ILXT384 Octal T1/E1/J1 Line Interface Unit

Datasheet

The LXT384 is an octal short haul Pulse Code Modulation (PCM) Line Interface Unit for use in both 1.544 Mbps (T1) and 2.048 Mbps (E1) applications. It incorporates eight independent receivers and eight independent transmitters in a single 144 pin LQFP or 160 ball PBGA package.

The LXT384 transmits shaped waveforms meeting G.703 and T1.102 specifications. The transmit drivers provide low impedance independent of the transmit pattern and supply voltage variations. The LXT384 exceeds the latest transmit return loss specifications, such as ETSI ETS-300166. All transmitters include a power down mode with fast output tristate capability.

The LXT384's differential receiver architecture provides high noise interference margin and is able to work with up to 12 dB of cable attenuation. The optional digital clock recovery PLL and jitter attenuator are referenced to a low frequency 1.544 MHz or 2.048 MHz clock.

The LXT384 incorporates an advanced crystal-less jitter attenuator switchable between the receive and transmit path. The jitter attenuation performance meets the latest international specifications such as CTR12/13. The jitter attenuation performance was optimized for Sychronous Optical NETwork/Sychronous Digital Hierarchy (SONET/SDH) applications.

The LXT384 can be configured as a 7 channel transceiver with G.772 compliant non intrusive protected monitoring points.

The LXT384 includes Hitless Protection Switching (HPS) feature which helps increase quality of service and eliminates relays in redundancy and 1+1 protection applications. Fast tristate-able drivers and a constant delay jitter attenuator are critical to achieving HPS.

Product Features

- Single rail 3.3V supply with 5V tolerant inputs
- Low power consumption of 130mW per channel (typ.)
- Superior crystal-less jitter attenuator
 - —Meets ETSI CTR12/13, ITU G.736, G.742, G.823 and AT&T Pub 62411 specifications
 - Optimized for SONET/SDH applications, meets ITU G.783 mapping jitter specification
 - Constant throughput delay jitter attenuator
- Hitless Protection Switching (HPS) for 1 to 1 protection without relays

- Transmit return loss exceeds ETSI ETS 300166
- HDB3, B8ZS, or AMI line encoder/decoder
- Provides protected monitoring points per ITU G.772
- Analog/digital and remote loopback testing functions
- LOS per ITU G.775, ETS 300 233 and T1.231
- 8 bit parallel or 4 wire serial control interface
- Hardware and Software control modes
- JTAG Boundary Scan test port per IEEE 1149.1
- 144 pin LQFP and 160 ball PBGA packages

intel

Information in this document is provided in connection with Intel[®] products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The LXT384 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation, 2001

*Third-party brands and names are the property of their respective owners.

int_{el}。 Contents

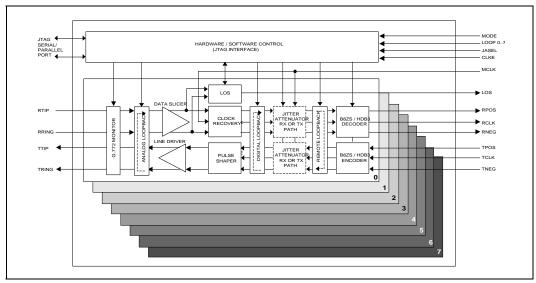
1.0	Pin As	ssignments and Signal Descriptions	9
2.0	Funct	ional Description	22
	2.1	Initialization	22
		2.1.1 Reset Operation	
	2.2	Receiver	
		2.2.1 Loss of Signal Detector	
		2.2.1.1 E1 Mode	
		2.2.1.2 T1 Mode	
		2.2.1.3 Data Recovery Mode	24
		2.2.2 Alarm Indication Signal (AIS) Detection	24
		2.2.2.1 E1 Mode	24
		2.2.2.2 T1 Mode	25
		2.2.3 Receive Alarm Indication Signal (RAIS)	25
		2.2.4 In Service Code Violation Monitoring	25
	2.3	Transmitter	25
		2.3.1 Transmit Pulse Shaping	26
		2.3.1.1 Hardware Mode	26
		2.3.1.2 Host Mode	
		2.3.1.3 Output Driver Power Supply	
		2.3.1.4 Power Sequencing	
	2.4	Driver Failure Monitor	27
	2.5	Line Protection	30
	2.6	Jitter Attenuation	30
	2.7	Loopbacks	31
		2.7.1 Analog Loopback	31
		2.7.2 Digital Loopback	32
		2.7.3 Remote Loopback	32
		2.7.4 Transmit All Ones (TAOS)	32
	2.8	G.772 Performance Monitoring	33
	2.9	Hitless Protection Switching (HPS)	34
	2.10	Operation Mode Summary	34
	2.11	Interfacing with 5V Logic	35
	2.12	Parallel Host Interface	35
		2.12.1 Motorola Interface	36
		2.12.2 Intel Interface	36
	2.13	Interrupt Handling	36
		2.13.1 Interrupt Sources	
		2.13.2 Interrupt Enable	
		2.13.3 Interrupt Clear	
	2.14	Serial Host Mode	
3.0	Regis	ster Descriptions	38
4.0	JTAG	Boundary Scan	45
	4.1	Overview	45
	4.2	Architecture	
		· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·	

	4.3	TAP Controller	46
	4.4	JTAG Register Description	
		4.4.1 Boundary Scan Register (BSR)	49
		4.4.2 Analog Port Scan Register (ASR)	
		4.4.3 Device Identification Register (IDR)	53
		4.4.4 Bypass Register (BYR)	53
		4.4.5 Instruction Register (IR)	53
5.0	Test Sp	Specifications	54
	5.1	Recommendations and Specifications	76
6.0	Mecha	anical Specifications	78
Figures			
	1	LXT384 Detailed Block Diagram	7
	2	LXT384 Detailed Block Diagram	
	3	LXT384 Low-Profile Quad Flate Package (LQFP) 144-Pin Assignments a	and Pack-
		age Markings9	
	4	LXT384 Plastic Ball Grid Array (PBGA) Package Pin Assignments	
	5	50% AMI Encoding	
	6	External Transmit/Receive Line Circuitry	
	7	Jitter Attenuator Loop	
	8	Analog Loopback	
	9	Digital Loopback	
	10	Remote Loopback	
	11	TAOS Data Path	
	12	TAOS with Digital Loopback	
	13	TAOS with Analog Loopback	
	14	Serial Host Mode Timing	
	15	JTAG Architecture	
	16	JTAG State Diagram	
	17	Analog Test Port Application	
	18	Transmit Clock Timing Diagram	
	19	Receive Clock Timing Diagram	
	20	JTAG Timing	
	21	Non-Multiplexed Intel Mode Read Timing	
	22	Multiplexed Intel Mode Read Timing	
	23	Non-Multiplexed Intel Mode Write Timing	
	24	Multiplexed Intel Mode Write Timing	
	25	Non-Multiplexed Motorola Mode Read Timing	
	26	Multiplexed Motorola Mode Read Timing	
	27	Non-Multiplexed Motorola Mode Write Timing	
	28	Multiplexed Motorola Mode Write Timing	
	29 20	Serial Input Timing	
	30 21	Serial Output Timing	
	31	E1, G.703 Mask Templates	
	32	T1, T1.102 Mask Templates	
	33	LXT384 Jitter Tolerance Performance	
	34 25	LXT384 Jitter Transfer Performance	
	35	LXT384 Output Jitter for CTR12/13 Applications	/0

36	Low Quad Flat Packages (LQFP) Dimensions	
37	Plastic Ball Grid Array (PBGA) Package Dimensions	

Tables

1	LXT384 Pin Description	11
2	Line Length Equalizer Inputs	
3	Jitter Attenuation Specifications	
4	Operation Mode Summary	
5	Microprocessor Interface Selection	
6	Serial and Parallel Port Register Addresses	
7	Register Bit Names	
8	ID Register, ID (00h)	
9	Analog Loopback Register, ALOOP (01h)	
10	Remote Loopback Register, RLOOP (02h)	
11	TAOS Enable Register, TAOS (03h)	
12	LOS Status Monitor Register, LOS (04h)	
13	DFM Status Monitor Register, DFM (05h)	
14	LOS Interrupt Enable Register, LIE (06h)	
15	DFM Interrupt Enable Register, DIE (07h)	
16	LOS Interrupt Status Register, LIS (08h)	
17	DFM Interrupt Status Register, DIS (09h)	
18	Software Reset Register, RES (0Ah)	
19	Performance Monitoring Register, MON (0Bh)	
20	Digital Loopback Register, DL (0Ch)	
21	LOS/AIS Criteria Register, LCS (0Dh)	
22	Automatic TAOS Select Register, ATS (0Eh)	
23	Global Control Register, GCR (0Fh)	
24	Pulse Shaping Indirect Address Register, PSIAD (10h)	
25	Pulse Shaping Data Register, PSDAT (11h)	
26	Output Enable Register, OER (12h)	
27	AIS Status Monitor Register, AIS (13h)	
28	AIS Interrupt Enable Register, AISIE (14h)	
29	AIS Interrupt Status Register, AISIS (15h)	
30	TAP State Description	
31	Boundary Scan Register (BSR)	
32	Analog Port Scan Register (ASR)	
33	Device Identification Register (IDR)	
34	Instruction Register (IR)	.54
35	Absolute Maximum Ratings	.54
36	Recommended Operating Conditions	.55
37	DC Characteristics	.55
38	E1 Transmit Transmission Characteristics	.56
39	E1 Receive Transmission Characteristics	.57
40	T1 Transmit Transmission Characteristics	.58
41	T1 Receive Transmission Characteristics	.58
42	Jitter Attenuator Characteristics	.59
43	Analog Test Port Characteristics	.60
44	Transmit Timing Characteristics	.60
45	Receive Timing Characteristics	.61



46	JTAG Timing Characteristics	62
47	Intel Mode Read Timing Characteristics2	63
48	Intel Mode Write Timing Characteristics2	
49	Motorola Bus Read Timing Characteristics2	67
50	Motorola Mode Write Timing Characteristics2	
51	Serial I/O Timing Characteristics	70
52	Transformer Specifications	71
53	G.703 2.048 Mbit/s Pulse Mask Specifications	72
54	T1.102 1.544 Mbit/s Pulse Mask Specifications	72

intel®

Applications

- SONET/SDH tributary interfaces
- Digital cross connects
- Public/private switching trunk line interfaces
- Microwave transmission systems
- M13, E1-E3 MUX

Figure 1. LXT384 Detailed Block Diagram

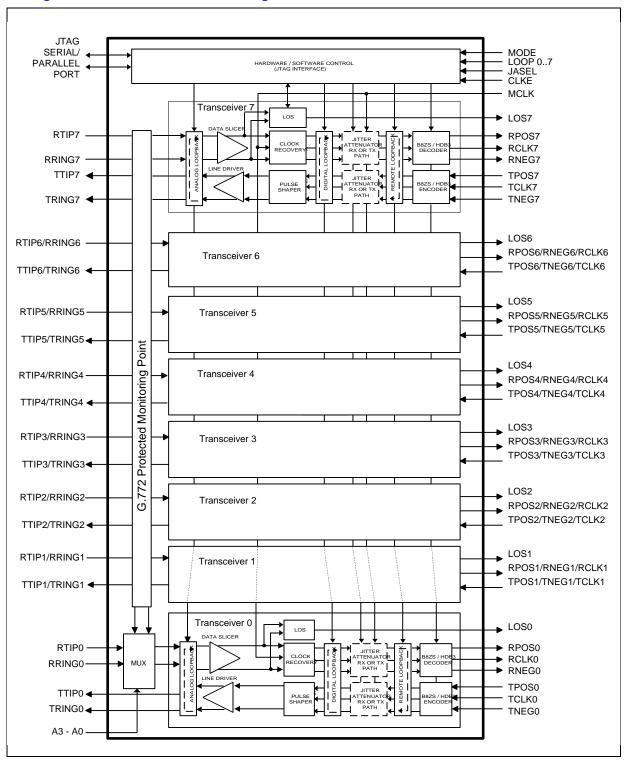
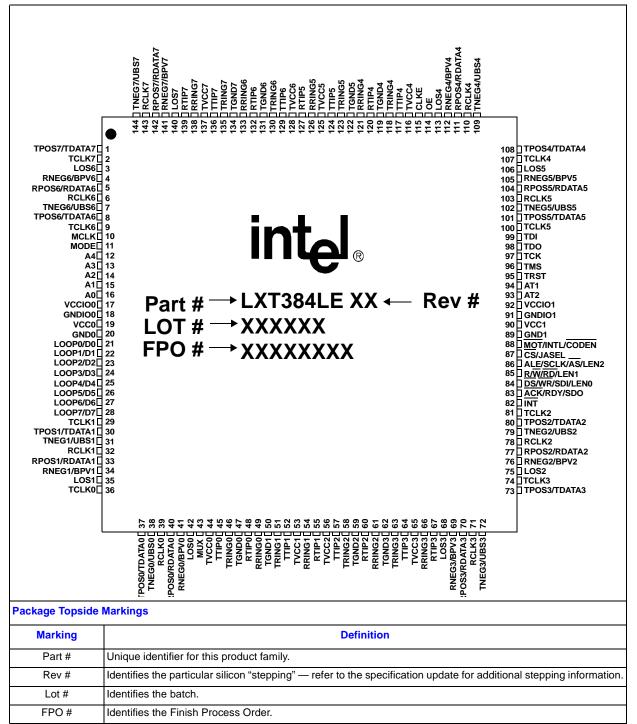



Figure 2. LXT384 Detailed Block Diagram

intel

1.0 Pin Assignments and Signal Descriptions

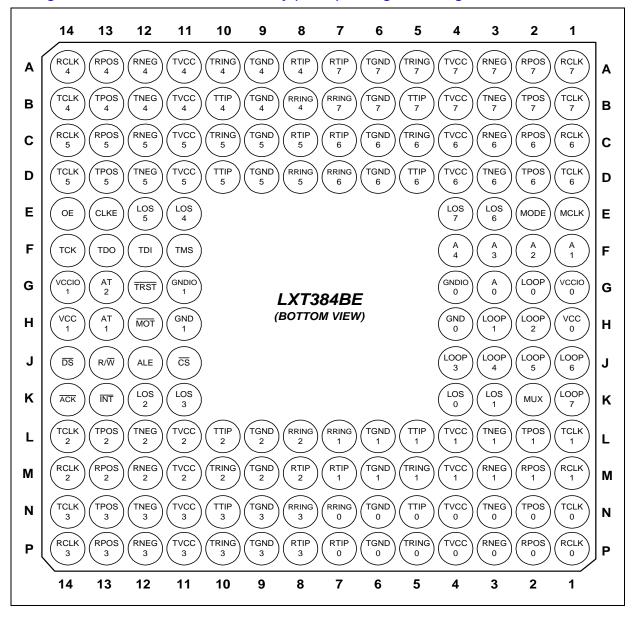


Figure 4. LXT384 Plastic Ball Grid Array (PBGA) Package Pin Assignments

intel®

Table 1. LXT384 Pin Description (Sheet 1 of 12)

Pin # QFP	Ball # PBGA	Symbol	I/O ¹		Description			
1	B2	TPOS7	DI	Transmit Positi	ve Data Input.			
1	B2	TDATA7	DI	Transmit Data I	nput.			
				TPOS and TNEC Low, the output of for more than 16	Input. During normal operation TCLK is active, and G are sampled on the falling edge of TCLK. If TCLK is drivers enter a low power high-Z mode. If TCLK is High clock cycles, the pulse shaping circuit is disabled and but pulse widths are determined by the TPOS and es.			
				TCLK	Operating Mode			
				Clocked	Normal operation			
				Н	TAOS (if MCLK supplied)			
2	B1	TCLK7	DI	н	Disable transmit pulse shaping (when MCLK is not available)			
				L	Driver outputs enter tri-state			
				When pulse shaping is disabled, it is possible to overheat and damage the LXT384 device by leaving transmit inputs high continuously. For example a programmable ASIC might leave all outputs high until it is programmed. To prevent this, clock one of these signals: TPOS, TNEG, TCLK or MCLK. Another solution is to set one of these signals low: TPOS, TNEG, TCLK, or OE.				
				Note: The TAOS generator uses MCLK as a timing reference. In order to assure that the output frequency is within specification limits, MCLK must have the applicable stability.				
3	E3	LOS6	DO	Loss of Signal Output. LOS output is High, indicating a loss of signal, when the incoming signal has no transitions for a specified time interval. The LOS condition is cleared and the output pin returns to Low when the incoming signal has sufficient number of transitions in a specified time interval (details in LOS functional description).				
		out; DO: Digit pply; N.C.: No			directional Port; AI: Analog Input; AO: Analog Output			

Pin # QFP	Ball # PBGA	Symbol	I/O ¹	Description			
				Receive Negative Data Output.			
				Bipolar Violation Detect Output.			
				Receive Positive Data Output.			
				Receive Data Output			
				Bipolar Mode:			
4	4 C3 RNEG6 [DO	In clock recovery mode, these pins act as active High bipolar non return to zero (NRZ) receive signal outputs. A High signal on RPOS corresponds to receipt of a positive pulse on RTIP/RRING. A High signal on RNEG corresponds to receipt of a negative pulse on RTIP/ RRING. These signals are valid on the falling or rising edges of RCLK depending on the CLKE input.				
4 5	C3 C2	BPV6 RPOS6	DO DO	In Data recovery mode, these pins act as RZ data receiver outputs. The output polarity is selectable with CLKE (Active High output polarity when CLKE is High and Active Low Polarity when CLKE is Low).			
5	5 C2 RDATA6	RDATA6	DO	RPOS and RNEG will go to the high impedance state when the MCLK pin is Low.			
				Unipolar Mode:			
			In uni-polar mode, the LXT384 asserts BPV High if any in-service Line Code Violation is detected. RDATA acts as the receive data output.				
				Hardware Mode:			
				During a LOS condition, RPOS and RNEG will remain active.			
				Host Mode:			
				RPOS and RNEG will either remain active or insert AIS into the receive path. Selection is determined by the RAISEN bit in the GCR register.			
				Receive Clock Output.			
				Normal Mode:			
6	6 C1	RCI K6	DO	This pin provides the recovered clock from the signal received at RTIP and RRING. Under LOS conditions there is a transition from RCLK signal (derived from the recovered data) to MCLK signal at the RCLK output.			
_			-	Data Recovery Mode:			
				If MCLK is High, the clock recovery circuit is disabled and RPOS and RNEG are internally connected to an EXOR that is fed to the RCLK output for external clock recovery applications.			
				RCLK will be in high impedance state if the MCLK pin is Low.			
		out; DO: Digita pply; N.C.: No		ut; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output ected.			

