128K X 8 SRAM

FEATURES

- Access times of 15,20 ns
- Fast output enable (tdoe) for cache applications
- Low active power: 500 mW (Typical)
- Drives a 50 pF load vs. 30 pF Industry-standard load
- Low standby power
- Fully static operatio n, no clock or refresh required
- TTL Compatible Inputs and Outputs
- Single +5V power supply
- Package in Industry-standard 32-pin SOJ and 32-pin TSOP¹
- · Industrial and military temperature range

FUNCTIONAL DESCRIPTION

The ASI AS5C1008DJ is a high speed, low power, 128K word by 8-bit CMOS static RAM. It is fabricated using ASI's high performance CMOS, double metal technology. This highly reli-

able process coupled with innovative circuit design techniques, yields access times as fast as 15ns (Max).

When Chip Enable $\overline{(CE)}$ is HIGH, the device assumes a standby mode at which the power dissipation can be reduced down to 75 mW (max) at CMOS input levels.

Easy memory expansion is provided by using asserted LOW $\overline{\text{CE}}$ and asserted HIGH $\overline{\text{CE}}_2$ and asserted LOW write enable $\overline{\text{(WE)}}$ controls both writing and reading of the memory.

The AS5C1008DJ is pin-compatible with other 128K X 8 SRAM's in the SOJ, and TSOP package.

Selection Guide

	AS5C1008DJ-15	AS5C1008DJ-20
Maximum Access Time (ns)	15	20
Maximum Operating Current (mA)	140	130
Maximum Standby Current (mA)	25	25

Note:

10 ns device available in SOJ, only.

AS5C1008E REV. 11/97 5-9

Austin Semiconductor, Inc., reserves the right to change products or specifications without notice

ABSOLUTE MAXIMUM RATINGS

$\textbf{Electrical Characteristics} \ \ \text{Over the operating Range (-40°C \le TA \le 85°C, V}_{cc} = 5V \pm 10\%) \ - Industrial$

Symbol	Parameter	Test Conditions	AS5C1008DJ-15		AS5C1008DJ-20		Unit
- arameter		rest conditions	Min.	Max.	Min.	Max.	Ullit
I _{CC1}	Dynamic Operating	V _{CC} = Max., I _{OUT} = mA,		115		110	mΑ
	Current	$\overline{CE}_1 = V_{IL}$ and $CE_2 = V_{IH}$, $f = fmax$					
I _{CC2}	Operating Current	V _{CC} = Max., I _{OUT} = mA,		90		90	mΑ
		$\overline{CE}_1 = V_{IL}$ and $CE_2 = V_{IH}$, $f = 0$					
I _{SB1}	TTL Standby Current	$V_{CC} = Max., V_{IN} = V_{IH} \text{ or } V_{IL}, \overline{CE}_1$		30		30	mΑ
	-TTL Inputs	V_{IH} or $CE_2 = V_{IL}$, $f=fmax$					
		$V_{CC} = Max., \overline{CE}_{1} \ge V_{CC} -0.2V, or$		15		15	mΑ
	-CMOS Inputs	$CE_2 \le 0.2V$, $V_{IN} \ge V_{CC}$ -0.2V or					
		$V_{1N} \le 0.2V$, f = 0					
ILI	Input Leakage Current	$GND \le V_{IN} \le V_{CC}$	-1	1	-1	1	μА
I _{LO}	Output Leakage Current	$GND \le V_{OUT} \le V_{CC}$	-1	1	-1	1	μА
		Output Disabled					
V _{OH}	Output High Voltage	V _{CC} = Min., I _{OH} = -4.0 mA	2.4		2.4		V
V _{OL}	Output Low Voltate	V _{CC} = Min., I _{OL} = 8.0 mA		0.4		0.4	V
V _{IH}	Input High Voltage		2.2	Vcc	2.2	Vcc	V
				+0.5		+0.5	
V _{IL}	Input Low Voltage ³		-0.5	0.8	-0.5	0.8	V

Capacitance4

Symbol	Description	Max.	Unit
C _{IN}	Input Capacitance	5	pF
C _{IO}	I/O Capacitance	5	pF

Notes:

- 2. No more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
- 3. $V_{\rm IL}$ = -3.0 V for pulse width less than 3 ns.
- 4. Tested initially and after any design or process changes that may effect these parameters.
- 5. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 3.0 V and output loading specified in AC Test Loads and Waveforms *Figure* (a).
- 6. Tested with the load in AC Test Loads and Waveforms Figure (b). Transition is measured ±500mV from steady state voltage.

