

140 mW Power Amplifier with T/R Switch 2.4 - 2.5 GHz

AM55-0007

V 2.00

Features

- Highly Integrated PA/Attenuator and T/R Switch
- Low Current Consumption: 120 mA Typ.
- Switch and Attenuator Controls CMOS Compatible
- High Power (140 mW) and Low Power (16 mW) Transmit Power Control
- +5 V/-5 V Fixed Supply Voltages

Description

M/A-COM's AM55-0007 is a GaAs power amplifier with an integrated transmit/receive switch in a low cost SSOP 24 plastic package. The AM55-0007 employs active bias circuits that eliminate the need for external bias adjustment. A 'Sleep Mode' is incorporated which turns off current draw from the positive supply of the PA during receive mode. The AM55-0007 provides a 10-dB step attenuator for use as a transmit power controller.

The AM55-0007 is designed for low power consumption and is ideally suited for FSK systems in the 2.4 - 2.5 GHz bands (North American ISM, Japanese RCR.32 and European ETSI). Typical applications include WLAN and wireless portable data collection.

This amplifier is also available with diversity switching (AM55-0001). Either power amplifier can be combined with a transceiver IC (MD58-0001) to form a complete RF front end.

M/A-COM's AM55-0007 is fabricated using a mature 0.5-micron gate length GaAs process. The process features full passivation for increased performance and reliability.

SSOP-24

Dimensions are in inches over millimeters.

Ordering Information

Part Number	Description
AM55-0007	SSOP 24-Lead Plastic Package
AM55-0007TR	Forward Tape & Reel*
AM55-0007RTR	Reverse Tape & Reel*
AM55-0007SMB	Designer's Kit

^{*} If specific reel size is required, consult factory for part number assignment.

Typical Electrical Specifications

Test Conditions: Frequency: 2.45 GHz, $V_{DD} = 5 \text{ V} \pm 5\%$, $V_{GG} = -5 \text{ V} \pm 5\%$, $T_{A} = +25 ^{\circ}\text{C}$

Parameter	Test Conditions		Units	Min.	Тур.	Max.
Power Amplifier			•			
Linear Gain		High Power Mode	dB	23	26.5	
		Low Power Mode	dB	12	16	
VSWR In		Both Modes			1.5:1	
Output Power	P _{IN} = -3 dBm	High Power Mode	dBm	19	21.5	
		Low Power Mode	dBm	8	12	
Second Harmonic			dBc		-25	
Third Harmonic	$P_{IN} = -3 \text{ dBm}$	High Power Mode	dBc		-17	
$I_{DD} (V_{DD1} + V_{DD2} + V_{DD} PA)$			mA		120	200
T/R Switch			•			
Insertion Loss			dB		1.2	
Isolation			dB	10	15	
VSWR In/Out					1.5:1	

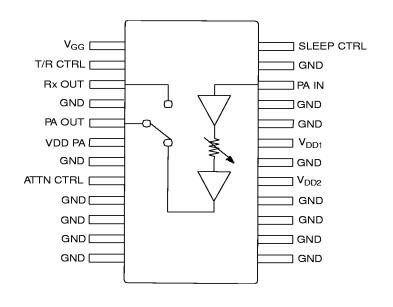
Absolute Maximum Ratings¹

Parameter	Absolute Maximum
Max. Input Power ²	+23 dBm
Operating Voltages ^{2,3}	V _{DD} = 8 V
	$V_{GG} = -8 V$
Operating Temperature	-40°C to +85°C
Storage Temperature	-65°C to +150°C

- 1.Exceeding these limits may cause permanent damage. 2. Ambient temperature (T_A) = +25 °C 3. $|V_{DD}| + |V_{GG}|$ not to exceed 12 volts.

Pin Configuration

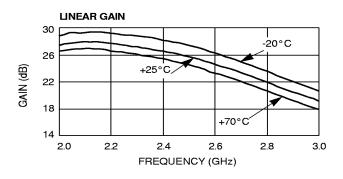
Pin No.	Pin Name	Description
1	V _{GG}	Negative voltage to all active bias networks
2	T/R CTRL	0 V for transmit mode, +5 V for receive mode
3	Rx OUT	Output of T/R switch for receive mode
4	GND	DC and RF Ground
5	PA OUT	Output of T/R switch for transmit mode
6	V _{DD} PA	V _{DD} for output stage of PA, V _{DD} for active bias circuit of output stage
7	GND	DC and RF Ground
8	ATTN CTRL	0 V for high power mode, +5 V for low power mode
0	GND	DC and RF Ground
10	GND	DC and RF Ground
11	GND	DC and RF Ground
12	GND	DC and RF Ground
13	GND	DC and RF Ground
14	GND	DC and RF Ground
15	GND	DC and RF Ground
16	GND	DC and RF Ground
17	V_{DD2}	V _{DD} for both diversity and T/R switches, V _{DD} for second stage of PA
18	GND	DC and RF Ground
19	V _{DD1}	V _{DD} for first stage of PA, V _{DD} of active bias for the first and second stage of PA
20	GND	DC and RF Ground
21	GND	DC and RF Ground
22	PA IN	RF input to PA
23	GND	DC and RF Ground
24	SLEEP CTRL	0 V PA "on" mode, -5 V PA "sleep" mode. Sleep mode shuts off active bias and "pinches off" all PA FETs.