intel®

Pin # QFP	Ball # PBGA	Symbol	I/O ¹			Description		
7	D3	TNEG6	DI		olar Select In itive Data Inp a Input. are active Higl of a positive pu of a negative p	put. hut. h NRZ inputs. TPOS indicates the ulse whereas TNEG indicates the		
7	D3	UBS6	DI		TNEG			
8	D2	TPOS6	DI	0	0	Space Positive Mark		
8	D2	TDATA6	DI	0	0			
				1	1	Negative Mark		
						Space		
				Unipolar Mode: When TNEG/UBS is pulled High for more than 16 consecutive TCLK clock cycles, unipolar I/O is selected. In unipolar mode, B8ZS/HDB3 or AMI encoding/decoding is determined by the CODEN pin (hardware mode) or by the CODEN bit in the GCR register (software mode). TDATA is the data input in unipolar I/O mode.				
9	D1	TCLK6	DI	Transmit Clock Input.				
10	E1	MCLK	DI	clock. It's freq MHz for E1 op This reference signals: • Timing ref • Generatio • Reference logic If MCLK is Hig the LXT384 op If MCLK is Lov output pins RC MCLK is not re without clock in	ency should beration. e clock is used erence for the erence for the n of RCLK sig clock during clock during timing for the h, the PLL clo berates as sim w, the complet CLK, RPOS ar equired if LXT recovery and j	s an independent, free-running reference be 1.544 MHz for T1 operation and 2.048 to generate several internal reference integrated clock recovery unit integrated digital jitter attenuator nal during a loss of signal condition a blue alarm transmit all ones condition e parallel processor wait state generation ck recovery circuit is disabled. In this mode, ple data receiver. e receive path is powered down and the nd RNEG are switched to tri-state mode. 384 is used as a simple analog front-end itter attenuation.		
				not pro				
		out; DO: Digit pply; N.C.: No			Bidirectional I	Port; AI: Analog Input; AO: Analog Output		

Table 1. LXT384 Pin Description (Sheet 3 of 12)

Table 1.	LXT384 Pin	Description	(Sheet 4 of 12))
----------	------------	--------------------	-----------------	---

Pin # QFP	Ball # PBGA	Symbol	I/O ¹		Description		
11	E2	MODE	DI	LXT384. In Hardy and hardwired pir In Parallel Host M configuration and In Serial Host mo are used. MODE Low High Vcc/2 For Serial Host M	ut. This pin is used to select the operating m vare Mode, the parallel processor interface hs are used to control configuration and rep lode, the parallel port interface pins are used report status. de, the serial interface pins: SDI, SDO, SCI Operating Mode Hardware Mode Parallel Host Mode Serial Host Mode lode, the pin should connected to a resistive 10 kΩ resistors across Vcc and Ground.	is disabled ort status. d to control _K and CS	
12	F4	A4	DI	Address Select Input. In non-multiplexed host mode, this pin is Address 4 input pin. In hardware mode, this pin must be connected to Ground.			
		out; DO: Digita oply; N.C.: No			lirectional Port; AI: Analog Input; AO: Analo	g Output	

Pin # QFP	Ball # PBGA	Symbol	I/O ¹	Description												
				intrusive mo internally co	<u>lode</u> mode, the onitoring. D onnected to	se pins are uring prote a specific	used to section monit transmit or	uts. elect a specific port for non oring receiver 0 inputs are receive port. Receiver 0 data and clock recovery								
				circuits. The by activating in order for t and data ca	e data on th g the remot his operati n be obser	e monitor p e loopback on to take p ved at the l	oort can be for channe lace). In a RCLK0/RP	routed to TTIP0/TRING0 el 0 (TCLK0 must be active ddition, the recovered cloc OS0/RNEG0 outputs.								
				If A0, A1, ar transceiver				nfigured as octal line								
				A3	A2	A1	A0	Selection								
				0	0	0	0	No Protection Monitoring								
				0	0	0	1	Receiver 1								
				0	0	1	0	Receiver 2								
				0	0	1	1	Receiver 3								
13 14	F3 F2	A3 A2	DI DI	0	1	0	0	Receiver 4								
15	F1	A2	DI DI	0	1	0	1	Receiver 5								
16	G3	A0		0	1	1	0	Receiver 6								
												0	1	1	1	Receiver 7
											1	0	0	0	No Protection Monitoring	
							1	0	0	1	Transmitter 1					
							1	0	1	0	Transmitter 2					
								1	0	1	1	Transmitter 3				
											1	1	0	0	Transmitter 4	
									1	1	0	1	Transmitter 5			
				1	1	1	0	Transmitter 6								
							1	1	1	1	Transmitter 7					
				set to analo <u>Host Mode</u>	g loopback plexed hos	mode.		n the respective channel is								
17	G1	VCCIO0	S	Power (I/O)												
18	G4	GNDIO0	S	Ground (I/O).												
19	H1	VCC0	S	Power (Cor	Power (Core).											
20	H4	GND0	S	Ground (Co	ore).											

Table 1. LXT384 Pin Description (Sheet 5 of 12)

Table 1. LXT384 Pin Description (Sheet 6 of 12)

Pin # QFP	Ball # PBGA	Symbol	I/O ¹	Description	
				Loopback Mode Select/Parallel Data bus Input &Output.	
				Host Mode	
				When a non-multiplexed microprocessor interface is selected, these pins function as a bi-directional 8-bit data port.	
				When a multiplexed microprocessor interface is selected, these pins carry both bi-directional 8-bit data and address inputs A0 -A7.	
21	G2	LOOP0/D0	DI/O	In serial Mode, D0-7 should be grounded.	
21	H3	LOOP0/D0	DI/O	Hardware Mode	
23	H2	LOOP2/D2	DI/O	In hardware mode, the LXT384 works in normal operation if this pin is left open (unconnected).	
24 25	J4 J3	LOOP3/D3 LOOP4/D4	DI/O DI/O	The LXT384 enters remote loopback mode, if this pin is Low. In this mode, data on TPOS and TNEG is ignored and data received on RTIP	
26 27	J2 J1	LOOP5/D5 LOOP6/D6	DI/O DI/O	and RRING is looped around and retransmitted on TTIP and TRING. Note: in data recovery mode, the pulse template cannot be guaranteed while in a remote loopback.	
28	K1	LOOP7/D7	DI/O	The LXT384 enters analog local loopback mode, if this pin is High. In	
				this mode, data received on RTIP and RRING is ignored and data transmitted on TTIP and TRING is internally looped around and routed back to the receive inputs.	
				Note: When these inputs are left open, they stay in a high impedance state. Therefore, the layout design should not route signals with fast transitions near the LOOP pins. This practice will minimize capacitive coupling.	
29	L1	TCLK1	DI	Transmit Clock Input.	
30	 L2	TPOS1	DI	Transmit Positive Data Input.	
30	L2 L2	TDATA1	DI	Transmit Data Input.	
31	L2 L3	TNEG1	DI	Transmit Negative Data Input.	
31	L3	UBS1	DI	Unipolar/Bipolar Select Input.	
_	M1	RCLK1			
32		-	DO	Receive Clock Output.	
33	M2	RPOS1	DO	Receive Positive Data Output.	
33	M2	RDATA1	DO	Receive Data Output.	
34 34	M3 M3	RNEG1 BPV1	DO DO	Receive Negative Data Output. Bipolar Violation Detect Output.	
_	-		-		
35	K3	LOS1	DO	Loss of Signal Output.	
36	N1	TCLK0	DI	Transmit Clock Input.	
37	N2	TPOS0	DI	Transmit Positive Data Input.	
37	N2	TDATA0	DI	Transmit Data Input.	
38	N3	TNEG0	DI	Transmit Negative Data Input.	
38	N3	UBS0	DI	Unipolar/Bipolar Select Input.	
39	P1	RCLK0	DO	Receive Clock Output.	
40	P2	RPOS0	DO	Receive Positive Data.	
40	P2	RDATA0	DO	Receive Data Output.	
41	P3	RNEG0	DO	Receive Negative Data.	
41	P3	BPV0	DO	Bipolar Violation Detect.	
42	K4	LOS0	DO	Loss of Signal Output.	
		out; DO: Digita pply; N.C.: No		ut; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output ected.	

intel

Table 1. LXT384 Pin Description (Sheet 7 of 12)

Pin # QFP	Ball # PBGA	Symbol	I/O ¹	Description		
				Multiplexed/Non-Multiplexed Select Input.		
43	К2	MUX	DI	When Low the parallel host interface operates in non-multiplexed mode. When High the parallel host interface operates in multiplexed mode. In hardware mode, tie this unused input low.		
44	N4, P4	TVCC0	S	Transmit Driver Power Supply. Power supply pin for the output driv TVCC pins can be connected to either a 3.3V or 5V power supply. Please refer to the Transmitter description.		
45 46	N5 P5	TTIP0 TRING0	AO AO	Transmit Tip Output. Transmit Ring Output. These pins are differential line driver outputs. TTIP and TRING will be in high impedance state if the TCLK pin is Low or the OE pin is Low. In software mode, TTIP and TRING can be tristated on a port-by-port basis by writing a '1' to the OEx bit in the Output Enable Register (OER).		
47	N6, P6	TGND0	S	Transmit Driver Ground. Ground pin for the output driver.		
48 49	P7 N7	RTIP0 RRING0	AI AI	Receive TIP Input. Receive Ring Input. These pins are the inputs to the differential line receiver. Data and clock are recovered and output on the RPOS/RNEG and RCLK pins.		
50	L6, M6	TGND1	S	Transmit Driver Ground.		
51 52	M5 L5	TRING1 TTIP1	AO AO	Transmit Ring Output. Transmit Tip Output.		
53	L4, M4	TVCC1	S	Transmit Driver Power Supply.		
54 55	L7 M7	RRING1 RTIP1	AI AI	Receive Ring Input. Receive Tip Input.		
56	L11, M11	TVCC2	s	Transmit Driver Power Supply.		
57	L10	TTIP2	AO	Transmit Tip Output.		
58	M10	TRING2	AO	Transmit Ring Output.		
59	L9, M9	TGND2	S	Transmit Driver Ground.		
60	M8	RTIP2	AI	Receive TIP Input.		
61	L8	RRING2	AI	Receive Ring Input.		
62	N9, P9	TGND3	S	Transmit Driver Ground.		
63	P10	TRING3	AO	Transmit Ring.		
64	N10	TTIP3	AO	Transmit Tip Output.		
65	N11, P11	TVCC3	S	Transmit Driver Power Supply.		
66	N8	RRING3	AI	Receive Ring Input.		
67	P8	RTIP3	AI	Receive Tip Input.		
68	K11	LOS3	DO	Loss of Signal Output.		

Table 1. LXT384 Pin Description (Sheet 8 of 12)

Pin # QFP	Ball # PBGA	Symbol	I/O ¹	Description		
69	P12	RNEG3	DO	Receive Negative Data Output.		
69	P12	BPV3	DO	Bipolar Violation Detect Output.		
70	P13	RPOS3	DO	Receive Positive Data Output.		
70	P13	RDATA3	DO	Receive Data Output.		
71	P14	RCLK3	DO	Receive Clock Output.		
72	N12	TNEG3	DI	Transmit Negative Data Input.		
72	N12	UBS3	DI	Unipolar/Bipolar Select Input.		
73	N13	TPOS3	DI	Transmit Positive Data Input.		
73	N13	TDATA3	DI	Transmit Data Input.		
74	N14	TCLK3	DI	Transmit Clock Input.		
75	K12	LOS2	DO	Loss of Signal Output.		
76	M12	RNEG2	DO	Receive Negative Data Output.		
76	M12	BPV2	DO	Bipolar Violation Detect Output.		
77	M13	RPOS2	DO	Receive Positive Data Output.		
77	M13	RDATA2	DO	Receive Data Output.		
78	M14	RCLK2	DO	Receive Clock Output.		
79	L12	TNEG2	DI	Transmit Negative Data Input.		
79	L12	UBS2	DI	Unipolar/Bipolar Select Input.		
80	L13	TPOS2	DI	Transmit Positive Data Input.		
80	L13	TDATA2	DI	Transmit Data Input.		
81	L14	TCLK2	DI	Transmit Clock Input.		
82	K13	INT	OD	Interrupt. This active Low, maskable, open drain output requires an external 10k pull up resistor. If the corresponding interrupt enable bit is enabled, \overline{INT} goes Low to flag the host when the LXT384 changes state (see details in the interrupt handling section). The microprocessor INT input should be set to level triggering.		
				Data Transfer Acknowledge Output (Motorola Mode).		
				Ready Output (Intel mode).		
				Serial Data Output (Serial Mode).		
				Motorola Mode		
83 83 83	K14 K14 K14	ACK RDY SDO	DO DO DO	A Low signal during a data bus read operation indicates that the information is valid. A Low signal during a write operation acknowledges that a data transfer into the addressed register has been accepted (acknowledge signal).Wait states only occur if a write cycle immediately follows a previous read or write cycle (e.g. read modify write). <u>Intel Mode</u> A High signal acknowledges that a register access operation has been completed. (Ready Signal) A Low signal on this pin signals that a data transfer access.		
				transfer operation is in progress. The pin goes tristate after completion of a bus cycle. <u>Serial Mode</u> If CLKE is High, SDO is valid on the rising edge of SCLK. If CLKE is Low, SDO is valid on the falling edge of SCLK. This pin goes into High Z state during a serial port write access.		
		out; DO: Digita oply; N.C.: No		ut; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output ected.		

Pin # QFP	Ball # PBGA	Symbol	I/O ¹		Description		
				Data Strobe Inp	ut (Motorola Mode).		
				Write Enable In	put (Intel mode).		
				Serial Data Input (Serial Mode).			
84	J14	DS	DI	Line Length Equ	alizer Input (Hardware Mode).		
84	J14	WR	DI	Host Mode			
84 84	J14 J14	SDI LEN0	DI DI	This pin acts as data strobe in Motorola mode and as Write Enable Intel mode. In serial mode, this pin is used as Serial Data Input.			
				Hardware Mode	Hardware Mode		
				This pin determin Please refer to T	nes the shape and amplitude of the transmit pulse. able 2.		
				Read/Write Inpu	ut (Motorola Mode).		
				Read Enable In	put (Intel Mode).		
		_		Line Length Eq	ualizer Input (Hardware Mode).		
85	J13	R/W	DI	Host Mode			
85 85	J13 J13	RD LEN1	DI DI	This pin function Read Enable in I	s as the read/write signal in Motorola mode and as th Intel mode.		
				Hardware Mode			
				This pin determines the shape and amplitude of the transmit pulse. Please refer to Table 2.			
				Address Latch	Enable Input.		
				Shift Clock Inpu	ut (Serial Mode).		
				Address Strobe	e (Motorola Mode).		
				Line Length Eq	ualizer Input (Hardware Mode).		
86	J12	ALE	DI	Host Mode			
86 86	J12 J12	SCLK AS	DI DI		the multiplexed address/data bus is clocked into the alling edge of ALE.		
86	J12	LEN2	DI		ode, this pin acts as serial shift clock.		
				In Motorola mod	e, this pin acts a active Low address strobe.		
				Hardware Mode			
				This pin determine Please refer to T	nes the shape and amplitude of the transmit pulse. Table 2.		
				Chip Select/Jitte	er Attenuator Select Input.		
				Host Mode			
				This active Low i each read or writ remain Low.	input is used to access the serial/parallel interface. For the operation, $\overline{\text{CS}}$ must transition from High to Low, and		
				Hardware Mode			
87	J11	CS	DI	This input detern	nines the Jitter Attenuator position:		
87	J11	JASEL		JASEL	JA Position		
				L Transmit Path			
				Н	Receive Path		
				Z	Disabled		
					2.000.00		

Table 1. LXT384 Pin Description (Sheet 9 of 12)

Table 1. LXT384 Pin Description (Sheet 10 of 12)

Pin # QFP	Ball # PBGA	Symbol	I/O ¹	Description	
				Motorola/Intel/Codec Enable Select Input.	
				Host Mode:	
88	88 H12	MOT/INTL/	DI	When Low, the host interface is configured for Motorola microcontrollers. When High, the host interface is configured for Intel microcontrollers.	
00	піг	CODEN	וט	Hardware Mode:	
				Determines the line encode/decode selection when in unipolar mode. When Low, B8ZS/HDB3 encoders/decoders are enabled for T1/E1 respectively. When High, enables AMI encoder/decoder (transparent mode).	
89	H11	GND1	S	Ground (Core).	
90	H14	VCC1	S	Power (Core).	
91	G11	GNDIO1	S	Ground (I/O).	
92	G14	VCCIO1	S	Power (I/O).	
93	G13	AT2	AO	JTAG Analog Output Test Port 2.	
94	H13	AT1	AI	JTAG Analog Input Test Port 1.	
95	G12	TRST		JTAG Controller Reset Input. Input is used to reset the JTAG controller. TRST is pulled up internally and may be left disconnected.	
96	F11	TMS	DI	JTAG Test Mode Select Input. Used to control the test logic state machine. Sampled on rising edge of TCK. TMS is pulled up internally and may be left disconnected.	
97	F14	ТСК	DI	JTAG Clock Input. Clock input for JTAG. Connect to GND when not used.	
98	F13	TDO	DO	JTAG Data Output. Test Data Output for JTAG. Used for reading all serial configuration and test data from internal test logic. Updated on falling edge of TCK.	
99	F12	TDI	DI	JTAG Data Input. Test Data input for JTAG. Used for loading serial instructions and data into internal test logic. Sampled on rising edge of TCK. TDI is pulled up internally and may be left disconnected.	
100	D14	TCLK5	DI	Transmit Clock Input.	
101	D13	TPOS5	DI	Transmit Positive Data Input.	
101	D13	TDATA5	DI	Transmit Data Input.	
102	D12	TNEG5	DI	Transmit Negative Data Input.	
102	D12	UBS5	DI	Unipolar/Bipolar Select Input.	
103	C14	RCLK5	DO	Receive Clock Output.	
104	C13	RPOS5	DO	Receive Positive Data Output.	
104	C13	RDATA5	DO	Receive Data Output.	
105	C12	RNEG5	DO	Receive Negative Data Output.	
105	C12	BPV5	DO	Bipolar Violation Detect Output.	
106	E12	LOS5	DO	Loss of Signal Output.	
107	B14	TCLK4	DI	Transmit Clock Input.	
		out; DO: Digita pply; N.C.: No		ut; DI/O: Digital Bidirectional Port; Al: Analog Input; AO: Analog Output ected.	

intel®

Table 1.	LXT384 Pin	Description	(Sheet 11 of 12)
----------	------------	-------------	------------------

