

PIC16C7X

8-Bit CMOS Microcontrollers with A/D Converter

Devices included in this data sheet:

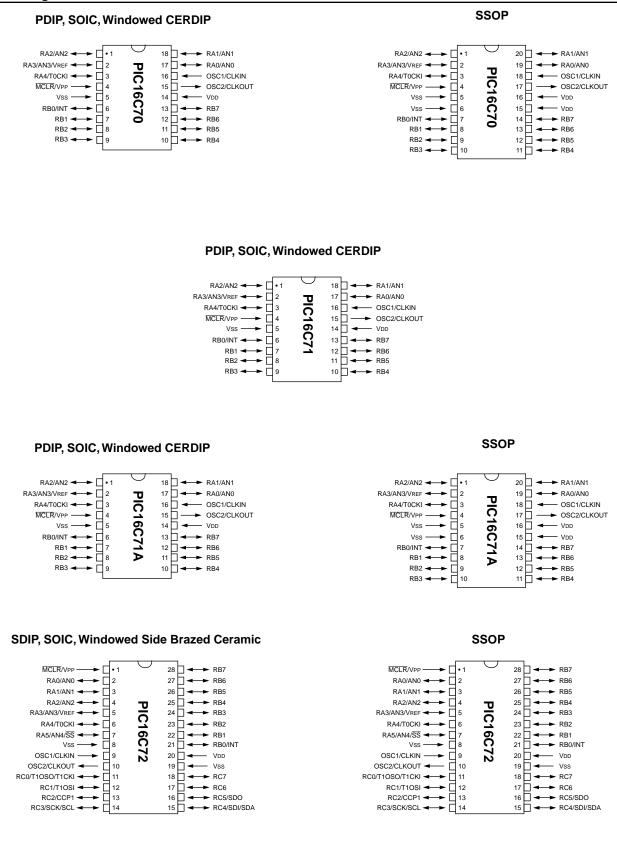
- PIC16C70
- PIC16C71
- PIC16C71A
- PIC16C72
- PIC16C73
- PIC16C73A
- PIC16C74
- PIC16C74A

PIC16C7X Microcontroller Core Features:

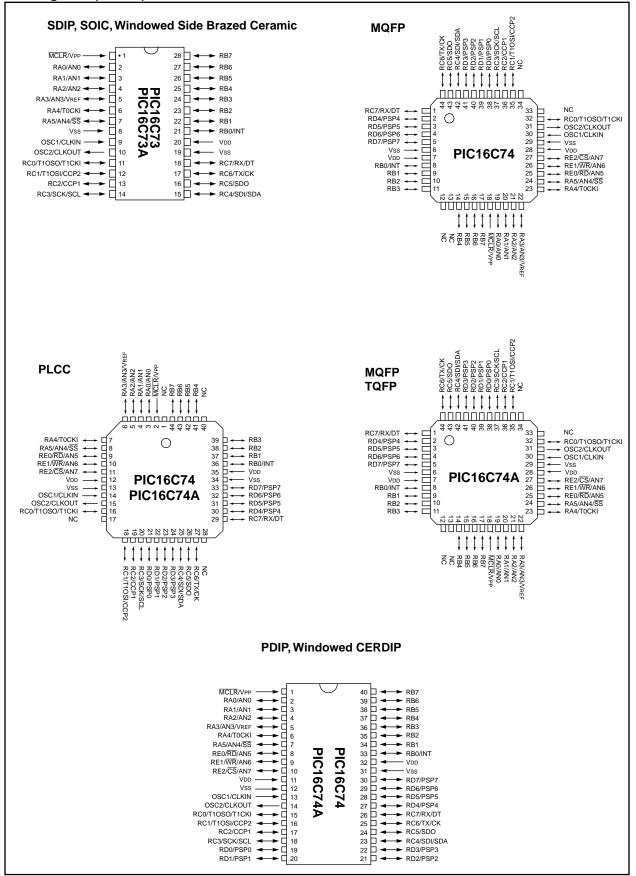
- High-performance RISC CPU
- · Only 35 single word instructions to learn
- All single cycle instructions (200 ns) except for program branches which are two cycle
- Operating speed: DC 20 MHz clock input DC - 200 ns instruction cycle
- Interrupt capability
- Eight level deep hardware stack
- Direct, indirect and relative addressing modes
- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Programmable code-protection
- · Power saving SLEEP mode
- Selectable oscillator options
- 8-bit multichannel analog-to-digital converter

- Low-power, high-speed CMOS EPROM technology
- · Fully static design
- Wide operating voltage range: 3.0V to 6.0V
- High Sink/Source Current 25/25 mA
- Commercial, Industrial and Automotive Temperature Range
- Low-power consumption:
 - < 2 mA @ 5V, 4 MHz
 - 15 µA typical @ 3V, 32 kHz
 - < 1 μ A typical standby current

PIC16C7X Peripheral Features:


- Timer0: 8-bit timer/counter with 8-bit prescaler
- Timer1: 16-bit timer/counter. TMR1 can be incremented during sleep via external crystal/clock
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- Capture, Compare, PWM module(s)
- Capture is 16-bit, max. resolution 12.5 ns, compare is 16-bit, max. resolution 200 ns, max. PWM resolution is 10-bit
- Synchronous Serial Port (SSP) with SPI[™] and I²C[™]
- Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI)
- Parallel Slave Port (PSP) 8-bit wide, with external \overline{RD} , \overline{WR} and \overline{CS} controls
- Brown-out detection circuitry for Brown-out Reset (BOR)

PIC16C7X Features	70	71	71A	72	73	73A	74	74A
Program Memory (EPROM)	512	1K	1K	2K	4K	4K	4K	4K
Data Memory (Bytes)	36	36	68	128	192	192	192	192
I/O Pins	13	13	13	22	22	22	33	33
Parallel Slave Port	_	_	—	_	_	_	Yes	Yes
Capture/Compare/PWM Modules	—	_	—	1	2	2	2	2
Timer Modules	1	1	1	3	3	3	3	3
A/D Channels	4	4	4	5	5	5	8	8
Serial Communication	-	_	-	SPI/I ² C	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART
In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Brown-out Reset	Yes	_	Yes	Yes	_	Yes	_	Yes
Interrupt Sources	4	4	4	8	11	11	12	12


I²C is a trademark of Philips Corporation. SPI is a trademark of Motorola Corporation.

© 1995 Microchip Technology Inc.

Pin Diagrams

Pin Diagrams (Cont.'d)

Table of Contents

1.0	General Description	5
2.0	PIC16C7X Device Varieties	7
3.0	Architectural Overview	9
4.0	Memory Organization	21
5.0	I/O Ports	43
6.0	Overview of Timer Modules	57
7.0	Timer0 Module	59
8.0	Timer1 Module	65
9.0	Timer2 Module	69
10.0	Capture/Compare/PWM Module(s)	71
11.0	Synchronous Serial Port (SSP) Module	77
12.0	Universal Synchronous Asynchronous Receiver Transmitter (USART)	93
13.0	Analog-to-Digital Converter (A/D) Module	109
14.0	Special Features of the CPU	121
15.0	Instruction Set Summary	141
16.0	Development Support	153
17.0	Electrical Characteristics for PIC16C70 and PIC16C71A	159
18.0	DC and AC Characteristics Graphs and Tables for PIC16C70 and PIC16C71A	173
	Electrical Characteristics for PIC16C71	
20.0	DC and AC Characteristics Graphs and Tables for PIC16C71	
21.0	Electrical Characteristics for PIC16C72	197
22.0	DC and AC Characteristics Graphs and Tables for PIC16C72	217
23.0	Electrical Characteristics for PIC16C73/74	219
24.0	DC and AC Characteristics Graphs and Tables for PIC16C73/74	241
25.0	Electrical Characteristics for PIC16C73A/74A	243
26.0	DC and AC Characteristics Graphs and Tables for PIC16C73A/74A	265
27.0	Packaging Information	267
Appe	endix A:	
Appe	endix B: Compatibility	
	endix C: What's New	
Appe	endix D: What's Changed	
Арре	endix E: PIC16/17 Microcontrollers	
	Index	293
	Connecting to Microchip BBS	
	Reader Response	
	Product Information System	
-		

For register and module descriptions in this data sheet, device legends show which devices apply to those sections. As an example, the legend below would mean that the following section applies only to the PIC16C71A, PIC16C72, PIC16C73A and PIC16C74A devices.

Applicable Devices
70 71 71A 72 73 73A 74 74A

To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

1.0 GENERAL DESCRIPTION

The PIC16C7X is a family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers with integrated analog-to-digital (A/D) converters, in the PIC16CXX mid-range family.

All PIC16/17 microcontrollers employ an advanced RISC architecture. The PIC16CXX microcontroller family has enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16CXX microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The **PIC16C70/71** devices have 36 bytes of RAM, and the **PIC16C71A** has 68 bytes of RAM. The **PIC16C70/71/71A** devices have 13 I/O pins. In addition a timer/counter is available. Also a 4-channel highspeed 8-bit A/D is provided. The 8-bit resolution is ideally suited for applications requiring low-cost analog interface, e.g. thermostat control, pressure sensing, etc.

The **PIC16C72** device has 128 bytes of RAM and 22 I/O pins. In addition several peripheral features are available including: three timer/counters, one Capture/Compare/PWM module and one serial port. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. Also a 5-channel high-speed 8-bit A/D is provided. The 8-bit resolution is ideally suited for applications requiring low-cost analog interface, e.g. thermostat control, pressure sensing, etc.

The PIC16C73/73A devices have 192 bytes of RAM and 22 I/O pins. In addition, several peripheral features are available including: three timer/counters, two Capture/Compare/PWM modules and two serial ports. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. The Universal Synchronous Asynchronous Receiver Transmitter (USART) is also known as the Serial Communications Interface or SCI. Also a 5-channel high-speed 8-bit A/D is provided. The 8-bit resolution is ideally suited for applications requiring low-cost analog interface, e.g. thermostat control, pressure sensing, etc.

The **PIC16C74/74A** devices have 192 bytes of RAM and 33 I/O pins. In addition several peripheral features are available including: three timer/counters, two Capture/Compare/PWM modules and two serial ports. The

Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. The Universal Synchronous Asynchronous Receiver Transmitter (USART) is also known as the Serial Communications Interface or SCI. An 8-bit Parallel Slave Port is provided. Also an 8-channel high-speed 8-bit A/D is provided. The 8-bit resolution is ideally suited for applications requiring low-cost analog interface, e.g. thermostat control, pressure sensing, etc.

The PIC16C7X family has special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (power-down) feature provides a power saving mode. The user can wake up the chip from SLEEP through several external and internal interrupts and reset(s).

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lockup.

A UV erasable CERDIP packaged version is ideal for code development while the cost-effective One-Time-Programmable (OTP) version is suitable for production in any volume.

The PIC16C7X family fits perfectly in applications ranging from security and remote sensors to appliance control and automotive. The EPROM technology makes customization of application programs (transmitter codes, motor speeds, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16C7X very versatile even in areas where no microcontroller use has been considered before (e.g. timer functions, serial communication, capture and compare, PWM functions and coprocessor applications).

1.1 Family and Upward Compatibility

Users familiar with the PIC16C5X microcontroller family will realize that this is an enhanced version of the PIC16C5X architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for the PIC16C5X can be easily ported to the PIC16CXX family of devices (Appendix B).

1.2 <u>Development Support</u>

The PIC16CXX family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low-cost development programmer and a full-featured programmer. A "C" compiler and fuzzy logic support tools are also available. (Section 16.0)

PIC16C7X

TABLE 1-1:	PIC16C7X FAMILY OF DEVICES
------------	----------------------------

				Clock		Memory			Peri	Peripherals	s			Features
				LOUISIN LOUIS	The				States ,		Selutions ((SH	6.1111110.19
			To La Talland	S BITTON I BUILT	The Y	Although Constants (Same 2010)	is to the	the state	LO PULOS		2011 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Se Cloud Service Clouine Service		Particle And
PIC16C70 ⁽¹⁾	20	512	36	TMR0				4	4	13	3.0-6.0	Yes	Yes	18-pin DIP, SOIC; 20-pin SSOP
PIC16C71	20	ź	36	TMR0	1	1	1	4	4	13	3.0-6.0	Yes	Ι	18-pin DIP, SOIC
PIC16C71A ⁽¹⁾	20	¥	68	TMR0		1	1	4	4	13	3.0-6.0	Yes	Yes	18-pin DIP, SOIC; 20-pin SSOP
PIC16C72 ⁽¹⁾	20	ž	128	TMR0, TMR1, TMR2	-	SPI/I ² C	1	ъ	ø	22	3.0-6.0	Yes	Yes	28-pin SDIP, SOIC, SSOP
PIC16C73	20	,	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART		5	11	22	3.0-6.0	Yes		28-pin SDIP, SOIC
PIC16C73A ⁽¹⁾	20	,	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART		5	11	22	3.0-6.0	Yes	Yes	28-pin SDIP, SOIC
PIC16C74	20	,	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	Yes	ω	12	33	3.0-6.0	Yes	1	40-pin DIP; 44-pin PLCC, MQFP
PIC16C74A ⁽¹⁾	20	\$	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	Yes	ω	12	33	3.0-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP
All Pl- All Pl-	C16/17 C16C>	7 Fami (X Far	ily devi nily dev	All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable c All PIC16CXX Family devices use serial programming with clock pin RB6 and data pin RB7	no jo	Reset, se gramming	lectable with c	e Watc lock pir	hdog n RB6	Timer, and d	selectable ata pin RB	code p 37.	protect	All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16CXX Family devices use serial programming with clock pin RB6 and data pin RB7.

Note 1: Please contact your local sales office for availability of these devices.

2.0 PIC16C7X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C7X Product Selection System section at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number.

For the PIC16C7X family, there are two device "types" as indicated in the device number:

- 1. **C**, as in PIC16**C**74. These devices have EPROM type memory and operate over the standard voltage range.
- 2. LC, as in PIC16LC74. These devices have EPROM type memory and operate over an extended voltage range.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package, is optimal for prototype development and pilot programs.

The UV erasable version can be erased and reprogrammed to any of the configuration modes. Microchip's PICSTART[™] and PRO MATE[™] programmers both support the PIC16C7X. Third party programmers also are available; refer to the Microchip Third Party Guide for a list of sources.

2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 <u>Quick-Turnaround-Production (QTP)</u> <u>Devices</u>

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround</u> <u>Production (SQTPSM) Devices</u>

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password or ID number.

NOTES:

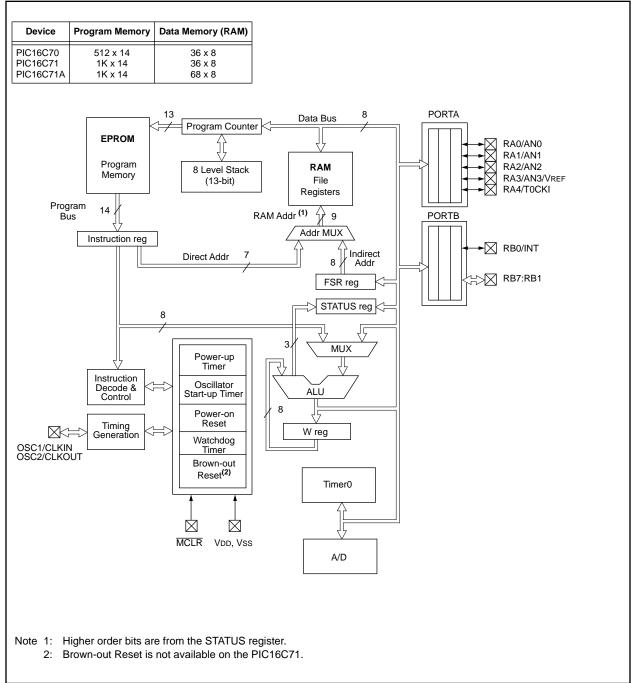
3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16CXX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CXX uses a Harvard architecture, in which, program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture where program and data are fetched from the same memory using the same bus. Separating program and data buses further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions (35) execute in a single cycle (200 ns @ 20 MHz) except for program branches.

The table below lists program memory (EPROM) and data memory (RAM) for each PIC16C7X device.

Device	Program Memory	Data Memory
PIC16C70	512 x 14	36 x 8
PIC16C71	1K x 14	36 x 8
PIC16C71A	1K x 14	68 x 8
PIC16C72	2K x 14	128 x 8
PIC16C73	4K x 14	192 x 8
PIC16C73A	4K x 14	192 x 8
PIC16C74	4K x 14	192 x 8
PIC16C74A	4K x 14	192 x 8

The PIC16CXX can directly or indirectly address its register files or data memory. All special function registers, including the program counter, are mapped in the data memory. The PIC16CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16CXX simple yet efficient. In addition, the learning curve is reduced significantly.


PIC16CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between the data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow bit and a digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

FIGURE 3-1: PIC16C70/71/71A BLOCK DIAGRAM

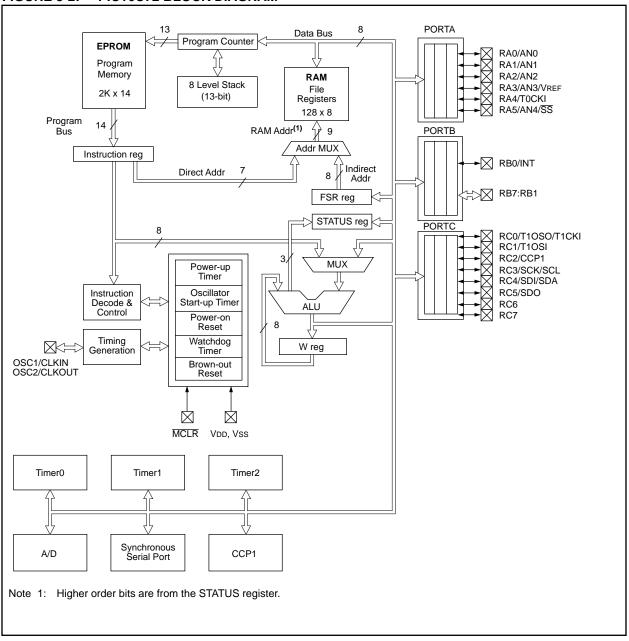
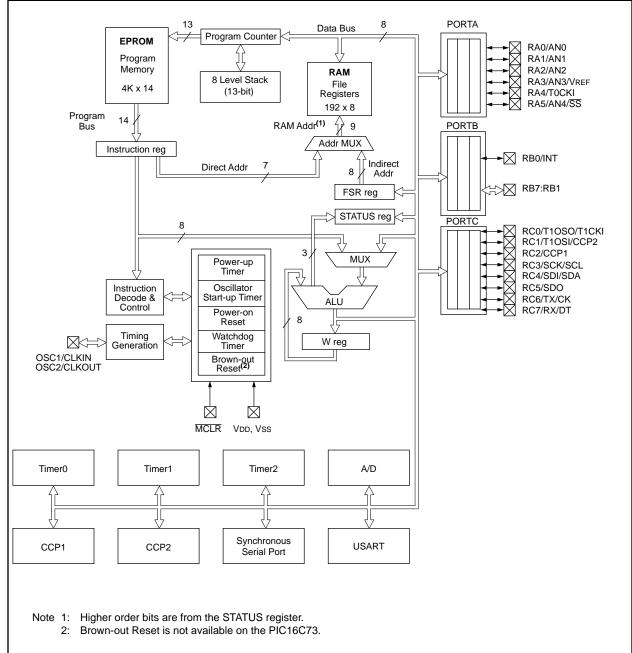



FIGURE 3-2: PIC16C72 BLOCK DIAGRAM

PIC16C7X

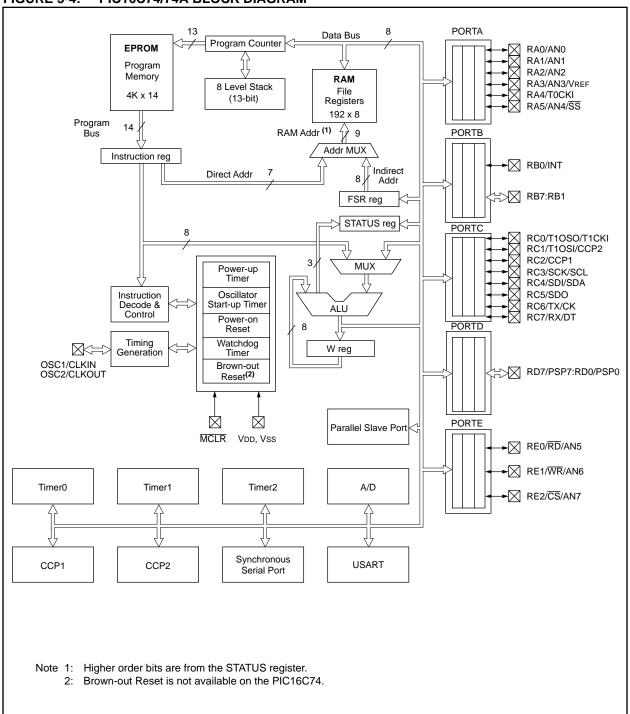


FIGURE 3-4: PIC16C74/74A BLOCK DIAGRAM

Pin Name	DIP Pin#	SSOP Pin#	SOIC Pin#	l/O/P Type	Buffer Type	Description
OSC1/CLKIN	16	18	16	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	15	17	15	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	4	4	4	I/P	ST	Master clear (reset) input/programming voltage input. This pin is an active low reset to the device.
						PORTA is a bi-directional I/O port.
RA0/AN0	17	19	17	I/O	TTL	Analog input0
RA1/AN1	18	20	18	I/O	TTL	Analog input1
RA2/AN2	1	1	1	I/O	TTL	Analog input2
RA3/AN3/VREF	2	2	2	I/O	TTL	Analog input3/VREF
RA4/T0CKI	3	3	3	I/O	ST	Can also be selected to be the clock input to the Timer0 module. Output is open drain type.
						PORTB is a bi-directional I/O port. PORTB can be software pro- grammed for internal weak pull-up on all inputs.
RB0/INT	6	7	6	I/O	TTL/ST ⁽¹⁾	RB0/INT can also be selected as an external interrupt pin.
RB1	7	8	7	I/O	TTL	
RB2	8	9	8	I/O	TTL	
RB3	9	10	9	I/O	TTL	
RB4	10	11	10	I/O	TTL	Interrupt on change pin.
RB5	11	12	11	I/O	TTL	Interrupt on change pin.
RB6	12	13	12	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming clock.
RB7	13	14	13	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming data.
Vss	5	4, 6	5	Р	_	Ground reference for logic and I/O pins.
Vdd	14	15, 16	14	Р	—	Positive supply for logic and I/O pins.
Legend: I = inp		O = outp			/O = input/out	
		— = Not	used	٦	TTL = TTL inpי	ut ST = Schmitt Trigger input

TABLE 3-1: PIC16C70/71A PINOUT DESCRIPTION

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt. 2: This buffer is a Schmitt Trigger input when used in serial programming mode.

Pin Name	DIP Pin#	SOIC Pin#	l/O/P Type	Buffer Type	Description
OSC1/CLKIN	16	16	Ι	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	15	15	0	-	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	4	4	I/P	ST	Master clear (reset) input/programming voltage input. This pin is an active low reset to the device.
					PORTA is a bi-directional I/O port.
RA0/AN0	17	17	I/O	TTL	Analog input0
RA1/AN1	18	18	I/O	TTL	Analog input1
RA2/AN2	1	1	I/O	TTL	Analog input2
RA3/AN3/VREF	2	2	I/O	TTL	Analog input3/VREF
RA4/T0CKI	3	3	I/O	ST	Can also be selected to be the clock input to the Timer0 module Output is open drain type.
					PORTB is a bi-directional I/O port. PORTB can be software pro- grammed for internal weak pull-up on all inputs.
RB0/INT	6	6	I/O	TTL/ST ⁽¹⁾	RB0/INT can also be selected as an external interrupt pin.
RB1	7	7	I/O	TTL	
RB2	8	8	I/O	TTL	
RB3	9	9	I/O	TTL	
RB4	10	10	I/O	TTL	Interrupt on change pin.
RB5	11	11	I/O	TTL	Interrupt on change pin.
RB6	12	12	I/O	TTL/ST(2)	Interrupt on change pin. Serial programming clock.
RB7	13	13	I/O	TTL/ST(2)	Interrupt on change pin. Serial programming data.
Vss	5	5	Р	- 1	Ground reference for logic and I/O pins.
Vdd	14	14	Р	- 1	Positive supply for logic and I/O pins.
Legend: I = input	— = I	output Not used	٦	/O = input/outp TTL = TTL inpu	ut ST = Schmitt Trigger input

TABLE 3-2: PIC16C71 PINOUT DESCRIPTION
--

TABLE 3-3: PIC16C72 PINOUT DESCRIPTION

OSC1/CLKIN 9 OSC2/CLKOUT 10 MCLR/VPP 1 RA0/AN0 2 RA1/AN1 3 RA2/AN2 4 RA3/AN3/VREF 5 RA4/T0CKI 6 RA5/AN4/SS 7 RB0/INT 21 RB1 22 RB3 24 RB4 25 RB5 26 RB6 27 RB7 28 RC0/T1OSO/T1CKI 11 RC1/T1OSI 12		9 10 1 2 3 4 5 6 7	9 10 1 2 3 4 5 6 7	I 0 I/P I/O I/O I/O I/O I/O	ST/CMOS ⁽³⁾ — ST TTL TTL TTL TTL ST	Oscillator crystal input/external clock source input. Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate. Master clear (reset) input/programming voltage input. This pin is an active low reset to the device. PORTA is a bi-directional I/O port. Analog input0 Analog input1 Analog input2 Analog input3/VREF Can also be selected to be the clock input to the Timero
MCLR/VPP 1 RA0/AN0 2 RA1/AN1 3 RA2/AN2 4 RA3/AN3/VREF 5 RA4/T0CKI 6 RA5/AN4/SS 7 RB0/INT 21 RB2 23 RB3 24 RB4 25 RB5 26 RB6 27 RB7 28 RC0/T1OSO/T1CKI 11	1	1 2 3 4 5 6	1 2 3 4 5 6	I/P I/O I/O I/O I/O I/O	ТТL ТТL ТТL ТТL	crystal oscillator mode. In RC mode, the OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate. Master clear (reset) input/programming voltage input. This pin is an active low reset to the device. PORTA is a bi-directional I/O port. Analog input0 Analog input1 Analog input2 Analog input3/VREF
RA0/AN0 2 RA1/AN1 3 RA2/AN2 4 RA3/AN3/VREF 5 RA4/T0CKI 6 RA5/AN4/SS 7 RB0/INT 21 RB2 23 RB3 24 RB4 25 RB5 26 RB6 27 RB7 28 RC0/T1OSO/T1CKI 11	1	2 3 4 5 6	2 3 4 5 6	I/O I/O I/O I/O I/O	ТТL ТТL ТТL ТТL	is an active low reset to the device. PORTA is a bi-directional I/O port. Analog input0 Analog input1 Analog input2 Analog input3/VREF
RA1/AN1 3 RA2/AN2 4 RA3/AN3/VREF 5 RA4/T0CKI 6 RA5/AN4/SS 7 RB0/INT 21 RB1 22 RB2 23 RB3 24 RB4 25 RB5 26 RB6 27 RB7 28 RC0/T1OSO/T1CKI 11	1	3 4 5 6	3 4 5 6	I/O I/O I/O I/O	TTL TTL TTL	Analog input0 Analog input1 Analog input2 Analog input3/VREF
RA1/AN1 3 RA2/AN2 4 RA3/AN3/VREF 5 RA4/T0CKI 6 RA5/AN4/SS 7 RB0/INT 21 RB1 22 RB2 23 RB3 24 RB4 25 RB5 26 RB6 27 RB7 28 RC0/T1OSO/T1CKI 11	1	3 4 5 6	3 4 5 6	I/O I/O I/O I/O	TTL TTL TTL	Analog input1 Analog input2 Analog input3/VREF
RA2/AN2 4 RA3/AN3/VREF 5 RA4/TOCKI 6 RA5/AN4/SS 7 RB0/INT 21 RB1 22 RB2 23 RB3 24 RB4 25 RB5 26 RB6 27 RB7 28 RC0/T1OSO/T1CKI 11	1	4 5 6	4 5 6	I/O I/O I/O	TTL TTL	Analog input2 Analog input3/VREF
RA3/AN3/VREF 5 RA4/TOCKI 6 RA5/AN4/SS 7 RB0/INT 21 RB1 22 RB2 23 RB3 24 RB4 25 RB5 26 RB6 27 RB7 28 RC0/T1OSO/T1CKI 11	1	5 6	5 6	1/0 1/0	TTL	Analog input3/VREF
RA4/T0CKI 6 RA5/AN4/SS 7 RB0/INT 21 RB1 22 RB2 23 RB3 24 RB4 25 RB5 26 RB6 27 RB7 28 RC0/T1OSO/T1CKI 11	1	6	6	I/O		
RA5/AN4/SS 7 RB0/INT 21 RB1 22 RB2 23 RB3 24 RB4 25 RB5 26 RB6 27 RB7 28 RC0/T1OSO/T1CKI 11	1		-		ST	Can also be selected to be the clock input to the Timer
RB0/INT 21 RB1 22 RB2 23 RB3 24 RB4 25 RB5 26 RB6 27 RB7 28 RC0/T1OSO/T1CKI 11	1	7	7			module. Output is open drain type.
RB1 22 RB2 23 RB3 24 RB4 25 RB5 26 RB6 27 RB7 28 RC0/T1OSO/T1CKI 11				I/O	TTL	Analog input4 can also be the slave select for the syn chronous serial port.
RB1 22 RB2 23 RB3 24 RB4 25 RB5 26 RB6 27 RB7 28 RC0/T1OSO/T1CKI 11						PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB2 23 RB3 24 RB4 25 RB5 26 RB6 27 RB7 28 RC0/T1OSO/T1CKI 11	2	21	21	I/O	TTL/ST ⁽¹⁾	RB0/INT can also be selected as an external interrupt pin
RB2 23 RB3 24 RB4 25 RB5 26 RB6 27 RB7 28 RC0/T1OSO/T1CKI 11		22	22	1/0	TTL	
RB3 24 RB4 25 RB5 26 RB6 27 RB7 28 RC0/T1OSO/T1CKI 11		23	23	I/O	TTL	
RB4 25 RB5 26 RB6 27 RB7 28 RC0/T1OSO/T1CKI 11		24	24	I/O	TTL	
RB5 26 RB6 27 RB7 28 RC0/T1OSO/T1CKI 11		25	25	I/O	TTL	Interrupt on change pin.
RB6 27 RB7 28 RC0/T1OSO/T1CKI 11		26	26	I/O	TTL	Interrupt on change pin.
RB7 28 RC0/T1OSO/T1CKI 11		27	27	I/O	TTL/ST(2)	Interrupt on change pin. Serial programming clock.
RC0/T1OSO/T1CKI 11		28	28	1/0	TTL/ST(2)	Interrupt on change pin. Serial programming data.
	-			., -		PORTC is a bi-directional I/O port.
RC1/T1OSI 12	1	11	11	I/O	ST	RC0/T1OSO/T1CKI can also be selected as a Timer oscillator output/Timer1 clock input.
	2	12	12	I/O	ST	RC1/T1OSI/CCP2 can also be selected as a Timer oscillator input or Capture2, input/Compare2 output PWM2 output.
RC2/CCP1 13	3	13	13	I/O	ST	RC2/CCP1 can also be selected as a Capture1 input Compare1 output/PWM1 output.
RC3/SCK/SCL 14	4	14	14	I/O	ST	RC3/SCK/SCL can also be selected as the synchronous serial clock input/output for both SPI and I ² C modes.
RC4/SDI/SDA 15	5	15	15	I/O	ST	RC4/SDI/SDA can also be selected as the SPI Data Ir (SPI mode) or data I/O (I ² C mode).
RC5/SDO 16	6	16	16	I/O	ST	RC5/SDO can also be selected as the SPI Data Out (SP mode).
RC6 17	7	17	17	I/O	ST	, ,
RC7 18		18	18	1/O	ST	
Vss 8, 1		8, 19	8, 19	."С Р	_	Ground reference for logic and I/O pins.
VDD 20		20	20	P		Positive supply for logic and I/O pins.
	= out	-	_0	-	nput/output	P = power

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

Pin Name	DIP Pin#	SOIC Pin#	l/O/P Type	Buffer Type	Description
OSC1/CLKIN	9	9	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	10	10	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	1	1	I/P	ST	Master clear (reset) input/programming voltage input. This pin is an active low reset to the device.
					PORTA is a bi-directional I/O port.
RA0/AN0	2	2	I/O	TTL	Analog input0
RA1/AN1	3	3	I/O	TTL	Analog input1
RA2/AN2	4	4	I/O	TTL	Analog input2
RA3/AN3/VREF	5	5	I/O	TTL	Analog input3/VREF
RA4/T0CKI	6	6	I/O	ST	Can also be selected to be the clock input to the Timer0 module. Output is open drain type.
RA5/AN4/SS	7	7	I/O	TTL	Analog input4 can also be the slave select for the syn- chronous serial port.
					PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	21	21	I/O	TTL/ST ⁽¹⁾	RB0/INT can also be selected as an external interrupt pin.
RB1	22	22	I/O	TTL	
RB2	23	23	I/O	TTL	
RB3	24	24	I/O	TTL	
RB4	25	25	I/O	TTL	Interrupt on change pin.
RB5	26	26	I/O	TTL	Interrupt on change pin.
RB6	27	27	I/O	TTL/ST(2)	Interrupt on change pin. Serial programming clock.
RB7	28	28	I/O	TTL/ST(2)	Interrupt on change pin. Serial programming data.
					PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	11	11	I/O	ST	RC0/T1OSO/T1CKI can also be selected as a Timer1 oscillator output/Timer1 clock input.
RC1/T1OSI/CCP2	12	12	I/O	ST	RC1/T1OSI/CCP2 can also be selected as a Timer1 oscillator input or Capture2 input/Compare2 output/ PWM2 output.
RC2/CCP1	13	13	I/O	ST	RC2/CCP1 can also be selected as a Capture1 input/ Compare1 output/PWM1 output.
RC3/SCK/SCL	14	14	I/O	ST	RC3/SCK/SCL can also be selected as the synchronous serial clock input/output for both SPI and I ² C modes.
RC4/SDI/SDA	15	15	I/O	ST	RC4/SDI/SDA can also be selected as the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	16	16	I/O	ST	RC5/SDO can also be selected as the SPI Data Out (SPI mode).
RC6/TX/CK	17	17	I/O	ST	RC6/TX/CK can also be selected as Asynchronous Transmit or USART Synchronous Clock.
RC7/RX/DT	18	18	I/O	ST	RC7/RX/DT can also be selected as the Asynchronous Receive or USART Synchronous Data.
Vss	8, 19	8, 19	Р	-	Ground reference for logic and I/O pins.
Vdd	20	20	Р	- 1	Positive supply for logic and I/O pins.
Legend: I = input	O = outp — = Not			input/output	P = power ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.
 3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	l/O/P Type	Buffer Type	Description
OSC1/CLKIN	13	14	30	I	ST/CMOS ⁽⁴⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	14	15	31	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/VPP	1	2	18	I/P	ST	Master clear (reset) input/programming voltage input. This pin is an active low reset to the device.
						PORTA is a bi-directional I/O port.
RA0/AN0	2	3	19	I/O	TTL	Analog input0
RA1/AN1	3	4	20	I/O	TTL	Analog input1
RA2/AN2	4	5	21	I/O	TTL	Analog input2
RA3/AN3/VREF	5	6	22	I/O	TTL	Analog input3/VREF
RA4/T0CKI	6	7	23	I/O	ST	Can also be selected to be the clock input to the Timer0 timer/counter. Output is open drain type.
RA5/AN4/SS	7	8	24	I/O	TTL	Analog input4 can also be the slave select for the syn- chronous serial port.
						PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	33	36	8	I/O	TTL/ST ⁽¹⁾	RB0/INT can also be selected as an external interrupt pin.
RB1	34	37	9	I/O	TTL	
RB2	35	38	10	I/O	TTL	
RB3	36	39	11	I/O	TTL	
RB4	37	41	14	I/O	TTL	Interrupt on change pin.
RB5	38	42	15	I/O	TTL	Interrupt on change pin.
RB6	39	43	16	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming clock.
RB7	40	44	17	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming data.
Legend: I = input	0 = ou — = No	•		TTL = Ť	out/output TL input	P = power ST = Schmitt Trigger input

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	I/O/P Type	Buffer Type	Description
						PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	15	16	32	I/O	ST	RC0/T1OSO/T1CKI can also be selected as a Timer1 oscillator output or a Timer1 clock input.
RC1/T1OSI/CCP2	16	18	35	I/O	ST	RC1/T1OSI/CCP2 can also be selected as a Timer1 oscillator input or Capture2 input/Compare2 output PWM2 output.
RC2/CCP1	17	19	36	I/O	ST	RC2/CCP1 can also be selected as a Capture1 input Compare1 output/PWM1 output.
RC3/SCK/SCL	18	20	37	I/O	ST	RC3/SCK/SCL can also be selected as the synchro- nous serial clock input/output for both SPI and I ² C modes.
RC4/SDI/SDA	23	25	42	I/O	ST	RC4/SDI/SDA can also be selected as the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	24	26	43	I/O	ST	RC5/SDO can also be selected as the SPI Data Out (SPI mode).
RC6/TX/CK	25	27	44	I/O	ST	RC6/TX/CK can also be selected as Asynchronous Transmit or USART Synchronous Clock.
RC7/RX/DT	26	29	1	I/O	ST	RC7/RX/DT can also be selected as the Asynchronous Receive or USART Synchronous Data.
						PORTD is a bi-directional I/O port or parallel slave port when interfacing to a microprocessor bus.
RD0/PSP0	19	21	38	I/O	ST/TTL ⁽³⁾	
RD1/PSP1	20	22	39	I/O	ST/TTL ⁽³⁾	
RD2/PSP2	21	23	40	I/O	ST/TTL ⁽³⁾	
RD3/PSP3	22	24	41	I/O	ST/TTL ⁽³⁾	
RD4/PSP4	27	30	2	I/O	ST/TTL ⁽³⁾	
RD5/PSP5	28	31	3	I/O	ST/TTL ⁽³⁾	
RD6/PSP6	29	32	4	I/O	ST/TTL ⁽³⁾	
RD7/PSP7	30	33	5	I/O	ST/TTL ⁽³⁾	
						PORTE is a bi-directional I/O port.
RE0/RD/AN5	8	9	25	I/O	ST/TTL ⁽³⁾	RE0/RD/AN5 read control for parallel slave port, or analog input5.
RE1/WR/AN6	9	10	26	I/O	ST/TTL ⁽³⁾	RE1/WR/AN6 write control for parallel slave port, or analog input6.
RE2/CS/AN7	10	11	27	I/O	ST/TTL ⁽³⁾	RE2/CS/AN7 select control for parallel slave port, or analog input7.
Vss	12,31	13,34	6,29	Р	_	Ground reference for logic and I/O pins.
Vdd	11,32	12,35	7,28	Р	_	Positive supply for logic and I/O pins.
NC	-	1,17,28, 40	12,13, 33,34		_	These pins are not internally connected. These pins should be left unconnected.
Legend: I = input	0 = ou — = No	tput ot used			out/output TL input	P = power ST = Schmitt Trigger input

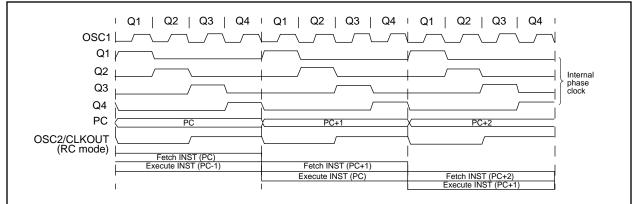
TABLE 3-5: PIC16C74/74A PINOUT DESCRIPTION (Cont.'d)

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

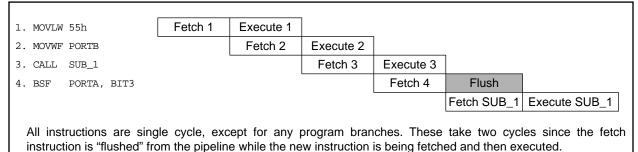
3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

3.1 Clocking Scheme/Instruction Cycle


The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-5.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO) then two cycles are required to complete the instruction (Example 3-1).

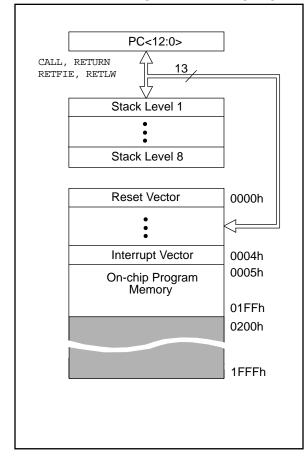

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register" (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

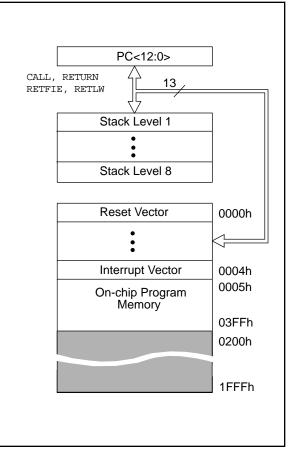
FIGURE 3-5: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

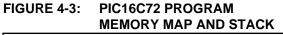
4.0 MEMORY ORGANIZATION


Applicable Devices 70|71|71A|72|73|73A|74|74A

4.1 <u>Program Memory Organization</u>


The PIC16C7X family has a 13-bit program counter capable of addressing an 8K x 14 program memory space.

For the PIC16C70, only the first 512 x 14 (0000h-01FFh) is physically implemented. For the PIC16C71/71A only the first 1K x 14 (0000h-03FFh) is implemented. For the PIC16C72, only the first 2K x 14 (0000h-07FF) is implemented. For the PIC16C73, PIC16C73A, PIC16C74, and PIC16C74A, only the first 4K x 14 (0000h-0FFFh) is physically implemented. Accessing a location above the physically implemented address will cause a wraparound. The reset vector is at 0000h and the interrupt vector is at 0004h.


FIGURE 4-1: PIC16C70 PROGRAM MEMORY MAP AND STACK

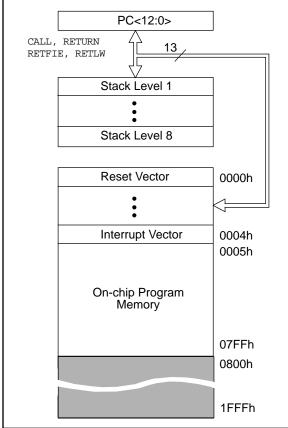
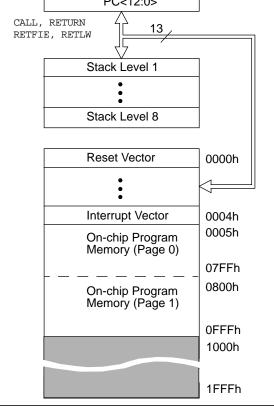


FIGURE 4-2: PIC16C71/71A PROGRAM MEMORY MAP AND STACK



^{© 1995} Microchip Technology Inc.

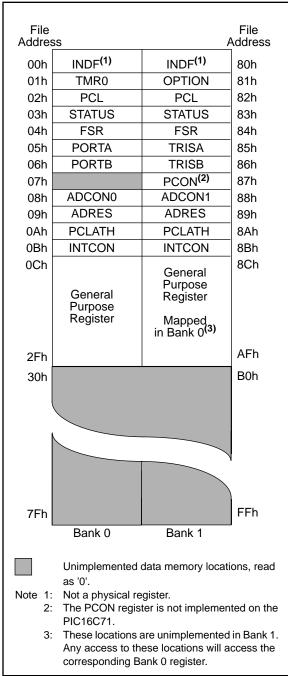
FIGURE 4-4: PIC16C73/73A/74/74A PROGRAM MEMORY MAP AND STACK

4.2 Data Memory Organization

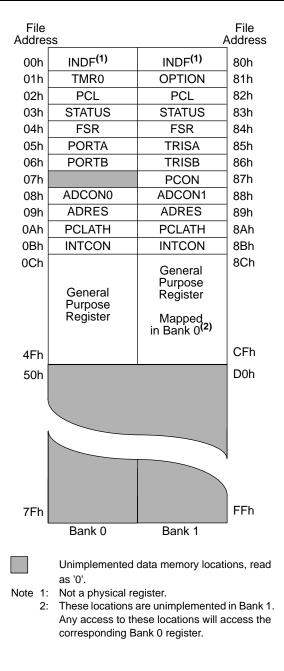
Applicable Devices
70|71|71A|72|73|73A|74|74A

The data memory is partitioned into two Banks which contain the General Purpose Registers and the Special Function Registers. Bit RP0 is the bank select bit.

RP0 (STATUS<5>) = 1 \rightarrow Bank 1


RP0 (STATUS<5>) = $0 \rightarrow Bank 0$

Each Bank extends up to 7Fh (128 bytes). The lower locations of each Bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers implemented as static RAM. Both Bank 0 and Bank 1 contain special function registers. Some "high use" special function registers from Bank 0 are mirrored in Bank 1 for code reduction and quicker access.


4.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR (Section 4.5).

FIGURE 4-5: PIC16C70/71 REGISTER FILE MAP

FIGURE 4-6: PIC16C71A REGISTER FILE MAP

FIGURE 4-7: PIC16C72 REGISTER FILE MAP

	MAP		
File Address	3		File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	
03h	STATUS	STATUS	
04h	FSR	FSR	
05h	PORTA	TRISA	
06h	PORTB	TRISB	
07h	PORTC	TRISC	
08h			88h
09h			89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh	TMR1L	PCON	8Eh
0Fh	TMR1H		8Fh
10h	T1CON		90h
11h	TMR2		91h
12h	T2CON	PR2	92h
13h	SSPBUF	SSPADD	93h
14h	SSPCON	SSPSTAT	94h
15h	CCPR1L		95h
16h	CCPR1H		96h
17h	CCP1CON		97h
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dh			9Dh
1Eh	ADRES		9Eh
1Fh	ADCON0	ADCON1	9Fh
20h	General Purpose Register	General Purpose Register	A0h
	0		BFh
			C0h
I			
7Fh	Bank 0	Bank 1	🔟 FFh
	Inimplemented de	to momony loost	one read
	Unimplemented da as '0'.		Jiis, iedu
	Not a physical regis	ster.	

FIGURE 4-8: PIC16C73/73A/74/74A **REGISTER FILE MAP**

	REGISTE	REGISTER FILE MAP										
File Addres	SS		File Address									
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h									
01h	TMR0	OPTION	81h									
02h	PCL	PCL	82h									
03h	STATUS	STATUS	83h									
04h	FSR	FSR	84h									
05h	PORTA	TRISA	85h									
06h	PORTB	TRISB	86h									
07h	PORTC	TRISC	87h									
08h	PORTD ⁽²⁾	TRISD ⁽²⁾	88h									
09h	PORTE ⁽²⁾	TRISE ⁽²⁾	89h									
0Ah	PCLATH	PCLATH	8Ah									
0Bh	INTCON	INTCON	8Bh									
0Ch	PIR1	PIE1	8Ch									
0Dh	PIR2	PIE2	8Dh									
0Eh	TMR1L	PCON	8Eh									
0Fh	TMR1H		8Fh									
10h	T1CON		90h									
11h	TMR2		91h									
12h	T2CON	PR2	92h									
13h	SSPBUF	SSPADD	93h									
14h	SSPCON	SSPSTAT	94h									
15h	CCPR1L		95h									
16h	CCPR1H		96h									
17h	CCP1CON		97h									
18h	RCSTA	TXSTA	98h									
19h	TXREG	SPBRG	99h									
1Ah	RCREG		9Ah									
1Bh	CCPR2L		9Bh									
1Ch	CCPR2H		9Ch									
1Dh	CCP2CON		9Dh									
1Eh	ADRES		9Eh									
1Fh	ADCON0	ADCON1	9Fh									
20h			A0h									
	General	General										
	Purpose Register	Purpose Register										
7Fh			FFh									
,,,,,	Bank 0	Bank 1										
	Dalik U	Dalik I										
Unimplemented data memory locations, read												
	as '0'.	tor										
	Not a physical regis These registers are		nple-									
	mented on the PIC											

Value on all other resets (1)

0000 0000 uuuu uuuu 0000 0000 000q quuu uuuu uuuu uuuu uuuu

00-0 0000 uuuu uuuu ---0 0000

0000 000u

0000 0000

1111 1111

0000 0000

000q quuu

uuuu uuuu

---1 1111

1111 1111

---- --00

uuuu uuuu

---0 0000

0000 000u

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. The special function registers can be classified into two sets (core and peripheral). Those registers associated with the "core" functions are described in this section, and those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	
Bank 0											
00h ⁽³⁾	0h ⁽³⁾ INDF Addressing this location uses contents of FSR to address data memory (not a physical register)										
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	
02h ⁽³⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	
03h ⁽³⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	с	0001 1xxx	
04h ⁽³⁾	FSR	Indirect data	a memory ad	dress pointe	r					xxxx xxxx	
05h	PORTA	_	_	_	PORTA Dat	a Latch whe	n written: PO	RTA pins wh	ien read	x xxxx	
06h	PORTB	PORTB Dat	a Latch whe	n written: PC	ORTB pins wl	nen read				XXXX XXXX	
07h	—	Unimpleme	nted							_	
08h	ADCON0	ADCS1	ADCS0	(6)	CHS1	CHS0	GO/DONE	ADIF	ADON	00-0 0000	
09h ⁽³⁾	ADRES	A/D Result	A/D Result Register								
0Ah ^(2,3)	PCLATH	_	— — Write Buffer for the upper 5 bits of the Program Counter								

INTE

T0SE

TO

Addressing this location uses contents of FSR to address data memory (not a physical register)

RBIF

PSA

PD

PORTA Data Direction Register

TOIF

PS2

Ζ

Write Buffer for the upper 5 bits of the Program Counter

INTE

PS1

DC

POR

PCFG1

RBIF

PS0

С

BOR

PCFG0

0000 000x

0000 0000

1111 1111

0000 0000

0001 1xxx

XXXX XXXX

---1 1111

1111 1111

---- --dd

---- --00

XXXX XXXX

---0 0000

0000 000x

TABLE 4-1: PIC16C70/71/71A SPECIAL FUNCTION REGISTER SUMMARY

 $8Bh^{(3)}$ INTCONGIEADIETOIEINTERBIETOIFINTFRBIFLegend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'.Shaded locations are unimplemented, read as '0'.

Note 1: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: These registers can be addressed from either bank.

4: The PCON register is not physically implemented in the PIC16C71, read as '0'.

5: The IRP and RP1 bits are reserved on the PIC16C7X, always maintain these bits clear.

6: Bit5 of ADCON0 is a General Purpose R/W bit for the PIC16C71 only. For the PIC16C70/71A, this bit is unimplemented, read as '0'.

0Bh⁽³⁾

Bank 1 80h⁽³⁾

81h

82h⁽³⁾

83h⁽³⁾

84h⁽³⁾

85h

86h

88h

89h⁽³⁾

8Ah^(2,3)

87h⁽⁴⁾

INTCON

INDF

PCL

FSR

TRISA

TRISB

PCON

ADCON1

ADRES

PCLATH

OPTION

STATUS

GIF

RBPU

IRP⁽⁵⁾

A/D Result Register

ADIF

INTEDG

RP1⁽⁵⁾

Indirect data memory address pointer

PORTB Data Direction Control Register

Program Counter's (PC) Least Significant Byte

TOIF

TOCS

RP0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets (3)	
Bank 0							•					
00h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000	
01h	TMR0	Timer0 mod	dule's register		xxxx xxxx	uuuu uuuu						
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000	
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	z	DC	с	0001 1xxx	000q quuu	
04h ⁽¹⁾	FSR	Indirect dat	a memory ad	dress pointe	r					xxxx xxxx	uuuu uuuu	
05h	PORTA	_	_	PORTA Dat	a Latch whe	n written: PO	RTA pins wh	en read		xx xxxx	uu uuuu	
06h	PORTB	PORTB Da	ta Latch whe	n written: PC	ORTB pins wl	nen read				xxxx xxxx	uuuu uuuu	
07h	PORTC	PORTC Da	ta Latch whe	n written: PC	ORTC pins w	hen read				xxxx xxxx	uuuu uuuu	
08h	_	Unimpleme	nted							—	—	
09h	_	Unimpleme	nted							—	—	
0Ah (1,2)	PCLATH	_	_	_	Write Buffer	for the uppe	er 5 bits of th	e Program C	ounter	0 0000	0 0000	
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u	
0Ch	PIR1	—	ADIF	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000	
0Dh	_	Unimpleme	nted							—	—	
0Eh	TMR1L	Holding reg	ister for the L	east Signific	ant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu	
0Fh	TMR1H	Holding reg	ister for the N	Aost Signific	ant Byte of th	ne 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu	
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu	
11h	TMR2	Timer2 mod	dule's register	r						0000 0000	0000 0000	
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000	
13h	SSPBUF	Synchronou	us Serial Port	Receive Bu	ffer/Transmit	Register				xxxx xxxx	uuuu uuuu	
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000	
15h	CCPR1L	Capture/Co	mpare/PWM	Register (LS	SB)					xxxx xxxx	uuuu uuuu	
16h	CCPR1H	Capture/Co	mpare/PWM	Register (M	SB)					xxxx xxxx	uuuu uuuu	
17h	CCP1CON	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000	
18h	_	Unimpleme	nted							—	—	
19h	_	Unimpleme	nted							_	_	
1Ah	_	Unimpleme	nted		_	_						
1Bh	_	Unimpleme	nted		_	_						
1Ch	_	Unimpleme	Unimplemented									
1Dh	_	Unimpleme	Unimplemented —									
1Eh	ADRES	A/D Result	Register							xxxx xxxx	uuuu uuuu	
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0	

TABLE 4-2: PIC16C72 SPECIAL FUNCTION REGISTER SUMMARY

 $\label{eq:logarder} \begin{array}{ll} \mbox{Legend:} & x = \mbox{unknown}, \mbox{u} = \mbox{unknown}, \mbox{q} = \mbox{value depends on condition, $-$ = unimplemented read as '0'.} \\ & \mbox{Shaded locations are unimplemented, read as '0'.} \end{array}$

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

TABLE	4-2:	PIC16C7	2 SPEC	IAL FUN	CTION F	REGISTE	R SUMM	IARY (C	ont.'d)		
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets (3)
Bank 1					1	1				1	
80h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address dat	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)		0000 0000	0000 0000					
83h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	С	0001 1xxx	000q quuu					
84h ⁽¹⁾	FSR	Indirect dat	a memory ac	dress pointe	er					XXXX XXXX	uuuu uuuu
85h	TRISA	—	_	PORTA Dat	ta Direction F	Register				11 1111	11 1111
86h	TRISB	PORTB Da	ta Direction I	Register						1111 1111	1111 1111
87h	TRISC	PORTC Da	ta Direction	Register						1111 1111	1111 1111
88h	_	Unimpleme	ented							_	_
89h	_	Unimpleme	ented							_	_
8Ah ^(1,2)	PCLATH	_	_	_	Write Buffe	r for the uppe	er 5 bits of th	e PC		0 0000	0 0000
8Bh (1)	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	_	ADIE	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
8Dh	_	Unimpleme	nted							_	_
8Eh	PCON	—	_	_	_	-	—	POR	BOR	dd	uu
8Fh	—	Unimpleme	ented							—	—
90h	—	Unimpleme	ented							—	—
91h	_	Unimpleme	ented							_	—
92h	PR2	Timer2 Per	iod Register							1111 1111	1111 1111
93h	SSPADD	Synchrono	us Serial Por	t (I ² C mode)	Address Re	gister				0000 0000	0000 0000
94h	SSPSTAT	—	_	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000
95h	—	Unimpleme	ented							—	—
96h	_	Unimpleme	ented							—	—
97h	_	Unimpleme	ented							—	—
98h	—	Unimpleme	ented							—	—
99h	—	Unimpleme	ented		—	—					
9Ah	—	Unimpleme	ented		_	—					
9Bh	—	Unimpleme	ented		—	—					
9Ch	_	Unimpleme	ented		_	—					
9Dh	—	Unimpleme	ented							—	—
9Eh	—	Unimpleme	ented		—	—					
9Fh	ADCON1	—	_	_	_	—	PCFG2	PCFG1	PCFG0	000	000

 TABLE 4-2:
 PIC16C72 SPECIAL FUNCTION REGISTER SUMMARY (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets (2)
Bank 0											<u></u>
00h ⁽⁴⁾	INDF	Addressing	this location	uses conten	ts of FSR to a	ddress data r	nemory (not	a physical re	egister)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe		xxxx xxxx	uuuu uuuu					
02h ⁽⁴⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h ⁽⁴⁾	STATUS	IRP ⁽⁷⁾	RP1 ⁽⁷⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h (4)	FSR	Indirect data	a memory ad	dress pointe	r					xxxx xxxx	uuuu uuuu
05h	PORTA	—	—	PORTA Dat	a Latch when	written: POR	TA pins wher	n read		xx xxxx	uu uuuu
06h	PORTB	PORTB Dat	ta Latch whe	n written: PC	ORTB pins whe	n read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Da	ta Latch whe	n written: PC	ORTC pins whe	en read				xxxx xxxx	uuuu uuuu
08h ⁽⁵⁾	PORTD	PORTD Da	ta Latch whe	n written: PC	ORTD pins whe	en read				xxxx xxxx	uuuu uuuu
09h (5)	PORTE	—	_	_	_	_	RE2	RE1	RE0	xxx	uuu
0Ah (1,4)	PCLATH	—	_	_	Write Buffer fo	or the upper	5 bits of the I	Program Cou	Inter	0 0000	0 0000
0Bh ⁽⁴⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	—	—	—	-	—	—	—	CCP2IF	0	0
0Eh	TMR1L	Holding reg	ister for the L	east Signific	ant Byte of the	e 16-bit TMR	1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the M	Nost Signific	ant Byte of the	16-bit TMR1	register			xxxx xxxx	uuuu uuuu
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	is Serial Port	Receive Bu	ffer/Transmit R	legister				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	Register1 (L	SB)			•		xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	Register1 (N	MSB)					xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tra	nsmit Data R	egister						0000 0000	0000 0000
1Ah	RCREG	USART Red	ceive Data R	egister						0000 0000	0000 0000
1Bh	CCPR2L	Capture/Compare/PWM Register2 (LSB)								xxxx xxxx	uuuu uuuu
1Ch	CCPR2H	Capture/Compare/PWM Register2 (MSB)								xxxx xxxx	uuuu uuuu
1Dh	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
1Eh	ADRES	A/D Result	Register		xxxx xxxx	uuuu uuuu					
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0

TABLE 4-3: PIC16C73/73A/74/74A SPECIAL FUNCTION REGISTER SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.

4: These registers can be addressed from either bank.

5: PORTD and PORTE are not physically implemented on the PIC16C73/73A, read as '0'.

6: Brown-out Reset is not implemented on the PIC16C73 or the PIC16C74, read as '0'.

4-3:	PIC16C7	3/73A/74	/74A SP	ECIAL FU	NCTION	REGIST	ER SUN	IMARY	(Cont.'d)		
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets (2)	
				1		1				1	
INDF	Addressing	this location	uses conter	nts of FSR to ac	dress data i	memory (not	a physical re	egister)	0000 0000	0000 0000	
OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111	
PCL	Program Co	Program Counter's (PC) Least Significant Byte									
STATUS	IRP ⁽⁷⁾	RP1 ⁽⁷⁾	С	0001 1xxx	000q quuu						
FSR	Indirect data	a memory ac	dress pointe	er					XXXX XXXX	uuuu uuuu	
TRISA	—	—	PORTA Dat	ta Direction Re	gister				11 1111	11 1111	
TRISB	PORTB Dat	a Direction I	Register						1111 1111	1111 1111	
TRISC	PORTC Dat	ta Direction I	Register						1111 1111	1111 1111	
TRISD	PORTD Dat	ta Direction I	Register						1111 1111	1111 1111	
TRISE	IBF	OBF	IBOV	PSPMODE	—	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111	
PCLATH	_	—	—	Write Buffer fo	or the upper	5 bits of the I	Program Cou	unter	0 0000	0 0000	
INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u	
PIE1	PSPIE ⁽³⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000	
PIE2	_	—	—	_	_	_	_	CCP2IE	0	0	
PCON	_	_	_	_	_	_	POR	BOR ⁽⁶⁾	dd	uu	
_	Unimpleme	nted							_	—	
—	Unimpleme	nted							_	_	
_	Unimpleme	nted							_	_	
PR2	Timer2 Peri	od Register							1111 1111	1111 1111	
SSPADD	Synchronou	is Serial Por	t (I ² C mode)	Address Regis	ter				0000 0000	0000 0000	
SSPSTAT	—	—	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000	
_	Unimpleme	nted							_	_	
_	Unimpleme	nted							_	_	
_	Unimpleme	nted							_	_	
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010	
SPBRG	Baud Rate	Generator R	egister						0000 0000	0000 0000	
—	Unimpleme	nted		—	—						
—	Unimpleme	Unimplemented									
—	Unimpleme	nted		_	_						
—	Unimpleme	nted							_	_	
—	Unimpleme	nted		_	—						
ADCON1	_	_	_	_	_	PCFG2	PCFG1	PCFG0	000	000	
	Name INDF OPTION PCL STATUS FSR TRISA TRISA TRISC TRISC TRISC TRISC PCLATH INTCON PIE1 PIE2 PCON C PR2 SSPADD SSPSTAT C SSPADD SSPSTAT T TXSTA SPBRG C C C C C C C C C C C C C C C C C C C	NameBit 7INDFAddressingOPTIONRBPUPCLProgram CoSTATUSIRP(7)FSRIndirect dataTRISA—TRISCPORTB DataTRISCPORTC DataTRISCPORTC DataTRISCIBFPCLATH—INTCONGIEPIE1PSPIE ⁽³⁾ PIE2—PCON—CUnimplemeMinel PR2Timer2 PeriSSPADDSynchronouSSPSTAT—Minipleme—Unimpleme—Unimpleme—ITXSTACSRCSPBRGBaud RateMinipleme—Unimpleme—Unimpleme—ITXSTACSRCSPBRGBaud RateI—I—I—I—I—IInimplemeIII<	NameBit 7Bit 6INDFAddressingtrist locationOPTIONRBPUINTEDGPCLProgram Curter's (PC)STATUSIRP(7)RP1(7)FSRIndirect data memory adTRISA——TRISAPORTB Data Direction ITRISCPORTC Data Direction ITRISCPORTC Data Direction ITRISCPORTC Data Direction ITRISCPORTD Data Direction ITRISCPORTD Data Direction ITRISCPORTD Data Direction ITRISCIBFOBFOBFPCLATH—PIE1PSPIE(3)ADIEPIE2PCON——UnimplementedPCON——UnimplementedPR2Timer2 Perior RegisterSSPADDSynchronous Serial PorSSPSTAT——Unimplemented— <td< td=""><td>NameBit 7Bit 6Bit 5INDFAddressing Histocation Uses conterOPTIONRBPUINTEDGTOCSPCLProgram Conter's (PC) Least SigniSTATUSIRP(7)RP1(7)RP0FSRIndirect data memory address pointerTRISA——PORTA DataTRISBPORTB Data Direction RegisterTRISCPORTD Data Direction RegisterTRISDPORTD Data Direction RegisterTOIETRISEIBFOBFIBOVPCLATH——INTCONGIEPEIETOIEPIE1PSPIE⁽³⁾ADIERCIEPIE2———PCON———PCON———PCON———PR2Timer2 Periot RegisterTOIEPR2Timer2 Periot RegisterD/ĀMinplemented—D/Ā—Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——</td></td<> <td>NameBit 7Bit 6Bit 5Bit 4INDFAddressing this location uses contents of FSR to an OPTIONRBFUINTEDGTOCSTOSEPCLProgram Cutter's (PC) Least Significant ByteSTATUSIRP(7)RP1(7)RP0TOFSRIndirect data memory address pointerTOFSRIndirect data memory address pointerPORTA Data Direction RegisterTRISA——PORTA Data Direction RegisterTRISBPORTD Data Direction RegisterTRISCPORTD Data Direction RegisterTRISCPORTD Data Direction RegisterIBFOBFIBOVPSPMODEPORTD Data Direction RegisterINTEINTETRISEIBFOBFIBOVPSPMODEPCLATH———Write Buffer forINTCONGIEPEIETOIEINTEPIE1PSPIE⁽³⁾ADIERCIETXIEPIE2————PCON————MimplementedUnimplemented———UnimplementedUnimplemented—PR2Timer2 Periol RegisterSSPADDSynchronusSSPADDSynchronusSerial Port (I²C mode) Address RegistisSSPATI———D/Ā—Unimplemented—IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td> <td>NameBit 7Bit 6Bit 5Bit 4Bit 3INDFAddressing this location uses contents of FSR to address data 1OPTIONRBPUINTEDGTOCSTOSEPSAPCLProgram Counter's (PC) Least Significant ByteFSRIndirect data memory address pointerFSRIndirect data memory address pointerTOPDFSRIndirect data memory address pointerFSRIndirect data memory address pointerFSRTRISA——PORTA Data Direction RegisterFSRTRISBPORTD Data Direction RegisterTRISCPORTD Data Direction RegisterFSRTRISCPORTD Data Direction RegisterFSRIBFOBFIBOVPSPMODEPCLATH———Write Buffer for the upperINTCONGIEPEIETOIEINTERBIEPIE1PSPIE⁽³⁾ADIERCIETXIESSPIEPIE2—————PCON—————PCON—————PCON—————PR2Timer2 Period RegisterSSPIESSPIESSPIEPR2Timer2 Period RegisterSYNC——SSPSTAT——D/ÄPSMinplemented—Unimplemented———UnimplementedSYNC——PSPRGBaud Rate Generator RegisterTXENSYNC—<</td> <td>NameBit 7Bit 6Bit 5Bit 4Bit 3Bit 2INDFAddressing this locationTOCSTOSEPSAPS2OPTIONRBPUINTEDGTOCSTOSEPSAPS2PCLProgram Counter's (PC) Least Significant ByteTSAPS2STATUSIRP⁽⁷⁾RP1⁽⁷⁾RP0TOPDZFSRIndirect data memory address pointerTTISA——PORTA Data Direction RegisterTRISA——PORTA Data Direction RegisterTRISETRISEPORTD Data Direction RegisterTRISEPORTD Data Direction RegisterTRISE2PCLATH———Write Buffer for the upper 5 bits of theINTCONGIEPEIETOIEINTERBIETOIFPIE1PSPIE⁽³⁾ADIERCIETXIESSPIECCP1IEPIE2——————PCON——————PCON——————PCON——————PR2Timer2 Period RegisterSSPIECCP1IEFSSPADDSynchronous Serial Port (I²C mode) Address RegisterSR/WSSPSTAT——D/ĀPSR/W—Unimplemented</td> <td>Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 INDF Addressing this location uses contents of FSR to address data memory (not a physical re OPTION RBPU INTEDG TOCS TOSE PSA PS2 PS1 PCL Program Counter's (PC) Least Significant Byte TO PD Z DC FSR Indirect data memory address pointer TTO PD Z DC FSR Indirect data memory address pointer TRISE PORTD Data Direction Register TRISE TRISE PORTD Data Direction Register TRISE IBF OBF IBOV PSPMODE TRISE 1 TRISE 1 PCLATH — — Write Buffer for the upper 5 bits of the Program Countrol INTE RBIE TOIF INTE PIE1 PSPIE(¹⁰) ADIE RCIE TTIF ITT ITT PIE1 PSPIE(¹⁰) ADIE RCIE TOIF ITTT PIE2 — — — — —</td> <td>Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 INDF Addressing this location uses contents of FSR to address data memory (not a physical register) OPTION RBPU INTEDG TOCS TOSE PSA PS2 PS1 PS0 PCL Program Counter's (PC) Least Significant Byte STATUS IRM⁷⁰ RP10 RP0 TO PD Z DC C FSR Indirect data memory address pointer TTS PO Z DC C FSR Indirect data memory address pointer TRISA — PORTA Data Direction Register TRISE PORTD Data Direction Register TRISE PORTD Data Direction Register TRISE TRISE IBF OBF IBOV PSPMODE </td> <td>Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value or POR INDF Addressing this location uses contents of FSR to address data memory (not a physical register) 0000 0000 OPTION RBF0 INTEOG TOSE PSA PS2 PS1 PS0 1111 1111 PCL Program Counter's (PC) Least Significant Byte 0000 0000 0000 0000 0000 0000 STATUS IRPf⁰⁷ RP1⁰ RP1⁰ RP0 TO PD Z DC 0 0000 0000 STATUS IRPf⁰⁷ RP1⁰ RP1⁰ RP1⁰ RP1⁰ RP0 TO PD Z DC 0 0000 0000 STATUS Indirect data memory address pointer 11 1111 TRISA - - -111111 TRISA RBF OBD PORTD Data Direction Register 1111 1111 TRISE TRISE1 TRISE1 TRISE1 TRISE1 TRISE1 O000 0000 </td>	NameBit 7Bit 6Bit 5INDFAddressing Histocation Uses conterOPTIONRBPUINTEDGTOCSPCLProgram Conter's (PC) Least SigniSTATUSIRP(7)RP1(7)RP0FSRIndirect data memory address pointerTRISA——PORTA DataTRISBPORTB Data Direction RegisterTRISCPORTD Data Direction RegisterTRISDPORTD Data Direction RegisterTOIETRISEIBFOBFIBOVPCLATH——INTCONGIEPEIETOIEPIE1PSPIE ⁽³⁾ ADIERCIEPIE2———PCON———PCON———PCON———PR2Timer2 Periot RegisterTOIEPR2Timer2 Periot RegisterD/ĀMinplemented—D/Ā—Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——	NameBit 7Bit 6Bit 5Bit 4INDFAddressing this location uses contents of FSR to an OPTIONRBFUINTEDGTOCSTOSEPCLProgram Cutter's (PC) Least Significant ByteSTATUSIRP(7)RP1(7)RP0TOFSRIndirect data memory address pointerTOFSRIndirect data memory address pointerPORTA Data Direction RegisterTRISA——PORTA Data Direction RegisterTRISBPORTD Data Direction RegisterTRISCPORTD Data Direction RegisterTRISCPORTD Data Direction RegisterIBFOBFIBOVPSPMODEPORTD Data Direction RegisterINTEINTETRISEIBFOBFIBOVPSPMODEPCLATH———Write Buffer forINTCONGIEPEIETOIEINTEPIE1PSPIE ⁽³⁾ ADIERCIETXIEPIE2————PCON————MimplementedUnimplemented———UnimplementedUnimplemented—PR2Timer2 Periol RegisterSSPADDSynchronusSSPADDSynchronusSerial Port (I ² C mode) Address RegistisSSPATI———D/Ā—Unimplemented—IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	NameBit 7Bit 6Bit 5Bit 4Bit 3INDFAddressing this location uses contents of FSR to address data 1OPTIONRBPUINTEDGTOCSTOSEPSAPCLProgram Counter's (PC) Least Significant ByteFSRIndirect data memory address pointerFSRIndirect data memory address pointerTOPDFSRIndirect data memory address pointerFSRIndirect data memory address pointerFSRTRISA——PORTA Data Direction RegisterFSRTRISBPORTD Data Direction RegisterTRISCPORTD Data Direction RegisterFSRTRISCPORTD Data Direction RegisterFSRIBFOBFIBOVPSPMODEPCLATH———Write Buffer for the upperINTCONGIEPEIETOIEINTERBIEPIE1PSPIE ⁽³⁾ ADIERCIETXIESSPIEPIE2—————PCON—————PCON—————PCON—————PR2Timer2 Period RegisterSSPIESSPIESSPIEPR2Timer2 Period RegisterSYNC——SSPSTAT——D/ÄPSMinplemented—Unimplemented———UnimplementedSYNC——PSPRGBaud Rate Generator RegisterTXENSYNC—<	NameBit 7Bit 6Bit 5Bit 4Bit 3Bit 2INDFAddressing this locationTOCSTOSEPSAPS2OPTIONRBPUINTEDGTOCSTOSEPSAPS2PCLProgram Counter's (PC) Least Significant ByteTSAPS2STATUSIRP ⁽⁷⁾ RP1 ⁽⁷⁾ RP0TOPDZFSRIndirect data memory address pointerTTISA——PORTA Data Direction RegisterTRISA——PORTA Data Direction RegisterTRISETRISEPORTD Data Direction RegisterTRISEPORTD Data Direction RegisterTRISE2PCLATH———Write Buffer for the upper 5 bits of theINTCONGIEPEIETOIEINTERBIETOIFPIE1PSPIE ⁽³⁾ ADIERCIETXIESSPIECCP1IEPIE2——————PCON——————PCON——————PCON——————PR2Timer2 Period RegisterSSPIECCP1IEFSSPADDSynchronous Serial Port (I ² C mode) Address RegisterSR/WSSPSTAT——D/ĀPSR/W—Unimplemented	Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 INDF Addressing this location uses contents of FSR to address data memory (not a physical re OPTION RBPU INTEDG TOCS TOSE PSA PS2 PS1 PCL Program Counter's (PC) Least Significant Byte TO PD Z DC FSR Indirect data memory address pointer TTO PD Z DC FSR Indirect data memory address pointer TRISE PORTD Data Direction Register TRISE TRISE PORTD Data Direction Register TRISE IBF OBF IBOV PSPMODE TRISE 1 TRISE 1 PCLATH — — Write Buffer for the upper 5 bits of the Program Countrol INTE RBIE TOIF INTE PIE1 PSPIE(¹⁰) ADIE RCIE TTIF ITT ITT PIE1 PSPIE(¹⁰) ADIE RCIE TOIF ITTT PIE2 — — — — —	Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 INDF Addressing this location uses contents of FSR to address data memory (not a physical register) OPTION RBPU INTEDG TOCS TOSE PSA PS2 PS1 PS0 PCL Program Counter's (PC) Least Significant Byte STATUS IRM ⁷⁰ RP10 RP0 TO PD Z DC C FSR Indirect data memory address pointer TTS PO Z DC C FSR Indirect data memory address pointer TRISA — PORTA Data Direction Register TRISE PORTD Data Direction Register TRISE PORTD Data Direction Register TRISE TRISE IBF OBF IBOV PSPMODE	Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value or POR INDF Addressing this location uses contents of FSR to address data memory (not a physical register) 0000 0000 OPTION RBF0 INTEOG TOSE PSA PS2 PS1 PS0 1111 1111 PCL Program Counter's (PC) Least Significant Byte 0000 0000 0000 0000 0000 0000 STATUS IRPf ⁰⁷ RP1 ⁰ RP1 ⁰ RP0 TO PD Z DC 0 0000 0000 STATUS IRPf ⁰⁷ RP1 ⁰ RP1 ⁰ RP1 ⁰ RP1 ⁰ RP0 TO PD Z DC 0 0000 0000 STATUS Indirect data memory address pointer 11 1111 TRISA - - -111111 TRISA RBF OBD PORTD Data Direction Register 1111 1111 TRISE TRISE1 TRISE1 TRISE1 TRISE1 TRISE1 O000 0000	

TABLE 4-3: PIC16C73/73A/74/74A SPECIAL FUNCTION REGISTER SUMMARY (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.

4: These registers can be addressed from either bank.

5: PORTD and PORTE are not physically implemented on the PIC16C73/73A, read as '0'.

6: Brown-out Reset is not implemented on the PIC16C73 or the PIC16C74, read as '0'.

4.2.2.1 STATUS REGISTER Applicable Devices

70 71 71A 72 73 73A 74 74A

The STATUS register, shown in Figure 4-9, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the \overline{TO} and \overline{PD} bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- Note 1: Bits IRP and RP1 (STATUS<7:6>) are not used by the PIC16C7X and should be maintained clear. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
- Note 2: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x	
IRP	RP1	RP0	TO	PD	Z	DC	С	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
oit 7:	1 = Bank 0 = Bank	2, 3 (100h - 0, 1 (00h -	· 1FFh) FFh)		ndirect addr K, always m	-	s bit clear.	
bit 6-5:	11 = Bank 10 = Bank 01 = Bank 00 = Bank	< 3 (180h - < 2 (100h - < 1 (80h - F < 0 (00h - 7)	1FFh) 17Fh) Fh) Fh)		ed for direct		-	s maintain this bit clear.
oit 4:				struction, c	or SLEEP ins	truction		
bit 3:	1 = After p	er-down bit bower-up or ecution of th						
bit 2:		esult of an a			peration is z			
bit 1:	1 = A carr	y-out from t	he 4th lov	w order bit	, SUBLW , SU of the resu bit of the res	It occurred		orrow the polarity is reversed)
bit 0:	1 = A carr 0 = No ca Note: For	y-out from t rry-out from borrow the perand. For	he most s the mos polarity is	significant t significar s reversed		sult occurr result occu	ed rred uted by add	ling the two's complement of the either the high or low order bit o

FIGURE 4-9: STATUS REGISTER (ADDRESS 03h, 83h)

To achieve a 1:1 prescaler assignment for

the TMR0 register, assign the prescaler to the Watchdog Timer by setting bit PSA

(OPTION<3>).

4.2.2.2 OPTION REGISTER Applicable Devices 70|71|71A|72|73|73A|74|74A

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the External INT Interrupt, TMR0, and the weak pull-ups on PORTB.