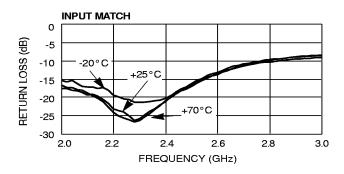

Truth Table

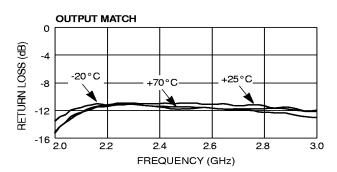
Control Line			Operating
ATTN CTRL	T/R CTRL	SLEEP CTRL*	Mode
X	1	-5 V	Receive
0	0	0 V	High Power
1	0	0 V	Low Power
X	1	-5 V	Sleep Mode

X - Don't Care

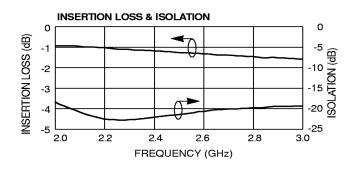
"0"= 0 V to 0.2 V @ 100 μA

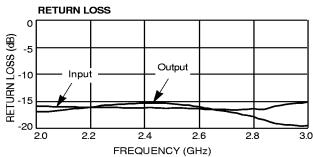

Functional Diagram and Pin Configuration

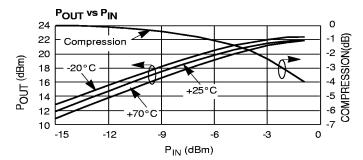

[&]quot;1" = V_{DD} to V_{DD} -0.2 V @ 200 μA

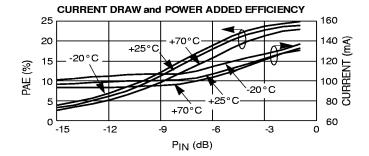

 $[\]mbox{\ensuremath{\bigstar}}$ Control voltage levels between 0 V and $V_{\mbox{\ensuremath{GG}}}$ must be used on SLEEP CTRL control line. (Pin 24)

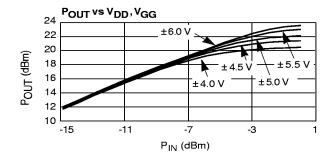
Small Signal Power Amplifier¹





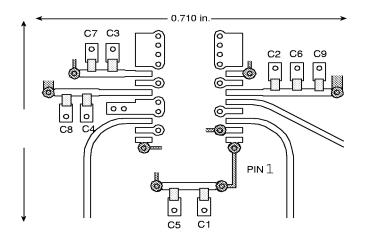

T/R Switch Small Signal Performance¹





1. Unless otherwise noted, Frequency: 2.45 GHz, V_{DD} = 5 V ±5%, V_{GG} = - 5 V ±5%, T_{A} = +25°C

Power Amplifier Power Performance¹



1. Unless otherwise noted, Frequency: 2.45 GHz, V_{DD} = 5 V ±5%, V_{GG} = - 5 V ±5%, T_{A} = +25°C

Recommended PCB Configuration

Layout View

External Circuitry Parts List

Label	Value	Purpose
C1 - C4	33 pF	Bypass (GHz)
C5 - C8	220 pF	Bypass (MHz)
C9	0.01 μF	Bypass (kHz)

All off-chip components are low-cost surface mount components obtainable from multiple sources. (0.020 in.x 0.040 in.or 0.030 in.x 0.050 in.)

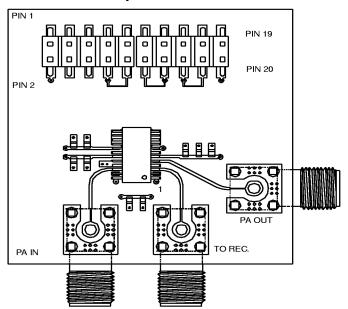
Cross-Section View

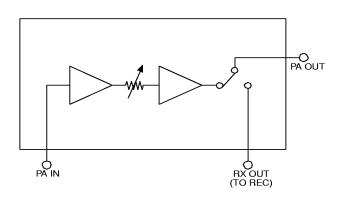

The PCB dielectric between RF traces and RF ground layers should be chosen to reduce RF discontinuities between 50- Ω lines and package pins. M/A-COM recommends an FR-4 dielectric thickness of 0.008 in. (0.2 mm), yielding a 50- Ω line width of 0.015 in. (0.38 mm). The recommended metalization thickness is 1 oz. copper.