Pin # QFP	Ball # PBGA	Symbol	I/O ¹	Description					
108	B13	TPOS4	DI	Transmit	Transmit Positive Data Input. Transmit Data Input.				
108	B13	TDATA4	DI	Transmit	Data Input.				
109	B12	TNEG4	DI	Transmit	Negative Dat	a Input.			
109	B12	UBS4	DI	Unipolar/	Unipolar/Bipolar Select Input.				
110	A14	RCLK4	DO	Receive (Receive Clock Output.				
111	A13	RPOS4	DO	Receive I	Receive Positive Data Output.				
111	A13	RDATA4	DO	Receive I	Receive Data Output.				
112	A12	RNEG4	DO	Receive Negative Data Output.					
112	A12	BPV4	DO	Bipolar V	iolation Dete	ct Output.			
113	E11	LOS4	DO	Loss of S	Signal Output.				
114	E14	OE	DI	outputs in redundan internal ci be tristate	Output Driver Enable Input. If this pin is asserted Low all analog driver outputs immediately enter a high impedance mode to support redundancy applications without external mechanical relays. All other internal circuitry stays active. In software mode, TTIP and TRING can be tristated on a port-by-port basis by writing a '1' to the OEx bit in the Output Enable Register (OER).				
115	E13	CLKE	DI	Clock Edge Select Input. In clock recovery mode, setting CLKE High causes RDATA or RPOS and RNEG to be valid on the falling edge of RCLK and SDO to be valid on the rising edge of SCLK. Setting CLKE Low makes RDATA or RPOS and RNEG to be valid on the rising edge of RCLK and SDO to be valid on the falling edge of SCLK. In Data recovery Mode, RDATA or RPOS/RNEG are active High output polarity when CLKE is High and active Low polarity when CLKE is Low.					
					CLKE	RPOS/RNEG	SDO		
					L	RCLK	SCLK		
					Н	RCLK	SCLK		
116	A11, B11	TVCC4	S	Transmit	Driver Power	Supply.			
117	B10	TTIP4	AO	Transmit	Tip Output.				
118	A10	TRING4	AO	Transmit	Ring Output.				
119	A9, B9	TGND4	S	Transmit	Driver Groun	d.			
120	A8	RTIP4	AI	Receive 1	Tip Input.				
121	B8	RRING4	AI		Ring Input.				
122	C9, D9	TGND5	S	Transmit	Driver Groun	d.			
123	C10	TRING5	AO	Transmit	Ring Output.				
124	D10	TTIP5	AO	Transmit	Tip Output.				
125	C11, D11	TVCC5	s	Transmit	Transmit Driver Power Supply.				
126	D8	RRING5	AI	Receive F	Ring Input.				
127	C8	RTIP5	AI		Tip Input.				
128	C4, D4	TVCC6	S	Transmit	Driver Power	Supply.			
		out; DO: Digiti pply; N.C.: No			igital Bidirectio	nal Port; AI: Analog	Input; AO: Analog	Output	

Pin # QFP	Ball # PBGA	Symbol	I/O ¹	Description			
129	D5	TTIP6	AO	Transmit Tip Output.			
130	C5	TRING6	AO	Transmit Ring Output.			
131	C6, D6	TGND6	S	Transmit Driver Ground.			
132	C7	RTIP6	AI	Receive Tip Input.			
133	D7	RRING6	AI	Receive Ring Input.			
134	A6, B6	TGND7	S	Transmit Driver Ground.			
135	A5	TRING7	AO	Transmit Ring Output.			
136	B5	TTIP7	AO	Transmit Tip Output.			
137	A4, B4	TVCC7	S	Transmit Driver Power Supply.			
138	B7	RRING7	AI	Receive Ring Input.			
139	A7	RTIP7	AI	Receive Tip Input.			
140	E4	LOS7	DO	Loss of Signal Output.			
141	A3	RNEG7	DO	Receive Negative Data Output.			
141	A3	BPV7	DO	Bipolar Violation Detect Output.			
142	A2	RPOS7	DO	Receive Positive Data Output.			
142	A2	RDATA7	DO	Receive Data Output.			
143	A1	RCLK7	DO	Receive Clock Output.			
144	B3	TNEG7	DI	Transmit Negative Data Input.			
144	B3	UBS7	DI	Unipolar/Bipolar Select Input.			
1. DI:	Digital In	out; DO: Digita	al Outp	ut; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output			

Table 1. LXT384 Pin Description (Sheet 12 of 12)

1. DI: Digital Input; DO: Digital Output; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output S: Power Supply; N.C.: Not Connected.

2.0 Functional Description

Figure 1 is a block diagram of the LXT384. The LXT384 is a fully integrated octal line interface unit designed for T1 1.544 Mbps and E1 2.048 Mbps short haul applications.

Each transceiver front end interfaces with four lines, one pair for transmit, one pair for receive. These two lines comprise a digital data loop for full duplex transmission.

The LXT384 can be controlled through hard-wired pins or by a microprocessor through a serial or parallel interface (Host mode).

The transmitter timing reference is TCLK, and the receiver reference clock is MCLK. The LXT384 is designed to operate without any reference clock when used as an analog front-end (line driver and data recovery). MCLK is mandatory if the on chip clock recovery capability is used. All eight clock recovery circuits share the same reference clock defined by the MCLK input signal.

2.1 Initialization

During power up, the transceiver remains static until the power supply reaches approximately 60% of VCC. During power-up, an internal reset sets all registers to their default values and resets the status and state machines for the LOS.

2.1.1 Reset Operation

Writing to the reset register (RES) initiates a 1 microsecond reset cycle, except in Intel nonmultiplexed mode. In Intel non-multiplexed mode, the reset cycle takes 2 microseconds. Please refer to Host mode section for more information. This operation sets all LXT384 registers to their default values.

2.2 Receiver

The eight receivers in the LXT384 are identical. The following paragraphs describe the operation of one.

The twisted-pair input is received via a 1:2 step down transformer. Positive pulses are received at RTIP, negative pulses at RRING. Recovered data is output at RPOS and RNEG in the bipolar mode and at RDATA in the unipolar mode. The recovered clock is output at RCLK. RPOS/RNEG validation relative to RCLK is pin selectable (CLKE).

The receive signal is processed through the peak detector and data slicers. The peak detector samples the received signal and determines its maximum value. A percentage of the peak value is provided to the data slicers as a threshold level to ensure optimum signal-to-noise ratio. For DSX-1 applications (line length inputs LEN2-0 from 011 to 111) the threshold is set to 70% (typical) of the peak value. This threshold is maintained above the specified level for up to 15 successive zeros over the range of specified operating conditions. For E1 applications (LEN2-0 = 000), the threshold is 50% (typical).

The receiver is capable of accurately recovering signals with up to 12 dB of attenuation (from 2.4 V), corresponding to a received signal level of approximately 500 mV. Maximum line length is 1500 feet of ABAM cable (approximately 6 dB of attenuation). Regardless of received signal level, the peak detectors are held above a minimum level of 0.150 V (typical) to provide immunity from impulsive noise.

After processing through the data slicers, the received signal goes to the data and timing recovery section. The data and timing recovery circuits provide an input jitter tolerance better than required by Pub 62411 and ITU G.823, as shown in Test Specifications, Figure 33.

Depending on the options selected, recovered clock and data signals may be routed through the jitter attenuator, through the B8ZS/HDB3/AMI decoder, and may be output to the framer as either bipolar or unipolar data.

2.2.1 Loss of Signal Detector

The loss of signal detector in the LXT384 uses a dedicated analog and digital loss of signal detection circuit. It is independent of its internal data slicer comparators and complies to the latest ITU G.775 and ANSI T1.231 recommendations. Under software control, the detector can be configured to comply to the ETSI ETS 300 233 specification (LACS Register). In hardware mode, the LXT384 supports LOS per G.775 for E1 and ANSI T1.231 for T1 operation.

The receiver monitor loads a digital counter at the RCLK frequency. The counter is incremented each time a zero is received, and reset to zero each time a one (mark) is received. Depending on the operation mode, a certain number of consecutive zeros sets the LOS signal. The recovered clock is replaced by MCLK at the RCLK output with a minimum amount of phase errors. MCLK is

required for receive operation. When the LOS condition is cleared, the LOS flag is reset and another transition replaces MCLK with the recovered clock at RCLK. RPOS/RNEG will reflect the data content at the receiver input during the entire LOS detection period for that channel.

2.2.1.1 E1 Mode

In G.775 mode, a loss of signal is detected if the signal is below 200mV typ. for 32 consecutive pulse intervals. When the received signal reaches 12.5% ones density (4 marks in a sliding 32-bit period) with no more than 15 consecutive zeros and the signal level exceeds 250mV typ., the LOS flag is reset and another transition replaces MCLK with the recovered clock at RCLK.

In ETSI 300 233 mode, a loss of signal is detected if the signal is below 200mV for 2048 consecutive intervals (1 ms). The LOS condition is cleared and the output pin returns to Low when the incoming signal has transitions when the signal level is equal or greater than 250mV for more than 32 consecutive pulse intervals.

2.2.1.2 T1 Mode

The T1.231 LOS detection criteria is employed. LOS is detected if the signal is below 200mV for 175 contiguous pulse positions. The LOS condition is terminated upon detecting an average pulse density of 12.5% over a period of 175 contiguous pulse positions starting with the receipt of a pulse. The incoming signal is considered to have transitions when the signal level is equal or greater than 250mV.

2.2.1.3 Data Recovery Mode

In data recovery mode, the LOS digital timing is derived from a internal self timed circuit. RPOS/ RNEG stay active during loss of signal. The analog LOS detector complies with ITU-G.775 recommendation. The LXT384 monitors the incoming signal amplitude. Any signal below 200mV for more than 30μ s (typical) will assert the corresponding LOS pin. The LOS condition is cleared when the signal amplitude rises above 250mV. The LXT384 requires more than 10 and less than 255 bit periods to declare a LOS condition in accordance to ITU G.775.

2.2.2 Alarm Indication Signal (AIS) Detection

The AIS detection is performed by the receiver independent of any loopback mode. This feature is available in host mode only with clock recovery. Because there is no clock in data recovery mode, AIS detection will not work in that mode. AIS requires MCLK to have clock applied, since this function depends on the clock to count the number of ones in an interval.

2.2.2.1 E1 Mode

Two different detection modes are available depending on the LACS register setting:

• ETSI ETS300233 Mode

The AIS condition is declared when the received data stream contains less than 3 zeros within a period of 512 bits.

The AIS condition is cleared when 3 or more zeros within 512 bits are detected.

• ITU G.775 Mode

The AIS condition is declared when, within two consecutive 512 bit periods, less than 3 zeros are detected for each 512 bit period.

The AIS condition is cleared when, within two consecutive 512 bit periods, 3 or more zeros are detected for each 512 bit period.

2.2.2.2 T1 Mode

ANSI T1.231 detection is employed.

The AIS condition is declared when less than 9 zeros are detected in any string of 8192 bits. This corresponds to a 99.9% ones density over a period of 5.3ms.

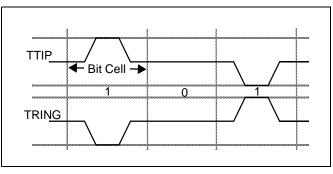
The AIS condition is cleared when the received signal contains 9 or more zeros in any string of 8192 bits.

2.2.3 Receive Alarm Indication Signal (RAIS)

The receiver will generate all ones to RPOS and RNEG outputs upon LOS, when bit 6, RAISEN, for Receive Alarm Indication Signal Enable, is set in the Global Control Register, GCR. This can affect the AIS status by setting to one if the signal at RTIP and RRING is all zeroes, or be clearing to zero if the signal at RTIP and RRING is all ones. Because of this, mask the AIS interrupt enable bits before setting or resetting RAISEN. This will prevent inadvertent interrupts during programming.

2.2.4 In Service Code Violation Monitoring

In unipolar I/O mode with HDB3/B8ZS decoding, the LXT384 reports bipolar violations on RNEG/BPV for one RCLK period for every HDB3/B8ZS code violation that is not part of the zero code substitution rules. In AMI mode, all bipolar violations (two consecutive pulses with the same polarity) are reported at the BPV output.


2.3 Transmitter

The eight low power transmitters of the LXT384 are identical. Transmit data is clocked serially into the device at TPOS/TNEG in the bipolar mode or at TDATA in the unipolar mode. The transmit clock (TCLK) supplies the input synchronization. Unipolar I/O and HDB3/B8ZS/AMI encoding/decoding is selected by pulling TNEG High for more than 16 consecutive TCLK clock cycles. The transmitter samples TPOS/TNEG or TDATA inputs on the falling edge of TCLK. Refer to the Test Specifications Section for MCLK and TCLK timing characteristics. If TCLK is not supplied, the transmitter remains powered down and the TTIP/TRING outputs are held in a High Z state. In addition, fast output tristatability is also available through the OE pin (all ports) and/or the port's OEx bit in the Output Enable Register (OER).

Zero suppression is available only in Unipolar Mode. The two zero-suppression types are B8ZS, used in T1 environments, and HDB3, used in E1 environments. The scheme selected depends on whether the device is set for T1 or E1 operation (determined by LEN2-0 pulse shaping settings). The LXT384 also supports AMI line coding/decoding as shown in Figure 5. In Hardware mode, AMI coding/decoding is selected by the CODEN pin. In host mode, AMI coding/decoding is selected by bit 4 in the GCR (Global Control Register).

Figure 5. 50% AMI Encoding

Each output driver is supplied by a separate power supply (TVCC and TGND). The transmit pulse shaper is bypassed if no MCLK is supplied while TCLK is pulled High. In this case TPOS and TNEG control the pulse width and polarity on TTIP and TRING. With MCLK supplied and TCLK pulled High, the driver enters TAOS (Transmit All Ones pattern). Note: the TAOS generator uses MCLK as a timing reference. In order to assure that the output frequency is within specification limits, MCLK must have the applicable stability. TAOS is inhibited during Remote Loopback.

2.3.1 Transmit Pulse Shaping

The transmitted pulse shape is internally generated using a high speed D/A converter. Shaped pulses are further applied to the line driver for transmission onto the line at TTIP and TRING. The line driver provides a constant low output impedance regardless of whether it is driving marks, spaces or if it is in transition. This well controlled dynamic impedance provides excellent return loss when used with external precision resistors ($\pm 1\%$ accuracy) in series with the transformer.

2.3.1.1 Hardware Mode

In hardware mode, pins LEN0-2 determine the pulse shaping as described in Table 2. The LEN settings also determine whether the operating mode is T1 or E1.

Note: In hardware mode, all eight ports will share the same pulse shaping setting. Independent pulse shaping for each channel is available in host mode.

2.3.1.2 Host Mode

In Host Mode, the contents of the Pulse Shaping Data Register (PSDAT) determines the shape of pulse output at TTIP/TRING. Please refer to Table 24 and Table 25.

intel

LEN2	LEN1	LEN0	Line Length ¹	Cable Loss ²	Operation Mode
0	1	1	0 - 133 ft. ABAM	0.6 dB	
1	0	0	133 - 266 ft. ABAM	1.2 dB	
1	0	1	266 - 399 ft. ABAM	1.8 dB	T1
1	1	0	399 - 533 ft. ABAM	2.4 dB	
1	1	1	533 - 655 ft. ABAM	3.0 dB	
0	0	0	E1 G.703, 75 Ω coaxial cab cable.	E1	

Table 2. Line Length Equalizer Inputs

2.3.1.3 Output Driver Power Supply

The output driver power supply (TVCC pins) can be either 3.3V or 5V nominal. When TVCC=5V, LXT384 drives both E1 ($75\Omega/120\Omega$) and T1 100 Ω lines through a 1:2 transformer and $11\Omega/9.1\Omega$ series resistors.

When TVCC=3.3V, the LXT384 drives E1 ($75\Omega/120\Omega$) lines through a 1:2 transformer and 11Ω series resistor. A configuration with a 1:2 transformer and without series resistors should be used to drive T1 100 Ω lines.

The Channel 4 (TVCC4) power supply pin is used to determine 3.3V or 5.0V transmit operation.

Removing the series resistors for T1 applications with TVCC=3.3V, improves the power consumption of the device. See Table 36.

On the other hand, series resistors in the transmit configuration improve the transmit return loss performance. Good transmit return loss performance minimizes reflections in harsh cable environments. In addition, series resistors provide protection against surges coupled to the device. The resistors should be used in systems requiring protection switching without external relays. Please refer to Figure 6 for the recommended external line circuitry.

2.3.1.4 Power Sequencing

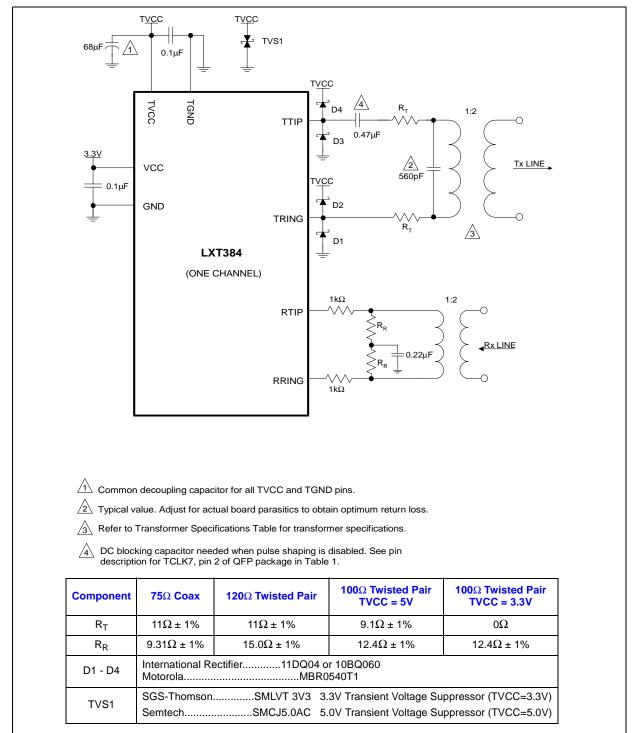
For the LXT384, we recommend sequencing TVCC first then VCC second or at the same time as TVCC to prevent excessive current draw.

2.4 Driver Failure Monitor

The LXT384 transceiver incorporates an internal power Driver Failure Monitor (DFM) in parallel with TTIP and TRING that is capable of detecting secondary shorts without cable. DFM is available only in configurations with no transmit series resistors (T1 mode with TVCC=3.3V). This feature is available in the serial and parallel host modes but not available in the hardware mode of operation.

A capacitor, charged via a measure of the driver output current and discharged by a measure of the maximum allowable current, is used to detect a secondary short failure. Secondary shorted lines draw excess current, overcharging the cap. When the capacitor charge deviates outside the nominal

LXT384 — Octal T1/E1/J1 Transceiver


charge window, a driver short circuit fail (DFM) is reported in the respective register by setting an interrupt. During a long string of spaces, a short-induced overcharge eventually bleeds off, clearing the DFM flag.

Note: unterminated lines of adequate length ($\lambda/4$) may effectively behave as short-circuits as seen by the driver and therefore trigger the DFM. Under these circumstances, the alarm should be disabled.

In addition, LXT384 features output driver short-circuit protection. When the output current exceeds 100 mA, LXT384 limits the driver's output voltage to avoid damage.

2.5 Line Protection

Figure 6 on page 29 shows recommended line interface circuitry. In the receive side, the 1 k Ω series resistors protect the receiver against current surges coupled into the device. Due to the high receiver impedance (70 k Ω typ.) the resistors do not affect the receiver sensitivity. In the transmit side, the Schottky diodes D1-D4 protect the output driver. While not mandatory for normal operation, these protection elements are strongly recommended to improve the design robustness.

2.6 Jitter Attenuation

A digital Jitter Attenuation Loop (JAL) combined with a FIFO provides Jitter attenuation. The JAL is internal and requires no external crystal nor high-frequency (higher than line rate) reference clock.