FIGURE 4-10: OPTION REGISTER (ADDRESS 81h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	R = Readable bit
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	RBPU : PC 1 = PORTI 0 = PORTI	B pull-ups	s are disat	oled	ividual port	latch valu	es	
bit 6:	INTEDG: I 1 = Interru 0 = Interru	pt on risir	ng edge of	RB0/INT				
bit 5:	TOCS : TM 1 = Transit 0 = Interna	tion on R/	A4/T0CKI	pin	OUT)			
bit 4:		ent on hi	gh-to-low	transition	on RA4/T0 on RA4/T0			
bit 3:	PSA : Pres 1 = Presca 0 = Presca	aler is ass	signed to t	he WDT	module			
bit 2-0:	PS2:PS0:	Prescale	r Rate Sel	ect bits				
	Bit Value	TMR0 R	ate WD	r Rate				
	000 001 010 011 100 101 110 111	1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 12 1 : 25	2 1: 4 1: 28 1:	2 4				

Note:

DS30390B-page 31

4.2.2.3 INTCON REGISTER

Applicable Devices

The INTCON Register is a readable and writable register which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/Int Pin interrupts. **Note:** Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

FIGURE 4-11: INTCON REGISTER FOR PIC16C70/71/71A (ADDRESS 0Bh, 8Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x					
GIE	ADIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	R = Readable bit				
bit7							bit0	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset 				
bit 7:	GIE: Global Interrupt Enable bit ⁽¹⁾ 1 = Enables all un-masked interrupts 0 = Disables all interrupts											
bit 6:	ADIE: A/D Converter Interrupt Enable bit 1 = Enables A/D interrupt 0 = Disables A/D interrupt											
bit 5:	TOIE : TMI 1 = Enabl 0 = Disab	es the TM	IR0 interru	pt	bit							
bit 4:		es the RB	ernal Inter 0/INT exte 30/INT ext	ernal interi	upt							
bit 3:	1 = Enabl	es the RB	nge Interro port chan 3 port char	ge interru	pt							
bit 2:	TOIF : TMI 1 = TMRC 0 = TMRC) register h	nas overflo	wed (mus	t be cleare	d in softwa	are)					
bit 1:	INTF : RB 1 = The R 0 = The R	B0/INT ex	cternal inte	errupt occu	urred (must	be cleare	d in softwaı	re)				
bit 0:	RBIF : RB Port Change Interrupt Flag bit 1 = When at least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state											
Note 1:	 For the PIC16C71 only, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may be unin- tentionally re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 14.5 for a detailed description. 											

							<u> </u>		· · ·		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x				
GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	R	= Readable bit		
bit7							bitO	U	 Writable bit Unimplemented bit, read as '0' Value at POR reset 		
bit 7:	1 = Enabl	oal Interrup les all un-r les all inte	masked in								
bit 6:	1 = Enabl	ripheral Int les all un-r les all peri	masked pe	eripheral ir	nterrupts						
bit 5:	T0IE : TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt										
bit 4:	INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt										
bit 3:	RBIE : RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt										
bit 2:	T0IF : TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow										
bit 1:	1 = The R	RB0/INT ex	kternal inte	rrupt Flag k errupt occi errupt did i	urred (must	be cleared	d in software	e)			
bit 0:	RBIF : RB Port Change Interrupt Flag bit 1 = When at least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state										
Note 1:	bit may be	e unintenti	ionally re-		y the RETFI				bit is being cleared, the GIE Interrupt Service Routine.		

FIGURE 4-12: INTCON REGISTER FOR PIC16C72/73/73A/74/74A (ADDRESS 0Bh, 8Bh)

4.2.2.4 PIE1 REGISTER

Applicable Devices

70 71 71A 72 73 73A 74 74A

This register contains the individual enable bits for the Peripheral interrupts.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

FIGURE 4-13: PIE1 REGISTER PIC16C72 (ADDRESS 8Ch)

U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
 bit7	ADIE	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset				
bit 7:	Unimplen	nented: R	ead as '0'									
bit 6:	ADIE: A/D Converter Interrupt Enable bit 1 = Enables the A/D converter interrupt 0 = Disables the A/D converter interrupt											
bit 5-4:	Unimplemented: Read as '0'											
bit 3:	SSPIE : Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt											
bit 2:	CCP1IE : CCP1 Interrupt Enable bit 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt											
bit 1:	TMR2IE : TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt											
bit 0:	TMR1IE: ⁻ 1 = Enable 0 = Disabl	es the TM	R1 overflo	w interrup	ot							

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit					
bit7		•					bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset					
bit 7:	1 = Enabl	es the PS	P read/wr	Read/Writ ite interrup rite interrup		Enable bit							
bit 6:	ADIE: A/D Converter Interrupt Enable bit 1 = Enables the A/D converter interrupt 0 = Disables the A/D converter interrupt												
bit 5:	RCIE : USART Receive Interrupt Enable bit 1 = Enables the USART receive interrupt 0 = Disables the USART receive interrupt												
bit 4:	TXIE : USART Transmit Interrupt Enable bit 1 = Enables the USART transmit interrupt 0 = Disables the USART transmit interrupt												
bit 3:	SSPIE : Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt												
bit 2:	CCP1IE : CCP1 Interrupt Enable bit 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt												
bit 1:	TMR2IE : TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt												
bit 0:	1 = Enabl	es the TM	R1 overfl	errupt Enal ow interrup low interru	ot								
Note 1:					not have a maintain th			nplemented, this bit location is					

FIGURE 4-14: PIE1 REGISTER PIC16C73/73A/74/74A (ADDRESS 8Ch)

4.2.2.5 PIR1 REGISTER

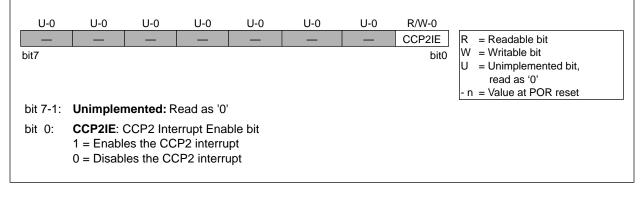
Applicable Devices
70 71 71A 72 73 73A 74 74A

This register contains the individual flag bits for the Peripheral interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 4-15: PIR1 REGISTER PIC16C72 (ADDRESS 0Ch)

U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0						
	ADIF	_	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	R = Readable bit					
bit7							bitO	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset 					
bit 7:	Unimplen	n ented: R	ead as '0'										
bit 6:	ADIF: A/D Converter Interrupt Flag bit 1 = An A/D conversion completed 0 = The A/D conversion is not complete												
bit 5-4:	Unimplemented: Read as '0'												
bit 3:	SSPIF : Synchronous Serial Port Interrupt Flag bit 1 = The transmission/reception is complete 0 = Waiting to transmit/receive												
bit 2:	CCP1IF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare Mode 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode Unused in this mode												
bit 1:	TMR2IF : TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred												
bit 0:	TMR1IF : TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflowed (must be cleared in software) 0 = TMR1 register did not overflow												

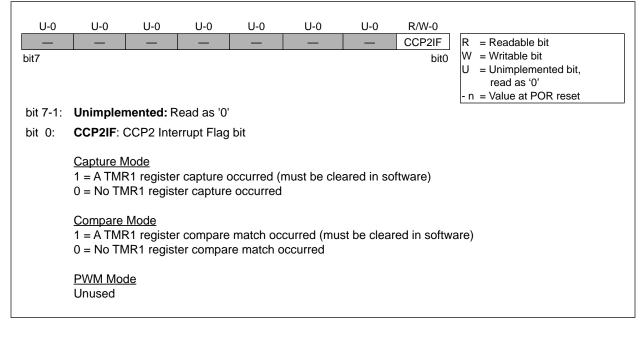

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
PSPIF ⁽¹⁾ bit7	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF bit0	 R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset
bit 7:	1 = A rea		e operatio	n has take	e Interrupt n place (m		ared in softw	vare)
bit 6:	1 = An A/	D Converte D convers VD conver	on compl	eted				
bit 5:	1 = The L	SART Rece JSART rec JSART rec	eive buffe	r is full				
bit 4:	1 = The L	ART Trans JSART trai JSART trai	nsmit buff	er is empt				
bit 3:	1 = The t	ynchronou ransmissic ng to trans	n/receptio	on is comp	pt Flag bit lete			
bit 2:	$\frac{\text{Capture I}}{1 = A \text{ TM}}$ $0 = \text{No TI}$ $\frac{\text{Compare}}{1 = A \text{ TM}}$ $0 = \text{No TI}$ $\frac{\text{PWM Mo}}{1 = A \text{ TM}}$	R1 registe MR1 regist <u>Mode</u> R1 registe MR1 regist	r capture o er capture r compare er compa	occurred (e occurred	curred (mu		ftware) red in softwa	are)
bit 1:	1 = TMR2	TMR2 to F 2 to PR2 m MR2 to PR	hatch occu	irred (mus	Flag bit t be cleare	d in softwa	are)	
bit 0:	$1 = TMR^{2}$	TMR1 Ove 1 register o 1 register o	verflowed	l (must be	bit cleared in	software)		
Note 1:					not have a maintain th			nplemented, this bit location is

4.2.2.6 PIE2 REGISTER

Applicable Devices
70 71 71A 72 73 73A 74 74A

This register contains the individual enable bit for the CCP2 peripheral interrupt.

FIGURE 4-17: PIE2 REGISTER (ADDRESS 8Dh)

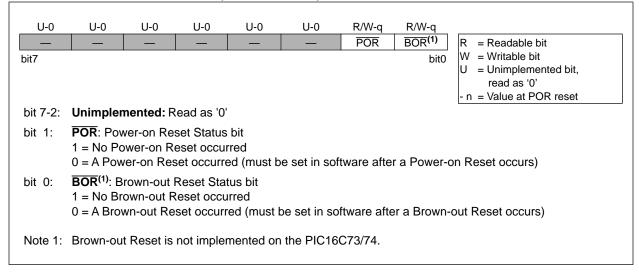


4.2.2.7 PIR2 REGISTER
Applicable Devices
70 71 71A 72 73 73A 74 74A

This register contains the CCP2 interrupt flag bit.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

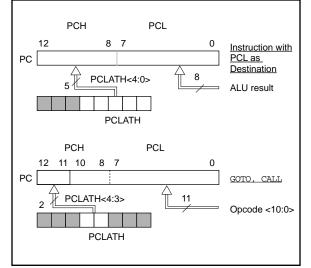
FIGURE 4-18: PIR2 REGISTER (ADDRESS 0Dh)



4.2.2.8 PCON REGISTER

Applicable Devices
70 71 71A 72 73 73A 74 74A

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external MCLR Reset or WDT Reset. It also contains a status bit to determine if a Brown-out Reset (BOR) occurred. Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).


FIGURE 4-19: PCON REGISTER (ADDRESS 8Eh)

4.3 <u>PCL and PCLATH</u> Applicable Devices 70|71|71A|72|73|73A|74|74A

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any reset, the PC is cleared. Figure 4-20 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 4-20: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note *"Implementing a Table Read"* (AN556).

4.3.2 STACK

The PIC16CXX family has an 8 level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- **Note 1:** There are no status bits to indicate stack overflow or stack underflow conditions.
- Note 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt address.
- 4.4 Program Memory Paging Applicable Devices 70|71|71A|72|73|73A|74|74A

The PIC16C73/73A and the PIC16C74/74A have 4K of program memory, but the CALL and GOTO instructions only have a 11-bit address range. This 11-bit address range allows a branch within a 2K program memory page size. To allow CALL and GOTO instructions to address the entire 4K program memory address range, there must be another bit to specify the program memory page. This paging bit comes from the PCLATH<3> bit (Figure 4-20). When doing a CALL or GOTO instruction, the user must ensure that this page bit (PCLATH<3>) is programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is PUSHed onto the stack. Therefore, manipulation of the PCLATH<3> is not required for the return instructions (which POPs the address from the stack).

Note 1: The PIC16C70/71/71A/72 ignore both paging bits (PCLATH<4:3>, which are used to access program memory when more than one page is available. The use of PCLATH<4:3> as general purpose read/write bits for the PIC16C7X is not recommended since this may affect upward compatibility with future products.

> The PIC16C73/73A/74/74A ignores paging bit (PCLATH<4>), which is used to access program memory pages 2 and 3 (1000h - 1FFFh). The use of PCLATH<4> as a general purpose read/write bit is not recommended since this may affect upward compatibility with future products.

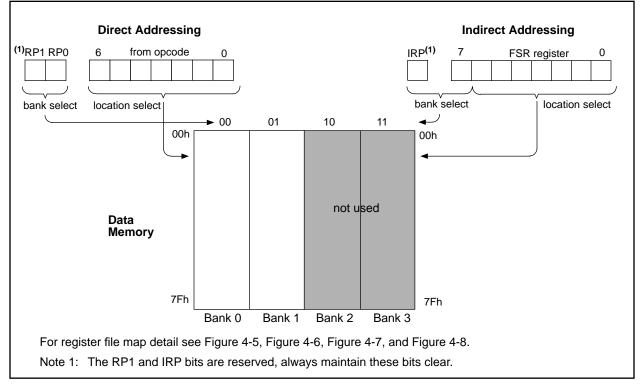
Example 4-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the interrupt service routine (if interrupts are used).

EXAMPLE 4-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

ORG UX	500	
BSF	PCLATH,3	;Select page 1 (800h-FFFh)
CALL	SUB1_P1	;Call subroutine in
	:	;page 1 (800h-FFFh)
	:	
	:	
ORG 0x	:900	
SUB1 F	1:	;called subroutine
	:	;page 1 (800h-FFFh)
	:	
RETURN	I	<pre>;return to Call subroutine ;in page 0 (000h-7FFh)</pre>

4.5 Indirect Addressing, INDF and FSR Registers Applicable Devices 70 71 71A 72 73 73A 74 74A

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.


Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-21. However, IRP is not used in the PIC16C7X.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-2.

EXAMPLE 4-2: INDIRECT ADDRESSING

er

FIGURE 4-21: DIRECT/INDIRECT ADDRESSING

5.0 I/O PORTS Applicable Devices 70|71|71A|72|73|73A|74|74A

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 <u>PORTA and TRISA Registers</u> Applicable Devices

70 71 71A 72 73 73A 74 74A

PORTA is a 5-bit latch for PIC16C70/71/71A. PORTA is a 6-bit latch for PIC16C72/73/73A/74/74A.

The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as output or input.

Setting a TRISA register bit puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISA register puts the contents of the output latch on the selected pin(s).

Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations.

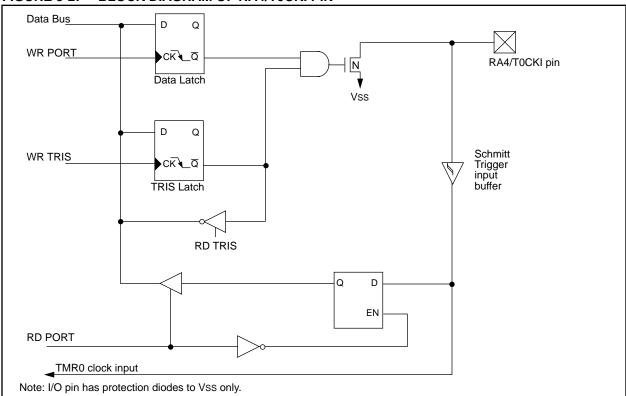
Therefore a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

Note:	On a Power-on Reset, these pins are con-
	figured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.


EXAMPLE 5-1: INITIALIZING PORTA

CLRF	PORTA	;	Initialize PORTA by
		;	setting output
		;	data latches
BSF	STATUS, RPO	;	Select Bank 1
MOVLW	0xCF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISA	;	Set RA<3:0> as inputs
		;	RA<5:4> as outputs
		;	TRISA<7:6> are always
		;	read as '0'.

Data bus D Q V<u>dd</u> WR PORT ск∖_д P Data Latch I/O pin D Q IN WR TRIS CK $\overline{\mathsf{Q}}$ Vss Analog **TRIS Latch** input mode TTL input buffer RD TRIS Q D EN RD PORT To A/D Converter Note: I/O pin has protection diodes to VDD and Vss. The PIC16C70/71/71/A devices do not have a pin RA5.

FIGURE 5-1: BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS

TABLE 5-1: PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input
RA1/AN1	bit1	TTL	Input/output or analog input
RA2/AN2	bit2	TTL	Input/output or analog input
RA3/AN3/VREF	bit3	TTL	Input/output or analog input/VREF
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0 Output is open drain type
RA5/AN4/ SS (1)	bit5	TTL	Input/output, slave select input for synchronous serial port, or analog input

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: The PIC16C70/71/71A does not have PORTA<5> or TRISA<5>, read as '0'.

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
05h	PORTA	—		RA5 ⁽¹⁾	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
85h	TRISA	_	_	TRISA5 ⁽¹⁾	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
9Fh	ADCON1		_	_	_		PCFG2 ⁽²⁾	PCFG1	PCFG0	000	000

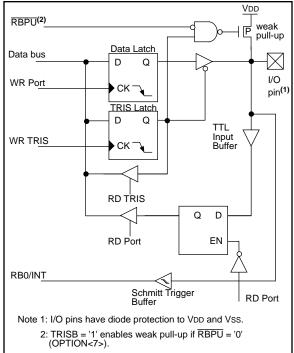
Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note 1: PORTA<5> and TRISA<5> are not implemented on the PIC16C70/71/71A.

2: Bit PCFG2 is not implemented on the PIC16C70/71/71A.

5.2 PORTB and TRISB Registers

Applicable Devices


PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a bit in the TRISB register puts the corresponding output driver in a hi-impedance input mode. Clearing a bit in the TRISB register puts the contents of the output latch on the selected pin(s).

EXAMPLE 5-2: INITIALIZING PORTB

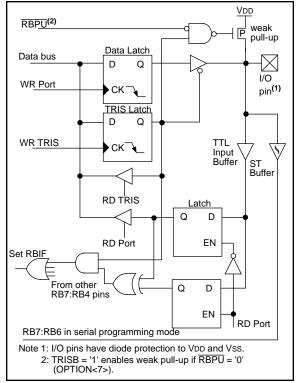
CLRF	PORTB	;	Initialize PORTB by
		;	setting output
		;	data latches
BSF	STATUS, RPO	;	Select Bank 1
MOVLW	0xCF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISB	;	Set RB<3:0> as inputs
		;	RB<5:4> as outputs
		;	RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is done by clearing bit $\overline{\text{RBPU}}$ (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.


A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a key pad and make it possible for wake-up on key-depression. Refer to the Embedded Control Handbook, *"Implementing Wake-Up on Key Stroke"* (AN552).

Note:	For the PIC16C71/73/74 only,
	if a change on the I/O pin should occur
	when the read operation is being executed
	(start of the Q2 cycle), then interrupt flag
	bit RBIF may not get set.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

FIGURE 5-4: BLOCK DIAGRAM OF RB7:RB4 PINS

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

TABLE 5-3:PORTB FUNCTIONS

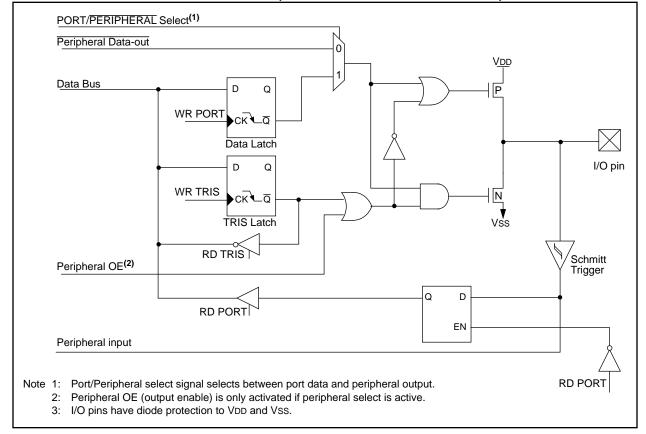
Legend: TTL = TTL input, ST = Schmitt Trigger

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

TABLE 5-4: SUMMARY OF REGISTERS ASSOCIATED WITH

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111


Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

5.3 PORTC and TRISC Registers Applicable Devices 70 71 71A 72 73 73A 74 74A

PORTC is an 8-bit bi-directional port. Each pin is individually configurable as an input or output through the TRISC register. PORTC is multiplexed with several peripheral functions (Table 5-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The TRIS bit override is in effect only while the peripheral is enabled. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

CLRF	PORTC	; Initialize PORTC by
		; setting output
		; data latches
BSF	STATUS, RPO	; Select Bank 1
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISC	; Set RC<3:0> as inputs
		; RC<5:4> as outputs
		; RC<7:6> as inputs

FIGURE 5-5: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

TABLE 5-5:PORTC FUNCTIONS

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output/Timer1 clock input
RC1/T1OSI/CCP2 ⁽¹⁾	bit1	ST	Input/output port pin, Timer1 oscillator input, Capture2 input/Compare2 output/PWM2 output
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output
RC3/SCK/SCL	bit3	ST	RC3/SCK/SCL can also be selected as the synchronous serial clock for both SPI and I ² C modes.
RC4/SDI/SDA	bit4	ST	RC4/SDI/SDA can also be selected as the SPI Data In (SPI mode) or data I/O (I^2C mode).
RC5/SDO	bit5	ST	Input/output port pin or Synchronous Serial Port data output
RC6/TX/CK ⁽²⁾	bit6	ST	Input/output port pin, USART Asynchronous Transmit, or USART Synchronous Clock
RC7/RX/DT ⁽²⁾	bit7	ST	Input/output port pin USART Asynchronous Receive, or USART Syn- chronous Data

Legend: ST = Schmitt Trigger Input

Note 1: The CCP2 multiplexed function is not enabled on the PIC16C72.

2: The TX/CK and RX/DT multiplexed functions are not enabled on the PIC16C72.

TABLE 5-6:SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
87h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged.

PORTD can be configured as an 8-bit wide microprocessor port (or parallel slave port) by setting control bit

PSPMODE (TRISE<4>). In this mode, the input buffers

5.4 PORTD and TRISD Registers

Applicable Devices 70 71 71A 72 73 73A 74 74A

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

PORTD BLOCK DIAGRAM (IN I/O PORT MODE) Data Bus D Q I/O pin WR PORT ск∙∟а Data Latch D Q Schmitt WR TRIS Trigger ∙ск **∖**_д TRIS Latch buffer **RD TRIS** Q D ΕN **RD PORT** Note: I/O pins has protection diodes to VDD and Vss.

are TTL.

FIGURE 5-6:

TABLE 5-7: PORTD FUNCTIONS

Name	Bit#	Buffer Type	Function
RD0/PSP0	bit0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit0
RD1/PSP1	bit1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit1
RD2/PSP2	bit2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit2
RD3/PSP3	bit3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit3
RD4/PSP4	bit4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit4
RD5/PSP5	bit5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit5
RD6/PSP6	bit6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit6
RD7/PSP7	bit7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit7

Legend: ST = Schmitt Trigger Input TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffer when in Parallel Slave Port Mode.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	XXXX XXXX	uuuu uuuu
88h	TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	1111 1111
89h	TRISE	IBF	OBF	IBOV	PSPMODE	—	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111

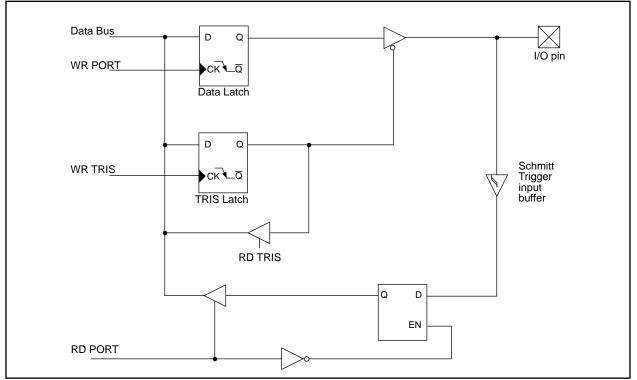
Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTD.

5.5 PORTE and TRISE Register Applicable Devices 70 71 71A 72 73 73A 74 74A

PORTE has three pins RE0/RD/AN5, RE1/WR/AN6 and RE2/CS/AN7, which are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers.

I/O PORTE becomes control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs) and that register ADCON1 is configured for digital I/O. In this mode the input buffers are TTL. Figure 5-7 shows the TRISE register, which also controls the parallel slave port operation.

PORTE pins are multiplexed with analog inputs. The operation of these pins is selected by control bits in the ADCON1 register. When selected as an analog input, these pins will read as '0's.


TRISE controls the direction of the RE pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs.

Note: On a Power-on Reset these pins are configured as analog inputs.

FIGURE 5-7: TRISE REGISTER (ADDRESS 89h)

5.0	D 0	DAMA				5444	D 444 4			
R-0	R-0 OBF	R/W-0 IBOV	R/W-0	U-0	R/W-1 TRISE2	R/W-1 TRISE1	R/W-1 TRISE0	R = Readable bit		
bit7					TRIGEZ		bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset		
bit 7:	1 = A word	has bee	ull Status bit in received a een received	nd waitin	g to be rea	nd by the C	PU			
bit 6:	 OBF: Output Buffer Full Status bit 1 = The output buffer still holds a previously written word 0 = The output buffer has been read 									
bit 5:	IBOV : Input Buffer Overflow Detect bit (in microprocessor mode) 1 = A write occurred when a previously input word has not been read (must be cleared in software) 0 = No overflow occurred									
bit 4:	PSPMODE : Parallel Slave Port Mode Select bit 1 = Parallel slave port mode 0 = General purpose I/O mode									
bit 3:	Unimplem	ented: F	Read as '0'							
bit 2:	TRISE2 : Di 1 = Input 0 = Output	rection	control bit for	pin RE2	/ CS /AN7					
bit 1:	TRISE1 : Di 1 = Input 0 = Output	rection of	control bit for	pin RE1	/WR/AN6					
bit 0:	TRISE0 : Di 1 = Input 0 = Output	rection	control bit for	pin RE0	/RD/AN5					

TABLE 5-9: PORTE FUNCTIONS

Name	Bit#	Buffer Type	Function
RE0/RD/AN5	bit0	ST/TTL ⁽¹⁾	Input/output port pin, Read control input in parallel slave port mode, or analog input: RD 1 = Not a read operation
			0 = Read operation. Reads PORTD register (if chip selected)
RE1/WR/AN6	bit1	ST/TTL ⁽¹⁾	Input/output port pin, Write control input in parallel slave port mode, or analog input: WR 1 = Not a write operation 0 = Write operation. Writes PORTD register (if chip selected)
RE2/CS/AN7	bit2	ST/TTL ⁽¹⁾	Input/output port pin, Chip select control input in parallel slave port mode, or analog input: CS 1 = Device is not selected 0 = Device is selected

Legend: ST = Schmitt Trigger Input TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffer when in Parallel Slave Port Mode.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
09h	PORTE	—		—	—	—	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111
9fh	ADCON1	—	_	—	—	—	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTE.

5.6 <u>I/O Programming Considerations</u> Applicable Devices 70/71/71A/72/73/73A/74/74A

5.6.1 BI-DIRECTIONAL I/O PORTS

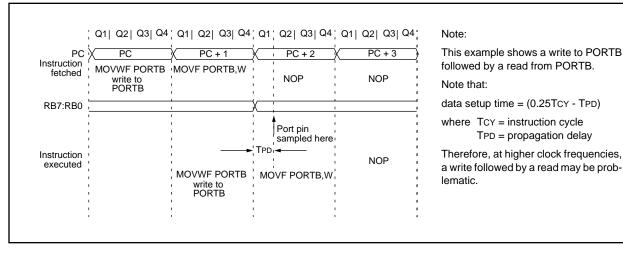
Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched to an output, the content of the data latch may now be unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-4 shows the effect of two sequential readmodify-write instructions on an I/O port.

EXAMPLE 5-4: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT settings: PORTB<7:4> Inputs
; PORTB<3:0> Outputs
;PORTB<7:6> have external pull-ups and are
;not connected to other circuitry


;				
;			PORT latch	PORT pins
;				
BCF	PORTB, 7	;	01pp ppp	11pp ppp
BCF	PORTB, 6	;	10pp ppp	11pp ppp
BSF	STATUS, RPO	;		
BCF	TRISB, 7	;	10pp ppp	11pp ppp
BCF	TRISB, 6	;	10pp ppp	10pp ppp
;				
;Note	that the user	r	nay have exp	ected the
		-		

;pin values to be 00pp ppp. The 2nd BCF ;caused RB7 to be latched as the pin value ;(high).

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

5.6.2 SUCCESSIVE OPERATIONS ON I/O PORTS

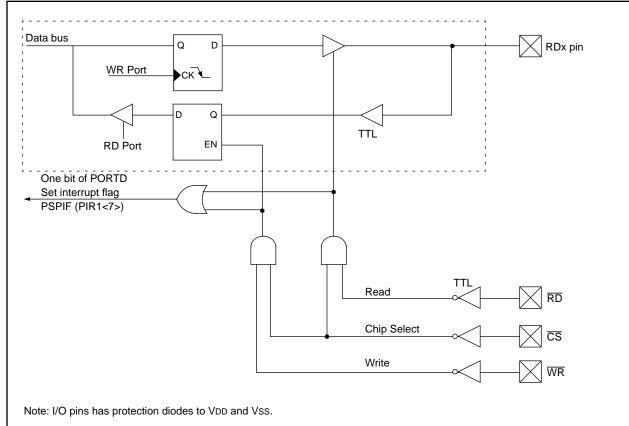
The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-9). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 5-9: SUCCESSIVE I/O OPERATION

5.7 <u>Parallel Slave Port</u> Applicable Devices 70 71 71A 72 73 73A 74 74A

PORTD operates as an 8-bit wide Parallel Slave Port, or microprocessor port when control bit PSPMODE (TRISE<4>) is set. In slave mode it is asynchronously readable and writable by the external world through \overline{RD} control input pin RE0/ \overline{RD} /AN5 and \overline{WR} control input pin RE1/ \overline{WR} /AN6.

It can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting bit PSPMODE enables port pin RE0/ \overline{RD} /AN5 to be the \overline{RD} input, RE1/ \overline{WR} /AN6 to be the \overline{WR} input and RE2/ \overline{CS} /AN7 to be the \overline{CS} (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set) and the A/D port configuration bits PCFG2:PCFG0 (ADCON1<2:0> must be set, which will configure pins RE2:RE0 as digital I/O.


There are actually two 8-bit latches, one for data-out (from the PIC16/17) and one for data input. The user writes 8-bit data to PORTD data latch and reads data from the port pin latch (note that they have the same

address). In this mode, the TRISD register is ignored, since the microprocessor is controlling the direction of data flow.

Input Buffer Full Status Flag bit IBF (TRISE<7>), is set if a received word is waiting to be read by the CPU. Once the PORTD input latch is read, IBF is cleared. IBF is a read only status bit. Output Buffer Full Status Flag bit OBF (TRISE<6>), is set if a word written to PORTD latch is waiting to be read by the external bus. Once the PORTD output latch is read by the microprocessor, OBF is cleared. Input Buffer Overflow Status Flag bit IBOV (TRISE<5>) is set if a second write to the microprocessor port is attempted when the previous word has not been read by the CPU (the first word is retained in the buffer).

When not in Parallel Slave Port mode, the IBF and OBF bits are held clear. However, if flag bit IBOV was previously set, it must be cleared in the software.

An interrupt is generated and latched into flag bit PSPIF (PIR1<7>) when a read or a write operation is completed. Interrupt flag bit PSPIF must be cleared by user software and the interrupt can be disabled by clearing interrupt enable bit PSPIE (PIE1<7>).

FIGURE 5-10: PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE PORT)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
09h	PORTE	_	_	_	_	—	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	—	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111
0Ch	PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
9fh	ADCON1	_	_	_	_	_	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Parallel Slave Port.

NOTES:

6.0 OVERVIEW OF TIMER MODULES

Applicable Devices 70 71 71A 72 73 73A 74 74A

The PIC16C70 and PIC16C71/71A have one timer module.

The PIC16C72, PIC16C73/73A and PIC16C74/74A have three timer modules.

Each module can generate an interrupt to indicate that an event has occurred (i.e. timer overflow). Each of these modules is explained in full detail in the following sections. The timer modules are:

- Timer0 Module (Section 7.0)
- Timer1 Module (Section 8.0)
- Timer2 Module (Section 9.0)

6.1 <u>Timer0 Overview</u> Applicable Devices 70|71|71A|72|73|73A|74|74A

The Timer0 module (previously known as RTCC) is a simple 8-bit overflow counter. The clock source can be either the internal system clock (Fosc/4) or an external clock. When the clock source is an external clock, the Timer0 module can be selected to increment on either the rising or falling edge.

The Timer0 module also has a programmable prescaler option. This prescaler can be assigned to either the Timer0 module or the Watchdog Timer. Bit PSA (OPTION<3>) assigns the prescaler, and bits PS2:PS0 (OPTION<2:0>) determine the prescaler value. Timer0 can increment at the following rates: 1:1 (when prescaler assigned to Watchdog timer), 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, and 1:256 (Timer0 only).

Synchronization of the external clock occurs after the prescaler. When the prescaler is used, the external clock frequency may be higher then the device's frequency. The maximum frequency is 50 MHz, given the high and low time requirements of the clock.

6.2 <u>Timer1 Overview</u> Applicable Devices 70 71 71A 72 73 73A 74 74A

Timer1 is a 16-bit timer/counter. The clock source can be either the internal system clock (Fosc/4), an external clock, or an external crystal. Timer1 can operate as either a timer or a counter. When operating as a counter (external clock source), the counter can either operate synchronized to the device or asynchronously to the device. Asynchronous operation allows Timer1 to operate during sleep, which is useful for applications that require a real-time clock as well as the power savings of SLEEP mode.

Timer1 also has a prescaler option which allows Timer1 to increment at the following rates: 1:1, 1:2, 1:4, and 1:8. Timer1 can be used in conjunction with the Capture/Compare/PWM module. When used with a CCP module, Timer1 is the time-base for 16-bit capture or the 16-bit compare and must be synchronized to the device.

6.3 <u>Timer2 Overview</u> Applicable Devices 70 71 71A 72 73 73A 74 74A

Timer2 is an 8-bit timer with a programmable prescaler and postscaler, as well as an 8-bit period register (PR2). Timer2 can be used with the CCP1 module (in PWM mode) as well as the Baud Rate Generator for the Synchronous Serial Port (SSP). The prescaler option allows Timer2 to increment at the following rates: 1:1, 1:4, 1:16.

The postscaler allows the TMR2 register to match the period register (PR2) a programmable number of times before generating an interrupt. The postscaler can be programmed from 1:1 to 1:16 (inclusive).

6.4 <u>CCP Overview</u>

Applicable Devices 70 71 71A 72 73 73A 74 74A

The CCP module(s) can operate in one of these three modes: 16-bit capture, 16-bit compare, or up to 10-bit Pulse Width Modulation (PWM).

Capture mode captures the 16-bit value of TMR1 into the CCPRxH:CCPRxL register pair. The capture event can be programmed for either the falling edge, rising edge, fourth rising edge, or the sixteenth rising edge of the CCPx pin.

Compare mode compares the TMR1H:TMR1L register pair to the CCPRxH:CCPRxL register pair. When a match occurs an interrupt can be generated, and the output pin CCPx can be forced to given state (High or Low), TMR1 can be reset (CCP1), or Timer1 reset and start A/D conversion (CCP2). This depends on the control bits CCPxM3:CCPxM0.

PWM mode compares the TMR2 register to a 10-bit duty cycle register (CCPRxH:CCPRxL<5:4>) as well as to an 8-bit period register (PR2). When the TMR2 register = Duty Cycle register, the CCPx pin will be forced low. When TMR2 = PR2, TMR2 is cleared to 00h, an interrupt can be generated, and the CCPx pin (if an output) will be forced high.

^{© 1995} Microchip Technology Inc.

NOTES:

7.0 TIMER0 MODULE Applicable Devices 70|71|71A|72|73|73A|74|74A

The Timer0 module timer/counter has the following features:

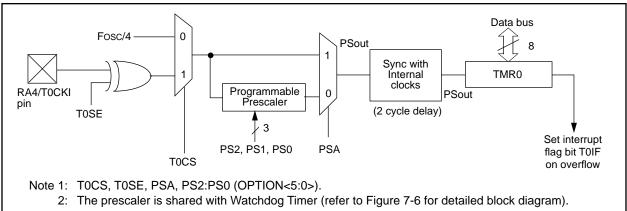
- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 7-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing bit TOCS (OPTION<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit T0CS (OPTION<5>). In counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0

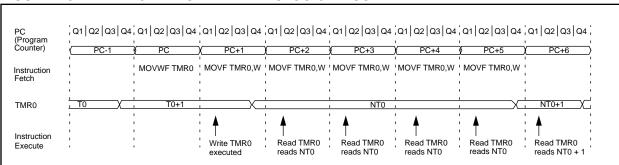
FIGURE 7-1: TIMER0 BLOCK DIAGRAM

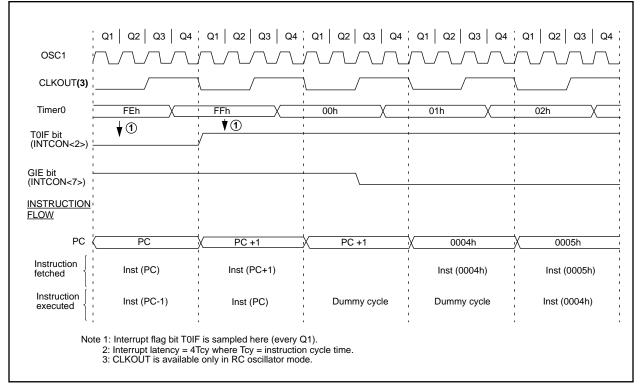

Source Edge Select bit T0SE (OPTION<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 7.2.

The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by the control bit PSA (OPTION<3>). Clearing bit PSA will assign the prescaler to the Timer0 module. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable. Section 7.3 details the operation of the prescaler.

7.1 <u>Timer0 Interrupt</u> Applicable Devices

70 71 71A 72 73 73A 74 74A


The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut off during SLEEP. See Figure 7-4 for Timer0 interrupt timing.


(Program Counter)	(PC-1	PC	PC+1	PC+2	PC+3	PC+4	PC+5	PC+6
Instruction Fetch		MOVWF TMR0	MOVF TMR0,W	MOVF TMR0,W	MOVF TMR0,W	MOVF TMR0,W	MOVF TMR0,W	
TMR0	χ		 Τ0+2χ	, NT0 X	ΝΤΟ <u>Χ</u>	. ΝΤΟ Χ	NT0+1	NT0+2 X
Instruction Executed		- - - - -	Write TMR0	Read TMR0	Read TMR0	Read TMR0	Read TMR0 reads NT0 + 1	Read TMR0

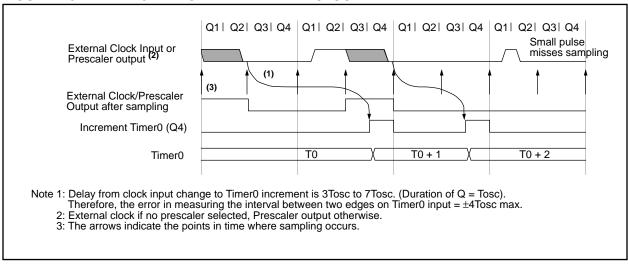
PIC16C7X

FIGURE 7-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2

FIGURE 7-4: TIMER0 INTERRUPT TIMING

7.2 Using Timer0 with an External Clock Applicable Devices

70 71 71A 72 73 73A 74 74A


When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

7.2.1 EXTERNAL CLOCK SYNCHRONIZATION

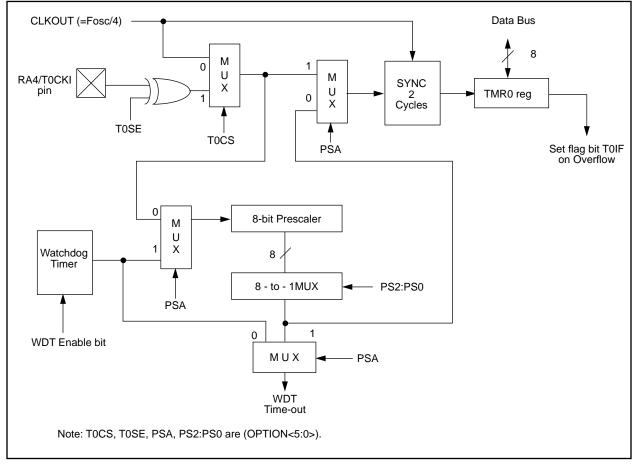
When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 7-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

7.2.2 TMR0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 7-5 shows the delay from the external clock edge to the timer incrementing.

FIGURE 7-5: TIMER0 TIMING WITH EXTERNAL CLOCK

7.3 <u>Prescaler</u> <u>Applicable Devices</u> 70|71|71A|72|73|73A|74|74A


An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 7-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusive between the Timer0 module and the Watchdog Timer. Thus, a pres-

caler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

FIGURE 7-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

7.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control, i.e., it can be changed "on the fly" during program execution.

Note: To avoid an unintended device RESET, the following instruction sequence (shown in Example 7-1) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.

EXAMPLE 7-1: CHANGING PRESCALER (TIMER0 \rightarrow WDT)

BCF	STATUS, RPO	;Bank 0
CLRF	TMR0	;Clear TMR0 & Prescaler
BSF	STATUS, RPO	;Bank 1
CLRWDT		;Clears WDT
MOVLW	b'xxxx1xxx'	;Select new prescale
MOVWF	OPTION	;value & WDT
BCF	STATUS, RPO	;Bank 0

To change prescaler from the WDT to the Timer0 module use the sequence shown in Example 7-2.

EXAMPLE 7-2: CHANGING PRESCALER (WDT \rightarrow TIMER0)

CLRWDT		;Clear WDT and
		;prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	b'xxxx0xxx'	;Select TMR0, new
		;prescale value and
MOVWF	OPTION	;clock source
BCF	STATUS, RPO	;Bank 0

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER0, PIC16C70/71/71A

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
01h	TMR0	Timer0	Fimer0 module's register								uuuu uuuu
0Bh/8Bh	INTCON	GIE	ADIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	—	_	—	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

TABLE 7-2: REGISTERS ASSOCIATED WITH TIMER0, PIC16C72/73/73A/74/74A

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
01h	TMR0	Timer0	Fimer0 module's register								uuuu uuuu
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	—	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

NOTES:

8.0 TIMER1 MODULE

Applicable Devices 70 71 71A 72 73 73A 74 74A

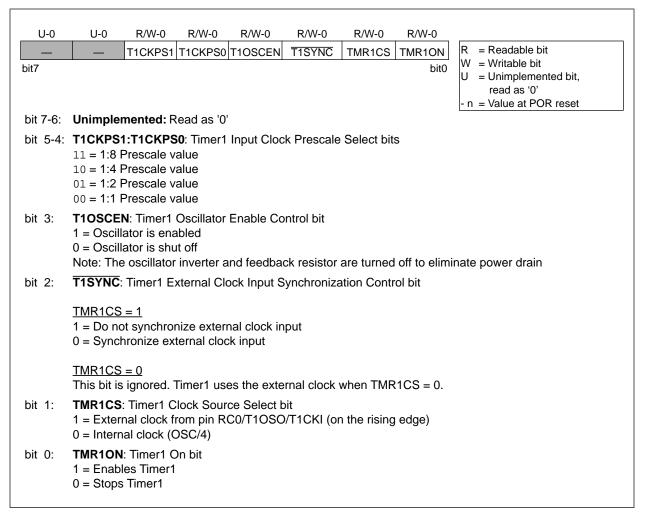
The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L) which are readable and writable. The TMR1 Register pair (TMR1H + TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled or disabled using TMR1 interrupt enable bit TMR1IE (PIE1<0>).

Timer1 can operate in one of two modes:

- As a timer
- As a counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In timer mode, Timer1 increments every instruction cycle. In counter mode, it increments on every rising edge of the external clock input on pin RC0/T1OSO/T1CKI.


Timer1 can be turned on and off using the control bit TMR1ON (T1CON<0>).

Timer1 also has an internal "reset input". This reset can be generated by either of the two CCP modules (Section 10.0). Figure 8-1 shows the Timer1 control register.

For the PIC16C72/73A/74A, when the Timer1 oscillator is enabled (T10SCEN is set), the RC1/T10SI/CCP2 and RC0/T10SO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored.

For the PIC16C73/74, when the Timer1 oscillator is enabled (T1OSCEN is set), RC1/T1OSI/CCP2 pin becomes an input, however the RC0/T1OSO/T1CKI pin will have to be configured as an input by setting the TRISC<0> bit.

FIGURE 8-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

^{© 1995} Microchip Technology Inc.

8.1 <u>Timer1 Operation in Timer Mode</u>

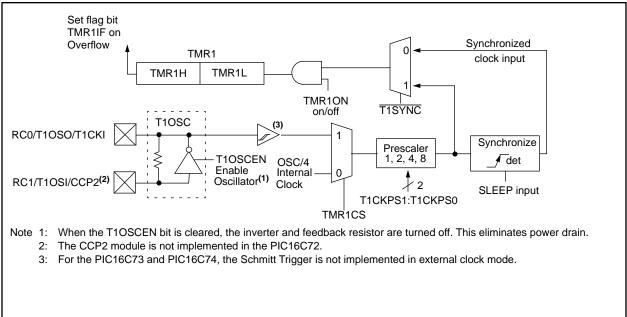
Applicable Devices									
70	71	71A	72	73	73A	74	74A		

Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is OSC/4. The synchronize control bit T1SYNC (T1CON<2>) has no effect since the internal clock is always in sync.

8.2 <u>Timer1 Operation in Synchronized</u> <u>Counter Mode</u> Applicable Devices 70 71 71A 72 73 73A 74 74A

Counter mode is selected by setting bit TMR1CS. In this mode the timer increments on every rising edge of clock input on pin RC1/T1OSI/CCP2 when bit T1OSCEN is set or pin RC0/T1OSO/T1CKI when bit T1OSCEN is cleared.

If T1SYNC is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple-counter.


In this configuration, during SLEEP mode, Timer1 will not increment even if the external clock is present, since the synchronization circuit is shut off. The prescaler however will continue to increment.

8.2.1 EXTERNAL CLOCK INPUT TIMING FOR SYNCHRONIZED COUNTER MODE

When an external clock input is used for Timer1 in synchronized counter mode, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of TMR1 after synchronization.

When the prescaler is 1:1, the external clock input is the same as the prescaler output. The synchronization of T1CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T1CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the appropriate electrical specifications, parameters 45, 46, and 47.

When a prescaler other than 1:1 is used, the external clock input is divided by the asynchronous ripplecounter type prescaler so that the prescaler output is symmetrical. In order for the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for T1CKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on T1CKI high and low time is that they do not violate the minimum pulse width requirements of 10 ns). Refer to the appropriate electrical specifications, parameters 40, 42, 45, 46, and 47.

FIGURE 8-2: TIMER1 BLOCK DIAGRAM

8.3 Timer1 Operation in Asynchronous **Counter Mode** Applicable Devices 70 71 71A 72 73 73A 74 74A

If control bit T1SYNC (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and can generate an interrupt on overflow which will wake-up the processor. However, special precautions in software are needed to read/write the timer (Section 8.3.2).

In asynchronous counter mode, Timer1 can not be used as a time-base for capture or compare operations.

8.3.1 EXTERNAL CLOCK INPUT TIMING WITH UNSYNCHRONIZED CLOCK

If control bit TISYNC is set, the timer will increment completely asynchronously. The input clock must meet a certain minimum high time and low time requirements. Refer to the appropriate Electrical Specifications Section, timing parameters 45, 46, and 47.

READING AND WRITING TIMER1 IN 8.3.2 ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running, from an external asynchronous clock, will guarantee a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself poses certain problems since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Example 8-1 is an example routine to read the 16-bit timer value. This is useful if the timer cannot be stopped.

EXAMPLE 8-1: **READING A 16-BIT FREE-RUNNING TIMER**

```
; All interrupts are disabled
  MOVE
         TMR1H, W ;Read high byte
  MOVWF TMPH
                   ;
  MOVF TMR1L, W ;Read low byte
  MOVWF TMPL
  MOVF
         TMR1H, W ;Read high byte
   SUBWF TMPH, W ;Sub 1st read
                   ; with 2nd read
  BTFSC STATUS,Z ;Is result = 0
        CONTINUE ;Good 16-bit read
  GOTO
; TMR1L may have rolled over between the read
; of the high and low bytes. Reading the high
 and low bytes now will read a good value.
  MOVF
         TMR1H, W ;Read high byte
  MOVWF
         TMPH
         TMR1L, W ;Read low byte
  MOVE
  MOVWF TMPL
                   ;
; Re-enable the Interrupt (if required)
                   ;Continue with your code
CONTINUE
```

;

8.4 **Timer1 Oscillator Applicable Devices** 70 71 71A 72 73 73A 74 74A

A crystal oscillator circuit is built in between T1OSI pin (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 8-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

CAPACITOR SELECTION **TABLE 8-1:** FOR THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2					
LP	32 kHz ⁽¹⁾	15 pF	15 pF					
	100 kHz	15 pF	15 pF					
	200 kHz 0 - 15 pF 0 - 15 pF							
Higher capa	citance increa	ses the stabili	ty of oscilla-					

tor but also increases the start-up time. These values are for design guidance only.

```
Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recom-
         mended.
```

Crystals Tested: 32.768 kHz Epson C-001R32.768K-A ± 20 PPM 100 kHz Epson C-2 100.00 KC-P ± 20 PPM STD XTL 200.000 kHz 200 kHz ± 20 PPM

8.5 <u>Resetting Timer1 using a CCP Trigger</u> <u>Output</u> Applicable Devices

70 71 71A 72 73 73A 74 74A

The CCP2 module is not implemented on the PIC16C72 device.

If the CCP1 or CCP2 module is configured in compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1.

Note: The special event triggers from the CCP1 and CCP2 modules will not set interrupt flag bit TMR1IF (PIR1<0>).

Timer1 must be configured for either timer or synchronized counter mode to take advantage of this feature. If Timer1 is running in asynchronous counter mode, this reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1 or CCP2, the write will take precedence. In this mode of operation, the CCPRxH:CCPRxL registers pair effectively becomes the period register for Timer1.

8.6 Resetting of Timer1 Register Pair (TMR1H, TMR1L) Applicable Devices 70 71 71A 72 73 73A 74 74A

TMR1H and TMR1L registers are not reset on a POR or any other reset except by the CCP1 special event trigger.

T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset. In any other reset, the register is unaffected.

8.7 <u>Timer1 Prescaler</u> Applicable Devices 70 71 71A 72 73 73A 74 74A

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ^(1,2)	ADIF	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ^(1,2)	ADIE	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR21E	TMR1IE	0000 0000	0000 0000
0Eh	TMR1L	Holding reg	jister fo	r the Least S	Significant B	yte of the 16	-bit TMR1	register		XXXX XXXX	uuuu uuuu
0Fh	TMR1H	Holding reg	Holding register for the Most Significant Byte of the 16-bit TMR1 register								uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	00 0000	uu uuuu

TABLE 8-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by theTimer1 module.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.

2: The PIC16C72 does not have a Parallel Slave Port or a USART, these bits are unimplemented, read as '0'.

9.0 TIMER2 MODULE

Applicable Devices 70 71 71A 72 73 73A 74 74A

Timer2 is an 8-bit timer with a prescaler and a postscaler. It can be used as the PWM time-base for PWM mode of the CCP module(s). The TMR2 register is readable and writable, and is cleared on any device reset.

The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16 (selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>).

The Timer2 module has an 8-bit period register PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is set during RESET.

The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF, PIR1<1>).

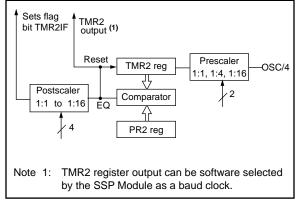
Timer2 can be shut off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

Figure 9-2 shows the Timer2 control register.

9.1 <u>Timer2 Prescaler and Postscaler</u> Applicable Devices

70 71 71A 72 73 73A 74 74A

The prescaler and postscaler counters are cleared when any of the following occurs:


- a write to the TMR2 register
- · a write to the T2CON register
- any device reset (Power-on Reset, MCLR reset, or Watchdog Timer reset)

TMR2 will not clear when T2CON is written, only for a WDT, POR, and $\overline{\text{MCLR}}$ reset.

9.2 Output of TMR2 Applicable Devices 70|71|71A|72|73|73A|74|74A

The output of TMR2 (before the postscaler) is fed to the Synchronous Serial Port module which optionally uses it to generate shift clock.

^{© 1995} Microchip Technology Inc.

FIGURE 9-2: T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)

U-0	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-	-0 R/W-0
_	TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKF	PS1 T2CKPS0 R = Readable bit
bit7 bit 7:	Unimplemented: Read as '0'	bit0 W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 6-3:	TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits 0000 = 1:1 Postscale 0001 = 1:2 Postscale • • 1111 = 1:16 Postscale	
bit 2:	TMR2ON : Timer2 On bit 1 = Timer2 is on 0 = Timer2 is off	
bit 1-0:	T2CKPS1:T2CKPS0 : Timer2 Clock Prescale Select bits 00 = Prescaler is 1 01 = Prescaler is 4 1x = Prescaler is 16	

TABLE 9-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	x000 0000	0000 000u
0Ch	PIR1	PSPIF ^(1,2)	ADIF	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ^(1,2)	ADIE	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR21E	TMR1IE	0000 0000	0000 0000
11h	TMR2	Timer2 mod	ule's register							0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h	PR2	Timer2 Peri	od Register	1111 1111	1111 1111						

 Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer2 module.

 Note
 1:
 Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.

 2:
 The PIC16C72 does not have a Parallel Slave Port or a USART, these bits are unimplemented, read as '0'.

10.0 CAPTURE/COMPARE/PWM MODULE(s)

Ap	plie							
70	71	71A	72	73	73A	74	74A	CCP1
70	71	71A	72	73	73A	74	74A	CCP2

Each CCP (Capture/Compare/PWM) module contains a 16-bit register which can operate as a 16-bit capture register, as a 16-bit compare register or as a PWM output. Both the CCP1 and CCP2 modules are identical in operation, with the exception of the operation of the special event trigger. Table 10-1 and Table 10-2 show the resources and interactions of the CCP module(s). In the following sections, the operation of a CCP module is described with respect to CCP1. CCP2 operates the same as CCP1, except where noted.

CCP1 module:

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). Both are readable and writable.

CCP2 module:

Capture/Compare/PWM Register2 (CCPR2) is made up of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). Both are readable and writable.

For use of the CCP modules, refer to the Embedded Control Handbook, "Using the CCP Modules" (AN594).

TABLE 10-1: CCP MODE - TIMER RESOURCE

CCP Mode	Timer Resource			
Capture	Timer1			
Compare	Timer1			
PWM	Timer2			

TABLE 10-2: INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction				
Capture	Capture	Same TMR1 timebase.				
Capture	Compare	The compare should be configured for the special event trigger, which clears TMR1.				
Compare	Compare	The compare(s) should be configured for the special event trigger, which clears TMR1.				
PWM	PWM	The PWMs will have the same frequency, and update rate (TMR2 interrupt).				
PWM	Capture	None				
PWM	Compare	None				

FIGURE 10-1: CCP1CON REGISTER (ADDRESS 17h)/CCP2CON REGISTER (ADDRESS 1Dh)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0	R = Readable bit		
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset		
bit 7-6:	7-6: Unimplemented: Read as '0'									
bit 5-4:	CCPxX:CCPxY : PWM High Resolution, Low Order Select bits Capture Mode: Unused Compare Mode: Unused PWM Mode: Write the two low order bits in high resolution (10-bit) mode. May be kept constant (at '0') if only 8-bit resolution (in standard resolution mode) is desired.									
bit 3-0:	CCPxM3:CCPxM0: CCPx Mode Select bits 0000 = Capture/compare/PWM off (resets CCPx module) 0100 = Capture mode, every falling edge 0101 = Capture mode, every rising edge 0110 = Capture mode, every 4th rising edge 0111 = Capture mode, every 16th rising edge 1000 = Compare mode, set output on match (CCPxIF bit is set) 1001 = Compare mode, clear output on match (CCPxIF bit is set) 1010 = Compare mode, generate software interrupt on match (CCPxIF bit is set, CCPx pin is unaffected) 1011 = Compare mode, trigger special event (CCPxIF bit is set; CCP1 resets TMR1; CCP2 resets TMR1 and starts an A/D conversion (if A/D module is enabled)) 11xx = PWM mode									

10.1 Capture Mode

Applicable Devices
70 71 71A 72 73 73A 74 74A

In Capture mode, CCPR1H:CCPR1L captures the 16bit value of the TMR1 register when an event occurs on pin RC2/CCP1. An event is defined as:

- A falling edge
- A rising edge
- Every 4th rising edge
- Every 16th rising edge

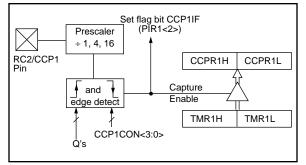
An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be reset in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost. In capture mode, the RC2/CCP1 pin should be configured as an input by setting its corresponding TRIS bit. **Note:** If the RC2/CCP1 is configured as an output, a write to the port can cause a capture condition.

When the capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF following any such change in operating mode.

10.1.1 PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in capture mode, the prescaler counter is cleared. This means that any reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore the first capture may be from a non-zero prescaler. Example 10-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.


EXAMPLE 10-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		; the new prescaler
		; mode value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		; value

10.1.2 CAPTURE MODE SELECTION

Timer1 must be running in timer mode or synchronized counter mode for the CCP module to use the capture feature. In asynchronous counter mode, the capture operation may not work.

FIGURE 10-2: CAPTURE MODE OPERATION BLOCK DIAGRAM

10.2 <u>Compare Mode</u> Applicable Devices 70 71 71A 72 73 73A 74 74A

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- Driven High
- Driven Low
- Remains Unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, a compare interrupt is also generated. The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note:	Clearing the CCP1CON register will force
	the RC2/CCP1 compare output latch to the
	default low level. This is not the data latch.

10.2.1 COMPARE MODE SELECTION

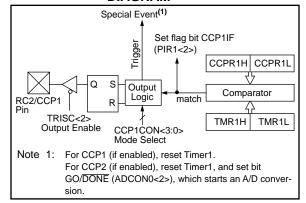
Timer1 must be running in timer mode or synchronized counter mode if the CCP module is using the compare feature. In asynchronous counter mode, the compare operation may not work.

10.2.2 SOFTWARE INTERRUPT MODE

Another compare mode is software interrupt mode in which the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

10.2.3 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated which may be used to initiate an action.


The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

The special trigger output of CCP2 resets the TMR1 register pair, and starts an A/D conversion (if the A/D module is enabled).

For the PIC16C72 only, the special event trigger output of CCP1 resets the TMR1 register pair, and starts an A/D conversion (if the A/D module is enabled).

Note: The special event trigger from the CCP1 and CCP2 modules will not set interrupt flag bit TMR1IF (PIR1<0>).

FIGURE 10-3: COMPARE MODE OPERATION BLOCK DIAGRAM

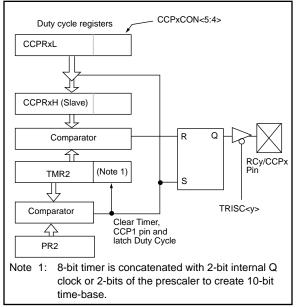
10.3 PWM Mode Applicable Devices 70 71 71A 72 73 73A 74 74A

In Pulse Width Modulation mode (PWM), pin RC2/CCP1 produces up to a 10-bit resolution PWM output. This pin must be configured as an output by clearing the TRISC<2> bit. The pin is multiplexed with the data latch. In PWM mode, the user writes the 8-bit duty cycle value to the low byte of the CCPR1 register, namely CCPR1L. The high-byte, CCPR1H is used as the slave buffer to the low byte. The 8-bit data is transferred from the master to the slave when the PWM1 output is set (i.e. at the beginning of the duty cycle). This double buffering is essential for glitchless PWM output. In PWM mode, CCPR1H is readable but not writable. The period of the PWM is determined by the Timer2 period register (PR2).

PWM period is =

[(PR2) + 1] • 4 Tosc • (TMR2 prescale value)

PWM duty cycle =


(DC1) • Tosc • (TMR2 prescale value)

where DC1 = 10-bit value from CCPRxL and CCPx-CON<5:4> concatenated.

The PWM output resolution is therefore programmable up to a maximum of 10-bits.

Note: Clearing the CCP1CON register will force the RC2/CCP1 PWM output latch to the default low level. This is not the I/O data latch. The Timer2 postscaler is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

FIGURE 10-4: SIMPLIFIED PWM BLOCK DIAGRAM

TABLE 10-3:PWM FREQUENCY vs.RESOLUTION AT 20 MHz

Max. Resolution	Frequency						
(High Resolution Mode)	TMR2 Prescale=1	TMR2 Prescale=4	TMR2 Prescale=16				
10-bit	19.53 kHz	4.88 kHz	1.22 kHz				
9-bit	39.06 kHz	9.77 kHz	2.44 kHz				
8-bit	78.13 kHz	19.53 kHz	4.88 kHz				

TABLE 10-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (16, 4, 1)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Resolution (High-resolution mode)	10-bit	10-bit	10-bit	8-bit	7-bit	5.5-bit
Resolution (Standard-resolution mode) ⁽¹⁾	8-bit	8-bit	8-bit	6-bit	5-bit	3.5-bit

Note 1: Standard resolution mode has the CCPxX:CCPxY bits constant (or '0'), and only compares the TMR2 register value against the PR2 register value. The Q-cycles are not used.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ^(1,2)	ADIF	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh ⁽²⁾	PIR2	—	_	—	—	—	_	—	CCP2IF	0	0
8Ch	PIE1	PSPIE ^(1,2)	ADIE	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh ⁽²⁾	PIE2	—		—	—	—	_	—	CCP2IE	0	0
0Eh	TMR1L	Holding reg	gister fo		XXXX XXXX	uuuu uuuu					
0Fh	TMR1H	Holding reg	gister fo	or the Most	Significant	Byte of the '	16-bit TMR	1register		XXXX XXXX	uuuu uuuu
10h	T1CON	—		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
15h	CCPR1L	Capture/Co	ompare	e/PWM regi	ster1 (LSB)					XXXX XXXX	uuuu uuuu
16h	CCPR1H	Capture/Co	ompare	PWM regi	ster1 (MSB)				xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
1Bh ⁽²⁾	CCPR2L	Capture/Co	mpare	<u>.</u>	xxxx xxxx	uuuu uuuu					
1Ch ⁽²⁾	CCPR2H	Capture/Co	Capture/Compare/PWM register2 (MSB)								uuuu uuuu
1Dh ⁽²⁾	CCP2CON		—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000

TABLE 10-5: **REGISTERS ASSOCIATED WITH CAPTURE AND TIMER1**

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Capture and Timer1. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.

2: The PIC16C72 does not have a Parallel Slave Port, USART or CCP2 module, these bits are unimplemented, read as '0'.

TABLE 10-6: **REGISTERS ASSOCIATED WITH COMPARE AND TIMER1**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ^(1,2)	ADIF	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh ⁽²⁾	PIR2	—		—	—	—	_	—	CCP2IF	0	0
8Ch	PIE1	PSPIE ^(1,2)	ADIE	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh ⁽²⁾	PIE2	_	_	_	_	_	_	_	CCP2IE	0	0
0Eh	TMR1L	Holding reg	gister fo		XXXX XXXX	uuuu uuuu					
0Fh	TMR1H	Holding reg	gister fo	or the Most	Significant	Byte of the	16-bit TMR	1 register		xxxx xxxx	uuuu uuuu
10h	T1CON	—		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
15h	CCPR1L	Capture/Co	ompare	PWM regi	ster1 (LSB)					XXXX XXXX	uuuu uuuu
16h	CCPR1H	Capture/Co	ompare	e/PWM regi	ster1 (MSB)				xxxx xxxx	uuuu uuuu
17h	CCP1CON	_		CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
1Bh ⁽²⁾	CCPR2L	Capture/Co	ompare		XXXX XXXX	uuuu uuuu					
1Ch ⁽²⁾	CCPR2H	Capture/Co	Capture/Compare/PWM register2 (MSB)								uuuu uuuu
1Dh ⁽²⁾	CCP2CON	—		CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Compare and Timer1.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.

2: The PIC16C72 does not have a Parallel Slave Port, USART or CCP2 module, these bits are unimplemented, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ^(1,2)	ADIF	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh ⁽²⁾	PIR2	—	—	—	—	—	—		CCP2IF	0	0
8Ch	PIE1	PSPIE ^(1,2)	ADIE	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh ⁽²⁾	PIE2	—	—	—	_	_	_		CCP2IE	0	0
11h	TMR2	Timer2 mod	dule's registe		0000 0000	0000 0000					
92h	PR2	Timer2 mod	dule's period	register						1111 1111	1111 1111
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
15h	CCPR1L	Capture/Co	mpare/PWN	/I register1 (LSB)					XXXX XXXX	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWN	/I register1 (MSB)					XXXX XXXX	uuuu uuuu
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
1Bh ⁽²⁾	CCPR2L	Capture/Compare/PWM register2 (LSB)									uuuu uuuu
1Ch ⁽²⁾	CCPR2H	Capture/Compare/PWM register2 (MSB)								uuuu uuuu	
1Dh ⁽²⁾	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000

TABLE 10-7: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.

2: The PIC16C72 does not have a Parallel Slave Port, USART or CCP2 module, these bits are unimplemented, read as '0'.

Refer to Application Note AN578, "Use of the SSP Mod-

ule in the PC Multi-Master Environment."

11.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE

Applicable Devices
70 71 71A 72 73 73A 74 74A

The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The SSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0			
	—	D/Ā	Р	S	R/W	UA	BF	R = Readable bit		
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset		
bit 7-6:	Unim	plemente	d: Read a	s '0'						
bit 5:	 5: D/A: Data/Address bit (I²C mode only) 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address 									
bit 4:	1 = In	dicates th	mode only at a stop b s not deteo	it has beer	cleared who detected la	en the SSP st (this bit is	module is d s '0' on RES	isabled, SSPEN is cleared) ET)		
bit 3:	1 = In	 Start bit (I²C mode only. This bit is cleared when the SSP module is disabled, SSPEN is cleared) 1 = Indicates that a start bit has been detected last (this bit is '0' on RESET) 0 = Start bit was not detected last 								
bit 2:	This b	it holds th nission. ead			mode only) n following t	he last add	ress match.	This bit is only valid during the		
bit 1:	$1 = \ln \theta$	dicates th	at the use	oit I ² C moo r needs to d to be upo	update the a	ddress in th	ne SSPADD	register		
bit 0:	BF : B	uffer Full	Status bit							
	<u>Receive</u> (SPI and I ² C modes) 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty									
	1 = Tr	ansmit in		SSPBUF is SPBUF is e						

FIGURE 11-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)

© 1995 Microchip Technology Inc.

FIGURE 11-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	R = Readable bit
bit7							bit0	W = Writable bit
								U = Unimplemented bit,
								read as '0'
								- n =Value at POR reset
bit 7:	WCOL: W							
				ritten while	e it is still ti	ansmitting	the previo	us word
	(must be c		software)					
	0 = No col							
bit 6:	SSPOV: R	eceive Ov	erflow Ind	icator bit				
	In SPI mo	<u>de</u>						
								evious data. In case of overflow
								er must read the SSPBUF, eve
								verflow bit is not set since eac
			ransmissi	on) is initia	ited by wri	ting to the	SSPBUF re	egister.
	0 = No ove	erflow						
	In I ² C mod	<u>de</u>						
								us byte. SSPOV is a "don't care
	in transmit		POV mus	t be cleare	ed in softw	are in eith	er mode.	
	0 = No ove	erflow						
bit 5:	SSPEN: S	ynchronou	is Serial P	ort Enable	e bit			
	In SPI mo	de						
			ort and co	nfiaures Sl	DK. SDO.	and SDI a	s serial por	t pins
	0 = Disabl							•
	In I ² C mod	le						
			al port and	l confiaure	s the SDA	and SCL	pins as seri	ial port pins
	0 = Disabl							• •
								s input or output.
bit 4:	CKP: Cloc	k Polarity	Select bit					
	In SPI mod							
			s on fallin	g edge, re	ceive on ri	sing edge	. Idle state f	for clock is a high level
								for clock is a low level
	In I ² C mod	<u>de</u>						
	SCK relea	se control						
	1 = Enable							
	0 = Holds	clock low (clock stre	tch) (Used	to ensure	data setu	p time)	
bit 3-0:	SSPM3:S	SPM0: Syr	nchronous	Serial Po	rt Mode Se	elect bits		
	0000 = SF	l master m	node, cloc	k = Fosc/4	1			
	0001 = SF							
	0010 = SF							
	0011 = SF							
	0100 = SP							
					. SS pin c	ontrol disa	bled. SS ca	an be used as I/O pin
	$0110 = I^2 C$							
	$0111 = I^2C$				oblad (cl	a idle)		
	$1011 = I^2C$						nterrupts er	ablad
							interrupts er	
	$\pm\pm\pm\pm=1$ C	slave IIIO		audiess M	nui statt al	in aroh pir	interrupts 6	

11.1 <u>SPI Mode</u> Applicable Devices 70|71|71A|72|73|73A|74|74A

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

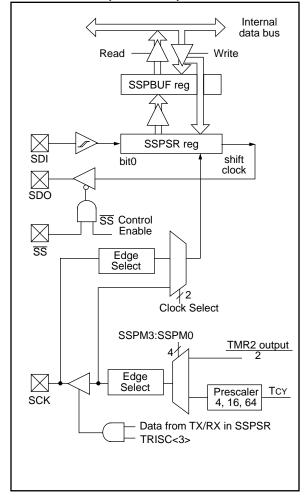
- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI
- Serial Clock (SCK) RC3/SCK

Additionally a fourth pin may be used when in a slave mode of operation:

• Slave Select (SS) RA5/AN4/SS

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>). These control bits allow the following to be specified:

- Master Mode (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Output/Input data on the Rising/Falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select Mode (Slave mode only)


The SSP consists of a transmit/receive Shift Register (SSPSR) and a Buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSB first. The SSPBUF holds the data that was previously written to the SSPSR, until the received data is ready. Once the 8-bits of data have been received, that information is moved to the SSPBUF register. Then the buffer full detect bit BF (SSPSTAT <0>) and interrupt flag bit SSPIF (PIR1<3>) are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was received. Any write to the SSPBUF register during transmission/ reception of data will be ignored, and the write collision detect bit WCOL (SSPCON<7>) will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully. When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. Buffer full bit BF (SSPSTAT<0>) indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, bit BF is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally the SSP Interrupt is used to determine when the transmission/reception has completed. The SSPBUF can then be read (if data is meaningful) and/or the SSPBUF (SSPSR) can be written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 11-1 shows the loading of the SSPBUF (SSPSR) for data transmission. The shaded instruction is only required if the received data is meaningful.

EXAMPLE 11-1: LOADING THE SSPBUF (SSPSR) REGISTER

LOOP	BSF BTFSS	STATUS, SSPSTAT		;Specify Bank 1 ;Has data been ;received ;(transmit ;complete)?
	GOTO	LOOP		;No
	BCF	STATUS,	RP0	;Specify Bank 0
	MOVF	SSPBUF,	W	;W reg = contents ; of SSPBUF
	MOVWF	RXDATA		;Save in user RAM
	MOVF	TXDATA,	W	;W reg = contents ; of TXDATA
	MOVWF	SSPBUF		;New data to xmit

The block diagram of the SSP module, when in SPI mode (Figure 11-3), shows that the SSPSR is not directly readable or writable, and can only be accessed from addressing the SSPBUF register. Additionally, the SSP status register (SSPSTAT) indicates the various status conditions.

FIGURE 11-3: SSP BLOCK DIAGRAM (SPI MODE)

To enable the serial port, SSP enable bit SSPEN (SSP-CON<5>) must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON register, and then set bit SSPEN. This configures the SDI, SDO, SCK, and SS pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRISC register) appropriately programmed. That is:

- SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (Master mode) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set

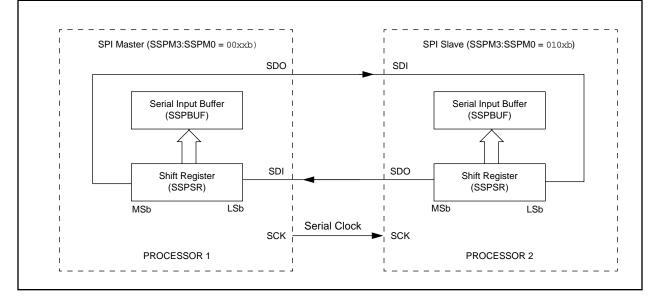
Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value. An example would be in master mode where you are only sending data (to a display driver), then both SDI and \overline{SS} could be used as general purpose outputs by clearing their corresponding TRIS register bits.

Figure 11-4 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge, and latched on the opposite edge of the clock. Both processors should be programmed to same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- Master sends data Slave sends dummy data
- Master sends data Slave sends data
- Master sends dummy data Slave sends data

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2) wishes to broadcast data by the software protocol.

In master mode the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SCK output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "line activity monitor" mode.


In slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched the interrupt flag bit SSPIF (PIR1<3>) is set.

The clock polarity is selected by appropriately programming bit CKP (SSPCON<4>). This then would give waveforms for SPI communication as shown in Figure 11-5 and Figure 11-6 where the MSB is transmitted first. In master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum bit clock frequency (at 20 MHz) of 5 MHz. When in slave mode the external clock must meet the minimum high and low times.

In sleep mode, the slave can transmit and receive data and wake the device from sleep.

The \overline{SS} pin allows a synchronous slave mode. The SPI must be in slave mode (SSPCON<3:0> = 04h) and the TRISA<5> bit must be set the for the synchronous slave mode to be enabled. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte, and becomes a floating output. External pull-up/pull-down resistors may be desirable, depending on the application.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

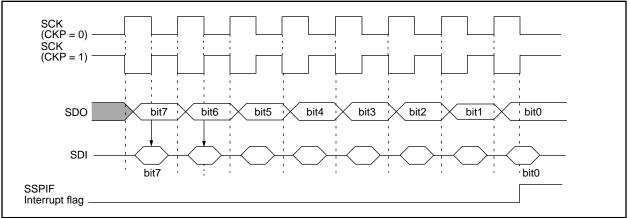
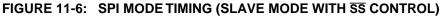
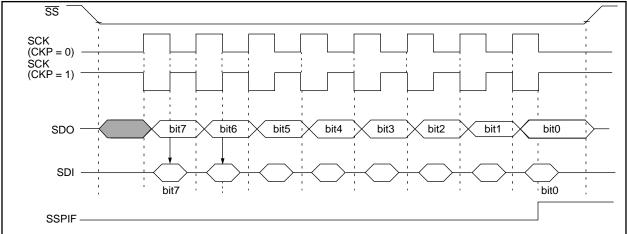




FIGURE 11-5: SPI MODE TIMING (MASTER MODE OR SLAVE MODE W/O SS CONTROL)

TABLE 11-1: REGISTERS ASSOCIATED WITH SPI OPERATION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ^(1,2)	ADIF	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ^(1,2)	ADIE	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
13h	SSPBUF	Synchronou	us Serial F	Port Recei	ive Buffer,	/Transmit	Register			XXXX XXXX	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
85h	TRISA	—	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
94h	SSPSTAT	—		D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the SSP in SPI mode.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.

2: The PIC16C72 does not have a Parallel Slave Port or USART, these bits are unimplemented, read as '0'.

11.2 <u>I²C[™] Overview</u> Applicable Devices 70|71|71A|72|73|73A|74|74A

This section provides an overview of the Inter-Integrated Circuit (I^2C) bus, with Section 11.3 discussing the operation of the SSP module in I^2C mode.

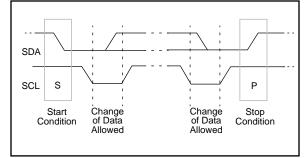
The l^2C bus is a two-wire serial interface developed by the Philips Corporation. The original specification, or standard mode, was for data transfers of up to 100 Kbps. An enhanced specification, or fast mode, supports data transmission up to 400 Kbps. Both standard mode and fast mode devices will inter-operate if attached to the same bus.

The I²C interface employs a comprehensive protocol to ensure reliable transmission and reception of data. When transmitting data, one device is the "master" (generates the clock), while the other device(s) acts as the "slave." All portions of the slave protocol are implemented in the SSP module's hardware, while portions of the master protocol need to be addressed in the PIC16CXX software. Table 11-2 defines some of the I²C bus terminology. For additional information on the I²C interface specification, refer to the Philips document "*The I²C bus and how to use it.*", which can be obtained from the Philips Corporation.

In the I²C interface protocol each device has an address. When a master wishes to initiate a data transfer, it first transmits the address of the device that it wishes to "talk" to. All devices "listen" to see if this is their address. Within this address, a bit specifies if the master wishes to read-from/write-to the slave device. The master and slave are always in opposite modes (transmitter/receiver) of operation during a data transfer. That is they can be thought of operating in either of these two relations:

- Master-transmitter and Slave-receiver
- Slave-transmitter and Master-receiver

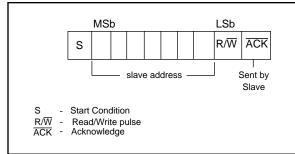
In both cases the master generates the clock signal.


TABLE 11-2: I²C BUS TERMINOLOGY

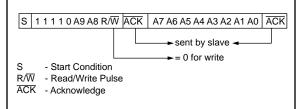
The output stages of the clock (SCL) and data (SDA) lines must have an open-drain or open-collector in order to perform the wired-AND function of the bus. External pull-up resistors are used to ensure a high level when no device is pulling the line down. The number of devices that may be attached to the I^2C bus is limited only by the maximum bus loading specification of 400 pF.

