

February 1993

T-67-21-51

54VHC/74VHC157 **Quad 2-Input Multiplexer**

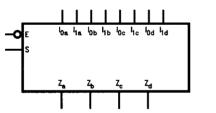
General Description

The VHC157 is an advanced high speed CMOS Quad 2-Channel Multiplexer fabricated with silicon gate CMOS technology.

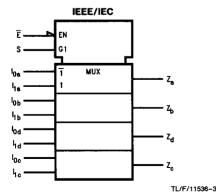
It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

It consists of four 2-input digital multiplexers with common select and enable inputs.

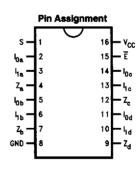
When the ENABLE input is held "H" level, selection of data is inhibited and all the outputs become "L" level.


The SELECT decoding determines whether the I_{0x} or I_{1x} inputs get routed to their corresponding outputs.

An Input protection circuit ensures that 0V to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and on two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.


Features

- High speed: t_{PD} = 4.1 ns (typ.) at V_{CC} = 5V
- Low power dissipation:
- $I_{CC} = 4 \mu A \text{ (max.) at } T_A = 25^{\circ}C$
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min.)
- All inputs are equipped with a power down protection
- Balanced propagation delays: tpLH ≃ tpHL
- Wide operating voltage range: V_{CC} (opr) = 2V ~ 5.5V
- Low noise: V_{OLP} = 0.8V (max.)
- Pin and function compatible with 74HC157


Logic Symbols

TL/F/11536-1

Connection Diagram

TL/F/11536~2

Pin Names	Description					
I _{Oa} -I _{Od}	Source 0 Data Inputs					
_{1a} - _{1d}	Source 1 Data Inputs					
E	Enable Input					
s	Select Input					
Z _a -Z _d	Outputs					

Functional Description

The VHC157 is a guad 2-input multiplexer. It selects four bits of data from two sources under the control of a common Select input (S). The Enable input (E) is active-LOW. When E is HIGH, all of the outputs (Z) are forced LOW regardless of all other inputs. The VHC157 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

$$Z_a = \overline{E} \bullet (I_{1a} \bullet S + I_{0a} \bullet \overline{S})$$

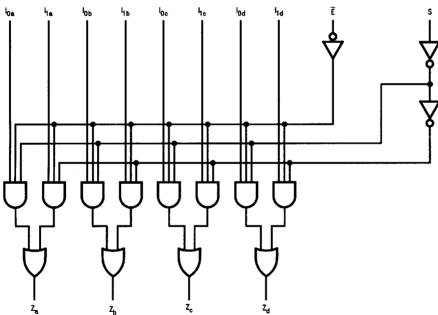
$$Z_b = \overline{E} \bullet (I_{1b} \bullet S + I_{0b} \bullet \overline{S})$$

$$Z_c = \overline{E} \bullet (I_{1c} \bullet S + I_{0c} \bullet \overline{S})$$

$$Z_d = \overline{E} \bullet (I_{1d} \bullet S + I_{0d} \bullet \overline{S})$$

A common use of the VHC157 is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select input. A less obvious use is as a function generator. The VHC157 can generate any four of the sixteen different functions of two variables with one variable common. This is useful for implementing gating functions.

Truth Table


	Inputs							
Ē	s	l ₁	Z					
Н	х	Х	Х	L				
L	н	Х	L	L				
L	н	Х	н	Н				
L	L	L	Х	L				
L	L	н	Х	н				

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Logic Diagram

TL/F/11536-4

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

300°C

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (VCC) -0.5V to +7.0V-0.5V to +7.0VDC Input Voltage (VIN) DC Output Voltage (VOLIT) -0.5V to $V_{CC} + 0.5V$ Input Diode Current (IIK) -20 mA Output Diode Current (IOK) ±20 mA DC Output Current (IOUT) ±25 mA DC V_{CC}/GND Current (I_{CC}) ±50 mA -65°C to +150°C Storage Temperature (T_{STG})

Lead Temperature (T_I)

(Soldering, 10 seconds)

Note: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation outside databook specifications.