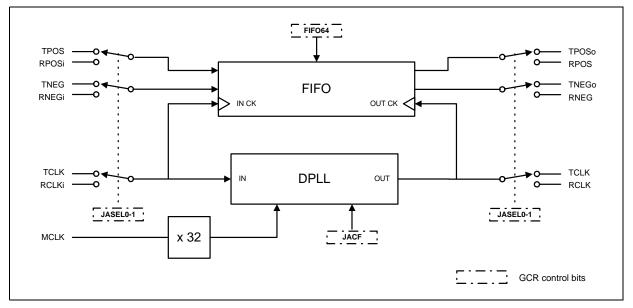
In Host Mode, the Global Control Register (GCR) determines whether the JAL is positioned in the receive or transmit path. In Hardware Mode, the JAL position is determined by the JASEL pin.

The FIFO is a 32 x 2-bit or 64 x 2-bit register (selected by the FIFO64 bit in the GCR). Data is clocked into the FIFO with the associated clock signal (TCLK or RCLK), and clocked out of the FIFO with the dejittered JAL clock (Figure 7). When the FIFO is within two bits of overflowing or underflowing, the FIFO adjusts the output clock by 1/8 of a bit period. The Jitter Attenuator produces a constant delay of 16 or 32 bits in the associated path (refer to test specifications). This feature can be used for hitless switching applications. This advanced digital jitter attenuator meets latest jitter attenuation specifications. See Table 3.

Under software control, the low limit jitter attenuator corner frequency depends on FIFO length and the JACF bit setting (this bit is in the GCR register). In Hardware Mode, the FIFO length is fixed to 64 bits. The corner frequency is fixed to 6 Hz for T1 mode and 3.5 Hz for E1 mode.

Table 3. Jitter Attenuation Specifications

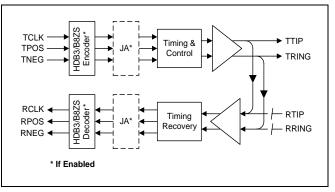
T1	E1
AT&T Pub 62411	ITU-T G.736
GR-253-CORE ¹	ITU-T G.742 ³
	ITU-T G.783 ⁴
TR-TSY-000009 ²	ETSI CTR12/13
	BAPT 220
1. Category I, R5-203.	


2. Section 4.6.3.

Section 6.2 When used with the SXT6234 E2-E1 mux/demux.

4. Section 6.2.3.3 combined jitter when used with the SXT6251 21E1 mapper.

Figure 7. Jitter Attenuator Loop

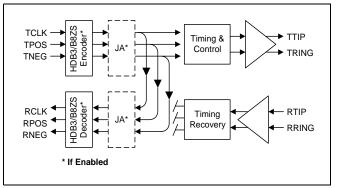

2.7 Loopbacks

The LXT384 offers three loopback modes for diagnostic purposes. In hardware mode, the loopback mode is selected with the LOOPn pins. In software mode, the ALOOP, DLOOP and RLOOP registers are employed.

2.7.1 Analog Loopback

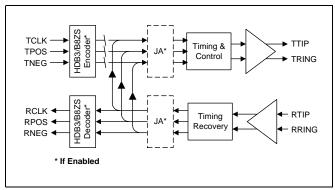
When selected, the transmitter outputs (TTIP & TRING) are connected internally to the receiver inputs (RTIP & RRING) as shown in Figure 8. Data and clock are output at RCLK, RPOS & RNEG pins for the corresponding transceiver. Note: signals on the RTIP & RRING pins are ignored during analog loopback.

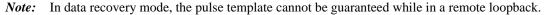
Figure 8. Analog Loopback



2.7.2 Digital Loopback

The digital loopback function is available in software mode only. When selected, the transmit clock and data inputs (TCLK, TPOS & TNEG) are looped back and output on the RCLK, RPOS & RNEG pins (see Figure 9). The data presented on TCLK, TPOS & TNEG is also output on the TTIP & TRING pins. Note: signals on the RTIP & RRING pins are ignored during digital loopback.


Figure 9. Digital Loopback



2.7.3 Remote Loopback

During remote loopback (see Figure 10), the RCLK, RPOS & RNEG outputs routed to the transmit circuits and output on the TTIP & TRING pins. Note: input signals on the TCLK, TPOS & TNEG pins are ignored during remote loopback.

2.7.4 Transmit All Ones (TAOS)

In Hardware mode, the TAOS mode is set by pulling TCLK High for more than 16 MCLK cycles. In software mode, TAOS mode is set by asserting the corresponding bit in the TAOS Register. In addition, automatic ATS insertion (in case of LOS) may be set using the ATS Register. Note: the TAOS generator uses MCLK as a timing reference, therefore TAOS doesn't work in data recovery mode. In order to assure that the output frequency is within specification limits, MCLK must have the applicable stability. DLOOP does not function when TAOS is active.

Figure 11. TAOS Data Path

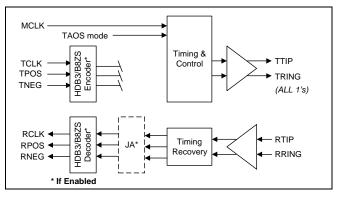
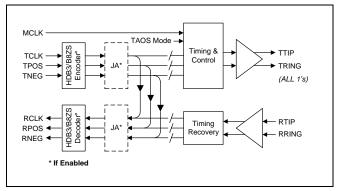
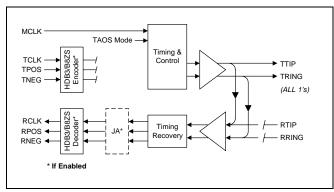




Figure 12. TAOS with Digital Loopback

Figure 13. TAOS with Analog Loopback

2.8 G.772 Performance Monitoring

The LXT384 can be configured as an octal line interface unit with all channels working as regular transceivers. In applications using only seven channels, the eighth channel can be configured to monitor any of the remaining channels inputs or outputs. The monitoring is non-intrusive per ITU-T G.772. Figure 1 on page 7 illustrates this concept.

The monitored line signal (input or output) goes through channel 0 clock and data recovery. The signal can be observed digitally at the RCLK/RPOS/RNEG outputs. This feature can also be used to create timing interfaces derived from a E1 signal. Channel 0 also displays the appropriate LOS state for the monitored channel, both in transmit and receive directions.

In addition, channel 0 can be configured to a Remote Loopback while in monitoring mode (TCLK0 must be active in order for this operation to take place). This will output the same data as in the signal being monitored at the channel 0 output (TTIP/TRING). The output signal can then be connected to a standard test equipment with an E1 electrical interface for monitoring purposes (non -intrusive monitoring).

2.9 Hitless Protection Switching (HPS)

The LXT384 transceivers include an output driver tristatability feature for T1/E1 redundancy applications. This feature greatly reduces the cost of implementing redundancy protection by eliminating external relays. Please refer to Application Note 119 for guidelines for implementing redundancy systems for both T1 and E1 operation using the LXT380/1/4/6/8.

2.10 Operation Mode Summary

Table 4 lists summarizes all the LXT384 hardware settings and corresponding operating modes.

MCLK	TCLK	LOOP ¹	Receive Mode	Transmit Mode	Loopback
Clocked	Clocked	Open	Data/Clock recovery	Pulse Shaping ON	No Loopback
Clocked	Clocked	L	Data/Clock recovery	Pulse Shaping ON	Remote Loopback
Clocked	Clocked	Н	Data/Clock recovery	Pulse Shaping ON	Analog Loopback
Clocked	L	Open	Data/Clock recovery	Power down	No Loopback
Clocked	L	L	Data/Clock Recovery	Power down	No effect on op.
Clocked	L	Н	Data/Clock Recovery	Power down	No Analog Loopback
Clocked	Н	Open	Data/Clock Recovery	Transmit All Ones	No Loopback
Clocked	Н	L	Data/Clock Recovery	Pulse Shaping ON	Remote Loopback
Clocked	Н	Н	Data/Clock Recovery	Transmit All Ones	No effect on op.
L	Clocked	Open	Power Down	Pulse Shaping ON	No Loopback
L	Clocked	L	Power Down	Pulse Shaping ON	No Remote Loopback
L	Clocked	Н	Power Down	Pulse Shaping ON	No effect on op.
L	Н	Open	Power Down	Pulse Shaping OFF	No Loopback
L	Н	L	Power Down	Pulse Shaping OFF	No Remote Loop
L	Н	Н	Power Down	Pulse Shaping OFF	No effect on op.
L	L	Х	Power Down	Power down	No Loopback
Н	Clocked	Open	Data Recovery	Pulse Shaping ON	No Loopback
Н	Clocked	L	Data Recovery	Pulse Shaping OFF	Remote Loopback
1. Hardwa	are mode o	nly.			

Table 4. Operation Mode Summary

MCLK	TCLK	LOOP ¹	Receive Mode	Transmit Mode	Loopback			
Н	Clocked	Н	Data Recovery	Pulse Shaping ON	Analog Loopback			
Н	L	Open	Data Recovery	Power down	No Loopback			
Н	L	L	Data Recovery	Pulse Shaping OFF	Remote Loopback			
Н	Н	Open	Data Recovery	Pulse Shaping OFF	No Loopback			
Н	Н	L	Data Recovery	Pulse Shaping OFF	Remote Loopback			
Н	Н	Н	Data Recovery	Pulse Shaping OFF	Analog Loopback			
1. Hardware mode only.								

Table 4. Operation Mode Summary (Continued)

2.11 Interfacing with 5V Logic

The LXT384 can interface directly with 5V TTL family devices. The internal input pads are tolerant to 5V outputs from TTL and CMOS family devices.

2.12 Parallel Host Interface

The LXT384 incorporates a highly flexible 8-bit parallel microprocessor interface. The interface is generic and is designed to support both non-multiplexed and multiplexed address/data bus systems for Motorola and Intel bus topologies. Two pins (MUX and MOT/INTL) select four different operating modes as shown in Table 5.

Table 5. Microprocessor Interface Selection

Pin		Operating Mode
MUX	MOT/INTL	Operating mode
Low	Low	Motorola, Non-Multiplexed
Low	High	Intel, Non-Multiplexed
High	Low	Motorola, Multiplexed
High	High	Intel, Multiplexed

The interface includes an address bus (A4 - A0) and a data bus (D7 - D0) for non-multiplexed operation and an 8-bit address/data bus for multiplexed operation. WR, RD, R/W, CS, ALE, DS, INT and RDY/ACK are used as control signals. A significant enhancement is an internal wait-state generator that controls an Intel and Motorola compatible handshake output signal (RDY/ACK). In Motorola mode, ACK Low signals valid information is on the data bus. During a write cycle a Low signal acknowledges the acceptance of the write data.

In Intel mode, RDY High signals to the controlling processor that the bus cycle can be completed. While Low the microprocessor must insert wait states. This allows the LXT384 to interface with wait-state capable microcontrollers, independent of the processor bus speed. To activate this function a reference clock is required on the MCLK pin.

There is one exception to write cycle timing for Intel non-multiplexed mode: Register 0Ah, the reset register. Because of timing issues, the RDY line remains high after the first part of the cycle is done, not signalling write cycle completion with another transition low. Add 2 microseconds of

delay to allow the reset cycle to completely initialize the device before proceeding. The overall duration of the Reset cycle from CS low to Reset cycle completion is 3 microseconds when using Intel non-multiplexed host mode.

An additional active Low interrupt output signal indicates alarm conditions like LOS and DFM to the microprocessor.

The LXT384 has a 5-bit address bus and provides 22 user accessible 8-bit registers for configuration, alarm monitoring and control of the chip.

2.12.1 Motorola Interface

The Motorola interface is selected by asserting the $\overline{\text{MOT}}/\text{INTL}$ pin Low. In non-multiplexed mode, the falling edge of $\overline{\text{DS}}$ is used to latch the address information on the address bus. In multiplexed operation the address on the multiplexed address data bus is latched into the device with the falling edge of $\overline{\text{AS}}$. In non-multiplexed mode, $\overline{\text{AS}}$ should be pulled High.

The R/\overline{W} signal indicates the direction of the data transfer. The \overline{DS} signal is the timing reference for all data transfers and typically has a duty cycle of 50%. A read cycle is indicated by asserting R/\overline{W} High with a falling edge on \overline{DS} . A write cycle is indicated by asserting R/\overline{W} Low with a rising edge on \overline{DS} .

Both cycles require the \overline{CS} signal to be Low and the Address pins to be actively driven by the microprocessor. Note: \overline{CS} and \overline{DS} can be connected together in Motorola mode. In a write cycle, the data bus is driven by the microprocessor. In a read cycle, the bus is driven by the LXT384.

2.12.2 Intel Interface

The Intel interface is selected by asserting the $\overline{\text{MOT}}$ /INTL pin High. The LXT384 supports nonmultiplexed interfaces with separate address and data pins when MUX is asserted Low, and multiplexed interfaces when MUX is asserted High. The address is latched in on the falling edge of ALE. In non-multiplexed mode, ALE should be pulled High. R/W is used as the RD signal and DS is used as the WR signal. A read cycle is indicated to the LXT384 when the processor asserts RD Low while the WR signal is held High. A write operation is indicated to the LXT384 by asserting WR Low while the RD signal is held High. Both cycles require the $\overline{\text{CS}}$ signal to be Low.

2.13 Interrupt Handling

2.13.1 Interrupt Sources

There are three interrupt sources:

- Status change in the LOS (Loss of Signal) status register (04H). The LXT384 analog/digital loss of signal processor continuously monitors the receiver signal and updates the specific LOS status bit to indicate presence or absence of a LOS condition.
- Status change in the DFM (Driver Failure Monitoring) status register (05H). The LXT384 smart power driver circuit continuously monitors the output drivers signal and updates the specific DFM status bit to indicate presence or absence of a secondary driver short circuit condition.
- Status change in the AIS (Alarm Indication Signal) status register (13H). The LXT384 receiver monitors the incoming data stream and updates the specific AIS status bit to indicate presence or absence of a AIS condition.

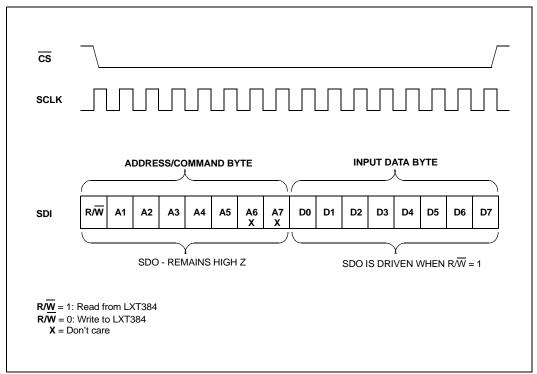
2.13.2 Interrupt Enable

The LXT384 provides a latched interrupt output (\overline{INT}). An interrupt occurs any time there is a transition on any enabled bit in the status register. Registers 06H, 07H and 14H are the LOS, DFM and AIS interrupt enable registers (respectively). Writing a logic "1" into the mask register will enable the respective bit in the respective Interrupt status register to generate an interrupt. The power-on default value is all zeroes. The setting of the interrupt enable bit does not affect the operation of the status registers.

Registers 08H, 09H and 15H are the LOS, DFM and AIS (respectively) interrupt status registers. When there is a transition on any enabled bit in a status register, the associated bit of the interrupt status register is set and an interrupt is generated (if one is not already pending). When an interrupt occurs, the INT pin is asserted Low. The output stage of the INT pin consists only of a pull-down device; an external pull-up resistor of approximately 10k ohm is required to support wired-OR operation.

2.13.3 Interrupt Clear

When an interrupt occurs, the interrupt service routine (ISR) should read the *interrupt status registers* (08H, 09H and 15H) to identify the interrupt source. Reading the Interrupt Status register clears the "sticky" bit set by the interrupt. Automatically clearing the register prepares it for the next interrupt.


The ISR should then read the corresponding *status monitor register* to obtain the current status of the device. Note: there are three status monitor registers: the LOS (04H), the DFM (05H) and the AIS (013H). Reading either status monitors register will clear its corresponding interrupts on the rising edge of the read or data strobe. When all pending interrupts are cleared, the INT pin goes High.

2.14 Serial Host Mode

The LXT384 operates in Serial Host Mode when the MODE pin is tied to VCCIO+2. Figure 14 shows the SIO data structure. The registers are accessible through a 16 bit word: an 8bit Command/Address byte (bits R/\overline{W} and A1-A7) and a subsequent 8bit data byte (bits D0-7). Bit R/\overline{W} determines whether a read or a write operation occurs. Bits A5-0 in the Command/Address byte address specific registers (the address decoder ignores bits A7-6). The data byte depends on both the value of bit R/\overline{W} and the address of the register as set in the Command/Address byte.

