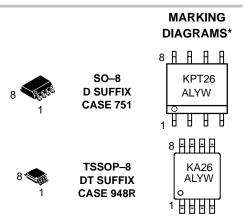
3.3V 1:2 Fanout Differential LVPECL to LVTTL Translator

The MC100EPT26 is a 1:2 Fanout Differential LVPECL to LVTTL translator. Because LVPECL (Positive ECL) levels are used only +3.3 V and ground are required. The small outline 8–lead package and the 1:2 fanout design of the EPT26 makes it ideal for applications which require the low skew duplication of a signal in a tightly packed PC board.


The V_{BB} output allows the EPT26 to be used in a single–ended input mode. In this mode the V_{BB} output is tied to the $\overline{D0}$ input for a non–inverting buffer or the D0 input for an inverting buffer. If used, the V_{BB} pin should be bypassed to ground via a 0.01 μF capacitator.

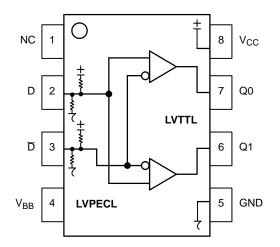
- 1.4 ns Typical Propagation Delay
- Maximum Frequency > 275 MHz Typical
- The 100 Series Contains Temperature Compensation
- Operating Range: $V_{CC} = 3.0 \text{ V}$ to 3.6 V with GND = 0 V
- Open Input Default State
- Safety Clamp on Inputs
- 24 mA TTL outputs
- $\bullet\,$ Q Outputs Will Default LOW with Inputs Open or at V_{EE}
- V_{BB} Output

ON Semiconductor™

http://onsemi.com

A = Assembly Location

L = Wafer Lot


Y = Year

W = Work Week

*For additional information, see Application Note AND8002/D

ORDERING INFORMATION

Device	Package	Shipping
MC100EPT26D	SO–8	98 Units/Rail
MC100EPT26DR2	SO-8	2500 Tape & Reel
MC100EPT26DT	TSSOP-8	100 Units/Rail
MC100EPT26DTR2	TSSOP-8	2500 Tape & Reel

PIN DESCRIPTION

PIN	FUNCTION	
Q0, Q1	LVTTL Outputs	
D**, \(\overline{D}**	Differential LVPECL Input Pair	
V _{CC}	Positive Supply	
V _{BB}	Output Reference Voltage	
GND	Ground	
NC	No Connect	

^{**} Pins will default to V_{CC}/2 when left open.

Figure 1. 8-Lead Pinout (Top View) and Logic Diagram

ATTRIBUTES

Characte	ristics	Value
Internal Input Pulldown Resistor	75 kΩ	
Internal Input Pullup Resistor		37.5 kΩ
ESD Protection	Human Body Model Machine Model Charged Device Model	> 2 kV > 100 V > 2 kV
Moisture Sensitivity, Indefinite Tim	e Out of Drypack (Note 1.)	Level 1
Flammability Rating Oxygen Index	UL-94 code V-0 A 1/8" 28 to 34	
Transistor Count	117 Devices	
Meets or exceeds JEDEC Spec E	IA/JESD78 IC Latchup Test	

^{1.} For additional information, see Application Note AND8003/D.

MAXIMUM RATINGS (Note 2.)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	Positive Power Supply	GND = 0 V		3.8	V
V _{IN}	Input Voltage	GND = 0 V	$V_{I} \leq V_{CC}$	0 to 3.8	٧
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
TA	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction to Ambient)	0 LFPM 500 LFPM	8 SOIC 8 SOIC	190 130	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction to Case)	std bd	8 SOIC	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction to Ambient)	0 LFPM 500 LFPM	8 TSSOP 8 TSSOP	185 140	°C/W
θ_{JC}	Thermal Resistance (Junction to Case)	std bd	8 TSSOP	41 to 44	°C/W
T _{sol}	Wave Solder	<2 to 3 sec @ 248°C		265	°C

^{2.} Maximum Ratings are those values beyond which device damage may occur.

PECL INPUT DC CHARACTERISTICS $V_{CC} = 3.3 \text{ V}$; GND = 0.0 V (Note 3.)

				-40°C			25°C			85°C		
Symbol	Characteristic		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{IH}	Input HIGH Voltage (Single Ended)		2075		2420	2075		2420	2075		2420	mV
V_{IL}	Input LOW Voltage (Single Ended)		1355		1675	1355		1675	1355		1675	mV
V_{BB}	Output Voltage Reference		1775	1875	1975	1775	1875	1975	1775	1875	1975	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 4.)		2.0		3.3	2.0		3.3	2.0		3.3	V
I _{IH}	Input HIGH Current				150			150			150	μΑ
I _{IL}		D D	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 Ifpm is maintained.

TTL OUTPUT DC CHARACTERISTICS $V_{CC} = 3.3 \text{ V}$; GND = 0.0 V; $T_A = -40 ^{\circ}\text{C}$ to $85 ^{\circ}\text{C}$

Symbol	Characteristic	Condition	Min	Тур	Max	Unit
V _{OH}	Output HIGH Voltage (Note 5.)	$I_{OH} = -3.0 \text{ mA}$	2.4			V
V _{OL}	Output LOW Voltage (Note 5.)	I _{OL} = 24 mA			0.5	V
I _{CCH}	Power Supply Current		10	20	18	mA
I _{CCL}	Power Supply Current		15	28	35	mA
I _{OS}	Output Short Circuit Current		-50		-150	mA

^{5.} All loading with 500 ohms to GND, CL = 20 pF.

