											RE	VISI	ONS	3												
LTR								DESC	RIPT	ΠON									DAT	E (YR	R-MO-I	DA)	Al	PPR	OVE)
Α	Add draw	dev ring	ice CAG	typ GE t	pe 0: to 6	2. 7268	Edit	oria	al c	:han	ges	thro	ough	out	. (Chan	ıge		19	190	MAR	07	W	ec,	emi	an
					^-	- ^	~ =	_																		
CU	RRE	N	TC	A	GE	C	OE	E	67	'26	8	•	•				·									
CU	RRE	N.	T (CA	GE	C	OE	E	67	'26 	8		ļ									<u> </u>		<u> </u>		Ī
		N	T (A	GE	C	OE	E	67	26	8						E			E						
REV SHEET REV		N	T (A	GE	C	OE	E	67	26	8															
REV SHEET REV SHEET		N			GE																					
REV SHEET REV	TATUS	N	RE	V	GE	А	A	Α	A	Α	A	A	A	A	A	A	A	A	A	A	A	+	A			
REV SHEET REV SHEET REV ST	TATUS	N I		V	GE	A 1		A 3	A 4	A 5	A 6	7	8	 	10	11	A 12	13	14	15	16	17	18	(TEF	3	
REV SHEET REV SHEET OF SHI PMIC N STA	TATUS EETS N/A NDA MILI DRAN	LRC TAF WIN	RE'SHE	V EET		A 1 1 CHE	A 2 PARECKEE ROVE	A 3 D BY	A 4	A 5 5	A 6 6	7 John J	8 h	9	MIC 3-S MON	DEFE ROCI	IRCUIE, BI	ELECTORY ITS, IDIR SIL	DIG	DNIC OHI GITA IONA N	16 S SU IO 45	17 19PLV 1444 BIP0	18	00	TAL	₹,
REV SHEET REV SHEET OF SHI PMIC N STA	TATUS EETS ANDA MILI DRAN ORAWING E BY ALL D AGENC	IRC TAF WIN	RE'SHE	ED ABLE	TS	A A 1 PRE:	A 2 PARECKER	A 3 D BY D BY AM A A A A A A A A A A A A A A A A A A	A 4	A 5	A 6	7 To	8 h	9	MIC 3-S	DEFE ROCI	IRCUIE, BI	ELEC DAY	DIG	DNIC, OHI	16 S SU IO 45	17 IPPLY 6444 BIPO BUS	18 CEN LAR, TRAN	OC ISCE	TAL	<u>;</u>
REV SHEET REV SHEET OF SHI PMIC N STA	TATUS EETS N/A NILI DRAN DRANINGE BY ALI	IRC TAF WIN	RE'SHE	ED ABLE	TS	A 1 PREI	A 2 PARECKEE IMPAROVE	A 3 D BY D BY A A A A A A A A B A A B B B A A B	A 4	A 5	A 6	7 To	8 h	9	MIC 3-S MON SIZE	DEFE ROCI	IRCUIE, BITHIC	ITS, IDIR SIL	DIG ECTION CODE	DNIC , OHI GITA IONA N	16 S SU IO 45	17 IPPLY 6444 BIPO BUS	18 CEN LAR, TRAN	OC ISCE	TAL	₹,

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

- 1. SCOPE
- 1.1 Scope. This drawing describes device requirements for class B microcircuits in accordance with $1.\overline{2.1}$ of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices".
 - 1.2 Part number. The complete part number shall be as shown in the following example:

1.2.1 Device types. The device type shall identify the circuit function as follows:

Device type	Generic number	Circuit function
01 02	2947 2946	Octal, 3-state, bidirectional, bus transceivers noninverting Octal, 3-state, bidirectional, bus transceivers inverting

1.2.2 Case outlines. The case outlines shall be as designated in appendix C of MIL-M-38510, and as follows:

Outline letter	Case outline
R	D-8 (20-lead, 1.060" x .310" x .200"), dual-in-line package
2	C-2 (20-terminal, .358" x .358" x .100"), square chip carrier package

1.3 Absolute maximum ratings.

1.4 Recommended operating conditions.

Supply voltage range (V_{CC}) - - - - - - - - - - +4.5 V dc to +5.5 V dc Minimum high level input voltage (V_{IH}) - - - - - - - 2.0 V Maximum low level input voltage (V_{IL}) - - - - - - 0.7 V Ambient operating temperature range (T_A) - - - - - - - - 55°C to +125°C

1/ Must withstand the added PD due to short circuit test; e.g., IOS.