Recommended Operating Conditions

Supply Voltage (V_{CC}) 2.0V to +5.5V 0V to + 5.5VInput Voltage (VIN) Output Voltage (VOUT) 0V to V_{CC}

Operating Temperature (TOPR)

-55°C to +125°C **54 VHC** -40°C to +85°C **74 VHC**

Input Rise and Fall Time (t_r, t_f)

0 ~ 100 ns/V $V_{CC} = 3.3V \pm 0.3V$ $V_{CC} = 5.0V \pm 0.5V$ 0 ~ 20 ns/V

DC Characteristics for 'VHC Family Devices

Symbol	Parameter	(A) A ^{CC}	T _A = 25°C		T _A = -55°C to +125°C		T _A = -40°C to +85°C		Units	Conditions		
			Min	Тур	Max	Min	Max	Min	Max			
V _{iH}	High Level Input Voltage	2.0 3.0-5.5	1.50 0.7 V _{CC}			1.50 0.7 V _{CC}		1.50 0.7 V _{CC}		٧		
V _{IL}	Low Level Input Voltage	2.0 3.0-5.5			0.50 0.3 V _{CC}		0.50 0.3 V _{CC}		0.50 0.3 V _{CC}	٧		
V _{OH}	High Level Output Voltage	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		v	$V_{IN} = V_{IH}$ or V_{IL}	I _{OH} = -50 μA
		3.0 4.5	2.58 3.94			3.70		2.48 3.80		V		$l_{OH} = -4 \text{ mA}$ $l_{OH} = -8 \text{ mA}$
V _{OL}	Low Level Output Voltage	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	v	V _{IN} = V _{IH} or V _{IL}	I _{OL} = 50 μA
		3.0 4.5			0.36 0.36		0.50 0.50		0.44 0.44	٧		I _{OL} = 4 mA I _{OL} = 8 mA
I _{IN}	Input Leakage Current	0-5.5			±0.1		± 1.0		±1.0	μА	V _{IN} = 5.5\	or GND
loc	Quiescent Supply Current	5.5			4.0				40.0	μА	V _{IN} = V _{CC}	or GND

DC Characteristics for 'VHC Family Devices

Symbol Parameter	Parameter	V _{CC}	T _A = 25°C		T _A = -55°C to +125°C	T _A = -40°C to +85°C	Units	Conditions
		(8)	Тур	Limit	Limit	Limit		
**V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	5.0	0.3	0.8			v	C _L = 50 pF
**V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	5.0	-0.3	-0.8			٧	C _L = 50 pF
**V _{IHD}	Minimum High Level Dynamic Input Voltage	5.0		3.5			٧	C _L = 50 pF
**V _{ILD}	Maximum Low Level Dynamic Input Voltage	5.0		1.5			٧	C _L = 50 pF

^{**}Parameter guaranteed by design.

AC Electrical Characteristics:

Symbol	Parameter	V _{CC} (V)	T _A = 25°C			T _A = -55°C to +125°C		T _A = -40°C to +85°C		Units	Conditions
			Min	Тур	Max	Min	Max	Min	Max	1	
t _{PLH} ,	Propagation Delay	3.3 ±0.3		6.2	9.7		,	1.0	11.5	ns	C _L = 15 pF
t _{PHL}	I _n to Z _n			8.7	13.2			1.0	15.0		C _L = 50 pF
		5.0 ± 0.5		4.1	6.4			1.0	7.5	ns	C _L = 15 pF
				5.6	8.4			1.0	9.5		C _L = 50 pF
	Propagation Delay	3.3 ± 0.3		8.4	13.2			1.0	15.5	ns	C _L = 15 pF
	S to Z _n			10.9	16.7			1.0	19.0		C _L = 50 pF
		5.0 ±0.5		5.3	8.1			1.0	9.5	ns	C _L = 15 pF
				6.8	10.1			1.0	11.5		C _L = 50 pF
t _{PLH} , Prop	Propagation Delay	3.3 ±0.3		8.7	13.6			1.0	16.0		C _L = 15 pF
t _{PHL}	E to Z _n			11.2	17.1			1.0	19.5	ns	C _L = 50 pF
		5.0 ±0.5		5.6	8.6			1.0	10.0	ns	C _L = 15 pF
				7.1	10.6			1.0	12.0		C _L = 50 pF
CIN	Input Capacitance			4	10				10	pF	
C _{PD}	Power Dissipation Capacitance			20						pF	(Note 1)

