
				1.00	. 4												
		T						RE	VIS	ION	S						
And the second of the second o		Ī	.TR			DE	SCR	PTIC	N			DA	TE	A	PPF	ιονι	ΕD
± il g v −v. ¹ · ·																	
1 / F																	
		•	•									•		•			
							•										
																v	
	1 1		+	-1	1	_				-			_	_	_	_	_
PAGE	++	╁╴	++	╁	Н	Н	\dashv	+	╁╌	H	+		Н	-	\dashv	╁	十
REV STATUS REV		土								口			口		二	1	丰
OF PAGES PAGES	2 3		5 6	7	8	9	_	1 12		Ш			Ш				Ţ
Defense Electronics	RAEP	ARE	D BY	/-	10	,		MI	LI	TA	RY		R	A	W	IN	G
Supply Center Dayton, Ohio	CHEC			<u>ara</u>			7	This all D	draw epart	ing is ments	avali and	able Agen	for icies	use of t	by the		
	Da	Q	<u>ق بر(</u>	ر مرو	<u>\$</u>	<u>}</u>	_		M	CROC	Defens IRCUI	T. D	IGIT	AL /	ADVA	NCED	DU/
	ADDD	gve	9 194		/		1	TITL	E:].	-OF-4 ONOLI	DECO THIC	DER/ SILI	DEMU CON	ILTII	PLEX	ER	
Original date		471	L/II						1.14								
Original date of drawing:	SIZE		ODE	<u>ملا</u> IDEN	NT.	NO	+	DWG						7	Ē	 	
Original date of drawing: 19 JUNE 1987	SIZE A	C	67			NO	·	DWG			96			37	55	3	

<u>DISTRIBUTION STATEMENT A.</u> Approved for public release; distribution is unlimited. **DESC FORM 193 MAY 86**

Powered by ICminer.com Electronic-Library Service CopyRight 2003

- 1. SCOPE
- 1.1 Scope. This drawing describes device requirements for class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices".
 - 1.2 Part number. The complete part number shall be as shown in the following example:

1.2.1 Device type. The device type shall identify the circuit function as follows:

Device type Generic number Circuit function

O1 54ACT139 Dual 1-of-4 decoder/demultiplexer

1.2.2 <u>Case outlines</u>. The case outlines shall be as designated in appendix C of MIL-M-38510, and as follows:

Outline letter

E D-2 (16-lead, 1/4" x 7/8"), dual-in-line package
F F-5 (16-lead, 1/4" x 3/8"), flat package
C-2 (20-terminal, .350" x .350"), square chip carrier package

1.3 Absolute maximum ratings.

Supply voltage range 1/	-0.5 V dc to +6.0 V dc
DC input voltage 1/	-0.5 V dc to V _{CC} +0.5 V dc
DC output voltage 1/	-0.5 V dc to V _{CC} +0.5 V dc
Clamp diode current	±20 mA
DC output current (per pin)	±50 mA
DC VCC or GND current (per pin)	±100 mA
Storage temperature range	- 65° C to 150°C
Maximum power dissipation (PD)	500 เทฟ
Lead temperature (soldering, 10 seconds)	+245°C
Thermal resistance, junction-to-case (Q _{JC}):	
Cases E and F	See MIL-M-38510, appendix C
Case 2	60°C/W 2/
Junction temperature (T_J) $\underline{3}/$	+175°C -

1/ Unless otherwise specified, all voltages are referenced to GND.

 $\overline{2}$ / When a thermal resistance value is included in MIL-M-38510, appendix C, it shall supersede the value stated herein.

3/ Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with method 5004 of MIL-STD-883.

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A	67268	DWG NO. 5962-875	53
DAYTON, OHIO		REV	PAGE	2

•	

1.4 Recommended operating conditions.

2. APPLICABLE DOCUMENTS

2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510

Microcircuits, General Specification for.