Figure 14. Serial Host Mode Timing

3.0 Register Descriptions

Table 6. Serial and Parallel Port Register Addresses (Sheet 1 of 2)

		Add		
Name	Symbol	Serial Port A7-A1	Parallel Port A7-A0	Mode
ID Register	ID	xx00000	xxx00000	R
Analog Loopback	ALOOP	xx00001	xxx00001	R/W
Remote Loopback	RLOOP	xx00010	xxx00010	R/W
TAOS Enable	TAOS	xx00011	xxx00011	R/W
LOS Status Monitor	LOS	xx00100	xxx00100	R
DFM Status Monitor	DFM	xx00101	xxx00101	R
LOS Interrupt Enable	LIE	xx00110	xxx00110	R/W
DFM Interrupt Enable	DIE	xx00111	xxx00111	R/W
LOS Interrupt Status	LIS	xx01000	xxx01000	R
DFM Interrupt Status	DIS	xx01001	xxx01001	R
Software Reset Register	RES	xx01010	xxx01010	R/W
Performance Monitoring	MON	xx01011	xxx01011	R/W

intel®

		Add		
Name	Symbol		Parallel Port A7-A0	Mode
Digital Loopback	DL	xx01100	xxx01100	R/W
LOS/AIS Criteria Selection	LOSC	xx01101	xxx01101	R/W
Automatic TAOS Select	ATS	xx01110	xxx01110	R/W
Global Control Register	GCR	xx01111	xxx01111	R/W
Pulse Shaping Indirect Address Register	PSIAD	xx10000	xxx10000	R/W
Pulse Shaping Data Register	PSDAT	xx10001	xxx10001	R/W
Output Enable Register	OER	xx10010	xxx10010	R/W
AIS Status Register	AIS	xx10011	xxx10011	R
AIS Interrupt Enable	AISIE	xx10100	xxx10100	R/W
AIS Interrupt Status	AISIS	xx10101	xxx10101	R

Table 6. Serial and Parallel Port Register Addresses (Sheet 2 of 2)

Table 7. Register Bit Names (Sheet 1 of 2)

Regist	Register				Bit								
Name	Sym	RW	7	6	5	4	3	2	1	0			
ID Register	ID	R	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0			
Analog Loopback	ALOOP	R/W	AL7	AL6	AL5	AL4	AL3	AL2	AL1	AL0			
Remote Loopback	RLOOP	R/W	RL7	RL6	RL5	RL4	RL3	RL2	RL1	RL0			
TAOS Enable	TAOS	R/W	TAOS7	TAOS6	TAOS5	TAOS4	TAOS3	TAOS2	TAOS1	TAOS0			
LOS Status Monitor	LOS	R	LOS7	LOS6	LOS5	LOS4	LOS3	LOS2	LOS1	LOS0			
DFM Status Monitor	DFM	R	DFM7	DFM6	DFM5	DFM4	DFM3	DFM2	DFM1	DFM0			
LOS Interrupt Enable	LIE	R/W	LIE7	LIE6	LIE5	LIE4	LIE3	LIE2	LIE1	LIE0			
DFM Interrupt Enable	DIE	R/W	DIE7	DIE6	DIE5	DIE4	DIE3	DIE2	DIE1	DIE0			
LOS Interrupt Status	LIS	R	LIS7	LIS6	LIS5	LIS4	LIS3	LIS2	LIS1	LIS0			
DFM Interrupt Status	DIS	R	DIS7	DIS6	DIS5	DIS4	DIS3	DIS2	DIS1	DIS0			
Software Reset Register	RES	R/W	RES7	RES6	RES5	RES4	RES3	RES2	RES1	RES0			
Performance Monitoring	MON	R/W	Reserved	Reserved	Reserved	Reserved	A3	A2	A1	A0			
Digital Loopback	DL	R/W	DL7	DL6	DL5	DL4	DL3	DL2	DL1	DL0			
LOS/AIS Criteria Select	LACS	R/W	LACS7	LACS6	LACS5	LACS4	LACS3	LACS2	LACS1	LACS0			
Automatic TAOS Select	ATS	R/W	ATS7	ATS6	ATS5	ATS4	ATS3	ATS2	ATS1	ATS0			

Table 7. Register Bit Names (Sheet 2 of 2)

Register			Bit								
Name	Sym	RW	7	6	5	4	3	2	1	0	
Global Control Register	GCR	R/W	Reserved	RAISEN	CDIS	CODEN	FIFO64	JACF	JASEL1	JASEL0	
Pulse Shaping Indirect Address Register	PSIAD	R/W	Reserved	Reserved	Reserved	Reserved	Reserved	LENAD2	LENAD1	LENAD0	
Pulse Shaping Data Register	PSDAT	R/W	Reserved	Reserved	Reserved	Reserved	Reserved	LEN2	LEN1	LEN0	
Output Enable Register	OER	R/W	OE7	OE6	OE5	OE4	OE3	OE2	OE1	<u>OE0</u>	
AIS Status Register	AIS	R	AIS7	AIS6	AIS5	AIS4	AIS3	AIS2	AIS1	AIS0	
AIS Interrupt Enable	AISIE	R/W	AISIE7	AISIE6	AISIE5	AISIE4	AISIE3	AISIE2	AISIE1	AISIE0	
AIS Interrupt Status	AISIS	R	AISIS7	AISIS6	AISIS5	AISIS4	AISIS3	AISIS2	AISIS1	AISIS0	

Table 8. ID Register, ID (00h)

Bit	Name	Function
7-0	ID7-ID0	This register contains a unique revision code and is mask programmed. For Rev. A4, 00h For Rev. A5, 15h

Table 9. Analog Loopback Register, ALOOP (01h)

Bit	Name	Function
7-0	AL7-AL0	Setting a bit to "1" enables analog local loopback for transceivers 7-0 respectively.

Table 10. Remote Loopback Register, RLOOP (02h)

Bit	Name	Function
7-0	RL7-RL0	Setting a bit to "1" enables remote loopback for transceivers 7-0 respectively.

Table 11. TAOS Enable Register, TAOS (03h)

Bit ¹	Name	Function ²				
7-0	TAOS7-TAOS0Setting a bit to "1" causes a continuous stream of marks to be sent out at the TTIP and TRING pins of the respective transceiver 7-0.					
2. M re	 On power up all register bits are set to "0". MCLK is used as timing reference. If MCLK is not available then the channel TCLK is used as the reference. This feature is not available in data recovery and line driver mode (MCLK= High and TCLK = High). 					

Table 12. LOS Status Monitor Register, LOS (04h)

Bit ¹	Name	Function			
7-0	LOS7-LOS0	Respective bit(s) are set to "1" every time the LOS processor detects a valid loss of signal condition in transceivers 7-0.			
	 On power up all register bits are set to "0". Any change in the state causes an interrupt. All LOS interrupts are cleared by a single read operation. 				

Table 13. DFM Status Monitor Register, DFM (05h)

Bit	Name	Function ¹			
7-0	DFM7-DFM0	Respective bit(s) are set to "1" every time the short circuit monitor detects a valid secondary output driver short circuit condition in transceivers 7-0. Note: DFM is available only in configurations with no transmit series resistors (T1 mode with TVCC=3.3V).			
1. O	1. On power-up all the register bits are set to "0". All DFM interrupts are cleared by a single read operation.				

Table 14. LOS Interrupt Enable Register, LIE (06h)

Bit	Name	Function ¹				
7-0	LIE7-LIE0	Transceiver 7-0 LOS interrupts are enabled by writing a "1" to the respective bit.				
1. C	1. On power-up all the register bits are set to "0" and all interrupts are disabled.					

Table 15. DFM Interrupt Enable Register, DIE (07h)

Bit	Name	Function ¹			
7-0	DIE7-DIE0	Transceiver 7-0 DFM interrupts are enabled by writing a "1" to the respective bit.			
1. O	1. On power-up all the register bits are set to "0" and all interrupts are disabled.				

Table 16. LOS Interrupt Status Register, LIS (08h)

Bit	Name	Function ¹			
7-0	LIS7-LIS0	These bits are set to "1" every time a LOS status change has occurred since the last cleared interrupt in transceivers 7-0 respectively.			
1. On power up all register bits are set to "0".					

Table 17. DFM Interrupt Status Register, DIS (09h)

Bit Name Function		Function ¹			
7-0	7-0 DIS7-DIS0 These bits are set to "1" every time a DFM status change has occurred since the cleared interrupt in transceivers 7-0 respectively.				
1.	1. On power up all register bits are set to "0".				

Table 18. Software Reset Register, RES (0Ah)

Bit	Name	Function
7-0	RES7-RES0	Writing to this register initiates a 1 microsecond reset cycle, except in Intel non- multiplexed mode. This operation sets all LXT384 registers to their default values. When using Intel non-multiplexed host mode, extend cycle time to 2 microseconds. Please refer to Host Mode section for details.

Table 19. Performance Monitoring Register, MON (0Bh)

Bit	Name	Function			
3-0	A3:A0	Protected Monitoring selection. See Table 1, page 15.			
4-7	reserved	Reserved.			

Table 20. Digital Loopback Register, DL (0Ch)

Bit ¹	Name	Function ²					
7-0 DL7-DL0 Setting a bit to "1" enables digital loopback for the respective transceiver.							
2. D	 On power up all register bits are set to "0". During digital loopback LOS and TAOS stay active and independent of TCLK, while data received on TPOS/TNEG/CKLK is looped back to RPOS/RNEG/RCLK. 						

Table 21. LOS/AIS Criteria Register, LCS (0Dh)

Bit ¹	Name	Function ²			
7-0	LCS7-LCS0	T1 Mode Don't care. T1.231 compliant LOS/AIS detection is used. <u>E1 Mode</u> Setting a bit to "1" selects the ETSI 300233 LOS. Setting a bit to "0" selects G.775 LOS mode. AIS works correctly for both ETSI and ITU when the bit is cleared to "0". See errata 10.3 or higher for a way to implement ETSI LOS and AIS.			
	 On power-on reset the register is set to "0". T1 or E1 operation mode is determined by the PSDAT settings. 				

Table 22. Automatic TAOS Select Register, ATS (0Eh)

Bit ¹	Name	Function		
7-0	-0 ATS7-ATS0 Setting a bit to "1" enables automatic TAOS generation whenever a LOS condi detected in the respective transceiver.			
 On power-on reset the register is set to "0". This feature is not available in data recovery and line driver mode (MCLK= High and TCLK = High). 				

Table 23. Global Control Register, GCR (0Fh)

Bit ¹	Name	Function					
0	JASEL0	These bits determine the jitter attenuator position:					
		JASEL0	JASEL1	JA Position			
1	JASEI 1	1	0	Transmit Path			
1	JASELI	1	1	Receive Path			
		0	х	Disabled			
2	JACF	This bit determines the jitter attenuator low limit 3dB corner frequency. Refer to the Jitter Attenuator specifications for details. See Table 42 on page 59.					
3	FIFO64	This bit determines the jitter attenuator FIFO depth: 0 = 32 bit 1 = 64 bit					
4	CODEN	This bit selects the zero suppression code for unipolar operation mode: 0 = B8ZS/HDB3 (T1/E1 respectively) 1 = AMI					
5	CDIS	This bit controls enables/disables the short circuit protection feature: 0 = enabled 1 = disabled					
6	RAISEN	This bit controls automatic AIS insertion in the receive path when LOS occurs: 0 = Receive AIS insertion disabled on LOS 1 = RPOS/RNEG = AIS on LOS Note: this feature is not available in data recovery mode (MCLK=High). Disable AIS interrupts when changing this bit value to prevent inadvertent interrupts.					
7	-	- Reserved.					
1. O	n power-on reset	the register is se	t to "0".				

Table 24. Pulse Shaping Indirect Address Register, PSIAD (10h)

Bit ¹	Name	Function					
		The three bit value written to these bits determine the channel to be addressed. Data can be read from (written to) the Pulse Shaping Data Register (PSDAT).					
		LENAD 0-2	<u>Channel</u>	LENAD 0-2	Channel		
0-2	LENAD 0-2	0h	0	4h	4		
		1h	1	5h	5		
		2h	2	6h	6		
		3h	3	7h	7		
3 - Reserved.							
1. 0	1. On power-on reset the register is set to "0".						

Bit	Name		Function					
	LEN 0-2 ^{1, 3}	LEN2-0	LEN0-2 determine the LXT384 operation mode: T1 or E1. In addition, for T1 LEN2-0 set the pulse shaping to meet the T1.102 pulse template at the DS connect point for various cable lengths:					
		LEN2	LEN1	LEN0	Line Length	Cable Loss ²	Operation Mode	
0-2		0	1	1	0 - 133 ft. ABAM	0.6 dB		
0-2		1	0	0	133 - 266 ft. ABAM	1.2 dB		
		1	0	1	266 - 399 ft. ABAM	1.8 dB	T1	
		1	1	0	399 - 533 ft. ABAM	2.4 dB		
		1	1	1	533 - 655 ft. ABAM	3.0 dB		
		0	0	0	E1 G.703, 75Ω coax twisted pair cable.	ial cable and 120Ω	E1	
3 - 7	-	Reserve	ed.					
 On power-on reset the register is set to "0". Maximum cable loss at 772 KHz. When reading LEN, bit values appear inverted. "B2" revision silicon will fix this so the bits read back 								

Table 25. Pulse Shaping Data Register, PSDAT (11h)

Table 26. Output Enable Register, OER (12h)

correctly.

Bit ¹	Name	Function				
7-0	<u>OE7</u> - <u>OE0</u>	Setting a bit to "1" tristates the output driver of the corresponding transceiver.				
1. O	1. On power-up all the register bits are set to "0".					

Table 27. AIS Status Monitor Register, AIS (13h)

Bit ¹	Name	Function			
7-0	AIS7-AIS0	Respective bit(s) are set to "1" every time the receiver detects a AIS condition in transceivers 7-0.			
1. On power-up all the register bits are set to "0". All AIS interrupts are cleared by a single read operation.					

Table 28. AIS Interrupt Enable Register, AISIE (14h)

Bit ¹	Name	Function			
7-0	AISIE7-AISIE0	Transceiver 7-0 AIS interrupts are enabled by writing a "1" to the respective bit.			
1. 0	1. On power-up all the register bits are set to "0".				

Table 29. AIS Interrupt Status Register, AISIS (15h)

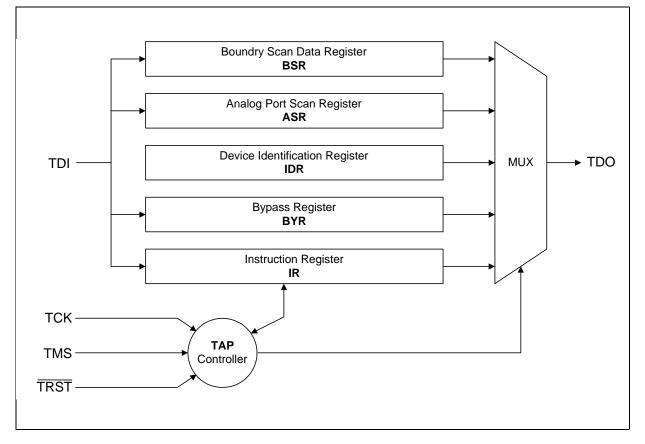
Bit ¹	Name	Function		
7-0	AISIS7-AISIS0	These bits are set to "1" every time a AIS status change has occurred since the las clear interrupt in transceivers 7-0 respectively.		
1. 0	1. On power-up all the register bits are set to "0".			

4.0 JTAG Boundary Scan

4.1 Overview

The LXT384 supports IEEE 1149.1 compliant JTAG boundary scan. Boundary scan allows easy access to the interface pins for board testing purposes.

In addition to the traditional IEE1149.1 digital boundary scan capabilities, the LXT384 also includes analog test port capabilities. This feature provides access to the TIP and RING signals in each channel (transmit and receive). This way, the signal path integrity across the primary winding of each coupling transformer can be tested.


4.2 Architecture

The basic JTAG architecture of the LXT384 is illustrated in Figure 15.

The LXT384 JTAG architecture includes a TAP Test Access Port Controller, data registers and an instruction register. The following paragraphs describe these blocks in detail.

Figure 15. JTAG Architecture

4.3 TAP Controller

The TAP controller is a 16 state synchronous state machine controlled by the TMS input and clocked by TCK (see Figure 16). The TAP controls whether the LXT384 is in reset mode, receiving an instruction, receiving data, transmitting data or in an idle state. Table 30 describes in detail each of the states represented in Figure 16.

Table 30. TAP State Description (Sheet 1 of 2)

State	Description	
Test Logic Reset	In this state the test logic is disabled. The device is set to normal operation mode. While in this state, the instruction register is set to the ICODE instruction.	
Run -Test / Idle	The TAP controller stays in this state as long as TMS is Low. Used to perform tests.	
Capture - DR	The Boundary Scan Data Register (BSR) is loaded with input pin data.	
Shift - DR	Shifts the selected test data registers by one stage tword its serial output.	
Update - DR	Data is latched into the parallel output of the BSR when selected.	
Capture - IR	Used to load the instruction register with a fixed instruction.	
Shift - IR	Shifts the instruction register by one stage.	

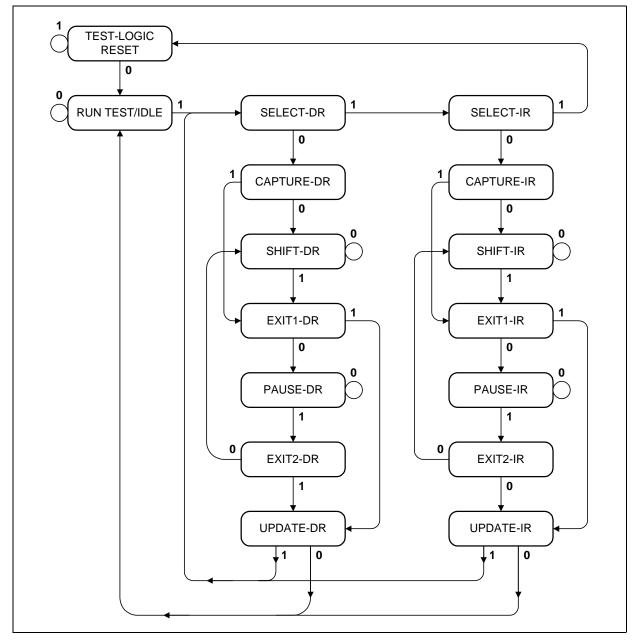


Table 30. TAP State Description (Sheet 2 of 2)

State	Description
Update - IR Loads a new instruction into the instruction register.	
Pause - IR Pause - DR	Momentarily pauses shifting of data through the data/instruction registers.
Exit1 - IR Exit1 - DR Exit2 - IR Exit2 - DR	Temporary states that can be used to terminate the scanning process.

intel®

Figure 16. JTAG State Diagram

4.4 JTAG Register Description

The following paragraphs describe each of the registers represented in Figure 15.

intel®

4.4.1 Boundary Scan Register (BSR)

The BSR is a shift register that provides access to all the digital I/O pins. The BSR is used to apply and read test patterns to/from the board. Each pin is associated with a scan cell in the BSR register. Bidirectional pins or tristatable pins require more than one position in the register. Table 31 shows the BSR scan cells and their functions. Data into the BSR is shifted in LSB first.

The Analog Test Port can be used to verify continuity across the coupling transformer's primary winding as shown in Figure 17. By applying a stimulus to the AT1 input, a known voltage will appear at AT2 for a given load. This, in effect, tests the continuity of a receive or transmit interface.