11.2.1 INITIATING AND TERMINATING DATA TRANSFER

During times of no data transfer (idle time), both the clock line (SCL) and the data line (SDA) are pulled high through the external pull-up resistors. The START and STOP conditions determine the start and stop of data transmission. The START condition is defined as a high to low transition of the SDA when the SCL is high. The STOP condition is defined as a low to high transition of the SDA when the SCL is high. The START and STOP conditions. The master generates these conditions for starting and terminating data transfer. Due to the definition of the START and STOP conditions, when data is being transmitted, the SDA line can only change state when the SCL line is low.

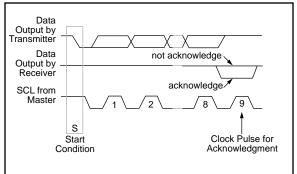

FIGURE 11-7: START AND STOP CONDITIONS

Term	Description
Transmitter	The device that sends the data to the bus.
Receiver	The device that receives the data from the bus.
Master	The device which initiates the transfer, generates the clock and terminates the transfer.
Slave	The device addressed by a master.
Multi-master	More than one master device in a system. These masters can attempt to control the bus at the same time without corrupting the message.
Arbitration	Procedure that ensures that only one of the master devices will control the bus. This ensure that the transfer data does not get corrupted.
Synchronization	Procedure where the clock signals of two or more devices are synchronized.


11.2.2 ADDRESSING I²C DEVICES

There are two address formats. The simplest is the 7-bit address format with a R/\overline{W} bit (Figure 11-8). The more complex is the 10-bit address with a R/\overline{W} bit (Figure 11-9). For 10-bit address format, two bytes must be transmitted with the first five bits specifying this to be a 10-bit address.

FIGURE 11-8: 7-BIT ADDRESS FORMAT


FIGURE 11-9: I²C 10-BIT ADDRESS FORMAT

11.2.3 TRANSFER ACKNOWLEDGE

All data must be transmitted per byte, with no limit to the number of bytes transmitted per data transfer. After each byte, the slave-receiver generates an acknowledge bit (\overline{ACK}) (Figure 11-10). When a slave-receiver doesn't acknowledge the slave address or received data, the master must abort the transfer. The slave must leave SDA high so that the master can generate the STOP condition (Figure 11-7).

FIGURE 11-10: SLAVE-RECEIVER ACKNOWLEDGE

If the master is receiving the data (master-receiver), it generates an acknowledge signal for each received byte of data, except for the last byte. To signal the end of data to the slave-transmitter, the master does not generate an acknowledge (not acknowledge). The slave then releases the SDA line so the master can generate the STOP condition. The master can also generate the STOP condition during the acknowledge pulse for valid termination of data transfer.

If the slave needs to delay the transmission of the next byte, holding the SCL line low will force the master into a wait state. Data transfer continues when the slave releases the SCL line. This allows the slave to move the received data or fetch the data it needs to transfer before allowing the clock to start. This wait state technique can also be implemented at the bit level, Figure 11-11.

FIGURE 11-11: DATA TRANSFER WAIT STATE

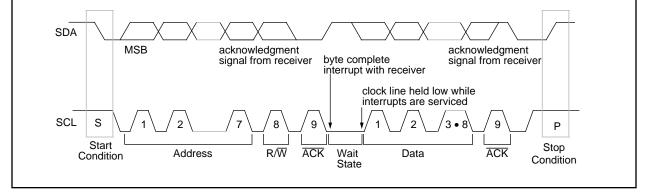
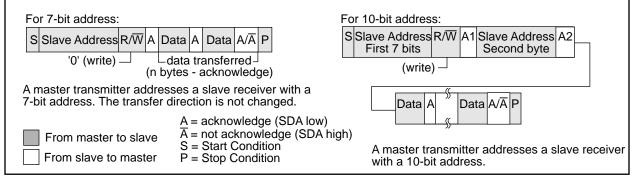
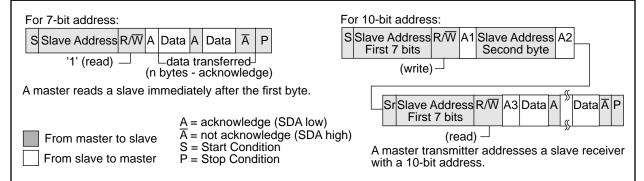



Figure 11-12 and Figure 11-13 show Master-transmitter and Master-receiver data transfer sequences.


When a master does not wish to relinquish the bus (by generating a STOP condition), a repeated START condition (Sr) must be generated. This condition is identical to the start condition (SDA goes high-to-low while

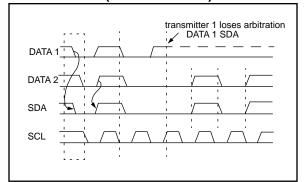
SCL is high), but occurs after a data transfer acknowledge pulse (not the bus-free state). This allows a master to send "commands" to the slave and then receive the requested information or to address a different slave device. This sequence is shown in Figure 11-14.

FIGURE 11-12: MASTER-TRANSMITTER SEQUENCE

FIGURE 11-13: MASTER-RECEIVER SEQUENCE

FIGURE 11-14: COMBINED FORMAT

(read or write)————(n bytes + acknowledge)									
S Slave Address R/W A Data A/A Sr Slave Address R/W A Data A/A P									
(read) Sr = repeated (write) Direction of transfer Start Condition may change at this point									
Transfer direction of data and acknowledgment bits depends on R/\overline{W} bits.									
Combined format:									
Sr Slave Address R/W A Slave Address A Data A Data A Data A Si Data A/A Sr Slave Address R/W A Data A Data A C Data A A C Data A A A Data A A C Data A C DA									
(write) (read)									
Combined format - A master addresses a slave with a 10-bit address, then transmits data to this slave and reads data from this slave.									
A = acknowledge (SDA low) From master to slave From slave to master									


11.2.4 MULTI-MASTER

The I^2C protocol allows a system to have more than one master. This is called multi-master. When two or more masters try to transfer data at the same time, arbitration and synchronization occur.

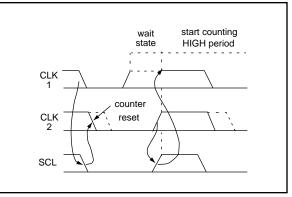
11.2.4.1 ARBITRATION

Arbitration takes place on the SDA line, while the SCL line is high. The master which transmits a high when the other master transmits a low loses arbitration (Figure 11-15), and turns off its data output stage. A master which lost arbitration can generate clock pulses until the end of the data byte where it lost arbitration. When the master devices are addressing the same device, arbitration continues into the data.

FIGURE 11-15: MULTI-MASTER ARBITRATION (TWO MASTERS)

Masters that also incorporate the slave function, and have lost arbitration must immediately switch over to slave-receiver mode. This is because the winning master-transmitter may be addressing it.

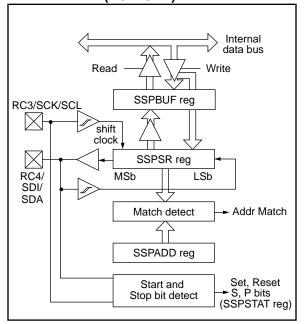
Arbitration is not allowed between:


- · A repeated START condition
- · A STOP condition and a data bit
- A repeated START condition and a STOP condition

Care needs to be taken to ensure that these conditions do not occur.

11.2.4.2 Clock Synchronization

Clock synchronization occurs after the devices have started arbitration. This is performed using a wired-AND connection to the SCL line. A high to low transition on the SCL line causes the concerned devices to start counting off their low period. Once a device clock has gone low, it will hold the SCL line low until its SCL high state is reached. The low to high transition of this clock may not change the state of the SCL line, if another device clock is still within its low period. The SCL line is held low by the device with the longest low period. Devices with shorter low periods enter a high waitstate, until the SCL line comes high. When the SCL line comes high, all devices start counting off their high periods. The first device to complete its high period will pull the SCL line low. The SCL line high time is determined by the device with the shortest high period, Figure 11-16.


FIGURE 11-16: CLOCK SYNCHRONIZATION

11.3 <u>SSP I²C Operation</u> Applicable Devices 70 71 71A 72 73 73A 74 74A

The SSP module in I²C mode fully implements all slave functions, and provides interrupts on start and stop bits in hardware to facilitate software implementations of the master functions. The SSP module implements the standard and fast mode specifications as well as 7-bit and 10-bit addressing. Two pins are used for data transfer. These are the RC3/SCK/SCL pin, which is the clock (SCL), and the RC4/SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<4:3> bits. The SSP module functions are enabled by setting SSP Enable bit SSPEN (SSPCON<5>).

FIGURE 11-17: SSP BLOCK DIAGRAM (I²C MODE)

The SSP module has five registers for l^2C operation. These are the:

- SSP Control Register (SSPCON)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with start and stop bit interrupts enabled
- I²C Slave mode (10-bit address), with start and stop bit interrupts enabled
- I²C start and stop bit interrupts enabled, slave is idle

Selection of any I²C mode, with the SSPEN bit set, forces the SCL and SDA pins to be open drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits.

The SSPSTAT register gives the status of the data transfer. This information includes detection of a START or STOP bit, specifies if the received byte was data or address if the next byte is the completion of 10-bit address, and if this will be a read or write data transfer. The SSPSTAT register is read only.

The SSPBUF is the register to which transfer data is written to or read from. The SSPSR register shifts the data in or out of the device. In receive operations, the SSPBUF and SSPSR create a doubled buffered receiver. This allows reception of the next byte to begin before reading the last byte of received data. When the complete byte is received, it is transferred to the SSP-BUF register and flag bit SSPIF is set. If another complete byte is received before the SSPBUF register is read, a receiver overflow has occurred and bit SSPOV (SSPCON<6>) is set.

The SSPADD register holds the slave address. In 10-bit mode, the user needs to write the high byte of the address (1111 0 A9 A8 0). Following the high byte address match, the low byte of the address needs to be loaded (A7:A0).

11.3.1 SLAVE MODE

In slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched or the data transfer after an address match is received, the hardware automatically will generate the acknowledge (\overline{ACK}) pulse, and then load the SSPBUF register with the received value currently in the SSPSR register.

There are certain conditions that will cause the SSP module not to give this \overline{ACK} pulse. These are if either (or both):

- a) The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. Table 11-3 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification as well as the requirement of the SSP module is shown in timing parameter #100 and parameter #101.

11.3.1.1 ADDRESSING

Once the SSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

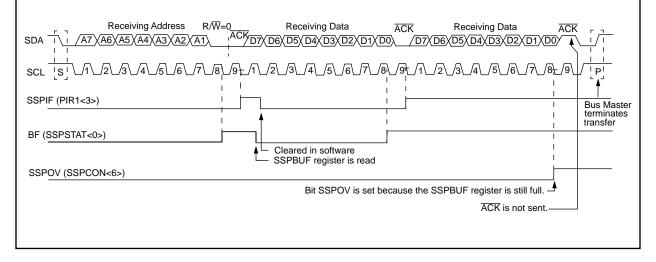
- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set (interrupt is generated if enabled) - on the falling edge of the ninth SCL pulse.

In 10-bit address mode, two address bytes need to be received by the slave (Figure 11-9). The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write, so the slave device will receive the second address byte. For a 10-bit address the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for 10-bit address are as follows, with steps 7- 9 for slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF, and UA are set).
- 5. Update the SSPADD register with the first (high) byte of Address (clears bit UA, if match releases SCL line).
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive repeated START condition.
- 8. Receive first (high) byte of Address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

TABLE 11-3: DATA TRANSFER RECEIVED BYTE ACTIONS

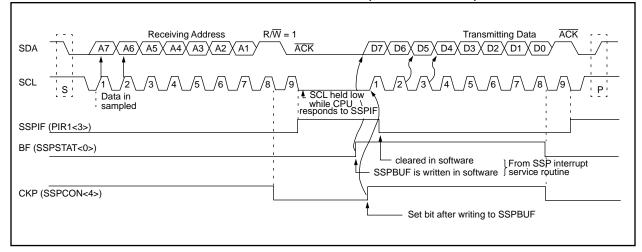
	its as Data is Received		Generate ACK	Set bit SSPIF
BF	SSPOV	$SSPSR \to SSPBUF$	Pulse	(SSP Interrupt occurs if Enabled)
0	0	Yes	Yes	Yes
1	0	No	No	Yes
1	1	No	No	Yes
0	1	No	No	Yes


11.3.1.2 RECEPTION

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then no acknowledge (\overline{ACK}) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set or bit SSPOV (SSPCON<6>) is set.

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software, and the SSPSTAT register is used to determine the status of the byte.


FIGURE 11-18: I²C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

11.3.1.3 TRANSMISSION

When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSP-STAT register is set. The received address is loaded into the SSPBUF register. The \overline{ACK} pulse will be sent on the ninth bit, and pin RC3/SCK/SCL is held low. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/ SCK/SCL should be enabled by setting bit CKP (SSP-CON<4>). The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 11-19). An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register is used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the \overline{ACK} pulse from the masterreceiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not \overline{ACK}), then the data transfer is complete. The slave then monitors for another occurrence of the START bit. If the SDA line was low (\overline{ACK}), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP.

FIGURE 11-19: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

11.3.2 MASTER MODE

Master mode of operation is supported by interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. Control of the I²C bus may be taken when the P bit is set, or the bus is idle and both the S and P bits are clear.

In master mode the SCL and SDA lines are manipulated by clearing the corresponding TRISC<4:3> bit(s). The output level is always low, irrespective of the value(s) in PORTB<4:3>. So when transmitting data, a '1' data bit must have the TRISC<4> bit set (input) and a '0' data bit must have the TRISC<4> bit cleared (output). The same scenario is true for the SCL line with the TRISC<3> bit.

The following events will cause the SSP Interrupt Flag bit SSPIF to be set (SSP Interrupt if enabled):

- START condition
- STOP condition
- Data transfer byte transmitted/received

Master mode of operation can be done with either the slave mode idle (SSPM3:SSPM0 = 1011) or with the slave active. When both master and slave modes are enabled, the software needs to differentiate the source(s) of the interrupt.

11.3.3 MULTI-MASTER MODE

In multi-master mode, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. Control of the I²C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle and both the S and P bits are cleared. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In multi-master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISC<4:3>). There are two stages where this arbitration can be lost, these are:

- Address Transfer
- Data Transfer

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, the device may be being addressed. If addressed an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ^(1,2)	ADIF	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ^(1,2)	ADIE	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
13h	SSPBUF	Synchrono	us Serial I	Port Rece	ive Buffer	/Transmit	Register			xxxx xxxx	uuuu uuuu
93h	SSPADD	Synchrono	us Serial I	Port (I ² C r	node) Ado	dress Reg	jister			0000 0000	0000 0000
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
94h	SSPSTAT	_	_	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000
89h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

TABLE 11-4: REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by SSP in I²C mode.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.

2: The PIC16C72 does not have a Parallel Slave Port or USART, these bits are unimplemented, read as '0'.

FIGURE 11-20: OPERATION OF THE I²C MODULE IN IDLE_MODE, RCV_MODE OR XMIT_MODE

DLE_MODE (7-bit):	
if (Addr_match) {	Set interrupt;
	if $(R/\overline{W} = 1)$ { Send $\overline{ACK} = 0$;
	set XMIT_MODE;
	else if $(R/\overline{W} = 0)$ set RCV_MODE;
}	
RCV_MODE:	
if ((SSPBUF=Full) OR (SSPOV = 1))	
{ Set SSPOV;	
Do not acknowledge;	
}	
else { transfer SSPSR \rightarrow SSPSPSR \rightarrow SSPSPSR \rightarrow SSPSPSPSR \rightarrow SSPSPSR \rightarrow SSPSPSPSPSPSPSP	SPBUF:
send $\overline{ACK} = 0;$	
}	
Receive 8-bits in SSPSR;	
Set interrupt;	
XMIT_MODE:	
While ((SSPBUF = Empty) AND (CKP=0)) Hold SCL Low;
Send byte;	
Set interrupt;	
if (ACK Received = 1) {	End of transmission;
	Go back to IDLE_MODE;
}	- /
else if (\overline{ACK} Received = 0) Go back to 2	KMIT MODE
IDLE_MODE (10-Bit):	······_······
If (High_byte_addr_match AND ($R/\overline{W} = 0$	
{ PRIOR_ADDR_MAT(JE = FALSE;
Set interrupt;	
if ((SSPBUF = Full) O	
{ Set S	SPOV;
Do no	acknowledge;
}	
else { Set U	A = 1;
-	$\overline{ACK} = 0;$
	(SSPADD not updated) Hold SCL low;
	UA = 0;
	ve Low_addr_byte;
	terrupt;
Set U	
If (Lov	w_byte_addr_match)
	{ PRIOR_ADDR_MATCH = TRUE;
	Send ACK = 0;
	while (SSPADD not updated) Hold SCL low;
	Clear UA = 0;
	Set RCV_MODE;
	}
}	
}	
else if (High_byte_addr_match AND (R/W	<u>7</u> – 1)
{ if (PRIOR_ADDR_MA	
{ send 2	ACK = 0;
cot XI	MIT_MODE;
}	
else PRIOR_ADDR_MATCH =	= FALSE;
}	
•	

12.0 UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART)

Applicable Devices 70 71 71A 72 73 73A 74 74A

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also know as a Serial Communications Interface or SCI). The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices such as CRT terminals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices such as A/D or D/A integrated circuits, Serial EEPROMs etc.

The USART can be configured in the following modes:

- Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

Bit SPEN (RCSTA<7>), and bits TRISC<7:6>, have to be set in order to configure pins RC6/TX/CK and RC7/RX/DT for the Serial Communication Interface.

FIGURE 12-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0	
CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7:	CSRC: Clo	ck Source	Select bit					
	Asynchrone Don't care	<u>ous mode</u>						
	Synchrono 1 = Master 0 = Slave r	mode (Clo			ally from BR	(G)		
bit 6:	TX9 : 9-bit ⁻ 1 = Selects 0 = Selects	9-bit trans	smission					
bit 5:	TXEN : Trai 1 = Transm 0 = Transm Note: SRE	nit enabled nit disabled		EN in SY	NC mode.			
bit 4:	SYNC : US 1 = Synchr 0 = Asynch	onous moo	de					
bit 3:	Unimplem	ented: Rea	ad as '0'					
bit 2:	BRGH: Hig	h Baud Ra	ate Select b	it				
	Asynchron 1 = High sp 0 = Low sp	beed						
	Synchrono Unused in							
bit 1:	TRMT : Trai 1 = TSR er 0 = TSR fu	npty	Register St	tatus bit				
bit 0:	TX9D : 9th	hit of trans	mit data Cr	an ha nar	ity hit			

FIGURE 12-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R-0	R-x	
SPEN bit7	RX9	SREN	CREN	_	FERR	OERR	RX9D bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7:	SPEN : Ser 1 = Serial p 0 = Serial p	ort enable	d (Configur	es RC7/R	X/DT and	RC6/TX/Cł	<pins as="" se<="" td=""><td>rial port pins)</td></pins>	rial port pins)
bit 6:	RX9 : 9-bit 1 = Selects 0 = Selects	9-bit rece	ption					
bit 5:	SREN: Sin	gle Receiv	e Enable bi	t				
	Asynchrone Don't care	<u>ous mode</u>						
	$\frac{\text{Synchrono}}{1 = \text{Enable}}$ $0 = \text{Disable}$ This bit is c	s single re s single re	ceive ceive	is comple	ete.			
	<u>Synchrono</u> Unused in		<u>slave</u>					
bit 4:	CREN: Co	ntinuous R	eceive Ena	ble bit				
	$\frac{\text{Asynchron}}{1 = \text{Enable}}$ $0 = \text{Disable}$	s continuo						
	$\frac{\text{Synchrono}}{1 = \text{Enable}}$ $0 = \text{Disable}$	s continuo		until enabl	e bit CREN	l is cleared	I (CREN ov	errides SREN)
bit 3:	Unimplem	ented: Rea	ad as '0'					
bit 2:	FERR: Fra 1 = Framin 0 = No fran	g error (Ca		ed by read	ding RCRE	G register)	1	
bit 1:	OERR : Ove 1 = Overru 0 = No ove	n error (Ca		d by clear	ing bit CR	EN)		
bit 0:				an be par				

12.1 USART Baud Rate Generator (BRG) Applicable Devices 70 71 71A 72 73 73A 74 74A

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In asynchronous mode bit BRGH (TXSTA<2>) also controls the baud rate. In synchronous mode bit BRGH is ignored. Table 12-1 shows the formula for computation of the baud rate for different USART modes which only apply in master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRG register can be calculated using the formula in Table 12-1. From this, the error in baud rate can be determined.

Example 12-1 shows the calculation of the baud rate error for the following conditions:

Fosc = 16 MHz Desired Baud Rate = 9600 BRGH = 0 SYNC = 0

EXAMPLE 12-1: CALCULATING BAUD RATE ERROR

Desired Baud rate=Fosc / (64 (X + 1))

9600 = 1600000 / (64 (X + 1))

X = [25.042] = 25

Calculated Baud Rate=16000000 / (64 (25 + 1))

= 9615

- Error = (Calculated Baud Rate Desired Baud Rate) Desired Baud Rate
 - = (9615 9600) / 9600

= 0.16%

It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the Fosc/(16(x + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register, causes the BRG timer to be reset (or cleared), this ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

TABLE 12-1:BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate= Fosc/(16(X+1))
1	(Synchronous) Baud Rate = Fosc/(4(X+1))	NA

X = value in SPBRG (0 to 255)

TABLE 12-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
99h	SPBRG	Baud R	ate Gene	erator Re		0000 0000	0000 0000				

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used by the BRG.

TABLE 12-3: BAUD RATES FOR SYNCHRONOUS MODE

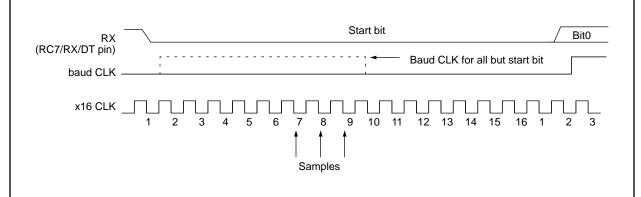
BAUD RATE	Fosc = 20) MHz	SPBRG value	16 MHz		SPBRG value	10 MHz		SPBRG value	7.15909 M	Hz	SPBRG value
(K)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	NA	-	-	NA	-	-	NA	-	-
9.6	NA	-	-	NA	-	-	9.766	+1.73	255	9.622	+0.23	185
19.2	19.53	+1.73	255	19.23	+0.16	207	19.23	+0.16	129	19.24	+0.23	92
76.8	76.92	+0.16	64	76.92	+0.16	51	75.76	-1.36	32	77.82	+1.32	22
96	96.15	+0.16	51	95.24	-0.79	41	96.15	+0.16	25	94.20	-1.88	18
300	294.1	-1.96	16	307.69	+2.56	12	312.5	+4.17	7	298.3	-0.57	5
500	500	0	9	500	0	7	500	0	4	NA	-	-
HIGH	5000	-	0	4000	-	0	2500	-	0	1789.8	-	0
LOW	19.53	-	255	15.625	-	255	9.766	-	255	6.991	-	255

BAUD RATE (K)	Fosc = 5. KBAUD	0688 MHz %ERROR	SPBRG value (decimal)	3.579545 I KBAUD	MHz %ERROR	SPBRG value (decimal)	1 MHz KBAUD	%ERROR	SPBRG value (decimal)	32.768 kH: KBAUD	z %ERROR	SPBRG value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	0.303	+1.14	26
1.2	NA	-	-	NA	-	-	1.202	+0.16	207	1.170	-2.48	6
2.4	NA	-	-	NA	-	-	2.404	+0.16	103	NA	-	-
9.6	9.6	0	131	9.622	+0.23	92	9.615	+0.16	25	NA	-	-
19.2	19.2	0	65	19.04	-0.83	46	19.24	+0.16	12	NA	-	-
76.8	79.2	+3.13	15	74.57	-2.90	11	83.34	+8.51	2	NA	-	-
96	97.48	+1.54	12	99.43	+3.57	8	NA	-	-	NA	-	-
300	316.8	+5.60	3	298.3	-0.57	2	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	1267	-	0	894.9	-	0	250	-	0	8.192	-	0
LOW	4.950	-	255	3.496	-	255	0.9766	-	255	0.032	-	255

TABLE 12-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD RATE (K)	Fosc = 20 KBAUD) MHz %ERROR	SPBRG value (decimal)	16 MHz KBAUD	%ERROR	SPBRG value (decimal)	10 MHz KBAUD	%ERROR	SPBRG value (decimal)	7.15909 M KBAUD	Hz %ERROR	SPBRG value (decimal)
0.3	NA	-	-	NA	•	-	NA	-	-	NA	-	-
1.2	1.221	+1.73	255	1.202	+0.16	207	1.202	+0.16	129	1.203	+0.23	92
2.4	2.404	+0.16	129	2.404	+0.16	103	2.404	+0.16	64	2.380	-0.83	46
9.6	9.469	-1.36	32	9.615	+0.16	25	9.766	+1.73	15	9.322	-2.90	11
19.2	19.53	+1.73	15	19.23	+0.16	12	19.53	+1.73	7	18.64	-2.90	5
76.8	78.13	+1.73	3	83.33	+8.51	2	78.13	+1.73	1	NA	-	-
96	104.2	+8.51	2	NA	-	-	NA	-	-	NA	-	-
300	312.5	+4.17	0	NA	-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	312.5	-	0	250	-	0	156.3	-	0	111.9	-	0
LOW	1.221	-	255	0.977	-	255	0.6104	-	255	0.437	-	255

BAUD RATE (K)	Fosc = 5. KBAUD	0688 MHz %ERROR	SPBRG value (decimal)	3.579545 I KBAUD	MHz %ERROR	SPBRG value (decimal)	1 MHz KBAUD	%ERROR	SPBRG value (decimal)	32.768 kH: KBAUD	z %ERROR	SPBRG value (decimal)
0.3	0.31	+3.13	255	0.301	+0.23	185	0.300	+0.16	51	0.256	-14.67	1
1.2	1.2	0	65	1.190	-0.83	46	1.202	+0.16	12	NA	-	-
2.4	2.4	0	32	2.432	+1.32	22	2.232	-6.99	6	NA	-	-
9.6	9.9	+3.13	7	9.322	-2.90	5	NA	-	-	NA	-	-
19.2	19.8	+3.13	3	18.64	-2.90	2	NA	-	-	NA	-	-
76.8	79.2	+3.13	0	NA	-	-	NA	-	-	NA	-	-
96	NA	-	-	NA	-	-	NA	-	-	NA	-	-
300	NA	-	-	NA	-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	79.2	-	0	55.93	-	0	15.63	-	0	0.512	-	0
LOW	0.3094	-	255	0.2185	-	255	0.0610	-	255	0.0020	-	255


TABLE 12-5:	BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)
-------------	---

BAUD RATE (K)	Fosc = 20 KBAUD) MHz %ERROR	SPBRG value (decimal)	16 MHz KBAUD	%ERROR	SPBRG value (decimal)	10 MHz KBAUD	%ERROR	SPBRG value (decimal)	7.16 MHz KBAUD	%ERROR	SPBRG value (decimal)
9.6	9.615	+0.16	129	9.615	+0.16	103	9.615	+0.16	64	9.520	-0.83	46
19.2	19.230	+0.16	64	19.230	+0.16	51	18.939	-1.36	32	19.454	+1.32	22
38.4	37.878	-1.36	32	38.461	+0.16	25	39.062	+1.7	15	37.286	-2.90	11
57.6	56.818	-1.36	21	58.823	+2.12	16	56.818	-1.36	10	55.930	-2.90	7
115.2	113.636	-1.36	10	111.111	-3.55	8	125	+8.51	4	111.860	-2.90	3
250	250	0	4	250	0	3	NA	-	-	NA	-	-
625	625	0	1	NA	-	-	625	0	0	NA	-	-
1250	1250	0	0	NA	-	-	NA	-	-	NA	-	-

BAUD RATE (K)	Fosc = 5. KBAUD	068 MHz %ERROR	SPBRG value (decimal)	3.579 MHz KBAUD	%ERROR	SPBRG value (decimal)	1 MHz KBAUD	%ERROR	SPBRG value (decimal)	32.768 k⊢ KBAUD	lz %ERROR	SPBRG value (decimal)
9.6	9.6	0	32	9.727	+1.32	22	8.928	-6.99	6	NA	-	-
19.2	18.645	-2.94	16	18.643	-2.90	11	20.833	+8.51	2	NA	-	-
38.4	39.6	+3.12	7	37.286	-2.90	5	31.25	-18.61	1	NA	-	-
57.6	52.8	-8.33	5	55.930	-2.90	3	62.5	+8.51	0	NA	-	-
115.2	105.6	-8.33	2	111.860	-2.90	1	NA	-	-	NA	-	-
250	NA	-	-	223.721	-10.51	0	NA	-	-	NA	-	-
625	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1250	NA	-	-	NA	-	-	NA	-	-	NA	-	-

12.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin. If bit BRGH (TXSTA<2>) is clear (i.e., at the low baud rates), the sampling is done on the seventh, eighth and ninth falling edges of a x16 clock (Figure 12-3). If bit BRGH is set (i.e., at the high baud rates), the sampling is done on the 3 clock edges preceding the second rising edge after the first falling edge of a x4 clock (Figure 12-4 and Figure 12-5).

FIGURE 12-3: RX PIN SAMPLING SCHEME (BRGH = 0)

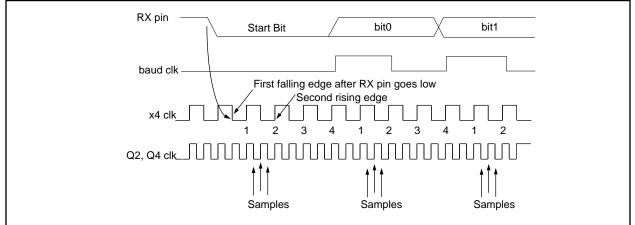
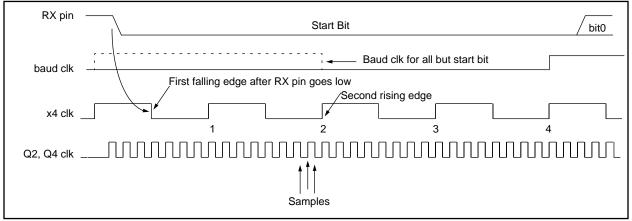



FIGURE 12-5: RX PIN SAMPLING SCHEME (BRGH = 1)

12.2 USART Asynchronous Mode Applicable Devices 70 71 71A 72 73 73A 74 74A

In this mode, the USART uses standard nonreturn-tozero (NRZ) format (one start bit, eight or nine data bits and one stop bit). The most common data format is 8-bits. An on-chip dedicated 8-bit baud rate generator can be used to derive standard baud rate frequencies from the oscillator. The USART transmits and receives the LSb first. The USART's transmitter and receiver are functionally independent but use the same data format and baud rate. The baud rate generator produces a clock either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during SLEEP.

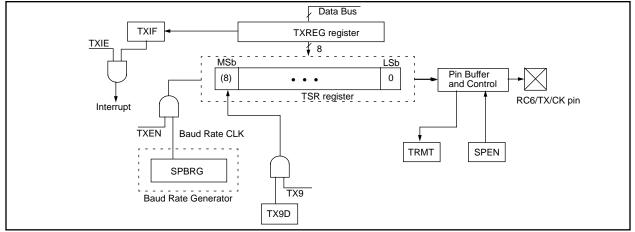
Asynchronous mode is selected by clearing bit SYNC (TXSTA<4>).

The USART Asynchronous module consists of the following important elements:

- Baud Rate Generator
- · Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver

12.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 12-6. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the STOP bit has been transmitted from the previous load. As soon as the STOP bit is transmitted, the TSR is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TCY), the TXREG register is empty and


flag bit TXIF (PIR1<4>) is set. This interrupt can be enabled or disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicated the status of the TXREG register, another bit TRMT (TXSTA<1>) shows the status of the TSR register. Status bit TRMT is a read only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.

Note 1:	The TSR register is not mapped in data
	memory so it is not available to the user.
Note 2.	Flag hit TXIE is set when enable hit TXEN

Note 2: Flag bit TXIF is set when enable bit TXEN is set.

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data and the baud rate generator (BRG) has produced a shift clock (Figure 12-6). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN. Normally when transmission is first started, the TSR register is empty, so a transfer to the TXREG register will result in an immediate transfer to TSR resulting in an empty TXREG. A back-to-back transfer is thus possible (Figure 12-8). Clearing enable bit TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. As a result the RC6/TX/CK pin will revert to hi-impedance.

In order to select 9-bit transmission, transmit bit TX9 (TXSTA<6>) should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). In such a case, an incorrect ninth data bit maybe loaded in the TSR register.

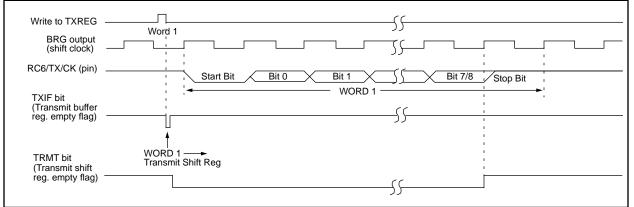
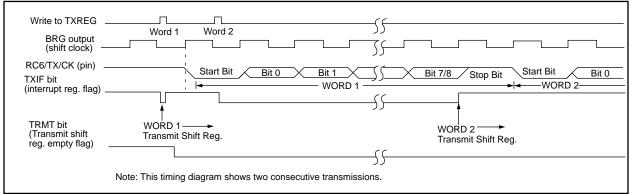


FIGURE 12-6: USART TRANSMIT BLOCK DIAGRAM


Steps to follow when setting up a Asynchronous Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH. (Section 12.1)
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.
- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).

FIGURE 12-7: ASYNCHRONOUS MASTER TRANSMISSION

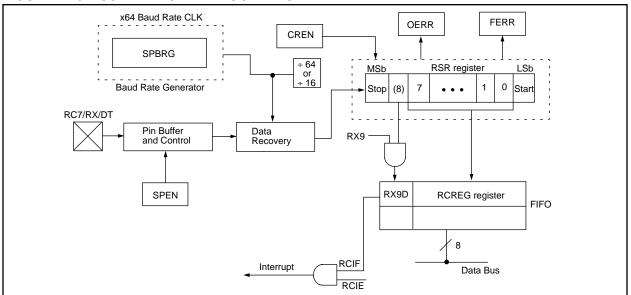
FIGURE 12-8: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 12-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

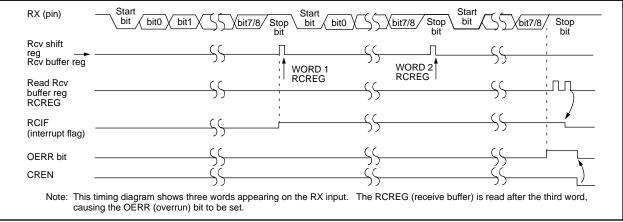
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate (Generato		0000 0000	0000 0000					

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Transmission.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.


12.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 12-9. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc.


Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the receive (serial) shift register (RSR). After sampling the STOP bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled or disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is reset by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is a double buffered register, i.e. it is a two deep FIFO. It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte begin shifting to the RSR register. On the detection of the STOP bit of the third byte, if the RCREG register is still full then overrun error bit OERR (RCSTA<1>) will be set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited, so it is essential to clear error bit OERR if it is set. Framing error bit FERR (RCSTA<2>) is set if a stop bit is detected as clear. Bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG, will load bits RX9D and FERR with new values, therefore it is essential for the user to read the RCSTA register before reading RCREG register in order not to lose the old FERR and RX9D information.

FIGURE 12-10: ASYNCHRONOUS RECEPTION

Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH. (Section 12.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC, and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting bit CREN.
- 6. Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE were set.

- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generato		0000 0000	0000 0000					

TABLE 12-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.

12.3 USART Synchronous Master Mode Applicable Devices

70 71 71A 72 73 73A 74 74A

In Master Synchronous mode, the data is transmitted in a half-duplex manner i.e. transmission and reception do not occur at the same time. When transmitting data, the reception is inhibited and vice versa. The synchronous mode is entered by setting bit SYNC (TXSTA<4>). In addition enable bit SPEN (RCSTA<7>) is set in order to configure the RC6/TX/CK and RC7/RX/DT I/O pins to CK (clock) and DT (data) lines respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting bit CSRC (TXSTA<7>).

12.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 12-6. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer register TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once the TXREG register transfers the data to the TSR register (occurs in one Tcycle), the TXREG is empty and an interrupt bit, TXIF (PIR1<4>) is set. The interrupt can be enabled or disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit TRMT (TXSTA<1>) shows the status of the TSR register. TRMT is a read only bit which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory so it is not available to the user.

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data. The first data bit will be shifted out on the next available rising edge of the clock on the CK line. Data out is stable around the falling edge of the synchronous clock (Figure 12-11). The transmission can also be started by first loading the TXREG register and then setting bit TXEN. This is advantageous when slow baud rates are selected, since the BRG is kept in reset when bits TXEN, CREN, and SREN are clear. Setting enable bit TXEN will start the BRG, creating a shift clock immediately. Normally when transmission is first started, the TSR register is empty, so a transfer to the TXREG register will result in an immediate transfer to TSR resulting in an empty TXREG. Back-to-back transfers are possible.

Clearing enable bit TXEN, during a transmission, will cause the transmission to be aborted and will reset the transmitter. The DT and CK pins will revert to hi-impedance. If either bit CREN or bit SREN are set, during a transmission, the transmission is aborted and the DT pin reverts to a hi-impedance state (for a reception). The CK pin will remain an output if bit CSRC is set (internal clock). The transmitter logic however is not reset although it is disconnected from the pins. In order to reset the transmitter, the user has to clear bit TXEN. If bit SREN is set (to interrupt an on-going transmission and receive a single word), then after the single word is received, bit SREN will be cleared and the serial port will revert back to transmitting since bit TXEN is still set. The DT line will immediately switch from hi-impedance receive mode to transmit and start driving. To avoid this, bit TXEN should be cleared.

In order to select 9-bit transmission, the TX9 (TXSTA<6>) bit should be set and the ninth bit should be written to bit TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG can result in an immediate transfer of the data to the TSR register (if the TSR is empty). If the TSR was empty and the TXREG was written before writing the "new" TX9D, the "present" value of bit TX9D is loaded.

Steps to follow when setting up a Synchronous Master Transmission:

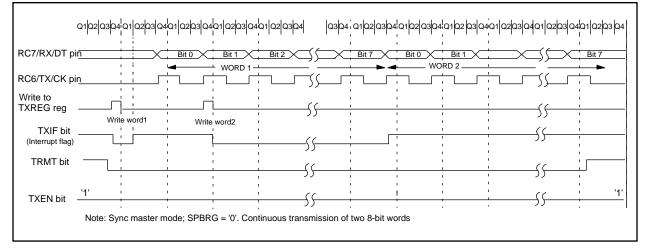
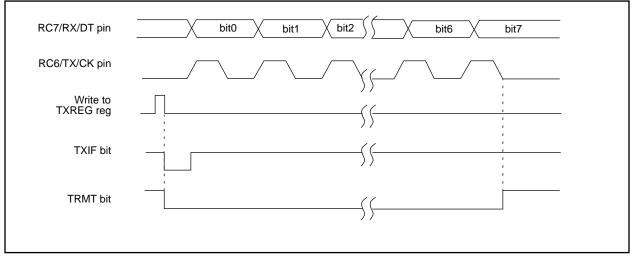

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 12.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

TABLE 12-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION


Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	TX7	TX6	TX5	TX4	ТХЗ	TX2	TX1	TX0	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generat		0000 0000	0000 0000					

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Transmission. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.

FIGURE 12-11: SYNCHRONOUS TRANSMISSION

FIGURE 12-12: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

12.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>) or enable bit CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set then CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is reset by the hardware. In this case it is reset when the RCREG register has been read and is empty. The RCREG is a double buffered register, i.e. it is a two deep FIFO. It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full then overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so

it is essential to clear bit OERR if it is set. The 9th receive bit is buffered the same way as the receive data. Reading the RCREG register, will load bit RX9D with a new value, therefore it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old RX9D information.

Steps to follow when setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. (Section 12.1)
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generat		0000 0000	0000 0000					

TABLE 12-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Master Reception.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.

FIGURE 12-13: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

Q2	20304010	0203040102	Q3Q4Q1Q2	Q3 Q4 Q1 Q2	203040102	2030401020	23 04 01 02	03 04 01 02	23/24/21/22/23	304 01 02 03 04
DT pin _		bit0	bit1	bit2	bit3	bit4	bit5	bit6	,bit7	
CK pin	1 1 1									· · · ·
Write to SREN bit										
SREN bit -							 			
CREN bit	'0'		1	1	1	1	1	1	1	'0'
RCIF bit (interrupt)⁻	1 1 1	1 1 1		1 1 			1 1 1			
Read	1	1	1	1	1	1	1	1	1	
RXREG	Note: Ti	¦ ming diagrar	¦ n demonst	rates SYN	¦ NC master	' mode with	: SREN = '	: 1' and BRC	; G = '0'.	· ·

12.4 USART Synchronous Slave Mode

Applicable Devices 70 71 71A 72 73 73A 74 74A

Synchronous slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in the master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

12.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the synchronous master and slave modes are identical except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

12.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the synchronous master and slave modes is identical except in the case of the SLEEP mode. Also, bit SREN is a don't care in slave mode.

If receive is enabled, by setting bit CREN, prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, then set enable bit RCIE.
- 3. If 9-bit reception is desired, then set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- 6. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.

TABLE 12-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	TX7	TX6	TX5	TX4	ТХЗ	TX2	TX1	TX0	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate		0000 0000	0000 0000						

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Transmission. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.

TABLE 12-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generat		0000 0000	0000 0000					

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Reception.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.

13.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

Applicable Devices

The analog-to-digital (A/D) converter module has four analog inputs for the PIC16C70/71/71A, five inputs for the PIC16C72/73/73A, and eight for the PIC16C74/74A.

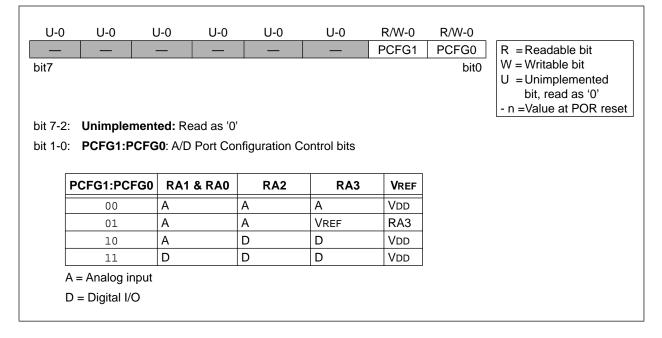
The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD) or the voltage level on the RA3/AN3/VREF pin. The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode.

The A/D module has three registers. These registers are:

- A/D Result Register (ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 register, shown in Figure 13-1 and Figure 13-2, controls the operation of the A/D module. The ADCON1 register, shown in Figure 13-3 and Figure 13-4, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or as digital I/O.

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0								
ADCS1	ADCS0	(1)	CHS1	CHS0	GO/DONE	ADIF	ADON	R = Readable bit							
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset							
	ADCS1:ADCS0: A/D Conversion Clock Select bits 00 = Fosc/2 01 = Fosc/8 10 = Fosc/32 11 = FRC (clock derived from an RC oscillation)														
bit 5:	Unimplen	n ented : Re	ad as '0'.												
	CHS2:CHS0: Analog Channel Select bits 00 = channel 0, (RA0/AN0) 01 = channel 1, (RA1/AN1) 10 = channel 2, (RA2/AN2) 11 = channel 3, (RA3/AN3)														
bit 2:	GO/DONE	A/D Con	version Sta	atus bit											
		onversion ir		· •	is bit starts th bit is automat		,	vare when the A/D conver-							
	1 = conve	Conversic rsion is cor rsion is not	nplete (mu	-	t Flag bit red in softwar	e)									
	0 = A/D co	onverter mo	dule is sh	utoff and o	consumes no										
Note 1:	Bit5 of AE unimplem			Purpose F	R/W bit for the	PIC16C71	1 only. For th	ne PIC16C70/71A, this bit i							

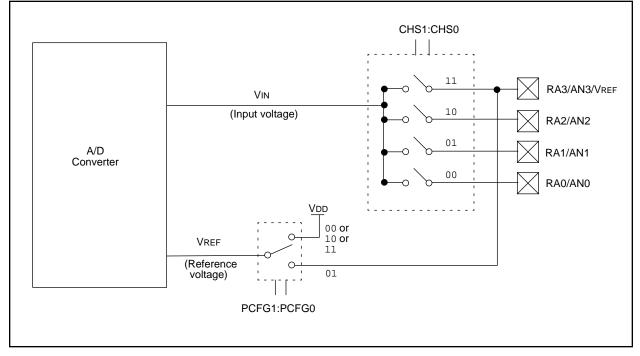

FIGURE 13-1: ADCON0 REGISTER, PIC16C70/71/71A (ADDRESS 08h)

^{© 1995} Microchip Technology Inc.

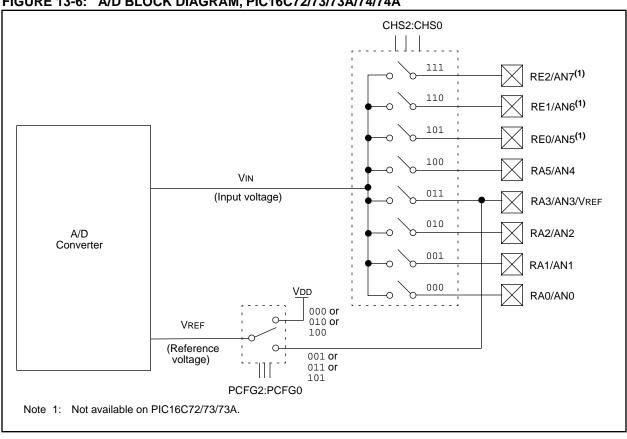
FIGURE 13-2: ADCON0 REGISTER, PIC16C72/73/73A/74/74A (ADDRESS 1Fh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	R = Readable bit
bit7							bit0	W = Writable bit
								U = Unimplemented bit, read as '0'
								- n = Value at POR reset
bit 7-6		DCS0. A	D Conver	sion Clock	Select bits			
	00 = Fost		D Convor		Coloci bilo			
	01 = Foso	c/8						
	10 = Foso							
	11 = FRC	(clock dei	rived from	an RC os	cillation)			
bit 5-3:	CHS2:CH		•	I Select bi	ts			
	000 = cha	, (,					
	001 = cha 010 = cha							
	010 = cha 011 = cha							
	100 = cha							
	101 = cha		,					
	110 = cha		,					
	111 = ch a							
bit 2:	GO/DON	E: A/D Co	nversion S	Status bit				
	If ADON =	-						
					this bit starts			
	0 = A/D cc is comple		not in prog	ress (This	bit is automati	cally cleare	ed by hardwa	are when the A/D conversion
	-							
bit 1:	Unimpler		Read as '0'					
bit 0:	ADON: A/							
			nodule is o			oporating	current	
	0 = A/D CO	Unvertern			l consumes no	operating	current	

FIGURE 13-4: ADCON1 REGISTER, PIC16C72/73/73A/74/74A (ADDRESS 9Fh)


Unimpleme PCFG2:PC				- F	R/W-0 PCFG2	R/W-0 PCFG			W = Writ U = Unit bit,	adable bit table bit mplemen read as '(lue at PO	ted D'
PCFG2:PC	CFG0	RA0	RA1	RA2	RA5	RA3	RE0	RE1	RE2	VREF]
000		A	A	A	A	A	A	A	A	Vdd	1
001		А	А	A	А	VREF	A	А	A	RA3	1
010		А	А	A	А	А	D	D	D	Vdd	
011		А	А	A	А	Vref	D	D	D	RA3	
100		А	А	D	D	А	D	D	D	Vdd	
101		А	А	D	D	Vref	D	D	D	RA3	
11x		D	D	D	D	D	D	D	D	_]
= Analog inp = Digital I/O											

The ADRES register contains the result of the A/D conversion. When the A/D conversion is completed, the result is loaded into the ADRES register, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit ADIF is set. The block diagrams of the A/D module are shown in Figure 13-5 and Figure 13-6.


After the A/D module has been configured as desired, the selected channel must be sampled before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine sample time, see Section 13.1. After this sample time has elapsed the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins / voltage reference / and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit

- 3. Wait the required sampling time.
- 4. Start conversion:• Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 Polling for the GO/DONE bit to be cleared
 - OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result register (ADRES), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next sampling starts.

FIGURE 13-5: A/D BLOCK DIAGRAM, PIC16C70/71/71A

FIGURE 13-6: A/D BLOCK DIAGRAM, PIC16C72/73/73A/74/74A

13.1 A/D Sampling Requirements

Applicable Devices
70 71 71A 72 73 73A 74 74A

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 13-7. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 13-7. The maximum recommended impedance for analog sources is 10 k Ω . After the analog input channel is selected (changed) this sampling must be done before the conversion can be started.

To calculate the minimum sampling time, Equation 13-1 may be used. This equation assumes that 1/2 LSb error is used (512 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

EQUATION 13-1: A/D MINIMUM CHARGING TIME

 $VHOLD = (VREF - (VREF/512)) \bullet (1 - e^{(-Tc/CHOLD(Ric + Rss + Rs))})$ or

Tc = $-(51.2 \text{ pF})(1 \text{ k}\Omega + \text{Rss} + \text{Rs}) \ln(1/511)$

Example 13-1 shows the calculation of the minimum required sample time TSMP. This calculation is based on the following system assumptions.

 $Rs = 10 \ k\Omega$

1/2 LSb error

 $\text{VDD} = 5\text{V} \rightarrow \text{Rss} = 7 \text{ k}\Omega$

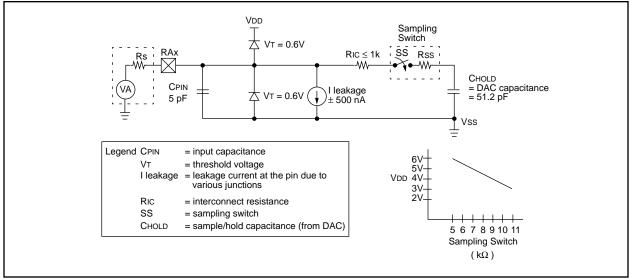
Temp (system max.) = 50°C

VHOLD = 0 @ t = 0

FIGURE 13-7: ANALOG INPUT MODEL

- Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.
- **Note 2:** The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **Note 3:** The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.
- **Note 4:** After a conversion has completed, a 2.0 TAD delay must complete before sampling can begin again. During this time the holding capacitor is not connected to the selected A/D input channel.

EXAMPLE 13-1: CALCULATING THE MINIMUM REQUIRED SAMPLE TIME


TSMP = Amplifier Settling Time + Holding Capacitor Charging Time +

Temperature Coefficient

- TSMP = $5 \mu s + Tc + [(Temp 25^{\circ}C)(0.05 \mu s/^{\circ}C)]$
- Tc = -CHOLD (Ric + Rss + Rs) ln(1/512)-51.2 pF (1 kΩ + 7 kΩ + 10 kΩ) ln(0.0020) -51.2 pF (18 kΩ) ln(0.0020) -0.921 µs (-6.2146) 5.724 µs TSMP = 5 µs + 5.724 µs + [(50°C - 25°C)(0.05 µs/°C)]

10.724 μs + 1.25 μs

11.974 μs

13.2 <u>Selecting the A/D Conversion Clock</u>

Applicable Devices 70 71 71A 72 73 73A 74 74A

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.5 TAD per 8-bit conversion. The source of the A/D conversion clock is software selected. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of:

2.0 µs for the PIC16C71

1.6 μs for all other PIC16C7X devices

Table 13-2 and Table 13-1 show the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

13.3 <u>Configuring Analog Port Pins</u> Applicable Devices 70|71|71A|72|73|73A|74|74A

The ADCON1, TRISA, and TRISE registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channel will read as cleared (a low level). Pins configured as digital inputs, will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
- **Note 2:** Analog levels on any pin that is defined as a digital input (including the AN7:AN0 pins), may cause the input buffer to consume current that is out of the devices specification.

AD Cloc	k Source (TAD)	Device Frequency									
Operation	ADCS1:ADCS0	20 MHz	16 MHz	4 MHz	1 MHz	333.33 kHz					
2Tosc	00	100 ns ⁽²⁾	125 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	6 μs					
8Tosc	01	400 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	8.0 μs	24 μs ⁽³⁾					
32Tosc	10	1.6 μs ⁽²⁾	2.0 μs	8.0 μs	32.0 μs ⁽³⁾	96 μs ⁽³⁾					
RC	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾	2 - 6 μs ⁽¹⁾					

TABLE 13-1: TAD vs. DEVICE OPERATING FREQUENCIES, PIC16C71

Note 1: The RC source has a typical TAD time of 4 μ s.

2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

4: While in RC mode, with device frequency above 1 MHz, conversion accuracy is out of specification.

TABLE 13-2: TAD vs. DEVICE OPERATING FREQUENCIES, PIC16C70/71A/72/73/73A/74/74A

AD Clock	Source (TAD)	Device Frequency								
Operation	ADCS1:ADCS0	20 MHz	5 MHz	1.25 MHz	333.33 kHz					
2Tosc	00	100 ns ⁽²⁾	400 ns ⁽²⁾	1.6 μs	6 µs					
8Tosc	01	400 ns ⁽²⁾	1.6 μs	6.4 μs	24 μs ⁽³⁾					
32Tosc	10	1.6 μs	6.4 μs	25.6 μs (3)	96 μs ⁽³⁾					
RC	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾					

Note 1: The RC source has a typical TAD time of 4 $\mu s.$

2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

4: While in RC mode, with device frequency above 1 MHz, conversion accuracy is out of specification.

13.4 A/D Conversions

Applicable Devices
70 71 71A 72 73 73A 74 74A

Example 13-2 and Example 13-3 show how to perform an A/D conversion. The RA pins are configured as analog inputs. The analog reference (VREF) is the device VDD. The A/D interrupt is enabled, and the A/D conversion clock is FRC. The conversion is performed on the RA0 channel.

Note: The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The ADRES register will NOT be updated with the partially completed A/D conversion sample. That is, the ADRES register will continue to contain the value of the last completed conversion (or the last value written to the ADRES register). After the A/D conversion is aborted, a 2TAD wait is required before the next sampling is started. After this 2TAD wait, sampling is automatically started on the selected channel.

EXAMPLE 13-2: DOING AN A/D CONVERSION (PIC16C70/71/71A)

	BSF CLRF	STATUS, RPO ADCON1	; Select Page 1 ; Configure A/D inputs
	BCF	STATUS, RPO	; Select Page 0
	MOVLW	0xC1	; RC Clock, A/D is on, Channel 0 is selected
	MOVWF	ADCON0	;
	BSF	INTCON, ADIE	; Enable A/D Interrupt
	BSF	INTCON, GIE	; Enable all interrupts
;			
;	Ensure th	nat the required s	ampling time for the selected input channel has elapsed.
;	Then the	conversion may be	started.
;			
	BSF	ADCON0, GO	; Start A/D Conversion
	:		; The ADIF bit will be set and the GO/DONE bit

is cleared upon completion of the A/D Conversion.

EXAMPLE 13-3: DOING AN A/D CONVERSION (PIC16C72/73/73A/74/74A)

	BSF	STATUS,	RP0	; Select Page 1
	CLRF	ADCON1		; Configure A/D inputs
	BSF	PIE1,	ADIE	; Enable A/D interrupts
	BCF	STATUS,	RP0	; Select Page 0
	MOVLW	0xC1		; RC Clock, A/D is on, Channel 0 is selected
	MOVWF	ADCON0		;
	BCF	PIR1,	ADIF	; Clear A/D interrupt flag bit
	BSF	INTCON,	PEIE	; Enable peripheral interrupts
	BSF	INTCON,	GIE	; Enable all interrupts
;				
;	Ensure th	nat the r	equired s	ampling time for the selected input channel has elapsed.
;	Then the	conversi	on may be	started.
;				

```
      BSF
      ADCON0, GO
      ; Start A/D Conversion

      :
      ; The ADIF bit will be set and the GO/DONE bit

      :
      ; is cleared upon completion of the A/D Conversion.
```

13.4.1 FASTER CONVERSION - LOWER RESOLUTION TRADE-OFF

Not all applications require a result with 8-bits of resolution, but may instead require a faster conversion time. The A/D module allows users to make the tradeoff of conversion speed to resolution. Regardless of the resolution required, the sampling time is the same. To speed up the conversion, the clock source of the A/D module may be switched so that the TAD time violates the minimum specified time (see the applicable electrical specification). Once the TAD time violates the minimum specified time, all the following A/D result bits are not valid (see A/D Conversion Timing in the Electrical Specifications section.) The clock sources may only be switched between the three oscillator versions (cannot be switched from/to RC). The equation to determine the time before the oscillator can be switched is as follows:

Conversion time = $2TAD + N \bullet TAD + (8 - N)(2TOSC)$ Where: N = number of bits of resolution required. Since the TAD is based from the device oscillator, the user must use some method (a timer, software loop, etc.) to determine when the A/D oscillator may be changed. Example 13-4 shows a comparison of time required for a conversion with 4-bits of resolution, versus the 8-bit resolution conversion. The example is for devices operating at 20 MHz and 16 MHz (The A/D clock is programmed for 32Tosc), and assumes that immediately after 6TAD, the A/D clock is programmed for 2Tosc.

The 2Tosc violates the minimum TAD time since the last 4-bits will not be converted to correct values.

EXAMPLE 13-4: 4-BIT vs. 8-BIT CONVERSION TIMES

	– (1)	Reso	lution
	Freq. (MHz) ⁽¹⁾	4-bit	8-bit
TAD	20	1.6 μs	1.6 μs
	16	2.0 μs	2.0 μs
Tosc	20	50 ns	50 ns
	16	62.5 ns	62.5 ns
2TAD + N•TAD + (8 - N)(2TOSC)	20	10 μs	16 µs
	16	12.5 μs	20 µs

Note 1: The PIC16C71 has a minimum TAD time of 2.0 μ s.

All other PIC16C7X devices have a minimum TAD time of 1.6 μ s.

13.5 <u>A/D Operation During Sleep</u> Applicable Devices

70 71 71A 72 73 73A 74 74A

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed the GO/DONE bit will be cleared, and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note: For the A/D module to operate in SLEEP, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To perform an A/D conversion in SLEEP, the GO/DONE bit must be set, followed by the SLEEP instruction.

13.6 <u>A/D Accuracy/Error</u> Applicable Devices 70|71|71A|72|73|73A|74|74A

The overall accuracy of the A/D is less than \pm 1 LSb for VDD = 5V \pm 10% and the analog VREF = VDD. This overall accuracy includes offset error, full scale error, and integral error. The A/D converter is guaranteed to be monotonic. The resolution and accuracy may be less when either the analog reference (VDD) is less than 5.0V or when the analog reference (VREF) is less than VDD.

The maximum pin leakage current is \pm 5 $\mu A.$

In systems where the device frequency is low, use of the A/D RC clock derived from the device oscillator, is preferred. At moderate to high frequencies, TAD should be derived from the device oscillator. TAD must not violate the minimum and should be $\leq 8 \ \mu s$ for preferred operation. This is because TAD, when derived from Tosc, is kept away from on-chip phase clock transitions. This reduces, to a large extent, the effects of digital switching noise. This is not possible with the RC derived clock. The loss of accuracy due to digital switching noise can be significant if many I/O pins are active.

In systems where the device will enter SLEEP mode after the start of the A/D conversion, the RC clock source selection is required. In this mode, the digital noise from the modules in SLEEP are stopped. This method gives high accuracy.

13.7 Effects of a RESET Applicable Devices

 70
 71
 71
 72
 73
 73
 74
 74A

 A device reset forces all registers to their reset state.
 This forces the A/D module to be turned off, and any conversion is aborted. The value that is in the ADRES register is not modified for a Power-on Reset. The

ADRES register will contain unknown data after a

13.8 Use of the CCP Trigger

Power-on Reset.

Applicable Devices 70 71 71A 72 73 73A 74 74A

Note: In the PIC16C72 the "special event trigger" is implemented in the CCP1 module.

An A/D conversion can be started by the "special event trigger" of the CCP2 module (CCP1 on the PIC16C72 only). This requires that the CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be programmed as 1011 and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D conversion, and the Timer1 counter will be reset to zero. Timer1 is reset to automatically repeat the A/D sampling period with minimal software overhead (moving the ADRES to the desired location). The appropriate analog input channel must be selected and the minimum sampling done before the "special event trigger" sets the GO/DONE bit (starts a conversion).

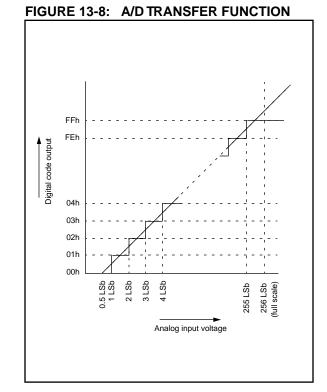
If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 counter.

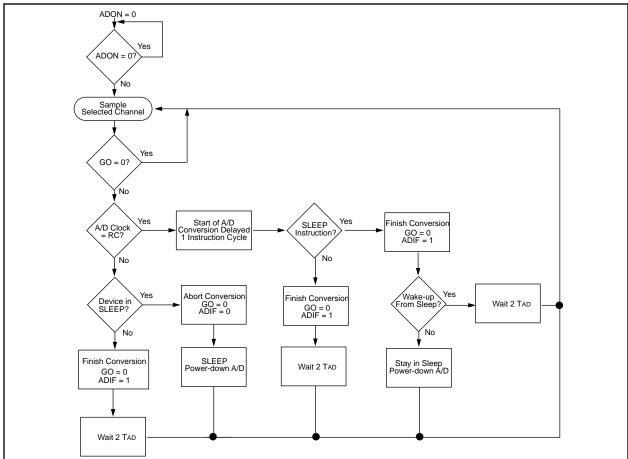
13.9 <u>Connection Considerations</u>

Applicable Devices

If the input voltage exceeds the rail values (VSS or VDD) by greater than 0.2V, then the accuracy of the conversion is out of specification.

Note:	For the PIC16C70/71/71A,
	care must be taken when using the RA0
	pin in A/D conversions due to its proximity
	to the OSC1 pin.


An external RC filter is sometimes added for anti-aliasing of the input signal. The R component should be selected to ensure that the total source impedance is kept under the 10 k Ω recommended specification. Any external components connected (via hi-impedance) to an analog input pin (capacitor, zener diode, etc.) should have very little leakage current at the pin.


13.10 Transfer Function

Applicable Devices 70|71|71A|72|73|73A|74|74A

The ideal transfer function of the A/D converter is as follows: the first transition occurs when the analog input voltage (VAIN) is 1 LSb (or Analog VREF / 256) (Figure 13-8).

TABLE 13-3: SUMMARY OF A/D REGISTERS, PIC16C70/71/71A

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other Resets
0Bh/8Bh	INTCON	GIE	ADIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
89h	ADRES	A/D Res	ult Regist	er						xxxx xxxx	uuuu uuuu
08h	ADCON0	ADCS1	ADCS0	—	CHS1	CHS0	GO/DONE	ADIF	ADON	00-0 0000	00-0 0000
88h	ADCON1	—	—	_	—	—	—	PCFG1	PCFG0	00	00
05h	PORTA	_	_	_	RA4	RA3	RA2	RA1	RA0	x xxxx	u uuuu
85h	TRISA	_	_	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

TABLE 13-4:SUMMARY OF A/D REGISTERS, PIC16C72

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other Resets
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
8Ch	PIE1	—	ADIE		_	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
1Eh	ADRES	A/D Res	ult Regis	ter						XXXX XXXX	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	—	—	_	—	—	PCFG2	PCFG1	PCFG0	000	000
05h	PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
85h	TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

TABLE 13-5: SUMMARY OF A/D REGISTERS, PIC16C73/73A/74/74A

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other Resets
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
0Dh	PIR2	—	—	—	—	—	_	—	CCP2IF	0	0
8Dh	PIE2	—	—	—	—	—	—	—	CCP2IE	0	0
1Eh	ADRES	A/D Resu	It Registe	er						xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	—	—	—	—	—	PCFG2	PCFG1	PCFG0	000	000
05h	PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
85h	TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
09h	PORTE	_	—	—	—	—	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	—	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC6C73/73A, always maintain these bits clear.

14.0 SPECIAL FEATURES OF THE CPU

Applicable Devices

What sets a microcontroller apart from other processors are special circuits to deal with the needs of realtime applications. The PIC16CXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- · OSC selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- · Code protection
- · ID locations
- · In-circuit serial programming

The PIC16CXX has a Watchdog Timer which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

14.1 <u>Configuration Bits</u> Applicable Devices 70|71|71A|72|73|73A|74|74A

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

FIGURE 14-1: CONFIGURATION WORD FOR PIC16C71

bit13		—	—	—	—	—	—	CP0	PWRTE	WDTE	F0SC1	F0SC0 bit0	Register: Address	CONFIG 2007h
bit 13-5:	Unimplem	nented:	Read a	as '1'										
bit 4:	CP0 : Code 1 = Code p 0 = All men	, protecti	on off		d, but C	00h - 3Fl	n is writa	able						
bit 3:	PWRTE : F 1 = Power 0 = Power	-up Tim	Ier enal	oled	e bit									
bit 2:	WDTE : Wa 1 = WDT e 0 = WDT e	enabled		Enable	bit									
bit 1-0:	FOSC1:FO 11 = RC o 10 = HS o 01 = XT os 00 = LP os	scillator scillator scillator	r	or Seleo	ction bi	ts								

© 1995 Microchip Technology Inc.

FIGURE 14-2: CONFIGURATION WORD FOR PIC16C70/71A

CP0	CP0	CP0	CP0	CP0	CP0	CP0	BODEN	CP0	CP0	PWRTE	WDTE	F0SC1	F0SC0	Register:	CONFIG
bit13													bit0	Address	2007h
	4: 1 = 0 = BC 1 =	Code All me DEN: E BOR e		on off code p out Res			00h - 3Fr 1)	n is writ	able						
bit 3:	1 =	PWRT	Power-u disable enable	ed	er Enabl	e bit ⁽¹⁾)								
bit 2:	1 =	WDT e	atchdog enabled disabled	Í	Enable	bit									
bit 1-0	11 10 01	= RC o = HS o = XT os	DSC0: scillator scillator scillator scillator	r r	or Sele	ction b	its								
Note 1	En	sure the	e Powe	r-up Tir	ner is e	nabled	ly enable anytime same v	Brown	-out Re	eset is er	nabled.	0		value of bit F	WRTE.

FIGURE 14-3: CONFIGURATION WORD FOR PIC16C73/74

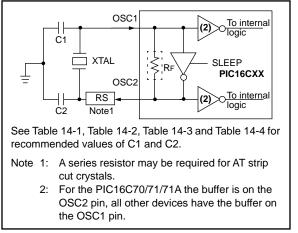
						CP1	CP0	PWRTE	WDTE	E0SC1	EOSCO	Register:	CONFIG
bit13					_	GFT	CFU		WDIL	10301	bit0	Address	2007h
bit 13-5:	Unimplemer	n ted : Re	ad as '1'										
bit 4:	CP1:CP0 : Co 11 = Code pu 10 = Upper h 01 = Upper 3 00 = All mem	rotection half of pr 3/4th of p	n off ogram mer program me	emory c	•								
bit 3:	PWRTE : Pow 1 = Power-up 0 = Power-up	Timer e	enabled	le bit									
bit 2:	WDTE : Wate 1 = WDT ena 0 = WDT disa	abled	mer Enable	e bit									
bit 1-0:	FOSC1:FOS 11 = RC osci 10 = HS osci 01 = XT osci 00 = LP osci	illator illator llator	cillator Sele	ction bi	ts								

FIGURE 14-4: CONFIGURATION WORD FOR PIC16C72/73A/74A

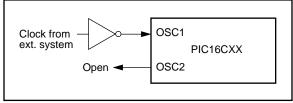
CP1 C	P0 CP1	CP0	CP1	CP0		BODEN	CP1	CP0	PWRTE	WDTE	E0SC1	FOSCO	Register:	CONFIG
bit13						DODLIN				WDIL	10001	bit0	Address	2007h
bit 13-8	CP1:CP0:	Cada	Drata at:	on hito	(2)							bito		
5-4:	11 = Code	protec	tion off											
	10 = Upper half of program memory code protected 01 = Upper 3/4th of program memory code protected 00 = All memory is code protected													
bit 7:	Unimplen	nented:	Read	as '1'										
bit 6:	BODEN : E 1 = BOR e 0 = BOR e	enabled		et Enab	le bit (1	1)								
bit 3:	PWRTE : F 1 = PWRT 0 = PWRT	disable	ed	r Enabl	e bit ⁽¹⁾	1								
bit 2:	WDTE : W 1 = WDT e 0 = WDT e	enabled	Í	Enable	bit									
bit 1-0:	FOSC1:F0 11 = RC o 10 = HS o 01 = XT o 00 = LP os	scillator scillator scillator	r r	or Sele	ction bi	ts								
Note 1:	Enabling E					-		•		,	gardles	ss of the	value of bit F	WRTE.
2:			•								e protec	tion sche	eme listed.	

14.2 Oscillator Configurations Applicable Devices 70|71|71A|72|73|73A|74|74A

14.2.1 OSCILLATOR TYPES


The PIC16CXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor


14.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 14-5). The PIC16CXX Oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/ CLKIN pin (Figure 14-6).

FIGURE 14-5: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

FIGURE 14-6: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 14-1: **CERAMIC RESONATORS PIC16C71**

Ranges Tested:										
Mode	Mode Freq OSC1 OSC2									
XT	455 kHz	47 - 100 pF	47 - 100 pF							
	2.0 MHz	15 - 68 pF	15 - 68 pF							
	4.0 MHz	15 - 68 pF	15 - 68 pF							
HS	8.0 MHz	15 - 68 pF	15 - 68 pF							
	16.0 MHz	10 - 47 pF	10 - 47 pF							
	Note: Recommended values of C1 and C2 are identical to the ranges tested table.									
tor bues	Higher capacitance increases the stability of oscilla- tor but also increases the start-up time. These val- ues are for design guidance only. Since each									
	nator has its own uld consult the res		,							
	ropriate values of									
Resonator	•									
455 kHz	Panasonic EF	D-A455K04B	± 0.3%							
2.0 MHz	2.0 MHz Murata Erie CSA2.00MG ± 0.5%									
4.0 MHz	z Murata Erie CSA4.00MG ± 0.5%									
8.0 MHz	Murata Erie CSA8.00MT ± 0.5%									
16.0 MHz Murata Erie CSA16.00MX ± 0.5%										
All reso	onators used did r	not have built-in	capacitors.							

TABLE 14-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR FOR PIC16C71

Mode	Freq	OSC1	OSC2					
LP	32 kHz	33 - 68 pF	33 - 68 pF					
	200 kHz	15 - 47 pF	15 - 47 pF					
XT	100 kHz	47 - 100 pF	47 - 100 pF					
	500 kHz	20 - 68 pF	20 - 68 pF					
	1 MHz	15 - 68 pF	15 - 68 pF					
	2 MHz	15 - 47 pF	15 - 47 pF					
	4 MHz	15 - 33 pF	15 - 33 pF					
HS	8 MHz	15 - 47 pF	15 - 47 pF					
	20 MHz	15 - 47 pF	15 - 47 pF					
	0 1	ce increases the s eases the start-up	•					
va	lues are for des	sign guidance onl	y. Rs may be					
	required in HS mode as well as XT mode to avoid							
	overdriving crystals with low drive level specifica-							
	tion. Since each crystal has its own characteristics,							
		onsult the crystal i						
l ap	propriate value	s of external com	ponents.					

TABLE 14-3: **CERAMIC RESONATORS** PIC16C70/71A/72/73/73A/74/ 74A

Ranges Te	Ranges Tested:										
Mode	Freq	OSC1	OSÇ2								
XT	455 kHz	68 - 100 pF	68 -∕1 0 0 pF								
	2.0 MHz	15 - 68 pF	15-68 pE								
	4.0 MHz	15 - 68 pF 🛛 <	15-68 pF								
HS	8.0 MHz	10 - 68 pF	10 - 68 pF								
	16.0 MHz 10 - 22 pF 22 pF										
Note: Rec the	Note: Recommended values of C1 and C2 are identical to the ranges tested table.										
lator	Higher capacitance increases the stability of oscil- lator but also increases the start-up time. These values are for destan guidance only. Since each										
resc	nator has its ov	vn characteristics,	the user								
sho	uld çonsult they	esonator manufac	cturer for								
арр	ropriate values	of external compo	nents.								
Resonato	s Used:										
455 kHz _	Panasonic E	FO-A455K04B	± 0.3%								
2.0 MHz Murata Erie CSA2.00MG ± 0.5%											
4.0 MHz Murata Erie CSA4.00MG ± 0.5%											
8.0 MHz	8.0 MHz Murata Erie CSA8.00MT ± 0.5%										
16.0 MHz Murata Erie CSA16.00MX ± 0.5%											
All reso	onators used did	d not have built-in	capacitors.								

TABLE 14-4: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR FOR PIC16C70/71A/72/73/73A/ 74/74A

Mode	Freq	OSC1	OSC2
LP	32 kHz ⁽¹⁾	15 - 47 pF	15 - 47 pF
	200 kHz	15 - 33 pF	15-33 pF
ХТ	100 kHz	47 - 100 pF	47,-100 pF
	500 kHz	20 - 68 pF \`	20,-68 pF
	1 MHz	15 - 68ŷĘ 📏	(15 - 68 pF
	2 MHz	15-47.pF	[∨] 15 - 47 pF
	4 MHz	15-33.pF	15 - 33 pF
HS	8 MHz	1,5-47pF	15 - 47 pF
	20 MHz <	15-47 pF	15 - 47 pF
Note: Hi	gher capacitan	ce increases the s	stability of oscil-

Note :	Higher capacitance increases the stability of oscil-
	lator but also increases the start-up time. These
	values are for design guidance only. Rs may be
	required in HS mode as well as XT mode to avoid
	everdriving crystals with low drive level specifica-
	tion. Since each crystal has its own characteristics,
\sim	the beer should consult the crystal manufacturer for
$\langle \rangle$	appropriate values of external components.
Note 1	: For VDD > 4.5V, C1 = C2 \approx 30 pF is recom-
\sim	mended.

14.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance, or one with parallel resonance.

Figure 14-7 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 14-7: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

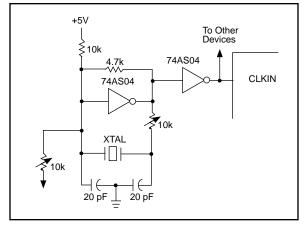
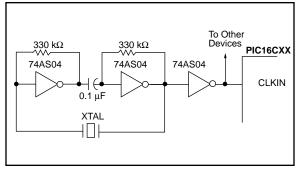
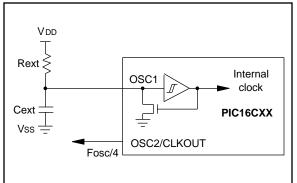



Figure 14-8 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 14-8: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

14.2.4 RC OSCILLATOR


For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 14-9 shows how the R/C combination is connected to the PIC16CXX. For Rext values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See characterization data for desired device for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See characterization data for desired device for variation of oscillator frequency due to VDD for given Rext/ Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

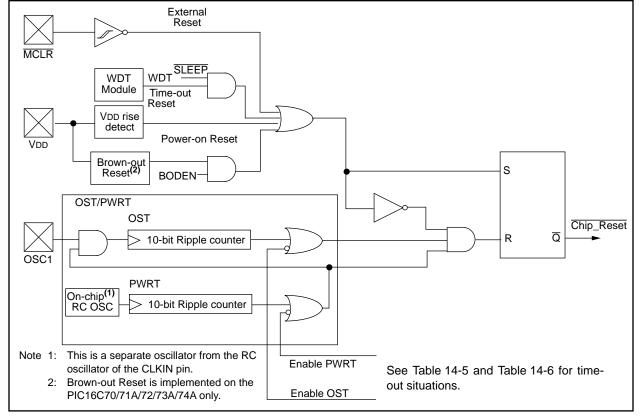
The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-5 for waveform).

FIGURE 14-9: RC OSCILLATOR MODE

14.3 <u>Reset</u>

Applicable Devices 70|71|71A|72|73|73A|74|74A

The PIC16CXX differentiates between various kinds of reset:


- Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (normal operation)
- Brown-out Reset (BOR) (PIC16C70/71A/72/73A/ 74A only)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on the $\overline{\text{MCLR}}$ and WDT Reset, on $\overline{\text{MCLR}}$ reset during SLEEP, and Brownout Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different reset situations as indicated in Table 14-7 and Table 14-8. These bits are used in software to determine the nature of the reset. See Table 14-10 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 14-10.

The PIC16C70/71A/72/73A/74A have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

FIGURE 14-10: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

14.4 <u>Power-on Reset (POR), Power-up</u> <u>Timer (PWRT) and Oscillator Start-up</u> <u>Timer (OST), Brown-out Reset (BOR)</u> Applicable Devices 70 71 71A 72 73 73A 74 74A

14.4.1 POWER-ON RESET (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the $\overline{\text{MCLR}}$ pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details.

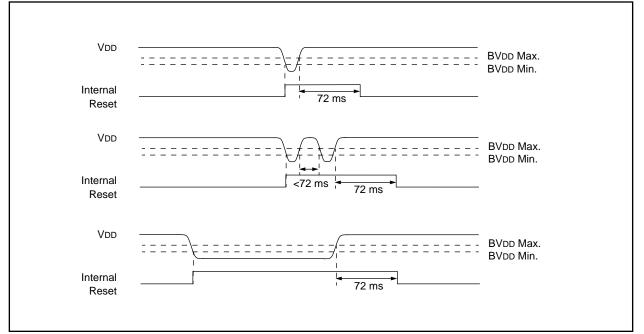
When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be meet to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*."