Shaded traces are vias to DC routing layer and traces on DC routing layer.

Biasing Procedure

The AM55-0007 requires the V_{GG} bias be applied prior to $\emph{any}\ V_{DD}$ bias. Permanent damage may occur if this procedure is not followed. All FETs in the PA will draw excessive current and damage internal circuitry.

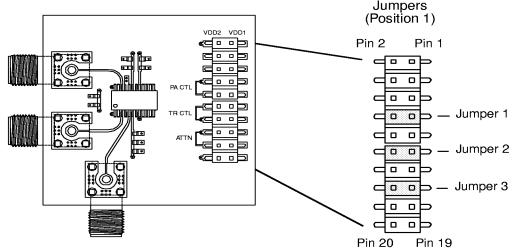

External Circuitry

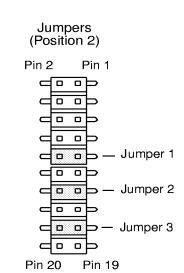

Designer's Kit (AM55-0007SMB)

The AM55-0007SMB Designer's Kit allows for immediate evaluation of M/A-COM's AM55-0007 integrated Power Amplifier with T/R and Diversity Switch. The evaluation board consists of an AM55-0007, recommended external surface mount circuitry, RF connectors and a DC multi-pin connector, all mounted to a multi-layer FR-4 PCB. Other items included in the Designer's Kit: a floppy disk (with typical performance data and a .DXF file of the recommended PCB layout) and any additional Application Notes. The AM55-0007SMB evaluation PCB and block diagram are illustrated below with all functional ports labeled.

P/A Switch Sample Board

Functional Block Diagram




DC Connector Pinout

PCB DC Connector	Function	Device Pin Number
1	V _{DD1} (+ 5 V)	19
2	V _{DD2} (+ 5 V)	17
3	N/C	N/C
4	N/C	N/C
5	N/C	N/C
6	N/C	N/C
7	Negative Logic High (GND)	N/C
8	PA Control (0 V/-5 V)	24
9	Negative Logic Low (V _{GG})	1
10	PA Control (0 V/-5 V)	24

PCB DC Connector	Function	Device Pin Number
11	Logic High (V _{DD1})	19
12	T/R Control (0 V/+5 V)	2
13	Logic Low (GND)	N/C
14	T/R Control (0 V/+5 V)	2
15	Logic High (V _{DD1})	19
16	ATTN Control (0 V/+5 V)	8
17	Logic Low (GND)	N/C
18	ATTN Control (0 V/+5 V)	8
19	V _{DD} PA (+5 V)	6
20	V _{GG} (- 5 V)	1

Jumper 1 (PA Sleep Control)

Position 1 = PA ON

Position 2 = PA Sleep Mode

Position 1 = Receive Mode

Position 2 = Transmit Mode

Jumper 3 (Attenuator Control)

Jumper 2 (T/R Switch Control)

Position 1 = Attenuator ON (Low Power Transmit)

Position 2 = Attenuator OFF (High Power Transmit)

AM55-0007SMB Biasing Procedure

In order to prevent transients which may damage the MMIC, please adhere to the following procedure.

- Turn on all power supplies and set all voltages to 0 volts BEFORE connecting the power supplies to the DC connector.
- Set jumpers for desired test mode.
- Apply a -5.0 volt supply to DC connector pin 20 (V_{GG}).
- Apply a +5.0 volt supply to the DC connector pin 1 (V_{DD1}).
- Apply a +5.0 volt supply to the DC connector pin 2 (V_{DD2}).
- Apply a +5.0 volt supply to the DC connector pin 19 (V_{DD} PA).
- ullet Adjust V_{GG} supply to -5 volts.
- \bullet Adjust all $V_{\mbox{DD}}$ supplies to +5 volts.
- · Hot switching of jumpers will not damage device.
- To power off, reverse above procedure.
 - 1. Set $V_{DD1} \& V_{DD2} \& V_{DD}$ PA to 0 volts.
 - 2. Set V_{GG} to 0 volts.
 - 3. Disconnect bias lines from DC connector.
 - 4. Turn off power supplies.

Evaluation PCB and RF Connector Losses

Port Reference	Approximate Loss (dB)
PA IN	0.25
PA OUT	0.25
Rx OUT (TO REC)	0.25

The DC connector on the Designer's Kit PCB allows selection of all the device's operating modes. It is accomplished by one or more of the following methods:

- 1. A mating female multi-pin connector (Newark Electronics Stock # 46F-4658, not included)
- 2. Wires soldered to the necessary pins (not included)
- 3. Clip leads (not included)
- 4. A combination of clip leads or wires and jumpers (jumpers included as required)