Table 31. Boundary Scan Register (BSR) (Sheet 1 of 4)

Bit #	Pin Signal	I/O Type	Bit Symbol	Comments
0	LOOP0	I/O	PADD0	
1	LOOP0	I/O	PDO0	
2	LOOP1	I/O	PADD1	
3	LOOP1	I/O	PDO1	
4	LOOP2	I/O	PADD2	
5	LOOP2	I/O	PDO2	
6	LOOP3	I/O	PADD3	
7	LOOP3	I/O	PDO3	
8	LOOP4	I/O	PADD4	
9	LOOP4	I/O	PDO4	
10	LOOP5	I/O	PADD5	
11	LOOP5	I/O	PDO5	
12	LOOP6	I/O	PADD6	
13	LOOP6	I/O	PDO6	
14	LOOP7	I/O	PADD7	
15	N/A	-	PDOENB	PDOENB controls the LOOP0 through LOOP7 pins. Setting PDOENB to "0" configures the pins as outputs. The output value to the pin is set in PDO[07]. Setting PDOENB to "1" tristates all the pins. The input value to the pins can be read in PADD[07].
16	LOOP7	I/O	PDO7	
17	TCLK1	I	TCLK1	
18	TPOS1	I	TPOS1	
19	TNEG1	I	TNEG1	
20	RCLK1	0	RCLK1	
21	RPOS1	0	RPOS1	
22	N/A	-	HIZ1	HIZ1 controls the RPOS1, RNEG1 and RCLK1 pins. Setting HIZ1 to "0" enables output on the pins. Setting HIZ1 to "1" tristates the pins.
23	RNEG1	0	RNEG1	
24	LOS1	0	LOS1	

Table 31. Boundary Scan Register (BSR) (Sheet 2 of 4)

Bit #	Pin Signal	I/О Туре	Bit Symbol	Comments
25	TCLK0	I	TCLK0	
26	TPOS0	I	TPOS0	
27	TNEG0	I	TNEG0	
28	RCLK0	0	RCLK0	
29	RPOS0	0	RPOS0	
30	N/A	-	HIZO	HIZ0 controls the RPOS0, RNEG0 and RCLK0 pins. Setting HIZ0 to "0" enables output on the pins. Setting HIZ0 to "1" tristates the pins.
31	RNEG0	0	RNEG0	
32	LOS0	0	LOS0	
33	MUX	I	MUX	
34	LOS3	0	LOS3	
35	RNEG3	0	RNEG3	
36	N/A	-	HIZ3	HIZ3 controls the RPOS3, RNEG3 and RCLK3 pins. Setting HIZ3 to "0" enables output on the pins. Setting HIZ3 to "1" tristates the pins.
37	RPOS3	0	RPOS3	
38	RCLK3	0	RCLK3	
39	TNEG3	I	TNEG3	
40	TPOS3	I	TPOS3	
41	TCLK3	I	TCLK3	
42	LOS2	0	LOS2	
43	RNEG2	0	RNEG2	
44	N/A	-	HIZ2	HIZ2 controls the RPOS2, RNEG2 and RCLK2 pins. Setting HIZ2 to "0" enables output on the pins. Setting HIZ2 to "1" tristates the pins.
45	RPOS2	0	RPOS2	
46	RCLK2	0	RCLK2	
47	TNEG2	I	TNEG2	
48	TPOS2	I	TPOS2	
49	TCLK2	I	TCLK2	
50	INT	0	INT	
51	N/A	-	SDOACKENB	SDOACKENB controls the \overline{ACK} pin. Setting SDOACKEN to "0" enables output on \overline{ACK} pin. Setting SDOACKEN to "1" tristates the pin.
52	ACK	0	ACK	
53	DS	I	WRB	
54	R/W	I	RDB	
55	ALE	I	ALE	
56	CS	Ι	CSB	

intel®

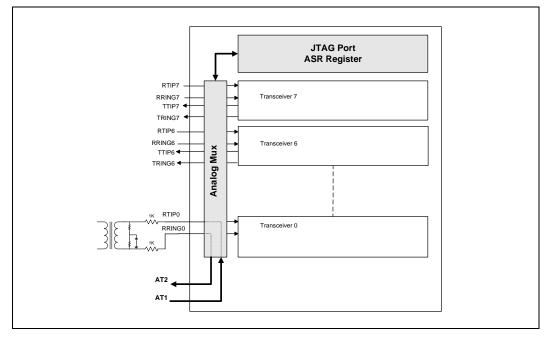
Bit #	Pin Signal	I/O Type	Bit Symbol	Comments
57	MOT/INTL	I	ΜΟΤΟ	
58	TCLK5	I	TCLK5	
59	TPOS5	I	TPOS5	
60	TNEG5	I	TNEG5	
61	RCLK5	0	RCLK5	
62	RPOS5	0	RPOS5	
63	N/A	-	HIZ5	HIZ5 controls the RPOS5, RNEG5 and RCLK5 pins. Setting HIZ5 to "0" enables output on the pins. Setting HIZ5 to "1" tristates the pins.
64	RNEG5	0	RNEG5	
65	LOS5	0	LOS5	
66	TCLK4	I	TCLK4	
67	TPOS4	I	TPOS4	
68	TNEG4	I	TNEG4	
69	RCLK4	0	RCLK4	
70	RPOS4	0	RPOS4	
71	N/A	-	HIZ4	HIZ4 controls the RPOS4, RNEG4 and RCLK4 pins. Setting HIZ4 to "0" enables output on the pins. Setting HIZ4 to "1" tristates the pins.
72	RNEG4	0	RNEG4	
73	LOS4	0	LOS4	
74	OE	I	OE	
75	CLKE	I	CLKE	
76	LOS7	0	LOS7	
77	RNEG7	0	RNEG7	
78	N/A	-	HIZ7	HIZ7 controls the RPOS7, RNEG7 and RCLK7 pins. Setting HIZ7 to "0" enables output on the pins. Setting HIZ7 to "1" tristates the pins.
79	RPOS7	0	RPOS7	
80	RCLK7	0	RCLK7	
81	TNEG7	I	TNEG7	
82	TPOS7	I	TPOS7	
83	TCLK7	I	TCLK7	
84	LOS6	0	LOS6	
85	RNEG6	0	RNEG6	
86	N/A	-	HIZ6	HIZ6 controls the RPOS6, RNEG6 and RCLK6 pins. Setting HIZ6 to "0" enables output on the pins. Setting HIZ6 to "1" tristates the pins.
87	RPOS6	0	RPOS6	
88	RCLK6	0	RCLK6	

Bit #	Pin Signal	I/O Type	Bit Symbol	Comments
89	TNEG6	I	TNEG6	
90	TPOS6	I	TPOS6	
91	TCLK6	I	TCLK6	
92	MCLK	I	MCLK	
93	MODE	I	MODE	
94	A4	I	A4	
95	A3	I	A3	
96	A2	I	A2	
97	A1	I	A1	
98	A0	I	A0	

Table 31. Boundary Scan Register (BSR) (Sheet 4 of 4)

4.4.2 Analog Port Scan Register (ASR)

The ASR is a 5 bit shift register used to control the analog test port at pins AT1, AT2. When the INTEST_ANALOG instruction is selected, TDI connects to the ASR input and TDO connects to the ASR output. After 5 TCK rising edges, a 5 bit control code is loaded into the ASR. Data into the ASR is shifted in LSB first.


Table 32 shows the 16 possible control codes and the corresponding operation on the analog port.

ASR Control Code	AT1 Forces Voltage To:	AT2 Senses Voltage From:
11111	TTIP0	TRING0
11110	TTIP1	TRING1
11101	TTIP2	TRING2
11100	TTIP3	TRING3
11011	TTIP4	TRING4
11010	TTIP5	TRING5
11001	TTIP6	TRING6
11000	TTIP7	TRING7
10111	RTIP0	RRING0
10110	RTIP1	RRING1
10101	RTIP2	RRING2
10100	RTIP3	RRING3
10011	RTIP4	RRING4
10010	RTIP5	RRING5
10001	RTIP6	RRING6
10000	RTIP7	RRING7

Table 32. Analog Port Scan Register (ASR)

Figure 17. Analog Test Port Application

4.4.3 Device Identification Register (IDR)

The IDR register provides access to the manufacturer number, part number and the LXT384 revision. The register is arranged per IEEE 1149.1 and is represented in Table 33. Data into the IDR is shifted in LSB first.

Table 33. Device Identification Register (IDR)

Bit #	Comments
31 - 28	Revision number
27 - 12	Part number
11 - 1	Manufacturer number
0	Set to "1"

4.4.4 Bypass Register (BYR)

The Bypass Register is a 1 bit register that allows direct connection between the TDI input and the TDO output.

4.4.5 Instruction Register (IR)

The IR is a 3 bit shift register that loads the instruction to be performed. The instructions are shifted LSB first. Table 34 shows the valid instruction codes and the corresponding instruction description.

Instruction	Code #	Comments	
EXTEST	000	Connects the BSR to TDI and TDO. Input pins values are loaded into the BSR. Output pins values are loaded from the BSR.	
INTEST_ANALOG	010	Connects the ASR to TDI and TDO. Allows voltage forcing/sensing through AT1 and AT2. Refer to Table 32.	
SAMPLE / PRELOAD	100	Connects the BSR to TDI and TDO. The normal path between the LXT384 logic and the I/O pins is maintained. The BSR is loaded with the signals in the I/O pins.	
IDCODE	110	Connects the IDR to the TDO pin.	
BYPASS	111	Serial data from the TDI input is passed to the TDO output through the Bypass Register.	

Table 34. Instruction Register (IR)

5.0 Test Specifications

Note: Table 35 through Table 54 and Figure 18 through Figure 35 represent the performance specifications of the LXT384 and are guaranteed by test except, where noted, by design. The minimum and maximum values listed in Table 37 through Table 54 are guaranteed over the recommended operating conditions specified in Table 36.

Table 35. Absolute Maximum Ratings

Parameter	Symbol	Min.	Мах	Unit
DC supply voltage	Vcc0, Vcc1, Vccio0, Vccio1	-0.5	4.0	V
DC supply voltage	Tvcc 0-7	-0.5	7.0	V
Input voltage on any digital pin	Vin	GND-0.5	5.5	V
Input voltage on RTIP, RRING ¹	Vin	GND-0.5	Vcc0 + 0.5 Vcc1 + 0.5	V
ESD voltage on any Pin ²	Vin	2000	-	V
Transient latch-up current on any pin	lin		100	mA
Input current on any digital pin ³	lin	-10	10	mA
DC input current on TTIP, TRING ³	lin	-	±100	mA
DC input current on RTIP, RRING ³	lin	-	±100	mA
Storage temperature	Tstor	-65	+150	°C
Maximum power dissipation in package	P _P		1.6	W
Case Temperature, 144 pin LQFP package	T _{case}		120	°C
Case Temperature, 160 pin PBGA package	T _{case}		120	°C

Caution: Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

1. Referenced to ground.

2. Human body model.

3. Constant input current.

intel

Table 36. Recommended Operating Conditions

	Parameter		LEN	Sym	Min.	Тур	Max	Unit	Test Condition			
Digital sup	Digital supply voltage (VCC and VCCIO)		-	VCC	3.135	3.3	3.465	V	3.3V ± 5%			
Transmitte nominal	r supply voltage	, TVCC=5V	-	TVCC	4.75	5.0	5.25	V	5V ± 5%			
Transmitte nominal	r supply voltage	, TVCC=3.3V	-	TVCC	3.135	3.3	3.465	V	3.3V ± 5%			
Ambient op	perating tempera	ature	-	Та	-40	25	+85	°C				
Average tra T1 Mode ^{1,}	ansmitter power	supply current,		I _{TVCC}	-	440 230	490 -	mA mA	100% 1's density 50% 1's density			
Average di supply curr	gital power ent ^{1, 3}			I _{VCC}	-	90	120	mA				
Output load	d at TTIP and			RI	25	-	-	Ω				
Device Power Consumption												
Mode	TVCC	Load	LEN			Тур	Max ¹	Unit	Test Conditions			
		75.0		-	-	760	-	mW	50% 1's			
E1	2.01/	75 Ω	000	-	-	1270	1420	mW	100% 1's			
	3.3V	400.0	120.0	120.0	120 Ω	000	-	-	640	-	mW	50% 1's
		120 12	000	-	-	1110	1280	mW	100% 1's			
T1 ²	3.3V	100 Ω	101-111	-	-	1020	-	mW	50% 1's			
11	3.37	100 22	101-111	-	-	1820	2100	mW	100% 1's			
		75 Ω	000	-	-	1000	-	mW	50% 1's			
E1	5.0V	75 22	000	-	-	1730	1940	mW	100% 1's			
	5.UV	120 Ω	000	-	-	820	-	mW	50% 1's			
	120 Ω	000	-	-	1500	1730	mW	100% 1's				
T1 ²	5.0V	100 Ω	101-111	-	-	1400	-	mW	50% 1's			
	5.00	100.75	101-111	-	-	2670	2960	mW	100% 1's			
1. Current channe		ver the full opera										

2. T1 maximum values measured with maximum cable length (LEN = 111). Typical values measured with twicel cable length (LEN = 101)

typical cable length (LEN = 101).3. Digital inputs are within 10% of the supply rails and digital outputs are driving a 50pF load.

Table 37. DC Characteristics (Sheet 1 of 2)

Parameter	Sym	Min.	Тур	Мах	Unit	Test Condition
High level input voltage	Vін	2	-	-	V	
Low level input voltage	VIL	-	-	0.8	V	
High level output voltage ¹	Vон	2.4	-	VCCIO	V	IOUT= 400μA
Low level output voltage ¹	Vol	-	-	0.4	V	IOUT= 1.6mA
1. Output drivers will output CMO	S logic lev	els into CMOS	loads.		•	

	Parameter	Sym	Min.	Тур	Max	Unit	Test Condition
	Low level input voltage	Vinl	Vinl –		1/3VCC-0.2	V	
MODE,	Midrange level input voltage	Vinm	1/3VCC+0.2	1/2VCC	2/3VCC-0.2	V	
LOOP0-7 and JASEL	High level input voltage	Vinh	2/3VCC+0.2	-	-	V	The VCC supply refers to VCC0 or VCC1 only.
	Low level input current	linl	-	-	50	μA	
	High level input current	linh	-	-	50	μA	
Input leakag	e current	lil	-10		+10	μA	
Tri state leal	kage current	lhz	-10		+10	μA	
Tri state out	out current	lhz	-	-	1	μA	TTIP, TRING
Line short ci	rcuit current	-	-	-	50	mA RMS	$2 \times 11 \Omega$ series resistors and 1:2 transformer
Input leakage		TMS TDI TRST	-	-	50	μA	
1. Output d	rivers will output CMOS	logic lev	els into CMOS	loads.			1

Table 37. DC Characteristics (Sheet 2 of 2)

Table 38. E1 Transmit Transmission Characteristics (Sheet 1 of 2)

Pa	arameter	Sym	Min.	Тур	Max	Unit	Test Condition
Output pulse amplitude	75Ω 120Ω	-	2.14 2.7	2.37 3.0	2.60 3.3	V V	Tested at the line side
Peak voltage of a space	75Ω 120Ω	-	-0.237 -0.3		0.237 0.3	V V	
Transmit amplitude	variation with supply	-	-1		+1	%	
Difference between pulse sequences		-			200	mV	For 17 consecutive pulses
Pulse width ratio of the positive and negative pulses		-	0.95		1.05		At the nominal half amplitude
Transmit transforme 75/120Ω characteri		-		1:2			Rt = 11 Ω ± 1%
Transmit return loss 75 Ω coaxial cable ¹	51kHz to 102 kHz 102 kHz to 2.048 MHz 2.048 MHz to 3.072 MHz	-	15 15 15	17 17 17	_	dB dB dB	Using components in the LXD384 evaluation board.
Transmit return loss 120 Ω twisted pair cable ¹	51kHz to 102 kHz 102 kHz to 2.048 MHz 2.048 MHz to 3.072 MHz	-	15 15 15	20 20 20	-	dB dB dB	Using components in the LXD384 evaluation board
1. Guaranteed by	design and other correlatior	n metho	ds.				

Table 38. E1 Transmit Transmission Characteristics (Sheet 2 of 2)

Parameter			Min.	Тур	Max	Unit	Test Condition	
Transmit intrinsic jitter; 20Hz to 100kHz		-	_	0.030	0.050	U.I.	Tx path TCLK is jitter free	
Transmit path	Bipolar mode			2		U.I.	JA Disabled	
delay	Unipolar mode			7		U.I.		
1. Guaranteed by	1. Guaranteed by design and other correlation methods.							

Table 39. E1 Receive Transmission Characteristics

	Parameter	Sym	Min.	Тур	Max	Unit	Test Condition
Permissible c	able attenuation	-	-	-	12	dB	@1024 kHz
Receiver dyna	amic range	DR	0.5	-	-	Vp	
Signal to nois	e interference margin	S/I	-15	-	-	dB	Per G.703, O.151 @ 6 dB cable Attenuation
Data decision	h threshold	SRE	43	50	57	%	Rel. to peak input voltage
Data slicer the	reshold	-	-	150	-	mV	
Loss of signa	I threshold	-	-	200	-	mV	
LOS hysteres	sis	-	-	50	_	mV	
Consecutive :	zeros before loss of signal	I	_	32 2048	_	-	G.775 recommendation ETSI 300 233 specification
LOS reset		-	12.5%	-	-	-	1's density
Low limit input jitter tolerance ¹	1Hz to 20Hz 20Hz to 2.4kHz 18kHz to 100kHz	-	36 1.5 0.2	_	_	U.I. U.I. U.I.	G735 recommendation Note 1 Cable Attenuation is 6 dB
Differential re	ceiver input impedance	-	_	70	_	kΩ	@1.024 MHz
Input terminat	tion resistor tolerance	-	_	-	±1	%	
Common mod	de input impedance to ground	-	-	20	-	kΩ	
Input return Ioss ¹	51 kHz - 102 kHz 102 - 2048 kHz 2048kHz - 3072 kHz	-	20 20 20		_	dB dB dB	Measured against nominal impedance using components in the LXD384 evaluation board.
LOS delay tin	ne	-	-	30	-	μs	Data recovery mode
LOS reset		-	10	-	255	marks	Data recovery mode
Receive intrin	sic jitter, RCLK output	-	-	0.040	0.0625	U.I.	Wide band jitter
Receive	Bipolar mode			1		U.I.	IA Dischlad
path delay	Unipolar mode			6		U.I.	JA Disabled
1. Guarantee	ed by design and other correlat	ion met	thods.				