14.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip and due to VDD, temperature, and process variation. See DC parameters for details.


14.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

14.4.4 BROWN-OUT RESET (BOR)
Applicable Devices
70 71 71A 72 73 73A 74 74A

A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V (3.8V - 4.2V range) for greater than parameter #35, the brown-out situation will reset the chip. A reset may not occur if VDD falls below 4.0V for less than parameter #35. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms. If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute a 72 ms reset. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 14-11 shows typical brown-out situations.

FIGURE 14-11: BROWN-OUT SITUATIONS

14.4.5 TIME-OUT SEQUENCE

On power-up the time-out sequence is as follows: First PWRT time-out is invoked after the POR time delay has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 14-12, Figure 14-13, and Figure 14-14 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 14-13). This is useful for testing purposes or to synchronize more than one PIC16CXX device operating in parallel.

Table 14-9 shows the reset conditions for some special function registers, while Table 14-10 shows the reset conditions for all the registers.

14.4.6 POWER CONTROL/STATUS REGISTER (PCON)

	Applicable Devices								
70	71	71A	72	73	73A	74	74A		

The Power Control/Status Register, PCON has up to 2 bits, depending upon the device. Bit0 is not implemented on the PIC16C73 or PIC16C74.

Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent resets to see if bit BOR cleared, indicating a BOR occurred. The BOR bit is a "Don't Care" bit and is not necessarily predictable if the Brown-out Reset circuitry is disabled (by clearing bit BODEN in the Configuration Word).

Bit1 is Power-on Reset Status bit POR. It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

TABLE 14-5: TIME-OUT IN VARIOUS SITUATIONS, PIC16C71/73/74

Oscillator Configuration	Powe	Wake-up from SLEEP	
	PWRTE = 1	PWRTE = 0	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	1024 Tosc
RC	72 ms	_	

TABLE 14-6: TIME-OUT IN VARIOUS SITUATIONS, PIC16C70/71A/72/73A/74A

Oscillator Configuration	Power-up		Brown out	Wake-up from SLEEP
	PWRTE = 0	PWRTE = 1	Brown-out	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc
RC	72 ms	_	72 ms	—

TABLE 14-7: STATUS BITS AND THEIR SIGNIFICANCE, PIC16C71/73/74

POR ⁽¹⁾	TO	PD	
0	1	1	Power-on Reset
0	0	x	Illegal, TO is set on POR
0	x	0	Illegal, PD is set on POR
1	0	1	WDT Reset
1	0	0	WDT Wake-up
1	1	1	MCLR Reset during normal operation
1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

Note 1: Bit POR is not implemented on the PIC16C71.

TABLE 14-8: STATUS BITS AND THEIR SIGNIFICANCE, PIC16C70/71A/72/73A/74A

POR	BOR	TO	PD	
0	x	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on POR
0	x	x	0	Illegal, PD is set on POR
1	0	x	x	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	1	1	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

Condition	Program Counter	STATUS Register	PCON Register PIC16C70/71A	PCON Register PIC16C73/74	PCON Register PIC16C72/73A/74A
Power-on Reset	000h	0001 1xxx	0x	0-	0x
MCLR Reset during normal operation	000h	0001 luuu	uu	u-	uu
MCLR Reset during SLEEP	000h	0001 Ouuu	uu	u-	uu
WDT Reset	000h	0000 luuu	uu	u-	uu
WDT Wake-up	PC + 1	սսս0 Օսսս	uu	u-	uu
Brown-out Reset	000h	0001 luuu	u0	N/A	u0
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	uu	u-	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

Register		Applicable Devices					S		Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt	
W	70	71	71A	72	73	73A	74	74A	XXXX XXXX	uuuu uuuu	uuuu uuuu	
INDF	70	71	71A	72	73	73A	74	74A	N/A	N/A	N/A	
TMR0	70	71	71A	72	73	73A	74	74A	XXXX XXXX	սսսս սսսս	uuuu uuuu	
PCL	70	71	71A	72	73	73A	74	74A	0000h	0000h	PC + 1(2)	
STATUS	70	71	71A	72	73	73A	74	74A	0001 1xxx	000q quuu (3)	uuuq quuu ⁽³⁾	
FSR	70	71	71A	72	73	73A	74	74A	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PORTA	70	71	71A	72	73	73A	74	74A	x xxxx	u uuuu	u uuuu	
FURIA	70	71	71A	72	73	73A	74	74A	xx xxxx	uu uuuu	uu uuuu	
PORTB	70	71	71A	72	73	73A	74	74A	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PORTC	70	71	71A	72	73	73A	74	74A	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PORTD	70	71	71A	72	73	73A	74	74A	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PORTE	70	71	71A	72	73	73A	74	74A	xxx	uuu	uuu	
PCLATH	70	71	71A	72	73	73A	74	74A	0 0000	0 0000	u uuuu	
INTCON	70	71	71A	72	73	73A	74	74A	0000 000x	0000 000u	uuuu uuuu (1)	
	70	71	71A	72	73	73A	74	74A	-0 0000	-0 0000	-u uuuu (1)	
PIR1	70	71	71A	72	73	73A	74	74A	-000 0000	-000 0000	-uuu uuuu (1)	
	70	71	71A	72	73	73A	74	74A	0000 0000	0000 0000	uuuu uuuu (1)	
PIR2	70	71	71A	72	73	73A	74	74A	0	0	u(1)	
TMR1L	70	71	71A	72	73	73A	74	74A	XXXX XXXX	uuuu uuuu	นนนน นนนน	
TMR1H	70	71	71A	72	73	73A	74	74A	XXXX XXXX	uuuu uuuu	นนนน นนนน	
T1CON	70	71	71A	72	73	73A	74	74A	00 0000	uu uuuu	uu uuuu	

Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 14-9 for reset value for specific condition.

Register	Applicable Devices								Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt	
TMR2	70	71	71A	72	73	73A	74	74A	0000 0000	0000 0000	uuuu uuuu	
T2CON	70	71	71A	72	73	73A	74	74A	-000 0000	-000 0000	-uuu uuuu	
SSPBUF	70	71	71A	72	73	73A	74	74A	xxxx xxxx	uuuu uuuu	uuuu uuuu	
SSPCON	70	71	71A	72	73	73A	74	74A	0000 0000	0000 0000	uuuu uuuu	
CCPR1L	70	71	71A	72	73	73A	74	74A	xxxx xxxx	uuuu uuuu	uuuu uuuu	
CCPR1H	70	71	71A	72	73	73A	74	74A	XXXX XXXX	uuuu uuuu	uuuu uuuu	
CCP1CON	70	71	71A	72	73	73A	74	74A	00 0000	00 0000	uu uuuu	
RCSTA	70	71	71A	72	73	73A	74	74A	0000 -00x	0000 -00x	uuuu –uuu	
TXREG	70	71	71A	72	73	73A	74	74A	0000 0000	0000 0000	uuuu uuuu	
RCREG	70	71	71A	72	73	73A	74	74A	0000 0000	0000 0000	uuuu uuuu	
CCPR2L	70	71	71A	72	73	73A	74	74A	XXXX XXXX	uuuu uuuu	uuuu uuuu	
CCPR2H	70	71	71A	72	73	73A	74	74A	XXXX XXXX	uuuu uuuu	uuuu uuuu	
CCP2CON	70	71	71A	72	73	73A	74	74A	0000 0000	0000 0000	uuuu uuuu	
ADRES	70	71	71A	72	73	73A	74	74A	xxxx xxxx	uuuu uuuu	uuuu uuuu	
	70	71	71A	72	73	73A	74	74A	00-0 0000	00-0 0000	uu-u uuuu	
ADCON0	70	71	71A	72	73	73A	74	74A	0000 00-0	0000 00-0	uuuu uu-u	
OPTION	70	71	71A	72	73	73A	74	74A	1111 1111	1111 1111	uuuu uuuu	
	70	71	71A	72	73	73A	74	74A	1 1111	1 1111	u uuuu	
TRISA	70	71	71A	72	73	73A	74	74A	11 1111	11 1111	uu uuuu	
TRISB	70	71	71A	72	73	73A	74	74A	1111 1111	1111 1111	uuuu uuuu	
TRISC	70	71	71A	72	73	73A	74	74A	1111 1111	1111 1111	uuuu uuuu	
TRISD	70	71	71A	72	73	73A	74	74A	1111 1111	1111 1111	uuuu uuuu	
TRISE	70	71	71A	72	73	73A	74	74A	0000 -111	0000 -111	uuuu –uuu	
	70	71	71A	72	73	73A	74	74A	-0 0000	-0 0000	-u uuuu	
PIE1	70	71	71A	72	73	73A	74	74A	-000 0000	-000 0000	-uuu uuuu	
	70	71	71A	72	73	73A	74	74A	0000 0000	0000 0000	uuuu uuuu	
PIE2	70	71	71A	72	73	73A	74	74A	0	0	u	
PCON	70	71	71A	72	73	73A	74	74A	0-	u-	u-	
PCON	70	71	71A	72	73	73A	74	74A	Ou	uu	uu	
PR2	70	71	71A	72	73	73A	74	74A	1111 1111	1111 1111	1111 1111	
SSPADD	70	71	71A	72	73	73A	74	74A	0000 0000	0000 0000	uuuu uuuu	
SSPSTAT	70	71	71A	72	73	73A	74	74A	00 0000	00 0000	uu uuuu	
TXSTA	70	71	71A	72	73	73A	74	74A	0000 -010	0000 -010	uuuu -uuu	
SPBRG	70	71	71A	72	73	73A	74	74A	0000 0000	0000 0000	uuuu uuuu	
	70	71	71A	72	73	73A	74	74A	00	00	uu	
ADCON1	70	71	71A	72	73	73A	74	74A	000	000	uuu	

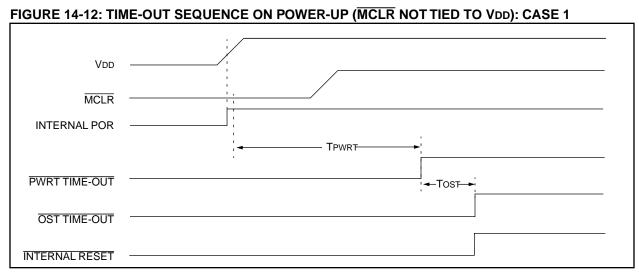
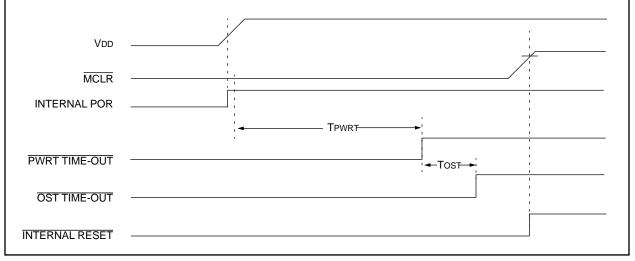
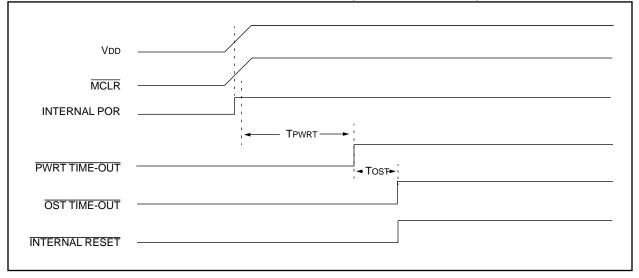
TABLE 14-10: INITIALIZATION CONDITIONS FOR ALL REGISTERS (Cont.'d)

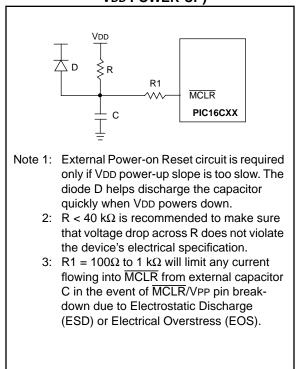
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', <math>q = value depends on condition

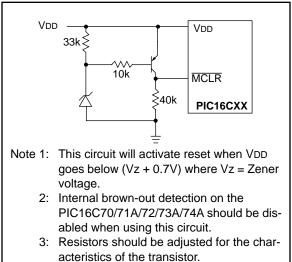
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 14-9 for reset value for specific condition.


FIGURE 14-13: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2


FIGURE 14-14: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

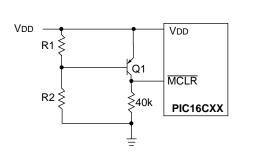

FIGURE 14-15: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

FIGURE 14-16: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

FIGURE 14-17: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

Note 1: This brown-out circuit is less expensive, albeit less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

- 2: Internal brown-out detection on the PIC16C70/71A/72/73A/74A should be disabled when using this circuit.
- 3: Resistors should be adjusted for the characteristics of the transistor.

14.5 Interrupts

Applicable Devices

70 71 71A 72 73 73A 74 74A

The PIC16C7X family has up to 12 sources of interrupt:

Interrupt Sources			Ар	plicat	ole De	vices		
External interrupt RB0/INT	70	71	71A	72	73	73A	74	74A
TMR0 overflow interrupt	70	71	71A	72	73	73A	74	74A
PORTB change interrupts (pins RB7:RB4)	70	71	71A	72	73	73A	74	74A
A/D Interrupt	70	71	71A	72	73	73A	74	74A
TMR1 overflow interrupt	70	71	71A	72	73	73A	74	74A
TMR2 matches period interrupt	70	71	71A	72	73	73A	74	74A
CCP1 interrupt	70	71	71A	72	73	73A	74	74A
CCP2 interrupt	70	71	71A	72	73	73A	74	74A
USART Receive	70	71	71A	72	73	73A	74	74A
USART Transmit	70	71	71A	72	73	73A	74	74A
Synchronous serial port interrupt	70	71	71A	72	73	73A	74	74A
Parallel slave port read/write interrupt	70	71	71A	72	73	73A	74	74A

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note: Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

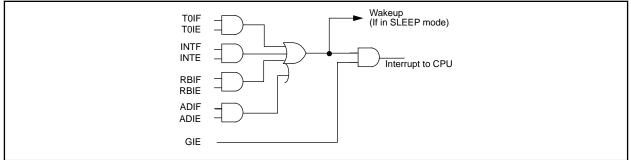
When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 14-22). The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

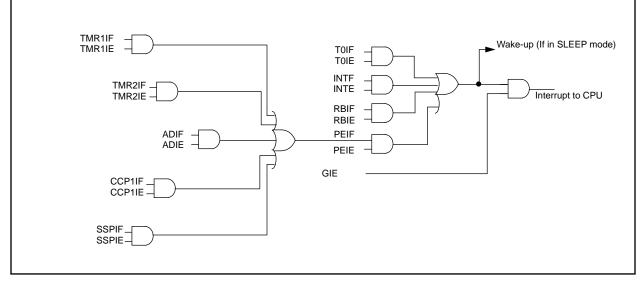
Note: For the PIC16C71/73/74 only, If an interrupt occurs while the Global Interrupt Enable (GIE) bit is being cleared, the GIE bit may unintentionally be re-enabled by the user's Interrupt Service Routine (the RETFIE instruction). The events that would cause this to occur are: 1. An instruction clears the GIE bit while an interrupt is acknowledged. The program branches to the Interrupt 2. vector and executes the Interrupt Service Routine. 3. The Interrupt Service Routine completes with the execution of the RET-FIE instruction. This causes the GIE bit to be set (enables interrupts), and the program returns to the instruction after the one which was meant to disable interrupts. Perform the following to ensure that interrupts are globally disabled: LOOP BOF INTCON, GIE ; Disable global ; interrupt bit BTFSC INTCON, GIE ; Global interrupt ; disabled? ; NO, try again

;

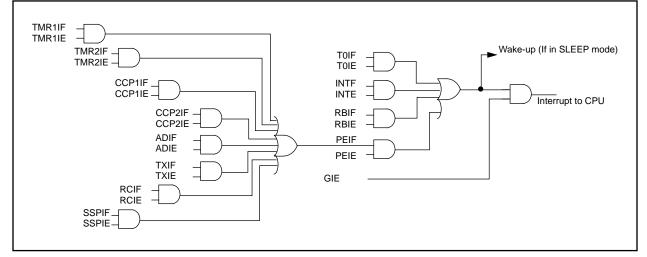
GOTO LOOP


:

Yes, continue


with program

flow


FIGURE 14-18: INTERRUPT LOGIC FOR PIC16C70/71/71A

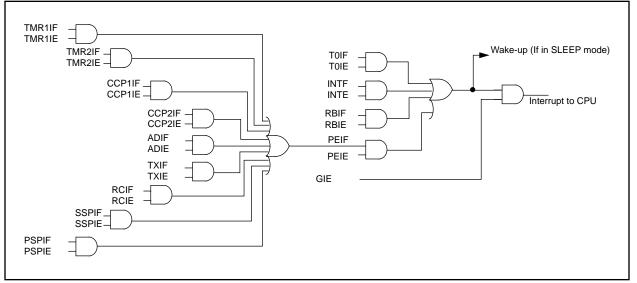

FIGURE 14-19: INTERRUPT LOGIC FOR PIC16C72

FIGURE 14-21: INTERRUPT LOGIC FOR PIC16C74/74A

FIGURE 14-22: INT PIN INTERRUPT TIMING

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
OSC1					
CLKOUT (3)			\/	\/	
INT pin		, , (1)	· · · · · · · · · · · · · · · · · · · ·	- - - 	
INTF flag (INTCON<1>)		 	Interrupt Latency 2	-	
GIE bit (INTCON<7>)	i'	1 1 1			
INSTRUCTION	FLOW	1 1 1	, , , , , , , , , , , , , , , , , , ,		· · · · · · · · · · · · · · · · · · ·
PC	PC	X PC+1	PC+1	X0004h	X0005h
Instruction (fetched	Inst (PC)	Inst (PC+1)	—	Inst (0004h)	Inst (0005h)
Instruction { executed {	Inst (PC-1)	Inst (PC)	Dummy Cycle	Dummy Cycle	Inst (0004h)
1					

Note 1: INTF flag is sampled here (every Q1).
2: Interrupt latency = 3-4 Tcy where Tcy = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
3: CLKOUT is available only in RC oscillator mode.
4: For minimum width of INT pulse, refer to AC specs.
5: INTF is enabled to be set anytime during the Q4-Q1 cycles.

14.5.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if bit INTEDG (OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wakeup. See Section 14.8 for details on SLEEP mode.

14.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>). (Section 7.0)

14.5.3 PORTB INTCON CHANGE

An input change on PORTB <7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). (Section 5.2)

Note: For the PIC16C71/73/74 only, if a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may not get set.

14.6 Context Saving During Interrupts Applicable Devices 70 71 71A 72 73 73A 74 74A

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt i.e., W register and STATUS register. This will have to be implemented in software.

Example 14-1 and Example 14-2 store and restore the STATUS and W registers. For PIC16C72/73/73A/74/74A, the register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., if W_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1). For PIC16C70/71/71A, the user register, STATUS_TEMP, must be defined in bank 0.

The example:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Executes the ISR code.
- d) Restores the STATUS register (and bank select bit).
- e) Restores the W register.

EXAMPLE 14-1: SAVING STATUS AND W REGISTERS IN RAM (PIC16C70/71/71A)

MOVWF W_TEMP SWAPF STATUS,W MOVWF STATUS_TEMP : :(ISR) :	;Copy W to TEMP register, could be bank one or zero ;Swap status to be saved into W ;Save status to bank zero STATUS_TEMP register
SWAPF STATUS_TEMP,W	;Swap STATUS_TEMP register into W ;(sets bank to original state)
MOVWF STATUS	;Move W into STATUS register
SWAPF W_TEMP,F	;Swap W_TEMP
SWAPF W_TEMP,W	;Swap W_TEMP into W

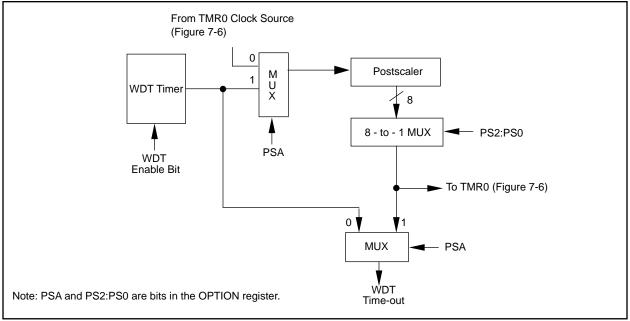
EXAMPLE 14-2: SAVING STATUS AND W REGISTERS IN RAM (PIC16C72/73/73A/74/74A)

MOVWF SWAPF BCF MOVWF : (ISR)	W_TEMP STATUS,W STATUS,RPO STATUS_TEMP	<pre>;Copy W to TEMP register, could be bank one or zero ;Swap status to be saved into W ;Change to bank zero, regardless of current bank ;Save status to bank zero STATUS_TEMP register</pre>
: SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
MOVWF SWAPF SWAPF	STATUS W_TEMP,F W_TEMP,W	;(sets bank to original state) ;Move W into STATUS register ;Swap W_TEMP ;Swap W_TEMP into W

14.7 <u>Watchdog Timer (WDT)</u> Applicable Devices 70|71|71A|72|73|73A|74|74A

The Watchdog Timer is as a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The WDT can be permanently disabled by clearing configuration bit WDTE (Section 14.1).

14.7.1 WDT PERIOD


The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

14.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken into account that under worst case conditions (VDD = Min., Temperature = Max., and max. WDT prescaler) it may take several seconds before a WDT time-out occurs.

FIGURE 14-23: WATCHDOG TIMER BLOCK DIAGRAM

FIGURE 14-24: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	BODEN ⁽¹⁾	CP1	CP0	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Figure 14-1, Figure 14-2, Figure 14-3, and Figure 14-4 for operation of these bits.

14.8 Power-down Mode (SLEEP)

Applicable Devices							
70	71	71A	72	73	73A	74	74A

Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the \overline{PD} bit (STATUS<3>) is cleared, the \overline{TO} (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD, or VSS, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D, disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level (VIHMC).

14.8.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- 1. External reset input on MCLR pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change, or some Peripheral Interrupts.

External MCLR Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The TO and PD bits in the STATUS register can be used to determine the cause of device reset. The PD bit, which is set on

power-up is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. SSP (Start/Stop) bit detect interrupt.
- 3. SSP transmit or receive in slave mode (SPI/ $\rm l^2C).$
- 4. CCP capture mode interrupt.
- 5. Parallel Slave Port read or write.
- 6. A/D conversion (when A/D clock source is RC).
- 7. Special event trigger (Timer1 in asynchronous mode using an external clock).
- 8. USART TX or RX (synchronous slave mode).

Other peripherals can not generate interrupts since during SLEEP, no on-chip Q clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

Note:	Interrupts that are capable of waking the
	device from SLEEP will still set the individ-
	ual flag bits regardless of the state of the
	global enable bit, GIE.

The WDT is cleared when the device wakes-up from sleep, regardless of the source of wake-up.

FIGURE 14-25: WAKE-UP FROM SLEEP THROUGH INTERRUPT

; Q1 Q2 Q3 Q4 ; Q1 OSC1/\\\	Q2 Q3 Q4 ; Q1 /	WWW	Q1 Q2 Q3 Q4 ;	@1 @2 @3 @4 ; /~///_//_//	Q1 Q2 Q3 Q4; ⌒/	Q1 Q2 Q3 Q4 ; ~
CLKOUT(4)		Tost(2)	/	\'	/	
INT pin	1		1	1	1	
INTF flag (INTCON<1>)	1			Interrupt Latency (Note 2)		
GIE bit (INTCON<7>)	Processo SLEEI		י י י י	'	1 1 1 1	
INSTRUCTION FLOW	I I			1	1	1
PC PC	PC+1 X	PC+2	PC+2	(PC + 2	(0004h)	(0005h
Instruction { Inst(PC) = SLEEP	Inst(PC + 1)	1	Inst(PC + 2)	1	Inst(0004h)	Inst(0005h)
Instruction { Inst(PC - 1)	SLEEP	1	Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

Note 1: XT, HS or LP oscillator mode assumed.

2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.

3: GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

14.9 Program Verification/Code Protection Applicable Devices

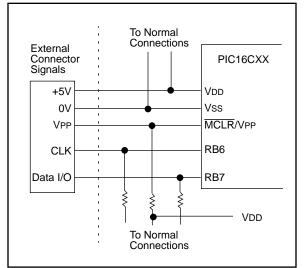
70 71 71A 72 73 73A 74 74A

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip does not recommend code pro-
	tecting windowed devices.

14.10 ID Locations Applicable Devices 70|71|71A|72|73|73A|74|74A

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of ID location are used.


14.11 In-Circuit Serial Programming Applicable Devices 70/71/71A/72/73/73A/74/74A

PIC16CXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a program/verify mode by holding the RB6 and RB7 pins low while raising the $\overline{\text{MCLR}}$ (VPP) pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After reset, to place the device into programming/verify mode, the program counter (PC) is at location 00h. A 6bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C6X/7X Programming Specifications (Literature #DS30228).

FIGURE 14-26: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

NOTES:

15.0 INSTRUCTION SET SUMMARY

Applicable Devices

Each PIC16CXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 15-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 15-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 15-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
TO	Time-out bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
<>	Register bit field
E	In the set of
italics	User defined term (font is courier)

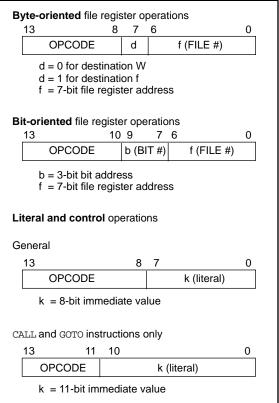
The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- · Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 15-2 lists the instructions recognized by the MPASM assembler.

Figure 15-1 shows the three general formats that the instructions can have.


Note: To maintain upward compatibility with future PIC16CXX products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 15-1: GENERAL FORMAT FOR INSTRUCTIONS

TABLE 15-2: PIC16CXX INSTRUCTION SET

Mnemonic,		Description	Cycles		14-Bit Opcode			Status	Notes
Operands				MSb			LSb	Affected	
BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIEN	ED FIL	E REGISTER OPERATIONS	-						
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL A	ND CO	NTROL OPERATIONS							
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	1

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

15.1 Instruction Descriptions

ADDLW	Add Literal and W						
Syntax:	[<i>label</i>] ADDLW k						
Operands:	$0 \le k \le 255$						
Operation:	$(W) + k \to (W)$						
Status Affected:	C, DC, Z						
Encoding:	11 111x kkkk	kkkk					
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.						
Words:	1						
Cycles:	1						
Example	ADDLW 0x15						
	Before Instruction W = 0x10 After Instruction W = 0x25						

ANDLW	And Literal with W						
Syntax:	[<i>label</i>] ANDLW k						
Operands:	$0 \le k \le 255$						
Operation:	(W) .AND. (k) \rightarrow (W)						
Status Affected:	Z						
Encoding:	11 1001 kkkk kkkk						
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.						
Words:	1						
Cycles:	1						
Example	ANDLW 0x5F						
	Before Instruction W = 0xA3 After Instruction W = 0x03						

ADDWF	Add W and f					
Syntax:	[<i>label</i>] ADDWF f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	(W) + (f) \rightarrow (dest)					
Status Affected:	C, DC, Z					
Encoding:	00 0111 dfff ffff					
Description:	Add the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example	ADDWF FSR, 0					
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0xD9 FSR = 0xC2					

ANDWF	AND W with f				
Syntax:	[<i>label</i>] ANDWF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(W) .AND. (f) \rightarrow (dest)				
Status Affected:	Z				
Encoding:	00 0101 dfff ffff				
Description:	AND the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example	ANDWF FSR, 1				
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0x17 FSR = 0x02				

PIC16C7X

BCF	Bit Clear	f					
Syntax:	[label] BCF f,b						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$						
Operation:	$0 \rightarrow (f < b;$	>)					
Status Affected:	None						
Encoding:	01	00bb	bfff	ffff			
Description:	Bit 'b' in re	gister 'f' is	s cleared.				
Words:	1						
Cycles:	1						
Example	BCF FLAG_REG, 7						
	Before Instruction FLAG_REG = 0xC7 After Instruction FLAG_REG = 0x47						

BTFSC	Bit Test,	Bit Test, Skip if Clear						
Syntax:	[<i>label</i>] B	[label] BTFSC f,b						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$							
Operation:	skip if (f) = 0							
Status Affected:	None							
Encoding:	01	10bb	bfff	ffff				
Description:	If bit 'b' in register 'f' is '0' then the next instruction is skipped. If bit 'b' is '0' then the next instruction fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a 2 cycle instruction.							
Words:	1							
Cycles:	1(2)							
Example	HERE FALSE TRUE	BTFSC GOTO • •	FLAG,1 PROCESS_	CODE				
	Before In		ddress H	ERE				
	After Instruction if FLAG<1> = 0, PC = address TRUE if FLAG<1>=1, PC = address FALSE							

BSF	Bit Set f			
Syntax:	[<i>label</i>]BSF f,b			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$1 \rightarrow (f < b >)$			
Status Affected:	None			
Encoding:	01	01bb	bfff	ffff
Description:	Bit 'b' in register 'f' is set.			
Words:	1			
Cycles:	1			
Example	BSF FLAG_REG, 7			
	Before Instruction FLAG_REG = 0x0A After Instruction FLAG_REG = 0x8A			

BTFSS	Bit Test f, Skip if Set			
Syntax:	[label] BTFSS f,b			
Operands:	$0 \le f \le 127$ $0 \le b < 7$			
Operation:	skip if (f) = 1			
Status Affected:	None			
Encoding:	01 11bb bfff ffff			
Description:	If bit 'b' in register 'f' is '1' then the next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a 2 cycle instruction.			
Words:	1			
Cycles:	1(2)			
Example	HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE • • •			
	Before Instruction			
	$\begin{array}{rcl} PC &=& address & \mbox{HERE} \\ \mbox{After Instruction} \\ & \mbox{if FLAG<1>} = 0, \\ PC &=& address & \mbox{FALSE} \\ & \mbox{if FLAG<1>} = 1, \\ PC &=& address & \mbox{TRUE} \\ \end{array}$			

CLRF	Clear f			
Syntax:	[label] CLRF f			
Operands:	$0 \le f \le 127$			
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$			
Status Affected:	Z			
Encoding:	00 0001 1fff ffff			
Description:	The contents of register 'f' are cleared and the Z bit is set.			
Words:	1			
Cycles:	1			
Example	CLRF FLAG_REG			
	Before Instruction FLAG_REG = 0x5A After Instruction FLAG_REG = 0x00 Z = 1			

CALL	Call Subroutine			
Syntax:	[<i>label</i>] CALL k			
Operands:	$0 \le k \le 2047$			
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>			
Status Affected:	None			
Encoding:	10 0kkk kkkk kkkk			
Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two cycle instruction.			
Words:	1			
Cycles:	2			
Example	HERE CALL THERE			
	Before Instruction PC = Address HERE After Instruction PC = Address THERE TOS = Address HERE+1			

CLRW	Clear W					
Syntax:	[label]	[label] CLRW				
Operands:	None					
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$					
Status Affected:	Z					
Encoding:	00 0001 0xxx xxxx					
Description:	W register is cleared. Zero bit (Z) is set.					
Words:	1					
Cycles:	1					
Example	CLRW					
	Before In	structior	n			
		= W	0x5A			
	After Instruction					
		W =	0x00			
		Z =	1			

CLRWDT	Clear Wa	tchdog	Timer		
Syntax:	[label]	CLRWD [.]	Т		
Operands:	None				
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$				
Status Affected:	TO, PD				
Encoding:	00	0000	0110	0100	
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.				
Words:	1				
Cycles:	1				
Example	CLRWDT				
	Before Instruction WDT counter = ? After Instruction WDT counter = 0x00				
		WDT pres		0	
		TO	=	1	
		PD	=	1	

DECF	Decreme	ent f			
Syntax:	[label]	DECF f	,d		
Operands:	0 ≤ f ≤ 127 d ∈ [0,1]				
Operation:	(f) - 1 $ ightarrow$	(dest)			
Status Affected:	Z				
Encoding:	00	0011	dff	f	ffff
Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example	DECF	CNT,	1		
	After Inst	CNT Z		0x01 0 0x00 1	

COMF	Compler	nent f				
Syntax:	[label]	[label] COMF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	0 ≤ f ≤ 127 d ∈ [0,1]				
Operation:	$(\bar{\mathrm{f}}) ightarrow (\mathrm{de}$	st)				
Status Affected:	Z					
Encoding:	00	1001	dfff	ffff		
Description:	The contents of register 'f' are comple- mented. If 'd' is 0 the result is stored in W. If 'd' is 1 the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example	COMF	REG	G1,0			
	After Inst	REG1	= 0x	(13)		
		W	•••	(EC		

DECFSZ	Decrement f, Skip if 0			
Syntax:	[label] DECFSZ f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$			
Operation:	(f) - 1 \rightarrow (dest); skip if result = 0			
Status Affected:	None			
Encoding:	00 1011 dfff ffff			
Description:	The contents of register 'f' are decre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two cycle instruction.			
Words:	1			
Cycles:	1(2)			
Example	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE • •			
	$\begin{array}{rcl} \text{Before Instruction} & \\ \text{PC} &= & \text{address HERE} \\ \text{After Instruction} & \\ \text{CNT} &= & \text{CNT} - 1 \\ \text{if CNT} &= & 0, \\ \text{PC} &= & \text{address CONTINUE} \\ \text{if CNT} \neq & 0, \\ \text{PC} &= & \text{address HERE} + 1 \\ \end{array}$			

GOTO	Unconditional Branch	INCFSZ	Increment f, Skip if 0
Syntax:	[<i>label</i>] GOTO k	Syntax:	[<i>label</i>] INCFSZ f,d
Operands:	$0 \le k \le 2047$	Operands:	$0 \le f \le 127$
Operation:	$k \rightarrow PC < 10:0 >$		d ∈ [0,1]
	$PCLATH<4:3> \rightarrow PC<12:11>$	Operation:	(f) + 1 \rightarrow (dest), skip if result = 0
Status Affected:	None	Status Affected:	None
Encoding:	10 1kkk kkkk kkkk	Encoding:	00 1111 dfff ffff
Description: Words:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two cycle instruction.	Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a
			two cycle instruction.
Cycles:	2	Words:	1
Example	GOTO THERE	Cycles:	1(2)
	After Instruction PC = Address THERE	Example	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • •
			Before Instruction PC = address HERE

INCF	Increment f				
Syntax:	[label] INCF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(f) + 1 \rightarrow (dest)				
Status Affected:	Z				
Encoding:	00 1010 dfff ffff				
Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.				
Words:	1				
Cycles:	1				
Example	INCF CNT, 1				
	Before Instruction CNT = 0xFF Z = 0 After Instruction CNT = 0x00 Z = 1				

IORLW	Inclusive OR Literal with W			
Syntax:	[label] IORLW k			
Operands:	$0 \le k \le 255$			
Operation:	(W) .OR. $k \rightarrow$ (W)			
Status Affected:	Z			
Encoding:	11 1000 kkkk kkkk			
Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The result is placed in the W register.			
Words:	1			
Cycles:	1			
Example	IORLW 0x35			
	Before Instruction W = 0x9A After Instruction W = 0xBF Z = 1			

After Instruction CNT = C

if CNT=

PC =

if CNT≠

PC =

CNT + 1

address CONTINUE

address HERE +1

0,

0,

IORWF	Inclusive C	RWwith	f	
Syntax:	[label] IC	DRWF f,	d	
Operands:	0 ≤ f ≤ 127 d ∈ [0,1]			
Operation:	(W) .OR. (f)	\rightarrow (dest)		
Status Affected:	Z			
Encoding:	00 0	100 df	ff	ffff
Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.			
Words:	1			
Cycles:	1			
Example	IORWF	RES	ULT, O)
	W	SULT = =	0x13 0x91	
	After Instruc RE W Z	stion SULT = = =	0x13 0x93 1	

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z
Encoding:	00 1000 dfff ffff
	a destination dependant upon the sta- tus of d. If $d = 0$, destination is W reg- ister. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.
Words:	1
Cycles:	1
Example	MOVF FSR, 0
	After Instruction W = value in FSR register Z = 1

MOVLW	Move Literal to W
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \le k \le 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None
Encoding:	11 00xx kkkk kkkk
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.
Words:	1
Cycles:	1
Example	MOVLW 0x5A
	After Instruction W = 0x5A

MOVWF	Move W to f
Syntax:	[label] MOVWF f
Operands:	$0 \le f \le 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Encoding:	00 0000 1fff ffff
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example	MOVWF OPTION
	$\begin{array}{rcl} \text{Before Instruction} & & \\ & \text{OPTION} & = & 0xFF \\ & W & = & 0x4F \\ \text{After Instruction} & & \\ & & \text{OPTION} & = & 0x4F \\ & W & = & 0x4F \end{array}$

NOP	No Operation			
Syntax:	[label]	NOP		
Operands:	None			
Operation:	No opera	ition		
Status Affected:	None			
Encoding:	00	0000	0xx0	0000
Description:	No operati	ion.		
Words:	1			
Cycles:	1			
Example	NOP			

RETFIE	Return fi	rom Inte	rrupt	
Syntax:	[label]	RETFIE		
Operands:	None			
Operation:	$\begin{array}{l} TOS \rightarrow F \\ 1 \rightarrow GIE \end{array}$	PC,		
Status Affected:	None			
Encoding:	00	0000	0000	1001
Description:	Return from and Top of the PC. Int ting Globa (INTCON< instruction	f Stack (T terrupts a I Interrupt (7>). This	OS) is load re enabled t Enable bi	ded in I by set- t, GIE
Words:	1			
Cycles:	2			
Example	RETFIE			
		rrupt PC = GIE =	TOS 1	

OPTION	Load Op	tion Reg	gister	
Syntax:	[label]	OPTION	٧	
Operands:	None			
Operation:	$(W) \to OPTION$			
Status Affected:	None			
Encoding:	00	0000	0110	0010
Description:	The contents of the W register are loaded in the OPTION register. This instruction is supported for code com- patibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it.			
Cycles:	1			
Example				
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.			

RETLW	Return with Literal in W
Syntax:	[<i>label</i>] RETLW k
Operands:	$0 \le k \le 255$
Operation:	$\begin{array}{l} k \rightarrow (W);\\ TOS \rightarrow PC \end{array}$
Status Affected:	None
Encoding:	11 01xx kkkk kkkk
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two cycle instruction.
Words:	1
Cycles:	2
Example	CALL TABLE ;W contains table ;offset value .W now has table value ADDWF PC ;W = offset RETIN k1 ;Begin table
	RETIW k2 ; RETIW kn ; End of table Before Instruction W = 0x07 After Instruction W = value of k8

RETURN	Return fi	rom Sub	routine	
Syntax:	[label]	RETUR	N	
Operands:	None			
Operation:	$TOS\toF$	с		
Status Affected:	None			
Encoding:	00	0000	0000	1000
Description:	Return from POPed and is loaded in This is a two	d the top nto the pr	of the stac ogram cou	k (TOS)
Words:	1			
Cycles:	2			
Example	RETURN			
	After Inte	rrupt PC =	TOS	

RRF	Rotate Right	f throu	gh Ca	arry
Syntax:	[label] RRF	f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$			
Operation:	See description	on belov	N	
Status Affected:	С			
Encoding:	00 110	00 df	ff	ffff
Description:	The contents of one bit to the rig Flag. If 'd' is 0 ti the W register. placed back in	ght throu he result If 'd' is 1 register '	igh the is plac the res	Carry ced in
Words:	1			
Cycles:	1			
Example	RRF	REG	1,0	
	Before Instruct REG C After Instructio REG W C	1 = = on	0	0110 0110 0011

RLF	Rotate Left f through Carry	SLEEP
Syntax:	[<i>label</i>] RLF f,d	Syntax:
Operands:	$0 \le f \le 127$ d $\in [0,1]$	Operands:
Operation:	See description below	Operation:
Status Affected:	С	
Encoding:	00 1101 dfff ffff	
Description: Words:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.	Status Affected: Encoding: Description:
Cycles: Example	1 RLF REG1,0	Words:
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Cycles: Example:

Syntax:	[label]	SLEEF)	
Operands:	None			
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$			
Status Affected:	$\overline{TO}, \overline{PD}$			
Encoding:	00	0000	0110	0011
Description:	The power cleared. T set. Watc caler are The proce mode with	Time-out s hdog Time cleared. essor is pu n the oscil	tatus bit, er and its ut into SLI llator stop	TO is pres- EEP ped.
	See Secti	on 14.8 fo	or more de	etails.
Nords:	1			
Cycles:	1			
Example:	SLEEP			

SUBLW	Subtract W from Literal	SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBLW k	Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$0 \le k \le 255$	Operands:	$0 \le f \le 127$
Operation:	$k \text{ - } (W) \to (W)$		d ∈ [0,1]
Status	C, DC, Z	Operation:	(f) - (W) \rightarrow (dest)
Affected:		Status	C, DC, Z
Encoding:	11 110x kkkk kkkk	Affected:	
Description:	The W register is subtracted (2's com- plement method) from the eight bit literal 'k'. The result is placed in the W register.	Encoding: Description:	00 0010 dfff ffff Subtract (2's complement method) W register from register 'f'. If 'd' is 0 the result is
Words:	1		stored in the W register. If 'd' is 1 the result is stored back in register 'f'.
Cycles:	1	Words:	1
Example 1:	SUBLW 0x02	Cycles:	1
	Before Instruction	Example 1:	SUBWF REG1,1
	W = 1 $C = ?$		Before Instruction
	After Instruction		REG1 = 3
	W = 1		W = 2 $C = ?$
	C = 1; result is positive		After Instruction
Example 2:	Before Instruction		REG1 = 1
	W = 2 C = ?		W = 2
	After Instruction	Example 2:	C = 1; result is positive Before Instruction
	W = 0	Example 2:	
	C = 1; result is zero		REG1 = 2 W = 2
Example 3:	Before Instruction		C = ?
	W = 3		After Instruction
	C = ?		REG1 = 0 W = 2
	After Instruction		C = 1; result is zero
	W = 0xFF C = 0; result is nega-	Example 3:	Before Instruction
	tive		REG1 = 1
			$ \begin{array}{ccc} W & = & 2 \\ C & = & 2 \end{array} $
			After Instruction
			REG1 = 0xFF
			W = 2
			C = 0; result is negative

SWAPF	Swap Nibbles in f	XORLW	Exclusive OR Literal with W
Syntax:	[label] SWAPF f,d	Syntax:	[<i>label</i>] XORLW k
Operands:	$0 \le f \le 127$	Operands:	$0 \le k \le 255$
	d ∈ [0,1]	Operation:	(W) .XOR. $k \rightarrow (W)$
Operation:	$(f<3:0>) \to (dest<7:4>),$ $(f<7:4>) \to (dest<3:0>)$	Status Affected:	Z
Status Affected:	None	Encoding:	11 1010 kkkk kkkk
Encoding:	00 1110 dfff ffff	Description:	The contents of the W register are XOR'ed with the eight bit literal 'k'.
Description:	The upper and lower nibbles of regis- ter 'f' are exchanged. If 'd' is 0 the		The result is placed in the W register.
	result is placed in W register. If 'd' is 1 the result is placed in register 'f'.	Words:	1
Words:	1	Cycles:	1
Cycles:	1	Example:	XORLW 0xAF
Example	SWAPF REG, 0		Before Instruction
·	Before Instruction		W = 0xB5
	REG1 = 0xA5		After Instruction
	After Instruction		W = 0x1A
	REG1 = 0xA5 W = 0x5A		

[<i>label</i>] 5 ≤ f ≤ 7 (W) → TF None ₀₀	RIS regis	f ster f;				
$(W) \rightarrow TF$ None		ster f;				
None		ter f;				
00						
	0000	0110	Offf			
The instruction is supported for code compatibility with the PIC16C5X prod- ucts. Since TRIS registers are read- able and writable, the user can directly address them.						
1						
1						
To maintain upward compatibility with future PIC16CXX products, do not use this instruction.						
í	ucts. Sinc able and w address th 1 1 To maint with futu	ucts. Since TRIS re able and writable, th address them. 1 1 To maintain upwa with future PIC16	ucts. Since TRIS registers are able and writable, the user car address them. 1 1 To maintain upward compa with future PIC16CXX produ			

XORWF	Exclusive OR W with f							
Syntax:	[label] XORWF f,d							
Operands:	0 ≤ f ≤ 127 d ∈ [0,1]							
Operation:	(W) .XOF	R. (f) \rightarrow (c	dest)					
Status Affected:	Z							
Encoding:	00 0110 dfff ffff							
Description: Words:		th register ored in the	'f'. If ' e W re					
Cycles:	1							
Example	XORWF REG 1							
	Before Instruction							
		REG W	= =	0xAF 0xB5				
	After Inst	ruction						
		REG W	= =	0x1A 0xB5				

16.0 DEVELOPMENT SUPPORT

16.1 <u>Development Tools</u>

The PIC16/17 microcontrollers are supported with a full range of hardware and software development tools:

- PICMASTER™ Real-Time In-Circuit Emulator
- PRO MATE™ Universal Programmer
- PICSTART[™] Low-Cost Prototype Programmer
- PICDEM-1 Low-Cost Demonstration Board
- PICDEM-2 Low-Cost Demonstration Board
- MPASM Assembler
- MPSIM Software Simulator
- C Compiler (MP-C)
- Fuzzy logic development system (fuzzyTECH[®]–MP)

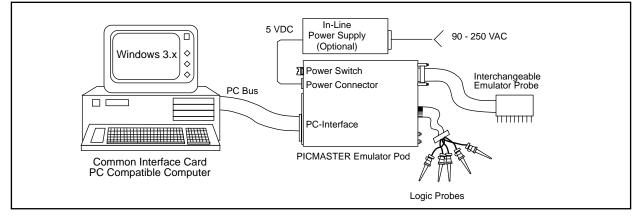
16.2 <u>PICMASTER: High Performance</u> <u>Universal In-Circuit Emulator with</u> <u>MPLAB IDE</u>

The PICMASTER Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for all microcontrollers in the PIC16C5X, PIC16CXX and PIC17CXX families. PICMASTER is supplied with the MPLAB[™] Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment. A PICMASTER System configuration is shown in Figure 16-1.

Interchangeable target probes allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the PICMASTER allows expansion to support all new PIC16C5X, PIC16CXX and PIC17CXX microcontrollers. The PICMASTER Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC compatible 386 (and better) machine platform and Microsoft WindowsTM 3.x environment was chosen to best make these features available to you, the end user.

The PICMASTER Universal Emulator System consists primarily of four major components:

- Host-Interface Card
- Emulator Control Pod
- Target-Specific Emulator Probe
- PC-Host Emulation Control Software


The Windows operating system allows the developer to take full advantage of the many powerful features and functions of the PICMASTER system.

PICMASTER emulation can operate in one window, while a text editor is running in a second window.

PC-Host Emulation Control software takes full advantage of Dynamic Data Exchange (DDE), a feature of Windows. DDE allows data to be dynamically transferred between two or more Windows programs. With this feature, data collected with PICMASTER can be automatically transferred to a spreadsheet or database program for further analysis.

Under Windows, as many as four PICMASTER emulators can be run simultaneously from the same PC making development of multi-microcontroller systems possible (e.g., a system containing a PIC16CXX processor and a PIC17CXX processor).

The PICMASTER probes specifications are shown in Table 16-1.

FIGURE 16-1: PICMASTER SYSTEM CONFIGURATION

TABLE 16-1:PICMASTER PROBE
SPECIFICATION

	DICMASTED	PROBE				
Devices	evices PICMASTER PROBE		Operating Voltage			
PIC16C54	PROBE-16D	20 MHz	4.5V - 5.5V			
PIC16C54A	PROBE-16D	20 MHz	4.5V - 5.5V			
PIC16CR54	PROBE-16D	20 MHz	4.5V - 5.5V			
PIC16CR54A	PROBE-16D ⁽¹⁾	20 MHz	4.5V - 5.5V			
PIC16CR54B	PROBE-16D ⁽¹⁾	20 MHz	4.5V - 5.5V			
PIC16C55	PROBE-16D	20 MHz	4.5V - 5.5V			
PIC16CR55	PROBE-16D ⁽¹⁾	20 MHz	4.5V - 5.5V			
PIC16C56	PROBE-16D	20 MHz	4.5V - 5.5V			
PIC16CR56	PROBE-16D ⁽¹⁾	20 MHz	4.5V - 5.5V			
PIC16C57	PROBE-16D	20 MHz	4.5V - 5.5V			
PIC16CR57A	PROBE-16D	20 MHz	4.5V - 5.5V			
PIC16CR57B	PROBE-16D ⁽¹⁾	20 MHz	4.5V - 5.5V			
PIC16C58A	PROBE-16D	20 MHz	4.5V - 5.5V			
PIC16CR58A	PROBE-16D	20 MHz	4.5V - 5.5V			
PIC16CR58B	PROBE-16D ⁽¹⁾	20 MHz	4.5V - 5.5V			
PIC16C61	PROBE-16G	10 MHz	4.5V - 5.5V			
PIC16C62	PROBE-16E	10 MHz	4.5V - 5.5V			
PIC16C62A	PROBE-16E ⁽¹⁾	10 MHz	4.5V - 5.5V			
PIC16CR62	PROBE-16E ⁽¹⁾	10 MHz	4.5V - 5.5V			
PIC16C63	PROBE-16F ⁽¹⁾	10 MHz	4.5V - 5.5V			
PIC16C64	PROBE-16E	10 MHz	4.5V - 5.5V			

TABLE 16-1: PICMASTER PROBE SPECIFICATION (Cont.'d)

During	PICMASTER		DBE
Devices	PROBE	Maximum Frequency	Operating Voltage
PIC16C64A	PROBE-16E ⁽¹⁾	10 MHz	4.5V - 5.5V
PIC16CR64	PROBE-16E ⁽¹⁾	10 MHz	4.5V - 5.5V
PIC16C65	PROBE-16F	10 MHz	4.5V - 5.5V
PIC16C65A	PROBE-16F ⁽¹⁾	10 MHz	4.5V - 5.5V
PIC16C620	PROBE-16H	10 MHz	4.5V - 5.5V
PIC16C621	PROBE-16H	10 MHz	4.5V - 5.5V
PIC16C622	PROBE-16H	10 MHz	4.5V - 5.5V
PIC16C70	PROBE-16B ⁽¹⁾	10 MHz	4.5V - 5.5V
PIC16C71	PROBE-16B	10 MHz	4.5V - 5.5V
PIC16C71A	PROBE-16B ⁽¹⁾	10 MHz	4.5V - 5.5V
PIC16C72	PROBE-16F ⁽¹⁾	10 MHz	4.5V - 5.5V
PIC16C73	PROBE-16F	10 MHz	4.5V - 5.5V
PIC16C73A	PROBE-16F ⁽¹⁾	10 MHz	4.5V - 5.5V
PIC16C74	PROBE-16F	10 MHz	4.5V - 5.5V
PIC16C74A	PROBE-16F ⁽¹⁾	10 MHz	4.5V - 5.5V
PIC16C83	PROBE-16C	10 MHz	4.5V - 5.5V
PIC16C84	PROBE-16C	10 MHz	4.5V - 5.5V
PIC17C42	PROBE-17B	20 MHz	4.5V - 5.5V
PIC17C43	PROBE-17B	20 MHz	4.5V - 5.5V
PIC17C44	PROBE-17B	20 MHz	4.5V - 5.5V

Note 1: This PICMASTER probe can be used to functionally emulate the device listed in the previous column. Contact your Microchip sales office for details.

16.3 PRO MATE: Universal Programmer

The PRO MATE Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode.

The PRO MATE has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for displaying error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In standalone mode the PRO MATE can read, verify or program PIC16C5X, PIC16CXX and PIC17CXX devices. It can also set configuration and code-protect bits in this mode.

In PC-hosted mode, the PRO MATE connects to the PC via one of the COM (RS-232) ports. PC based userinterface software makes using the programmer simple and efficient. The user interface is full-screen and menu-based. Full screen display and editing of data, easy selection of bit configuration and part type, easy selection of VDD min, VDD max and VPP levels, load and store to and from disk files (Intel[®] hex format) are some of the features of the software. Essential commands such as read, verify, program and blank check can be issued from the screen. Additionally, serial programming support is possible where each part is programmed with a different serial number, sequential or random.

The PRO MATE has a modular "programming socket module". Different socket modules are required for different processor types and/or package types.

PRO MATE supports all PIC16C5X, PIC16CXX and PIC17CXX processors.

16.4 <u>PICSTART Low-Cost Development</u> <u>System</u>

The PICSTART programmer is an easy to use, very low-cost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. A PC-based user interface software makes using the programmer simple and efficient. The user interface is full-screen and menu-based. PICSTART is not recommended for production programming.

16.5 <u>PICDEM-1 Low-Cost PIC16/17</u> <u>Demonstration Board</u>

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE or PICSTART-16B programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the PICMASTER emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

16.6 <u>PICDEM-2 Low-Cost PIC16CXX</u> <u>Demonstration Board</u>

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE programmer or PICSTART-16C, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

16.7 <u>MPLAB[™] Integrated Development</u> Environment Software.

The MPLAB Software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a windows based application which contains:

- A full featured editor
- Three operating modes
 - editor
 - emulator
- simulator (available soon)
- A project manager
- · Customizable tool bar and key mapping
- A status bar with project information
- · Extensive on-line help

MPLAB allows you to:

- Edit your source files (either assembly or "C")
- One touch assemble (or compile) and download to PIC16/17 tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
- Transfer data dynamically via DDE (soon to be replaced by OLE)
- Run up to four emulators on the same PC

The ability to use MPLAB with Microchip's simulator (available soon) allows a consistent platform and the ability to easily switch from the low cost simulator to the full featured emulator with minimal retraining due to development tools.

16.8 Assembler (MPASM)

The MPASM Cross Assembler is a PC-hosted symbolic assembler. It supports all microcontroller series including the PIC16C5X, PIC16CXX and PIC17CXX families.

MPASM offers full featured Macro capabilities, conditional assembly, and several source and listing formats. It generates various object code formats to support Microchip's development tools as well as third party programmers.

MPASM allows full symbolic debugging from the Microchip Universal Emulator System (PICMASTER).

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- · Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PIC16/17. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

- Data Directives are those that control the allocation of memory and provide a way to refer to data items symbolically, i.e., by meaningful names.
- Control Directives control the MPASM listing display. They allow the specification of titles and subtitles, page ejects and other listing control. This eases the readability of the printed output file.
- **Conditional Directives** permit sections of conditionally assembled code. This is most useful where additional functionality may wished to be added depending on the product (less functionality for the low end product, then for the high end product). Also this is very helpful in the debugging of a program.
- **Macro Directives** control the execution and data allocation within macro body definitions. This makes very simple the re-use of functions in a program as well as between programs.

16.9 Software Simulator (MPSIM)

The MPSIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PIC16/17 series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode. MPSIM fully supports symbolic debugging using MP-C and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

16.10 C Compiler (MP-C)

The MP-C Code Development System is a complete 'C' compiler and integrated development environment for Microchip's PIC16/17 family of microcontrollers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the PICMASTER Universal Emulator memory display (PICMASTER emulator software versions 1.13 and later).

The MP-C Code Development System is supplied directly by Byte Craft Limited of Waterloo, Ontario, Canada. If you have any questions, please contact your regional Microchip FAE or Microchip technical support personnel at (602) 786-7627.

16.11 <u>Fuzzy Logic Development System</u> (*fuzzy*TECH-MP)

fuzzyTECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, fuzzyTECH-MP, edition for implementing more complex systems.

Both versions include Microchip's fuzzyLAB[™] demonstration board for hands-on experience with fuzzy logic systems implementation.

16.12 Development Systems

For convenience, the development tools are packaged into comprehensive systems as listed in Table 16-2.

TABLE 16-2: DEVELOPMENT SYSTEM PACKAGES

ltem	Name	System Description
1.	PICMASTER System	PICMASTER In-Circuit Emulator, PRO MATE Programmer, Assembler, Software Simulator, Samples and your choice of Target Probe.
2.	PICSTART System	PICSTART Low-Cost Prototype Programmer, Assembler, Software Simulator and Samples.
3.	PRO MATE System	PRO MATE Universal Programmer, full featured stand-alone or PC-hosted pro- grammer, Assembler, Simulator

NOTES:

Applicable Devices 70 71 71A 72 73 73A 74 74A

17.0 ELECTRICAL CHARACTERISTICS FOR PIC16C70 AND PIC16C71A

Absolute Maximum Ratings †

51	
Ambient temperature under bias	
Storage temperature	
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.6V to (VDD + 0.6V)
Voltage on VDD with respect to VSS	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Total power dissipation (Note 1)	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iк (Vi < 0 or Vi > VDD)	
Output clamp current, $Iok (V0 < 0 \text{ or } V0 > VDD)$	
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O nin	<u>∕ </u>
Maximum output current sourced by any #0 pm	
Maximum current sourced by PORTA	
Maximum current sourced by PORTA Maximum current sunk by PORTB Maximum current sourced by PORTB	
Maximum current sourced by PORTB	
Note 1: Power dissipation is calculated as follows: Pdis \neq VDR x {	
Note 2: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing curred a series resistor of 50-100 Ω should be used when applyin this pin directly to Vss.	nts greater than 80 mA, may cause latch-up. Thus, ga "low" level to the MCLR pin rather than pulling

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 17-1:CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

PIC16C70-20 PIC16C71A-20 5.5V IDD: 2.7 md typ. at 5.5V DD: 1.5 µd typ. at 5.5V VDD: 5.5V IDD: 2.7 md typ. at 4.5V VDD: 6.5V IDD: 2.7 md typ. at 4.5V VDD: 6.5V IDD: 30 mA max. at 5.5V D0 not 6.5V IDD: 30 mA max. at 5.5V D0 not 6.5 IDD: 30 mA max. at 5.5V D0 not 7 IDD: 30 mA max. at 5.5V D0 not 7 IDD: 30 mA max. at 5.5V D0 not 7 IDD: 30 mA max. at 5.5V D0 not 6 Do not use in LP mode IDD: 7 IDD IDD IDD 8 Introtionality, but not for MIN/MAX speci								
C VDD: 4.5V to 5.5V VDD: 4.5V to 5.5V VDD: 3.7M 4yp. at 5.5V VDD: 3.7M 4yp. at 5.5V VDD: 2.7 m 4yp. at 5.5V VDD: 3.0	SC		PIC16C70-04 PIC16C71A-04	PIC16C70-10 PIC16C71A-10	PIC16C70-20 PIC16C71A-20	PIC16LC70-04 PIC16LC71A-04	JW Devices	ş
C IDD: 5 mA max. at 5.5V IDD: 2.7 mA typ. at 5.5V IDD: 2.1 mA max. at 4V IPD: 15 µA typ. at 4V IPD: 15 µA typ. at 4V IPD: 15 µA typ. at 4V IPD: 10: 2.1 µA max. at 4V IPD: 10: 2.1 µA max. at 4V IPD: 10: 2.1 µA typ. at 4V IPD: 10: 2.1 µA typ. at 4V IPD: 20 10: 2.1 µA typ. at 4V IPD: 21 10: 2.1 µA typ. at 4.5 V IPD: 21 10: 21 10: 21 10: 21 10: 21 10: 21 10: 21 10: 21 10: 21 10: 21 10: 21 10: 21 10: 21 10: 21 10: 21 10: 21 10: 21 10: 21 10: 21 10: 10: 10: 10: 10: 10: 10: 10: 10: 10: 10: 10: 10:		VDD:	4.0V to 6.0V			VDD: 3.0V to 6.0V	VDD: 4.0V to 6.0V	
PED:21 µA max, at 4VPD:1.5 µA typ, at 4VPD:0.Freq:4 MHz max,Freq:4 MHz max,Freq:4 MHz max,Freq:4 MHz max,VDD:5 mA max, at 5.5VVDD:4.5V to 5.5VVDD:3.5V to 5.5VVDD:3.2VDD:5 mA max, at 4VFreq:1.5 µA typ, at 5.5VVDD:2.7 mA typ, at 5.5VVDD:2.7 mA typ, at 5.5VPD:5 mA max, at 4VFreq:1.5 µA typ, at 4VFreq:4 MHz max,Freq:4 MHz max,7 may, at 4.5VPDD:2.7 mA typ, at 4.5VVDD:4.5V to 5.5VVDD:4.5V to 5.5VVDD:4.5V to 5.5VVDD:1.5 µA typ. at 5.5VDDD:30 mA max, at 5.5VDDD:30 mA typ, at 4.5VPDD:1.5 µA typ. at 5.5VDDD:30 mA max, at 5.5VDDD:30 mA typ, at 4.5VPDD:1.5 µA typ. at 5.5VDDD:30 mA max, at 5.5VDDD:30 mA typ, at 4.5VPDD:1.5 µA typ. at 5.5VDDD:30 mA max, at 5.5VDDD:30 mA typ, at 4.5VPDD:1.5 µA typ. at 4.5VDDD:30 mA typ, at 4.5VDDD:30 mA typ, at 4.5VPDD:1.5 µA typ. at 3.5VPDD:1.5 µA typ. at 4.5VDDD:30 mA typ, at 4.5VPDD:55.4 M typ. at 3.2VDD:52.5 µA typ. at 3.0VDD:25.5 µA typ. at 4.0VPDD:52.5 µA typ. at 3.0VDD:52.5 µA typ. at 3.0VDD:200 kHz max.PDD:0.9 µA typ. at 3.0VDD:1.5 µA typ. at 4.0VDD:1.5	c	:00	5 mA max. at 5.5V				IDD: 5 mA max. at 5.5V	.5V
Freq: 4 MHz max.	,	:Od	21 µA max. at 4V				IPD: 21 μA max. at 4V	4
VDD: 4.0V to 6.0V VDD: 4.5V to 5.5V VDD: 3.5V to 5.5V VDD: 3.5V to 5.5V VDD: 2.7 m4 typ. at 5.5V IDD: 1.5 µA typ. at 4V IPD: 0.0 Freq: 4 MHz max. Freq: 4 MHz max. Freq: 4 MHz max. 0.0 <td></td> <td>Freq:</td> <td></td> <td>7</td> <td></td> <td></td> <td>Freq: 4 MHz max.</td> <td></td>		Freq:		7			Freq: 4 MHz max.	
Γ IDD: 5 mA max. at 5.5V IDD: 2.7 mA typ. at 4.5V Freq: 4 MHz max. Freq: 4 MHz max. Freq: 4 MHz max. Freq: 4 MHz max. VDD: 4.5V to 5.5V VDD: 4.5V to 5.5V VDD: 4.5V to 5.5V PDD: 30 mA max. NDD: 1.5 µA typ. at 4.5V IDD: 3.0 mA max. at 5.5V IDD: 30 mA max. at 5.5V PDD: 30 mA max. Freq: 4 MHz max. IDD: 1.5 µA typ. at 4.5V IDD: 30 mA max. at 5.5V IDD: 30 mA max. Freq: 2.0 MHz max. Freq: 1.5 µA typ. at 4.5V IDD: 30 mA max. 4.5V Do not use PDD: 1.5 µA typ. at 4.5V IDD: 1.5 µA typ. at 4.5V DO not use 1.5 µA typ. at 4.5V DO not use PDD: 52.5 µA typ. at 4.5V DD: 1.5 µA typ. at 4.5V DD: 30 mA max. PDD: 52.5 µA typ. at 4.0V DD: 1.5 µA typ. at 4.5V DD: 30 mA max. PD: 1.5 µA typ. at 4.0V		VDD:	4.0V to 6.0V			VDD: 3.0V to 6.0V	VDD: 4.0V to 6.0V	
IPD: 21 JuA max. at 4V IPD: 1.5 JuA typ. at 4V IPD: 0 Freq: 4 MHz max. Freq: 4 MHz max. Freq: 4 MHz max. Freq: 4 MHz max. VDD: 4.5V to 5.5V VDD: 4.5V to 5.5V VDD: 4.5V to 5.5V Dorot u: IDD: 13.5 mA typ. at 5.5V VDD: 4.5V to 5.5V Dorot u: 90/m5 typ. at 4.5V Dorot u: IDD: 1.5 JuA typ. at 4.5V IDD: 30 mA max. at 5.5V IDD: 30/m5 typ. at 4.5V Dorot u: IPD: 1.5 JuA typ. at 4.5V IDD: 30 mA max. at 5.5V IDD: 30/m6 typs. at 4.5V Dorot u: IPD: 4.0V to 6.0V IDD: 52.5 JuA typ. at 4.5V Do not use in LP mode DD: 30/m5 typ. at 4.5V Dorot u: IPD: 0.9 JuA typ. at 4.0V Do not use in LP mode Do not use in LP mode JDD: 4.5V JDD: 4.5V IPD: 0.9 JuA typ. at 4.0V Do not use in LP mode Do not use in LP mode JDD: J		:00	5 mA max. at 5.5V		2.7 mA typ. at 5.5V	IDD: 2.0 mA typ. at 3.0V	IDD: 5 mA max. at 5.5V	.5V
Freq: 4 MHz max. Freq: 4 MHz max. Freq: 4 MHz max. Freq: 4 MHz max. VDD: 4.5V to 5.5V VDD: 4.5V to 5.5V VDD: 4.5V to 5.5V Donot u: PD:<		:Od	21 µA max. at 4V				IPD: 21 μA max. at 4V	4
VDD: 4.5V to 5.5V VDD: 4.5V to 5.5V VDD: 4.5V to 5.5V DD: 30 mA max. at 5.5V DD: DD: 30 mA max. at 4.0V		Freq:		7			Freq: 4 MHz max.	
IDD: 13.5 md typ. at 5.5V IDD: 30 mA max. at 5.5V IDD: 30 mA max. at 5.5V Dovot u PD: 1.5 µd typ. at 4.5V IPD: 1.5 µd typ. at 4.5V IPD: 1.5 µd typ. at 4.5V Dovot u Freq: 4 MHz max. Freq: 10 MHz max. Freq: 20 MHz max. VDD: 30 mode VDD: 4.0V to 6.0V Do not use in LP mode Do not use in LP mode Do not use in LP mode 100 mode		VDD:	4.5V to 5.5V	•			VDD: 4.5V to 5.5V	
IPD: 1.5 µA typ. at 4.5V IPD: 1.5 µA typ. at 4.5V Jon you use Freq: 4 MHz max. Freq: 10 MHz max. Freq: 20 MHz/max. Jon you use VDD: 4.0V to 6.0V Dimensional transmersional transmersiona transmersina transmersina transmersiona transmersiona transmersion		:aal	13.5 mA typ. at 5.5V	.,	-		IDD: 30 mA max. at 5.5V	5.5V
Freq: 1 MHz max. Freq: 10 MHz max. Freq: 20 MHz max. 3. VDD: 4.0 V to 6.0 V VDD: 3. 4.0 V VDD: 3. IDD: 52.5 µA typ. at 32 kHz, 4.0 V Do not use in LP mode Do not use in LP mode 100 not use in LP mode IPD: 0.9 µA typ. at 4.0 V Do not use in LP mode Do not use in LP mode 100 not use in LP mode IPD: 0.9 µA typ. at 4.0 V De not use in LP mode Do not use in LP mode 100 not use in LP mode IPD: 0.9 µA typ. at 4.0 V De not use in LP mode Do not use in LP mode 100 not use in LP mode IPD: 0.9 µA typ. at 4.0 V De not use in LP mode De not use in LP mode 100 not use in LP mode IPD: 0.9 µA typ. at 4.0 V De not use in LP mode De not use in LP mode 100 not use in LP mode IPD: 0.9 µA typ. at 4.0 V De not use in LP mode De not use in LP mode 100 not use in LP mode IPD: 0.9 µA typ. at 4.0 V De not use in LP mode De not use in LP mode 100 not use in LP mode IPD: 0.9 µA typ. at 4.0 V De not use in LP mode De not use in LP mode 100 not use in LP mode	_	PD:	1.5 μA typ. at 4.5V	-			IPD: 1.5 μA typ. at 4.5V	.5V
VDD: 4.0V to 6.0V IDD: 5.25 µA typ. at 32 kHz, 4.0V IPD: 0.9 µA typ. at 4.0V Freq: 200 kHz max. E shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specific tensures the specifications required.		Freq:		-			Freq: 10 MHz max.	
Freq: 200 kHz max.		VDD: TOD:	4.0V to 6.0V 52.5 µA typ. at 32 kHz, 4.0V 0.0 u 4 typ. at 4.0V	Do not use in LP mode	\sum	VDD/ 3.0V to 6.0V JpD: /48 µA max. at 32 kHz, 3.0V	VDD: 3.0V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IDD: 5.0 μA max. at 3.0V	32 kHz, 3.0V 3.0V
e shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specific t ensures the specifications required.		Freq:				<u></u>	<u></u>	200
at ensures the specifications required.	le s	haded s	sections indicate oscillator sele	ctions which are tested for ful	Inctionality. but not for MIN/MA	X specifications. It is recommended t	hat the user select the	device tv
	at e	nsures	the specifications required.					
							/	
						\sim	$\langle $	
						>		

 17.1
 DC Characteristics:
 PIC16C70-04 (Commercial, Industrial, Automotive⁽⁵⁾)

 PIC16C71A-04 (Commercial, Industrial, Automotive⁽⁵⁾)
 PIC16C70-10 (Commercial, Industrial, Automotive⁽⁵⁾)

 PIC16C71A-10 (Commercial, Industrial, Automotive⁽⁵⁾)
 PIC16C71A-10 (Commercial, Industrial, Automotive⁽⁵⁾)

 PIC16C70-20 (Commercial, Industrial, Automotive⁽⁵⁾)
 PIC16C71A-20 (Commercial, Industrial, Automotive⁽⁵⁾)

DC CHARACTERISTICS				ing terr		ure -4 -4	litions (unless otherwise stated) $0^{\circ}C \leq TA \leq +125^{\circ}C$ for automotive, $0^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and $C \leq TA \leq +70^{\circ}C$ for commercial
Param. No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP øsc configuration HS osc configuration
D002	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5*	-	V	Device in SLEEP mode
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Rower on Reset for details
D004	VDD rise rate to ensure Power-on Reset	SVDD	0.05*	-	-	V/ms	See section on Power-on Reset for details
D010	Supply Current (Note 2)	IDD	-	2.7	5	mA	XT, RC osc configuration (PIC16C70/71A-04) Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	13.5	30	mA	HS osc configuration (PIC16C70/71A-20) Fosc = 20 MHz, VDD = 5.5V
D015	Brown-out Reset Cur- rent (Note 6)	ΔIBOR		300*	500	μÅ	BOR enabled VDD = 5.0V
D020 D021 D021A D021B	Power-down Current (Note 3)		-	10.5 1.5 1.5 1.5	42 21 24 TBD	μΑ μΑ μΑ μΑ	$VDD = 4.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$ $VDD = 4.0V$, WDT disabled, $-0^{\circ}C$ to $+70^{\circ}C$ $VDD = 4.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$ $VDD = 4.0V$, WDT disabled, $-40^{\circ}C$ to $+125^{\circ}C$
D023	Brown-out Reset Cur- rent (Note 6)	ANBOR		300*	500	μA	BOR enabled VDD = 5.0V

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the light to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the surrent consumption.

- The test conditions for all IDD measurements in active operation mode are:
- OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\sqrt{MCLR} = VDD$; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Automotive operating range is Advanced information for this device.

6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 70 71 71A 72 73 73A 74 74A

17.2 DC Characteristics: PIC16LC70-04 (Commercial, Industrial, Automotive⁽⁵⁾) PIC16LC71A-04 (Commercial, Industrial, Automotive⁽⁵⁾)

				ard Ope ing tem	-	ire -40	itions (unless otherwise stated) $0^{\circ}C \leq TA \leq +125^{\circ}C$ for automotive, $0^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and $C \leq TA \leq +70^{\circ}C$ for commercial
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001	Supply Voltage	Vdd	3.0	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)
D002	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5*	-	V	Device in SLEEP mode
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004	VDD rise rate to ensure Power-on Reset	Svdd	0.05*	-	-	V/ms	See section on Power on Reset for details
D010	Supply Current (Note 2,5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, Vpc = 3.0V (Note 4)
D010A			-	22.5	48	μA <	LP ose configuration FOSC = 32 kHz , VDD = 3.0V, WDT disabled
D015	Brown-out Reset Cur- rent (Note 6)	Δ IBOR	-	300*	500	A JA	BOR enabled VDD = 3.0V
D020 D021 D021A D021B	Power-down Current (Note 3,5)	IPD	- - - - /	7.5 0.9 0.9 0.9	30 5 5 5 2	A A A	VDD = $3.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$ VDD = $3.0V$, WDT disabled, $0^{\circ}C$ to $+70^{\circ}C$ VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$ VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+125^{\circ}C$
D023	Brown-out Reset Cur- rent (Note 6)		-	300*	500	μA	BOR enabled VDD = 3.0V

These parameters are characterized but not tested.

- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which Vpp can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDP measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD $\overline{MGLR} = VDB$; WQT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSs.

- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Automotive operating range is Advanced information for this device.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

			Applic	abl	e Devic	es 70	0 71 71A 72 73 73A 74 74A		
P P P P P P P P			71A-04 70-10 (C 71A-10 70-20 (C 71A-20 70-04 (C 71A-04	(Con Com Com (Con Com (Co	mmerci mercia mmerci mercia mmercia mercia mmercia	al, Indu al, Indu al, Indu al, Indu al, Indu ial, Indu	Istrial, Automotive ⁽⁴⁾) dustrial, Automotive ⁽⁴⁾) Istrial, Automotive ⁽⁴⁾) dustrial, Automotive ⁽⁴⁾) Istrial, Automotive ⁽⁴⁾) dustrial, Automotive ⁽⁴⁾) dustrial, Automotive ⁽⁴⁾)		
	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for automotive,								
DC CHA	RACTERISTICS				-4 0°	0°C C	\leq TA \leq +85°C for industrial and \leq TA \leq +70°C for commercial		
		-			D range	as des	cribed in DC spec Section 17.1		
Dever			ction 17.2		NA	11.			
Param No.	Characteristic	Sym	Min	Typ t	Max	Units	Conditions		
NO.									
	Input Low Voltage	VIL				\sim	$\langle \rangle$		
D030	with TTL buffer	VIL	Vss	-	0.5V	$\langle \chi \rangle$			
D030	with Schmitt Trigger buffer		VSS VSS		0.3V 0.2VDD	I \ " \			
D032	MCLR, RA4/T0CKI,OSC1		VSS VSS		0.2VDD				
0002	(in RC mode)		V00		0.2000	$\backslash \backslash$			
D033	OSC1 (in XT, HS and LP)		Vss		0.3VDD		Note1		
	Input High Voltage			\vdash		\sim			
	I/O ports	ViH /	$\land \land$	$\left \right\rangle$	$ \rangle >$				
D040	with TTL buffer		2.0	<u>\-`</u>	VDD	V	$4.5 \le VDD \le 5.5V$		
D040A		\wedge	0.8VDD	-	VDD	V	For VDD > 5.5V or VDD < 4.5V		
D041	with Schmitt Trigger buffer	$\langle \ {\cal N} \rangle$	Q.8Vpb)-	Vdd	V	For entire VDD range		
D042	MCLR, RA4/T0CKI RB0/INT		0.8VDD] -	Vdd	V			
D042A	OSC1 (XT, HS and LP)	\land		-	Vdd	V	Note1		
D043	OSC1 (in RC mode)	$\langle \rangle$	0.9Vdd	-	Vdd	V			
D070	PORTB weak pull-up current	IPURB	50	250	400	μΑ	VDD = 5V, VPIN = VSS		
D060	Input Leakage Current (Notes 2, 3) I/O ports		-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi-impedance		
D061			-	-	±5	μA	$Vss \le VPIN \le VDD$		
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration		
D080	Output Low Voltage	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C		
DOBOA	$() \rightarrow$		-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C		
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C		
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C		
+ 1	Data in "Typ" column is at 5V, 25°C un	less oth	erwise sta	hated	These	narame	ators are for design quidance only		

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

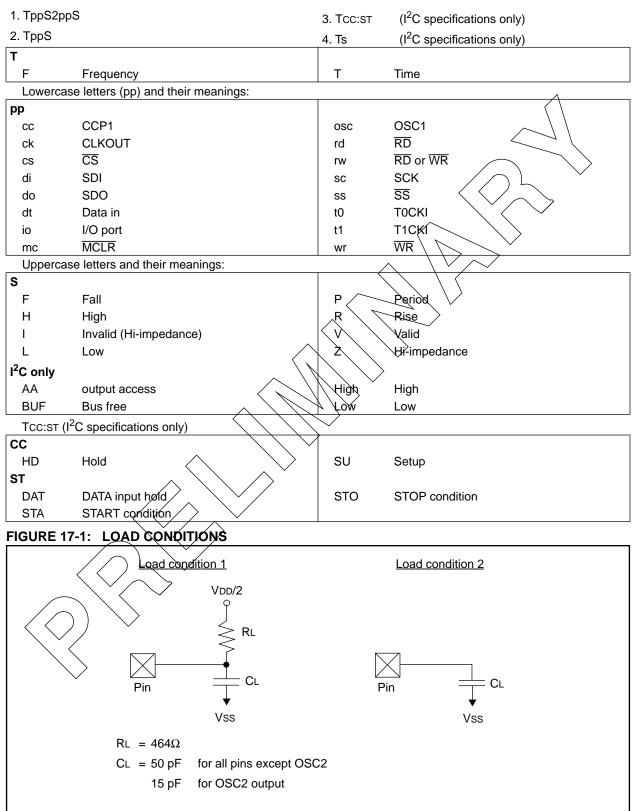
4: Automotive operating range is Advanced information for this device.