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE
A
5962-86723

REVISION LEVEL
A
2

DESC FORM 193A SEP 87

2. APPLICABLE DOCUMENTS

2.1 Government specification, standard, and bulletin. Unless otherwise specified, the following specification, standard, and bulletin of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510

- Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883

- Test Methods and Procedures for Microelectronics.

BULLETIN

MILITARY

MIL-BUL-103

- List of Standardized Military Drawing (SMD's).

(Copies of the specification, standard, and bulletin required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

REQUIREMENTS

- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.2 Truth table. The truth table shall be as specified on figure 2.
 - 3.2.3 Logic diagrams. The logic diagrams shall be as specified on figure 3.
 - 3.2.4 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.
- 3.3 Electrical performance characteristics. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and apply over the full case operating temperature range.
- 3.4 Electrical test requirements. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.
- 3.5 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in MIL-BUL-103 (see 6.6 herein).

STANDARDIZED MILITARY DRAWING	SIZE A			5962-86723	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	- A	SHEET 3	

DESC FORM 193A SEP 87

TABLE I. Electrical performance characteristics. |Device|Group A Limits Unit Symbol | Conditions Test -55°C < TA < +125°C unless otherwise specified type |subgroups Min High level output $I_{OH} = -0.4 \text{ mA}$ A11 1, 2, 3 3.35 ٧ V_{OH1} $V_{CC} = 4.5 \text{ V}$ voltage, T/R = 0.8 V $A_0 - A_7$ |CD = 0.7 V| $I_{OH} = -3.0 \text{ mA}$ 2.7 $V_{CC} = 4.5 \text{ V}$ $I_{OH} = -0.4 \text{ mA}$ 3.35 High level output VOH2 voltage, T/R = 2.0 VB₀ - B₇ 2.7 ICD = 0.7 V $I_{OH} = -5.0 \text{ mA}$ 2.4 |I_{OH} = -10 mA 0.4 $V_{CC} = 4.5 \text{ V}$ Low level output V_{OL1} voltage, IT/R = 0.8 V A0 - Ā7 CD = 0.7 V $I_{OL} = 12 \text{ mA}$ 0.4 Low level output $V_{CC} = 4.5 \text{ V}$ $I_{OL} = 20 \text{ mA}$ VOL 2 voltage, T/R = 2.0 V CD = 0.7 V Bo - B7 $I_{OL} = 48 \text{ mA}$ 0.5 V_{CC} = 4.5 V |CD = 2.0 V -1.5 Input clamp voltage, VIC1 voltage, A₀ - A₇ and B₀ - B₇ $|I_{IN} = -12 \text{ mA}$ Input clamp voltage, V_{IC2} CD, T/R -1.5 İ VCC = 4.5 V $I_{IN} = -12 \text{ mA}$ 1VCC = 5.5 V High level input 80 μA |IIH1 current, T/R = 2.0 V A0 - A7 ICD = 0.7 V $V_{IN} = 2.7 V$ $V_{CC} = 5.5 \text{ V}$ 80 High level input II_{IH2} current, iT/R = CD = 0.7 V $B_0 - B_7$ | VIN = 2.7 V See footnotes at end of table. **STANDARDIZED** SIZE Α 5962-86723 **MILITARY DRAWING** REVISION LEVEL **DEFENSE ELECTRONICS SUPPLY CENTER** SHEET DAYTON, OHIO 45444 4

