REF} with output adjustment | TC _Δ V _{TRIM} | _ | 0.8 | - | ppm/°C/% | | | Operating current range | I _{REF} | 0.15 | - | 75 | mA | See note (c) | | Turn-on time
Turn-off time | t _{on}
t _{off} | _
_ | 40
0.3 | - | μs | $R_L = 1k\Omega$ | | Output voltage noise (over the range 0.1 to 10Hz) | e _{np-p} | - | 50 | _ | μV | Peak to peak measurement | | Slope resistance | R _{REF} | _ | 2 | 3 | Ω | I _{REF} 0.5mA
to 5mA,
See note (d) | #### NOTES #### (a) Output change with temperature (ΔVREF) The absolute maximum difference between the maximum output voltage and the minimum output voltage over the specified temperature range $$\Delta V_{REF} = V_{max} - V_{min}$$ # (b) Output temperature coefficient (TCVREF) The ratio of the output change with temperature to the specified temperature range expressed in ppm/°C. $$TCV_{REF} = \frac{\Delta V_{REF} \times 10^6}{V_{REF} \times \Delta T} ppm/^{\circ}C$$ ΔT = Full temperature change. #### (c) Operating current (IREF) Maximum operating current must be derated as indicated in maximum ratings. #### (d) Slope resistance (RREF) The slope resistance is defined as RREF = change in VREF overspecified current range Δ IREF = 5 - 0.5 = 4.5mA (typically) #### (e) Line regulation The ratio of change in output voltage to the change in input voltage producing it. $$\frac{R_{REF} \times 100}{V_{REF} \times R_{S}}$$ %/V Rs = Source resistance Fig.4 IREF derating for ZNREF040