STANDARD

MILITARY

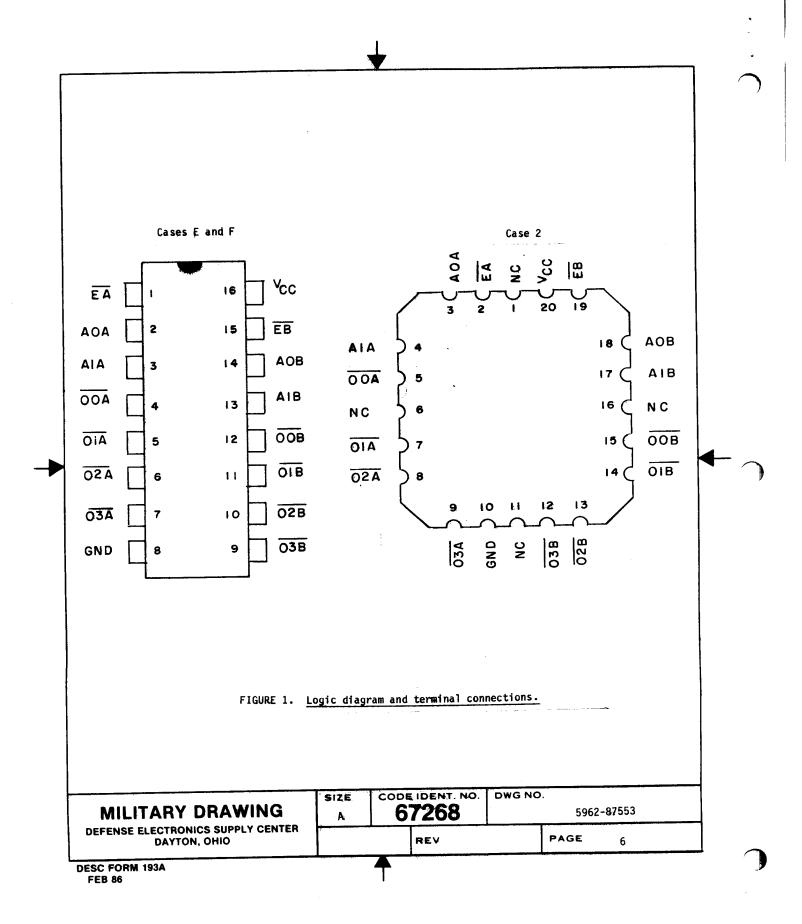
MIL-STD-883

Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

- 2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.
 - 3. REQUIREMENTS
- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
- 3.2.1 Logic diagram and terminal connections. The logic diagram and terminal connections shall be as specified on figure 1.
 - 3.2.2 Truth tables. The truth tables shall be as specified on figure 2.
 - 3.2.3 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.
- 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full recommended case operating temperature range.

4/ Unless otherwise specified.


MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO SIZE A CODE IDENT. NO. BYGNO. 5962-87553 REV PAGE 3