AC CHARACTERISTICS $V_{CC} = 3.0 \text{ V}$ to 3.6 V; GND = 0.0 V (Note 6.)

		–40°C		25°C		85°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Frequency (See Figure 2. F _{max} /JITTER)	275	350		275	350		275	350		MHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential (Note 7.)	1.2 1.2	1.5 1.5	1.8 1.8	1.2 1.2	1.5 1.5	1.8 1.8	1.3 1.2	1.7 1.5	2.2 1.8	ns
t _{SK++} t _{SK} t _{SKPP}	Within Device Skew++ Within Device Skew Device-to-Device Skew (Note 8.)			60 25 500			60 25 500			60 25 500	ps
[†] JITTER	Cycle–to–Cycle Jitter (See Figure 2. F _{max} /JITTER)		TBD			TBD			TBD		ps
V_{PP}	Input Voltage Swing (Differential)	150	800	1200	150	800	1200	150	800	1200	mV
t _r	Output Rise/Fall Times $(0.8V-2.0V)$ Q, \overline{Q}	330	600	900	330	600	900	330	650	900	ps

^{6.} Measured using a 750 mV source, 50% duty cycle clock source. All loading with 500 ohms to GND.

Input parameters vary 1:1 with V_{CC}.
 V_{IHCMR} min varies 1:1 with GND, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

^{7.} Reference (V_{CC} = 3.3V ± 5%; GND = 0V) 8. Skews are measured between outputs under identical transitions.

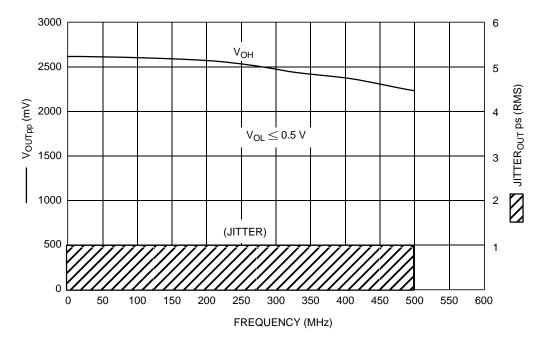


Figure 2. F_{max}/Jitter

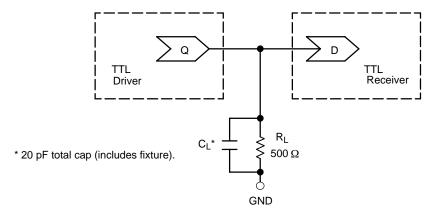


Figure 3. TTL Output Loading Used for Device Evaluation

Resource Reference of Application Notes

AN1404 – ECLinPS Circuit Performance at Non–Standard V_{IH} Levels

AN1405 – ECL Clock Distribution Techniques

AN1406 – Designing with PECL (ECL at +5.0 V)

AN1503 - ECLinPS I/O SPICE Modeling Kit

AN1504 – Metastability and the ECLinPS Family

AN1560 – Low Voltage ECLinPS SPICE Modeling Kit

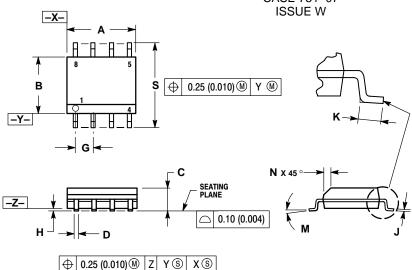
AN1568 - Interfacing Between LVDS and ECL

AN1596 – ECLinPS Lite Translator ELT Family SPICE I/O Model Kit

AN1650 - Using Wire-OR Ties in ECLinPS Designs

AN1672 – The ECL Translator Guide

AND8001 - Odd Number Counters Design

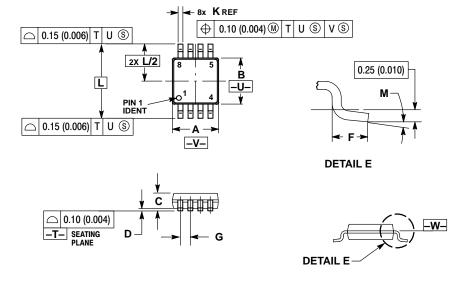

AND8002 - Marking and Date Codes

AND8020 - Termination of ECL Logic Devices

For an updated list of Application Notes, please see our website at http://onsemi.com.

PACKAGE DIMENSIONS

SO-8 **D SUFFIX** PLASTIC SOIC PACKAGE CASE 751-07



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- SIDE.

 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MIN MAX		MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.050 BSC		
Н	0.10	0.10 0.25		0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
M	0 °	8 °	0 °	8 °	
N	0.25	0.50	0.010	0.020	
S	5.80			0.244	

TSSOP-8 **DT SUFFIX** PLASTIC TSSOP PACKAGE CASE 948R-02 **ISSUE A**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH.
 PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INC	HES
DIM	MIN	MIN MAX		MAX
Α	2.90	2.90 3.10		0.122
В	B 2.90 3.10		0.114	0.122
С	0.80	1.10	0.031	0.043
D	0.05	0.15	0.002	0.006
F	0.40	0.70	0.016	0.028
G	0.65	BSC	0.026	BSC
K	0.25	0.40	0.010	0.016
L		BSC		BSC
M	0°	6 °	0°	6°

Notes

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affliliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

Toll-Free from Mexico: Dial 01-800-288-2872 for Access -

then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center

4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031

Phone: 81–3–5740–2700

Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.