Parameter			Тур	Max	Unit	Test Condition	
Dutput pulse amplitude		2.4	3.0	3.6	V	Measured at the DSX	
bace	-	-0.15	-	+0.15	V		
ance ¹	-	-	1	-	Ω	@ 772 KHz	
variation with power	-	-1	-	+1	%		
negative pulse amplitude	-	0.95	-	1.05	-	T1.102, isolated pulse	
pulse sequences	-	-	-	200	mV	For 17 consecutive	
n at half amplitude	-	-	-	20	ns	pulses, GR-499-CORE	
10Hz - 8KHz 8KHz - 40KHz 10Hz - 40KHz Wide Band	-	_	-	0.020 0.025 0.025 0.050	UI _{pk-pk}	AT&T Pub 62411 TCLK is jitter free	
@ 772 KHz @ 1544 KHz	-	12.6 -29	-	17.9	dBm dBm	T1.102 - 1993 Referenced to power at 772 KHz	
51kHz to 102 kHz 102 kHz to 2.048 MHz 2.048 MHz to 3.072 MHz	_	15 15 15	21 21 21	_	dB dB dB	With transmit series resistors (TVCC=5V). Using components in the LXD384 evaluation board.	
Bipolar mode			2		U.I.	JA Disabled	
	ude bace ance ¹ variation with power negative pulse amplitude pulse sequences n at half amplitude 10Hz - 8KHz 8KHz - 40KHz 10Hz - 40KHz Wide Band @ 772 KHz @ 1544 KHz 51kHz to 102 kHz 102 kHz to 2.048 MHz	ude-pace-ance1-variation with power-negative pulse amplitude-pulse sequences-n at half amplitude-10Hz - 8KHz8KHz - 40KHz10Hz - 40KHzWide Band@ 772 KHz@ 1544 KHz51kHz to 102 kHz102 kHz to 2.048 MHz	ude - 2.4 bace - -0.15 ance ¹ - - variation with power - -1 negative pulse amplitude - 0.95 pulse sequences - - n at half amplitude - - 10Hz - 8KHz - - 10Hz - 10KHz - - 10Hz - 40KHz - - 1012 kHz to 102 kHz - 15 102 kHz to 2.048 MHz - <td< td=""><td>ude - 2.4 3.0 bace - -0.15 - ance¹ - - 1 variation with power - -1 - negative pulse amplitude - 0.95 - pulse sequences - - - n at half amplitude - - - 10Hz - 8KHz - - - 10Hz - 8KHz - - - 10Hz - 40KHz - - - 10Hz + 40KHz - 12.6 - 21 102 kHz 102 kHz - 15 102 kHz to 2.048 MHz - 15 21 </td><td>ude-2.43.03.6pace0.15-+0.15ance11-variation with power1-thegative pulse amplitude-0.95-pulse sequencesnat half amplitude2010Hz - 8KHz8KHz - 40KHz10Hz - 8KHz0.0208KHz - 40KHz10Hz - 8KHz17.99772 KHz-12.6-@ 1544 KHz-1521102 kHz to 102 kHz-1521102 kHz to 2.048 MHz-1521</td><td>ude-2.43.03.6Vpace0.15-+0.15Vance11-Ωvariation with power1-1-pulse amplitude-0.95-1.05-pulse sequences200mVn at half amplitude200mV10Hz - 8KHz200ns10Hz - 8KHz200ns10Hz - 40KHz200ns10Hz - 40KHz17.9dBm@ 772 KHz-12.6-17.9dBm@ 1544 KHz-1521-dB51kHz to 102 kHz-1521-dB102 kHz to 2.048 MHz-1521-dB</td></td<>	ude - 2.4 3.0 bace - -0.15 - ance ¹ - - 1 variation with power - -1 - negative pulse amplitude - 0.95 - pulse sequences - - - n at half amplitude - - - 10Hz - 8KHz - - - 10Hz - 8KHz - - - 10Hz - 40KHz - - - 10Hz + 40KHz - 12.6 - 21 102 kHz 102 kHz - 15 102 kHz to 2.048 MHz - 15 21	ude-2.43.03.6pace0.15-+0.15ance11-variation with power1-thegative pulse amplitude-0.95-pulse sequencesnat half amplitude2010Hz - 8KHz8KHz - 40KHz10Hz - 8KHz0.0208KHz - 40KHz10Hz - 8KHz17.99772 KHz-12.6-@ 1544 KHz-1521102 kHz to 102 kHz-1521102 kHz to 2.048 MHz-1521	ude-2.43.03.6Vpace0.15-+0.15Vance11- Ω variation with power1-1-pulse amplitude-0.95-1.05-pulse sequences200mVn at half amplitude200mV10Hz - 8KHz200ns10Hz - 8KHz200ns10Hz - 40KHz200ns10Hz - 40KHz17.9dBm@ 772 KHz-12.6-17.9dBm@ 1544 KHz-1521-dB51kHz to 102 kHz-1521-dB102 kHz to 2.048 MHz-1521-dB	

2. Power measured in a 3 KHz bandwidth at the point the signal arrives at the distribution frame for an all 1's pattern.

Table 41. T1 Receive Transmission Characteristics (Sheet 1 of 2)

Sym	Min.	Тур	Max	Unit	Test Condition
-	-	-	12	dB	@ 772 KHz
DR	0.5	-	-	Vp	
S/I	-16.5	-	-	dB	@ 655 ft. of 22 ABAM cable
SRE	63	70	77	%	Rel. to peak input voltage
-	-	150	-	mV	
-	-	200	-	mV	
-	-	50	-	mV	
-	100	175	250	-	T1.231 - 1993
-	12.5%	-	-	-	1's density
	DR S/I	- - DR 0.5 S/I -16.5 SRE 63 - - - - - - - - - 100	- - - DR 0.5 - S/I -16.5 - SRE 63 70 - - 150 - - 50 - 100 175	- - - 12 DR 0.5 - - S/I -16.5 - - SRE 63 70 77 - - 150 - - 500 - - - 100 175 250	- - 12 dB DR 0.5 - - Vp S/I -16.5 - - dB SRE 63 70 77 % - - 150 - mV - - 500 - mV - 100 175 250 -

intel

Parameter		Sym	Min.	Тур	Max	Unit	Test Condition	
Low limit	0.1Hz to 1Hz		138			U.I.		
input jitter	4.9Hz to 300Hz	-	28	-	-	U.I.	AT&T Pub. 62411	
tolerance 1	10KHz to 100KHz		0.4			U.I.		
Differential re	eceiver input impedance	-	-	70	-	kΩ	@772 kHz	
Input termina	ation resistor tolerance	-	-		±1	%		
Common mo	de input impedance to ground	-	-	20	-	kΩ		
Input return loss ¹	51 KHz - 102 KHz 102 - 2048 KHz 2048 KHz - 3072 KHz	-	20 20 20	-	-	dB dB dB	Measured against nominal impedance. Using components in the LXD384 evaluation board.	
LOS delay tir	ne	-	-	30	-	μs	Data recovery mode	
LOS reset		-	10	-	255	-	Data recovery mode	
Receive intri	nsic jitter, RCLK output ¹	-	-	0.035	0.0625	U.I.	Wide band jitter	
Receive	Bipolar mode			1		U.I.		
path delay	Unipolar mode			6		U.I.	JA Disabled	

Table 41. T1 Receive Transmission Characteristics (Sheet 2 of 2)

Table 42. Jitter Attenuator Characteristics (Sheet 1 of 2)

Parameter			Min.	Тур	Max	Unit	Test Condition
	JACF=0	32bit FIFO	-	2.5	-	Hz	
E1 jitter attenuator 3dB corner frequency, host mode ¹	JACE=0	64bit FIFO	-	3.5	-	Hz	
	JACF=1	32bit FIFO	-	2.5	-	Hz	
	3701-1	64bit FIFO	-	3.5	-	Hz	
T1 jitter attenuator 3dB corner frequency, host	JACF=0	32bit FIFO	-	3	-	Hz	Sinusoidal jitter modulation
	0/10/ =0	64bit FIFO	-	3	-	Hz	
mode ¹	JACF=1	32bit FIFO	-	6	-	Hz	
		64bit FIFO	-	6	-	Hz	
Jitter attenuator 3dB corner fr	equency,	E1	-	3.5	-	Hz	
hardware mode ¹		T1	-	6	-	Hz	
Data latency delay		32bit FIFO	-	16	-	UI	Delay through the Jitter attenuator only. Add receive and
		64bit FIFO	-	32	-	UI	transmit path delay for total throughput delay.
1. Guaranteed by design ar	d other co	rrelatio	n metho	ds.			

Para	meter		Min.	Тур	Max	Unit	Test Condition
Input jitter tolerance before FIFO overflow or underflow		32bit FIFO	-	24	-	UI	
		64bit FIFO	-	56	-	UI	
E1 jitter attenuation	@ 3 Hz @ 40 Hz @ 400 Hz @ 100 KHz		-0.5 -0.5 +19.5 +19.5	_	_	dB	ITU-T G.736, See Figure 34 on page 75
T1 jitter attenuation	@ 1 Hz @ 20 Hz @ 1 KHz @ 1.4 KHz @ 70 KHz		0 0 33.3 40 40	_	_	dB	AT&T Pub. 62411, See Figure 34 on page 75
Output Jitter in remote		0.060	0.11	UI	ETSI CTR12/13 Output jitter		
1. Guaranteed by des	sign and other co	rrelatio	n metho	ds.			

Table 42. Jitter Attenuator Characteristics (Sheet 2 of 2)

Table 43. Analog Test Port Characteristics

Parameter	Sym	Min.	Тур	Max	Unit	Test Condition
3 dB bandwidth	At13db	-	5	-	MHz	
Input voltage range	At1iv	0	-	VCC0 VCC1	V	
Output voltage range	At2ov	0	-	VCC0 VCC1	V	

Table 44. Transmit Timing Characteristics (Sheet 1 of 2)

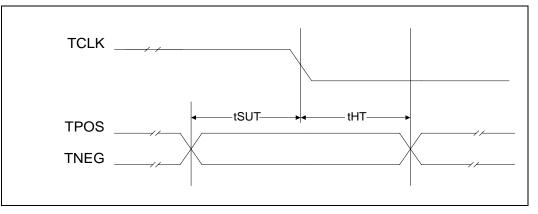

Parameter		Sym	Min.	Тур	Max	Unit	Test Condition
Master clock frequency	E1	MCLK	-	2.048	-	MHz	
Master clock frequency	T1	MCLK	-	1.544	-	MHz	
Master clock tolerance		-	-100	-	100	ppm	
Master clock duty cycle		-	40	-	60	%	
		Tw	219	244	269	ns	
Output pulse width	T1	Tw	291	324	356	ns	
Transmit clock frequency	E1	Tclke1	-	2.048	-	MHz	
Transmit clock frequency	T1	Tclkt1	-	1.544	-	MHz	
Transmit clock tolerance		Tclkt	-50	-	+50	ppm	
Transmit clock burst rate		Tclkb	-	-	20	MHz	Gapped transmit clock
Transmit clock duty cycle		Tdc	10	-	90	%	NRZ mode
E1 TPOS/TNEG pulse width (RZ mode)		Tmpwe1	236	_	252	ns	RZ mode (TCLK = H for >16 clock cycles)
TPOS/TNEG to TCLK setup time		Tsut	20	-	-	ns	

Table 44. Transmit Timing Characteristics (Sheet 2 of 2)

Parameter	Sym	Min.	Тур	Max	Unit	Test Condition
TCLK to TPOS/TNEG hold time	Tht	20	-	-	ns	
Delay time OE Low to driver High Z	Toez	-	-	1	μs	
Delay time TCLK Low to driver High Z	Ttz	50	60	75	μs	

Figure 18. Transmit Clock Timing Diagram

Table 45. Receive Timing Characteristics (Sheet 1 of 2)

Parameter		Sym	Min.	Тур	Max	Unit	Test Condition
		-	-	±80	-	ppm	Relative to nominal
Clock recovery capture range	T1	-	-	±180	-	ppm	frequency MCLK = ±100 ppm
Receive clock duty cycle ¹	•	Rckd	40	50	60	%	
Receive clock pulse width ¹	E1	Tpw	447	488	529	ns	
Receive clock pulse width	T1	Tpw	583	648	713	ns	
Receive clock pulse width Low time	E1	Tpwl	203	244	285	ns	
	T1	Tpwl	259	324	389	ns	
Dessive cleak pulse width Llich time	E1	Tpwh	203	244	285	ns	
Receive clock pulse width High time	T1	Tpwh	259	324	389	ns	
Rise/fall time ⁴	•	Tr	20	-	-	ns	@ CL=15 pF
RPOS/RNEG pulse width (MCLK=H) ²	E1	Tpwdl	200	244	300	ns	
RPOS/RNEG pulse width (MCER=n)	T1	Tpwdl	250	324	400	ns	
RPOS/RNEG to RCLK rising setup time	E1	Tour	200	244	-	ns	
	T1	Tsur	200	324	-	ns	
1. RCLK duty cycle widths will vary dep	endin	g on exte	ent of r	eceived	pulse	itter dis	splacement. Maximum and

 RCLK duty cycle widths will vary depending on extent of received pulse jitter displacement. Maximum and minimum RCLK duty cycles are for worst case jitter conditions (0.2UI displacement for E1 per ITU G.823).
 Clock recovery is disabled in this mode.

3. If MCLK = H the receive PLLs are replaced by a simple EXOR circuit.

4. For all digital outputs.

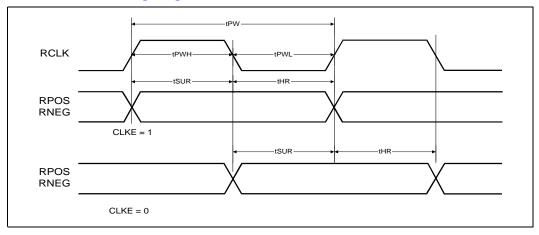


Table 45. Receive Timing Characteristics (Sheet 2 of 2)

Parameter			Min.	Тур	Max	Unit	Test Condition	
RCLK Rising to RPOS/RNEG hold time	E1	Thr	200	244	-	ns		
	T1		200	324	-	ns		
Delay time between RPOS/RNEG and RCLK			-	-	5	ns	MCLK = H ³	
 RCLK duty cycle widths will vary depending on extent of received pulse jitter displacement. Maximum and minimum RCLK duty cycles are for worst case jitter conditions (0.2UI displacement for E1 per ITU G.823). Clock recovery is disabled in this mode. 								

If MCLK = H the receive PLLs are replaced by a simple EXOR circuit.
 For all digital outputs.

Figure 19. Receive Clock Timing Diagram

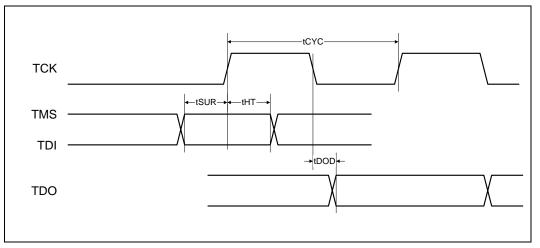


Table 46. JTAG Timing Characteristics

Parameter	Sym	Min.	Тур	Max	Unit	Test Conditions
Cycle time	Тсус	200	-	-	ns	
J-TMS/J-TDI to J-TCK rising edge time	Tsut	50	-	-	ns	
J-CLK rising to J-TMS/L-TDI hold time	Tht	50	-	-	ns	
J-TCLK falling to J-TDO valid	Tdod	-	-	50	ns	

intel

Figure 20. JTAG Timing

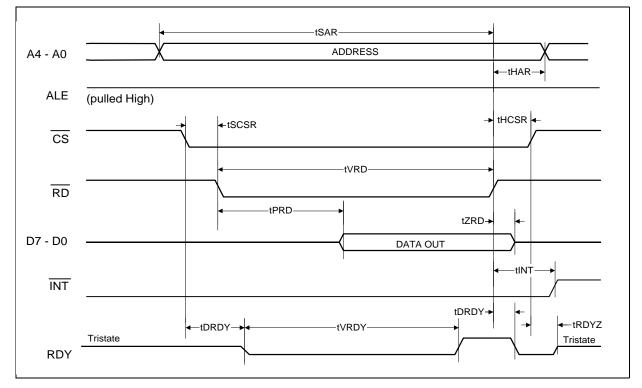


Table 47. Intel Mode Read Timing Characteristics²

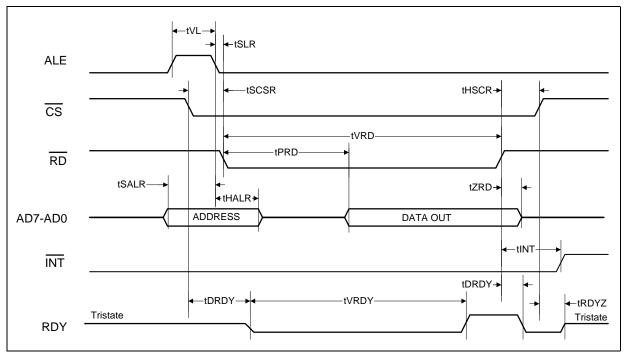

Parameter	Sym	Min.	Typ ¹	Max	Unit	Test Conditions		
Address setup time to latch	Tsalr	10	-	-	ns			
Valid address latch pulse width	Tvl	30	-	-	ns			
Latch active to active read setup time	Tslr	10	-	-	ns			
Chip select setup time to active read	Tscsr	0	-	-	ns			
Chip select hold time from inactive read	Thcsr	0	-	-	ns			
Address hold time from inactive ALE	Thalr	5			ns			
Active read to data valid delay time	Tprd	10	-	50	ns			
Address setup time to RD inactive	Thar	1	-	-	ns			
Address hold time from RD inactive	Tsar	5	-	-	ns			
Inactive read to data tri-state delay time	Tzrd	3	-	35	ns			
Valid read signal pulse width	Tvrd	60	-	-	ns			
Inactive read to inactive INT delay time	Tint	-	-	10	ns			
Active chip select to RDY delay time	Tdrdy	0	-	12	ns			
Active ready Low time	Tvrdy	-	-	40	ns			
Inactive ready to tri-state delay time	Trdyz	-	-	3	ns			
 Typical figures are at 25 C and are for design aid only; not guaranteed and not subject to production testing. C_L= 100pF on D0-D7, all other outputs are loaded with 50pF. 								

Figure 21. Non-Multiplexed Intel Mode Read Timing

Figure 22. Multiplexed Intel Mode Read Timing

intel

Table 48.	Intel Mode	Write	Timina	Characteristics ²
	miller moule		- mining	onuraotoristios

Parameter	Sym	Min.	Typ ¹	Max	Unit	Test Conditions
Address setup time to latch	Tsalw	10	-	-	ns	
Valid address latch pulse width	Tvl	30	-	_	ns	
Latch active to active write setup time	Tslw	10	-	_	ns	
Chip select setup time to active write	Tscsw	0	-	_	ns	
Chip select hold time from inactive write	Thcsw	0	-	_	ns	
Address hold time from inactive ALE	Thalw	5			ns	
Data valid to write active setup time	Tsdw	40	-	_	ns	
Data hold time to active write	Thdw	30	-	_	ns	
Address setup time to \overline{WR} inactive	Thaw	2	-	_	ns	
Address hold time from \overline{WR} inactive	Tsaw	6	-	_	ns	
Valid write signal pulse width	Tvwr	60	-	_	ns	
Inactive write to inactive INT delay time	Tint	-	-	10	ns	
Chip select to RDY delay time ³	Tdrdy	0	-	12	ns	
Active ready Low time	Tvrdy	-	-	40	ns	
Inactive ready to tri-state delay time ³	Trdyz	-	-	3	ns	

1. Typical figures are at 25 C and are for design aid only; not guaranteed and not subject to production testing. 2. C_L = 100pF on D0-D7, all other outputs are loaded with 50pF. 3. These times don't apply for Reset Register 0Ah, since RDY line goes low once during the cycle. Please

refer to Reset Operation and Host Mode sections for more information.