Applicable Devices 70 71 71A 72 73 73A 74 74A

DC CHARACTERISTICS		Operati	ng tempe	ratur	re -4 -4 0°	0°C 0°C C	nless otherwise stated) \leq TA \leq +125°C for automotive, \leq TA \leq +85°C for industrial and \leq TA \leq +70°C for commercial prihad in DC and Section 17.1
		-	ction 17.2		Diange	as ues	cribed in DC spec Section 17.1
Param No.	Characteristic	Sym Min Typ Max Units Conditions					Conditions
D090 D090A D092	Output High Voltage I/O ports (Note 3) OSC2/CLKOUT (RC osc config)	Vон	Vdd - 0.7 Vdd - 0.7 Vdd - 0.7	-	- -	V V V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C IOH = -2.5 mA, \forall PD = 4.5V, -40°C to +125°C IOH = -1.3 mA, VDD = 4.5V,
D092A			Vdd - 0.7	-	-	V	-40° C to $+85^{\circ}$ C IOH = -1.0 mA, VDD = 4.5V, -40^{\circ}C to +125°C
D100	Capacitive Loading Specs on Out- put Pins OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC mode) Data in "Typ" column is at 5V, 25°C un	Сю	-	- `	50	PF	\rangle

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

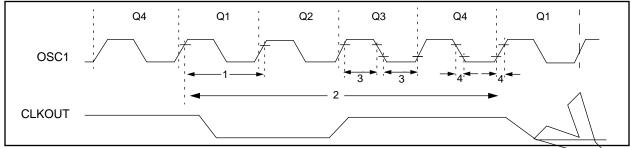
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.


2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: Automotive operating range is Advanced information for this device.

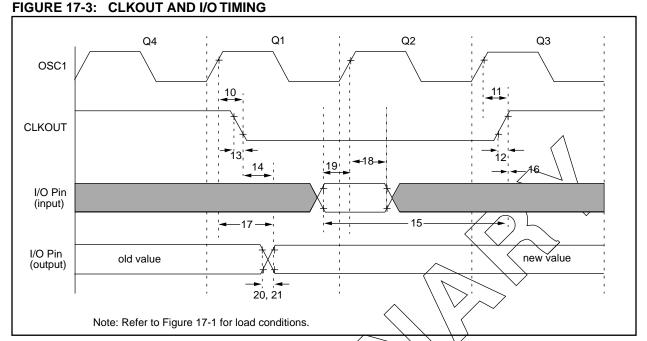
17.4 <u>Timing Parameter Symbology</u>


The timing parameter symbols have been created following one of the following formats:

 Applicable Devices
 70
 71
 71A
 72
 73
 73A
 74
 74A

17.5 <u>Timing Diagrams and Specifications</u>

FIGURE 17-2: EXTERNAL CLOCK TIMING


TABLE 17-2: CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fos	External CLKIN Frequency	DC	_	4	MHz 〈	XT and RC osc mode
		(Note 1)	DC	—	4	MHz	HS ose mode (PIC16C70/71A-04,)
			DC	—	20	∕∕MHz	HS osc mode (PIC16C70/71A-20)
			DC	—	200	kHz.	LP oso mode
		Oscillator Frequency	DC	_	4	MHZ	RC asc mode
		(Note 1)	0.1	—	X V	MHZ	X≯ osc mode
			4	$-\langle$	4	MHz	HS osc mode (PIC16C70/71A-04)
			4		18	MHz	HS osc mode (PIC16C70/71A-10)
			4	\mathbb{A}	20	MHz	HS osc mode (PIC16C70/71A-20)
			হ `	\swarrow	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	$\langle \mathcal{F} \rangle$	$\rangle -$	ns	XT and RC osc mode
		(Note 1)	25Q	\searrow	_	ns	HS osc mode (PIC16C70/71A-04)
			100	\searrow	—	ns	HS osc mode (PIC16C70/71A-10)
			50	/ _	—	ns	HS osc mode (PIC16C70/71A-20)
			5	—	—	μs	LP osc mode
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (PIC16C70/71A-04)
			100	—	250	ns	HS osc mode (PIC16C70/71A-10)
	<	$\langle \rangle \leq \vee$	50	—	250	ns	HS osc mode (PIC16C70/71A-20)
		\land	5	—	—	μs	LP osc mode
2	TCY	Instruction Cycle Time (Note 1)	200	—	DC	ns	Tcy = 4/Fosc
3	∕TosÌ,	External Clock in (OSC1) High	50	—	_	ns	XT oscillator
\mathbf{n}	TosH	or Low Time	2.5	—	—	μs	LP oscillator
1	\setminus \langle		10	_	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise	_	_	25	ns	XT oscillator
	TosF	or Fall Time	_	—	50	ns	LP oscillator
			_	—	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C70/71A.

Applicable Devices 70 71 71A 72 73 73A 74 74A

TABLE 17-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1 [↑] to CLKOUT↓		<u> </u>	15	30	ns	Note 1
11*	TosH2ckH	OSC11 to CLKOUT1	$\sqrt{1/1}$	<u> </u>	15	30	ns	Note 1
12*	TckR	CLKOUT rise time	V/V	_	5	15	ns	Note 1
13*	TckF	CLKOUT fall time	$\langle \rangle \rangle$	_	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out valid	$\overline{}$	_	_	0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT	1	0.25Tcy + 25	-	—	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT	\mathbf{i}	0	-	—	ns	Note 1
17*	TosH2ioV	OSC17 (Q1 cycle) to Port out valid	· · · · · · · · · · · · · · · · · · ·	_	_	80 - 100	ns	
18*	TosH2iol	OSC(1) (Q2 cycle) to Port input invalid (I/O in hold t	time)	TBD	_	_	ns	
19*	TioV2øsH	Port input valid to OSC11 (I/C) in setup time)	TBD	-	_	ns	
20*	TiøR	Port output rise time P	IC16C70/71A	_	10	25	ns	
	$ \setminus \lor$		IC16LC70/71A	_	_	60	ns	
21*	TiqF	Port output fall time P	IC16C70/71A	—	10	25	ns	
	\uparrow) \land	P	IC16LC70/71A		—	60	ns	
2277*	Tinp	INT pin high or low time	20	-	—	ns		
23††*	Ţrbp	RB7:RB4 change INT high or	low time	20		—	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

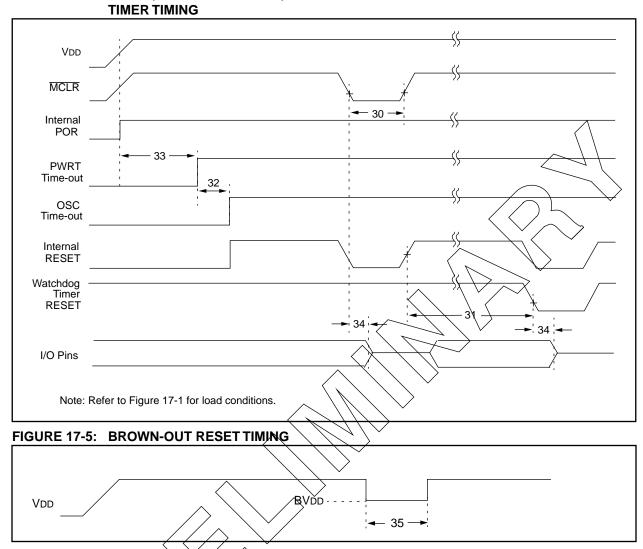
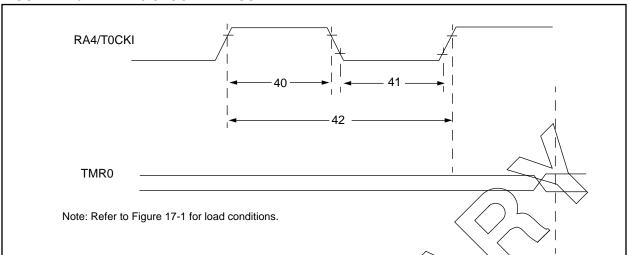


FIGURE 17-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP

TABLE 17-4: RESET, WATCHOOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS


Parameter	Sym <	Characteristic	Min	Тур†	Max	Units	Conditions
No.		\checkmark					
30	TmcL	MCLR Pulse Width (low)	1	—	_	μs	VDD = 5V, -40°C to +125°C
31	Twat	Watchdog Timer Time-out Period (No Prescaler)	7*	18	33*	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	—	1024Tosc	_	_	Tosc = OSC1 period
33	Tpwrt	Power up Timer Period	28*	72	132*	ms	VDD = 5V, -40°C to +125°C
34	Tioz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	—	_	1.1	μs	
35	TBOR	Brown-out Reset pulse width	100	—	_	μs	$3.8V \leq V\text{DD} \leq 4.2V$

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 70 71 71A 72 73 73A 74 74A

TABLE 17-5: TIMER0 CLOCK REQUIREMENTS

Param No.	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tex + 20*	\checkmark	_	ns	
			With Prescaler		—	_	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20*	—	_	ns	
			With Prescaler	10*	—	_	ns	
42	Tt0P	T0CKI Period		Greater of: 20µs or <u>Tcy + 40</u> * N		_	ns	N = prescale value (1, 2, 4,, 256)
48	Tcke2tmrl	Delay from external clock edge	to timer increment	2Tosc	_	7Tosc	_	

* These parameters are characterized but not tested. \checkmark

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 70 71 71A 72 73 73A 74 74A

TABLE 17-6:A/D CONVERTER CHARACTERISTICS:
PIC16C70-04 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE⁽³⁾)
PIC16C71A-04 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE⁽³⁾)
PIC16C70-10 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE⁽³⁾)
PIC16C71A-10 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE⁽³⁾)
PIC16C70-20 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE⁽³⁾)
PIC16C71A-20 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE⁽³⁾)

Parameter	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
No.							
	Nr	Resolution	_	_	8-bits	_	$VREF = VDD = 5.12V, VSS \leq AN \leq VREF$
	Nint	Integral error	_		less than ±1 LSb	—	$VREF = VDD = 5.12V, VSS AIN \leq VREF$
	Ndif	Differential error	_	—	- less than ±1 LSb		$VREF = VDD = 5.12V, VSS \le AIN \le VREF$
	NFS	Full scale error	_	—	less than ±1 LSb	—	VREF = VDD ≠ 5.12∀, VSS ≯ AIN ≤ VREF
	Noff	Offset error	—	—	less than ±1 LSb	- <	$VREF = VDD = 5.12V, VSS \le AIN \le VREF$
	_	Monotonicity	_	guaranteed	—	<u> </u>	VSS & AIN S VREF
	VREF	Reference voltage	3.0V	—	VDD + 0.3	X	
	VAIN	Analog input voltage	Vss - 0.3	—	VREF 7+ 0.3	V/	
	ZAIN	Recommended impedance of analog voltage source	_	-	10.0	KQ /	\geq
	IAD	A/D conversion cur- rent (VDD)	_	180		μΑ	Average current consumption when A/D is on. (Note 1)
	IREF	VREF input current (Note 2)			10	mΑ μΑ	During sampling All other times

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.
 - 2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.
 - 3: Automotive operating rapide is Advanced information for this device.

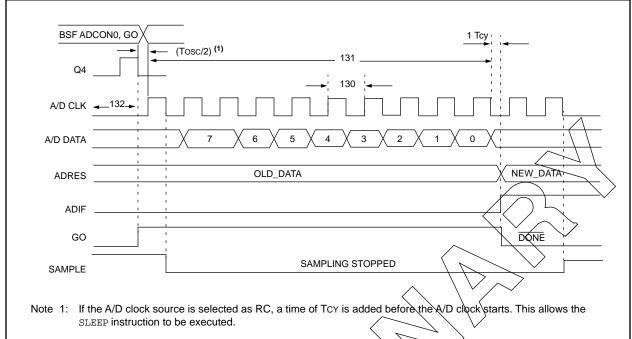
TABLE 17-7: A/D CONVERTER CHARACTERISTICS: PIC16LC70-04 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE⁽⁴⁾) PIC16LC71A-04 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE⁽⁴⁾)

Parameter	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
No.							
	Nr	Resolution	_	_	8-bits	—	VREF = VDD = 3.0V (Note 1)
	Nint	Integral error	_	—	less than ±1 LSb	—	VREF = VDD = 3.0V (Note 1)
	Ndif	Differential error	_	—	less than ±1 LSb	—	VREF = VDD = 3.0V (Note 1)
	NFS	Full scale error	_	—	less than ±1 LSb	—	VREF = VDD = 3.9V (Note 1)
	Noff	Offset error	_	_	less than ±1 LSb	—	VREF = VDD = 3.0V (Note 1)
	_	Monotonicity	_	guaranteed	_	—	VSS & AIM & VREF
	Vref	Reference voltage	3.0V	_	Vdd + 0.3	V	
	VAIN	Analog input voltage	Vss - 0.3		VREF + 0.3	\sim	
	ZAIN	Recommended impedance of ana- log voltage source	_	_	10.0	kip	
	IAD	A/D conversion cur- rent (VDD)	_	90		μÂ	Average current consumption when A/D is on. (Note 2)
	IREF	VREF input current (Note 3)	_		1 10	_mA μA	During sampling All other times

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: These specifications apply if VREF = 3.0V and if $VBQ \ge 3.0V$, VN, must be between VSS and VREF


2: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

3: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

4: Automotive operating range is Advanced information for this device.

Applicable Devices 70 71 71A 72 73 73A 74 74A

FIGURE 17-7: A/D CONVERSION TIMING

TABLE 17-8: A/D CONVERSION REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Typt	Max	Units	Conditions
130	TAD	A/D clock period	1.6	144	$\overline{)}$	μs	$VREF \ge 3.0V$
			2.0	$\langle \ / \ / \rangle$	- /	μs	VREF full range
130	TAD	A/D Internal RC		$\langle \ \rangle$			ADCS1:ADCS0 = 11
		Oscillator source		$\langle \rangle$			(RC oscillator source)
			3.0	6.0	9.0	μs	PIC16LC70, VDD = 3.0V
			2.0	4.0	6.0	μs	PIC16C70
131	TCNV	Conversion time	$\overline{\langle \cdot \rangle}$	9.5Tad	—	—	
		(not including S/H					
		time). Note 1	$\langle \rangle$				
132	TSMP	Sampling time	Note 2	20	_	μs	

* These parameters are characterized but not tested.

† Data in "fxp" column is at 54, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 13.1 for min conditions.

18.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C70 AND PIC16C71A

NOT AVAILABLE AT THIS TIME

· · · · ·

NE1 404

 Applicable Devices
 70
 71
 71A
 72
 73
 73A
 74
 74A

NOTES:

Applicable Devices 70 71 71A 72 73 73A 74 74A

19.0 ELECTRICAL CHARACTERISTICS FOR PIC16C71

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Total power dissipation (Note 1)	800 mW
Maximum current out of Vss pin	150 mA
Maximum current into VDD pin	100 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, Ioк (V0 < 0 or V0 > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	20 mA
Maximum current sunk by PORTA	80 mA
Maximum current sourced by PORTA	50 mA
Maximum current sunk by PORTB	150 mA
Maximum current sourced by PORTB	100 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VDD-V	VOH) x IOH} + Σ (VOI x IOL)
Note 2: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA,	

Note 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 19-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

OSC	PIC16C71-04	PIC16C71-20	PIC16LC71-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 1.8 mA typ. at 5.5V IPD: 1.0 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 1.4 mA typ. at 3.0V IPD: 0.6 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq: 4 MHz max.
хт	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 1.8 mA typ. at 5.5V IPD: 1.0 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 1.4 mA typ. at 3.0V IPD: 0.6 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.0 μA typ. at 4.5V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.0 μA typ. at 4.5V Freq: 20 MHz max.	Do not use in HS mode	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.0 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 15 μA typ. at 32 kHz, 4.0V IPD: 0.6 μA typ. at 4.0V Freq: 200 kHz max.	Do not use in LP mode	VDD: 3.0V to 6.0V IDD: 32 μA max. at 32 kHz, 3.0V IPD: 9 μA max. at 3.0V Freq: 200 kHz max.	VDD: 3.0V to 6.0V IDD: 32 μA max. at 32 kHz, 3.0V IPD: 9 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

^{© 1995} Microchip Technology Inc.

19.1DC Characteristics:PIC16C7'

PIC16C71-04 (Commercial, Industrial) PIC16C71-20 (Commercial, Industrial)

DC CH	ARACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C \leq TA \leq +85 °C for industrial and 0° C \leq TA \leq +70 °C for commercial							
Param No.	Characteristic	Sym	Min	Тур†	Max		Conditions			
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration			
D002	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5*	-	V	Device in SLEEP mode			
D003	VDD start voltage to guarantee Power-on Reset	Vpo r	-	Vss	-	V	See section on Power-on Reset for details			
D004	VDD rise rate to guarantee Power-on Reset	Svd D	0.05*	-	-	V/ms	See section on Power-on Reset for details			
D010	Supply Current (Note 2)	IDD	-	1.8	3.3	mA	Fosc = 4 MHz, VDD = 5.5V (Note 4)			
D013			-	13.5	30	mA	HS osc configuration (PIC16C71-20) Fosc = 20 MHz, VDD = 5.5V			
D020 D021 D021A	Power-down Current (Note 3)	IPD	- - -	7 1.0 1.0	28 14 16	μΑ μΑ μΑ	$ \begin{array}{l} VDD = 4.0V, WDT \text{ enabled}, -40^\circC \text{ to } +85^\circC \\ VDD = 4.0V, WDT \text{ disabled}, -0^\circC \text{ to } +70^\circC \\ VDD = 4.0V, WDT \text{ disabled}, -40^\circC \text{ to } +85^\circC \end{array} $			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

DC CHA	RACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C $\leq TA \leq +85^{\circ}$ C for industrial and 0° C $\leq TA \leq +70^{\circ}$ C for commercial							
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions			
D001	Supply Voltage	Vdd	3.0	-	6.0	V	XT, RC, and LP osc configuration			
D002	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5*	-	V	Device in SLEEP mode			
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details			
D004	VDD rise rate to ensure Power-on Reset	SVDD	0.05*	-	-	V/ms	See section on Power-on Reset for details			
D010	Supply Current (Note 2)	IDD	-	1.4	2.5	mA	Fosc = 4 MHz, VDD = 3.0V (Note 4)			
D010A			-	15	32	μΑ	Fosc = 32 kHz, VDD = 3.0V, WDT disabled			
D020	Power-down Current	IPD	-	5	20	μΑ	VDD = $3.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$			
D021	(Note 3)		-	0.6	9	μA	VDD = 3.0V, WDT disabled, 0°C to +70°C			
D021A			-	0.6	12	μA	VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$			

19.2 DC Characteristics: PIC16LC71-04 (Commercial, Industrial)

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD \overline{MCLR} = VDD; WDT enabled/disabled as specified.

The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

19.3 I	Pi Pi	C16C7 C16LC	1-04 (C 1-20 (C 71-04 (C	om om	mercial mercial	, Indu , Indu	strial) strial)					
							nless otherwise stated)					
		Operati	ng tempe	ratui			\leq TA \leq +85°C for industrial and					
DC CHA	RACTERISTICS	$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial Operating voltage VDD range as described in DC spec Section 19.1										
		and Section 19.2.										
Param No.	Characteristic	Sym	Min	Тур †	Max	Units	Conditions					
	Input Low Voltage											
	I/O ports	Vi∟										
D030	with TTL buffer		Vss	-	0.5V	V						
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	V						
D032	MCLR, RA4/T0CKI,OSC1 (in RC mode)		Vss	-	0.2Vdd	V						
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1					
	Input High Voltage											
	I/O ports (Note 4)	Vін		-								
D040	with TTL buffer		0.36Vdd	-	Vdd	V	$4.5 \leq VDD \leq 5.5V$					
D040A			0.45Vdd	-	Vdd		For VDD > $5.5V$ or VDD < $4.5V$					
D041	with Schmitt Trigger buffer		0.85Vdd	-	Vdd		For entire VDD range					
D042	MCLR RA4/T0CKI		0.85Vdd	-	Vdd	V						
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1					
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V						
D070	PORTB weak pull-up current	IPURB	50	250	†400	μΑ	VDD = 5V, VPIN = VSS					
	Input Leakage Current (Notes 2, 3)											
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance					
D061	MCLR, RA4/T0CKI		-	-	±5	μΑ	$Vss \le VPIN \le VDD$					
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration					
	Output Low Voltage											
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5mA, VDD = 4.5V, -40°C to +85°C					
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6mA, VDD = 4.5V, -40°C to +85°C					
	Output High Voltage											
D090	I/O ports (Note 3)	Vон	Vdd - 0.7	-	-	V	IOH = -3.0mA, VDD = 4.5V, -40°C to +85°C					
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	IOH = -1.3mA, VDD = 4.5V, -40°С to +85°С					

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt trigger input. It is not recommended that the PIC16C71 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

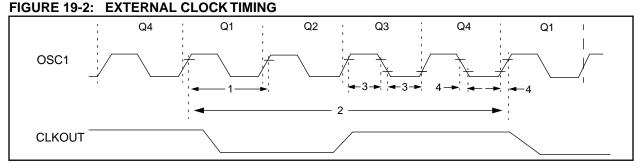
3: Negative current is defined as coming out of the pin.

4: PIC16C71 Rev. "Ax" INT pin has a TTL input buffer. PIC16C71 Rev. "Bx" INT pin has a Schmitt Trigger input buffer.

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ for industrial and $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ for commercialOperating voltage VDD range as described in DC spec Section 19.1and Section 19.2.						
Param No.	Characteristic	Sym	Min	Typ †	Мах	Units	Conditions		
	Capacitive Loading Specs on Out- put Pins								
D100	OSC2 pin	Cosc2			15		In XT, HS and LP modes when external clock is used to drive OSC1.		
D101	All I/O pins and OSC2 (in RC mode)	Cio			50	pF			
	Data in "Typ" column is at 5V, 25°C unl and are not tested.	ess othe	erwise sta	ated.	These p	barame	ters are for design guidance only		

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt trigger input. It is not recommended that the PIC16C71 be driven with external clock in RC mode.

The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 Negative current is defined as coming out of the pin.

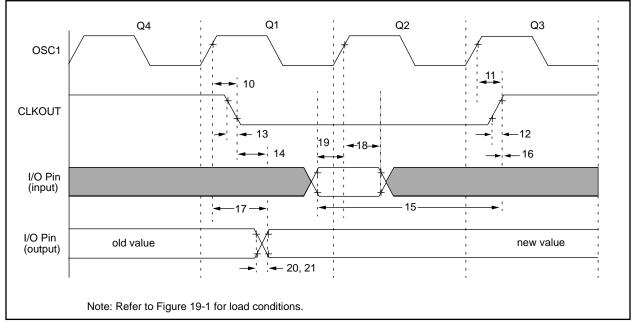

4: PIC16C71 Rev. "Ax" INT pin has a TTL input buffer. PIC16C71 Rev. "Bx" INT pin has a Schmitt Trigger input buffer.

19.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

1. TppS2p	pS	;	3. Tcc:st	(I ² C specifications only)			
2. TppS			4. Ts	(I ² C specifications only)			
Т				· · · · · · · · · · · · · · · · · · ·			
F	Frequency		Т	Time			
Lowerca	ase letters (pp) and their meanin	gs:					
рр							
сс	CCP1		OSC	OSC1			
ck	CLKOUT		rd	RD			
CS	CS		rw	\overline{RD} or \overline{WR}			
di	SDI		SC	SCK			
do	SDO		SS	SS			
dt	Data in		tO	TOCKI			
io	I/O port		t1	T1CKI			
mc	MCLR		wr	WR			
	ase letters and their meanings:						
S	- "		-				
F	Fall		Р	Period			
H	High		R	Rise			
	Invalid (Hi-impedance)		V	Valid			
	Low		Z	Hi-impedance			
I ² C only							
AA	output access		High	High			
BUF	Bus free		Low	Low			
r	(I ² C specifications only)						
cc							
HD	Hold		SU	Setup			
ST							
DAT	DATA input hold		STO	STOP condition			
STA	START condition						
FIGURE 1	9-1: LOAD CONDITIONS						
	Load condition 1			Load condition 2			
	V_{DD} Pin V_{SS} $RL = 464\Omega$	_ R∟ C∟		Pin CL VSS			
CL = 50 pF for all pins except OSC2/CLKOUT 15 pF for OSC2 output							

19.5 Timing Diagrams and Specifications


TABLE 19-2: EXTERNAL CLOCK TIMING REQUIREMENTS

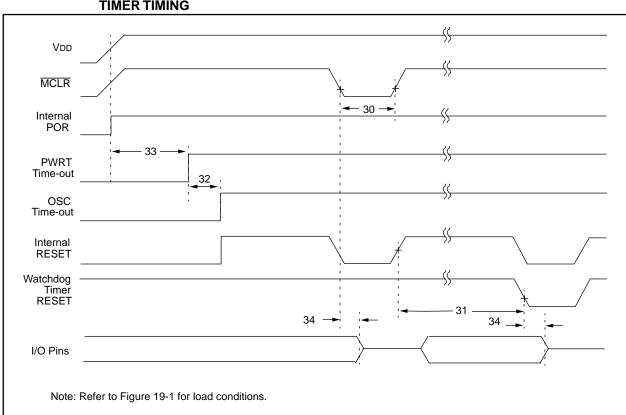
Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fos	External CLKIN Frequency	DC	_	4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (PIC16C71-04
			DC	_	20	MHz	HS osc mode (PIC16C71-20
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			1	_	4	MHz	HS osc mode (PIC16C71-04
			1	_	20	MHz	HS osc mode (PIC16C71-20
1	Tosc	External CLKIN Period	250	_	—	ns	XT and RC osc mode
		(Note 1)	250	_	—	ns	HS osc mode (PIC16C71-04
			50	_	—	ns	HS osc mode (PIC16C71-20
			5	_	—	μs	LP osc mode
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	1,000	ns	HS osc mode (PIC16C71-04
			50	_	1,000	ns	HS osc mode (PIC16C71-20
			5	_	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	1.0	_	DC	μs	Tcy = 4/Fosc
3	TosL,	Clock in (OSC1) High or Low Time	50		—	ns	XT oscillator
	TosH		2.5		_	μs	LP oscillator
			10		—	ns	HS oscillator
4	TosR,	Clock in (OSC1) Rise or Fall Time	25	_	—	ns	XT oscillator
	TosF		50	—		ns	LP oscillator
			15	_		ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C71.

FIGURE 19-3: CLKOUT AND I/O TIMING

TABLE 19-3: CL	KOUT AND I/O TIMING REQUIREMENTS
----------------	---


Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions	
10*	TosH2ckL	OSC1↑ to CLKOUT↓	_	15	30	ns	Note 1	
11*	TosH2ckH	OSC1↑ to CLKOUT↑		—	15	30	ns	Note 1
12*	TckR	CLKOUT rise time		_	5	15	ns	Note 1
13*	TckF	CLKOUT fall time		_	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid		_	—	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT	0.25Tcy + 25	—		ns	Note 1	
16*	TckH2iol	Port in hold after CLKOUT ↑	0	—	_	ns	Note 1	
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid	-	_	80 - 100	ns		
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold	time)	TBD	_	_	ns	
19*	TioV2osH	Port input valid to OSC1 [↑] (I/	O in setup time)	TBD	—	_	ns	
20*	TioR	Port output rise time	PIC16C71	_	10	25	ns	
			PIC16LC71	_	—	60	ns	
21*	TioF	Port output fall time	PIC16C71	-	10	25	ns	
			PIC16LC71	_	—	60	ns	
22††*	Tinp	INT pin high or low time	20	—	_	ns		
23††*	Trbp	RB7:RB4 change INT high c	or low time	20	—	_	ns	

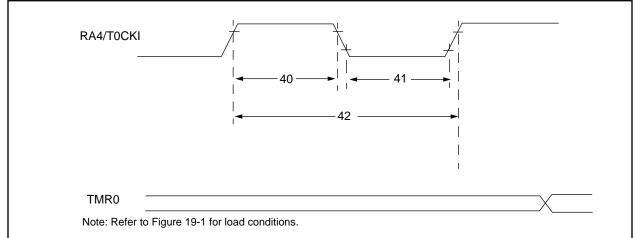
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 19-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING


TABLE 19-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	200	_	—	ns	VDD = 5V, -40°C to +85°C
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7*	18	33*	ms	VDD = 5V, -40°C to +85°C
32	Tost	Oscillation Start-up Timer Period		1024 Tosc			Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	28*	72	132*	ms	VDD = 5V, -40°C to +85°C
34	Tıoz	I/O High Impedance from MCLR Low			100	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 19-5: TIMER0 CLOCK TIMINGS

TABLE 19-5: TIMER0 CLOCK REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20*	—	_	ns	
			With Prescaler	10*	—	_	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20*	—	—	ns	
			With Prescaler	10*	—	_	ns	
42	Tt0P	T0CKI Period		Greater of: 20µs or <u>TCY + 40</u> * N	—	_	ns	N = prescale value (2, 4,, 256)

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 19-6:A/D CONVERTER CHARACTERISTICS:
PIC16C71-04 (COMMERCIAL, INDUSTRIAL)
PIC16C71-20 (COMMERCIAL, INDUSTRIAL)

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	NR	Resolution	—	—	8 bits	—	$V{\sf REF} = V{\sf DD} = 5.12V, V{\sf SS} \le A{\sf IN} \le V{\sf REF}$
	Nint	Integral error	_	_	less than ±1 LSb	—	$VREF = VDD = 5.12V, VSS \le AIN \le VREF$
	Ndif	Differential error	_		less than ±1 LSb	_	$VREF = VDD = 5.12V, VSS \leq AIN \leq VREF$
	NFS	Full scale error	_	—	less than ±1 LSb	—	$VREF = VDD = 5.12V, VSS \le AIN \le VREF$
	Noff	Offset error	_	_	less than ±1 LSb	—	$VREF = VDD = 5.12V, VSS \leq AIN \leq VREF$
	—	Monotonicity	—	guaranteed	_	_	$VSS \leq AIN \leq VREF$
	Vref	Reference voltage	3.0V	—	Vdd + 0.3	V	
	VAIN	Analog input voltage	Vss - 0.3	—	Vref	V	
	Zain	Recommended impedance of analog voltage source	_	_	10.0	kΩ	
	IAD	A/D conversion cur- rent (VDD)	_	180		μA	Average current consumption when A/D is on. (Note 1)
	IREF	VREF input current (Note 2)	_		1 40	mA μA	During sampling All other times

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

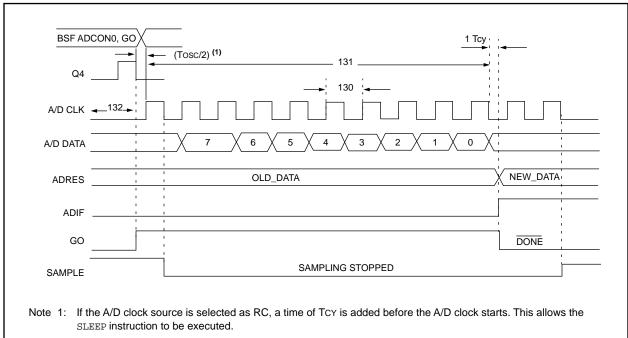
2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

TABLE 19-7: A/D CONVERTER CHARACTERISTICS: PIC16LC71-04 (COMMERCIAL, INDUSTRIAL)

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	NR	Resolution	_	—	8 bits	- 1	VREF = VDD = 3.0V (Note 1)
	Nint	Integral error	_	—	less than ±2 LSb	—	VREF = VDD = 3.0V (Note 1)
	Ndif	Differential error	—		less than ±2 LSb	—	VREF = VDD = 3.0V (Note 1)
	NFS	Full scale error	_		less than ±2 LSb	-	VREF = VDD = 3.0V (Note 1)
	Noff	Offset error	_		less than ±2 LSb	_	VREF = VDD = 3.0V (Note 1)
	_	Monotonicity	_	guaranteed	_	-	$VSS \le AIN \le VREF$
	Vref	Reference voltage	3.0V	—	Vdd + 0.3	V	
	VAIN	Analog input voltage	Vss - 0.3	—	Vref	V	
	Zain	Recommended impedance of ana- log voltage source	_	_	10.0	kΩ	
	Iad	A/D conversion cur- rent (VDD)	—	90	_	μΑ	Average current consumption when A/D is on. (Note 2)
	IREF	VREF input current (Note 3)	_	_	1 10	mA μA	During sampling All other times

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: These specifications apply if VREF = 3.0V and if VDD \ge 3.0V. VIN must be between VSS and VREF

2: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

3: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

PIC16C7X

Applicable Devices 70 71 71A 72 73 73A 74 74A

FIGURE 19-6: A/D CONVERSION TIMING

TABLE 19-8: A/D CONVERSION REQUIREMENTS

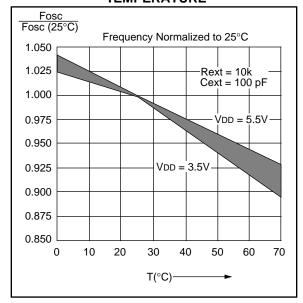
Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
130	TAD	A/D clock period	2.0		—	μs	
130	TAD	A/D Internal RC Oscillator source					ADCS1:ADCS0 = 11 (RC oscillator source)
			3.0	6.0	9.0	μs	PIC16LC71, VDD = 3.0V
			2.0	4.0	6.0	μs	PIC16C71
131	TCNV	Conversion time (not including S/H time) (Note 1)	—	10Tad	_	-	
132	TSMP	Sampling time	Note 2	20	-	μs	

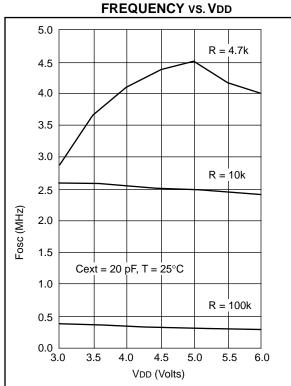
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TcY cycle.

2: See Section 13.1 for min conditions.


NOTES:


20.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C71

The graphs and tables provided in this section are for design guidance and are not tested or guaranteed. In some graphs or tables the data presented are outside specified operating range (e.g. outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

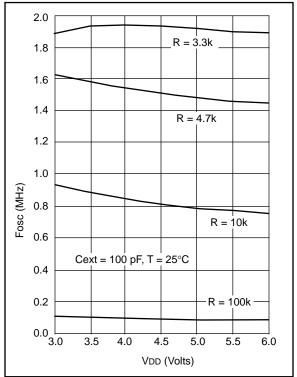

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. 'Typical' represents the mean of the distribution while 'max' or 'min' represents (mean + 3σ) and (mean - 3σ) respectively where σ is standard deviation.

FIGURE 20-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE

FIGURE 20-3: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

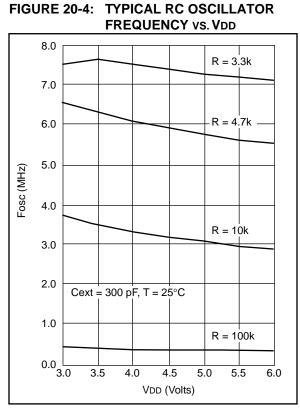
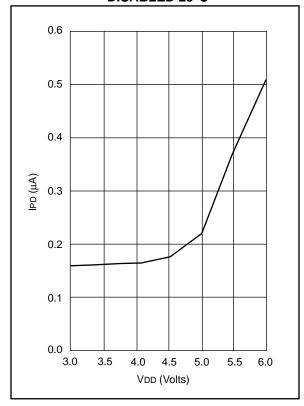


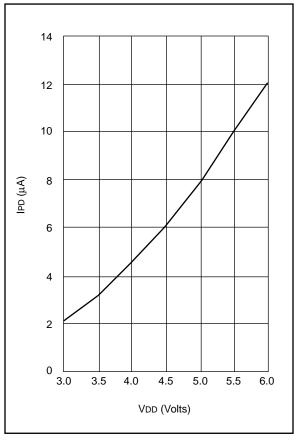
FIGURE 20-2: TYPICAL RC OSCILLATOR

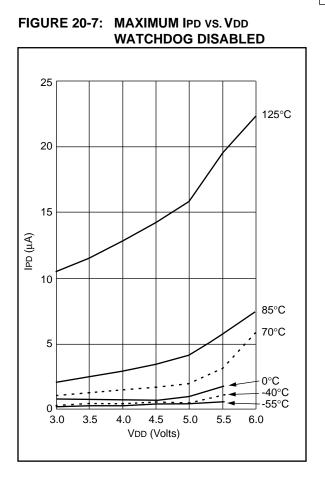

Applicable Devices 70 71 71A 72 73 73A 74 74A

DS30390B-page 189

Applicable Devices 70 71 71A 72 73 73A 74 74A

FIGURE 20-5: TYPICAL IPD VS. VDD WATCHDOG TIMER DISABLED 25°C




TABLE 20-1:RC OSCILLATORFREQUENCIES

Cext	Devt	Ave	rage		
Cext	Rext	Fosc @	5V, 25°C		
20 pf	4.7k	4.52 MHz	±17.35%		
	10k	2.47 MHz	±10.10%		
	100k	290.86 kHz	±11.90%		
100 pf	3.3k	1.92 MHz	±9.43%		
	4.7k	1.49 MHz	±9.83%		
	10k	788.77 kHz	±10.92%		
	100k	88.11 kHz	±16.03%		
300 pf	3.3k	726.89 kHz	±10.97%		
	4.7k	573.95 kHz	±10.14%		
	10k	307.31 kHz	±10.43%		
	100k	33.82 kHz	±11.24%		

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from average value for VDD = 5V.

FIGURE 20-6: TYPICAL IPD VS. VDD WATCHDOG TIMER ENABLED 25°C

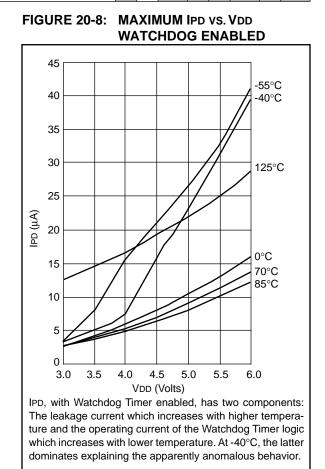
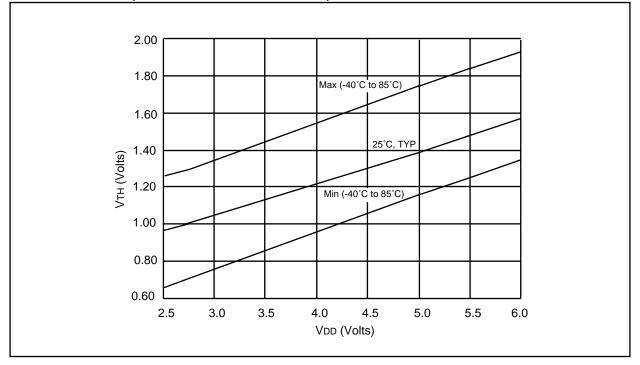



FIGURE 20-9: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS VS. VDD

 Applicable Devices
 70
 71
 71A
 72
 73
 73A
 74
 74A

FIGURE 20-10: VIH, VIL OF MCLR, TOCKI AND OSC1 (IN RC MODE) VS. VDD

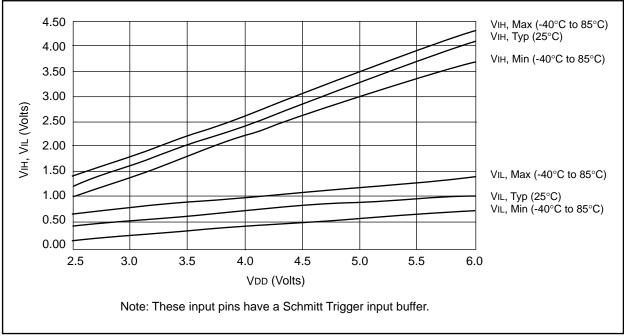
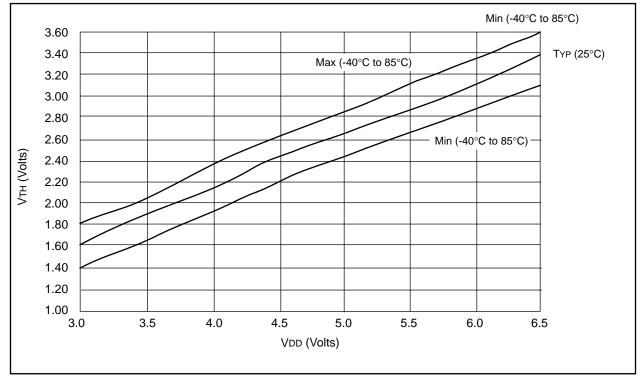



FIGURE 20-11: VTH (INPUT THRESHOLD VOLTAGE) OF OSC1 INPUT (IN XT, HS, AND LP MODES) vs. Vdd

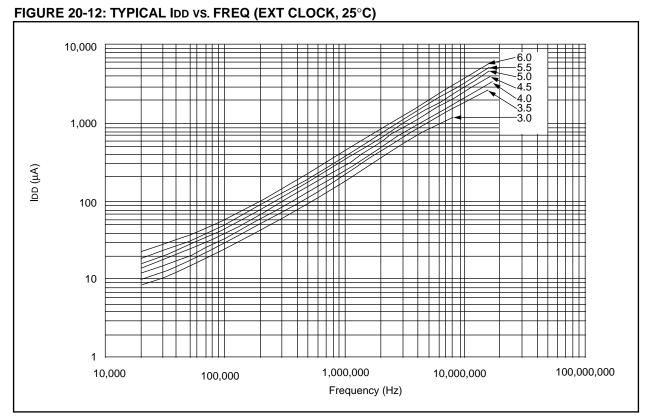
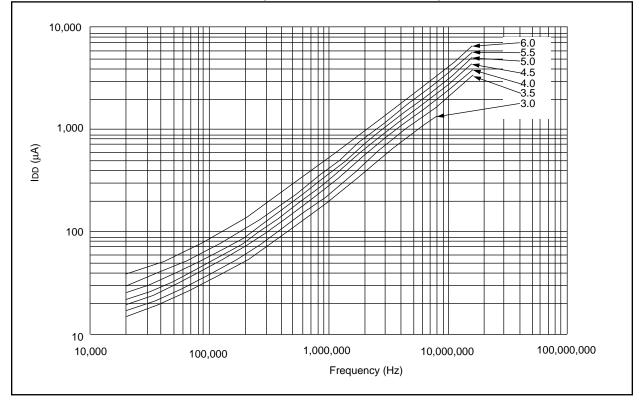
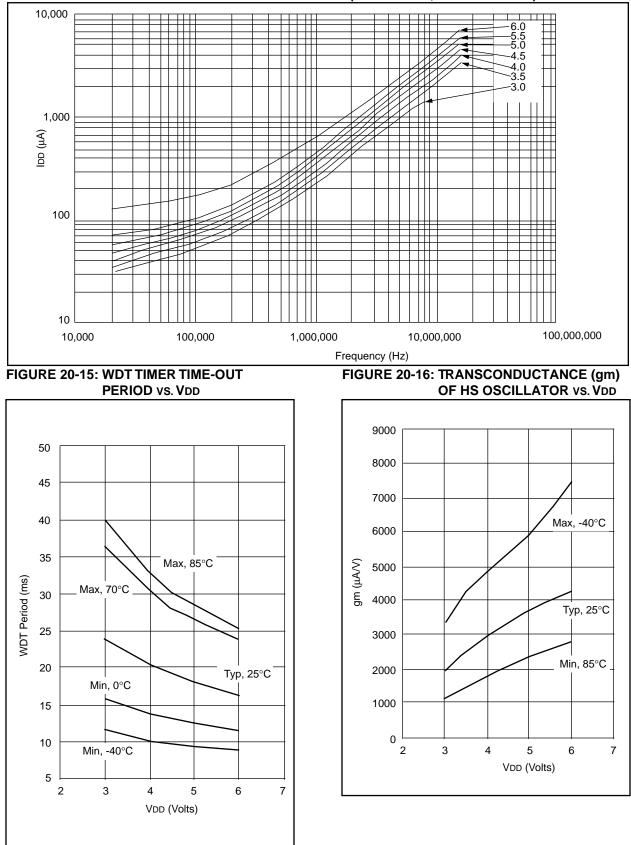
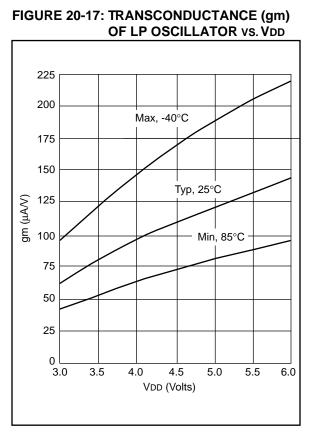





FIGURE 20-13: MAXIMUM, IDD vs. FREQ (EXT CLOCK, -40° TO +85°C)

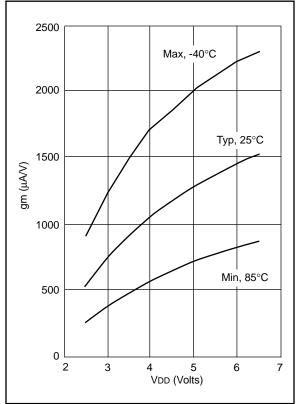
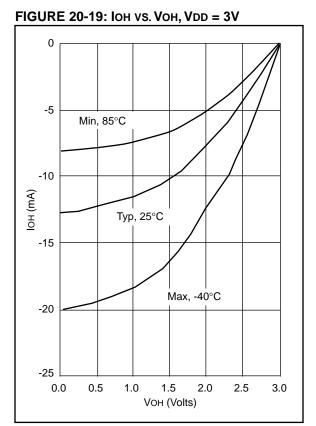
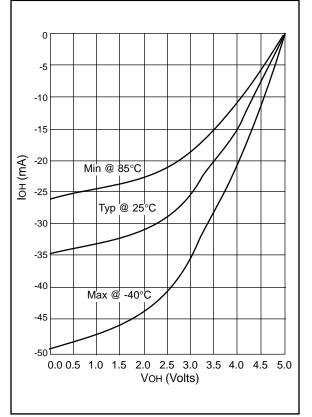
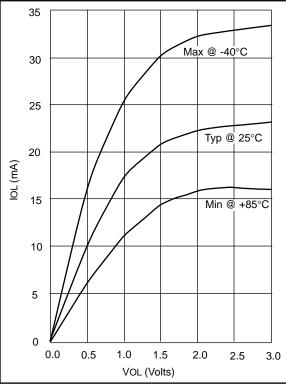


FIGURE 20-14: MAXIMUM IDD vs. FREQ WITH A/D OFF (EXT CLOCK, -55° TO +125°C)




FIGURE 20-18: TRANSCONDUCTANCE (gm) OF XT OSCILLATOR vs. VDD


Applicable Devices 70 71 71A 72 73 73A 74 74A

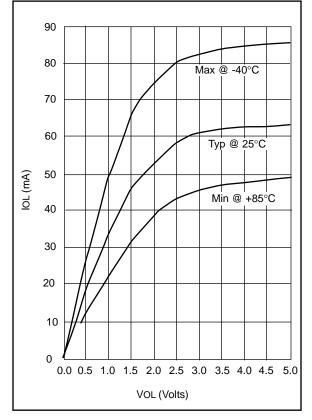


FIGURE 20-21: IOL VS. VOL, VDD = 3V

FIGURE 20-22: IOL VS. VOL, VDD = 5V

TABLE 20-2: INPUT CAPACITANCE*

Pin Name	Typical Capacitance (pF)					
	18L PDIP	18L SOIC				
RA port	5.0	4.3				
RB port	5.0	4.3				
MCLR	17.0	17.0				
OSC1/CLKN	4.0	3.5				
OSC2/CLKOUT	4.3	3.5				
TMR0	3.2	2.8				

*All capacitance values are typical at 25°C. A part-topart variation of \pm 25% (three standard deviations) should be taken into account.

PIC16C7X

Applicable Devices 70 71 71A 72 73 73A 74 74A

21.0 ELECTRICAL CHARACTERISTICS FOR PIC16C72

Absolute Maximum Ratings †

5.	
Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and $\overline{\text{MCLR}}$)	0.6V to (VDD + 0.6V)
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Total power dissipation (Note 1)	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, IiK (VI < 0 or VI > VDD)	
Output clamp current, loк (V0 < 0 or V0 > VDD)	±20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	
Maximum current sourced by PORTA and PORTB (combined)	
Maximum current sourced by PORTA and PORTB (combined) Maximum current sunk by PORTC	
Maximum current sourced by PORTC	»
Note 1: Power dissipation is calculated as follows: Pdis \neq VDg x {lsp - \sum IOH} +	+ $\sum \{(VDD - VOH) \times IOH\} + \sum (VOI \times IOL)$
Note 2: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater the a series resistor of 50-100 Ω should be used when applying a "low" leve this pin directly to Vss.	aan 80 mA, may cause latch-up. Thus, el to the MCLR pin rather than pulling

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 21-1:CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

ices	it 5.5V at 4V	it 5.5V at 4V	at 5.5V t 4.5V	at 32 kHz, 3.0V at 3.0V x.	he device type
JW Devices	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 µA max. at 4V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 µA max. at 4V Freq: 4 MHz max.		VDD: 3.0V to 6.0V IDD: 48 µA max. at 32 kHz, IPD: 5.0 µA max. at 3.0V Freq: 200 kHz max.	hat the user select t
PIC16LC72-04	Vbb: 3.0V to 6.0V lbb: 2.0 mA typ. at 3.0V lPb: 0.9 µA typ. at 3V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 2.0 mA typ. at 3.0V IPD: 0.9 µA typ. at 3V Freq: 4 MHz max.	Do not use in HS mode	VDD: 3:0V to 6:0V Ιρό: 48 μΑ max. at 32 kHz, 3:0V ΓΡΟ/ 5:0 μΑτπαx. at 3:0V Freq: 200 kHz max.	The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MXX specifications. It is recommended that the user select the device type that ensures the specifications required.
PIC16C72-20	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq: 4 MHz max.		Do not use in LP mode	ctionality, but not for MIN/MXX
PIC16C72-10	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 10 MHz max.	Do not use in LP mode	tions which are tested for fun
PIC16C72-04	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 µA max. at 4V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 µA max. at 4V Freq: 4 MHz max.		VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	The shaded sections indicate oscillator select that ensures the specifications required.
osc	RC	ХТ	S H	Ч	The shac that ensu

21.1 DC Characteristics:

PIC16C72-04 (Commercial, Industrial, Automotive⁽⁶⁾) PIC16C72-10 (Commercial, Industrial, Automotive⁽⁶⁾) PIC16C72-20 (Commercial, Industrial, Automotive⁽⁶⁾)

DC CHAI	RACTERISTICS		Standa Operati	-		ure -4	tions (unless otherwise stated) $^{\circ}C \leq TA \leq +125^{\circ}C$ for automotive, $^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and $C \leq TA \leq +70^{\circ}C$ for commercial		
Param No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions		
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration		
D002	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5*	-	V	Device in SLEEP mode		
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004	VDD rise rate to ensure Power-on Reset	SVDD	0.05*	-	-	V/ms	See section on Power-on Reset for details		
D010	Supply Current (Note 2,5)	IDD	-	2.7	5	mA	XT, RC osc configuration (PIC16C72-04) Fosc = 4 MHz, VDD = 5.5V (Note 4)		
D013			-	13.5	30 <	mA	HS osc configuration (PIC16C72-20) Fosc = 20 MHz, VDD = 5.5V		
D015	Brown-out Reset Current (Note 7)	Δ IBOR	-	300*	500	μA	BOR enabled VDD = 5.0V		
D020 D021 D021A D021B	Power-down Current (Note 3,5)			10.5 1.5 1.5 1.5	42 21 24 TBD	μΑ μΑ μΑ μΑ	$ \begin{array}{l} VDD = 4.0V, WDT \ enabled, \ \text{-}40^\circC \ \text{to} \ +85^\circC \\ VDD = 4.0V, WDT \ \text{disabled}, \ \text{-}0^\circC \ \text{to} \ +70^\circC \\ VDD = 4.0V, WDT \ \text{disabled}, \ \text{-}40^\circC \ \text{to} \ +85^\circC \\ VDD = 4.0V, WDT \ \text{disabled}, \ \text{-}40^\circC \ \text{to} \ +125^\circC \\ \end{array} $		
D023	Brown-out Reset Current (Note 7)			300*	500	μA	BOR enabled VDD = 5.0V		

These parameters are characterized but not tested.

† Data in "Typ" column is at 50, 25 C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

- $\overline{MCLR} = \sqrt{D}$; \overline{WDT} enabled/disabled as specified.
- The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: Automotive operating range is Advanced information for this device.
- 7: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

21.2

Applicable Devices 70 71 71A 72 73 73A 74 74A

PIC16LC72-04 (Commercial, Industrial, Automotive⁽⁶⁾) **DC Characteristics:**

	Standard Operating Conditions (unless otherwise stated)										
			Operat	ing tem	peratu	ire	-40°C	\leq TA \leq +125°C for automotive,			
DC CHA	ARACTERISTICS						-40°C	\leq TA \leq +85°C for industrial and			
							0°C	\leq TA \leq +70°C for commercial			
Param	Characteristic	Svm	Min	Typt	Max	Uni	its	Conditions			

Param No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions
D001	Supply Voltage	Vdd	3.0	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)
D002	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5*	-	V	Device in SLEEP mode
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004	VDD rise rate to ensure Power-on Reset	SVDD	0.05*	-	-	V/ms	See section on Power-on Reset for details
D010	Supply Current (Note 2,5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	μA	LP osc configuration FOSC = 32 kHz, Vpc = $3.0V$, WDT disabled
D015	Brown-out Reset Cur- rent (Note 7)	Δ IBOR	-	300*	500	μA	BOR enabled VDD = 3.0V
D020	Power-down Current	IPD	-	7.5	30	<u></u> î Â	$V_{DD} = 3.0V$, WDT enabled, -40°C to +85°C
D021	(Note 3,5)		-	0.9	5	∕ Aμ	VDD = 3.0V, WDT disabled, 0°C to +70°C
D021A			-	0.9	্র্য	μÀ	$V_{QD} = 3.0V$, WDT disabled, -40°C to +85°C
D021B			-	0.9	1,01	μA `	VDD = 3.0V, WDT disabled, -40°C to +125°C
D023	Brown-out Reset Cur- rent (Note 7)	Δ IBOR	-	300*	500	Au	BOR enabled VDD = 3.0V

These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all/IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD
- MCLR = VDØ; WDT enabled disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- Timer1)oscillator (when enabled) adds approximately 20 μA to the specification. This value is from charac-5:⁄ terization and is for design guidance only. This is not tested.
- 6: Automotive operating range is Advanced information for this device.
- 7: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

			Applicab	ole C	Devices	70 7	1 71A 72 73 73A 74 74A					
21.3 C	PIC PIC	16C72- 16C72- 16LC72	10 (Cor 20 (Cor 2-04 (Cor	nme nme mme	ercial, li ercial, li ercial, li	ndusti ndusti ndusti	rial, Automotive ⁽⁴⁾) rial, Automotive ⁽⁴⁾) rial, Automotive ⁽⁴⁾) rial, Automotive ⁽⁴⁾)					
							nless otherwise stated)					
Operating temperature $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for automotive, $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and												
DC CHAF	RACTERISTICS				0°		\leq TA \leq +70°C for commercial					
		Operati	ing voltage	e Vd	D range	as deso	cribed in DC speg Section 21.1					
Operating voltage VDD range as described in DC spec Section 21.1 and Section 21.2.												
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions					
No.				t								
	Input Low Voltage											
	I/O ports	VIL										
D030	with TTL buffer		Vss	-	0.5V	v<						
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	V Ì	$\land \checkmark \land \checkmark$					
D032	MCLR, RA4/T0CKI,OSC1 (in RC		Vss	-	0.2VDØ	V						
	mode)					N	\setminus \checkmark					
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3VDb	\forall	Notes					
	Input High Voltage			$ \langle$	$\left \right\rangle$	N'	~					
	I/O ports	Vih		-	$\backslash /$	$ \rangle$						
D040	with TTL buffer		2.0	-	- XQD	V	$4.5 \le VDD \le 5.5V$					
D040A			0.8VDD	<u> </u>	VDD	∕ V	For VDD > 5.5V or VDD < 4.5V					
D041	with Schmitt Trigger buffer		0.8VDD		VDD	V	For entire VDD range					
D042	MCLR, RA4/T0CKI, RC7:RC4, RB0/			<u> </u>	VDD	V						
D0424	INT OSC1 (XT, HS and LP)		0.7VQD	$\langle \rangle$	Vdd	v	Note1					
D042A D043	OSC1 (X1, HS and LP) OSC1 (in RC mode)	\sim		~-	VDD VDD	V	INOLET					
D043	PORTB weak pull-up current	NPURB	50	- 250		μA	VDD = 5V, VPIN = VSS					
0070	Input Leakage Current (Notes 2, 3)			250	1400	μΑ	VDD = 3V, $VPIN = V3S$					
D060	I/O ports		₽	-	±1	μA	Vss ≤ VPIN ≤ VDD, Pin at hi-					
2000					<u> </u>	μι	impedance					
D061	MCLR, RA4/TOCKI		-	-	±5	μA	$Vss \leq VPIN \leq VDD$					
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and					
						•	LP osc configuration					
	Output Low Voltage											
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V,					
							-40°C to +85°C					
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5 V,					
						.,	-40°C to +125°C					
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5 V,					
						14	-40° C to $+85^{\circ}$ C					
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C					
+ 1	ے (Qata in "Typ" column is at 5V, 25°C unles	s other	vise state	L h	hese nar	ameter						

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

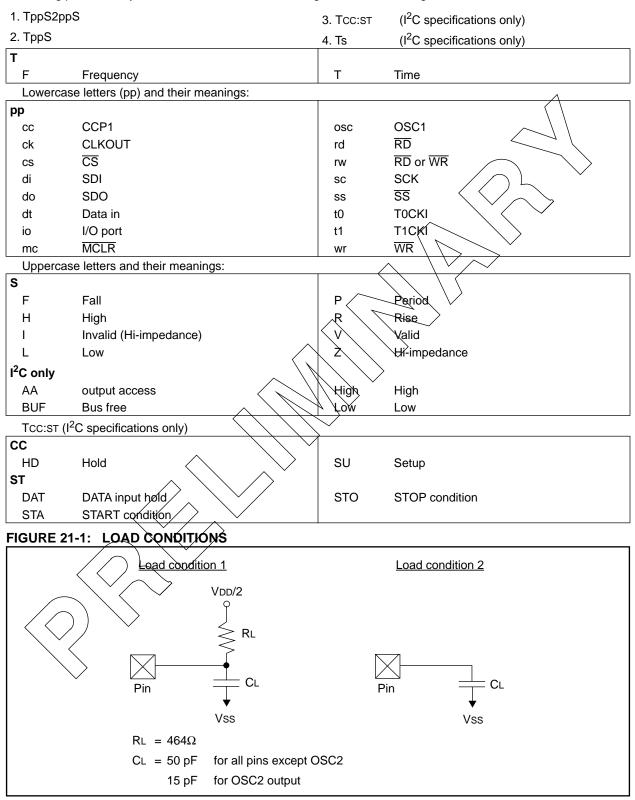
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as coming out of the pin.
- 4: Automotive operating range is Advanced information for this device.

		Standa	rd Opera	ting	Conditi	ons (u	nless otherwise stated)		
		Operati	ng tempe	ratur	e -4	O°C	\leq TA \leq +125°C for automotive,		
	0777107100				-4	O°C	\leq TA \leq +85°C for industrial and		
DC CHARA	CTERISTICS	$0^{\circ}C \leq TA \leq +70^{\circ}C$ for comme							
		Operati	ng voltage	e Vd	o range a	as deso	cribed in DC spec Section 21.1		
		-	ction 21.2		C C		·		
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions		
No.				1					
	Output High Voltage								
D090	I/O ports (Note 3)	Vон	Vdd - 0.7	-	-	V	IOH = -3.0 mA, VDE = 4.5V,		
							-40°C to +85°C		
D090A			Vdd - 0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5 V,		
							-40°C to +125°C		
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	IOH = 1.3 mA, VDD = 4.5V,		
							-40°C to +85°C		
D092A			Vdd - 0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5 V,		
						\sim	-40°C to +125°C		
	Capacitive Loading Specs on Out-						\searrow		
	put Pins						\rightarrow \rightarrow		
D100	OSC2 pin	Cosc2	-	-	15	p₹	In X7, HS and LP modes		
						$\langle \rangle$	when external clock is used to		
							drive OSC1.		
D101	All I/O pins and OSC2 (in RC mode)	Cio	-		50	[▶] pÈ			
D102	SCL, SDA in I ² C mode	Св	- < \	k - `	400 -	_p₽			

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

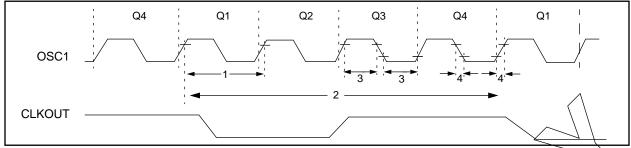
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode


2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: Automotive operating range is Advanced information for this device.

21.4 <u>Timing Parameter Symbology</u>

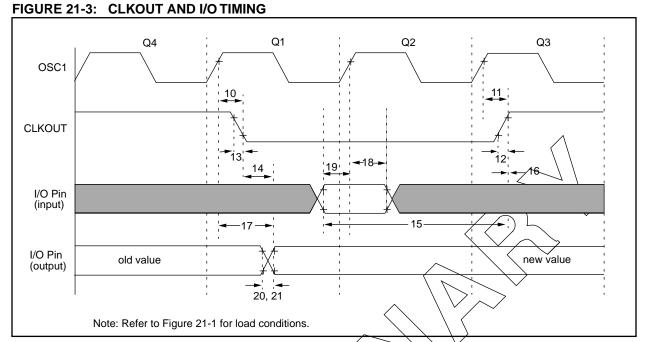

The timing parameter symbols have been created following one of the following formats:

Applicable Devices 70 71 71A 72 73 73A 74 74A

21.5 <u>Timing Diagrams and Specifications</u>

FIGURE 21-2: EXTERNAL CLOCK TIMING

TABLE 21-2: CLOCK TIMING REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fos	External CLKIN Frequency	DC	-	4	MHz	XI and RC osc mode
		(Note 1)	DC	—	4	МНЯ	HS osc mode (PIC16C72-04)
			DC	—	20	MHz∖	HS ose mode (PIC16C72-20)
			DC	—	200	кнд	LP osc mode
		Oscillator Frequency	DC	-/	4	MHz	RC osc mode
		(Note 1)	0.1	_ \	$\sqrt{4}$	MHz	XT osc mode
			4	$\langle \rightarrow$	$\overline{4}$	MHz	HS osc mode (PIC16C72-04)
			4	$\left(\left(\left$	< ∕v	MHz	HS osc mode (PIC16C72-10)
			4		20	MHz	HS osc mode (PIC16C72-20)
			5	$\land \rightarrow \$	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	$\langle \rangle$	—	ns	XT and RC osc mode
		(Note 1)	250	>`-	—	ns	HS osc mode (PIC16C72-04)
			∖ 100 [∨]		—	ns	HS osc mode (PIC16C72-10)
			√ 50	—	—	ns	HS osc mode (PIC16C72-20)
		$ \land \land \land \land$	5	—	—	μs	LP osc mode
		Oscillator Period	250		—	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (PIC16C72-04)
			100	—	250	ns	HS osc mode (PIC16C72-10)
		$\langle \rangle \leq \vee$	50	—	250	ns	HS osc mode (PIC16C72-20)
		$\mid \checkmark \land \rangle$	5	—	_	μs	LP osc mode
2 /	Toy	Instruction Cycle Time (Note 1)	200	_	DC	ns	TCY = 4/FOSC
3 / /	TosL)	External Clock in (OSC1) High or	50	_	_	ns	XT oscillator
$\langle \rangle$	TosH	LowŤime	2.5	—	_	μs	LP oscillator
\backslash			10	—	_	ns	HS oscillator
4	TosB,	External Clock in (OSC1) Rise or	_	_	25	ns	XT oscillator
	TosF	Fall Time	_	—	50	ns	LP oscillator
			_	—	15	ns	HS oscillator

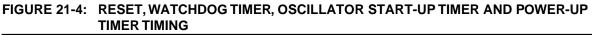
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

PIC16C7X

Applicable Devices 70 71 71A 72 73 73A 74 74A

TABLE 21-3: CLKOUT AND I/O TIMING REQUIREMENTS


Parameter No.	Sym	Characteristic	\land	Mìn	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓	$\langle V \rangle$	<u> </u>	15	30	ns	Note 1
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]	$\langle V \rangle$	<u> </u>	15	30	ns	Note 1
12*	TckR	CLKOUT rise time	U / L	—	5	15	ns	Note 1
13*	TckF	CLKOUT fall time	$\langle \langle \rangle \rangle$		5	15	ns	Note 1
14*	TckL2ioV	CLKOUT↓ to Port out vallid	\sim	_	_	0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT		0.25Tcy + 25	_	—	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT		0	_	_	ns	Note 1
17*	TosH2ioV	OSC17 (Q1 cycle) to Port out valid				80 - 100	ns	
18*	TosH2iol	OSC1↑ (Q2 cycle) to Port input invalid (I/O in hold tim	e)	TBD		_	ns	
19*	TioV2osH	Port input valid to OSC11 (I/O ir	n setup time)	TBD	-	_	ns	
20*	TiøR	Port output/rise time PIC	16C72		10	25	ns	
	$ \setminus \lor$		16LC72		_	60	ns	
21*	TiqF	Port output fall time PIC	16C72	—	10	25	ns	
	$() \ ()$	PIC	16LC72		_	60	ns	
2271*	Tinp	INT pin high or low time		20	—	—	ns	
23††*	Trbp	RB7:RB4 change INT high or lo	w time	20	_		ns	


* These parameters are characterized but not tested.

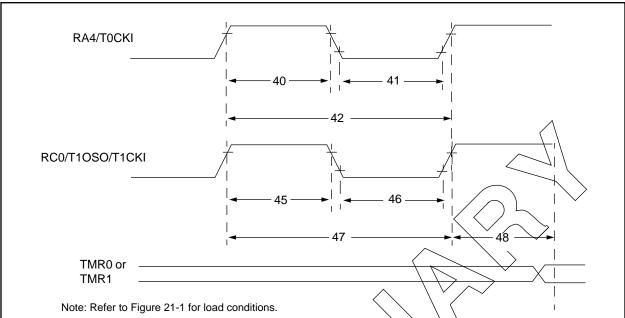
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

TABLE 21-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UPTIMER REQUREMENTS

Parameter	Sym <	Characteristic	Min	Тур†	Max	Units	Conditions
No.		\land					
30	TmcL	MCLR Pulse Width (low)	1	_	_	μs	VDD = 5V, -40°C to +125°C
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7*	18	33*	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period		1024Tosc			Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	28*	72	132*	ms	VDD = 5V, -40°C to +125°C
34	Tioz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset			1.1	μs	
35	TBOR	Brown-out Reset pulse width	100	_	_	μs	$3.8V \le VDD \le 4.2V$

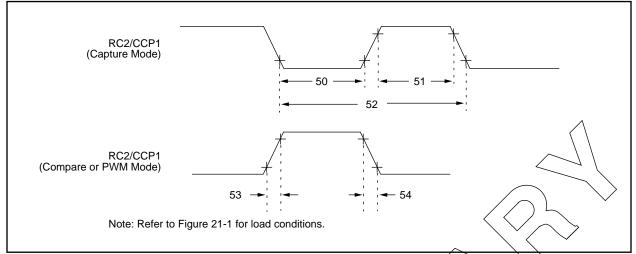

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C7X

Applicable Devices 70 71 71A 72 73 73A 74 74A

TABLE 21-5: TIMER0 AND TIMER1 CLOCK REG	UIREMENTS
---	-----------


Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	$\sim $	Q.5TCY + 20*	-		ns	
			With Prescaler	$\mathcal{V}\mathcal{U}$	10*	-	_	ns	
41	TtOL	T0CKI Low Pulse	No Prescaler	$\langle \rangle$	0.5TCY + 20*	_	_	ns	
		Width	With Prescaler	$\setminus \bigvee$	10*	_		ns	
42	Tt0P	T0CKI Period		\searrow	Greater of: 20µs or <u>Tcy + 40</u> * N	_	_	ns	N = prescale value (1, 2, 4,, 256)
45	Tt1H	T1CKI High Time	Synchronous, r	no prescaler	0.5Tcy + 20	_		ns	
		$ \langle \langle / /$	Synchronous,	PIC16C72	10*	_	_	ns	
		$\square \setminus \langle \rangle$	with prescaler	PIC16LC72	20*	-			
		$h L \vee$	Asynchronous		2Tcy	_		ns	
46	Tt14_ <	T1CKI Low Time	Synchronous, r	no prescaler	0.5Tcy + 20	—	_	ns	
	\frown	$\langle \langle \cdot \rangle$	Synchronous,	PIC16C72	10*	-		ns	
		$\left \right\rangle$	with prescaler	PIC16LC72	20*	—	—		
	\searrow	, v	Asynchronous		2Tcy	—	—	ns	
47	Тір	T1CKI input period	Synchronous		Greater of: 20µs or <u>Tcy + 40</u> * N	_	_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		Greater of: 20μs or 4Tcy	-	_	ns	
	Ft1	Timer1 oscillator inp (oscillator enabled I		0	DC	-	200	kHz	
48	Tcke2tmrl	Delay from external	clock edge to t	imer increment	2Tosc	_	7Tosc	_	

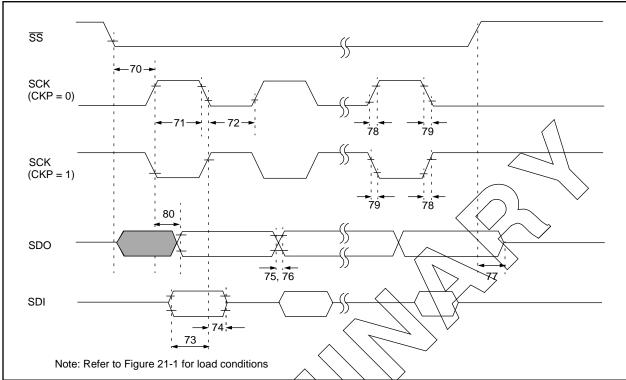
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 70 71 71A 72 73 73A 74 74A

FIGURE 21-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1)

TABLE 21-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)


				\ 	\rightarrow	>	\geq	
Param No.	Sym	Characteristic		Min	Typt	Max	Units	Conditions
50	TccL	CCP1 input low time	No Prescaler	0.5TCY + 20*	$\left[\rightarrow \right]$	-	ns	
			With Prescaler PIC16C72	10*	2-	—	ns	
			PIC16LC72	20*	—	—	ns	
51	TccH	CCP1 input high time	No Prescaler	0.5TCY + 20*	—	—	ns	
			With Prescaler PIC16C72	10*	—	—	ns	
			PHC16LCZ2	20*	—	—	ns	
52	TccP	CCP1 input period		<u>3Tcy + 40</u> * N	_	—	ns	N = prescale value (1,4 or 16)
53	TccR	CCP1 output rise time		—	10	25	ns	
54	TccF	CCP1 output fall time	$\langle \rangle$	_	10	25	ns	

* These parameters are characterized but not tested.

+ Data in "Typ" column is at 54, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C7X

Applicable Devices 70 71 71A 72 73 73A 74 74A

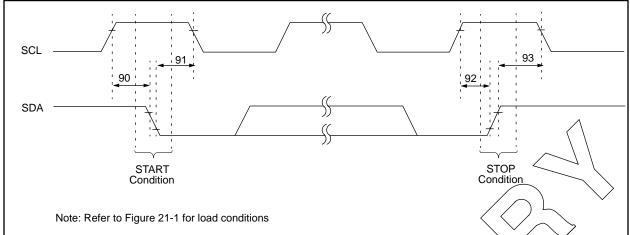

FIGURE 21-8: SPI MODE TIMING

TABLE 21-7: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input	Тсү	_	_	ns	
71	TscH	SCK/mput high time (slave mode)	Tcy + 20	_	_	ns	
72	TscL	SCK input low time (slave mode)	Tcy + 20	_	_	ns	
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK	Тсү	—		ns	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK	0.5Tcy	_	_	ns	
75	TdøR	SQO data output rise time	_	10	25	ns	
76 <	THOF	SDO data output fall time	_	10	25	ns	
77	TssH2doZ	$\overline{\text{SS}}\downarrow$ to SDO output hi-impedance	10	_	50	ns	
78	TscR	SCK output rise time (master mode)	_	10	25	ns	
79	TscF	SCK output fall time (master mode)	_	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_		50	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

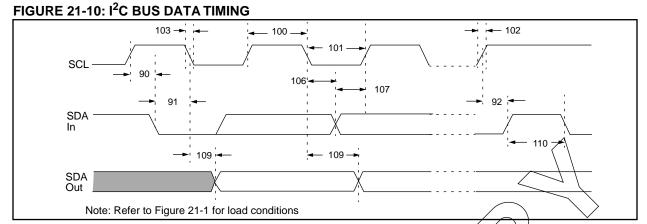

FIGURE 21-9: I²C BUS START/STOP BITS TIMING

TABLE 21-8: I²C BUS START/STOP BITS REQUIREMENTS

Parameter	Sym	Characteristic		Min	Тур	Max	Units	Conditions
No.						\square		\vee \sim
90	TSU:STA	START condition	100 kHz mode	4700	—	ΞĘ,		Only relevant for repeated START
		Setup time	400 kHz mode	600	\square	\mathbb{N}	ns	condition
91	THD:STA	START condition	100 kHz mode	4000	F	1	ns	After this period the first clock
		Hold time	400 kHz mode	600	$\langle - \rangle$	$\overline{\ }$	11-3-/	pulse is generated
92	TSU:STO	STOP condition	100 kHz mode	4700	$\left(\neq \right)$	$\overline{\mathbf{X}}$	ns	
		Setup time	400 kHz mode	600	$\left \right $			
93	THD:STO	STOP condition	100 kHz møde	4000	$\langle - \rangle$	7—	ns	
		Hold time	400 kHz mode	600	$\left \right>$	—	113	

DS30390B-page 210

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions	
100	THIGH	Clock high time	100 kHz mode	4.0		us	PIC16C72 must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	<u> </u>	as	PIC16C72 must operate at a minimum of 10 MHz	
			SSP Module	1.5TCY	7 - 1			
101	TLOW	Clock low time	100 kHz mode	47		μs	PIC16C72 must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	2-	μs	PIC16C72 must operate at a minimum of 10 MHz	
			SSP Module	1.5104	_			
102	Tr	SDA and SCL rise	100 kHz mode	\searrow	1000	ns		
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF	
103	TF	SDA and SCL fall time	100 kHz mode	_	300	ns		
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF	
90	TSU:STA	START condition	100 kHz mode	4.7	_	μs	Only relevant for repeated	
		setup time	400 kHz mode	0.6	—	μs	START condition	
91	THD:STA	START condition hold	100 kHz mode	4.0	_	μs	After this period the first cloc	
	_	time *	400 kHz mode	0.6	_	μs	pulse is generated	
106	THD:DAT	Data input hold time	100 kHz mode	0	_	ns		
		$) \leftarrow \vee$	400 kHz mode	0	0.9	μs		
107	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2	
			400 kHz mode	100	—	ns		
92	Tsu:sto	STOP condition setup	100 kHz mode	4.7	—	μs		
$\langle \langle \rangle$		time	400 kHz mode	0.6	_	μs		
109	ΤΑΑ	Output valid from	100 kHz mode	_	3500	ns	Note 1	
\sim	$\langle \rangle$	clock	400 kHz mode	_	—	ns		
110	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free	
			400 kHz mode	1.3	_	μs	before a new transmission ca start	
	Cb	Bus capacitive loading		_	400	pF		

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode I²C-bus device can be used in a standard-mode I²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

TABLE 21-10: SERIAL PORT SYNCHRONOUS TRANSMISSION REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE)	PIC16C72	_	_	50	ns	
		Clock high to data out valid	PIC16LC72	—	_	100	ns	
121	Tckrf	Clock out rise time and fall time	PIC16C72	- 1	_	25	ns	
		(Master Mode)	PIC16LC72	—	_	50	ns	
122	Tdtrf	Data out rise time and fall time	PIC16C72		_	25	ns	\square
			PIC16LC72	_	-	50	ns	$ \rangle \rangle$

+: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 21-11: SERIAL PORT SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
125	TdtV2ckl	SYNC RCV (MASTER & SLAVE) Data hold before $CK \downarrow$ (DT hold time)	15	4		ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	_	$\nabla \nearrow$	ns	

+: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 21-12:A/D CONVERTER CHARACTERISTICS:
PIC16C72-04 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE⁽³⁾)
PIC16C72-10 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE⁽³⁾)
PIC16C72-20 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE⁽³⁾)

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Nr	Resolution		_	8-bits	_	$V\text{REF} = V\text{DD} = 5.12V, V\text{SS} \leq A\text{IN} \leq V\text{REF}$
	Nint	Integral error	_		less than ±1 LSb	—	$VREF = VDD = 5.12V, VSS \le AIN \le VREF$
	Ndif	Differential error	_	—	less than ±1 LSb	—	$VREF = VDD = 5.12V, VSS \le AIN \le VREF$
	NFS	Full scale error	_		less than ±1 LSb	—	$VREF = VDD = 5.12V, VSS \le AIN \le VREF$
	Noff	Offset error	_	—	less than ±1 LSb	_	$VREF = VDD = 5.12V, VSS \le AIN \le VREF$
	_	Monotonicity	_	guaranteed	_	_	VSS ≤ AIN ≤ VREF
	VREF	Reference voltage	3.0V	—	Vdd + 0.3	$\overline{\mathbb{N}}$	$\langle \rangle$
	VAIN	Analog input voltage	Vss - 0.3		Vref + 0.3	/v/	
	ZAIN	Recommended impedance of analog voltage source		_	10.0	kģ2	
	IAD	A/D conversion cur- rent (VDD)	_	180		μA	Average current consumption when A/D is on. (Note 1)
	IREF	VREF input current (Note 2)	_			mA μA	During sampling All other times

These parameters are characterized but not tested.

+ Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

3: Automotive operating range is Advanced information for this device.

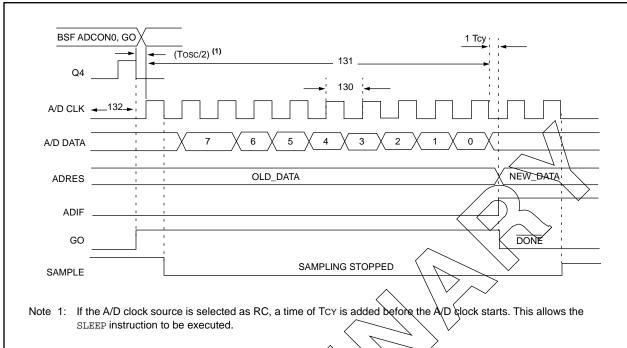
TABLE 21-13: A/D CONVERTER CHARACTERISTICS: PIC16LC72-04 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE⁽⁴⁾)

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	NR	Resolution	_	—	8-bits	—	VREF = VDD = 3.0V (Note 1)
	Νίντ	Integral error	_		less than ±1 LSb	—	VREF = VDD = 3.0V (Note 1)
	Ndif	Differential error	_		less than ±1 LSb	_	VREF = VDD = 3.0V (Note 1)
	NFS	Full scale error	_		less than ±1 LSb	_	VREF = VDD = 3.0V (Note 1)
	NOFF	Offset error	_	_	less than ±1 LSb	—	VREF = VDD = 3.0V (Note 1)
	—	Monotonicity	_	guaranteed	—	—	VSS ≤ AIN ≤ VREF
	Vref	Reference voltage	3.0V	—	Vdd + 0.3	V	
	VAIN	Analog input voltage	Vss - 0.3	—	Vref + 0.3	V	
	ZAIN	Recommended impedance of ana- log voltage source	—	_	10.0	kΩ	
	IAD	A/D conversion cur- rent (VDD)	_	90	_ <	μΑ	Average current consumption when A/D is on. (Note 2)
	IREF	VREF input current (Note 3)	_		1	- ma -μA	During sampling All other times

* These parameters are characterized but not tested.

+ Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: These specifications apply if VREF = 3.0V and if $VDD \ge 3.0V$ Vin must be between VSS and VREF


2: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

- 3: VREF current is from RA3 pin or VDD pin, which ever is selected as reference input.
- 4: Automotive operating range is Advanced information for this device.

PIC16C7X

Applicable Devices 70 71 71A 72 73 73A 74 74A

TABLE 21-14: A/D CONVERSION REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Txpt	Max	Units	Conditions
NO.					>		
130	TAD	A/D clock period	1.6	// /		μs	$VREF \ge 3.0V$
			2.0	\land	—	μs	VREF full range
130	TAD	A/D Internal RC	$ \setminus \setminus$				ADCS1:ADCS0 = 11
		Oscillator source					(RC oscillator source)
			3.0	6.0	9.0	μs	PIC16LC72, VDD = 3.0V
		$ \land \land$	2.0	4.0	6.0	μs	PIC16C72
131	TCNV	Conversion time	$\land \not$	9.5Tad	_	-	
		(not including S/H					
		time) (Note 1)	Þ				
132	TSMP	Sampling time	Note 2	20	_	μs	

- * These parameters are characterized but not tested.
- + Data n "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1. ADRES register may be read on the following TCY cycle.
 - See Section 13,7 for min conditions.

PIC16C7X

Applicable Devices 70 71 71A 72 73 73A 74 74A

NOTES:

Applicable Devices 70 71 71A 72 73 73A 74 74A

22.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C72

NOT AVAILABLE AT THIS TIME

7TTI • 1

1.1 1.0.4

 Applicable Devices
 70
 71
 71A
 72
 73
 73A
 74
 74A

NOTES:

Applicable Devices 70 71 71A 72 73 73A 74 74A

23.0 ELECTRICAL CHARACTERISTICS FOR PIC16C73/74

Absolute Maximum Ratings †

Ambient temperature under bias55 to +125°C
Storage temperature
Voltage on any pin with respect to Vss (except VDD and MCLR)0.6V to (VDD + 0.6V)
Voltage on VDD with respect to Vss 0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)0 to +14V
Total power dissipation (Note 1)
Maximum current out of Vss pin
Maximum current into VDD pin
Input clamp current, IIK (VI < 0 or VI > VDD)
Output clamp current, Ioκ (V0 < 0 or V0 > VDD)
Maximum output current sunk by any I/O pin
Maximum output current sourced by any I/O pin
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3)
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3)
Maximum current sunk by PORTC and PORTD (combined) (Note 3)
Maximum current sourced by PORTC and PORTD (combined) (Note 3)
Note 1: Power dissipation is calculated as follows: Pdis \neq VDR x {IRD - Σ IOH} + Σ {(VDD - VOH) x IOH} + Σ (VOI x IOL)
Note 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

Note 3: PORTD and PORTE are not implemented on the PIC16C73.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 23-1:CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

													3.0V		ype						
JW Devices	VDD: 4.0V to 6.0V		IPD: 21 μA max. at 4V			IPD: Z1 µA max. at 4 V Fred: 4 MHz max		VDD: 4.5V to 5.5V	IDD: 30 mA max. at 5.5V	IPD: 1.5 μA typ. at 4.5V	Freq: 10 MHz max.	VDD: 3.0V to 6.0V	IDD: 48 μA max. at 32 kHz, 3.0V IPD: 13.5 μA max. at 3.0V		hat the user select the device t						
PIC16LC73-04 PIC16LC74-04	VDD: 3.0V to 6.0V		IPD: 0.9 μA typ. at 3V	 		IPD: 0.9 μA typ. at 3V Frac: 4 MHτ may						VDB: 3.0V to 6.0V	Jbb:// 48 μA max. at 32 kHz, 3.0V	1: /2	The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type			$\langle \rangle$	\sim	>	
PIC16C73-20 PIC16C74-20	VDD: 4.5V to 5.5V		IPD: 1.5 μA typ. at 4V			Erec: Δ MHz max		VDB: 4.5V t0\$.5V	IDD: \$0 pr/A/max.at 5:5V>	IPD: 1.5 μA typ. at 4.5V	Freq: 20 MHz max.		Do not use in LP mode		nctionality, but not for MIN/MAX						
PIC16C73-10 PIC16C74-10	VDD: 4.5V to 5.5V		IPD: 1.5 μA typ. at 4V			IPD: 1.5 μA typ. at 4V Fred: 4 ΜΗτ may		VDD: 4.5V to 5.5V	IDD: 30 mA max. at 5.5V	IPD: 1.5 μA typ. at 4.5V	Freq: 10 MHz max.		Do not use in LP mode		ections which are tested for fur						
PIC16C73-04 PIC16C74-04	VDD: 4.0V to 6.0V		IPD: 21 μA max. at 4V			IPU: Z1 µA max. at 4V Fred: 4 MHz mex	rieq. 4 IVINZ IIIAA.	VDD: 4.5V to 5.5V	IDD: 13.5 mA typ. at 5.5V	IPD: 1.5 μA typ. at 4.5V	Freq: 4 MHz max.	VDD: 4.0V to 6.0V	IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V		aded sections indicate oscillator selv	that ensures the specifications required.					
osc		C	ר צ		ХT				U L	2			Ч		The sh	that en					

DC Characteristics:	PIC16C73-04 (Commercial, Industrial) PIC16C74-04 (Commercial, Industrial)
	PIC16C73-10 (Commercial, Industrial)
	PIC16C74-10 (Commercial, Industrial)
	PIC16C73-20 (Commercial, Industrial)
	PIC16C74-20 (Commercial, Industrial)

			Standard Operating Conditions (unless otherwise stated)										
DC CH	ARACTERISTICS		Operating temperature -40° C \leq TA \leq +85°C for industrial and										
						0°	$C \leq TA \leq +70^{\circ}C$ for commercial						
Param No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions						
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration						
D002	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5*	-	V	Device in SLEEP mode						
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details						
D004	VDD rise rate to ensure Power-on Reset	SVDD	0.05*	-	-	V/ms	See section on Power-on Reset for details						
D010	Supply Current (Note 2,5)	IDD	-	2.7	5	mA	XT RC osc configuration (PIC16C74-04) EQSC = 4 MHz, VDD = 5.5V (Note 4)						
D013			-	13.5	30	mA	HS osc configuration (PIC16C74-20) Fosc = 20 MHz, VDD = 5.5V						
D020 D021 D021A	Power-down Current (Note 3,5)	IPD		10.5 1.5 1.5	42 21 24	μΑ μΑ μΑ	$\label{eq:VDD} \begin{array}{l} VDD = 4.0V, WDT \text{ enabled}, -40^\circC \text{ to } +85^\circC \\ VDD = 4.0V, WDT \text{ disabled}, -0^\circC \text{ to } +70^\circC \\ VDD = 4.0V, WDT \text{ disabled}, -40^\circC \text{ to } +85^\circC \end{array}$						

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all Ipp measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-

 $\int m_{a}$ ted by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Time 1 oscillator (when enabled) adds approximately 20 μ A to the specification. This value is from characterization and is for design guidance only. This is not tested.

23.1

Applicable Devices 70 71 71A 72 73 73A 74 74A

23.2 DC Characteristics: PIC16LC73-04 (Commercial, Industrial) PIC16LC74-04 (Commercial, Industrial)

DC CHA	ARACTERISTICS		Standa Operat	itions (unless otherwise stated) $0^{\circ}C$ $\leq TA \leq +85^{\circ}C$ for industrial and C $\leq TA \leq +70^{\circ}C$ for commercial			
Param No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions
D001	Supply Voltage	Vdd	3.0	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)
D002	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5*	-	V	Device in SLEEP mode
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004	VDD rise rate to ensure Power-on Reset	SVDD	0.05*	-	-	V/ms	See section on Power on Reset for details
D010 D010A	Supply Current (Note 2,5)	IDD	-	2.0 22.5	3.8 48	mA μA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4) LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D020	Power-down Current	IPD	-	7.5	30	μA	VDD = 3.QV, WD enabled, -40°C to +85°C
D021	(Note 3,5)		-	0.9	13.5	μA	VDD = 3.0V, WDT disabled, 0°C to +70°C
D021A			-	0.9	18	<u>_μA</u>	VDD = 3.0V, WDT disabled, -40°C to +85°C

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave; from rail to rail; all I/O pins tristated, pulled to VDD

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VoD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

		PIC16C73-04(Commercial, Industrial)PIC16C74-04(Commercial, Industrial)PIC16C73-10(Commercial, Industrial)PIC16C74-10(Commercial, Industrial)PIC16C73-20(Commercial, Industrial)PIC16C74-20(Commercial, Industrial)PIC16LC73-04(Commercial, Industrial)PIC16LC74-04(Commercial, Industrial)PIC16LC74-04(Commercial, Industrial)PIC16LC74-04(Commercial, Industrial)Operating temperature $-40^{\circ}C$ $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ for industrial and $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ for commercialOperating voltage VDD range as described in DC spec-Section 23.1 and											
	,	Section		-									
Param No.	Characteristic	Sym	Min	Typ	Мах	Units	Conditions						
	Input Low Voltage												
	I/O ports	VIL											
D030	with TTL buffer		Vss	-	0.5V	v≦	\sim						
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	v \	$\langle \cdot \rangle_{\sim} >$						
D032	MCLR, RA4/T0CKI,OSC1		Vss	-	0.2VØD	ν							
	(in RC mode)					$\langle \rangle$							
D033	OSC1 (in XT, HS and LP)		Vss	- •	0.3VDD	$ \chi\rangle$	Note1						
	Input High Voltage				/	\square							
	I/O ports	Vih		<u> </u> -`	$\langle \rangle$	\mathbb{N}							
D040	with TTL buffer		2.0	-\	VQD)	\bigvee	$4.5V \le VDD \le 5.5V$						
D040A			9¢V/8.0	<u>\-</u>	(day)	V	For VDD > 5.5V or VDD < 4.5V						
D041	with Schmitt Trigger buffer		0.8VQD	/-`	VD	V	For entire VDD range						
D042	MCLR, RA4/T0CKI, RC7:RC4,	$\left \begin{array}{c} \\ \end{array} \right\rangle$	0.8VDD	\-\	VDD	V							
	RD7:RD4, RB0/INT	$\langle \$	$\land \land \land$	\triangleright									
D042A	RE2:RE0, OSC1 (XT, HS and LP)		0.7VDD	-	Vdd	V	Note1						
D043	OSC1 (in RC mode)		Q.9VDD	-	Vdd	V							
D070	PORTB weak pull-up current	IPURB	50	250	400	μA	VDD = 5V, VPIN = VSS						
	Input Leakage Current	$ / \rangle$											
DOGO	(Notes 2, 3)				14								
D060	I/O ports		-	-	±1	μΑ	Vss \leq VPIN \leq VDD, Pin at hi-imped-						
D061	MCLR. RA4/TOCK		_	_	±5	μA	ance Vss < VPIN < VDD						
D063	OSC1				±5 ±5	μΑ	$VSS \leq VPIN \leq VDD$ VSS $\leq VPIN \leq VDD$, XT, HS and LP osc						
0000						μΛ	configuration						
	Output Low Voltage						-						
D080 /	1/O ports	VOL	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V,						
//	()						-40°C to +85°C						
D083	QSC2/CLKOÙT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V,						
+							-40°C to +85°C						

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

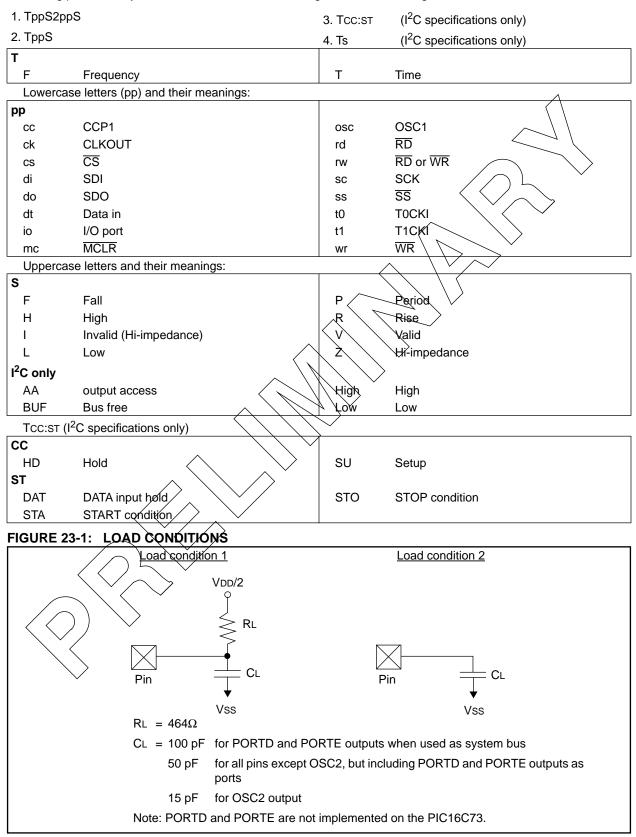
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

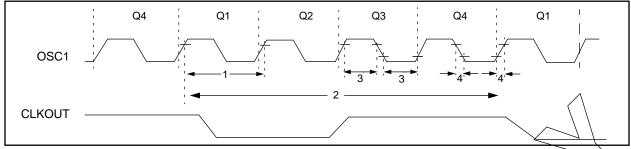
DC CHA	RACTERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ for industrial and $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ for commercialOperating voltage VDD range as described in DC spec Section 23.1 and										
		Section	23.2.									
Param No.	Characteristic	Sym	Min	Тур †	Мах	Units	Conditions					
	Output High Voltage											
D090	I/O ports (Note 3)	Vон	Vdd - 0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С					
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С					
	Capacitive Loading Specs on Output Pins											
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when exter nal clock is used to drive QSC1.					
D101	All I/O pins and OSC2 (in RC	Сю	-	-	50	pF						
D102	mode) SCL, SDA in I ² C mode	Св	-	-	400	pF	$ \langle \rangle \rangle$					

and are not tested.


Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin


23.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

23.5 **Timing Diagrams and Specifications**

FIGURE 23-2: EXTERNAL CLOCK TIMING

TABLE 23-2: CLOCK TIMING REQUIREMENTS

Parameter	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
No.	2						$ \langle \langle \rangle \rangle$
	Fos	External CLKIN Frequency	DC	_	4	MHz	XI and RC osc mode
		(Note 1)	DC	—	4	мнұ	
			DC		20	MHz	HS osc mode (PIC16C73-20, PIC16C74-20)
			DC	_<	200	► kĤz `	LP osc mode
		Oscillator Frequency	DC	$\overline{\langle}$	X	MHz	RC osc mode
		(Note 1)	0.1	$\langle - \rangle$	4	MHz	XT osc mode
			4	$\langle - \rangle$	4	MHz	HS osc mode (PIC16C73-04, PIC16C74-04)
		$\langle \cdot \rangle$	4	\langle / \rangle	✓10	MHz	HS osc mode (PIC16C73-10, PIC16C74-10)
			A	\rightarrow	20	MHz	HS osc mode (PIC16C73-20, PIC16C74-20)
			5	> _	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250		_	ns	XT and RC osc mode
		(Note 1)	250	—	—	ns	HS osc mode (PIC16C73-04, PIC16C74-04)
			100	—	—	ns	HS osc mode (PIC16C73-10, PIC16C74-10)
			50	—	—	ns	HS osc mode (PIC16C73-20, PIC16C74-20)
	/		5	—	—	μs	LP osc mode
	\langle	Oscillator Period	250	_	_	ns	RC osc mode
	\sim $^{\prime}$	(Note 1)	250	—	10,000	ns	XT osc mode
	\frown		250	—	250	ns	HS osc mode (PIC16C73-04, PIC16C74-04)
	\checkmark		100	—	250	ns	HS osc mode (PIC16C73-10, PIC16C74-10)
	\searrow		50	—	250	ns	HS osc mode (PIC16C73-20, PIC16C74-20)
			5	—	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	—	DC	ns	TCY = 4/FOSC

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not † tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

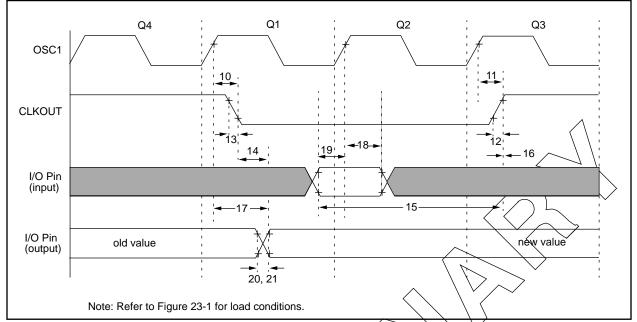

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
3	TosL,	External Clock in (OSC1) High or	50	_	_	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μs	LP oscillator
			10	—	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	—	_	25	ns	XT oscillator
	TosF	Fall Time	_	—	50	ns	LP oscillator
			—	_	15	ns	HS oscillator

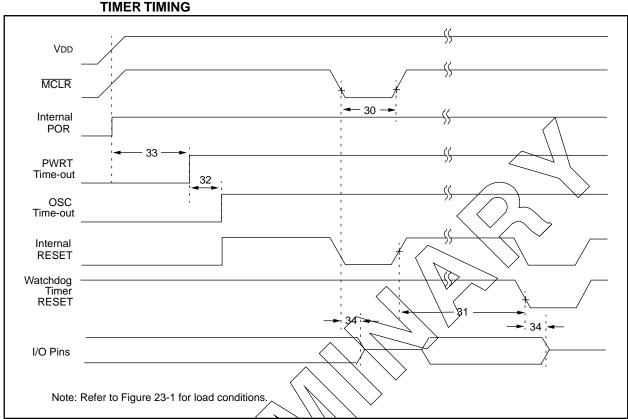
TABLE 23-2: CLOCK TIMING REQUIREMENTS (Cont.'d)

+ Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 23-3: CLKOUT AND I/O TIMING

TABLE 23-3:	CLKOUT AND I/O TIMING REQUIREMENTS
-------------	------------------------------------


Parameter	Sym	Characteristic	Min	Typ†	Мах	Units	Conditions
No.		\square	$ \land \land \lor $	2			
10*	TosH2ckL	OSC1↑ to CLKOUT↓	$\langle - \rangle$	15	30	ns	Note 1
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]	\times	15	30	ns	Note 1
12*	TckR	CLKOUT rise time	\bigvee -	5	15	ns	Note 1
13*	TckF	CLKOUT fall time	- \	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out valid	—	—	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT 1	0.25TCY + 25	—	-	ns	Note 1
16*	TckH2iol	Port in hold after CLKQUT 1	0	—	_	ns	Note 1
17*	TosH2ioV	OSC1↑ (Q1 cysle) to Port out valid	_	_	80 - 100	ns	
18*	TosH2iol	OSC11 (Q2 cycle) to Port input invalid (I/Ø in hold time)	TBD	_	_	ns	
19*	TioV2osH	Port input valid to OSC11 (I/O in setup time)	TBD	—	-	ns	
20*	TioR	Port output rise time PIC16C73/74	—	10	25	ns	
	$ \rangle \rangle$	PIC16LC73/74	_	—	60	ns	
21*	TIOF	Port output fall time PIC16C73/74	—	10	25	ns	
		PIC16LC73/74	_	—	60	ns	
22††*	Tiop	INT pin high or low time	20	—	_	ns	
23††*	Trbp	RB7:RB4 change INT high or low time	20	—	_	ns	

* These parameters are characterized but not tested.

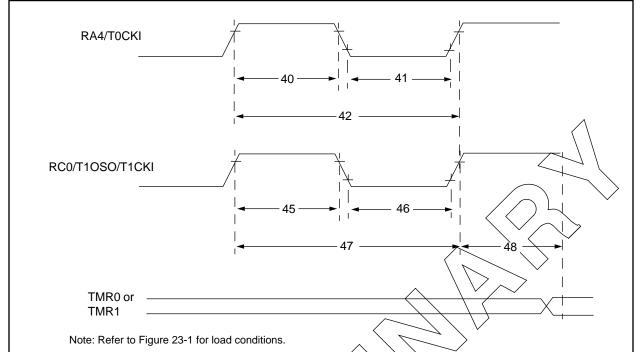
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 23-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 23-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pouse Width (low)	100	_		ns	VDD = 5V, -40°C to +85°C
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7*	18	33*	ms	VDD = 5V, -40°C to +85°C
32	Tost	Oscillation Start-up Timer Period		1024Tosc			Tosc = OSC1 period
33	Tpwrt	Rower up Timer Period	28*	72	132*	ms	VDD = 5V, -40°C to +85°C
34	Tươz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset			100	ns	

These parameters are characterized but not tested.

Data n "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

+

FIGURE 23-5: TIMER0 AND TIMER1 CLOCK TIMINGS

TABLE 23-5: TIMER0 AND TIMER1 CLOCK REQUIREMENTS

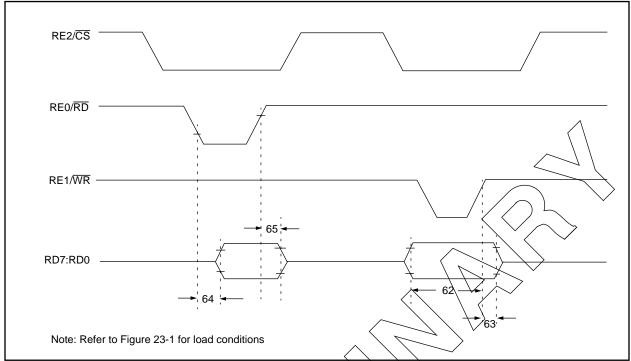
Param No.	Sym	Characteristic	6		Min	Тур†	Мах	Units	Conditions
40	Tt0H	T0CKI High Pu	ulse Width	No Rrescaler	0.5TCY + 20*	_	_	ns	
			<	With Prescaler	10*	—	_	ns	
41	TtOL	T0CKI Low Pu	Ilse Width	No Prescaler	0.5Tcy + 20*	—	—	ns	
			\frown	With Prescaler	10*	—	_	ns	
42	Tt0P	T0CKI Period		\square	Greater of: 20μs or <u>Tcγ + 40</u> * Ν	_	_	ns	N = prescale value (1, 2, 4,, 256)
45	Tt1H	T1CKI High	Synchronous, no	prescaler	0.5Tcy + 20	—	—	ns	
		Time	Synchrønous,	PIC16C73/74	10*	—	—	ns	
		$/ \cap L$	with prescaler	PIC16LC73/74	20*	—	—	ns	
	<	\square	Asynchronous		2Tcy	—	—	ns	
46	Tutt	T10KI Low	Synchronous, no	prescaler	0.5Tcy + 20	—	—	ns	
	$\langle \ $	Time	Synchronous,	PIC16C73/74	10*	—	—	ns	
	\setminus		with prescaler	PIC16LC73/74	20*	—	—	ns	
	$ \setminus \langle$		Asynchronous		2Tcy	—	—	ns	
47	Tt1P	T1CKI input period	Synchronous		Greater of: 20μs or <u>Tcy + 40</u> * Ν	_	_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		Greater of: 20µs or 4Tcy	_	_	ns	
	Ft1		or input frequency bled by setting the	-	DC	—	200	kHz	
48	Tcke2tmrl	Delay from ext	ternal clock edge to	timer increment	2Tosc	_	7Tosc	_	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 70 71 71A 72 73 73A 74 74A

FIGURE 23-6: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)


TABLE 23-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Parameter No.	Sym	Characteristic	haracteristic			турт	Max	Units	Conditions
50	TccL	CCP1 and CCP2	No Prescaler	No Prescaler 0.			-	ns	
		input low time		PIC16C73/74	10*	/_	-	ns	
			With Prescaler	PIC16LC73/74	20*		_	ns	
51	TccH	CCP1 and CCP2	No Prescaler		0.5Tcy + 20*	_	-	ns	
		input high time		RIC16073/74	10*	—	-	ns	
			With Prescaler	RIC16LC73/74	20*	—	-	ns	
52	TccP	CCP1 and CCP2 i	nput period		<u>3Tcy + 40</u> * N	—	-	ns	N = prescale value (1,4 or 16)
53	TccR	CCP1 and CCP2 c	output rise time	$\overline{}$	_	10	25	ns	
54	TccF	CCP1 and CCP2 of	output fall time	\checkmark	_	10	25	ns	

* These parameters are characterized but not tested.

+ Data in "Typ" column is at 5V-25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 23-7: PARALLEL SLAVE PORT TIMING FOR THE PIC16C74 ONLY

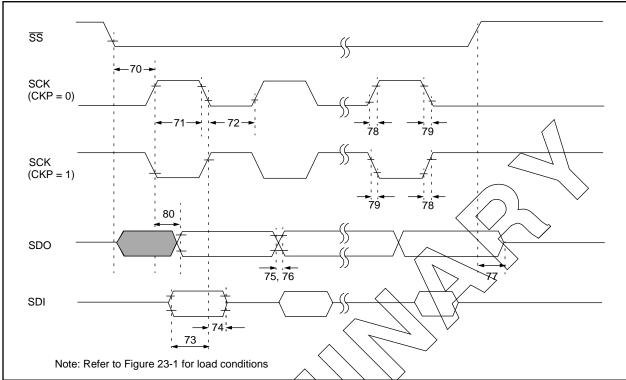


TABLE 23-7: PARALLEL SLAVE PORT REQUIREMENTS FOR THE PIC16C74 ONLY

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
62	TdtV2wrH	Data in valid before WR↑ or CS↑ (setup time)	20	_	_	ns	
63	TwrH2dtl	WR1 or CS1 to data-in invalid (hold time) PIC16C74	20*	_	—	ns	
		PIC16LC74	35*	_	—	ns	
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data-out valid	—	_	60	ns	
65	TrdH2dtl	RD↑ or CS¢ to data-out invarid	10	_	30	ns	

† Data in "Typ" column is at 5V, 25° c unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 70 71 71A 72 73 73A 74 74A

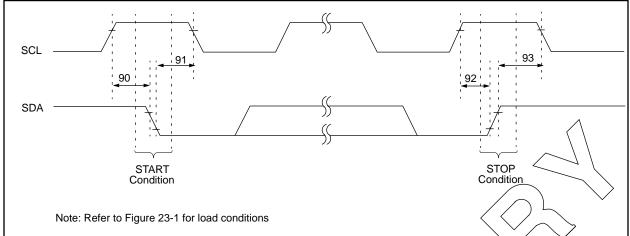

FIGURE 23-8: SPI MODE TIMING

TABLE 23-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input	Тсү	—	—	ns	
71	TscH	SCK/mput high time (slave mode)	Tcy + 20			ns	
72	TscL	SCK input low time (slave mode)	Tcy + 20			ns	
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK	Тсү	—	_	ns	
74	TscH2diL, TscŁ2di⊾	Hold time of SDI data input to SCK	0.5Tcy	—	_	ns	
75	TdøR	SQO data output rise time	_	10	25	ns	
76 <	THOF	SDO data output fall time	—	10	25	ns	
77	TssH2doZ	$\overline{\text{SS}}\downarrow$ to SDO output hi-impedance	10	_	50	ns	
78	TscR	SCK output rise time (master mode)	_	10	25	ns	
79	TscF	SCK output fall time (master mode)	_	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

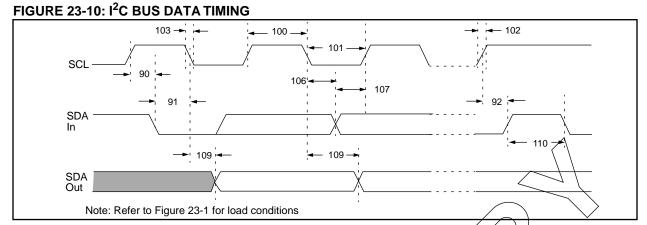
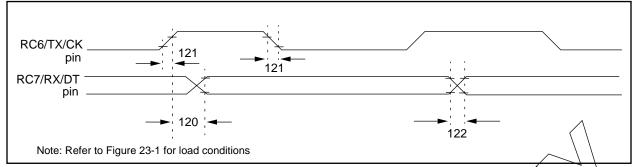

FIGURE 23-9: I²C BUS START/STOP BITS TIMING

TABLE 23-9: I²C BUS START/STOP BITS REQUIREMENTS

Parameter	Sym	Characteristic		Min	Тур	Max	Units	Conditions
No.						\square		\vee \sim
90	TSU:STA	START condition	100 kHz mode	4700	—	ΞĘ,		Only relevant for repeated START
		Setup time	400 kHz mode	600	\square	\mathbb{N}	ns	condition
91	THD:STA	START condition	100 kHz mode	4000	F	1	ns	After this period the first clock
		Hold time	400 kHz mode	600	$\langle - \rangle$	$\overline{\ }$	11-3-/	pulse is generated
92	TSU:STO	STOP condition	100 kHz mode	4700	$\left(\neq \right)$	$\overline{\mathbf{X}}$	ns	
		Setup time	400 kHz mode	600	$\left \right $			
93	THD:STO	STOP condition	100 kHz møde	4000	$\langle - \rangle$	7—	ns	
		Hold time	400 kHz mode	600	\geq	_	113	

DS30390B-page 234

TABLE 23-10: I²C BUS DATA REQUIREMENTS


Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100	Тнідн	Clock high time	100 kHz mode	4.0		us	PIC16C73/74 must operate a a minimum of 1.5 MHz
			400 kHz mode	0.6		as	PIC16C73/74 must operate a a minimum of 10 MHz
			SSP Module	1.5TCY	$\sum - \sum$		
101	TLOW	Clock low time	100 kHz mode	47		μs	PIC16C73/74 must operate a minimum of 1.5 MHz
			400 kHz mode	7.3	>	μs	PIC16C73/74 must operate a minimum of 10 MHz
			SSP Module	1.5104	—		
102	TR	SDA and SCL rise	100 kHz mode	\searrow	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
103	TF	SDA and SCL fall time	100 kHz mode		300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
90	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91	THD:STA	START condition hold	100 kHz mode	4.0	—	μs	After this period the first cloo
	_	time	400 kHz mode	0.6	—	μs	pulse is generated
106	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
		\downarrow \checkmark \checkmark	400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
	$\frown \bigcirc `$		400 kHz mode	100	—	ns	
92	TSU:STO	STOP condition setup	100 kHz mode	4.7	—	μs	
$\langle \langle \rangle$		time	400 kHz mode	0.6	—	μs	
109		Output valid from	100 kHz mode	_	3500	ns	Note 1
	$\langle \rangle$	clock	400 kHz mode	_	—	ns	
110	TBUF	Bus free time	100 kHz mode	4.7	_	μs	Time the bus must be free
			400 kHz mode	1.3		μs	before a new transmission ca start
	Cb	Bus capacitive loading			400	pF	

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode I²C-bus device can be used in a standard-mode I²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

Applicable Devices 70 71 71A 72 73 73A 74 74A

FIGURE 23-11: USART MODULE: SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

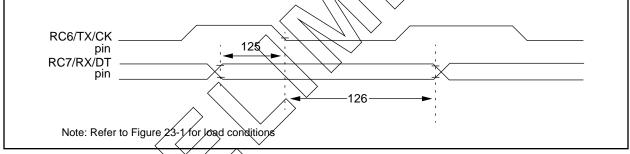


TABLE 23-11: SERIAL PORT SYNCHRONOUS TRANSMISSION REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE) Clock high to data out valid	PIC16C73/74 PIC16LC73/74	-		50 100	ns	Ž
121	Tckrf	Clock out rise time and fall time (Master Mode)	PIC16C73/74 PIC16LC73/74 <	\ 		25 50	ns ns	
122	Tdtrf	Data out rise time and fall time	PIC16C73/74 PIC16LC73/74			25 50	ns ns	

+: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 23-12: USART MODULE: SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 23-12: SERIAL PORT SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
125		SYNC RCV (MASTER & SLAVE)					
		Data hold before CK \downarrow (DT hold time)	15	—		ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	—		ns	

+: Data in Typ column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested

TABLE 23-13:A/D CONVERTER CHARACTERISTICS:
PIC16C73-04 (COMMERCIAL, INDUSTRIAL)
PIC16C74-04 (COMMERCIAL, INDUSTRIAL)
PIC16C73-10 (COMMERCIAL, INDUSTRIAL)
PIC16C74-10 (COMMERCIAL, INDUSTRIAL)
PIC16C73-20 (COMMERCIAL, INDUSTRIAL)
PIC16C74-20 (COMMERCIAL, INDUSTRIAL)

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	NR	Resolution			8-bits	_	$VREF = VDD = 5.12V, VSS \leq AIN \leq VREF$
	Nint	Integral error	—	—	less than ±1 LSb	_	$VREF = VDD \neq 5.12V, \forall SS \leq AIN \leq VREF$
	Ndif	Differential error	_		less than ±1 LSb	_	$VREF \neq VDD = 5.12V, VSS \leq AIN \leq VREF$
	NFS	Full scale error	_	—	less than ±1 LSb	_	$VREF = VDD \neq 5.12V$, $VSS \leq AIN \leq VREF$
	Noff	Offset error	_		less than ±1 LSb		$VREF = VDD = 5.12V$, $VSS \le AIN \le VREF$
	_	Monotonicity	—	guaranteed	~	\pm	XSS∕≦AIN ≤ VREF
	Vref	Reference voltage	3.0V	—	VDD + 0.3	V	
	VAIN	Analog input voltage	Vss - 0.3	—	VREE + 0.3	V V	
	ZAIN	Recommended impedance of analog voltage source	_		10.0	kΩ	
	IAD	A/D conversion cur- rent (VDD)	-	188		μA	Average current consumption when A/D is on. (Note 1)
	IREF	VREF input current (Note 2)		<u>E</u>	1 10	mA μA	During sampling All other times

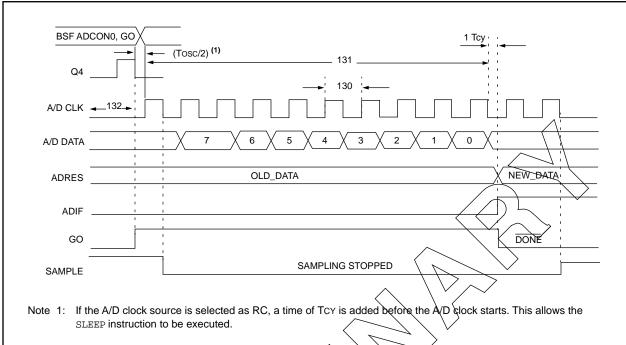
These parameters are characterized but not tested.

- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.
 - 2: VREF current is from RA3 pin or VDb pin, whichever is selected as reference input.

TABLE 23-14: A/D CONVERTER CHARACTERISTICS: PIC16LC73-04 (COMMERCIAL, INDUSTRIAL) PIC16LC74-04 (COMMERCIAL, INDUSTRIAL)

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	NR	Resolution	_		8-bits	_	VREF = VDD = 3.0V (Note 1)
	Nint	Integral error	_	—	less than ±1 LSb	_	VREF = VDD = 3.0V (Note 1)
	Ndif	Differential error	_	—	less than ±1 LSb	—	VREF = VDD = 3.0V (Note 1)
	NFS	Full scale error	_	—	less than ±1 LSb	—	VREF = VDD = 3.0V (Note 1)
	NOFF	Offset error	_	_	less than ±1 LSb	—	VREF = VDD = 3:0V (Note 1)
	—	Monotonicity	_	guaranteed	_	_	VSS AIN VREF
	Vref	Reference voltage	3.0V		Vdd + 0.3	V	
	VAIN	Analog input voltage	Vss - 0.3		Vref + 0.3	V/	
	Zain	Recommended impedance of ana- log voltage source	_	_	10.0	kΩ	
	IAD	A/D conversion cur- rent (VDD)	_	90		μA	Average current consumption when A/D/is on. (Note 2)
	IREF	VREF input current (Note 3)	_	_ <	10	mA μA	During sampling All other times

These parameters are characterized but not tested.


+ Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: These specifications apply if VREF = 3.0V and if VDR > 3.0V When we between VSS and VREF

- 2: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.
- 3: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

Applicable Devices 70 71 71A 72 73 73A 74 74A

TABLE 23-15: A/D CONVERSION REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Typt	\mathbb{Z}	Max	Units	Conditions
130	TAD	A/D clock period	1.6 2.0	\square	Ť	_	μs μs	VREF ≥ 3.0V VREF full range
130	TAD	A/D Internal RC Oscillator source				0.0		ADCS1:ADCS0 = 11 (RC oscillator source)
			3.0	✓ 6.04.0		9.0 6.0	μs μs	PIC16LC73, PIC16LC74, VDD = 3.0 PIC16C73, PIC16C74
131	TCNV	Conversion time (not including 8/H time) (Note 1)		9.5TAD		_	-	
132	TSMP	Sampling time	Note 2	20		_	μs	

* These parameters are characterized but not tested.

+ Data n "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1. ADRES register may be read on the following TCY cycle.

See Section 13,7 for min conditions.

2

Applicable Devices 70 71 71A 72 73 73A 74 74A

NOTES:

Applicable Devices 70 71 71A 72 73 73A 74 74A

24.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C73/74

NOT AVAILABLE AT THIS TIME

701 · 1

NE1 404

 Applicable Devices
 70
 71
 71A
 72
 73
 73A
 74
 74A

NOTES:

Applicable Devices 70 71 71A 72 73 73A 74 74A

25.0 ELECTRICAL CHARACTERISTICS FOR PIC16C73A/74A

Absolute Maximum Ratings †

Ambient temperature under bias55 to +125°C
Storage temperature
Voltage on any pin with respect to Vss (except VDD and MCLR)0.6V to (VDD + 0.6V)
Voltage on VDD with respect to Vss 0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)0 to +14V
Total power dissipation (Note 1)
Maximum current out of Vss pin
Maximum current into VDD pin
Input clamp current, Iικ (VI < 0 or VI > VDD)
Output clamp current, loκ (V0 < 0 or V0 > VDD)±20 mA
Maximum output current sunk by any I/O pin
Maximum output current sourced by any I/O pin
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3)
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3)
Maximum current sunk by PORTC and PORTD (combined) (Note 3)
Maximum current sourced by PORTC and PORTD (combined) (Note 3)
Note 1: Power dissipation is calculated as follows: Pdis $= VDR \times \{IRD - \sum IOH\} + \sum \{(VDD - VOH) \times IOH\} + \sum (VOI \times IOL)$
Note 2: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}}$ pin rather than pulling this pin directly to Vss.

Note 3: PORTD and PORTE are not implemented on the PIC16C73A.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 25-1:CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

			•		,
JW Devices	Vbb: 4.0V to 6.0V lbb: 5 mA max. at 5.5V lPb: 21 µA max. at 4V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 µA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 10 MHz max.	VDD: 3.0V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5.0 μA max. at 3.0V Freq: 200 kHz max.	ed that the user select the device
PIC16LC73A-04 PIC16LC74A-04	Vbb: 3.0V to 6.0V lbb: 2.0 mA typ. at 3.0V lPb: 0.9 µA typ. at 3V Freq: 4 MHz max.	Vbd: 3.0V to 6.0V lbd: 2.0 mA typ. at 3.0V lpd: 0.9 µA typ. at 3.0 Freq: 4 MHz max.	Do not use in HS mode	VDB: 3.0V to 6.0V J0D: /48 µA max. at 32 kHz, 3.0V IPD: /50 µA max. at 3.0V Freq: 200 kHz max.	The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.
PIC16C73A-20 PIC16C74A-20	Vbb: 4.5V to 5.5V lbb: 2.7 mA typ. at 5.5V lPb: 1.5 µA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 8.5V IDD: 30.46 max. at 8.5V IPD: 1.5 u.A typ. at 4.5V Freq: 20 MHz max.	Do not use in LP mode	inctionality, but not for MIN/M
PIC16C73A-10 PIC16C74A-10	Vbb: 4.5V to 5.5V Ibb: 2.7 mA typ. at 5.5V IPb: 1.5 µA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 10 MHz max.	Do not use in LP mode	ections which are tested for fue
PIC16C73A-04 PIC16C74A-04	Vbb: 4.0V to 6.0V lbb: 5 mA max. at 5.5V lPb: 21 μA max. at 4V Freq: 4 MHz max.	VbD: 4.0V to 6.0V lDD: 5 mA max. at 5.5V lPD: 21 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	The shaded sections indicate oscillator selectype that ensures the specifications required.
osc	U U U U U	X	S L	4	The sh type thin

PIC16C73A-04 (Commercial, Industrial, Automotive ⁽⁶⁾)
PIC16C74A-04 (Commercial, Industrial, Automotive ⁽⁶⁾)
PIC16C73A-10 (Commercial, Industrial, Automotive ⁽⁶⁾)
PIC16C74A-10 (Commercial, Industrial, Automotive ⁽⁶⁾)
PIC16C73A-20 (Commercial, Industrial, Automotive ⁽⁶⁾)
PIC16C74A-20 (Commercial, Industrial, Automotive ⁽⁶⁾)

DC CH	ARACTERISTICS			ndard Operating Conditions (unless otherwise stated)erating temperature -40° C \leq TA \leq +125 °C for automotive, -40° C \leq TA \leq +85 °C for industrial and 0° C \leq TA \leq +70 °C for commercial						
Param No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions			
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP øsc configuration HS osc configuration			
D002	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5*	-	V	Device in SLEER mode			
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power on Reset for details			
D004	VDD rise rate to ensure Power-on Reset	Svdd	0.05*	-	-	V/ms	See section on Power-on Reset for details			
D010	Supply Current (Note 2,5)	IDD	-	2.7	5	MA	XI, RC osc configuration (PIC16C74A-04) Fosc = 4 MHz, VDD = 5.5V (Note 4)			
D013			-	13.5	30	mA	HS osc configuration (PIC16C74A-20) Fosc = 20 MHz, VDD = 5.5V			
D015	Brown-out Reset Current (Note 7)	ΔIBOR		360*	500	μÅ	BOR enabled VDD = 5.0V			
D020 D021 D021A D021B	Power-down Current (Note 3,5)	IPD	-	10.5 1.5 1.5 1.5	42 21 24 TBD	μΑ μΑ μΑ μΑ	$\label{eq:VDD} \begin{array}{l} VDD = 4.0V, WDT \text{ enabled}, -40^\circC \text{ to } +85^\circC \\ VDD = 4.0V, WDT \text{ disabled}, -0^\circC \text{ to } +70^\circC \\ VDD = 4.0V, WDT \text{ disabled}, -40^\circC \text{ to } +85^\circC \\ VDD = 4.0V, WDT \text{ disabled}, -40^\circC \text{ to } +125^\circC \end{array}$			
D023	Brown-out Reset Current (Note 7)	AHBOR		300*	500	μA	BOR enabled VDD = 5.0V			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the light to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin toading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

- The test conditions for all IDD measurements in active operation mode are:
- OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD
- \overline{MCLR} = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

6: Automotive operating range is Advanced information for this device.

7: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

25.1

25.2 DC Characteristics: PIC16LC73A-04 (Commercial, Industrial, Automotive⁽⁶⁾) PIC16LC74A-04 (Commercial, Industrial, Automotive⁽⁶⁾)

DC CHA	RACTERISTICS		Standa Operat	itions (unless otherwise stated) $0^{\circ}C$ $\leq TA \leq +125^{\circ}C$ for automotive, $0^{\circ}C$ $\leq TA \leq +85^{\circ}C$ for industrial and C $\leq TA \leq +70^{\circ}C$ for commercial			
Param No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions
D001	Supply Voltage	Vdd	3.0	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)
D002	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5*	-	V	Device in SLEEP mode
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004	VDD rise rate to ensure Power-on Reset	Svdd	0.05*	-	-	V/ms	See section on Power-on Reset for details
D010	Supply Current (Note 2,5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MPz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	μA ~	LP osc configuration Fosc = 32 kHz , VDD = 3.0V, WDT disabled
D015	Brown-out Reset Current (Note 7)	Δ Ibor	-	300*	500	μÂ	BOR enabled VDD = 3.0V
D020	Power-down Current	IPD	-	7.5	30	μÀ	$V \otimes p = 3.0V$, WDT enabled, -40°C to +85°C
D021	(Note 3,5)		-	0.9	5	μA	VDD \neq 3.0V, WDT disabled, 0°C to +70°C
D021A D021B			-	0.9 0.9	5	μΑ μΑ	VDD = 3.0V, WDT disabled, -40°C to +85°C VDD = 3.0V, WDT disabled, -40°C to +125°C
D023	Brown-out Reset Current (Note 7)	Δ IBOR		300*	500	μA	BOR enabled VDD = 3.0V

These parameters are characterized but not tested, >

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD $\overline{MCLR} = \sqrt{Dp}$; \overline{WDT} enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Nimer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

- 6: Automotive operating range is Advanced information for this device.
- 7: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

	Applicable Devices 70 71 71A 72 73 73A 74										
25.3	DC Characteristics:	PIC16C73A-04(Commercial, Industrial, Automotive ⁽⁴⁾)PIC16C74A-04(Commercial, Industrial, Automotive ⁽⁴⁾)PIC16C73A-10(Commercial, Industrial, Automotive ⁽⁴⁾)PIC16C74A-10(Commercial, Industrial, Automotive ⁽⁴⁾)PIC16C73A-20(Commercial, Industrial, Automotive ⁽⁴⁾)PIC16C74A-20(Commercial, Industrial, Automotive ⁽⁴⁾)PIC16C74A-20(Commercial, Industrial, Automotive ⁽⁴⁾)PIC16LC73A-04(Commercial, Industrial, Automotive ⁽⁴⁾)PIC16LC74A-04(Commercial, Industrial, Automotive ⁽⁴⁾)									
							nless otherwise stated)				
		Operati	ng tempe	ratur			\leq TA \leq +125°C for automotive,				
DC CHA	RACTERISTICS				-4 0°		\leq TA \leq +85°C for industrial and \leq TA \leq +70°C for commercial				
		Operati	na voltaa	o \/⊓	-		cribed in DC spec Section 25.1 and				
		Section	• •		Diange	as ues	cribed in De spec Section 25.4 and				
Param	Characteristic	Section	Min	Тур	Max	Units	Conditions				
No.	Characteristic	John	WIIII	t	WIAN	Units					
	Input Low Voltage			<u> </u>							
	I/O ports	VIL					\sim				
D030	with TTL buffer		Vss	-	0.5V	v \	$\langle \rangle > \rangle$				
D031	with Schmitt Trigger buffer		Vss	-	0.2VØD	\ v					
D032	MCLR, RA4/T0CKI,OSC1		Vss	-	0.2VDD	X					
	(in RC mode)				$\langle -$	$\vdash $	K^{\vee}				
D033	OSC1 (in XT, HS and LP)		Vss	K	0.3VDD	V_	Note1				
	Input High Voltage			K`	\land	\square					
D0 40	I/O ports	Vih		- \		$\bigvee_{\mathcal{N}}$					
D040 D040A	with TTL buffer		2.0 0.8Vpd		VDD		$4.5V \le VDD \le 5.5V$ For VDD > 5.5V or VDD < 4.5V				
D040A	with Schmitt Trigger buffer		8.8VDD	\sum	VDD	v	For entire VDD range				
D041 D042	MCLR, RA4/T0CKI, RC7:RC4,	\land	0.8VDD		VDD	v					
	RD7:RD4, RB0/INT	$\backslash /$		arepsilon							
D042A	RE2:RE0, OSC1 (XT, HS and LP)		Q.7V00	-	VDD	V	Note1				
D043	OSC1 (in RC mode)			-	Vdd	V					
D070	PORTB weak pull-up current	IPURB	50	250	400	μA	VDD = 5V, VPIN = VSS				
	Input Leakage Current	$\vee/$									
	(Notes 2, 3)	V.									
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi-imped-				
DOG1	MCLR, RA4/TOCKI			_	+5						
D061 D063	OSC1				±5 ±5	μA μA	Vss \leq VPIN \leq VDD Vss \leq VPIN \leq VDD, XT, HS and LP osc				
0003			-	-	CT.	μΑ	configuration				

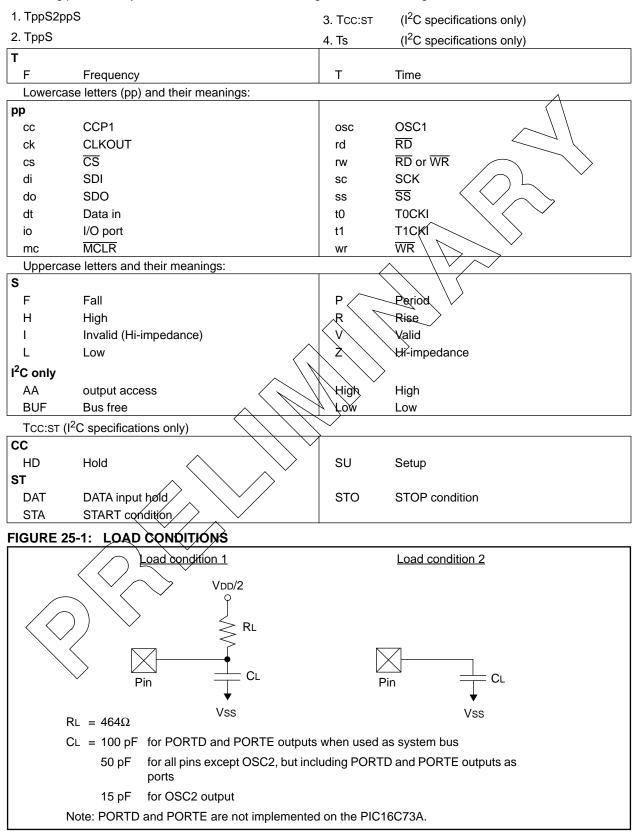
T Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the RIC16C7X be driven with external clock in RC mode.

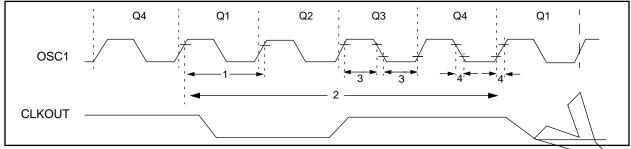
- The /eakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 Negative current is defined as coming out of the pin.
- Negative current is defined as coming out of the pin.
 Automotive operating range is Advanced information for this
- 4: Automotive operating range is Advanced information for this device.

			ird Opera		'е -4	0°C	(unless otherwise stated) \leq TA \leq +125°C for automotive, \leq TA \leq +85°C for industrial and					
DC CHA	RACTERISTICS				-		\leq TA \leq +70°C for commercial					
		Operati	ing voltage	e Vd	D range	as des	cribed in DC spec Section 25.1 and					
	Section 25.2.											
Param No.	Characteristic	Sym	Min	Тур †	Мах	Units	Conditions					
	Output Low Voltage						\land					
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C					
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5 V, -40°C to +125°C					
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDB = 4.5V, -40°C to +85°C					
D083A			-	-	0.6	V	IOL = 1.2 mA, VBD = 4.5V, -40°C to +125°C					
	Output High Voltage						$\langle \cdot \rangle$					
D090	I/O ports (Note 3)	Vон	Vdd - 0.7	-	-	V	IOH = -3.0 mA, ∀DD = 4.5V, -40°C to +85°C					
D090A			Vdd - 0.7	-	-	X	lOH = -2.5 mA, VDD = 4.5V, -40°C to ≠125°C					
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-		X	TOH = -1.3 mA, VDD = 4.5 V, -40°C to +85°C					
D092A			VDD - 0.7	~	-	V	JOH = -1.0 mA, VDD = 4.5V, -40°C to +125°C					
	Capacitive Loading Specs on Output Pins			\bigwedge		\triangleright						
D100	OSC2 pin	Cosc ₂	/-/		15	pF	In XT, HS and LP modes when exter- nal clock is used to drive OSC1.					
D101	All I/O pins and OSC2 (in RC	CIO	$\langle \langle \cdot \rangle \rangle$	\downarrow	[~] 50	pF						
D102	mode) SCL, SDA in I ² C mode	Св	<u> </u>	` -	400	pF						

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

- The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 Negative current is defined as coming out of the pin.
- 4: Automotive operating range is Advanced information for this device.


25.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

25.5 **Timing Diagrams and Specifications**

FIGURE 25-2: EXTERNAL CLOCK TIMING

TABLE 25-2: CLOCK TIMING REQUIREMENTS

Parameter	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
No.	Oym			.,61	mux	onito	
	Fos	External CLKIN Frequency	DC	_	4	MHz	XI and RC osc mode
		(Note 1)	DC	—	4		HS osc mode (PIC16C73A-04, PIC16C74A-04)
			DC	_	20	MHx	HS osc mode (PIC16C73A-20, PIC16C74A-20)
			DC	$-\leq$	200	kHz '	LP osc mode
		Oscillator Frequency	DC	$\overline{\langle}$	A	MHz	RC osc mode
		(Note 1)	0.1	$ \neq $	$\langle \langle \mathbf{A} \rangle \rangle$	MHz	XT osc mode
			4	/-/	4^{4}	MHz	HS osc mode (PIC16C73A-04, PIC16C74A-04)
			A	\langle / \rangle	ັ 10	MHz	HS osc mode (PIC16C73A-10, PIC16C74A-10)
			4	\rightarrow	20	MHz	HS osc mode (PIC16C73A-20, PIC16C74A-20)
			5	> _	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	—	_	ns	XT and RC osc mode
		(Note 1)	[∼] 250	—	—	ns	HS osc mode (PIC16C73A-04, PIC16C74A-04)
			100	—	—	ns	HS osc mode (PIC16C73A-10, PIC16C74A-10)
			50	—	—	ns	HS osc mode (PIC16C73A-20) PIC16C74A-20)
	/		5	—	—	μs	LP osc mode
	\langle	Oscillator Period	250	_	_	ns	RC osc mode
	\frown	(Ňote 1)	250	_	10,000	ns	XT osc mode
	\bigcirc		250	—	250	ns	HS osc mode (PIC16C73A-04, PIC16C74A-04)
	\sim		100	—	250	ns	HS osc mode (PIC16C73A-10 PIC16C74A-10)
	\searrow		50	—	250	ns	HS osc mode (PIC16C73A-20, PIC16C74A-20)
			5	_	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	—	DC	ns	TCY = 4/FOSC

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not † tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

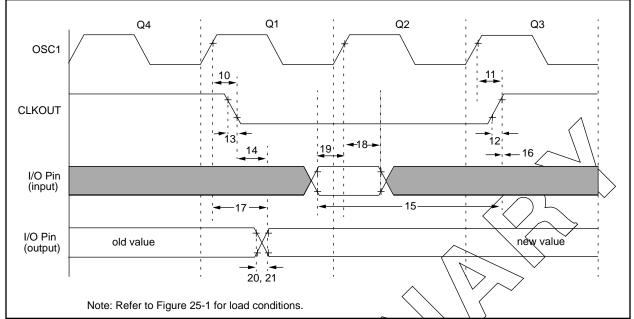

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
3	TosL,	External Clock in (OSC1) High or	50	_	—	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μs	LP oscillator
			10	—	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or		_	25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			_	_	15	ns	HS oscillator

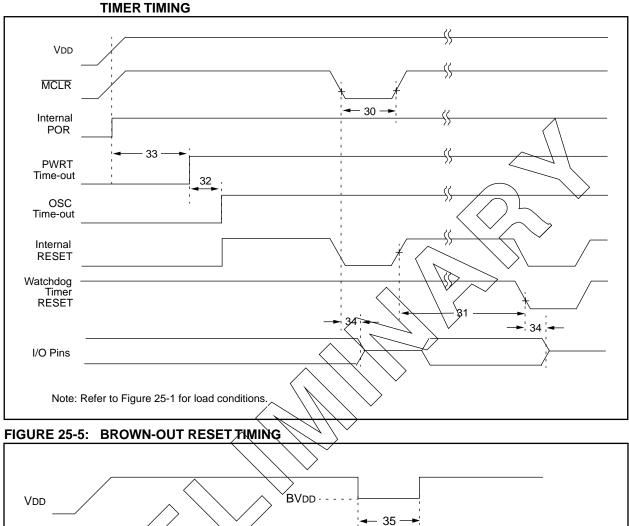
TABLE 25-2: CLOCK TIMING REQUIREMENTS (Cont.'d)

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 25-3: CLKOUT AND I/O TIMING

TABLE 25-3: CLKOUT AND I/O TIMING REQUIREMENTS


Parameter	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
No.					>			
10*	TosH2ckL	OSC1↑ to CLKOUT↓		$\langle - \rangle$	15	30	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑	$\sim //$		15	30	ns	Note 1
12*	TckR	CLKOUT rise time	\mathcal{I}	<u> </u>	5	15	ns	Note 1
13*	TckF	CLKOUT fall time		/ _	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid	$// \bigcirc$	—	—	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT	$\uparrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.25Tcy + 25	—		ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT ↑		0	—	-	ns	Note 1
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid		—	_	80 - 100	ns	
18*	TosH2iol	OSC1 (Q2 cycle) to Port input invalid (I/Ø in hold	time)	TBD	_		ns	
19*	TioV2osH	Port input valid to OSC11 (I/	O in setup time)	TBD	—	-	ns	
20*	TioR	Port output rise time F	PIC16C73/74	—	10	25	ns	
		M F	PIC16LC73/74	—	—	60	ns	
21*	TioF	Port output fall time F	PIC16C73/74	—	10	25	ns	
	()	F	PIC16LC73/74	—	—	60	ns	
22††*	Timp	INT pin high or low time		20	_	_	ns	
23††*	Trbp	RB7:RB4 change INT high o	r low time	20	_	_	ns	

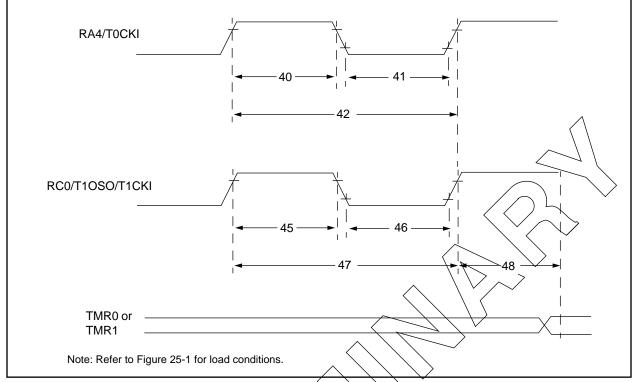
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 25-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

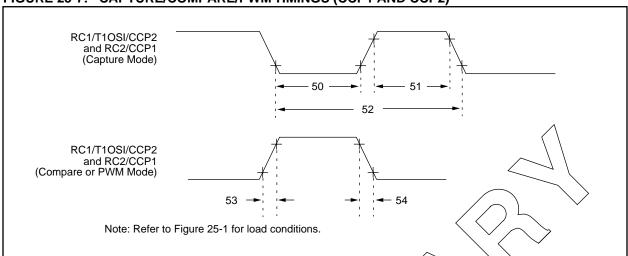

TABLE 25-4: RESET, WATCHOOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS

Parameter	Sym /	Characteristic	Min	Тур†	Max	Units	Conditions
No.	$\searrow \checkmark$	\frown					
30	TmcL	MCLR Pulse Width (low)	1	—	_	μs	VDD = 5V, -40°C to +125°C
$\langle 31 \rangle$	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7*	18	33*	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc	_	_	Tosc = OSC1 period
33	Tpwrt	Power up Timer Period	28*	72	132*	ms	VDD = 5V, -40°C to +125°C
34	Tioz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	_	_	1.1	μs	
35	TBOR	Brown-out Reset pulse width	100	_	_	μs	$3.8V \leq V\text{DD} \leq 4.2V$

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 25-6: TIMER0 AND TIMER1 CLOCK TIMINGS


TABLE 25-5: TIMERO AND TIMER1 CLOCK REQUIREMENTS

·				$ \rightarrow \rightarrow$	×				
Parameter No.	Sym	Characteristi	c	$\langle V / 1 / \rangle$	Min	Тур†	Max	Units	Conditions
40	Tt0H	T0CKI High P	ulse Width	No Rrescater	0.5Tcy + 20*	_	_	ns	
			\sim	With Prescaler	10*	—	_	ns	
41	Tt0L	T0CKI Low P	ulse Width	No Prescaler	0.5TCY + 20*	—	—	ns	
		^	$\langle \rangle$	With Prescaler	10*	—	—	ns	
42	Tt0P	T0CKI Period	$\overline{}$		<u>Tcy + 40</u> * N	—	_	ns	N = prescale value (1, 2, 4,, 256)
45	Tt1H		Synchronous, no	o prescaler	0.5Tcy + 20	—	_	ns	
	/	Time	Synchronous,	PIC16C73A/74A	10*	—	_	ns	
		h L	with prescaler	PIC16LC73A/74A	20*	—	—	ns	
	$\langle \langle$	$\langle \rangle$	Asynchronous		2Tcy	_	_	ns	
46	—Ţţ1L	TICKI LOW	Synchronous, no	o prescaler	0.5Tcy + 20	—	—	ns	
))	Time	Synchronous,	PIC16C73A/74A	10*	—	—	ns	
			with prescaler	PIC16LC73A/74A	20*	—	—	ns	
	$\langle \langle \rangle$		Asynchronous		2Tcy	—	—	ns	
47	Trip	T1CKI input period	Synchronous		<u>Tcy + 40*</u> N	—	—	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		4Tcy	—	_	ns	
	Ft1		tor input frequent	DC	—	200	kHz		
48	Tcke2tmrl	Delay from ex	ternal clock edge	e to timer increment	2Tosc	—	7Tosc	—	

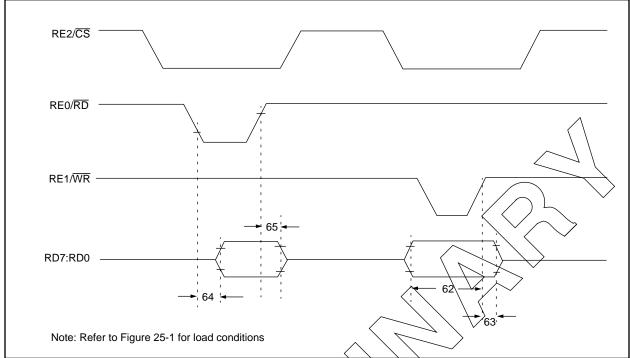
These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 70 71 71A 72 73 73A 74 74A

FIGURE 25-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 25-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)


Param	Sym	Characteristic			_/Min		Max) Linita	Conditions
No.	Sym	Characteristic					IVIAX	Units	Conditions
50	TccL	CCP1 and CCP2	No Prescaler	\langle	0.5Tex + 20*		—	ns	
		input low time		PIC16C73A/74A	10*	/_	_	ns	
			With Prescaler	PIC16LCZ3A/74A	20*	_	—	ns	
51	TccH	CCP1 and CCP2	No Prescaler		0.5Tcy + 20*	_	—	ns	
		input high time		PIC16C73AX74A	10*	—	—	ns	
			With Prescaler	RICTELC73A/74A	20*	_	—	ns	
52	TccP	CCP1 and CCP2 in	nput period		<u>3Tcy + 40</u> * N	—	_	ns	N = prescale value (1,4 or 16)
53	TccR	CCP1 and CCP2 c	output rise time		_	10	25	ns	
54	TccF	CCP1 and CCP2 c	output fall time		_	10	25	ns	

* These parameters are characterized but not tested.

+ Data in "Typ" column is at 5V-25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

 Applicable Devices
 70
 71
 71A
 72
 73
 73A
 74
 74A

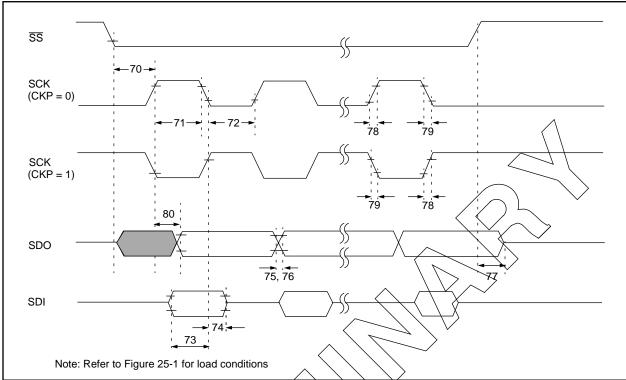


TABLE 25-7: PARALLEL SLAVE PORT REQUIREMENTS FOR THE PIC16C74A ONLY

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
62	TdtV2wrH	Data in valid before WR↑ or CS↑ (setup time)	20	_	_	ns	
63	TwrH2dtl	WR1 or CS1 to data-in invalid (hold time) PIC16C74A	20*	_	_	ns	
		PIC16LC74A	35*	_	_	ns	
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data-out valid	—	_	60	ns	
65	TrdH2dtl	RD↑ or CS¢ to data-out invarid	10	_	30	ns	

† Data in "Typ" column is at 5V, 25° C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 70 71 71A 72 73 73A 74 74A

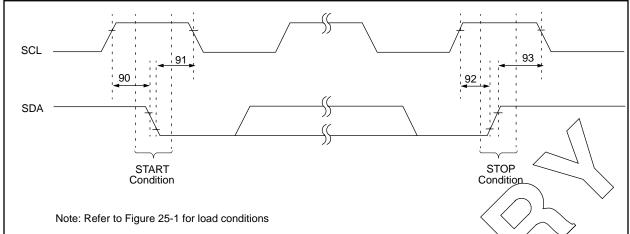

FIGURE 25-9: SPI MODE TIMING

TABLE 25-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input	Тсү	_	_	ns	
71	TscH	SCK/mput high time (slave mode)	Tcy + 20	_	_	ns	
72	TscL	SCK input low time (slave mode)	Tcy + 20	_	_	ns	
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK	Тсү	—		ns	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK	0.5Tcy	_	_	ns	
75	TdøR	SQO data output rise time	_	10	25	ns	
76 <	THOF	SDO data output fall time	_	10	25	ns	
77	TssH2doZ	$\overline{\text{SS}}\downarrow$ to SDO output hi-impedance	10	_	50	ns	
78	TscR	SCK output rise time (master mode)	_	10	25	ns	
79	TscF	SCK output fall time (master mode)	_	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_		50	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 25-10: I²C BUS START/STOP BITS TIMING

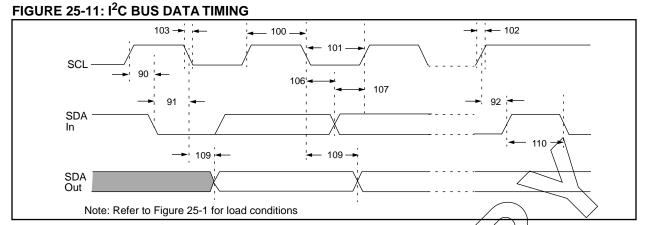


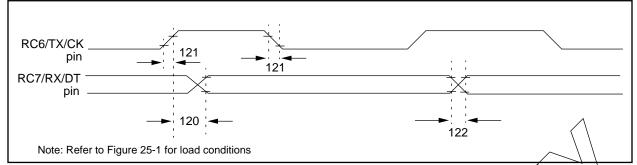
TABLE 25-9: I²C BUS START/STOP BITS REQUIREMENTS

Parameter	Sym	Characteristic		Min	Тур	Max	Units	Conditions
No.						\square		
90	TSU:STA	START condition	100 kHz mode	4700	—	ΞĘ,		Only relevant for repeated START
		Setup time	400 kHz mode	600		$\langle \rangle$	ns	condition
91	THD:STA	START condition	100 kHz mode	4000	\neq	$\langle \rangle$	ns	After this period the first clock
		Hold time	400 kHz mode	600	$\langle - \rangle$		115	pulse is generated
92	Tsu:sto	STOP condition	100 kHz mode	4700	$\left[\times \right]$	$\overline{\mathbf{x}}$	ns	
		Setup time	400 kHz mode	600	$ \leq $	<u> </u>	115	
93	THD:STO	STOP condition	100 kHz møde	4000	$\langle - \rangle$	/	ns	
		Hold time	400 kHz mode	600	\succ	—	115	

<

DS30390B-page 258

TABLE 25-10: I²C BUS DATA REQUIREMENTS


Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100	Тнідн	Clock high time	100 kHz mode	4.0		μs	PIC16C73A/74A must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	<u> </u>	as	PIC16C73A/74A must operate at a minimum of 10 MHz
			SSP Module	1.5TCY	7-7		
101	TLOW	Clock low time	100 kHz mode	47		μs	PIC16C73A/74A must operate at a minimum of 1.5 MHz
			400 kHz mode	7.3	>-	μs	PIC16C73A/74A must operat at a minimum of 10 MHz
			SSP Module	1.5104	—		
102	Tr	SDA and SCL rise	100 kHz mode	\searrow	1000	ns	
		time <	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
103	TF	SDA and SCL fall time	100 kHz mode		300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
90	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91	THD:STA	START condition hold	100 kHz mode	4.0	—	μs	After this period the first cloc
		time	400 kHz mode	0.6	—	μs	pulse is generated
106	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
		\downarrow \checkmark \checkmark	400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	—	ns	
92	Tsu:sto	STOP condition setup	100 kHz mode	4.7	—	μs	
$\langle \rangle$		time	400 kHz mode	0.6	—	μs	
109	ζ ΤΑΑ	Output valid from	100 kHz mode	_	3500	ns	Note 1
	\searrow	clock	400 kHz mode		—	ns	
110	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3	—	μs	before a new transmission ca start
	Cb	Bus capacitive loading		_	400	pF	

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode I²C-bus device can be used in a standard-mode I²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

Applicable Devices 70 71 71A 72 73 73A 74 74A

FIGURE 25-12: USART MODULE: SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

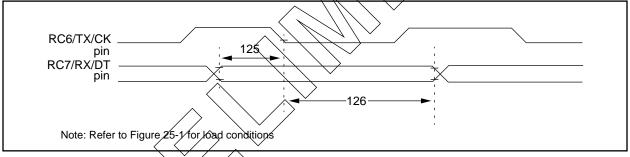


TABLE 25-11: SERIAL PORT SYNCHRONOUS TRANSMISSION REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE)	PIC16C73A/74A	- /		50	ns	
		Clock high to data out valid	PIC16LC73A/74A	-	1	100	ns	
121	Tckrf	Clock out rise time and fall time	PIC16C73A/74A	<u> </u>	\triangleright	25	ns	
		(Master Mode)	PIC16LC73A/74A		$\setminus - $	50	ns	
122	Tdtrf	Data out rise time and fall time	PIC16C73A/74A	/-/	$\left \right\rangle$	25	ns	
			PIC16LC73A/74A		$\rangle^{\underline{\vee}}$	50	ns	

t: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 25-13: USART MODULE: SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 25-12: SERIAL PORT SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
125	\sim	SYNC RCV (MASTER & SLAVE) Data hold before $CK \downarrow$ (DT hold time)	15		_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	_	_	ns	

t: Data in Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested

TABLE 25-13:A/D CONVERTER CHARACTERISTICS:
PIC16C73A-04 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE⁽³⁾)
PIC16C74A-04 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE⁽³⁾)
PIC16C73A-10 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE⁽³⁾)
PIC16C74A-10 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE⁽³⁾)
PIC16C73A-20 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE⁽³⁾)
PIC16C74A-20 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE⁽³⁾)

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	NR	Resolution			8-bits		$VREF = VDD = 5.12V, VSS \leq AIN \leq VREF$
	Nint	Integral error	_	_	less than ±1 LSb		$VREF = VDD \neq 5.12V, \forall SS \leq AIN \leq VREF$
	Ndif	Differential error		_	less than ±1 LSb	_	$VREF \neq VDD = 5.12V, VSS \leq AIN \leq VREF$
	NFS	Full scale error		_	less than ±1 LSb		$VREF = VDD \neq 5.12V$, $VSS \leq AIN \leq VREF$
	Noff	Offset error			less than ±1 LSb		VREF = V_{DD} = 5.12V, VSS \leq AIN \leq VREF
	_	Monotonicity	_	guaranteed	~	\pm	XSS∕≦AIN ≤ VREF
	Vref	Reference voltage	3.0V		VDD + 0.3	V	
	VAIN	Analog input voltage	Vss - 0.3	—	VREE + 0.3	\sqrt{v}	
	ZAIN	Recommended impedance of analog voltage source	_		10.0	kΩ	
	IAD	A/D conversion cur- rent (VDD)	-	188		μA	Average current consumption when A/D is on. (Note 1)
	IREF	VREF input current (Note 2)		<u>E</u>	1 10	mA μA	During sampling All other times

These parameters are characterized but not tested.

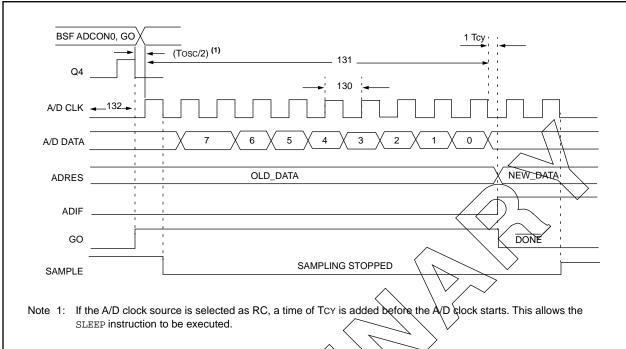
- 2: VREF current is from RA3 pin or VDb pin, whichever is selected as reference input.
- 3: Automotive operating range is Advanced information for this device.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

TABLE 25-14: A/D CONVERTER CHARACTERISTICS: PIC16LC73A-04 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE⁽⁴⁾) PIC16LC74A-04 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE⁽⁴⁾)

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	NR	Resolution		_	8-bits	_	VREF = VDD = 3.0V (Note 1)
	Nint	Integral error	_	_	less than ±1 LSb	—	VREF = VDD = 3.0V (Note 1)
	NDIF	Differential error	_		less than ±1 LSb	_	VREF = VDD = 3.0V (Note 1)
	NFS	Full scale error	_		less than ±1 LSb	—	VREF = VDD = 3.0V (Note 1)
	NOFF	Offset error	_	_	less than ±1 LSb	_	VREF = VDD = 3.8V (Note 1)
	—	Monotonicity	_	guaranteed	_	_	VSS & AIN & VREF
	VREF	Reference voltage	3.0V	—	Vdd + 0.3	V	
	VAIN	Analog input voltage	Vss - 0.3	—	Vref + 0.3	V	
	ZAIN	Recommended impedance of ana- log voltage source	_	_	10.0	kΩ	
	IAD	A/D conversion cur- rent (VDD)	_	90		μA	Average current consumption when A/D is on. (Note 2)
	IREF	VREF input current (Note 3)	_	<	10	mA_ μA	During sampling All other times


These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

- Note 1: These specifications apply if VREF = 3.0V and if VDB > 3.0V, Win must be between Vss and VREF
 2: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.
 - 3: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.
 - 4: Automotive operating range is Advanced information for this device.