AS5C1008DJ REV. 11/97 DS000062 Austin Semiconductor, Inc., reserves the right to change products or specifications without notice

Electrical Characteristics Over the operating Range (-55 $^{\circ}$ C \leq TA \leq 125 $^{\circ}$ C, V_{cc}=5V \pm 10%) - *Military Temps*.

Symbol	Parameter	Test Conditions	AS5C1008DJ-15		AS 5C1008D J-20		Unit
Symbol	Parameter	rest Conditions	Min. Max. Min.		Min.	Max.	
I _{CC1}	Dynamic Operating	V _{CC} = Max., I _{OUT} = mA,		140		130	m A
	Current	$\overline{CE}_1 = V_{IL}$ and $CE_2 = V_{IH}$, $f = fmax$					
I _{CC2}	Operating Current	V _{CC} = Max., I _{OUT} = mA,		100		100	m A
		$\overline{CE}_1 = V_{IL}$ and $CE_2 = V_{IH}$, $f = 0$					
I _{SB1}	TTL Standby Current	$V_{CC} = Max., V_{IN} = V_{IH} \text{ or } V_{IL}, \overline{CE}_1$		40		40	m A
	-TTL Inputs	V _{IH} or CE ₂ = V _{IL} , f=fmax					
I _{SB2}	CMOS Standby Current	V _{CC} = Max., CE_{1 ≥} V_{CC} -0.2V , or		25		25	m A
-CMOS Inputs		$CE_2 \le 0.2V, V_{IN} \ge V_{CC}$ -0.2V or					
		$V_{1N} \le 0.2V$, f = 0					
ILI	Input Leakage Current	GND ≤ V _{IN} ≤ V _{CC}	-1	1	-1	1	μΑ
I _{LO}	Output Leakage Current	$GND \leq V_{OUT} \leq V_{CC}$	-1	1	-1	1	μΑ
		Output Disabled					
V _{OH}	Output High Voltage	V _{CC} = Min., I _{OH} = -4.0 mA	2.4		2.4		٧
V _{OL}	Output Low Voltate	V _{CC} = Min., I _{OL} = 8.0 mA		0.4		0.4	٧
V _{IH}	Input High Voltage		2.2	Vcc	2.2	Vcc	٧
				+0.5		+0.5	
V _{IL}	Input Low Voltage ³		-0.5	0.8	-0.5	0.8	V

Switching Characteristics Over the Operating Range 7,8,9,10

Parameter	Description	AS5C10	AS5C1008DJ-15		AS5C1008DJ-20	
	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle						
t _{RC}	Read Cycle Time	15		20		ns
t _{AA}	Address Access Time		15		20	ns
t _{oha}	Output Hold Time	3		3		ns
t _{ACE1} , t _{ACE2}	CE ₁ , CE ₂ Access Time		15		20	ns
t _{DOE}	OE Access Time		7		8	ns
t _{LZOE}	OE to Low-Z Output	0		0		ns
t _{HZOE} 6	OE to High-Z Output		6		7	ns
t _{LZCE1} , t _{LZCE2}	CE ₁ , CE ₂ to Low-Z Output	3		3		ns
t _{HZCE1} , t _{HZCE2}	CE₁, CE₂ to High-Z Output		8		9	ns
t _{PU}	CE ₁ , CE ₂ to Power Up	0		0		ns
t _{PD}	CE ₁ , CE ₂ to Power Down		15		20	ns
Write Cycle 11	•	•				
t _{wc}	Write Cycle Time	15		20		ns
t _{SCE1,} t _{SCE2}	E1, t _{SCE2}			12		ns
t _{AW}	Address to Set-up Time to Write End			12		ns
t _{HA}	Address Hold to Write End			0		ns
t _{SA}	Address Set-up Time			0		ns
t _{pwe1} 12	WE Pulse Width (OE = HIGH)			12		ns
t _{pwe2}	WE Pulse Width (OE = LOW)	12		15		ns
t _{SD}	Data Set-up to Write End			10		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE} 6	WE LOW to High-Z Output		7		9	ns
t _{LZWE}	WE HIGH to Low-Z Output	2		2		ns

Notes:

- 7. WE is HIGH for a Read Cycle.
- 8. The device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, $CE_2 = V_{IH}$.
 9. Address is valid prior to or coincident with \overline{CE} LOW transitions.
- 10. I/O will assume the High-Z state if $\overline{OE} \ge V_{IH}$.