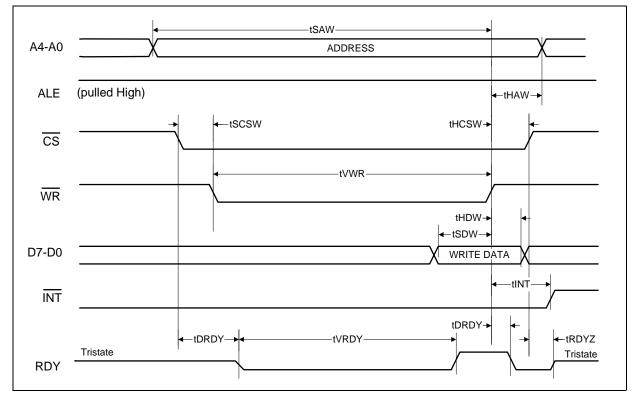
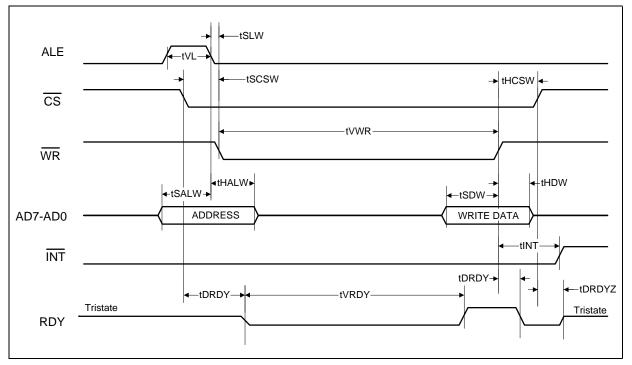
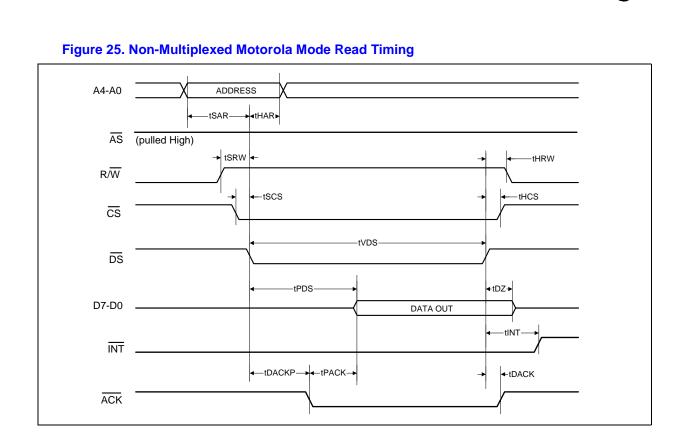
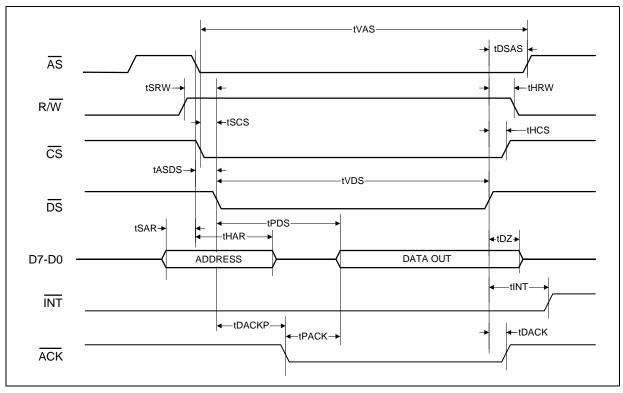




Figure 24. Multiplexed Intel Mode Write Timing

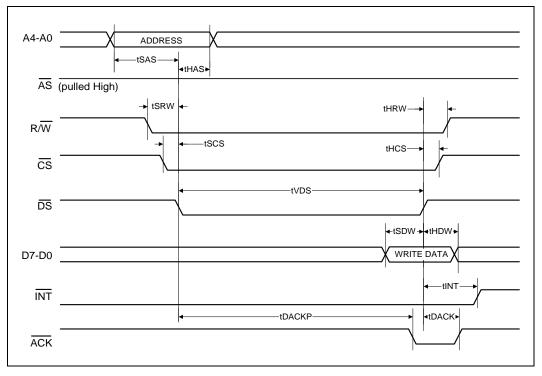


intel®

Parameter	Sym	Min.	Typ ¹	Max	Unit	Test Conditions		
Address setup time to address or data strobe	Tsar	10	-	-	ns			
Address hold time from address or data strobe	Thar	5	-	_	ns			
Valid address strobe pulse width	Tvas	95	-	-	ns			
R/\overline{W} setup time to active data strobe	Tsrw	10	-	-	ns			
R/\overline{W} hold time from inactive data strobe	Thrw	0	-	-	ns			
Chip select setup time to active data strobe	Tscs	0	-	-	ns			
Chip select hold time from inactive data strobe	Thcs	0	-	_	ns			
Address strobe active to data strobe active delay	Tasds	20	-	-	ns			
Delay time from active data strobe to valid data	Tpds	3	-	30	ns			
Delay time from inactive data strobe to data High Z	Tdz	3	-	30	ns			
Valid data strobe pulse width	Tvds	60	-	-	ns			
Inactive data strobe to inactive INT delay time	Tint	_	-	10	ns			
Data strobe inactive to address strobe inactive delay	Tdsas	15	-	_	ns			
DS asserted to ACK asserted delay	Tdackp	_	-	40	ns			
DS deasserted to ACK deasserted delay	Tdack	_	-	10	ns			
Active ACK to valid data delay	Tpack	_	-	0	ns			
 Typical figures are at 25 C and are for design aid only; not guaranteed and not subject to production testing. C_L= 100pF on D0-D7, all other outputs are loaded with 50pF. 								

Figure 26. Multiplexed Motorola Mode Read Timing

in


intel

Parameter	Sym	Min.	Typ ¹	Max	Unit	Test Conditions
Address setup time to address strobe	Tsas	10	-	-	ns	
Address hold time to address strobe	Thas	5	-	-	ns	
Valid address strobe pulse width	Tvas	95	-	-	ns	
R/\overline{W} setup time to active data strobe	Tsrw	10	-	-	ns	
R/\overline{W} hold time from inactive data strobe	Thrw	0	-	-	ns	
Chip select setup time to active data strobe	Tscs	0	-	-	ns	
Chip select hold time from inactive data strobe	Thcs	0	-	-	ns	
Address strobe active to data strobe active delay	Tasds	20	-	-	ns	
Data setup time to DS deassertion	Tsdw	40	-	-	ns	
Data hold time from DS deassertion	Thdw	30	-	-	ns	
Valid data strobe pulse width	Tvds	60	-	-	ns	
Inactive data strobe to inactive INT delay time	Tint	_	-	10	ns	
Data strobe inactive to address strobe inactive delay	Tdsas	15	-	-	ns	
Active data strobe to ACK output enable time	Tdack	0	-	12	ns	
DS asserted to ACK asserted delay	Tdackp		-	40	ns	
 Typical figures are at 25 C and are for design aid only; not guaranteed and not subject to production testing. C = 100pE on D0-D7 all other outputs are loaded with 50pE 						

Table 50. Motorola Mode Write Timing Characteristics²

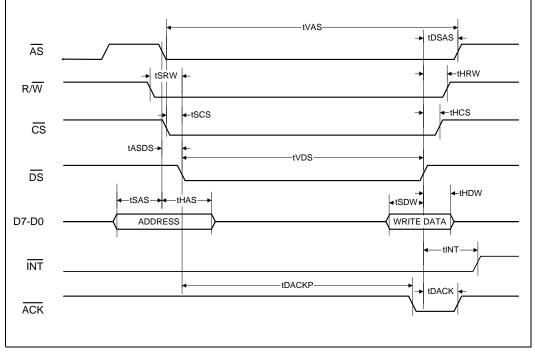

2. C_L = 100pF on D0-D7, all other outputs are loaded with 50pF.

Figure 27. Non-Multiplexed Motorola Mode Write Timing

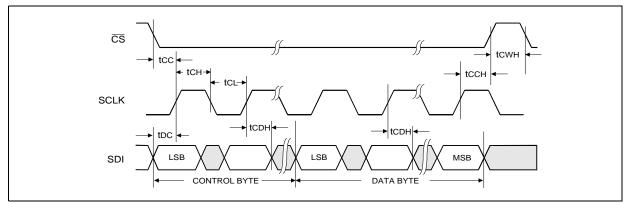


Table 51. Serial I/O Timing Characteristics

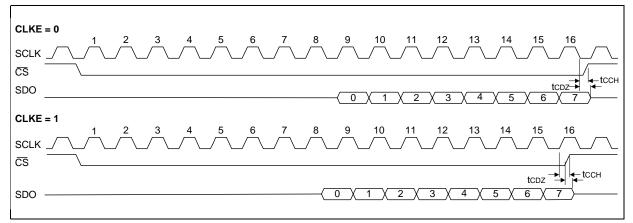

Parameter	Sym	Min.	Typ ¹	Max	Unit	Test Condition
Rise/fall time any pin	Trf	-	-	100	ns	Load 1.6mA, 50 pF
SDI to SCLK setup time	Tdc	5	-	-	ns	
SCLK to SDI hold time	Tcdh	5	-	-	ns	
SCLK Low time	Tcl	25	-	-	ns	
SCLK High time	Tch	25	-	-	ns	
SCLK rise and fall time	Tr, Tf	-	-	50	ns	
CS falling edge to SCLK rising edge	Tcc	10	-	-	ns	
Last SCLK edge to CS rising edge	Tcch	10	-	-	ns	
CS inactive time	Tcwh	50	-	-	ns	
SCLK to SDO valid delay time	Tcdv	-	-	5	ns	
SCLK falling edge or \overline{CS} rising edge to SDO High Z	Tcdz	-	10	-	ns	
1. Typical figures are at 25 C and are for design aid only; not guaranteed and not subject to production testing.						

Figure 29. Serial Input Timing

Figure 30. Serial Output Timing

Table 52. Transformer Specifications

Tx/Rx	Turns Ratio ²	Primary Inductance mH (min.)	Leakage Inductance μΗ (max.)	Interwinding Capacitance pF (max.)	DCR Ω (max.)	Dielectric Breakdown Voltage V ¹ (min.)	
ТΧ	1:2	1.2	0.60	60	0.70 pri 1.20 sec	1500 Vrms	
RX	1:2	1.2	0.60	60	1.10 pri 1.10 sec	1500 Vrms	

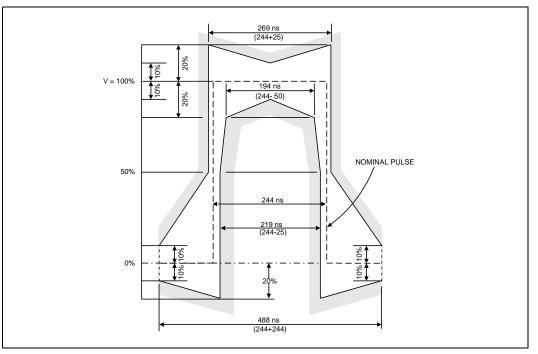

2. LIU side: Line side. Transformer turns ratio accuracy is \pm 2%.

Table 53. G.703 2.048 Mbit/s Pulse Mask Specifications

Parameter		Cable		
		Coax	Unit	
Test load impedance	120	75	Ω	
Nominal peak mark voltage	3.0	2.37	V	
Nominal peak space voltage	0 ±0.30	0 ±0.237	V	
Nominal pulse width	244	244	ns	
Ratio of positive and negative pulse amplitudes at center of pulse	95-105	95-105	%	
Ratio of positive and negative pulse amplitudes at nominal half amplitude	95-105	95-105	%	

Figure 31. E1, G.703 Mask Templates

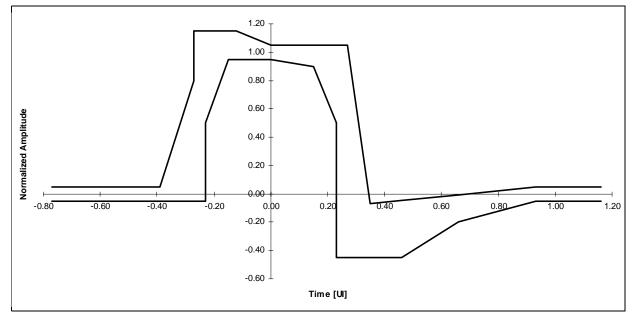


Table 54. T1.102 1.544 Mbit/s Pulse Mask Specifications

Deservation	Cable	11
Parameter		Unit
Test load impedance	100	Ω
Nominal peak mark voltage	3.0	V
Nominal peak space voltage	0 ±0.15	V
Nominal pulse width	324	ns
Ratio of positive and negative pulse amplitudes	95-105	%

intel

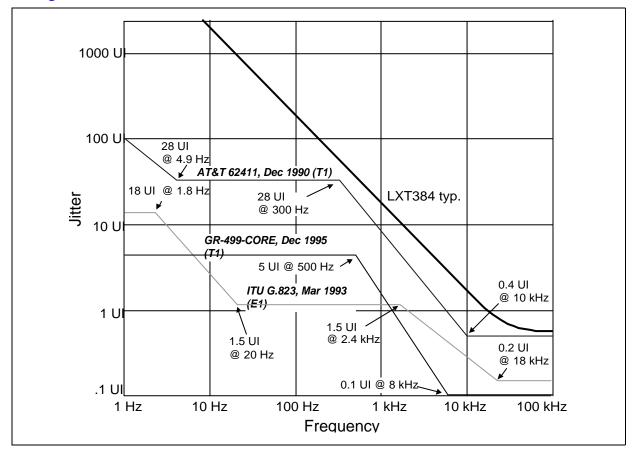


Figure 33. LXT384 Jitter Tolerance Performance

in

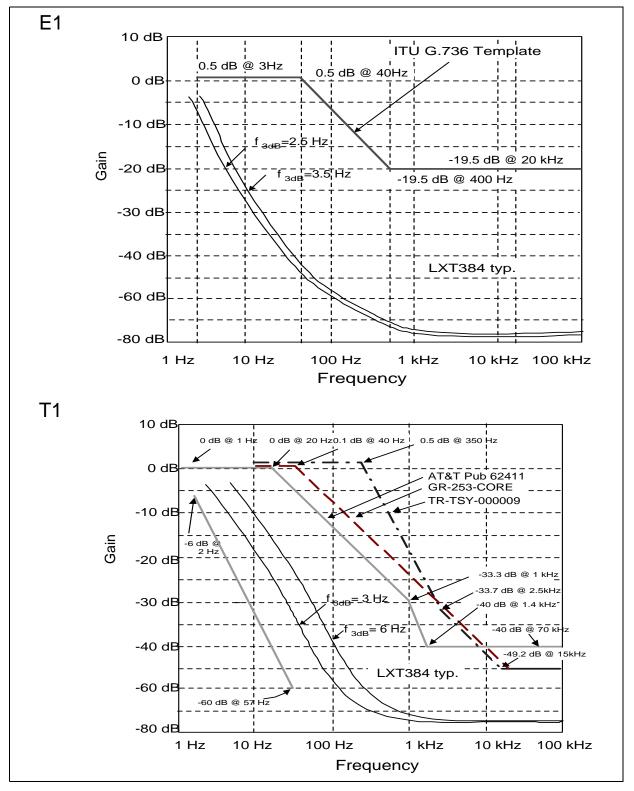
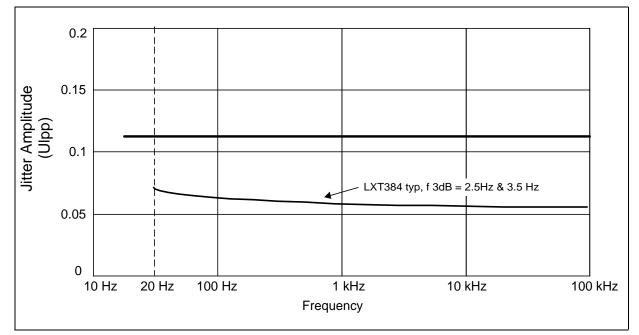
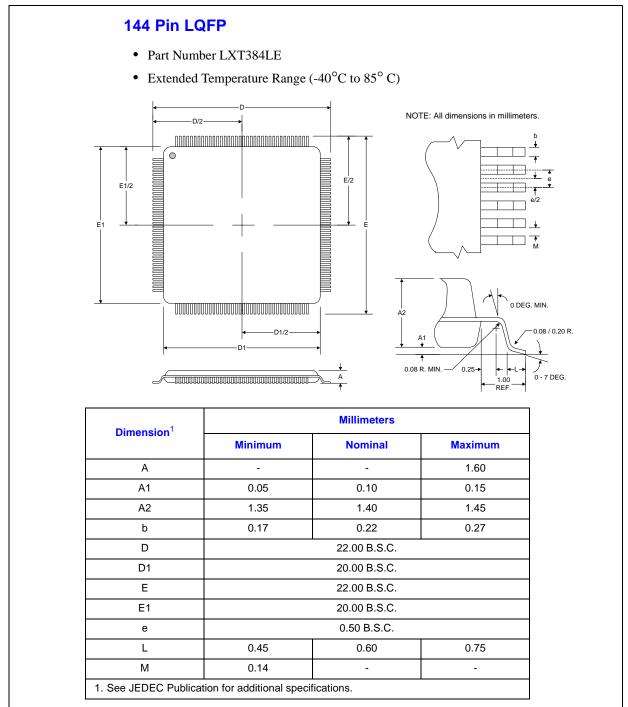



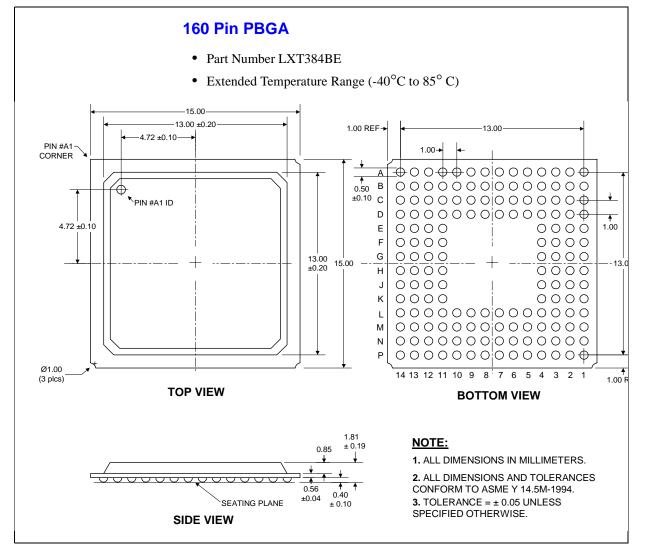
Figure 35. LXT384 Output Jitter for CTR12/13 Applications

5.1 Recommendations and Specifications

- AT&T Pub 62411
- ANSI T1.102 199X Digital Hierarchy Electrical Interface
- ANSI T1.231 -1993 Digital Hierarchy Layer 1 In-Service Digital Transmission Performance Monitoring
- Bellcore TR-TSY-000009 Asynchronous Digital Multiplexes Requirements and Objectives
- Bellcore GR-253-CORE SONET Transport Systems Common Generic Criteria
- Bellcore GR-499-CORE Transport Systems Generic Requirements
- ETS 300166 Physical and Electrical Characteristics
- ETS 300386-1 Electromagnetic Compatibility Requirement
- G.703 Physical/electrical characteristics of hierarchical digital interfaces
- G. 704 Functional characteristics of interfaces associated with network nodes
- G.735 Characteristics of Primary PCM multiplex equipment operating at 2048 kbit/s and offering digital access at 384 kbit/s and/or synchronous digital access at 64 kbit/s
- G.736 Characteristics of a synchronous digital multiplex equipment operating at 2048 kbit/s
- G.772 Protected Monitoring Points provided on Digital Transmission Systems
- G.775 Loss Of Signal (LOS) and alarm indication (AIS) defect detection and clearance criteria
- G.783 Characteristics of Synchronous Digital Hierarchy (SDH) Equipment Functional Blocks



- G.823 The control of jitter and wander within digital networks which are based on the 2048 kbit/s hierarchy
- O.151 Specification of instruments to measure error performance in digital systems
- OFTEL OTR-001 Short Circuit Current Requirements



6.0 Mechanical Specifications

Figure 37. Plastic Ball Grid Array (PBGA) Package Dimensions