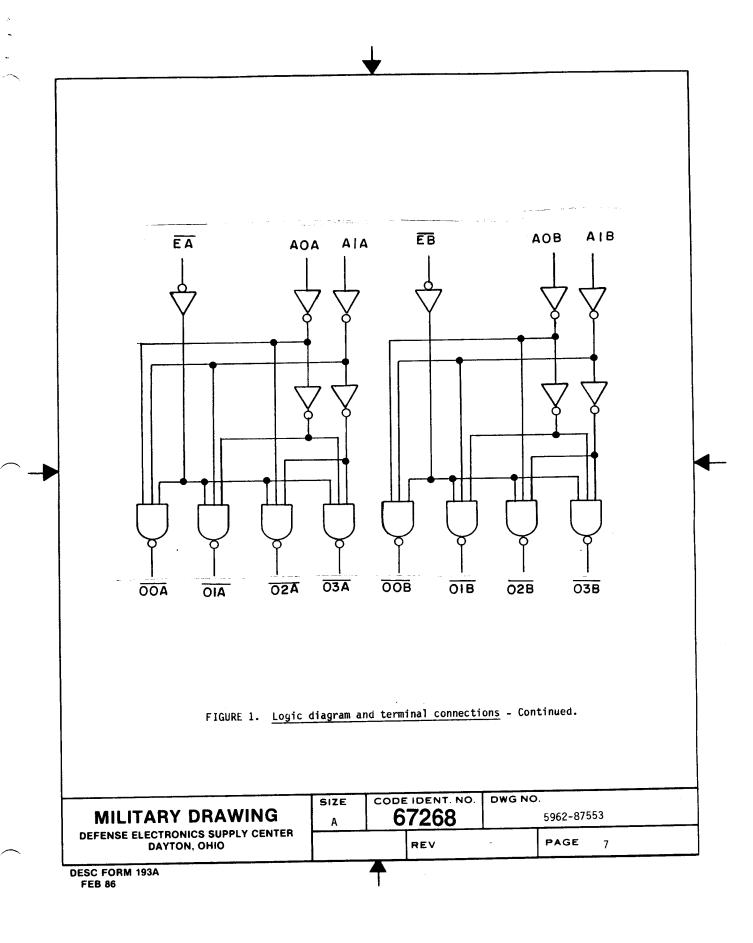

	Ţ	Γ	 		LTI	Unit	
Test	Symbol	Condi -55°C < T _C	tions <pre><pre>tions</pre></pre>	Group A subgroups 	Min	Max	טחונ
High level output voltage	I v _{OH}	 V _{IN} = V _{IH} or V _{IL} I _{OH} = -50 μA	V _{CC} = 4.5 V	1,2,3	4.4		٧
<u>1</u> /		110H = -50 μA	$V_{CC} = 5.5 \text{ V}$	-	5.4	ii	
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -24 \text{ mA}$	V _{CC} = 4.5 V	-	3.7		
		 	$V_{CC} = 5.5 \text{ V}$	-	4.7		
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \text{ mA}$	V _{CC} = 5.5 V		3.85	! [
Low level output voltage	V _{OL}	VIN = VIH or VIL IOL = 50 µA	V _{CC} = 4.5 V	1,2,3	[]	0.1	٧
<u>1</u> /		110L = 50 HW	V _{CC} = 5.5 V	-	ļ	0.1	
		VIN = VIH OF VIL	VCC = 4.5 V	-i 1	<u> </u>	0.5	
	İ		V _{CC} = 5.5 V	-j 1	i	0.5	
		$V_{IN} = V_{IH} \text{ or } V_{II}$ $I_{OL} = 50 \text{ mA}$	V _{CC} = 5.5 V	-i 	 	1.65 	1
High level input voltage 2/	VIH		V _{CC} = 4.5 V	1	2.0	 	! ! V
	 	 	V _{CC} = 5.5 V	<u>-</u>	2.0	 	
Low level input voltage 2/	VIL		V _{CC} = 4.5 V		1	0.8	l V
			VCC = 5.5 V	-		0.8	
Input leakage current	IIL	VM = 0.0 V	V _{CC} = 5.5 V	1,2,3	1	-1.0	μA
	IIH	VM = 5.5 V	 i	i i		 1.0 	i I
Quiescent current	ICCH	V _{IN} = V _{CC} or GN V _{CC} = 5.5 V)	1,2,3		160	μA
	TCCL	 VCC = 2.5 V				160	; !
Maximum I _{CC} /input current	ICC	VIH = VCC -2-1 VIL = 0.4 V, VC	v C = 5.5 V	1,2,3		1.6	mA
Input capacitance	CIN	See 4.3.1c		4	 	8.0	l pF
See footnotes at end of table.		<u> </u>					
MILITARY DRAW	ING	1	06 IDENT. NO. D	WG NO.	62-875	553	
	CENTER						

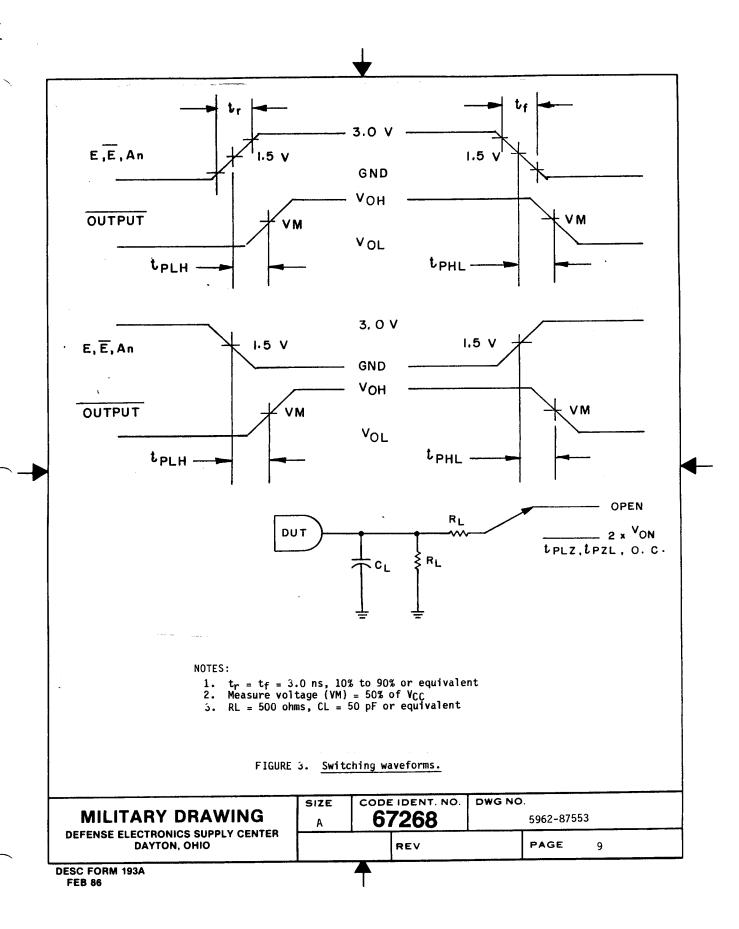
TABLE I.	Electri	cal performance characte	ristics - C	ontinued.			
Test	Symbol		°c	 Group A subgroups		mits Max	Unit
Power dissipation 3/ capacitance	C _{PD}	 See 4.3.1c		1 4	(75	pF
Functional tests			nd	7,8		 	
Propagation delay time High-to-low Low-to-high	tpHL	$ C_i = 50 \text{ pF}$	C = 4.5 V	9	1.0 1.0	9.5 10.0	ns ns
En to On 4/	 t _{PHL} t _{PLH}		C = 4.5 V	10,11	i /	12.5	ns ns
Propagation delay time High-to-low Low-to-high	tpHL tpLH		c = 4.5 V	9	1.0 1.0	9.5	 ns
An to On <u>4</u> /	tpHL tpLH	T _C = -55°C/+125°C V _C	CC = 4.5 V	10,11	İ	11.0	ns ns