DESC FORM 193A SEP 87

Test	l Symbol	 -55	Conditions C < TA < +125°C		 Group A subgroups	<u>Lim</u>	its	l Unit
	İ	unless	otherwise speci		1	Min	Max	<u> </u>
High level input current, CD, T/R	I _{IH3}	V _{CC} = 5.5 V V _{IN} = 2.7 V		A11	i 1, 2, 3 		20 	μ Α
High level input current, A _O - A ₇ B _O - B ₇	 I	$V_{CC} = 5.5 \text{ V}$ CD = 2.0 V $V_{IN} = 5.5 \text{ V}$			 		 1 	i mA i mA
digh level input current, T/R, CD	II _{IH5}	V _{CC} = 5.5 V V _{IN} = 5.5 V			 		1 1	T ! !
Low level input current, A ₀ - A ₇	I _{IL1}	$V_{CC} = 5.5 \text{ V}$ $T/\overline{R} = 2.0 \text{ V}$ $CD = 0.7 \text{ V}$ $V_{IN} = 0.4 \text{ V}$					-200 	μ A
Low level input current, B _O - B ₇	I _{IL2}	V _{CC} = 5.5 V T/R = 0.7 V CD = 0.7 V V _{IN} = 0.4 V			 		 -200 	
Low level input current, CD, T/R	I _{IL} 3	V _{CC} = 5.5 V V _{IN} = 0.4 V			 	 	 -250 	T ! !
Short circuit output current, A _O - A ₇	 I _{0S1} 	V _{CC} = 5.5 V T/R = 0.8 V CD = 0.7 V V _{OUT} = 0.0 V	1/	 	 	 -10 	 -75 	 mA
Short circuit output current, B _O - B ₇	I _{0S2}	V _{CC} = 5.5 V T/R = 2.0 V CD = 0.7 V V _{OUT} = 0.0 V	<u>1</u> /	 	 	-25 	-150 -150 	Ť
Functional tests		 See 4.3.1c			 7,8		Ì	
Off state output current high	I I OZH	V _{CC} = 5.5 V CD = 2.0 V V _{OUT} = 4.0 V	A ₀ - A ₇	 	1, 2, 3	 	80	μΑ
	i I		B ₀ - B ₇	<u> </u>	<u> </u>	i I	200 	i i
See footnotes at end			1					
STANDAI MILITARY I			SIZE		59	62-867	23	
DEFENSE ELECTRO			T	REVISION LEVEL		SHEET		

Test	Symbol	i -55°0	Conditions <pre>Conditions</pre>	c'c		 Device type	Group A subgroups	Lim	its	Uni
		unless o	therwise spec	ified					Max	
Off state output current low, A ₀ - A ₇ , B ₀ - B ₇	I _{OZL}	V _{CC} = 5.5 V CD = 2.0 V V _{OUT} = 0.4 V				A11 	1, 2, 3		-200 	μ Α
Supply current	ICC	V _{CC} = 5.5 V	CD = 2.0 V T/R = 0.4 V	IVIN =	0.4 V	01			100	mA
		 		NIN =	2.0 V	02			 100 	
			CD = 0.4 V T/R = 2.0 V	IVIN =	0.4 Y	 01 	Г 		140	
] 		AIN =	2.0 Y	02	「 ! !		150	! !
Propagation	t _{PHL1}	CD = T/R = 0.4	1 V			01	9 2/		18	l ns
delay time, input B port	!	$ \begin{vmatrix} R_1 &= 1 & k\Omega \\ R_2 &= 5 & k\Omega \end{vmatrix} $				02		<u> </u>	12	<u> </u>
to output A port	i !	$ C_1 = 30 \text{ pF}$ (See figure 4))			01	9, 10, 11	 	24	 -
	ļ 	<u> </u>				02	<u>3</u> /	<u> </u>	19	<u> </u>
	t _{PLH1}					01	9 2/	<u> </u>	18	<u> </u>
	! !					02		ļ 1	16	ļ
	! 					01	9, 10, 11 3/	<u> </u>	24	j T
	<u> </u>	<u> </u>				02	<u></u>	i I	23	j T
Disable time, CD to A port	tpLZ1	T/R = 0.4 V $R_5 = 1 \text{ k}\Omega$	$\begin{bmatrix} B_0 & \text{to } B \\ S_3 & = 1 \end{bmatrix}$	7 = 0.4	٧	A11 	9 2/	i !	15	
			6)			 	9, 10, 11 <u>3</u> /	 	21 	i
	t _{PHZ1}	- 	B ₀ to B	7 = 2.4	٧	† ·	9 2/		15	† !
] 	9, 10, 11 3/	<u> </u> 	21	Ť I I
See footnotes at		table.	B ₀ to B S ₃ = 0	7 = 2.4	Y		9, 10, 11		<u> </u> 	
STAN MILITAF	DARDI		SIZE				59	62-867	23	
	/ I I I I	wini -								