Applicable Devices 70 71 71A 72 73 73A 74 74A

TABLE 25-15: A/D CONVERSION REQUIREMENTS

Parameter	Sym	Characteristic	Min 🔨	TXRT	Max	Units	Conditions
No.				$\geq 11 > 1$	\rangle		
130	TAD	A/D clock period	1.6	///	_	μs	$VREF \ge 3.0V$
			2.0	$\backslash \searrow$	—	μs	VREF full range
130	TAD	A/D Internal RC					ADCS1:ADCS0 = 11
		Oscillator source		\searrow			(RC oscillator source)
			3.0	6.0	9.0	μs	PIC16LC73A, PIC16LC74A,
		$ \land \land$	\setminus				VDD = 3.0V
			2.0	4.0	6.0	μs	PIC16C73A, PIC16C74A
131	TCNV	Conversion time	\sim –	9.5Tad	_	—	
		(not including S/H	>				
		Time) (Note 1)					
132	TSMP	Sampling time	Note 2	20	_	μs	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 13.1 for min conditions.

Applicable Devices 70 71 71A 72 73 73A 74 74A

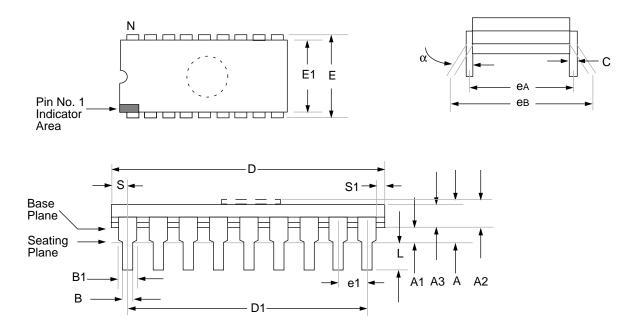
NOTES:

26.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C73A/ 74A

NOT AVAILABLE AT THIS TIME

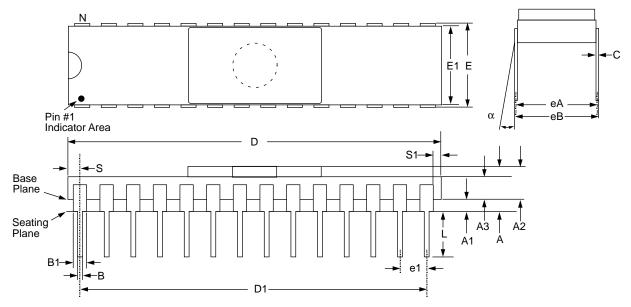
/mi · 1

1 1


101

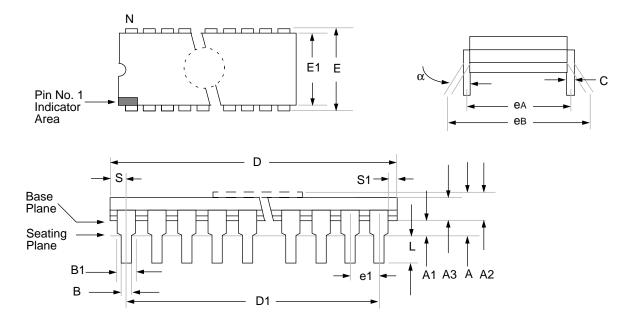
 Applicable Devices
 70
 71
 71A
 72
 73
 73A
 74
 74A

NOTES:

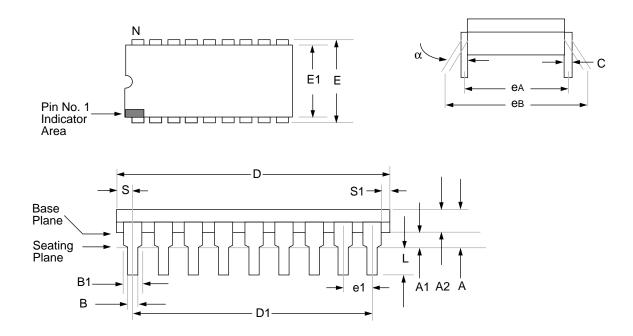

27.0 PACKAGING INFORMATION

27.1 <u>18-Lead Ceramic CERDIP Dual In-line with Window (300 mil)</u>

	Package Group: Ceramic CERDIP Dual In-Line (CDP)								
		Millimeters		Inches					
Symbol	Min	Мах	Notes	Min	Max	Notes			
α	0°	10°		0°	10°				
А		5.080			0.200				
A1	0.381	1.7780		0.015	0.070				
A2	3.810	4.699		0.150	0.185				
A3	3.810	4.445		0.150	0.175				
В	0.355	0.585		0.014	0.023				
B1	1.270	1.651	Typical	0.050	0.065	Typical			
С	0.203	0.381	Typical	0.008	0.015	Typical			
D	22.352	23.622		0.880	0.930				
D1	20.320	20.320	Reference	0.800	0.800	Reference			
E	7.620	8.382		0.300	0.330				
E1	5.588	7.874		0.220	0.310				
e1	2.540	2.540	Reference	0.100	0.100	Reference			
eA	7.366	8.128	Typical	0.290	0.320	Typical			
eB	7.620	10.160		0.300	0.400				
L	3.175	3.810		0.125	0.150				
Ν	18	18		18	18				
S	0.508	1.397		0.020	0.055				
S1	0.381	1.270		0.015	0.050				

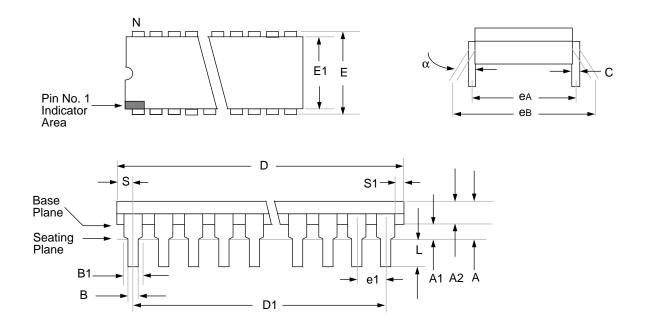

© 1995 Microchip Technology Inc.

27.2 28-Lead Ceramic Side Brazed Dual In-Line with Window (300 mil)

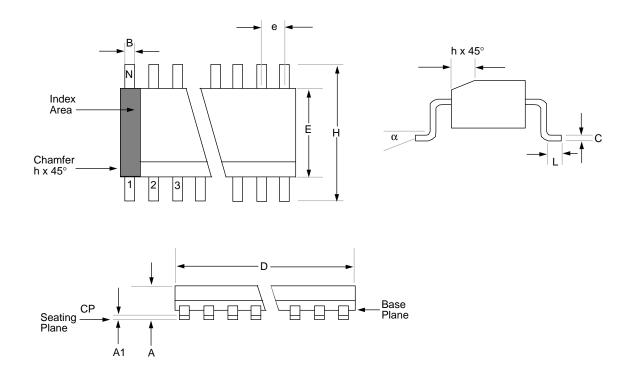

	Package Group: Ceramic Side Brazed Dual In-Line (CER)									
Ok. al		Millimeters		Inches						
Symbol	Min	Max	Notes	Min	Max	Notes				
α	0 °	10°		0 °	10°					
А	3.937	5.030		0.155	0.198					
A1	1.016	1.524		0.040	0.060					
A2	2.921	3.506		0.115	0.138					
A3	1.930	2.388		0.076	0.094					
В	0.406	0.508		0.016	0.020					
B1	1.219	1.321	Typical	0.048	0.052					
С	0.228	0.305	Typical	0.009	0.012					
D	35.204	35.916		1.386	1.414					
D1	32.893	33.147	Reference	1.295	1.305					
E	7.620	8.128		0.300	0.320					
E1	7.366	7.620		0.290	0.300					
e1	2.413	2.667	Typical	0.095	0.105					
eA	7.366	7.874	Reference	0.290	0.310					
eB	7.594	8.179		0.299	0.322					
L	3.302	4.064		0.130	0.160					
Ν	28	28		28	28					
S	1.143	1.397		0.045	0.055					
S1	0.533	0.737		0.021	0.029					

	Package Group: Ceramic CERDIP Dual In-Line (CDP)									
		Millimeters		Inches						
Symbol	Min	Max	Notes	Min	Max	Notes				
α	0°	10°		0°	10°					
А	4.318	5.715		0.170	0.225					
A1	0.381	1.778		0.015	0.070					
A2	3.810	4.699		0.150	0.185					
A3	3.810	4.445		0.150	0.175					
В	0.355	0.585		0.014	0.023					
B1	1.270	1.651	Typical	0.050	0.065	Typical				
С	0.203	0.381	Typical	0.008	0.015	Typical				
D	51.435	52.705		2.025	2.075					
D1	48.260	48.260	Reference	1.900	1.900	Reference				
E	15.240	15.875		0.600	0.625					
E1	12.954	15.240		0.510	0.600					
e1	2.540	2.540	Reference	0.100	0.100	Reference				
eA	14.986	16.002	Typical	0.590	0.630	Typical				
eB	15.240	18.034		0.600	0.710					
L	3.175	3.810		0.125	0.150					
Ν	40	40		40	40					
S	1.016	2.286		0.040	0.090					
S1	0.381	1.778		0.015	0.070					

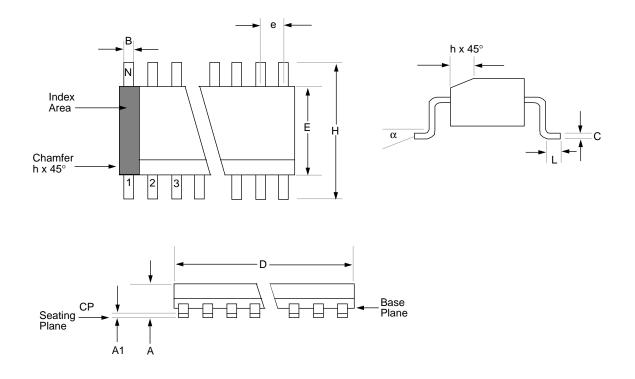
27.4 18-Lead Plastic Dual In-line (300 mil)


		Package Gro	up: Plastic Dual	In-Line (PLA)			
		Millimeters			Inches		
Symbol	Min	Мах	Notes	Min	Max	Notes	
α	0°	10°		0°	10°		
А	_	4.064		_	0.160		
A1	0.381	_		0.015	-		
A2	3.048	3.810		0.120	0.150		
В	0.355	0.559		0.014	0.022		
B1	1.524	1.524	Reference	0.060	0.060	Reference	
С	0.203	0.381	Typical	0.008	0.015	Typical	
D	22.479	23.495		0.885	0.925		
D1	20.320	20.320	Reference	0.800	0.800	Reference	
E	7.620	8.255		0.300	0.325		
E1	6.096	7.112		0.240	0.280		
e1	2.489	2.591	Typical	0.098	0.102	Typical	
eA	7.620	7.620	Reference	0.300	0.300	Reference	
eB	7.874	9.906		0.310	0.390		
L	3.048	3.556		0.120	0.140		
Ν	18	18		18	18		
S	0.889	_		0.035	_		
S1	0.127	_		0.005	-		

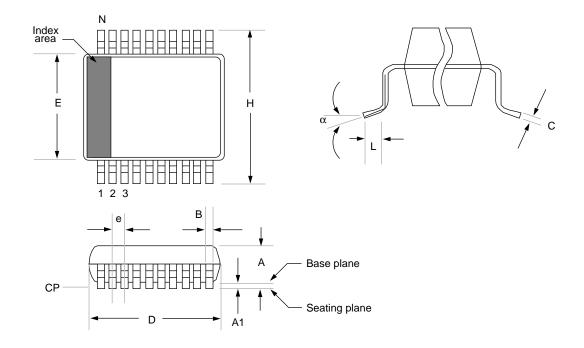
27.5 <u>28-Lead Plastic Dual In-line (300 mil)</u>


	Package Group: Plastic Dual In-Line (PLA)								
		Millimeters		Inches					
Symbol	Min	Мах	Notes	Min	Мах	Notes			
α	0°	10°		0°	10°				
А	3.632	4.572		0.143	0.180				
A1	0.381	_		0.015	_				
A2	3.175	3.556		0.125	0.140				
В	0.406	0.559		0.016	0.022				
B1	1.016	1.651	Typical	0.040	0.065	Typical			
B2	0.762	1.016	4 places	0.030	0.040	4 places			
B3	0.203	0.508	4 places	0.008	0.020	4 places			
С	0.203	0.331	Typical	0.008	0.013	Typical			
D	34.163	35.179		1.385	1.395				
D1	33.020	33.020	Reference	1.300	1.300	Reference			
E	7.874	8.382		0.310	0.330				
E1	7.112	7.493		0.280	0.295				
e1	2.540	2.540	Typical	0.100	0.100	Typical			
eA	7.874	7.874	Reference	0.310	0.310	Reference			
eB	8.128	9.652		0.320	0.380				
L	3.175	3.683		0.125	0.145				
N	28	-		28	-				
S	0.584	1.220		0.023	0.048				

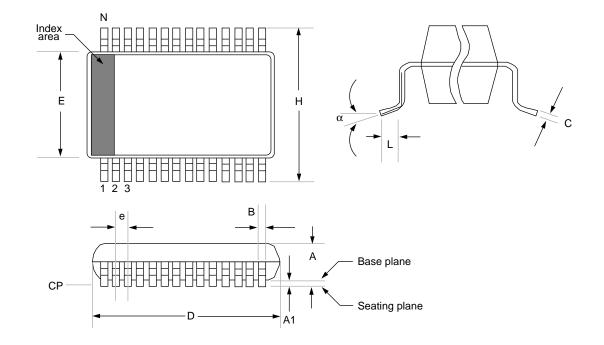
27.6 40-Lead Plastic Dual In-line (600 mil)


	Package Group: Plastic Dual In-Line (PLA)								
		Millimeters		Inches					
Symbol	Min	Max	Notes	Min	Max	Notes			
α	0°	10°		0 °	10°				
Α	_	5.080		_	0.200				
A1	0.381	_		0.015	-				
A2	3.175	4.064		0.125	0.160				
В	0.355	0.559		0.014	0.022				
B1	1.270	1.778	Typical	0.050	0.070	Typical			
С	0.203	0.381	Typical	0.008	0.015	Typical			
D	51.181	52.197		2.015	2.055				
D1	48.260	48.260	Reference	1.900	1.900	Reference			
E	15.240	15.875		0.600	0.625				
E1	13.462	13.970		0.530	0.550				
e1	2.489	2.591	Typical	0.098	0.102	Typical			
eA	15.240	15.240	Reference	0.600	0.600	Reference			
eB	15.240	17.272		0.600	0.680				
L	2.921	3.683		0.115	0.145				
N	40	40		40	40				
S	1.270	_		0.050	_				
S1	0.508	_		0.020	-				

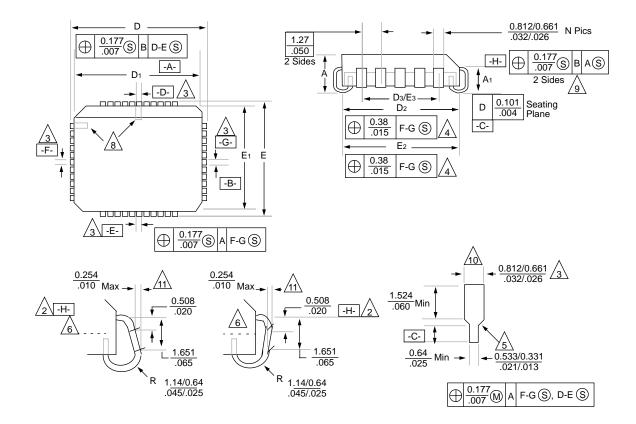
27.7 <u>18-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body)</u>


		Package	Group: Plastic S	SOIC (SO)			
		Millimeters			Inches		
Symbol	Min	Max	Notes	Min	Max	Notes	
α	0°	8°		0°	8°		
А	2.362	2.642		0.093	0.104		
A1	0.101	0.300		0.004	0.012		
В	0.355	0.483		0.014	0.019		
С	0.241	0.318		0.009	0.013		
D	11.353	11.735		0.447	0.462		
E	7.416	7.595		0.292	0.299		
е	1.270	1.270	Reference	0.050	0.050	Reference	
Н	10.007	10.643		0.394	0.419		
h	0.381	0.762		0.015	0.030		
L	0.406	1.143		0.016	0.045		
Ν	18	18		18	18		
СР	_	0.102		—	0.004		

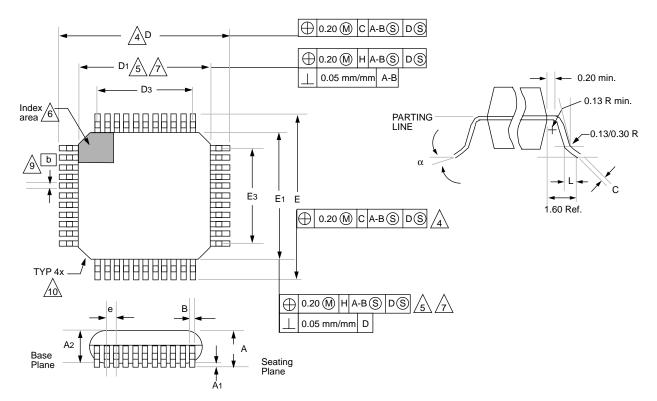
27.8 28-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body)


	Package Group: Plastic SOIC (SO)									
		Millimeters			Inches					
Symbol	Min	Max	Notes	Min	Max	Notes				
α	0°	8 °		0°	8°					
А	2.362	2.642		0.093	0.104					
A1	0.101	0.300		0.004	0.012					
В	0.355	0.483		0.014	0.019					
С	0.241	0.318		0.009	0.013					
D	17.703	18.085		0.697	0.712					
E	7.416	7.595		0.292	0.299					
е	1.270	1.270	Typical	0.050	0.050	Typical				
Н	10.007	10.643		0.394	0.419					
h	0.381	0.762		0.015	0.030					
L	0.406	1.143		0.016	0.045					
Ν	28	28		28	28					
CP	-	0.102		-	0.004					

27.9 20-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm)

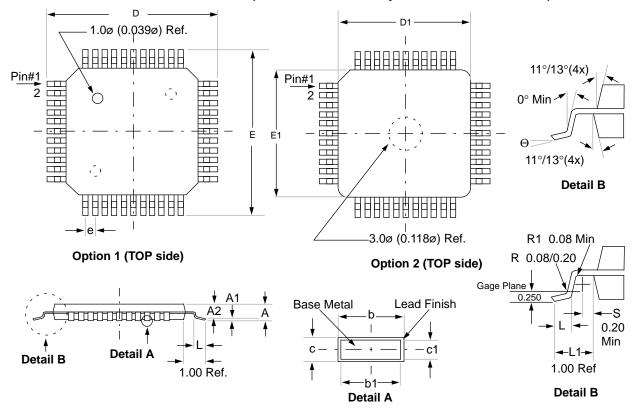

	Package Group: Plastic SSOP								
		Millimeters			Inches				
Symbol	Min	Max	Notes	Min	Max	Notes			
α	0°	8°		0°	8 °				
А	1.730	1.990		0.068	0.078				
A1	0.050	0.210		0.002	0.008				
В	0.250	0.380		0.010	0.015				
С	0.130	0.220		0.005	0.009				
D	7.070	7.330		0.278	0.289				
E	5.200	5.380		0.205	0.212				
е	0.650	0.650	Reference	0.026	0.026	Reference			
Н	7.650	7.900		0.301	0.311				
L	0.550	0.950		0.022	0.037				
N	20	20		20	20				
CP	-	0.102		-	0.004				

27.10 28-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm)



	Package Group: Plastic SSOP									
		Millimeters			Inches					
Symbol	Min	Мах	Notes	Min	Мах	Notes				
α	0°	8 °		0°	8°					
А	1.730	1.990		0.068	0.078					
A1	0.050	0.210		0.002	0.008					
В	0.250	0.380		0.010	0.015					
С	0.130	0.220		0.005	0.009					
D	10.070	10.330		0.396	0.407					
E	5.200	5.380		0.205	0.212					
е	0.650	0.650	Reference	0.026	0.026	Reference				
Н	7.650	7.900		0.301	0.311					
L	0.550	0.950		0.022	0.037					
N	28	28		28	28					
CP	-	0.102		-	0.004					

27.11 44-Lead Plastic Leaded Chip Carrier (Square)

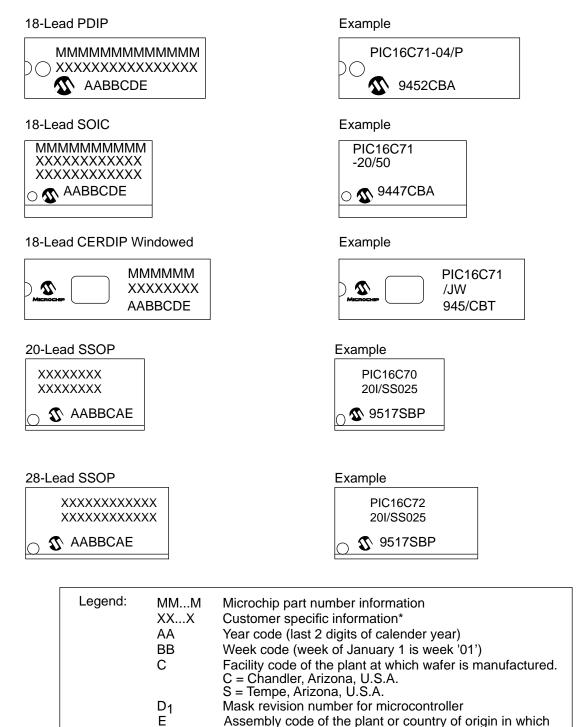


	Package Group: Plastic Leaded Chip Carrier (PLCC)								
		Millimeters		Inches					
Symbol	Min	Max	Notes	Min	Max	Notes			
А	4.191	4.572		0.165	0.180				
A1	2.413	2.921		0.095	0.115				
D	17.399	17.653		0.685	0.695				
D1	16.510	16.663		0.650	0.656				
D2	15.494	16.002		0.610	0.630				
D3	12.700	12.700	Reference	0.500	0.500	Reference			
Е	17.399	17.653		0.685	0.695				
E1	16.510	16.663		0.650	0.656				
E2	15.494	16.002		0.610	0.630				
E3	12.700	12.700	Reference	0.500	0.500	Reference			
N	44	44		44	44				
CP	_	0.102		_	0.004				
LT	0.203	0.381		0.008	0.015				

27.12 44-Lead Plastic Surface Mount (MQFP 10x10 mm Body 1.6/0.15 mm Lead Form))

		Packag	je Group: Plasti	C MQFP			
		Millimeters			Inches		
Symbol	Min	Max	Notes	Min	Max	Notes	
α	0°	7 °		0°	7 °		
А	2.000	2.350		0.078	0.093		
A1	0.050	0.250		0.002	0.010		
A2	1.950	2.100		0.768	0.083		
b	0.300	0.450	Typical	0.011	0.018	Typical	
С	0.150	0.180		0.006	0.007		
D	12.950	13.450		0.510	0.530		
D1	9.900	10.100		0.390	0.398		
D3	8.000	8.000	Reference	0.315	0.315	Reference	
E	12.950	13.450		0.510	0.530		
E1	9.900	10.100		0.390	0.398		
E3	8.000	8.000	Reference	0.315	0.315	Reference	
е	0.800	0.800		0.031	0.032		
L	0.730	1.030		0.028	0.041		
Ν	44	44		44	44		
CP	0.102	_		0.004	_		

27.13 44-Lead Plastic Surface Mount (TQFP 10x10 mm Body 1.0	0.10 mm Lead Form)
---	--------------------


		Packag	e Group: Plast	tic TQFP		
		Millimeters			Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
Α	1.00	1.20		0.039	0.047	
A1	0.05	0.15		0.002	0.006	
A2	0.95	1.05		0.037	0.041	
D	11.75	12.25		0.463	0.482	
D1	9.90	10.10		0.390	0.398	
Е	11.75	12.25		0.463	0.482	
E1	9.90	10.10		0.390	0.398	
L	0.45	0.75		0.018	0.030	
е	0.80	BSC		0.031	BSC	
b	0.30	0.45		0.012	0.018	
b1	0.30	0.40		0.012	0.016	
С	0.09	0.20		0.004	0.008	
c1	0.09	0.16		0.004	0.006	
N	44	44		44	44	
Θ	0°	7 °		0°	7 °	

Note 1: Dimensions D1 and E1 do not include mold protrusion. Allowable mold protrusion is 0.25m/m (0.010") per side. D1 and E1 dimensions including mold mismatch.

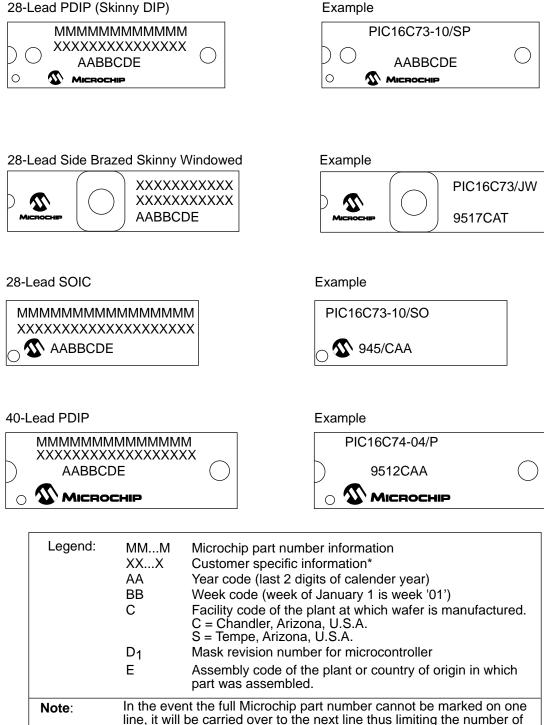
2: Dimension "b" does not include Dambar protrusion, allowable Dambar protrusion shall be 0.08m/m (0.003")max.

3: This outline conforms to JEDEC MS-026.

27.14 Package Marking Information

part was assembled.

available characters for customer specific information. Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

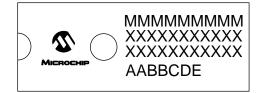

In the event the full Microchip part number cannot be marked on one

line, it will be carried over to the next line thus limiting the number of

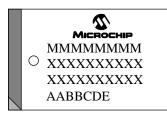
DS30390B-page 280

Note:

Package Marking Information (Cont'd)

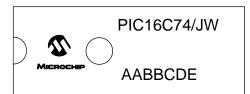


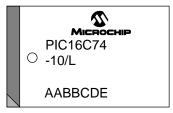
available characters for customer specific information.


Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

Package Marking Information (Cont'd)

40-Lead CERDIP Windowed


44-Lead PLCC


44-Lead MQFP

Example

Example

Example

44-Lead TQFP

Example

Legend:	MMM XXX AA BB C	Microchip part number information Customer specific information* Year code (last 2 digits of calender year) Week code (week of January 1 is week '01') Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A.
	D.	S = Tempe, Arizona, U.S.A.
	D ₁ F	Mask revision number for microcontroller Assembly code of the plant or country of origin in which
	L	part was assembled.
Note:	line, it will	ent the full Microchip part number cannot be marked on one be carried over to the next line thus limiting the number of characters for customer specific information.

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

APPENDIX A:

The following are the list of modifications over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14-bits. This allows larger page sizes both in program memory (4K now as opposed to 512 before) and register file (192 bytes now versus 32 bytes before).
- 2. A PC high latch register (PCLATH) is added to handle program memory paging. Bits PA2, PA1, PA0 are removed from STATUS register.
- 3. Data memory paging is redefined slightly. STA-TUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW. Two instructions TRIS and OPTION are being phased out although they are kept for compati-bility with PIC16C5X.
- 5. OPTION and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. Reset vector is changed to 0000h.
- Reset of all registers is revisited. Five different reset (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake up from SLEEP through interrupt is added.
- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt on change feature.
- 13. T0CKI pin is also a port pin (RA4) now.
- 14. FSR is made a full eight bit register.
- 15. "In-circuit serial programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, Vss, MCLR/VPP, RB6 (clock) and RB7 (data in/out).
- 16. PCON status register is added with a Power-on Reset status bit (POR).
- 17. Code protection scheme is enhanced such that portions of the program memory can be protected, while the remainder is unprotected.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16CXX, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change reset vector to 0000h.

APPENDIX C: WHAT'S NEW

The format of this data sheet has been changed to be consistent with other product families. This ensures that important topics are covered across all PIC16/17 microcontroller families. Here is an overview list of new features:

Added the following devices:

PIC16C70

PIC16C71A

PIC16C72

PIC16C73A

PIC16C74A

The above devices have an on-chip Brown-out Detect circuit added.

A Brown-out Detect Enable Bit (BODEN) has been added to the Configuration Word register.

A Brown-out Reset detect bit ($\overline{\text{BOR}}$) has been added to the PCON register (for the devices with brown-out detect circuitry).

A $\overline{\text{MCLR}}$ filter circuit has been added to minimize the influence of pin state changes to the $\overline{\text{MCLR}}$ line.

APPENDIX D: WHAT'S CHANGED

All product and device family tables have been updated for the latest devices and specifications.

TX8/9 (TXSTA<6>) has been changed to TX9 - 9-bit Transmit Enable bit.

RC8/9 (RCSTA<6>) has been changed to RX9 - 9-bit Receive Enable bit.

RCD8 (RCSTA<0>) has been changed to RX9D.

TXD8 (TXSTA<0>) has been changed to TX9D.

APPENDIX E: PIC16/17 MICROCONTROLLERS

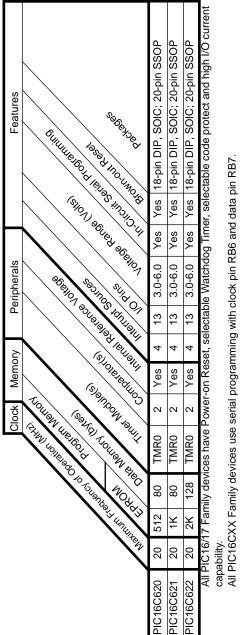
TABLE E-1: PIC16C5X FAMILY OF DEVICES

· 1 T

1

N T 1

101


Please contact your local sales office for availability of these devices high I/O current capability. ;; ;;

Not recommended for new designs.

Note

PIC16C7X

TABLE E-2:	PIC16C62X FAMILY OF DEVICES
------------	-----------------------------

DS30390B-page 286

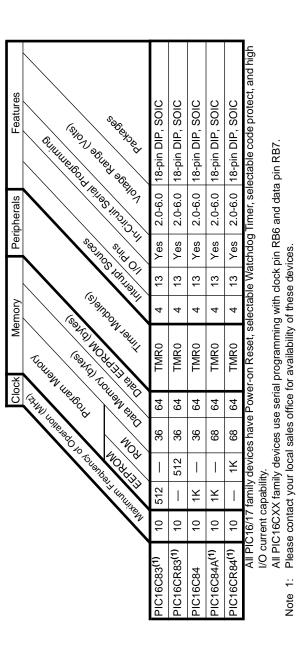
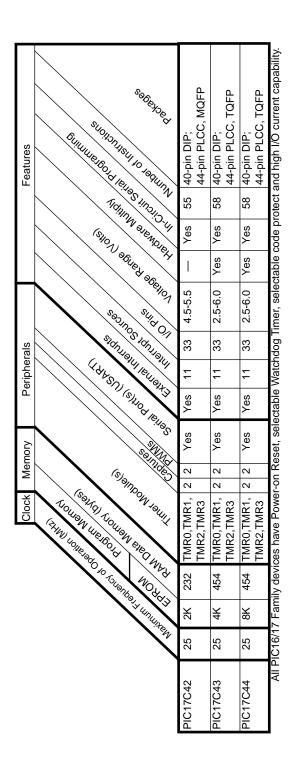

					2	Memory	, And			Peripherals	srals			Features
			Tour	Sile a C	Contrain response		Contraction (Contraction (Contraction)	*Malaje	100 Julias	Solution .			(SHON)	OUSILITIE BOILD IS.
	No. 1	I'L HALL		10	18UIII	alloon X	annie Colt	SHOP C	To alle	ere inite	1 Clin	OUR JUI	Ales House Paulos and Ales House Ales House Ales House Ales Ales Ales Ales Ales Ales Ales Al	Sacropes
PIC16C61	20	Ϋ́		36					ю	13	З.С	Yes		18-pin DIP, SOIC
PIC16C62	20	2K	I	128	TMR0, TMR1, TMR2	-	SPI/I ² C	I	~	22	3.0-6.0	Yes		28-pin SDIP, SOIC, SSOP
PIC16C62A ⁽¹⁾	20	2K	1	128	TMR0, TMR1, TMR2	-	SPI/I ² C	I	~	22	3.0-6.0	Yes	Yes	28-pin SDIP, SOIC, SSOP
PIC16CR62 ⁽¹⁾	20	I	2K	128	TMR0, TMR1, TMR2	-	SPI/I ² C	I	~	22	3.0-6.0	Yes	Yes	28-pin SDIP, SOIC, SSOP
PIC16C63 ⁽¹⁾	20	,	Ι	192	TMR0, TMR1, TMR2	2	SPI/I²C, USART	I	10	22	3.0-6.0	Yes	Yes	28-pin SDIP, SOIC
PIC16C64	20	2K	Ι	128	TMR0, TMR1, TMR2	-	SPI/I ² C	Yes	80	33	3.0-6.0	Yes	I	40-pin DIP; 44-pin PLCC, MQFP
PIC16C64A ⁽¹⁾	20	2K		128	TMR0, TMR1, TMR2	1	SPI/I ² C	Yes	8	33	3.0-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP
PIC16CR64 ⁽¹⁾	20	Ι	2K	128	TMR0, TMR1, TMR2	1	SPI/I ² C	Yes	8	33	3.0-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP
PIC16C65	20	,	Ι	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	Yes	1	33	3.0-6.0	Yes		40-pin DIP; 44-pin PLCC, MQFP
PIC16C65A ⁽¹⁾	20	4 K	Ι	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	Yes	11	33	3.0-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP
All PI All PI Note 1: Pleas	C16/17 IC16CX se conta	' family X fam act you	/ devic ily dev ır loca	ces hav rices ut I sales	All PIC16/17 family devices have Power-on Reset, selectable Watchdog Timer, selectable c All PIC16CXX family devices use serial programming with clock pin RB6 and data pin RB7. Please contact your local sales office for availability of these devices.	set, s nmin oility	electable ig with clo of these c	Watch ck pin levice	idog T RB6 (S.	imer, s and da	selectable ta pin RB7	code p	rotect,	All PIC 16/17 family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect, and high I/O current capability. All PIC16CXX family devices use serial programming with clock pin RB6 and data pin RB7. Please contact your local sales office for availability of these devices.

TABLE E-3: **PIC16C6X FAMILY OF DEVICES**

TABLE E-4:	PIC16C7X FAMILY OF DEVICES
------------	----------------------------


				Clock		Memory			Peri	Peripherals	ls			Features
				LOUISIN LIEICO	T				States ,		Selulaters ((SII	6.1.1.1.1.1.8.10 ⁻
			Tolen and the second	Sannow Jaunit Sannow Jaunit Aloo Lougan elec Lougan electronic Lougan electronic Lou	The V	A DATE OF THE SAME SAME SAME SAME SAME SAME SAME SAM	A LOFTER	A BIR	LO PULOS		2017 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	SS		Safet of the set of th
PIC16C70 ⁽¹⁾	20	512	36	TMR0		1	I	4	4	13	3.0-6.0	Yes	Yes	18-pin DIP, SOIC; 20-pin SSOP
PIC16C71	20	1K	36	TMR0		1	1	4	4	13	3.0-6.0	Yes	I	18-pin DIP, SOIC
PIC16C71A ⁽¹⁾	20	1 X	68	TMR0	1	1	1	4	4	13	3.0-6.0	Yes	Yes	18-pin DIP, SOIC; 20-pin SSOP
PIC16C72 ⁽¹⁾	20	2K	128	TMR0, TMR1, TMR2	-	SPI/I ² C	1	5	ω	22	3.0-6.0	Yes	Yes	28-pin SDIP, SOIC, SSOP
PIC16C73	20	4 4	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	1	5	11	8	3.0-6.0	Yes	1	28-pin SDIP, SOIC
PIC16C73A ⁽¹⁾	20	4K	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	I	5	11	ន	3.0-6.0	Yes	Yes	28-pin SDIP, SOIC
PIC16C74	20	4K	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	Yes	∞	12	33	3.0-6.0	Yes		40-pin DIP; 44-pin PLCC, MQFP
PIC16C74A ⁽¹⁾	20	4K	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	Yes	æ	12	33	3.0-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP
AII PI AII PI	C16/17 C16CX	r Fami (X Fan	ly devic nily dev	All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable c All PIC16CXX Family devices use serial programming with clock pin RB6 and data pin RB7	o Su o	Reset, sel gramming	ectabl with c	le Watc lock pii	hdog [.] n RB6	Timer, and d	selectable ata pin RB	: code p 17.	protect	All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16CXX Family devices use serial programming with clock pin RB6 and data pin RB7.

Note 1: Please contact your local sales office for availability of these devices.

TABLE E-6: PIC17CXX FAMILY OF DEVICES

E.1 <u>Pin Compatibility</u>

Devices that have the same package type and VDD, Vss and MCLR pin locations are said to be pin compatible. This allows these different devices to operate in the same socket. Compatible devices may only requires minor software modification to allow proper operation in the application socket (ex., PIC16C56 and PIC16C61 devices). Not all devices in the same package size are pin compatible; for example, the PIC16C62 is compatible with the PIC16C63, but not the PIC16C55.

Pin compatibility does not mean that the devices offer the same features. As an example, the PIC16C54 is pin compatible with the PIC16C71, but does not have an A/D converter, weak pull-ups on PORTB, or interrupts.

TABLE E-7:	PIN COMPATIBLE DEVICES

Pin Compatible Devices	Package
PIC16C54, PIC16C54A, PIC16CR54, PIC16CR54A, PIC16CR54B, PIC16C56, PIC16CR56, PIC16C58A, PIC16CR58A, PIC16CR58B, PIC16C61, PIC16C620, PIC16C621, PIC16C622, PIC16C70, PIC16C71, PIC16C71A PIC16C83, PIC16CR83, PIC16C84, PIC16C84A, PIC16CR84	18 pin (20 pin)
PIC16C55, PIC16CR55, PIC16C57, PIC16CR57A, PIC16CR57B	28 pin
PIC16C62, PIC16CR62, PIC16C62A, PIC16C63, PIC16C72, PIC16C73, PIC16C73A	28 pin
PIC16C64, PIC16CR64, PIC16C64A, PIC16C65, PIC16C65A, PIC16C74, PIC16C74A	40 pin
PIC17C42, PIC17C43, PIC17C44	40 pin

NOTES:

INDEX

	7
•	•

A/D
Accuracy/Error118
ADCON0 Register 109
ADCON1 Register 111
ADIF bit
Analog Input Model Block Diagram
Analog-to-Digital Converter
Block Diagram
Configuring Analog Port Pins
Configuring the Interrupt
Configuring the Module
Connection Considerations
Conversion Clock
Conversion Time
Conversions
Converter Characteristics 170, 185, 213, 237, 261
Delays
Effects of a Reset
Equations
Flowchart of A/D Operation 117
GO/DONE bit
Internal Sampling Switch (Rss) Impedence
Operation During Sleep
Sampling Requirements
Sampling Time
Source Impedence
Time Delays
Transfer Function
Using the CCP Trigger 118
Using the CCP Trigger
Using the CCP Trigger 118 Absolute Maximum Ratings 159, 175, 197, 219, 243 ACK 84, 88, 89 ADCS0 bit 109 ADCS1 bit 109 ADDLW Instruction 143
Using the CCP Trigger 118 Absolute Maximum Ratings 159, 175, 197, 219, 243 ACK 84, 88, 89 ADCS0 bit 109 ADCS1 bit 109 ADDLW Instruction 143 ADDWF Instruction 143
Using the CCP Trigger 118 Absolute Maximum Ratings 159, 175, 197, 219, 243 ACK 84, 88, 89 ADCS0 bit 109 ADCS1 bit 109 ADDLW Instruction 143 ADDWF Instruction 143 ADIE bit 32, 34
Using the CCP Trigger 118 Absolute Maximum Ratings 159, 175, 197, 219, 243 ACK 84, 88, 89 ADCS0 bit 109 ADCS1 bit 109 ADDLW Instruction 143 ADUWF Instruction 143 ADIE bit 32, 34 ADIF bit 36, 109
Using the CCP Trigger 118 Absolute Maximum Ratings 159, 175, 197, 219, 243 ACK 84, 88, 89 ADCS0 bit 109 ADCS1 bit 109 ADDLW Instruction 143 ADIE bit 32, 34 ADIF bit 36, 109 ADON bit 109 ADIRES Register 26, 28, 109, 112
Using the CCP Trigger 118 Absolute Maximum Ratings 159, 175, 197, 219, 243 ACK 84, 88, 89 ADCS0 bit 109 ADCS1 bit 109 ADDLW Instruction 143 ADIF bit 32, 34 ADIF bit 109 ADOWF Instruction 143 ADIF bit 36, 109 ADON bit 109 ADRES Register 26, 28, 109, 112 ALU 9 ANDLW Instruction 143
Using the CCP Trigger 118 Absolute Maximum Ratings 159, 175, 197, 219, 243 ACK 84, 88, 89 ADCS0 bit 109 ADCS1 bit 109 ADDLW Instruction 143 ADIE bit 32, 34 ADIF bit 36, 109 ADON bit 109 ADIRES Register 26, 28, 109, 112
Using the CCP Trigger 118 Absolute Maximum Ratings 159, 175, 197, 219, 243 ACK 84, 88, 89 ADCS0 bit 109 ADCS1 bit 109 ADDLW Instruction 143 ADIF bit 32, 34 ADIF bit 109 ADON bit 109 ADN bit 109 ADIF bit 32, 34 ADIF bit 26, 28, 109, 112 ALU 9 ANDLW Instruction 143 ANDWF Instruction 143 Application Notes 143
Using the CCP Trigger 118 Absolute Maximum Ratings 159, 175, 197, 219, 243 ACK 84, 88, 89 ADCS0 bit 109 ADCS1 bit 109 ADDLW Instruction 143 ADIF bit 32, 34 ADIF bit 36, 109 ADON bit 109 ADN bit 109 ADIF bit 32, 34 ADIF bit 26, 28, 109, 112 ALU 9 ANDLW Instruction 143 ANDWF Instruction 143 ANDWF Instruction 143 ANDLW Instruction 143 ANDWF Instruction 143 ANDWF Instruction 143 ANDWF Instruction 143 Application Notes AN546
Using the CCP Trigger 118 Absolute Maximum Ratings 159, 175, 197, 219, 243 ACK 84, 88, 89 ADCS0 bit 109 ADCS1 bit 109 ADDLW Instruction 143 ADIF bit 32, 34 ADIF bit 36, 109 ADON bit 109 ADRES Register 26, 28, 109, 112 ALU 9 ANDLW Instruction 143 ADRES Register 109 ANDLW Instruction 143 ADRES Register 26, 28, 109, 112 ALU 9 ANDLW Instruction 143 ANDWF Instruction 143 ANDWF Instruction 143 AND46 109 AN546 109 AN552 45
Using the CCP Trigger 118 Absolute Maximum Ratings 159, 175, 197, 219, 243 ACK 84, 88, 89 ADCS0 bit 109 ADCS1 bit 109 ADDLW Instruction 143 ADIF bit 32, 34 ADIF bit 36, 109 ADON bit 109 ADRES Register 26, 28, 109, 112 ALU 9 ANDLW Instruction 143 ADRES Register 109 ANDLW Instruction 143 ANDLW Instruction 143 ANDKF Instruction 143 ANDLW Instruction 143 ANDWF Instruction 143 ANS46 109 AN546 109 AN552 45 AN556 41
Using the CCP Trigger 118 Absolute Maximum Ratings 159, 175, 197, 219, 243 ACK 84, 88, 89 ADCS0 bit 109 ADCS1 bit 109 ADDLW Instruction 143 ADIF bit 32, 34 ADIF bit 36, 109 ADON bit 109 ADRES Register 26, 28, 109, 112 ALU 9 ANDLW Instruction 143 ANDWF Instruction 143 ADIF bit 36, 109 ADIF bit 109 ADRES Register 26, 28, 109, 112 ALU 9 ANDLW Instruction 143 ANDWF Instruction 143 AN546 109 AN552 45 AN556 41 AN578 77
Using the CCP Trigger 118 Absolute Maximum Ratings 159, 175, 197, 219, 243 ACK 84, 88, 89 ADCS0 bit 109 ADCS1 bit 109 ADDLW Instruction 143 ADIF bit 32, 34 ADIF bit 36, 109 ADON bit 109 ADRES Register 26, 28, 109, 112 ALU 9 ANDLW Instruction 143 ANDWF Instruction 143 ADIF bit 36, 109 ADIF bit 109 ADRES Register 26, 28, 109, 112 ALU 9 ANDLW Instruction 143 ANDWF Instruction 143 ANS46 109 AN552 45 AN556 41 AN578 77 AN594 71
Using the CCP Trigger 118 Absolute Maximum Ratings 159, 175, 197, 219, 243 ACK 84, 88, 89 ADCS0 bit 109 ADCS1 bit 109 ADDLW Instruction 143 ADIF bit 32, 34 ADIF bit 36, 109 ADON bit 109 ADRES Register 26, 28, 109, 112 ALU 9 ANDLW Instruction 143 ADP Instruction 144 ADIF bit 36, 109 ADON bit 109 ADRES Register 26, 28, 109, 112 ALU 9 ANDLW Instruction 143 ANDWF Instruction 143 Application Notes 109 AN552 45 AN556 41 AN578 77 AN594 71 Architecture 71
Using the CCP Trigger 118 Absolute Maximum Ratings 159, 175, 197, 219, 243 ACK 84, 88, 89 ADCS0 bit 109 ADCS1 bit 109 ADDLW Instruction 143 ADIF bit 32, 34 ADIF bit 36, 109 ADON bit 109 ADRES Register 26, 28, 109, 112 ALU 9 ANDLW Instruction 143 ANDERS Register 26, 28, 109, 112 ALU 9 ANDLW Instruction 143 ANDWF Instruction 143 ANDWF Instruction 143 ANS46 109 AN552 45 AN556 41 AN578 77 AN594 71 Architecture 9
Using the CCP Trigger 118 Absolute Maximum Ratings 159, 175, 197, 219, 243 ACK 84, 88, 89 ADCS0 bit 109 ADCS1 bit 109 ADDLW Instruction 143 ADIF bit 32, 34 ADIF bit 36, 109 ADON bit 109 ADRES Register 26, 28, 109, 112 ALU 9 ANDLW Instruction 143 ANDWF Instruction 143 ADRES Register 26, 28, 109, 112 ALU 9 ANDLW Instruction 143 ANDWF Instruction 143 ANS46 109 AN552 45 AN556 41 AN578 77 AN594 71 Architecture 9 Overview 9
Using the CCP Trigger 118 Absolute Maximum Ratings 159, 175, 197, 219, 243 ACK 84, 88, 89 ADCS0 bit 109 ADCS1 bit 109 ADDLW Instruction 143 ADIF bit 32, 34 ADIF bit 36, 109 ADON bit 109 ADRES Register 26, 28, 109, 112 ALU 9 ANDLW Instruction 143 ANDWF Instruction 143 ADRES Register 26, 28, 109, 112 ALU 9 ANDLW Instruction 143 ANDWF Instruction 143 ANS46 109 AN552 45 AN556 41 AN578 77 AN594 71 Architecture 9 Overview 9 Overview 9 von Neumann 9
Using the CCP Trigger 118 Absolute Maximum Ratings 159, 175, 197, 219, 243 ACK 84, 88, 89 ADCS0 bit 109 ADCS1 bit 109 ADDLW Instruction 143 ADIF bit 32, 34 ADIF bit 36, 109 ADON bit 109 ADRES Register 26, 28, 109, 112 ALU 9 ANDLW Instruction 143 ANDWF Instruction 143 ADRES Register 26, 28, 109, 112 ALU 9 ANDLW Instruction 143 ANDWF Instruction 143 ANS46 109 AN552 45 AN556 41 AN578 77 AN594 71 Architecture 9 Overview 9
Using the CCP Trigger 118 Absolute Maximum Ratings 159, 175, 197, 219, 243 ACK 84, 88, 89 ADCS0 bit 109 ADCS1 bit 109 ADDLW Instruction 143 ADIF bit 32, 34 ADIF bit 36, 109 ADON bit 109 ADRES Register 26, 28, 109, 112 ALU 9 ANDLW Instruction 143 ANDWF Instruction 143 ADRES Register 26, 28, 109, 112 ALU 9 ANDLW Instruction 143 ANDWF Instruction 143 ANS46 109 AN552 45 AN556 41 AN578 77 AN594 71 Architecture 9 Overview 9 Overview 9 von Neumann 9
Using the CCP Trigger 118 Absolute Maximum Ratings 159, 175, 197, 219, 243 ACK 84, 88, 89 ADCS0 bit 109 ADCS1 bit 109 ADDLW Instruction 143 ADIF bit 32, 34 ADIF bit 36, 109 ADON bit 109 ADON bit 109 ADRES Register 26, 28, 109, 112 ALU 9 ANDLW Instruction 143 ANDWF Instruction 143 ANS52 45 AN546 109 AN556 41 AN578 77 AN594 71 Architecture 9 Voerview 9 Von Neumann 9 Assembler 156
Using the CCP Trigger 118 Absolute Maximum Ratings 159, 175, 197, 219, 243 ACK 84, 88, 89 ADCS0 bit 109 ADCS1 bit 109 ADDLW Instruction 143 ADIF bit 32, 34 ADIF bit 36, 109 ADON bit 109 ADRES Register 26, 28, 109, 112 ALU 9 ANDLW Instruction 143 ANDWF Instruction 143 ADRES Register 26, 28, 109, 112 ALU 9 ANDLW Instruction 143 ANDWF Instruction 143 Application Notes 109 AN552 45 AN556 41 AN578 77 AN594 71 Architecture 9 Vorview 9 Vor Neumann 9 Assembler 156

 Baud Rates
 96, 97

 BCF Instruction
 144

 BF bit
 77, 88, 89

Block Diagrams	
A/D	113
Analog Input Model	114
Capture	
Compare	73
Interrupt Logic	134
On-Chip Reset Circuit	126
PIC16C70	10
PIC16C71	10
PIC16C71A	10
PIC16C72	11
PIC16C73	12
PIC16C73A	12
PIC16C74	13
PIC16C74A	
PORTC	
PORTD (In I/O Port Mode)	
PORTD and PORTE as a Parallel Slave Port	
PORTE (In I/O Port Mode)	
PWM	74
RA3:RA0 and RA5 Port Pins	
RA4/T0CKI Pin	
RB3:RB0 Port Pins	
RB7:RB4 Port Pins	
SPI Master/Slave Connection	
SSP (I ² C Mode)	
SSP (SPI Mode)	
Timer0	
Timer0/WDT Prescaler	
Timer1	
Timer2	
USART Receive	
USART Transmit	
Watchdog Timer	
BODEN bit	
BOR bit	
BRGH bit	
BSF Instruction	
BTFSC Instruction	
BTFSS Instruction	145

С

C bit	30
C Compiler (MP-C)	153, 157
CALL Instruction	145
Capture/Compare/PWM	
Capture	
Block Diagram	73
CCP1CON Register	
CCP1IF	
CCPR1	72
CCPR1H:CCPR1L	72
Mode	72
Prescaler	73
CCP Timer Resources	71
Compare	
Block Diagram	73
Mode	73
Software Interrupt Mode	73
Special Event Trigger	73
Special Trigger Output of CCP1	73
Special Trigger Output of CCP2	73
Interaction of Two CCP Modules	

P	Ŵ	M	

Block Diagram	
CCP1CON	
Duty Cycle	
Example Frequencies and Resolutions .	
Mode	
Period	
Section	
Special Event Trigger and A/D Conversions	
Carry bit	
CCP1IE bit	
CCP1IF bit	
CCP2IE bit	
CCP2IF bit CCPR1H Register	
CCPR1L Register	
CCPR2H Register	
CCPR2L Register	
CCPxM0 bit	
CCPxM1 bit	
CCPxM2 bit	
CCPxM3 bit	
CCPxX bit	
CCPxY bit	
CHS0 bit	
CHS1 bit	
CKP bit	
Clocking Scheme	
CLRF Instruction	
CLRW Instruction	
CLRWDT Instruction	
Code Examples	
Call of a Subroutine in Page 1 from Page 0	
	42
Changing Between Capture Prescalers	73
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT)	73 63
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Changing Prescaler (WDT to Timer0)	73 63 63
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Changing Prescaler (WDT to Timer0) Doing an A/D Conversion	73 63 63 116
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Changing Prescaler (WDT to Timer0) Doing an A/D Conversion I/O Programming	73 63 63 116 53
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Changing Prescaler (WDT to Timer0) Doing an A/D Conversion I/O Programming Indirect Addressing	73 63 63
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Changing Prescaler (WDT to Timer0) Doing an A/D Conversion I/O Programming Indirect Addressing Initializing PORTA	73 63
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Changing Prescaler (WDT to Timer0) Doing an A/D Conversion I/O Programming Indirect Addressing Initializing PORTA Initializing PORTB	73 63 63 116 53 42 43 45
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Changing Prescaler (WDT to Timer0) Doing an A/D Conversion I/O Programming Indirect Addressing Initializing PORTA Initializing PORTB Initializing PORTC	73 63 116 53 42 43 45 47
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Doing an A/D Conversion I/O Programming Indirect Addressing Initializing PORTA Initializing PORTB Initializing PORTC Loading the SSPBUF Register	73 63 116 53 42 43 45 47 79
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Doing an A/D Conversion I/O Programming Indirect Addressing Initializing PORTA Initializing PORTB Initializing PORTB Initializing PORTC Loading the SSPBUF Register Saving W register and STATUS in RAM	73 63 63 116 53 42 43 45 47 79 136
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Doing an A/D Conversion I/O Programming Indirect Addressing Initializing PORTA Initializing PORTB Initializing PORTC Loading the SSPBUF Register	
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Doing an A/D Conversion I/O Programming Indirect Addressing Initializing PORTA Initializing PORTB Initializing PORTC Loading the SSPBUF Register Saving W register and STATUS in RAM Code Protection	
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Doing an A/D Conversion I/O Programming Indirect Addressing Initializing PORTA Initializing PORTB Initializing PORTC Loading the SSPBUF Register Saving W register and STATUS in RAM Code Protection COMF Instruction Computed GOTO	
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Changing Prescaler (WDT to Timer0) Doing an A/D Conversion I/O Programming Indirect Addressing Initializing PORTA Initializing PORTB Initializing PORTC Loading the SSPBUF Register Saving W register and STATUS in RAM Code Protection COMF Instruction Computed GOTO Configuration Bits	
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Doing an A/D Conversion I/O Programming Indirect Addressing Initializing PORTA Initializing PORTB Initializing PORTC Loading the SSPBUF Register Saving W register and STATUS in RAM Code Protection COMF Instruction Computed GOTO	
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Doing an A/D Conversion I/O Programming Indirect Addressing Initializing PORTA Initializing PORTB Initializing PORTC Loading the SSPBUF Register Saving W register and STATUS in RAM Code Protection COMF Instruction Computed GOTO Configuration Bits Configuration Word	
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Doing an A/D Conversion I/O Programming Indirect Addressing Initializing PORTA Initializing PORTB Initializing PORTC Loading the SSPBUF Register Saving W register and STATUS in RAM Code Protection COMF Instruction Computed GOTO Configuration Bits Configuration Word CP0 bit	
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Changing Prescaler (WDT to Timer0) Doing an A/D Conversion I/O Programming Indirect Addressing Initializing PORTA Initializing PORTB Initializing PORTC Loading the SSPBUF Register Saving W register and STATUS in RAM Code Protection COMF Instruction Computed GOTO Configuration Bits Configuration Word CP0 bit CREN bit	
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Doing an A/D Conversion I/O Programming Indirect Addressing Initializing PORTA Initializing PORTB Initializing PORTC Loading the SSPBUF Register Saving W register and STATUS in RAM Code Protection COMF Instruction Computed GOTO Configuration Bits Configuration Word CP0 bit CP1 bit	
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Changing Prescaler (WDT to Timer0) Doing an A/D Conversion I/O Programming Indirect Addressing Initializing PORTA Initializing PORTB Initializing PORTC Loading the SSPBUF Register Saving W register and STATUS in RAM Code Protection COMF Instruction Computed GOTO Configuration Bits Configuration Word CP0 bit CREN bit CSp in CSRC bit	
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Changing Prescaler (WDT to Timer0) Doing an A/D Conversion I/O Programming Indirect Addressing Initializing PORTA Initializing PORTB Initializing PORTC Loading the SSPBUF Register Saving W register and STATUS in RAM Code Protection COMF Instruction Computed GOTO Configuration Bits Configuration Bits Configuration Word CP0 bit CREN bit CREN bit CSRC bit	73 63 63 63 63 63 63 63 63 63 63 63 64 73 79 79 136 121, 139 121, 139 121, 139 146 121, 122 122 122
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Changing Prescaler (WDT to Timer0) Doing an A/D Conversion I/O Programming Indirect Addressing Initializing PORTA Initializing PORTB Initializing PORTC Loading the SSPBUF Register Saving W register and STATUS in RAM Code Protection COMF Instruction Computed GOTO Configuration Bits Configuration Bits Configuration Word CP0 bit CREN bit CREN bit CSRC bit	73 63 63 63 63 63 63 63 63 63 63 64 73 79 79 136 121, 139 121, 139 121, 139 146 121, 122 122 122 122
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Doing an A/D Conversion I/O Programming Indirect Addressing Initializing PORTA Initializing PORTB Initializing PORTC Loading the SSPBUF Register Saving W register and STATUS in RAM Code Protection COMF Instruction Computed GOTO Configuration Bits Configuration Bits Configuration Word CP0 bit CREN bit CREN bit CSRC bit D D/Ā bit	73 63 63 63 63 63 63 63 63 63 63 64 73 79 79 136 121, 139 121, 139 121, 139 146 121, 122 122 122 122
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Doing an A/D Conversion I/O Programming Indirect Addressing Initializing PORTA Initializing PORTB Initializing PORTC Loading the SSPBUF Register Saving W register and STATUS in RAM Code Protection COMF Instruction Computed GOTO Configuration Bits Configuration Bits Configuration Word CP1 bit CREN bit CSRC bit D D/Ā bit D Characteristics	73 63 63 63 63 63 63 63 63 63 63 63 63 63
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Doing an A/D Conversion I/O Programming Indirect Addressing Initializing PORTA Initializing PORTA Initializing PORTC Loading the SSPBUF Register Saving W register and STATUS in RAM Code Protection COMF Instruction Computed GOTO Configuration Bits Configuration Bits Configuration Word CP0 bit CREN bit CSRC bit D D/Ā bit D Characteristics PIC16C70	
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Doing an A/D Conversion I/O Programming Indirect Addressing Initializing PORTA Initializing PORTB Initializing PORTC Loading the SSPBUF Register Saving W register and STATUS in RAM Code Protection COMF Instruction Computed GOTO Configuration Bits Configuration Bits Configuration Word CP0 bit CREN bit CSRC bit D D/Ā bit D Characteristics PIC16C70 PIC16C71	
Changing Between Capture Prescalers Changing Prescaler (Timer0 to WDT) Doing an A/D Conversion I/O Programming Indirect Addressing Initializing PORTA Initializing PORTA Initializing PORTC Loading the SSPBUF Register Saving W register and STATUS in RAM Code Protection COMF Instruction Computed GOTO Configuration Bits Configuration Bits Configuration Word CP0 bit CREN bit CSRC bit D D/Ā bit D Characteristics PIC16C70	

 PIC16C73
 221

 PIC16C73A
 245

 PIC16C74
 221

 PIC16C74A
 245

DECF Instruction	146
DECFSZ Instruction	146
Development Support	5, 153
Development Systems	157
Development Tools	153
Diagrams - See Block Diagrams	
Digit Carry bit	9
Direct Addressing	42
Dynamic Data Exchange (DDE)	153

Ε

Electrical Characteristics	
PIC16C70	159
PIC16C71	175
PIC16C71A	159
PIC16C72	197
PIC16C73	219
PIC16C73A	243
PIC16C74	219
PIC16C74A	243
External Brown-out Protection Circuit	132
External Power-on Reset Circuit	132

F

Family of Devices
PIC16C5X
PIC16C62X
PIC16C6X
PIC16C7X 6, 288
PIC16C8X
PIC17CXX
FERR bit
FOSC0 bit 122
FOSC1 bit 122
FSR Register
Fuzzy Logic Dev. System (fuzzyTECH®-MP) 153, 157

G

General Description	5
GIE bit	133
GO/DONE bit	109
GOTO Instruction	. 147
Graphs and Charts, PIC16C71	189

I

I/O Ports	
PORTA	43
PORTB	45
PORTC	47
PORTD	49, 54
PORTE	51
Section	43
I/O Programming Considerations	53
I ² C, See Synchronous Serial Port	
IBF bit	
IDLE_MODE	92
INCF Instruction	147
INCFSZ Instruction	
In-Circuit Serial Programming	. 121, 139
INDF Register 25-??, 25, 27,	28, 29, 42
Indirect Addressing	42
Initialization Condition for all Register	129
Instruction Cycle	20
Instruction Flow/Pipelining	20
Instruction Format	141

Instruction		
	W	
	٧F	-
	W	
	۲F	
	······································	
-	······································	
	C	
-	S	-
-		-
	/	
-	/DT	-
	F	
-	SZ	-
-	52	-
	,	
	SZ	
	V	
	F	
-	W	-
-	VF	-
	ON	
	IE	
	— W	
	RN	-
RRF .		150
SLEEI	P	150
SUBL	W	151
SUBW	/F	151
SWAF	۶F	152
-	······································	-
-	W	-
	VF	
	n	
	hary Table	
	ot	
INTCON R	egister	. 32
	t	
	ated Circuit (I ² C)	
	mpling Switch (Rss) Impedence	
•		
	Change	
	Change	
	B4 Port Change	
	n	
	·	
	Overflow	
	Matches PR2	
	T RX	
	T TX	
	1 1 1	
	truction	
	truction	
_		
L		

Loading of PC	

Μ

MCLR
Memory
Data Memory22
Program Memory21
Program Memory Maps
PIC16C7021
PIC16C7121
PIC16C71A21
PIC16C7222
PIC16C7322
PIC16C73A22
PIC16C7422
PIC16C74A22
Register File Maps
PIC16C7023
PIC16C7123
PIC16C71A23
PIC16C7224
PIC16C7324
PIC16C73A24
PIC16C7424
PIC16C74A24
MOVF Instruction148
MOVLW Instruction
MOVWF Instruction148
MPASM Assembler153, 156
MP-C C Compiler157
MPSIM Software Simulator153, 157

Ν

NOP Instruction	149
-----------------	-----

0

OBF bit	54
OERR bit	
Opcode	141
OPTION Instruction	
OPTION Register	
Orthogonal	
OSC selection	
Oscillator	
HS	
LP	
RC	
ХТ	
Oscillator Configurations	
Output of TMR2	

Ρ

P bit	77
Packaging	
18-Lead CERDIP w/Window	267
18-Lead PDIP	270
18-Lead SOIC	273
20-Lead SSOP	275
28-Lead Ceramic w/Window	268
28-Lead PDIP	271
28-Lead SOIC	274
28-Lead SSOP	276
40-Lead CERDIP w/Window	269
40-Lead PDIP	272
44-Lead MQFP	278
44-Lead PLCC	277
44-Lead TQFP	279
Paging, Program Memory	-

Parallel Slave Port			
PCFG0 bit			
PCFG1 bit			
PCFG2 bit			
PCL Register			
PCLATH			
PCLATH Register			
PCON Register			
PD bit			
PICDEM-1 Low-Cost PIC16/17 Demo Board .			
PICDEM-2 Low-Cost PIC16CXX Demo Board			
PICMASTER Probes			
PICMASTER System Configuration			
PICMASTER™ RT In-Circuit Emulator			
PICSTART™ Low-Cost Development System			
PIE1 Register			
PIE2 Register			
Pin Compatible Devices			291
Pin Functions		- ·-	
MCLR/VPP14			
OSC1/CLKIN			
OSC2/CLKOUT14			
RA0/AN014			
RA1/AN114			
RA2/AN214			
RA3/AN3/VREF14			
RA4/T0CKI			
RA5/AN4/SS			
RB0/INT14			
RB114			
RB214			
RB314			
RB414			
RB514			
RB614			
RB7			
RC0/T1OSO/T1CKI			
RC1/T1OSI			
RC1/T1OSI/CCP2			
RC2/CCP1			
RC3/SCK/SCL			
RC4/SDI/SDA			
RC5/SDO			
RC6			
RC6/TX/CK	'	·	
RC7			
RC7/RX/DT			
RD0/PSP0			
RD1/PSP1			
RD2/PSP2			
RD3/PSP3			-
RD4/PSP4			
RD5/PSP5			
RD6/PSP6			
RD7/PSP7			
RE0/RD/AN5			
RE1/WR/AN6			
RE2/CS/AN7			
VDD			
Vss	, 15, 1	o, 17,	19
Pinout Descriptions			45
PIC16C70			
PIC16C71			
PIC16C71A			
PIC16C72 PIC16C73			
FIC100/3			. 17

PIC16C73A	17
PIC16C74	18
PIC16C74A	18
PIR1 Register	
PIR2 Register	
POP	
POR	
Oscillator Start-up Timer (OST) 12	
Power Control Register (PCON)	
Power-on Reset (POR) 121, 12	
Power-up Timer (PWRT)	1 127
Power-Up-Timer (PWRT)	
Time-out Sequence	128
Time-out Sequence on Power-up	
TO	
POR bit	0, 120
Port RB Interrupt	
•	
PORTA	
PORTA Register	
PORTB	
PORTB Register	
PORTC	
PORTC Register	
PORTD	
PORTD Register	
PORTE	
PORTE Register	28 51
5	20, 01
Power-down Mode (SLEEP)	138
Power-down Mode (SLEEP) PR2 Register	138 29, 69
Power-down Mode (SLEEP) PR2 Register Prescaler, Switching Between Timer0 and WDT	138 29, 69 63
Power-down Mode (SLEEP) PR2 Register	138 29, 69 63
Power-down Mode (SLEEP) PR2 Register Prescaler, Switching Between Timer0 and WDT PRO MATE™ Universal Programmer	138 29, 69 63 3, 155 154
Power-down Mode (SLEEP) PR2 Register Prescaler, Switching Between Timer0 and WDT PRO MATE™ Universal Programmer	138 29, 69 63 3, 155 154
Power-down Mode (SLEEP) PR2 Register Prescaler, Switching Between Timer0 and WDT PRO MATE™ Universal Programmer	138 29, 69 63 3, 155 154 9
Power-down Mode (SLEEP) PR2 Register Prescaler, Switching Between Timer0 and WDT PRO MATE™ Universal Programmer	138 29, 69 63 3, 155 154 9
Power-down Mode (SLEEP) PR2 Register Prescaler, Switching Between Timer0 and WDT PRO MATE™ Universal Programmer	138 29, 69 63 3, 155 154 9 41
Power-down Mode (SLEEP) PR2 Register Prescaler, Switching Between Timer0 and WDT PRO MATE™ Universal Programmer	138 29, 69 63 3, 155 154 9 41
Power-down Mode (SLEEP) PR2 Register Prescaler, Switching Between Timer0 and WDT PRO MATE™ Universal Programmer	138 29, 69 63 3, 155 154 9 41 21
Power-down Mode (SLEEP) PR2 Register Prescaler, Switching Between Timer0 and WDT PRO MATE™ Universal Programmer Probes Program Branches Program Memory Paging Program Memory Maps PIC16C70 PIC16C71	138 29, 69 63 3, 155 154 9 41 21 21
Power-down Mode (SLEEP) PR2 Register Prescaler, Switching Between Timer0 and WDT PRO MATE™ Universal Programmer Probes Program Branches Program Memory Paging Program Memory Maps PIC16C70 PIC16C71A	138 29, 69 63 3, 155 154 9 41 21 21 21
Power-down Mode (SLEEP) PR2 Register Prescaler, Switching Between Timer0 and WDT PRO MATE™ Universal Programmer Probes Program Branches Program Memory Paging Program Memory Maps PIC16C70 PIC16C71A PIC16C72	138 29, 69 63 3, 155 154 9 41 21 21 21 22
Power-down Mode (SLEEP) PR2 Register Prescaler, Switching Between Timer0 and WDT PRO MATE™ Universal Programmer Probes Program Branches Program Memory Paging Program Memory Maps PIC16C70 PIC16C71A PIC16C72 PIC16C73	138 29, 69 63 3, 155 154 9 41 21 21 22 22
Power-down Mode (SLEEP) PR2 Register Prescaler, Switching Between Timer0 and WDT PRO MATE™ Universal Programmer Probes Program Branches Program Memory Paging Program Memory Maps PIC16C70 PIC16C71A PIC16C72 PIC16C73 PIC16C73A	138 29, 69 63 3, 155 154 9 41 21 21 22 22 22
Power-down Mode (SLEEP) PR2 Register Prescaler, Switching Between Timer0 and WDT PRO MATE™ Universal Programmer Probes Program Branches Program Memory Paging Program Memory Maps PIC16C70 PIC16C71A PIC16C72 PIC16C73 PIC16C74	138 29, 69 63 3, 155 154 9 41 21 21 21 22 22 22 22
Power-down Mode (SLEEP) PR2 Register Prescaler, Switching Between Timer0 and WDT PRO MATE™ Universal Programmer Probes Program Branches Program Memory Paging Program Memory Maps PIC16C70 PIC16C71A PIC16C73 PIC16C73A PIC16C74 PIC16C74A	138 29, 69 63 3, 155 154 9 21 21 21 22 22 22 22 22
Power-down Mode (SLEEP) PR2 Register Prescaler, Switching Between Timer0 and WDT PRO MATE™ Universal Programmer Probes Program Branches Program Memory Paging Program Memory Maps PIC16C70 PIC16C71A PIC16C73A PIC16C74A PIC16C74A	138 29, 69 63 3, 155 154 9 41 21 21 21 22 22 22 22 22 139
Power-down Mode (SLEEP) PR2 Register Prescaler, Switching Between Timer0 and WDT PRO MATE™ Universal Programmer Probes Program Branches Program Memory Paging Program Memory Maps PIC16C70 PIC16C71A PIC16C73A PIC16C74A PIC16C74A PIC16C74A	138 29, 69 63 3, 155 154 9 41 21 21 21 22 22 22 22 22 31 9
Power-down Mode (SLEEP) PR2 Register Prescaler, Switching Between Timer0 and WDT PRO MATE™ Universal Programmer Probes Program Branches Program Memory Paging Program Memory Maps PIC16C70 PIC16C71A PIC16C73 PIC16C73A PIC16C74A PIC16C74A PIC16C74A PISOR	138 29, 69 63 3, 155 154 9 41 21 21 21 22 22 22 22 22 22 31 31
Power-down Mode (SLEEP) PR2 Register Prescaler, Switching Between Timer0 and WDT PRO MATE™ Universal Programmer Probes Program Branches Program Memory Paging Program Memory Maps PIC16C70 PIC16C71A PIC16C73A PIC16C74A PIC16C74A PIC16C74A PIS0 bit PS0 bit	138 29, 69 63 3, 155 154 9 41 21 21 21 22 22 22 22 22 31 31 31
Power-down Mode (SLEEP) PR2 Register Prescaler, Switching Between Timer0 and WDT PRO MATE™ Universal Programmer Probes Program Branches Program Memory Paging Program Memory Maps PIC16C70 PIC16C71A PIC16C73A PIC16C74A PIC16C74A PIC16C74A PS0 bit PS1 bit PS2 bit	138 29, 69 63 3, 155 154 9 41 21 21 21 22 22 22 22 22 31 31 31
Power-down Mode (SLEEP) PR2 Register Prescaler, Switching Between Timer0 and WDT PRO MATE™ Universal Programmer Probes Program Branches Program Memory Paging Program Memory Maps PIC16C70 PIC16C71A PIC16C73 PIC16C73 PIC16C73A PIC16C74A Program Verification PS0 bit PS2 bit PSA bit	138 29, 69 63 3, 155 154 9 41 21 21 22 22 22 22 22 31 31 31 31 35, 54
Power-down Mode (SLEEP) PR2 Register Prescaler, Switching Between Timer0 and WDT PRO MATE™ Universal Programmer Probes Program Branches Program Memory Paging Program Memory Maps PIC16C70 PIC16C71A PIC16C73 PIC16C73 PIC16C73A PIC16C74A Program Verification PS0 bit PS1 bit PSPIE bit	138 29, 69 63 3, 155 154 9 41 21 21 22 22 22 22 22 31 31 31 31 35, 54 37, 54
Power-down Mode (SLEEP) PR2 Register Prescaler, Switching Between Timer0 and WDT PRO MATE™ Universal Programmer Probes Program Branches Program Memory Paging Program Memory Maps PIC16C70 PIC16C71A PIC16C73 PIC16C73A PIC16C74A Program Verification PS0 bit PS2 bit PSPIE bit PSPIE bit PSPMODE bit	138 29, 69 63 3, 155 154 9 41 21 21 22 22 22 22 22 31 31 31 31 35, 54 37, 54 51, 54
Power-down Mode (SLEEP) PR2 Register Prescaler, Switching Between Timer0 and WDT PRO MATE™ Universal Programmer Probes Program Branches Program Memory Paging Program Memory Maps PIC16C70 PIC16C71A PIC16C73 PIC16C73A PIC16C74A PIC16C74A PIC16C74A PS0 bit PS1 bit PS2 bit PSPIE bit PSPIF bit PSPMODE bit	138 29, 69 63 3, 155 154 9 41 21 21 21 22 22 22 22 22 31 31 31 35, 54 37, 54 51, 54
Power-down Mode (SLEEP) PR2 Register Prescaler, Switching Between Timer0 and WDT PRO MATE™ Universal Programmer Probes Program Branches Program Memory Paging Program Memory Maps PIC16C70 PIC16C71A PIC16C73 PIC16C73 PIC16C74A PIC16C74A Program Verification PS0 bit PS1 bit PSPIE bit PSPIE bit	138 29, 69 63 3, 155 154 9 41 21 21 21 22 22 22 22 22 31 31 31 35, 54 37, 54 51, 54

R

R/W bit	
R/W bit	
RBIE bit	
RBIF bit	
RBPU bit	
RC Oscillator	
RCIE bit	
RCIF bit	
RCSTA Register	
RCV_MODE	

RD pin	54
Read-Modify-Write	53
Register File	22
Registers	
Initialization Conditions	129
Maps	
PIC16C70	23
PIC16C71	23
PIC16C71A	23
PIC16C72	24
PIC16C73	24
PIC16C73A	24
PIC16C74	24
PIC16C74A	24
Reset Conditions	129
Summary2	
Reset	
Reset Conditions for Special Registers	129
RETFIE Instruction	149
RETLW Instruction	149
RETURN Instruction	150
RLF Instruction	150
RP0 bit2	2, 30
RP1 bit	30
RRF Instruction	150
RX9 bit	94
RX9D bit	94
•	
S	
S bit	77
SCL	8, 91
SDA	- / -
Serial Communication Interface (SCI) Module, See USA	RT
Serial Peripheral Interface (SPI)	77
Services	
One Time Dramer makin (OTD)	7

	it	
	it	-
	it	,
	Register	
	T Register27, 29,	
	rflows	
	erflow	
	Register	
	nstruction	
	nstruction	
-	nstruction	-
	ous Serial Port	93
I ² C	ous Senai Port	
10	Addressing	88
	Addressing Addressing I ² C Devices	00
	Arbitration	
	Block Diagram	
	Clock Synchronization	
	Combined Format	
	I ² C Operation	
	I ² C Overview	
	Initiating and Terminating Data Transfer	
	Master-Receiver Sequence	
	Multi-master	
	Multi-master Mode	
	Reception	
	•	
	Slave Mode START	
	START (S)	
	STOP STOP (P)	
	Transfer Acknowledge	
	Transmission	
SPI		90
011	Block Diagram	70
	Block Diagram of Master/Slave Connection	
	Master Mode	
	Serial Clock	
	Serial Data In	
	Serial Data Out	-
	Slave Select	
	SPI Clock	
	SPI Mode	
	SSPBUF Register	
	SSPSR Register	
Synchron	ous Serial Port Module	
T		04
TUCS DI		31

TOCS bit	
TOIE bit	32
T0IF bit	
T1CKPS0 bit	65
T1CKPS1 bit	65
T1CON Register	65
T1OSCEN bit	
T1SYNC bit	65
T2CKPS0 bit	70
T2CKPS1 bit	70
T2CON Register	70
TAD	115
Timer Modules, Overview	57
Timer0	
RTCC	129