 11. The internal write time is defined by the overlap of \overline{CE}_1 LOW,

CE2 HIGH and WE LOW. All signals must be in valid states to initiate a write, but any signal can be deasserted to terminate the write. The Data Input Set-up and Hold timing are referenced to the rising or falling edge of the signal that terminates the write. 12. Tested with $\overline{\text{OE}}$ HIGH.

Pin Descriptions

A₀ - A₁₆: Address Inputs

These 17 address inputs select one of the 131,072 8-bit words in the RAM.

CE₁: Chip Enable 1 Input

 $\overline{\text{CE}}_1$ is asserted LOW. The Chip Enable 1 is asserted LOW to read from or write to the device. If Chip Enable 1 is deasserted, the device is deselected and is in a standby power mode. The I/O pins will be in the high-impedance state when the device is deselected.

CE2: Chip Enable 2 Input

 ${\rm CE_2}$ is asserted HIGH. The Chip Enable 2 is asserted HIGH to read from or write to the device. If Chip Enable 2 is deasserted, the device is deselected and is in a standby power mode. The I/O pins will be in the high-impedance state when the device is deselected.

OE: Output Enable Input

The Output Enable input is asserted LOW. If the Output Enable is asserted LOW while \overline{CE}_1 is asserted (LOW) and \overline{CE}_2 is asserted (HIGH) and \overline{WE} is deasserted (HIGH), data from the SRAM will be present on the I/O pins. The I/O pins will be in the high-impedance state when \overline{OE} is deasserted.

WE: Write Enable Input

The Write Enable input is asserted LOW and controls read and write operations. When \overline{CE}_1 and \overline{WE} are both asserted (LOW) and CE_2 is asserted (HIGH) input data present on the I/O pins will be written into the selected memory location.

I/O₀ - I/O₇: Common Input/Output Pins GND: Ground

Switching Waveforms

Read Cycle No. 1 (\overline{CE}_1 = LOW, \overline{CE}_2 = HIGH, \overline{OE} = LOW, \overline{WE} = HIGH)

AS5C1008DJ REV. 11/97 DS000062 5-13

Austin Semiconductor, Inc., reserves the right to change products or specifications without notice

Switching Waveforms (continued)

Write Cycle No.1 ($\overline{\text{CE}}_1$, or CE_2 controlled, $\overline{\text{OE}}$ is HIGH or LOW: $\overline{\text{CE}}_1$ or CE_2 Terminates Write)

Write Cycle No.2 ($\overline{\text{WE}}$ controlled, $\overline{\text{OE}}$ is HIGH, $\overline{\text{CE}}_1$ is LOW, and CE_2 is HIGH: $\overline{\text{WE}}$ Terminates Write)

Write Cycle No.3 ($\overline{\text{WE}}$ controlled, $\overline{\text{OE}}$ is LOW, $\overline{\text{CE}}_2$ is HIGH, $\overline{\text{CE}}_1$ is LOW: $\overline{\text{WE}}$ Terminates Write)

AS5C1008DJ REV. 11/97 DS000062 5-14

Truth Table

Mode	WE	$\overline{\text{CE}}_1$	CE ₂	ŌĒ	I/O	I_{CC}
Standby	X	Н	X	X	High-Z	I_{SB1}, I_{SB2}
Standby	X	X	L	X	High-Z	I_{SB1}, I_{SB2}
Selected/Output Disabled	Н	L	Н	Н	High-Z	I_{CC1}, I_{CC2}
Read	Н	L	Н	L	D_{OUT}	I_{CC1}, I_{CC2}
Write	L	L	Н	X	$\mathrm{D_{IN}}$	I_{CC1}, I_{CC2}

Package Diagrams

32-Pin (400-Mil) Small Outline J-Bend (SOJ)

32-Pin Thin Small Outline Package (TSOP)