せ U. S. GOVERNMENT PRINTING OFFICE: 1989—749-033

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
nless otherwise specified
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
4/ B ₀ to B ₇ = 2.4 V 9 2/ 25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
4/ 01 9, 10, 11 34 3/ 29
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$R_2 = 5 \text{ k}\Omega$ $C_1 = 45 \text{ pF}$ 02 12 01 $9, 10, 11$ 25
$ C_1 = 45 \text{ pF}$ $ C_1$
01 9, 10, 11 25
1 1 3/ 1 1
$ R_1 = 100\Omega$ $ 01 9 2/ 123 $ $ R_2 = 1 k\Omega$
3/ 1
†
$R_2 = 5 k\Omega$
01 9, 10, 11 25
3/
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE I. Electrical performance characteristics - Continued. Conditions $-55^{\circ}\text{C} < \text{T}_{\text{A}} \le +125^{\circ}\text{C}$ unless otherwise specified Device Group A Test Symbol Limits Unit type |subgroups Min | Max $|A_0|$ to $A_7 = 0.4 \text{ V}$ $|S_3| = 1$ T/R = 2.4 VA11 9 2/ 18 ns Disable time, tpLZ2 $|R_5| = 1 k\Omega$ $|C_4| = 15 pF$ |(See figure 6)|CD to B port 9, 10, 1126 4/ $|A_0|$ to $A_7 = 2.4 \text{ V}$ $|S_3| = 0$ 9 2/ 15 ФHZ2 9, 10, 11 | <u>3</u>/ | 21 A_O to A₇ = 0.4 V IT/R = 2.4 V IS₃ = 1 (See figure 6) 35 $|R_5 = 100\Omega$ 9 2/ Enable time, tPZL2 $C_4 = 300 \text{ pF}$ CD to B port 9, 10, 11 3/ 43 4/ $R_5 = 667\Omega$ 9 2/ 22 $C_4 = 45 \text{ pF}$ 9, 10, 11 30 A₀ to A₇ = 2.4 V IT/R = 2.4 V IS₃ = 0 (See figure 6) 9 2/ $|R_5 = 1 k\Omega|$ 35 tpzH2 $C_4 = 300 \text{ pF}$ 9, 10, 11 43 4/ $|R_5 = 5 k\Omega$ $|C_4 = 45 pF$ 9 2/ 22 9, 10, 11 3/ 30 See footnotes at end of table. SIZE **STANDARDIZED** Α 5962-86723 **MILITARY DRAWING REVISION LEVEL DEFENSE ELECTRONICS SUPPLY CENTER** SHEET DAYTON, OHIO 45444 8

DESC FORM 193A SEP 87

	TABLE	I. Electrical performance characterist	ics - Cor	ntinued.			
Test	Symbol	Conditions -55°C <u></u> T _A <u></u> +125°C		Group A	Lim	its	Unit
	<u> </u>	-55 C < TA < +125 C unless otherwise specified	type	subgroups	Min	Max	<u> </u>
Propagation	tral	A port; S ₂ = 1; C ₂ = 30 pF; CD = 0.4 V, R ₃ = 1 kΩ	01	9 <u>2</u> /		38	l ns
delay time, from transmit	1 1	$CD = 0.4 \text{ V}, \text{ K3} = 1 \text{ K}\Omega$ $(\text{See figure 5}) \qquad 4/$	02			33	 - -
mode to receive, T/R			01	[9, 10, 11]	<u> </u> 	 4 8	 -
to A port			02	3/		43	<u> </u>
		B port; $S_1 = 0$; $R_4 = 100\Omega$;	01	9 2/		38	<u> </u>
	! ! ! !	$C_3 = 5 \text{ pF}$ (See figure 5) $4/$	02		i 	33	
	 		01	9, 10, 11	1	1 48	<u> </u>
			02	T <u>3/</u> 1		43	<u> </u>
	tTRH	A port; S ₂ = 0; C ₂ = 30 pF; CD = 0.4 V, R ₃ = 5 kΩ	01	9 2/	 	38	<u> </u> -
	! !	$CD = 0.4 \text{ V}, R_3 = 5 \text{ k}\Omega$ (See figure 5) 4_/	02		<u> </u>	33	<u> </u> -
			01	9, 10, 11	l I	1 48	<u> </u> _
			02	<u>3/</u>	l 	 43	<u> </u>
	[B port; $S_1 = 1$; $R_4 = 100\Omega$;	01	9 2/		 38	Γ <u>Ι</u>
	! !	C3 = 5 pF (See figure 5) <u>4/</u>	02	 		 33	<u>[</u>
	! !		01	9, 10, 11	<u> </u>	l 48	<u> </u> -
	 		02	3/		l 43	l