- V_{OH} and V_{OL} tests will be tested at V_{CC} = 4.5 V. All other voltages are guaranteed, if not tested. Limits shown apply to operation at V_{CC} = 5.0 V ±0.5 V. Transmission driving tests are performed at V_{CC} = 5.5 V with a 2 ms duration maximum.
- $_{
 m 2/~V_{IH}}$ and $_{
 m V_{IL}}$ tests are guaranteed by the $_{
 m V_{OH}}$ and $_{
 m V_{OL}}$ tests.
- Power dissipation capacitance (Cpp), determines the dynamic power consumption, $P_D = (CpD + CL) V_{CC} 2 f + I_{CC} V_{CC}$, and the dynamic current consumption (IS) is $IS = (CpD + CL) V_{CC} f + I_{CC}$.
- 4/ AC limits at 5.5 V V_{CC} are equal to limits at 4.5 V V_{CC} and guaranteed by testing at 4.5 V V_{CC}. Minimum ac guaranteed for 5.5 V V_{CC} by guardbanding 4.5 V V_{CC} limits to 1.5 ns (minimum).
- 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein.
- 3.5 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.6 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.

MILITARY DRAWING	SIZE A	code 6	7268	DWG NO	5962-875	53
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO			REV		PAGE	5

Outputs Inputs 00 01 02 03 A1 |AO Н Н н H Х н IL L Н Н Н Н Н L

H = High voltage level


L = Low voltage level

X = Immaterial

FIGURE 2. Truth table.

MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO

PAGE
8

- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-863 (see 3.1 herein).
- 3.8 <u>Verification and review.</u> DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 Screening. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test (method 1015 of MIL-STD-883).
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5 and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 4 ($C_{\rm IN}$ and $C_{\rm PD}$ measurements) shall be measured only for the initial test and after process or design changes which may affect input capacitance.
 - d. Subgroups 7 and 8 tests sufficient to verify the function table.
 - 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test (method 1005 of MIL-STD-883) conditions:
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125$ °C, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by appendix B of MIL-M-38510 and method 1005 of MIL-STD-883.

MILITARY DRAWING	SIZE	67268	DWG NO. 5962-87553	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV	PAGE 10	

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
Interim electrical parameters (method 5004)	
Trinal electrical test parameters (method 5004)	1*,2,3,7,8,9
TGroup A test requirements (method 5005)	1,2,3,4,7,8,9, 10,11
Groups C and D end-point electrical parameters (method 5005)	1,2,3
Additional electrical subgroups for group C periodic inspections	

^{*}PDA applies to subgroup 1.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.

6. NOTES

- 6.1 Intended use. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
 - 6.2 Replaceability. Replaceability is determined as follows:
 - a. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
 - b. When a QPL source is established, the part numbered device specified in this drawing will be replaced by the microcircuit identified as part number M38510/75853BXX.
- 6.3 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.

MILITARY DRAWING	SIZE	67268	DWG NO. 5962-87553	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV	PAGE 11	

6.4 Approved source of supply. An approved source of supply is listed herein. Additional sources will be added as they become available. The vendor listed herein has agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

Military drawing part number	Vendor CAGE number	Vendor similar number	part	Replacement military specification part number
5962-8755301EX	07263	54ACT139	DMQB	M38510/75853BEX
5962-8755301FX	1 1	54ACT139	FMQB	M38510/75853BFX
5962-87553012X		54ACT139	LMQB	M38510/75853B2X

 $\frac{1}{}$ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number 07263

Vendor name and address

Fairchild Semiconductor 333 Western Avenue South Portland, ME 04106

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE	67268	DWG NO. 5962-87553	
DAYTON, OHIO		REV	PAGE 12	

011846 _ _ _