Note 1: C_{PD} is defined as the value of the Internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (opr.) = C_{PD} * V_{CC} * f_{IN} + I_{CC}/4 (per gate).

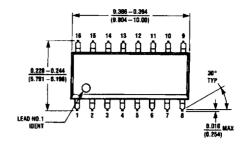
NATL SEMICOND (MEMORY)

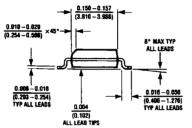
NATL SEMICOND (MEMORY)

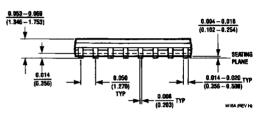
59E D ■ 6501126 0066966 185 ■NSC3

Ordering Information

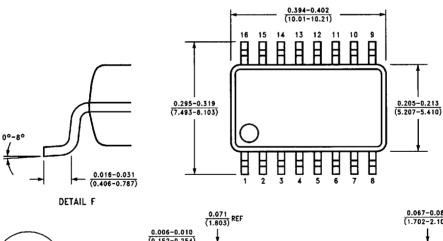
The device number is used to form part of a simplified purchasing code, where the package type and temperature range are defined as follows:

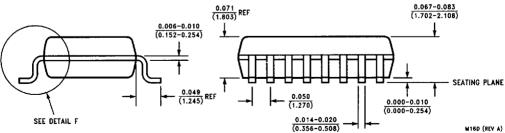

74VHC 157 **Temperature Range Family** Special Variations 74VHC = Commercial "X" = Tape and Reel "" = Rail/Tube 54VHC = Military Device Type -Package Code


M = Small Outline JEDEC SOIC SJ = Small Outline EIAJ SOIC MSC = Shrink Small Outline EIAJ SSOP

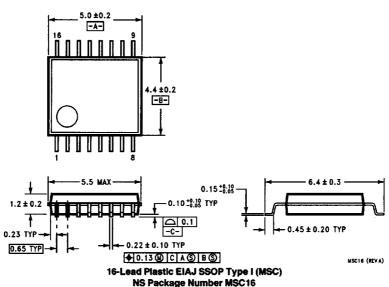

Type 1 J/883 = Ceramic DIP

W/883 = Ceramic Flatpak E/883 = Leadless Ceramic Chip Carrier


Physical Dimensions inches (millimeters)



16-Lead Small Outline Integrated Circuit-JEDEC (M) NS Package Number M16A



16-Lead Small Outline Package-EIAJ (SJ) NS Package Number M16D

54VHC/74VHC157 Quad 2-Input Multiplexer

Physical Dimensions (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240

Industriestrasse 10 D-8080 Fürstenfeldbr Germany Tel: (0-81-41) 103-0 Fax: (0-81-41) 10-35-06 Sanseido Bldg. 5F 4-15-3 Nishi Shinju Shinjuku-Ku, Tokyo 160, Japan Tel: 3-3299-7001 FAX: 3-3299-7000

tional Semico ng Kong Ltd. 13th Floor, Straight Block Ocean Centre, 5 Canton Tsimshatsui, Kowloon Hong Kong Tel: (852) 737-1600 x: 51292 NSHKI Fax: (852) 736-9960

Av. Brig. Faria Lima, 1409 6 Andar Cep-01451, Paulistano, Seo Paulo, SP, Brazil Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181

onal Semicondi Itralia) Pty, Ltd. Iusiness Park Dr 16 Busine . Juan ress Park Dr. Notting Hill, VIC 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9996