See footnotes at end of table.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-86723
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 9

DESC FORM 193A SEP 87

TABLE I. Electrical performance characteristics - Continued. Device | Group A Unit Test Symbol Conditions Limits -55°C < TA < +125°C unless otherwise specified type |subgroups| Min l Max A port; $S_2 = 0$; $C_2 = 5$ pF; CD = 0.4 V, $R_3 = 300\Omega$; (See figure 5) 4/Propagation 01 9 2/ 40 tRTL ns delay time, from transmit 02 35 mode to receive, T/R to B port 01 19, 10, 11 51 02 47 B port; $S_1 = 1$; $R_4 = 100\Omega$; $C_3 = 300 \text{ pF}$ (See figure 5) 4/9 2/ 40 01 02 35 01 19, 10, 11 51 3/ 02 47 A port; $S_2 = 1$; $C_2 = 5$ pF; CD = 0.4 V, $R_3 = 300\Omega$; (See figure 5) 4/40 01 9 2/ t_{RTH} 02 35 01 9, 10, 11 51 3/ 02 47 01 9 2/ 40 B port; $S_1 = 0$; $R_4 = 1 k\Omega$; C₃ = 300 pF; (See figure 5) 02 35 01 9, 10, 11 51 3/ 47

- $\frac{1}{2}$ Not more than one output should be shorted at a time and the duration of the short circuit condition should not exceed one second.
- $\frac{2}{V_{CC}} = 5.0 \text{ V}.$
- 3/ V_{CC} = 4.5 V to 5.5 V.
- 4/ All ac loads are correlated from load of 50 pF during test.

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE
A
5962-86723

REVISION LEVEL
SHEET
10

DESC FORM 193A SEP 87

- 3.6 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-BUL-103 (see 6.6 herein). The certificate of compliance submitted to DESC-ECC prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.7 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.8 Notification of change. Notification of change to DESC-ECC shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.9 Verification and review. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 Screening. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.6 herein).
 - (2) $T_A = +125$ °C, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method $\overline{5005}$ of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5, and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroups 7 and 8 shall include verification of the truth table.
 - 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.6 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-86723		
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL		SHEET 16	

± U S GOVERNMENT PRINTING OFFICE: 1989-749-033

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
 Interim electrical parameters (method 5004)	
 Final electrical test parameters (method 5004)	1*,2,3,7,8,9
Group A test requirements (method 5005)	1,2,3,7,8,
Groups C and D end-point electrical parameters (method 5005)	1,2,3

*PDA applies to subgroup 1.
**Subgroups 10 and 11, if not tested, shall be guaranteed to the limits specified in table I.

PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.

6. NOTES

- 6.1 Intended use. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
- 6.2 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 <u>Configuration control of SMD's.</u> All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-481 using DD Form 1693, Engineering Change Proposal (Short Form).
- 6.4 Record of users. Military and industrial users shall inform Defense Electronics Supply Center when a system application requires configuration control and the applicable SMD. DESC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DESC-ECC, telephone (513) 296-8525.
- 6.5 Comments. Comments on this drawing should be directed to DESC-ECC, Dayton, Ohio 45444, or telephone (513) 296-8525.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-86723
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 17

DESC FORM 193A SEP 87

⇔ U. S. GOVERNMENT PRINTING OFFICE: 1989—749-033

6.6 Approved source of supply. An approved source of supply is listed in MIL-BUL-103. Additional sources will be added to MIL-BUL-103 as they become available. The vendor listed in MIL-BUL-103 has agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DESC-ECC. The approved source listed below is for information purposes only and is current only to the date of the last action of this document.

Military drawing part number	Vendor CAGE number	Vendor similar part number <u>1</u> /
5962-8672301RX	34335	AM2947/BRA
5962-86723012X		AM2947/B2A
5962-8672302RX		AM2946/BRA
5962-86723022X		AM2946/B2A

1/ Caution. Do not use this number for item acquisition.

Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number

34335

Vendor name and address

Advanced Micro Devices, Incorporated 901 Thompson Place P.O. Box 3453 Sunnyvale, CA 94088

STANDARDIZED MILITARY DRAWING

DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

DESC FORM 193A SEP 87

& U. S. GOVERNMENT PRINTING OFFICE, 1989-749-033

018132 _ _ _