Timers

	mer0	
	Block Diagram	
	External Clock	
	External Clock Timing	
	Increment Delay	
	Interrupt	
	Interrupt Timing	60
	Overview	
	Prescaler	
	Prescaler Block Diagram	
	Section	
	Switching Prescaler Assignment	63
	Synchronization	61
	TOCKI	
	TOIF	
	Timing	
	TMR0 Interrupt	
Ti	mer1	
	Asynchronous Counter Mode	67
	Block Diagram	
	Capacitor Selection	
	External Clock Input	
	External Clock Input Timing	67
	Operation in Timer Mode	
	Oscillator	
	Overview	-
	Prescaler	
	Resetting of Timer1 Registers	
	Resetting Timer1 using a CCP Trig	
	Synchronized Counter Mode	
	T1CON	
	TMR1H	67
	THE	~ 7
	TMR1L	
Ti		67
Ti	mer2	
Ti	mer2 Block Diagram	69
Ti	mer2 Block Diagram Module	69
Ti	mer2 Block Diagram	69
Ti	mer2 Block Diagram Module	69 69 57
Ti	mer2 Block Diagram Module Overview Postscaler	
Ti	mer2 Block Diagram Module Overview Postscaler Prescaler	
	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON	
Timing	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams	
Timing	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON	
Timing A/	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams /D Conversion	
Timing A/ Bi	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams /D Conversion	
Timing A/ Bi Ci	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams /D Conversion	
Timing A/ Bi Ci	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams /D Conversion 0 Conversion 172, 18 rown-out Reset 12 apture/Compare/PWM LKOUT and I/O	
Timing A/ Bi Ci Ci	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams /D Conversion	
Timing A/ Bi Ci Ci 2i	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams /D Conversion town-out Reset apture/Compare/PWM LKOUT and I/O LKOUT and I/O Bus Data	
Timing A/ Bi Ci Ci 2i	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams /D Conversion town-out Reset apture/Compare/PWM LKOUT and I/O LKOUT and I/O Bus Data	
Timing A/ Bi Ci Ci 2/ 1 ² / 1 ² /	mer2 Block Diagram Module Overview Postscaler T2CON Diagrams /D Conversion to Conversion to Conversion Diagrams /D Conversion to Conversion to Conversion 172, 18 rown-out Reset to Conversion 172, 18 rown-out Reset 12 apture/Compare/PWM LKOUT and I/O LKOUT and I/O Compare/PWM LKOUT and I/O LKOUT and I/O Compare/PWM LKOUT and I/O Compare/PWM C Bus Data C Bus Start/Stop bits	
Timing A/ Bi Ci Ci 24 ² 1 ² 1 ² 1	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams /D Conversion /D Conversion tree/Compare/PWM LKOUT and I/O LKOUT and I/O Conversion 172, 18 rown-out Reset 12 apture/Compare/PWM LKOUT and I/O LKOUT and I/O Compare/PWM LKOUT and I/O Compare/PWM Comp	
Timing A/ Bi Ci 24 24 24 24 24 24	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams /D Conversion tractor prown-out Reset apture/Compare/PWM LKOUT and I/O LKOUT and I/O Bus Data C Bus Start/Stop bits C Clock Synchronization C Data Transfer Wait State	
Timing A/ Bi Ci 24 24 24 24 24 24 24	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams /D Conversion Diagrams /D Conversion Diagrams /D Conversion 172, 18 rown-out Reset 12 apture/Compare/PWM LKOUT and I/O LKOUT and I/O LKOUT and I/O Bus Data C Bus Data C Bus Start/Stop bits C Clock Synchronization C Data Transfer Wait State C Multi-Master Arbitration	
Timing A/ Bi Ci 24 24 24 24 24 24 24 24 24 24	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams /D Conversion Diagrams /D Conversion Diagrams /D Conversion 172, 18 rown-out Reset 12 apture/Compare/PWM LKOUT and I/O LKOUT and I/O Bus Data C Bus Data C Bus Start/Stop bits C Clock Synchronization C Data Transfer Wait State C Multi-Master Arbitration C Reception	
Timing A/ Bi Ci 24 24 24 24 24 24 24 24 24 24	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams /D Conversion Diagrams /D Conversion Diagrams /D Conversion 172, 18 rown-out Reset 12 apture/Compare/PWM LKOUT and I/O LKOUT and I/O LKOUT and I/O Bus Data C Bus Data C Bus Start/Stop bits C Clock Synchronization C Data Transfer Wait State C Multi-Master Arbitration	
Timing A/ Bi Ci 24 24 24 24 24 24 24 24 24 24	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams /D Conversion Diagrams /D Conversion Diagrams /D Conversion 172, 18 rown-out Reset 12 apture/Compare/PWM LKOUT and I/O LKOUT and I/O Bus Data C Bus Data C Bus Start/Stop bits C Clock Synchronization C Data Transfer Wait State C Multi-Master Arbitration C Reception C Transmission	
Timing A/ Bi Ci 24 1 ²⁴ 1 ²⁴ 1 ² 1 ² 1 ² 1 ² 1 ² 1 ² 1 ² 1 ²	mer2 Block Diagram Module Overview Postscaler T2CON Diagrams /D Conversion Diagrams /D Conversion /D Conversion /	
Timing A/ Bi Ci 24 1 ²⁴ 1 ²⁴ 1 ² 1 ² 1 ² 1 ² 1 ² 1 ² 1 ² 1 ²	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams /D Conversion Diagrams /D Conversion /D Co	
Timing A/ Bi Ci 24 24 24 24 24 24 24 24 24 24	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams /D Conversion Diagrams /D Conversion Diagrams /D Conversion Diagrams /D Conversion T2, 18 rown-out Reset 2 apture/Compare/PWM LKOUT and I/O Compare/PWM LKOUT and I/O Compare/PWM LKOUT and I/O Compare/PWM LKOUT and I/O Compare/PWM Compa	
Timing A/ Bi Ci 24 24 24 24 24 24 24 24 24 24	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams /D Conversion Diagrams /D Conversion T2CON Diagrams /D Conversion T2CON Diagrams /D Conversion T2CON Diagrams /D Conversion T2CON Diagrams /D Conversion T2CON T2CON Diagrams /D Conversion T2CON T2	
Timing A/ Bi Ci 24 24 24 24 24 24 24 24 24 24	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams /D Conversion Diagrams /D Conversion Diagra	
Timing A/ Bi Ci 24 24 24 24 24 24 24 24 24 24	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams /D Conversion Diagrams /D Conversion Diagra	
Timing A/ Br C: C C C C C C C C C C C C C C C C C C	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams Diagrams D Conversion T2CON Diagrams D Conversion T2CON Diagrams D Conversion T2CON Diagrams D Conversion T2CON D Conversion T2CON D Conversion T2CON D Conversion T2CON D Conversion D Conversion C Conversion D C C Conversion D	
Timing A/ Br C: C C C C C C C C C C C C C C C C C C	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams Diagrams D Conversion T2CON Diagrams D Conversion T2CON Diagrams D Conversion T2CON Diagrams D Conversion T2CON D Conversion D Conve	
Timing A/ Br C: 24 24 24 24 24 24 24 24 24 24	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams Diagrams D Conversion T2CON Diagrams D Conversion T2CON Diagrams D Conversion T2CON Diagrams D Conversion T2CON D Conversion D Conve	
Timing A/ Br C: C C C C C C C C C C C C C C C C C C	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams Diagrams D Conversion T2CON Diagrams D Conversion T2CON Diagrams D Conversion T2CON Diagrams D Conversion T2CON D Conversion D	
Timing A/ Bi C: C C C C C C C C C C C C C C C C C C	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams D Conversion T2CON Diagrams D Conversion T2CON Diagrams D Conversion T2CON D Conversion T2C D Conversion T2C D Conversion D Conversi	
Timing A/ Bi C: C C C C C C C C C C C C C C C C C C	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams D Conversion T2CON Diagrams D Conversion T2CON Diagrams D Conversion T2CON D Conversion T2C D Conversion T2C D Conversion D Conversi	
Timing A/ Br C: C C E: 1 ² 1 ² 1 ² 1 ² 1 ² 1 ² 1 ² 1 ²	mer2 Block Diagram Module Overview Postscaler Prescaler T2CON Diagrams Diagrams D Conversion T2CON Diagrams D Conversion T2CON Diagrams D Conversion T2CON Diagrams D Conversion T2CON D Conversion D	

USART Asynchronous Master Transmission 100
USART Asynchronous Reception 101
USART RX Pin Sampling 98
USART Synchronous Receive
USART Synchronous Reception
USART Synchronous Transmission 104, 236, 260
Wake-up from Sleep via Interrupt 138
Watchdog Timer 168, 183, 206, 229, 253
TMR0 Register
TMR1CS bit
TMR1H Register
TMR1IE bit
TMR1IF bit
TMR1L Register
TMR1ON bit
TMR2 Register
TMR2IE bit
TMR2IF bit
TMR2ON bit
TO bit
TOUTPS0 bit
TOUTPS1 bit
TOUTPS2 bit
TOUTPS3 bit
TRIS Instruction
TRISA Register
TRISB Register
TRISC Register
TRISD Register 25, 29, 49
TRISE Register
TRMT bit
Two's Complement
Two's Complement
TX9 bit
TX9 bit
TX9 bit
TX9 bit
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93 U U
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93 U U UA bit 77
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93 U U UA bit 77
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93 U U UA bit 77 Universal Synchronous Asynchronous Receiver Transmitter
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93 U U UA bit 77 Universal Synchronous Asynchronous Receiver Transmitter (USART) 93
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93 U U UA bit 77 Universal Synchronous Asynchronous Receiver Transmitter 93 USART 93
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93 U 0 UA bit 77 Universal Synchronous Asynchronous Receiver Transmitter (USART) 93 USART 4 Asynchronous Mode 99
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93 U U UA bit 77 Universal Synchronous Asynchronous Receiver Transmitter (USART) 93 USART 4 Asynchronous Receiver 101
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93 U U UA bit 77 Universal Synchronous Asynchronous Receiver Transmitter (USART) 93 USART 4 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Receiver 101
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93 U U UA bit 77 Universal Synchronous Asynchronous Receiver Transmitter (USART) 93 USART 4 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Receiver 101
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93 U 0 UA bit 77 Universal Synchronous Asynchronous Receiver Transmitter (USART) 93 USART 93 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Transmission 100
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93 U U UA bit 77 Universal Synchronous Asynchronous Receiver Transmitter (USART) 93 USART 93 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Transmission 100 Asynchronous Transmister 99
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93 U U UA bit 77 Universal Synchronous Asynchronous Receiver Transmitter (USART) 93 USART 93 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Transmission 100 Asynchronous Transmister 99 Baud Rate Generator (BRG) 95
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93 U 0 UA bit 77 Universal Synchronous Asynchronous Receiver Transmitter (USART) 93 USART 93 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Transmission 100 Asynchronous Transmitter 99 Baud Rate Generator (BRG) 95 Receive Block Diagram 101
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93 U U UA bit 77 Universal Synchronous Asynchronous Receiver Transmitter (USART) 93 USART 93 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Transmission 100 Asynchronous Transmister 99 Baud Rate Generator (BRG) 95 Receive Block Diagram 101 Sampling 98
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93 U 0 UA bit 77 Universal Synchronous Asynchronous Receiver Transmitter (USART) 93 USART 93 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Transmission 100 Asynchronous Transmitter 99 Baud Rate Generator (BRG) 95 Receive Block Diagram 101
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93 U 0 UA bit 77 Universal Synchronous Asynchronous Receiver Transmitter (USART) 93 USART 93 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Transmission 100 Asynchronous Transmister 99 Baud Rate Generator (BRG) 95 Receive Block Diagram 101 Sampling 98 Synchronous Master Mode 103
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93 U U UA bit 77 Universal Synchronous Asynchronous Receiver Transmitter (USART) 93 USART 93 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Transmission 100 Asynchronous Transmitter 99 Baud Rate Generator (BRG) 95 Receive Block Diagram 101 Synchronous Master Mode 103 Synchronous Master Reception 103
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93 U U UA bit 77 Universal Synchronous Asynchronous Receiver Transmitter (USART) 93 USART 93 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Transmission 100 Asynchronous Transmister 99 Baud Rate Generator (BRG) 95 Receive Block Diagram 101 Synchronous Master Mode 103 Synchronous Master Transmission 103
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93 U U UA bit 77 Universal Synchronous Asynchronous Receiver Transmitter (USART) 93 USART 93 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Transmission 100 Asynchronous Transmister 99 Baud Rate Generator (BRG) 95 Receive Block Diagram 101 Synchronous Master Mode 103 Synchronous Slave Mode 103 Synchronous Slave Mode 107
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93 U U UA bit 77 Universal Synchronous Asynchronous Receiver Transmitter (USART) 93 USART 93 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Transmission 100 Asynchronous Transmister 99 Baud Rate Generator (BRG) 95 Receive Block Diagram 101 Synchronous Master Mode 103 Synchronous Slave Mode 103 Synchronous Slave Mode 107 Synchronous Slave Reception 107
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93 U U UA bit 77 Universal Synchronous Asynchronous Receiver Transmitter (USART) 93 USART 93 Asynchronous Mode 99 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Receiver 101 Synchronous Transmission 100 Asynchronous Transmission 100 Asynchronous Master (BRG) 95 Receive Block Diagram 101 Sampling 98 Synchronous Master Mode 103 Synchronous Slave Mode 103 Synchronous Slave Mode 107 Synchronous Slave Reception 107 Synchronous Slave Transmit 107
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93 U U UA bit 77 Universal Synchronous Asynchronous Receiver Transmitter (USART) 93 USART 93 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Transmission 100 Asynchronous Transmister 99 Baud Rate Generator (BRG) 95 Receive Block Diagram 101 Synchronous Master Mode 103 Synchronous Slave Mode 103 Synchronous Slave Mode 107 Synchronous Slave Reception 107
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93 U U UA bit 77 Universal Synchronous Asynchronous Receiver Transmitter (USART) 93 USART 93 Asynchronous Mode 99 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Receiver 101 Synchronous Transmission 100 Asynchronous Transmission 100 Asynchronous Master (BRG) 95 Receive Block Diagram 101 Sampling 98 Synchronous Master Mode 103 Synchronous Slave Mode 103 Synchronous Slave Mode 107 Synchronous Slave Reception 107 Synchronous Slave Transmit 107
TX9 bit93TX9D bit93TXEN bit93TXIE bit35TXIF bit37TXSTA Register93UUUA bit77Universal Synchronous Asynchronous Receiver Transmitter(USART)93USART93Asynchronous Receiver101Asynchronous Receiver101Asynchronous Receiver101Asynchronous Receiver101Asynchronous Receiver101Asynchronous Transmission100Asynchronous Transmister99Baud Rate Generator (BRG)95Receive Block Diagram101Sampling98Synchronous Master Mode103Synchronous Slave Mode107Synchronous Slave Reception107Synchronous Slave Reception107Synchronous Slave Reception107Synchronous Slave Reception107Synchronous Slave Transmit107Transmit Block Diagram99UV Erasable Devices7
TX9 bit 93 TX9D bit 93 TXEN bit 93 TXIE bit 35 TXIF bit 37 TXSTA Register 93 U U UA bit 77 Universal Synchronous Asynchronous Receiver Transmitter (USART) 93 USART 99 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Receiver 101 Asynchronous Transmission 100 Asynchronous Transmitter 99 Baud Rate Generator (BRG) 95 Receive Block Diagram 101 Synchronous Master Mode 103 Synchronous Master Reception 105 Synchronous Master Transmission 103 Synchronous Slave Mode 107 Synchronous Slave Reception 107 Synchronous Slave Reception 107 Synchronous Slave Transmit 107 Transmit Block Diagram 99

WDT	129
Block Diagram	137
Period	137
Programming Considerations	137
Timeout	129
WDTE bit	122
Word	122
WR pin	54
х	

XMIT_MODE	
XORLW Instruction	
XORWF Instruction	152

Ζ

—	
Z bit	
Zero bit	9

LIST OF EXAMPLES

Example 3-1: Example 4-1:	Instruction Pipeline Flow
	Page 0
Example 4-2:	Indirect Addressing
Example 5-1:	Initializing PORTA
Example 5-2:	Initializing PORTB
Example 5-3:	Initializing PORTC
Example 5-4:	Read-Modify-Write Instructions on an
Example e 1	I/O Port
Example 7-1:	Changing Prescaler (Timer0→WDT)63
Example 7-2:	Changing Prescaler (WDT→Timer0) 63
Example 8-1:	Reading a 16-bit Free-Running Timer 67
Example 10-1:	Changing Between Capture Prescalers 73
Example 11-1:	Loading the SSPBUF (SSPSR)
	Register79
Example 12-1:	Calculating Baud Rate Error95
Equation 13-1:	A/D Minimum Charging Time 114
Example 13-1:	Calculating the Minimum Required
	Sample Time 114
Example 13-2:	Doing an A/D Conversion
	(PIC16C70/71/71A) 116
Example 13-3:	Doing an A/D Conversion
_	(PIC16C72/73/73A/74/74A)116
Example 13-4:	4-bit vs. 8-bit Conversion Times 117
Example 14-1:	Saving STATUS and W Registers in RAM (PIC16C70/71/71A)136
Example 14 2:	Saving STATUS and W Registers in RAM
Example 14-2:	(PIC16C72/73/73A/74/74A)
LIST OF FIG	GURES
Figure 3-1:	PIC16C70/71/71A Block Diagram10
Figure 3-2:	PIC16C72 Block Diagram11
Figure 3-3:	PIC16C73/73A Block Diagram12
Figure 3-4:	PIC16C74/74A Block Diagram13
Figure 3-5:	Clock/Instruction Cycle20
Figure 4-1:	PIC16C70 Program Memory Map and
	Stack
Figure 4-2:	PIC16C71/71A Program Memory Map
	and Stack
Figure 4-3:	PIC16C72 Program Memory Map and
- :	Stack
Figure 4-4:	PIC16C73/73A/74/74A Program Memory
	Map and Stack
Figure 4-5:	PIC16C70/71 Register File Map23

PIC16C71A Register File Map23 PIC16C72 Register File Map24 PIC16C73/73A/74/74A Register File

Figure 4-9:	Status Register (Address 03h, 83h)	
Figure 4-10:	OPTION Register (Address 81h)	.31
Figure 4-11:	INTCON Register for PIC16C70/71/71A	
	(Address 0Bh, 8Bh)	.32
Figure 4-12:	INTCON Register for PIC16C72/73/	
	73A/74/74A (Address 0Bh, 8Bh)	
Figure 4-13:	PIE1 Register PIC16C72 (Address 8Ch)	.34
Figure 4-14:	PIE1 Register PIC16C73/73A/74/74A	
	(Address 8Ch)	
Figure 4-15:	PIR1 Register PIC16C72 (Address 0Ch)	.36
Figure 4-16:	PIR1 Register PIC16C73/73A/74/74A	~7
Figure 4 17	(Address 0Ch)	
Figure 4-17:	PIE2 Register (Address 8Dh)	
Figure 4-18:	PIR2 Register (Address 0Dh) PCON Register (Address 8Eh)	
Figure 4-19: Figure 4-20:	Loading of PC In Different Situations	
Figure 4-20.	Direct/Indirect Addressing	
Figure 5-1:	Block Diagram of RA3:RA0 and RA5 Pins	
Figure 5-2:	Block Diagram of RA4/T0CKI Pin	
Figure 5-3:	Block Diagram of RB3:RB0 Pins	
Figure 5-4:	Block Diagram of RB7:RB4 Pins	
Figure 5-5:	PORTC Block Diagram (Peripheral Output	
i iguro o o.	Override)	
Figure 5-6:	PORTD Block Diagram (in I/O Port Mode)	
Figure 5-7:	TRISE Register (Address 89h)	
Figure 5-8:	PORTE Block Diagram (in I/O Port Mode)	
Figure 5-9:	Successive I/O Operation	
Figure 5-10:	PORTD and PORTE Block Diagram	
0	(Parallel Slave Port)	.54
Figure 7-1:	Timer0 Block Diagram	.59
Figure 7-2:	Timer0 Timing: Internal Clock/No	
	Prescale	.59
Figure 7-3:	Timer0 Timing: Internal Clock/	
	Prescale 1:2	
Figure 7-4:	Timer0 Interrupt Timing	
Figure 7-5:	Timer0 Timing with External Clock	.61
Figure 7-6:	Block Diagram of the Timer0/WDT	
-	Prescaler	.62
Figure 8-1:	T1CON: Timer1 Control Register	~-
- :	(Address 10h)	
Figure 8-2:	Timer1 Block Diagram	
Figure 9-1: Figure 9-2:	Timer2 Block Diagram T2CON: Timer2 Control Register	.69
Figure 9-2.	(Address 12h)	70
Figure 10-1:	CCP1CON Register (Address 17h)/	.70
	CCP2CON Register (Address 1Dh)	72
Figure 10-2:	Capture Mode Operation Block Diagram	
Figure 10-3:	Compare Mode Operation Block Diagram.	
Figure 10-4:	Simplified PWM Block Diagram	
Figure 11-1:	SSPSTAT: Sync Serial Port Status Regist	
.g	(Address 94h)	
Figure 11-2:	SSPCON: Sync Serial Port Control Regist	
0	(Address 14h)	
Figure 11-3:	SSP Block Diagram (SPI Mode)	
Figure 11-4:	SPI Master/Slave Connection	
Figure 11-5:	SPI Mode Timing (Master Mode or Slave	
	Mode w/o SS Control)	.81
Figure 11-6:	SPI Mode Timing (Slave Mode with	
	SS Control)	
Figure 11-7:	Start and Stop Conditions	.83
Figure 11-8:	7-bit Address Format	
Figure 11-9:	I ² C 10-bit Address Format	
Figure 11-10:	Slave-Receiver Acknowledge	
Figure 11-11:	Data Transfer Wait State	
Figure 11-12:	Master-transmitter Sequence	
Figure 11-13:	Master-receiver Sequence	.85

Figure 4-6: Figure 4-7: Figure 4-8:

Figure 11-14:	
	Combined Format85
Figure 11-15:	Multi-master Arbitration (Two Masters) 86
Figure 11-16:	Clock Synchronization
Figure 11-17:	SSP Block Diagram (I ² C Mode)
Figure 11-18:	I ² C Waveforms for Reception
	(7-bit Address)
Figure 11-19:	I ² C Waveforms for Transmission
. iguro	(7-bit Address)
E : 44.00	
Figure 11-20:	Operation of the I2C Module in IDLE_MODE,
	RCV_MODE or XMIT_MODE92
Figure 12-1:	TXSTA: Transmit Status and Control
0	Register (Address 98h)93
Figure 12-2:	RCSTA: Receive Status and Control
rigure 12-2.	
	Register (Address 18h)94
Figure 12-3:	RX Pin Sampling Scheme (BRGH = 0) 98
Figure 12-4:	RX Pin Sampling Scheme (BRGH = 1) 98
Figure 12-5:	RX Pin Sampling Scheme (BRGH = 1) 98
Figure 12-6:	USART Transmit Block Diagram
0	
Figure 12-7:	Asynchronous Master Transmission 100
Figure 12-8:	Asynchronous Master Transmission
	(Back to Back)100
Figure 12-9:	USART Receive Block Diagram
Figure 12-10:	Asynchronous Reception
-	
Figure 12-11:	Synchronous Transmission104
Figure 12-12:	Synchronous Transmission
	(Through TXEN)104
Figure 12-13:	Synchronous Reception (Master Mode,
	SREN)
Figure 12 1.	
Figure 13-1:	ADCON0 Register, PIC16C70/71/71A
	(Address 08h) 109
Figure 13-2:	ADCON0 Register, PIC16C72/73/73A/74/
	74A (Address 1Fh) 110
Figure 13-3:	ADCON1 Register for PIC16C70/71/71A
riguie 10-0.	
	(Address 88h)
Figure 13-4:	ADCON1 Register, PIC16C72/73/73A/74/
	74A (Address 9Fh) 111
Figure 13-5:	A/D Block Diagram, PIC16C70/71/71A112
Figure 13-6:	A/D Block Diagram, PIC16C72/73/73A/74/
i iguio io oi	74A
E	
Figure 13-7:	Analog Input Model 114
Figure 13-8:	A/D Transfer Function119
Figure 13-9:	Flowchart of A/D Operation 119
Figure 14-1:	Configuration Word for PIC16C71
Figure 14-2:	
i iguite i a Z.	
F ¹ 1 1 1 0	Configuration Word for PIC16C70/71A 122
Figure 14-3:	Configuration Word for PIC16C73/74 122
Figure 14-3: Figure 14-4:	-
0	Configuration Word for PIC16C73/74 122
Figure 14-4:	Configuration Word for PIC16C73/74 122 Configuration Word for PIC16C72/73A/ 74A
0	Configuration Word for PIC16C73/74 122 Configuration Word for PIC16C72/73A/ 74A
Figure 14-4: Figure 14-5:	Configuration Word for PIC16C73/74 122 Configuration Word for PIC16C72/73A/ 74A
Figure 14-4:	Configuration Word for PIC16C73/74 122 Configuration Word for PIC16C72/73A/ 74A
Figure 14-4: Figure 14-5:	Configuration Word for PIC16C73/74 122 Configuration Word for PIC16C72/73A/ 74A
Figure 14-4: Figure 14-5:	Configuration Word for PIC16C73/74 122 Configuration Word for PIC16C72/73A/ 74A
Figure 14-4: Figure 14-5: Figure 14-6:	Configuration Word for PIC16C73/74 122 Configuration Word for PIC16C72/73A/ 74A
Figure 14-4: Figure 14-5: Figure 14-6: Figure 14-7:	Configuration Word for PIC16C73/74 122 Configuration Word for PIC16C72/73A/ 74A
Figure 14-4: Figure 14-5: Figure 14-6:	Configuration Word for PIC16C73/74 122 Configuration Word for PIC16C72/73A/ 74A
Figure 14-4: Figure 14-5: Figure 14-6: Figure 14-7: Figure 14-8:	Configuration Word for PIC16C73/74 122 Configuration Word for PIC16C72/73A/ 74A
Figure 14-4: Figure 14-5: Figure 14-6: Figure 14-7: Figure 14-8: Figure 14-9:	Configuration Word for PIC16C73/74 122Configuration Word for PIC16C72/73A/74A
Figure 14-4: Figure 14-5: Figure 14-6: Figure 14-7: Figure 14-8:	Configuration Word for PIC16C73/74 122 Configuration Word for PIC16C72/73A/ 74A
Figure 14-4: Figure 14-5: Figure 14-6: Figure 14-7: Figure 14-8: Figure 14-9:	Configuration Word for PIC16C73/74 122Configuration Word for PIC16C72/73A/74A
Figure 14-4: Figure 14-5: Figure 14-6: Figure 14-7: Figure 14-8: Figure 14-9: Figure 14-10:	Configuration Word for PIC16C73/74122 Configuration Word for PIC16C72/73A/ 74A
Figure 14-4: Figure 14-5: Figure 14-6: Figure 14-7: Figure 14-8: Figure 14-8: Figure 14-9: Figure 14-10: Figure 14-11:	Configuration Word for PIC16C73/74122Configuration Word for PIC16C72/73A/74A
Figure 14-4: Figure 14-5: Figure 14-6: Figure 14-7: Figure 14-8: Figure 14-9: Figure 14-10:	Configuration Word for PIC16C73/74122Configuration Word for PIC16C72/73A/74A
Figure 14-4: Figure 14-5: Figure 14-6: Figure 14-7: Figure 14-8: Figure 14-8: Figure 14-9: Figure 14-10: Figure 14-11: Figure 14-12:	Configuration Word for PIC16C73/74122Configuration Word for PIC16C72/73A/74A
Figure 14-4: Figure 14-5: Figure 14-6: Figure 14-7: Figure 14-8: Figure 14-8: Figure 14-9: Figure 14-10: Figure 14-11:	Configuration Word for PIC16C73/74122Configuration Word for PIC16C72/73A/74A
Figure 14-4: Figure 14-5: Figure 14-6: Figure 14-7: Figure 14-8: Figure 14-8: Figure 14-9: Figure 14-10: Figure 14-11: Figure 14-12:	Configuration Word for PIC16C73/74 122 Configuration Word for PIC16C72/73A/ 74A 123 Crystal/Ceramic Resonator Operation (HS, XT or LP OSC Configuration) 123 External Clock Input Operation (HS, XT or LP OSC Configuration) 123 External Clock Input Operation (HS, XT or LP OSC Configuration) 123 External Parallel Resonant Crystal Oscillator Circuit 125 External Series Resonant Crystal Oscillator Circuit 125 RC Oscillator Mode 125 Simplified Block Diagram of On-chip Reset 126 Brown-out Situations 127 Time-out Sequence on Power-up 131 Time-out Sequence on Power-up 131 Time-out Sequence on Power-up 131 MCLR Not Tied To VDD): Case 2 131
Figure 14-4: Figure 14-5: Figure 14-6: Figure 14-7: Figure 14-8: Figure 14-8: Figure 14-9: Figure 14-10: Figure 14-11: Figure 14-12: Figure 14-13:	Configuration Word for PIC16C73/74 122 Configuration Word for PIC16C72/73A/ 74A 123 Crystal/Ceramic Resonator Operation (HS, XT or LP OSC Configuration) 123 External Clock Input Operation (HS, XT or LP OSC Configuration) 123 External Clock Input Operation (HS, XT or LP OSC Configuration) 123 External Parallel Resonant Crystal Oscillator Circuit 125 External Series Resonant Crystal Oscillator Circuit 125 RC Oscillator Mode 125 Simplified Block Diagram of On-chip Reset 126 Brown-out Situations 127 Time-out Sequence on Power-up 131 Time-out Sequence on Power-up 131 Time-out Sequence on Power-up 131 MCLR Not Tied To VDD): Case 2 131
Figure 14-4: Figure 14-5: Figure 14-6: Figure 14-7: Figure 14-8: Figure 14-8: Figure 14-9: Figure 14-10: Figure 14-11: Figure 14-12:	Configuration Word for PIC16C73/74 122Configuration Word for PIC16C72/73A/74A
Figure 14-4: Figure 14-5: Figure 14-6: Figure 14-7: Figure 14-8: Figure 14-8: Figure 14-9: Figure 14-10: Figure 14-11: Figure 14-12: Figure 14-13: Figure 14-14:	Configuration Word for PIC16C73/74122 Configuration Word for PIC16C72/73A/ 74A
Figure 14-4: Figure 14-5: Figure 14-6: Figure 14-7: Figure 14-8: Figure 14-8: Figure 14-9: Figure 14-10: Figure 14-11: Figure 14-12: Figure 14-13:	Configuration Word for PIC16C73/74122Configuration Word for PIC16C72/73A/74A
Figure 14-4: Figure 14-5: Figure 14-6: Figure 14-7: Figure 14-8: Figure 14-8: Figure 14-9: Figure 14-10: Figure 14-11: Figure 14-12: Figure 14-13: Figure 14-14:	Configuration Word for PIC16C73/74122 Configuration Word for PIC16C72/73A/ 74A

E' 44.40	
Figure 14-16:	External Brown-out Protection Circuit 1 132
Figure 14-17:	External Brown-out Protection Circuit 2 132
0	
Figure 14-18:	Interrupt Logic for PIC16C70/71/71A 134
Figure 14-19:	Interrupt Logic for PIC16C72 134
Figure 14-20:	Interrupt Logic for PIC16C73/73A 134
Figure 14-21:	Interrupt Logic for PIC16C74/74A 135
Figure 14-22:	INT Pin Interrupt Timing 135
Figure 14-23:	Watchdog Timer Block Diagram
0	
Figure 14-24:	Summary of Watchdog Timer Registers. 137
Figure 14-25:	Wake-up from Sleep Through Interrupt 138
Figure 14-26:	Typical In-Circuit Serial Programming
	Connection 139
Figure 15-1:	General Format for Instructions 141
Figure 16-1:	PICMASTER System Configuration 153
Figure 17-1:	Load Conditions
Figure 17-2:	External Clock Timing 166
Figure 17-3:	CLKOUT and I/O Timing 167
Figure 17-4:	Reset, Watchdog Timer, Oscillator Start-up
•	Timer and Power-up Timer Timing 168
Figure 17-5:	Brown-out Reset Timing
Figure 17-6:	Timer0 Clock Timings
Figure 17-7:	A/D Conversion Timing 172
Figure 19-1:	Load Conditions
Figure 19-2:	External Clock Timing 181
Figure 19-3:	CLKOUT and I/O Timing 182
Figure 19-4:	Reset, Watchdog Timer, Oscillator Start-up
Figure 19-4.	
	Timer and Power-up Timer Timing 183
Figure 19-5:	Timer0 Clock Timings 184
Figure 19-6:	A/D Conversion Timing 187
Figure 20-1:	Typical RC Oscillator Frequency vs.
	Temperature
Figure 20.2	Typical RC Oscillator Frequency vs.
Figure 20-2:	
	VDD
Figure 20-3:	Typical RC Oscillator Frequency vs.
	VDD 189
Figure 20-4:	Typical RC Oscillator Frequency vs. VDD 190
-1000 $re 20-5$	Lypical lpd vs. VDD Watchdog Limer
Figure 20-5:	Typical Ipd vs. VDD Watchdog Timer
-	Disabled 25°C 190
Figure 20-5: Figure 20-6:	Disabled 25°C 190 Typical Ipd vs. VDD Watchdog Timer
Figure 20-6:	Disabled 25°C
-	Disabled 25°C 190 Typical Ipd vs. VDD Watchdog Timer
Figure 20-6:	Disabled 25°C
Figure 20-6: Figure 20-7:	Disabled 25°C
Figure 20-6:	Disabled 25°C 190 Typical Ipd vs. VDD Watchdog Timer 190 Enabled 25°C 190 Maximum Ipd vs. VDD Watchdog 191 Maximum Ipd vs. VDD Watchdog 191
Figure 20-6: Figure 20-7: Figure 20-8:	Disabled 25°C 190 Typical Ipd vs. VDD Watchdog Timer 190 Enabled 25°C 190 Maximum Ipd vs. VDD Watchdog 191 Maximum Ipd vs. VDD Watchdog 191 Maximum Ipd vs. VDD Watchdog 191
Figure 20-6: Figure 20-7:	Disabled 25°C 190 Typical Ipd vs. VDD Watchdog Timer 190 Enabled 25°C 190 Maximum Ipd vs. VDD Watchdog 191 Maximum Ipd vs. VDD Watchdog 191 Maximum Ipd vs. VDD Watchdog 191 Vatinum Ipd vs. VDD Watchdog 191 Vth (Input Threshold Voltage) of I/O Pins vs. 191
Figure 20-6: Figure 20-7: Figure 20-8:	Disabled 25°C 190 Typical Ipd vs. VDD Watchdog Timer 190 Enabled 25°C 190 Maximum Ipd vs. VDD Watchdog 191 Maximum Ipd vs. VDD Watchdog 191 Maximum Ipd vs. VDD Watchdog 191 Vation 191 Vth (Input Threshold Voltage) of I/O Pins vs. 191
Figure 20-6: Figure 20-7: Figure 20-8:	Disabled 25°C 190 Typical Ipd vs. VDD Watchdog Timer 190 Enabled 25°C 190 Maximum Ipd vs. VDD Watchdog 191 Maximum Ipd vs. VDD Watchdog 191 Maximum Ipd vs. VDD Watchdog 191 Vatinum Ipd vs. VDD Watchdog 191 Vth (Input Threshold Voltage) of I/O Pins vs. 191
Figure 20-6: Figure 20-7: Figure 20-8: Figure 20-9:	Disabled 25°C 190 Typical Ipd vs. VDD Watchdog Timer 190 Baabled 25°C 190 Maximum Ipd vs. VDD Watchdog 191 Maximum Ipd vs. VDD Watchdog 191 Maximum Ipd vs. VDD Watchdog 191 Vatinum Ipd vs. VDD Watchdog 191 Volth (Input Threshold Voltage) of I/O Pins vs. 191 VIH, VIL of MCLR, TOCKI and OSC1 (in RC 191
Figure 20-6: Figure 20-7: Figure 20-8: Figure 20-9: Figure 20-10:	Disabled 25°C 190 Typical Ipd vs. VDD Watchdog Timer 190 Enabled 25°C 190 Maximum Ipd vs. VDD Watchdog 191 Disabled 191 Maximum Ipd vs. VDD Watchdog 191 Maximum Ipd vs. VDD Watchdog 191 Vatinum Ipd vs. VDD Watchdog 191 Vth (Input Threshold Voltage) of I/O Pins vs. 191 VIH, VIL of MCLR, TOCKI and OSC1 (in RC 192
Figure 20-6: Figure 20-7: Figure 20-8: Figure 20-9:	Disabled 25°C 190 Typical Ipd vs. VDD Watchdog Timer 190 Enabled 25°C 190 Maximum Ipd vs. VDD Watchdog 191 Disabled 191 Maximum Ipd vs. VDD Watchdog 191 Maximum Ipd vs. VDD Watchdog 191 Vth (Input Threshold Voltage) of I/O Pins vs. 191 VIH, VIL of MCLR, TOCKI and OSC1 (in RC 192 VTH (Input Threshold Voltage) of OSC1 Input 192
Figure 20-6: Figure 20-7: Figure 20-8: Figure 20-9: Figure 20-10: Figure 20-11:	Disabled 25°C 190 Typical Ipd vs. VDD Watchdog Timer 190 Enabled 25°C 190 Maximum Ipd vs. VDD Watchdog 191 Disabled 191 Maximum Ipd vs. VDD Watchdog 191 Maximum Ipd vs. VDD Watchdog 191 Vth (Input Threshold Voltage) of I/O Pins vs. 191 VIH, VIL of MCLR, TOCKI and OSC1 (in RC 192 VTH (Input Threshold Voltage) of OSC1 Input 192 VTH (Input Threshold Voltage) of SC1 Input 192
Figure 20-6: Figure 20-7: Figure 20-8: Figure 20-9: Figure 20-10: Figure 20-11: Figure 20-12:	Disabled 25°C 190 Typical Ipd vs. VDD Watchdog Timer 190 Enabled 25°C 190 Maximum Ipd vs. VDD Watchdog 191 Disabled 191 Maximum Ipd vs. VDD Watchdog 191 Maximum Ipd vs. VDD Watchdog 191 Vth (Input Threshold Voltage) of I/O Pins vs. 191 VIH, VIL of MCLR, TOCKI and OSC1 (in RC 192 VTH (Input Threshold Voltage) of OSC1 Input 192 VTH (Input Threshold Voltage) of OSC1 Input 192 Typical IDD vs. Freq (Ext Clock, 25°C) 193 193
Figure 20-6: Figure 20-7: Figure 20-8: Figure 20-9: Figure 20-10: Figure 20-11:	Disabled 25°C 190 Typical Ipd vs. VDD Watchdog Timer 190 Babled 25°C 190 Maximum Ipd vs. VDD Watchdog 191 Disabled 191 Maximum Ipd vs. VDD Watchdog 191 Maximum Ipd vs. VDD Watchdog 191 Vth (Input Threshold Voltage) of I/O Pins vs. 191 VIH, VIL of MCLR, TOCKI and OSC1 (in RC 192 VTH (Input Threshold Voltage) of OSC1 Input 192 VTH (Input Threshold Voltage) of OSC1 Input 192 Typical IDD vs. Freq (Ext Clock, 25°C) 193 193 Maximum, IDD vs. Freq (Ext Clock, -40° to 190
Figure 20-6: Figure 20-7: Figure 20-8: Figure 20-9: Figure 20-10: Figure 20-11: Figure 20-12:	Disabled 25°C190Typical Ipd vs. VDD Watchdog TimerEnabled 25°C190Maximum Ipd vs. VDD WatchdogDisabled191Maximum Ipd vs. VDD WatchdogEnabled191Vth (Input Threshold Voltage) of I/O Pins vs.VDD191VIH, VIL of MCLR, TOCKI and OSC1 (in RCMode) vs. VDD192VTH (Input Threshold Voltage) of OSC1 Input(in XT, HS, and LP Modes) vs. VDD192Typical IDD vs. Freq (Ext Clock, 25°C)193Maximum, IDD vs. Freq (Ext Clock, -40° to+85°C)193
Figure 20-6: Figure 20-7: Figure 20-8: Figure 20-9: Figure 20-10: Figure 20-11: Figure 20-12:	Disabled 25°C 190 Typical Ipd vs. VDD Watchdog Timer 190 Babled 25°C 190 Maximum Ipd vs. VDD Watchdog 191 Disabled 191 Maximum Ipd vs. VDD Watchdog 191 Maximum Ipd vs. VDD Watchdog 191 Vth (Input Threshold Voltage) of I/O Pins vs. 191 VIH, VIL of MCLR, TOCKI and OSC1 (in RC 192 VTH (Input Threshold Voltage) of OSC1 Input 192 VTH (Input Threshold Voltage) of OSC1 Input 192 Typical IDD vs. Freq (Ext Clock, 25°C) 193 193 Maximum, IDD vs. Freq (Ext Clock, -40° to 190
Figure 20-6: Figure 20-7: Figure 20-8: Figure 20-9: Figure 20-10: Figure 20-11: Figure 20-12: Figure 20-13:	Disabled 25°C190Typical Ipd vs. VDD Watchdog Timer190Enabled 25°C190Maximum Ipd vs. VDD Watchdog191Disabled191Maximum Ipd vs. VDD Watchdog191Vatinum Ipd vs. VDD Watchdog191Vth (Input Threshold Voltage) of I/O Pins vs.191VIH, VIL of MCLR, TOCKI and OSC1 (in RC192Mode) vs. VDD192VTH (Input Threshold Voltage) of OSC1 Input192Typical IDD vs. Freq (Ext Clock, 25°C)193Maximum, IDD vs. Freq (Ext Clock, -40° to+85°C)193Maximum Idd vs. Freq with A/D Off
Figure 20-6: Figure 20-7: Figure 20-8: Figure 20-9: Figure 20-10: Figure 20-11: Figure 20-12: Figure 20-13: Figure 20-14:	Disabled 25°C190Typical Ipd vs. VDD Watchdog TimerEnabled 25°C190Maximum Ipd vs. VDD WatchdogDisabled191Maximum Ipd vs. VDD WatchdogEnabled191Vth (Input Threshold Voltage) of I/O Pins vs.VDD191VIH, VIL of MCLR, TOCKI and OSC1 (in RCMode) vs. VDD192VTH (Input Threshold Voltage) of OSC1 Input(in XT, HS, and LP Modes) vs. VDD192Typical IDD vs. Freq (Ext Clock, 25°C)193Maximum, IDD vs. Freq (Ext Clock, -40° to+85°C)193Maximum Idd vs. Freq with A/D Off(Ext Clock, -55° to +125°C)194
Figure 20-6: Figure 20-7: Figure 20-8: Figure 20-9: Figure 20-10: Figure 20-11: Figure 20-12: Figure 20-13: Figure 20-14: Figure 20-15:	Disabled 25° C190Typical Ipd vs. VDD Watchdog Timer190Enabled 25° C190Maximum Ipd vs. VDD Watchdog191Disabled191Maximum Ipd vs. VDD Watchdog191Varimum Ipd vs. VDD Watchdog191Vth (Input Threshold Voltage) of I/O Pins vs.191VIH, VIL of MCLR, TOCKI and OSC1 (in RC192Mode) vs. VDD192VTH (Input Threshold Voltage) of OSC1 Input192Typical IDD vs. Freq (Ext Clock, 25° C)193Maximum, IDD vs. Freq (Ext Clock, -40° to $+85^{\circ}$ C) $+85^{\circ}$ C)193Maximum Idd vs. Freq with A/D Off194WDT Timer Time-out Period vs. VDD194
Figure 20-6: Figure 20-7: Figure 20-8: Figure 20-9: Figure 20-10: Figure 20-11: Figure 20-12: Figure 20-13: Figure 20-14:	Disabled 25°C190Typical Ipd vs. VDD Watchdog Timer190Enabled 25°C190Maximum Ipd vs. VDD Watchdog191Disabled191Maximum Ipd vs. VDD Watchdog191Vatinum Ipd vs. VDD Watchdog191Vth (Input Threshold Voltage) of I/O Pins vs.191VIH, VIL of MCLR, TOCKI and OSC1 (in RC192Mode) vs. VDD192VTH (Input Threshold Voltage) of OSC1 Input192Typical IDD vs. Freq (Ext Clock, 25°C)193Maximum, IDD vs. Freq (Ext Clock, -40° to+85°C)+85°C)193Maximum Idd vs. Freq with A/D Off194WDT Timer Time-out Period vs. VDD194Transconductance (gm) of HS Oscillator vs.
Figure 20-6: Figure 20-7: Figure 20-8: Figure 20-9: Figure 20-10: Figure 20-11: Figure 20-12: Figure 20-13: Figure 20-14: Figure 20-15: Figure 20-16:	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Figure 20-6: Figure 20-7: Figure 20-8: Figure 20-9: Figure 20-10: Figure 20-11: Figure 20-12: Figure 20-13: Figure 20-14: Figure 20-15:	Disabled 25°C190Typical Ipd vs. VDD Watchdog Timer190Enabled 25°C190Maximum Ipd vs. VDD Watchdog191Disabled191Maximum Ipd vs. VDD Watchdog191Vatinum Ipd vs. VDD Watchdog191Vth (Input Threshold Voltage) of I/O Pins vs.191VIH, VIL of MCLR, TOCKI and OSC1 (in RC192Mode) vs. VDD192VTH (Input Threshold Voltage) of OSC1 Input192Typical IDD vs. Freq (Ext Clock, 25°C)193Maximum, IDD vs. Freq (Ext Clock, -40° to+85°C)+85°C)193Maximum Idd vs. Freq with A/D Off194WDT Timer Time-out Period vs. VDD194Transconductance (gm) of HS Oscillator vs.
Figure 20-6: Figure 20-7: Figure 20-8: Figure 20-9: Figure 20-10: Figure 20-11: Figure 20-12: Figure 20-13: Figure 20-14: Figure 20-15: Figure 20-16:	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Figure 20-6: Figure 20-7: Figure 20-8: Figure 20-9: Figure 20-10: Figure 20-11: Figure 20-12: Figure 20-13: Figure 20-14: Figure 20-15: Figure 20-15: Figure 20-16: Figure 20-17:	Disabled 25°C190Typical Ipd vs. VDD Watchdog TimerEnabled 25°C190Maximum Ipd vs. VDD WatchdogDisabled191Maximum Ipd vs. VDD WatchdogEnabled191Vatinum Ipd vs. VDD WatchdogEnabled191Vth (Input Threshold Voltage) of I/O Pins vs.VDD191VIH, VIL of MCLR, TOCKI and OSC1 (in RCMode) vs. VDD192VTH (Input Threshold Voltage) of OSC1 Input(in XT, HS, and LP Modes) vs. VDD192Typical IDD vs. Freq (Ext Clock, 25°C)193Maximum, IDD vs. Freq (Ext Clock, -40° to+85°C)193Maximum Idd vs. Freq with A/D Off(Ext Clock, -55° to +125°C)194WDT Timer Time-out Period vs. VDD194Transconductance (gm) of HS Oscillator vs.VDD194Transconductance (gm) of LP Oscillator vs.VDD195
Figure 20-6: Figure 20-7: Figure 20-8: Figure 20-9: Figure 20-10: Figure 20-11: Figure 20-12: Figure 20-13: Figure 20-14: Figure 20-15: Figure 20-16:	Disabled 25°C190Typical Ipd vs. VDD Watchdog TimerEnabled 25°C190Maximum Ipd vs. VDD WatchdogDisabled191Maximum Ipd vs. VDD WatchdogEnabled191Vatinum Ipd vs. VDD WatchdogEnabled191Vth (Input Threshold Voltage) of I/O Pins vs.VDD191VIH, VIL of MCLR, TOCKI and OSC1 (in RCMode) vs. VDD192VTH (Input Threshold Voltage) of OSC1 Input(in XT, HS, and LP Modes) vs. VDD192Typical IDD vs. Freq (Ext Clock, 25°C)193Maximum, IDD vs. Freq (Ext Clock, -40° to+85°C)193Maximum Idd vs. Freq with A/D Off(Ext Clock, -55° to +125°C)194WDT Timer Time-out Period vs. VDD194Transconductance (gm) of HS Oscillator vs.VDD195Transconductance (gm) of XT Oscillator vs.
Figure 20-6: Figure 20-7: Figure 20-8: Figure 20-9: Figure 20-10: Figure 20-11: Figure 20-12: Figure 20-13: Figure 20-14: Figure 20-15: Figure 20-16: Figure 20-17: Figure 20-18:	Disabled 25°C190Typical Ipd vs. VDD Watchdog TimerEnabled 25°C190Maximum Ipd vs. VDD WatchdogDisabled191Maximum Ipd vs. VDD WatchdogEnabled191Maximum Ipd vs. VDD WatchdogEnabled191Vth (Input Threshold Voltage) of I/O Pins vs.VDD191VIH, VIL of MCLR, TOCKI and OSC1 (in RCMode) vs. VDD192VTH (Input Threshold Voltage) of OSC1 Input(in XT, HS, and LP Modes) vs. VDD192Typical IDD vs. Freq (Ext Clock, 25°C)193Maximum Ibd vs. Freq with A/D Off(Ext Clock, -55° to +125°C)194WDT Timer Time-out Period vs. VDD194Transconductance (gm) of HS Oscillator vs.195Transconductance (gm) of XT Oscillator vs.195
Figure 20-6: Figure 20-7: Figure 20-8: Figure 20-9: Figure 20-10: Figure 20-11: Figure 20-12: Figure 20-13: Figure 20-14: Figure 20-15: Figure 20-16: Figure 20-17: Figure 20-18: Figure 20-19:	Disabled 25° C190Typical Ipd vs. VDD Watchdog TimerEnabled 25° C190Maximum Ipd vs. VDD WatchdogDisabled191Maximum Ipd vs. VDD WatchdogEnabled191Maximum Ipd vs. VDD WatchdogEnabled191Vth (Input Threshold Voltage) of I/O Pins vs.VDD191VIH, VIL of MCLR, TOCKI and OSC1 (in RCMode) vs. VDD192VTH (Input Threshold Voltage) of OSC1 Input(in XT, HS, and LP Modes) vs. VDD192Typical IDD vs. Freq (Ext Clock, 25° C)193Maximum, IDD vs. Freq (Ext Clock, -40° to $+85^{\circ}$ C)193Maximum Idd vs. Freq with A/D Off194Transconductance (gm) of HS Oscillator vs.194Transconductance (gm) of LP Oscillator vs.195Transconductance (gm) of XT Oscillator vs.195IOH vs. VOH, VDD = 3V195
Figure 20-6: Figure 20-7: Figure 20-8: Figure 20-9: Figure 20-10: Figure 20-11: Figure 20-12: Figure 20-13: Figure 20-14: Figure 20-15: Figure 20-16: Figure 20-17: Figure 20-18: Figure 20-19: Figure 20-20:	Disabled 25° C190Typical Ipd vs. VDD Watchdog TimerEnabled 25° C190Maximum Ipd vs. VDD WatchdogDisabled191Maximum Ipd vs. VDD WatchdogEnabled191Maximum Ipd vs. VDD WatchdogEnabled191Vth (Input Threshold Voltage) of I/O Pins vs.VDD191VIH, VIL of MCLR, TOCKI and OSC1 (in RCMode) vs. VDD192VTH (Input Threshold Voltage) of OSC1 Input(in XT, HS, and LP Modes) vs. VDD192Typical IDD vs. Freq (Ext Clock, 25° C)193Maximum, IDD vs. Freq (Ext Clock, -40° to $+85^{\circ}$ C)193Maximum Idd vs. Freq with A/D Off(Ext Clock, -55° to $+125^{\circ}$ C)194WDT Timer Time-out Period vs. VDD194Transconductance (gm) of LP Oscillator vs.VDD195VDD195IOH vs. VOH, VDD = 3V195IOH vs. VOH, VDD = 3V195IOH vs. VOH, VDD = 5V195
Figure 20-6: Figure 20-7: Figure 20-8: Figure 20-9: Figure 20-10: Figure 20-11: Figure 20-12: Figure 20-13: Figure 20-14: Figure 20-15: Figure 20-16: Figure 20-17: Figure 20-18: Figure 20-19:	Disabled 25° C190Typical Ipd vs. VDD Watchdog Timer190Enabled 25° C190Maximum Ipd vs. VDD Watchdog191Maximum Ipd vs. VDD Watchdog191Maximum Ipd vs. VDD Watchdog191Vth (Input Threshold Voltage) of I/O Pins vs.191VIH, VIL of MCLR, TOCKI and OSC1 (in RCMode) vs. VDDMode) vs. VDD192VTH (Input Threshold Voltage) of OSC1 Input192Typical IDD vs. Freq (Ext Clock, 25° C)193Maximum, IDD vs. Freq (Ext Clock, -40° to $+85^{\circ}$ C)193Maximum Idd vs. Freq with A/D Off194Transconductance (gm) of HS Oscillator vs.194Transconductance (gm) of LP Oscillator vs.195Transconductance (gm) of XT Oscillator vs.195IOH vs. VOH, VDD = 3V195IOH vs. VOH, VDD = 3V195IOL vs. VOL, VDD = 3V196
Figure 20-6: Figure 20-7: Figure 20-8: Figure 20-9: Figure 20-10: Figure 20-11: Figure 20-12: Figure 20-13: Figure 20-14: Figure 20-15: Figure 20-16: Figure 20-17: Figure 20-18: Figure 20-19: Figure 20-20:	Disabled 25° C190Typical Ipd vs. VDD Watchdog Timer190Enabled 25° C190Maximum Ipd vs. VDD Watchdog191Disabled191Maximum Ipd vs. VDD Watchdog191Vatinum Ipd vs. VDD Watchdog191Vth (Input Threshold Voltage) of I/O Pins vs.191VIH, VIL of MCLR, TOCKI and OSC1 (in RCMode) vs. VDD192VTH (Input Threshold Voltage) of OSC1 Input192Typical IDD vs. Freq (Ext Clock, 25° C)193Maximum, IDD vs. Freq (Ext Clock, -40° to $+85^{\circ}$ C)193Maximum Idd vs. Freq with A/D Off194Transconductance (gm) of HS Oscillator vs.194Transconductance (gm) of LP Oscillator vs.195Transconductance (gm) of XT Oscillator vs.195IOH vs. VOH, VDD = 3V195IOH vs. VOH, VDD = 5V195

.

Figure 21-1:	Load Conditions 203	
Figure 21-2:	External Clock Timing 204	
Figure 21-3:	CLKOUT and I/O Timing 205	
Figure 21-4:	Reset, Watchdog Timer, Oscillator Start-up	
	Timer and Power-up Timer Timing	
Figure 21-5:	Brown-out Reset Timing 206	
Figure 21-6:	Timer0 and Timer1 Clock Timings 207	
Figure 21-7:	Capture/Compare/PWM Timings	
	(CCP1)	
Figure 21-8:	SPI Mode Timing	
Figure 21-9:	I ² C Bus Start/Stop Bits Timing	
Figure 21-10:	I ² C Bus Data Timing	
Figure 21-11:	A/D Conversion Timing	
Figure 23-1:	Load Conditions	
Figure 23-2:	External Clock Timing	
Figure 23-3:	CLKOUT and I/O Timing	
Figure 23-4:	Timer and Power-up Timer Timing	
Figure 23-5:	Timer0 and Timer1 Clock Timings	
Figure 23-6:	Capture/Compare/PWM Timings (CCP1 and	
rigure 20 0.	CCP2)	
Figure 23-7:	Parallel Slave Port Timing for the PIC16C74	
riguro zo ri	Only232	
Figure 23-8:	SPI Mode Timing	
Figure 23-9:	I ² C Bus Start/Stop Bits Timing234	
Figure 23-10:	I ² C Bus Data Timing	
Figure 23-11:	USART Module: Synchronous Transmission	
0	(Master/Slave) Timing 236	
Figure 23-12:	USART Module: Synchronous Receive	
-	(Master/Slave) Timing 236	
Figure 23-13:	A/D Conversion Timing 239	
Figure 25-1:	Load Conditions 249	
Figure 25-2:	External Clock Timing 250	
Figure 25-3:	CLKOUT and I/O Timing 252	
Figure 25-4:	Reset, Watchdog Timer, Oscillator Start-up	
	Timer and Power-up Timer Timing253	
Figure 25-5:	Brown-out Reset Timing253	
Figure 25-6:	Timer0 and Timer1 Clock Timings	
Figure 25-7:	Capture/Compare/PWM Timings (CCP1 and	
	CCP2)	
Figure 25-8:	Parallel Slave Port Timing for the PIC16C74A	
Figure 25 Or	Only	
Figure 25-9: Figure 25-10:	I ² C Bus Start/Stop Bits Timing	
Figure 25-11:	I^2 C Bus Data Timing	
Figure 25-12:	USART Module: Synchronous Transmission	
rigure 20-12.	(Master/Slave) Timing	
Figure 25-13:	USART Module: Synchronous Receive	
1 iguro 20 10.	(Master/Slave) Timing	
Figure 25-14:	A/D Conversion Timing	
•	-	
LIST OF TABLES		
Table 1-1:	PIC16C7X Family of Devices6	
Table 3-1:	PIC16C70/71A Pinout Description14	
Table 3-2:	PIC16C71 Pinout Description15	
Table 3-3:	PIC16C72 Pinout Description16	
Table 3-4:	PIC16C73/73A Pinout Description17	
Table 3-5:	PIC16C74/74A Pinout Description18	
Table 4-1:	PIC16C70/71/71A Special Function Register	
	Summary	
Table 4-2:	PIC16C72 Special Function Register	
	Summary	
Table 4-3:	PIC16C73/73A/74/74A Special Function	
Table 5 4	Register Summary	
Table 5-1:	PORTA Functions 44	

Table 5-2:	Summary of Registers Associated with	
	PORTA	
Fable 5-3:	PORTB Functions	46
Table 5-4:	Summary of Registers Associated with PORTB	16
Table 5-5:	PORTC Functions	
Table 5-6:	Summary of Registers Associated with	-0
	PORTC	48
Table 5-7:	PORTD Functions	
Table 5-8:	Summary of Registers Associated with	
	PORTD	
Table 5-9:	PORTE Functions	52
Table 5-10:	Summary of Registers Associated with PORTE	52
Table 5-11:	Registers Associated with Parallel Slave Port	55
Table 7-1:	Registers Associated with Timer0, PIC16C70/71/71A	
Table 7-2:	Registers Associated with Timer0,	05
	PIC16C72/73/73A/74/74A	63
Table 8-1:	Capacitor Selection for the Timer1	
Table 0.0	Oscillator	67
Table 8-2:	Registers Associated with Timer1 as a Timer/Counter	68
Table 9-1:	Registers Associated with Timer2 as a	00
	Timer/Counter	70
Table 10-1:	CCP Mode - Timer Resource	
Table 10-2:	Interaction of Two CCP Modules	
Table 10-3:	PWM Frequency vs. Resolution at	
	20 MHz	74
Table 10-4:	Example PWM Frequencies and Resolution at 20 MHz	
Table 10-5:	Registers Associated with Capture and	1 -
	Timer1	75
Table 10-6:	Registers Associated with Compare and	
Table 10-7:	Timer1 Registers Associated with PWM and	10
	Timer2	76
Table 11-1:	Registers Associated with SPI Operation	
Table 11-2:	I ² C Bus Terminology	
Table 11-3:	Data Transfer Received Byte Actions	
Table 11-4:	Registers Associated with I ² C Operation	
Table 12-1:	Baud Rate Formula	
Table 12-2:	Registers Associated with Baud Rate	00
	0	95
Table 12-3:	Baud Rates for Synchronous Mode	
Table 12-4:	Baud Rates for Asynchronous Mode	
	(BRGH = 0)	96
Table 12-5:	Baud Rates for Asynchronous Mode	
	(BRGH = 1)	97
Table 12-6:	Registers Associated with Asynchronous Transmission1	00
Fable 12-7:	Registers Associated with Asynchronous	00
	Reception1	02
Table 12-8:	Registers Associated with Synchronous	
	Master Transmission	04
Table 12-9:	Registers Associated with Synchronous	ᅂ
Table 12-10:	Master Reception1	05
12-10.	Registers Associated with Synchronous Slave Transmission1	08
Table 12-11:	Registers Associated with Synchronous	00
	Slave Reception1	08
Table 13-1:	TAD vs. Device Operating Frequencies,	
	PIC16C71	15
Table 13-2:	TAD vs. Device Operating Frequencies,	
	PIC16C70/71A/72/73/73A/74/74A1	15

Table 13-3:	Summary of A/D Registers, PIC16C70/71/ 71A120			
Table 12 4	Summary of A/D Registers, PIC16C72120			
Table 13-4: Table 13-5:	Summary of A/D Registers, PIC16C72120 Summary of A/D Registers, PIC16C73/73A/			
Table 13-5.	74/74A			
Table 14-1:	Ceramic Resonators PIC16C71124			
Table 14-1:	Capacitor Selection for Crystal Oscillator for			
	PIC16C71			
Table 14-3:	Ceramic Resonators PIC16C70/71A/72/73/			
	73A/74/74A124			
Table 14-4:	Capacitor Selection for Crystal Oscillator for			
	PIC16C70/71A/72/73/73A/74/74A124			
Table 14-5:	Time-out in Various Situations, PIC16C71/			
	73/74 128			
Table 14-6:	Time-out in Various Situations, PIC16C70/			
	71A/72/73A/74A 128			
Table 14-7:	Status Bits and Their Significance,			
Table 14-8:	PIC16C71/73/74128 Status Bits and Their Significance,			
Table 14-0.	PIC16C70/71A/72/73A/74A			
Table 14-9:	Reset Condition for Special Registers 129			
Table 14-10:	Initialization Conditions for all Registers 129			
Table 15-1:	Opcode Field Descriptions			
Table 15-2:	PIC16CXX Instruction Set142			
Table 16-1:	PICMASTER Probe Specification			
Table 16-2:	Development System Packages			
Table 17-1:	Cross Reference of Device Specs for			
	Oscillator Configurations and Frequencies of			
	Operation (Commercial Devices)			
Table 17-2:	Clock Timing Requirements 166			
Table 17-3:	CLKOUT and I/O Timing Requirements 167			
Table 17-4:	Reset, Watchdog Timer, Oscillator Start-up			
	Timer and Power-up Timer Requirements			
T-1-1-47.5	168 Times Olash Dansissanta 100			
Table 17-5: Table 17-6:	Timer0 Clock Requirements			
	PIC16C70-04 (Commercial, Industrial,			
	Automotive)			
	PIC16C71A-04 (Commercial, Industrial,			
	Automotive)			
	PIC16C70-10 (Commercial, Industrial,			
	Automotive)			
	PIC16C71A-10 (Commercial, Industrial,			
	Automotive)			
	PIC16C70-20 (Commercial, Industrial,			
	Automotive)			
	PIC16C71A-20 (Commercial, Industrial,			
Table 17-7:	Automotive) 170 A/D Converter Characteristics:			
	PIC16LC70-04 (Commercial, Industrial,			
	Automotive)			
	PIC16LC71A-04 (Commercial, Industrial,			
	Automotive)			
Table 17-8:	A/D Conversion Requirements			
Table 19-1:	Cross Reference of Device Specs for			
	Oscillator Configurations and Frequencies of			
	Operation (Commercial Devices)			
Table 19-2:	External Clock Timing Requirements 181			
Table 19-3:	CLKOUT and I/O Timing Requirements 182			
Table 19-4:	Reset, Watchdog Timer, Oscillator			
	Start-up Timer and Power-up Timer			
T 11 15 -	Requirements			
Table 19-5: Table 19-6:	Timer0 Clock Requirements			
	•			
	A/D Converter Characteristics:			
Table 19-0.	•			

Table 19-7:	A/D Converter Characteristics:
Table 19-8:	PIC16LC71-04 (Commercial, Industrial). 186 A/D Conversion Requirements
Table 19-0. Table 20-1:	RC Oscillator Frequencies
Table 20-2:	Input Capacitance*
Table 21-1:	Cross Reference of Device Specs for
10010 21 11	Oscillator Configurations and Frequencies
	of Operation (Commercial Devices) 198
Table 21-2:	Clock Timing Requirements
Table 21-3:	CLKOUT and I/O Timing Requirements . 205
Table 21-4:	Reset, Watchdog Timer, Oscillator
	Start-up Timer and Power-up Timer
	Requirements 206
Table 21-5:	Timer0 and Timer1 Clock Requirements 207
Table 21-6:	Capture/Compare/PWM Requirements
Table 01 7	(CCP1)
Table 21-7: Table 21-8:	SPI Mode Requirements209 I ² C Bus Start/Stop Bits Requirements210
Table 21-9:	I^2C Bus Data Requirements
Table 21-3.	Serial Port Synchronous Transmission
10010 21 10.	Requirements
Table 21-11:	Serial Port Synchronous Receive
	Requirements 212
Table 21-12:	A/D Converter Characteristics:
	PIC16C72-04 (Commercial, Industrial,
	Automotive)
	PIC16C72-10 (Commercial, Industrial,
	Automotive)
	PIC16C72-20 (Commercial, Industrial,
Table 04 40.	Automotive)
Table 21-13:	A/D Converter Characteristics: PIC16LC72-04 (Commercial, Industrial,
	Automotive)
Table 21-14	
Table 21-14: Table 23-1:	A/D Conversion Requirements 215
Table 21-14: Table 23-1:	A/D Conversion Requirements
	A/D Conversion Requirements 215
	A/D Conversion Requirements
Table 23-1:	A/D Conversion Requirements
Table 23-1: Table 23-2:	A/D Conversion Requirements
Table 23-1: Table 23-2: Table 23-3:	A/D Conversion Requirements
Table 23-1: Table 23-2: Table 23-3: Table 23-4:	A/D Conversion Requirements
Table 23-1: Table 23-2: Table 23-3: Table 23-4: Table 23-5:	A/D Conversion Requirements215Cross Reference of Device Specs forOscillator Configurations and Frequenciesof Operation (Commercial Devices)220Clock Timing Requirements226CLKOUT and I/O Timing Requirements .228Reset, Watchdog Timer, OscillatorStart-up Timer and Power-up TimerRequirements229Timer0 and Timer1 Clock Requirements 230
Table 23-1: Table 23-2: Table 23-3: Table 23-4:	A/D Conversion Requirements215Cross Reference of Device Specs forOscillator Configurations and Frequenciesof Operation (Commercial Devices)220Clock Timing Requirements226CLKOUT and I/O Timing Requirements .228Reset, Watchdog Timer, OscillatorStart-up Timer and Power-up TimerRequirements229Timer0 and Timer1 Clock Requirements 230Capture/Compare/PWM Requirements
Table 23-1: Table 23-2: Table 23-3: Table 23-4: Table 23-5: Table 23-6:	A/D Conversion Requirements 215 Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices) 220 Clock Timing Requirements 226 CLKOUT and I/O Timing Requirements . 228 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Requirements 229 Timer0 and Timer1 Clock Requirements 230 Capture/Compare/PWM Requirements (CCP1 and CCP2) 231
Table 23-1: Table 23-2: Table 23-3: Table 23-4: Table 23-5:	A/D Conversion Requirements215Cross Reference of Device Specs forOscillator Configurations and Frequenciesof Operation (Commercial Devices)220Clock Timing Requirements226CLKOUT and I/O Timing Requirements .228Reset, Watchdog Timer, OscillatorStart-up Timer and Power-up TimerRequirements229Timer0 and Timer1 Clock Requirements 230Capture/Compare/PWM Requirements(CCP1 and CCP2)231Parallel Slave Port Requirements for the
Table 23-1: Table 23-2: Table 23-3: Table 23-4: Table 23-5: Table 23-6: Table 23-7:	A/D Conversion Requirements 215 Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices) 220 Clock Timing Requirements 226 CLKOUT and I/O Timing Requirements . 228 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Requirements 229 Timer0 and Timer1 Clock Requirements 230 Capture/Compare/PWM Requirements (CCP1 and CCP2) 231 Parallel Slave Port Requirements for the PIC16C74 Only
Table 23-1: Table 23-2: Table 23-3: Table 23-4: Table 23-5: Table 23-6:	A/D Conversion Requirements 215 Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices) 220 Clock Timing Requirements 226 CLKOUT and I/O Timing Requirements . 228 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Requirements 229 Timer0 and Timer1 Clock Requirements 230 Capture/Compare/PWM Requirements (CCP1 and CCP2) 231 Parallel Slave Port Requirements for the PIC16C74 Only 232 SPI Mode Requirements 233
Table 23-1: Table 23-2: Table 23-3: Table 23-4: Table 23-5: Table 23-6: Table 23-7: Table 23-8:	A/D Conversion Requirements 215 Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices) 220 Clock Timing Requirements 226 CLKOUT and I/O Timing Requirements . 228 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Requirements 229 Timer0 and Timer1 Clock Requirements 230 Capture/Compare/PWM Requirements (CCP1 and CCP2) 231 Parallel Slave Port Requirements for the PIC16C74 Only 232 SPI Mode Requirements 233 I ² C Bus Start/Stop Bits Requirements 234
Table 23-1: Table 23-2: Table 23-3: Table 23-3: Table 23-4: Table 23-5: Table 23-6: Table 23-7: Table 23-8: Table 23-9:	A/D Conversion Requirements 215 Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices) 220 Clock Timing Requirements 226 CLKOUT and I/O Timing Requirements . 228 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Requirements 229 Timer0 and Timer1 Clock Requirements 230 Capture/Compare/PWM Requirements (CCP1 and CCP2) 231 Parallel Slave Port Requirements for the PIC16C74 Only 232 SPI Mode Requirements 233
Table 23-1: Table 23-2: Table 23-3: Table 23-4: Table 23-5: Table 23-6: Table 23-6: Table 23-7: Table 23-8: Table 23-9: Table 23-10:	A/D Conversion Requirements 215 Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices) 220 Clock Timing Requirements 226 CLKOUT and I/O Timing Requirements . 228 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Requirements 229 Timer0 and Timer1 Clock Requirements 230 Capture/Compare/PWM Requirements (CCP1 and CCP2) 231 Parallel Slave Port Requirements for the PIC16C74 Only 232 SPI Mode Requirements 233 I ² C Bus Start/Stop Bits Requirements 234 I ² C Bus Data Requirements 235 Serial Port Synchronous Transmission Requirements
Table 23-1: Table 23-2: Table 23-3: Table 23-4: Table 23-5: Table 23-6: Table 23-6: Table 23-7: Table 23-8: Table 23-9: Table 23-10:	A/D Conversion Requirements 215 Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices) 220 Clock Timing Requirements 226 CLKOUT and I/O Timing Requirements . 228 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Requirements 229 Timer0 and Timer1 Clock Requirements 230 Capture/Compare/PWM Requirements (CCP1 and CCP2) 231 Parallel Slave Port Requirements for the PIC16C74 Only PIC Bus Start/Stop Bits Requirements 233 I ² C Bus Data Requirements 235 Serial Port Synchronous Transmission Requirements Requirements 236
Table 23-1: Table 23-2: Table 23-3: Table 23-4: Table 23-5: Table 23-6: Table 23-6: Table 23-7: Table 23-7: Table 23-9: Table 23-10: Table 23-11: Table 23-12:	A/D Conversion Requirements 215 Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices) 220 Clock Timing Requirements 226 CLKOUT and I/O Timing Requirements . 228 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Requirements 229 Timer0 and Timer1 Clock Requirements 230 Capture/Compare/PWM Requirements (CCP1 and CCP2) 231 Parallel Slave Port Requirements for the PIC16C74 Only PIC Bus Start/Stop Bits Requirements 233 I ² C Bus Data Requirements 235 Serial Port Synchronous Transmission Requirements Requirements 236
Table 23-1: Table 23-2: Table 23-3: Table 23-4: Table 23-5: Table 23-6: Table 23-6: Table 23-7: Table 23-8: Table 23-9: Table 23-10: Table 23-11:	A/D Conversion Requirements 215 Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices) 220 Clock Timing Requirements 226 CLKOUT and I/O Timing Requirements . 228 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Requirements 229 Timer0 and Timer1 Clock Requirements 230 Capture/Compare/PWM Requirements (CCP1 and CCP2) 231 Parallel Slave Port Requirements for the PIC16C74 Only 232 SPI Mode Requirements 233 I ² C Bus Start/Stop Bits Requirements 234 I ² C Bus Data Requirements 235 Serial Port Synchronous Transmission Requirements Requirements 236 Serial Port Synchronous Receive 236 A/D Converter Characteristics: 236
Table 23-1: Table 23-2: Table 23-3: Table 23-4: Table 23-5: Table 23-6: Table 23-6: Table 23-7: Table 23-7: Table 23-9: Table 23-10: Table 23-11: Table 23-12:	A/D Conversion Requirements 215 Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices) 220 Clock Timing Requirements 226 CLKOUT and I/O Timing Requirements . 228 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Requirements 229 Timer0 and Timer1 Clock Requirements 230 Capture/Compare/PWM Requirements (CCP1 and CCP2) 231 Parallel Slave Port Requirements for the PIC16C74 Only 232 SPI Mode Requirements 233 I ² C Bus Start/Stop Bits Requirements 234 I ² C Bus Data Requirements 235 Serial Port Synchronous Transmission Requirements Requirements 236 Serial Port Synchronous Receive Requirements Requirements 236 Serial Port Synchronous Receive Requirements PIC16C73-04 (Commercial, Industrial) 236
Table 23-1: Table 23-2: Table 23-3: Table 23-4: Table 23-5: Table 23-6: Table 23-6: Table 23-7: Table 23-7: Table 23-9: Table 23-10: Table 23-11: Table 23-12:	A/D Conversion Requirements 215 Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices) 220 Clock Timing Requirements 226 CLKOUT and I/O Timing Requirements 228 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Requirements 229 Timer0 and Timer1 Clock Requirements 230 Capture/Compare/PWM Requirements (CCP1 and CCP2) 231 Parallel Slave Port Requirements for the PIC16C74 Only PIC Bus Start/Stop Bits Requirements 233 I ² C Bus Data Requirements 235 Serial Port Synchronous Transmission Requirements Requirements 236 Serial Port Synchronous Receive 236 Requirements 236 Serial Port Synchronous Receive 236 A/D Converter Characteristics: PIC16C73-04 (Commercial, Industrial) PIC16C74-04 (Commercial, Industrial) PIC16C74-04 (Commercial, Industrial)
Table 23-1: Table 23-2: Table 23-3: Table 23-4: Table 23-5: Table 23-6: Table 23-6: Table 23-7: Table 23-7: Table 23-9: Table 23-10: Table 23-11: Table 23-12:	A/D Conversion Requirements 215 Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices) 220 Clock Timing Requirements 226 CLKOUT and I/O Timing Requirements 228 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Requirements 229 Timer0 and Timer1 Clock Requirements 230 Capture/Compare/PWM Requirements (CCP1 and CCP2) 231 Parallel Slave Port Requirements for the PIC16C74 Only PIC16C74 Only 232 SPI Mode Requirements 233 I ² C Bus Start/Stop Bits Requirements 234 I ² C Bus Data Requirements 235 Serial Port Synchronous Transmission Requirements Requirements 236 Serial Port Synchronous Receive Requirements PIC16C73-04 (Commercial, Industrial) PIC16C74-04 (Commercial, Industrial) PIC16C73-10 (Commercial, Industrial) PIC16C73-10 (Commercial, Industrial)
Table 23-1: Table 23-2: Table 23-3: Table 23-4: Table 23-5: Table 23-6: Table 23-6: Table 23-7: Table 23-7: Table 23-9: Table 23-10: Table 23-11: Table 23-12:	A/D Conversion Requirements 215 Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices) 220 Clock Timing Requirements 226 CLKOUT and I/O Timing Requirements 228 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Requirements 229 Timer0 and Timer1 Clock Requirements 230 Capture/Compare/PWM Requirements (CCP1 and CCP2) 231 Parallel Slave Port Requirements for the PIC16C74 Only PIC16C74 Only 232 SPI Mode Requirements 233 I ² C Bus Start/Stop Bits Requirements 234 I ² C Bus Data Requirements 235 Serial Port Synchronous Transmission Requirements Requirements 236 Serial Port Synchronous Receive 236 A/D Converter Characteristics: PIC16C73-04 (Commercial, Industrial) PIC16C73-10 (Commercial, Industrial) PIC16C73-10 (Commercial, Industrial)
Table 23-1: Table 23-2: Table 23-3: Table 23-4: Table 23-5: Table 23-6: Table 23-6: Table 23-7: Table 23-7: Table 23-9: Table 23-10: Table 23-11: Table 23-12:	A/D Conversion Requirements 215 Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices) 220 Clock Timing Requirements 226 CLKOUT and I/O Timing Requirements 228 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Requirements 229 Timer0 and Timer1 Clock Requirements 230 Capture/Compare/PWM Requirements (CCP1 and CCP2) 231 Parallel Slave Port Requirements for the PIC16C74 Only PIC16C74 Only 232 SPI Mode Requirements 233 I ² C Bus Start/Stop Bits Requirements 234 I ² C Bus Data Requirements 235 Serial Port Synchronous Transmission Requirements Requirements 236 Serial Port Synchronous Receive Requirements PIC16C73-04 (Commercial, Industrial) PIC16C73-04 (Commercial, Industrial) PIC16C73-10 (Commercial, Industrial) PIC16C73-10 (Commercial, Industrial) PIC16C73-20 (Commercial, Industrial) PIC16C73-20 (Commercial, Industrial)
Table 23-1: Table 23-2: Table 23-3: Table 23-4: Table 23-5: Table 23-6: Table 23-6: Table 23-7: Table 23-7: Table 23-9: Table 23-10: Table 23-11: Table 23-12:	A/D Conversion Requirements 215 Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices) 220 Clock Timing Requirements 226 CLKOUT and I/O Timing Requirements 228 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Requirements 229 Timer0 and Timer1 Clock Requirements 230 Capture/Compare/PWM Requirements (CCP1 and CCP2) 231 Parallel Slave Port Requirements for the PIC16C74 Only PIC16C74 Only 232 SPI Mode Requirements 233 I ² C Bus Start/Stop Bits Requirements 234 I ² C Bus Data Requirements 235 Serial Port Synchronous Transmission Requirements Requirements 236 Serial Port Synchronous Receive 236 A/D Converter Characteristics: PIC16C73-04 (Commercial, Industrial) PIC16C73-10 (Commercial, Industrial) PIC16C73-10 (Commercial, Industrial)
Table 23-1: Table 23-2: Table 23-3: Table 23-3: Table 23-4: Table 23-5: Table 23-6: Table 23-7: Table 23-7: Table 23-7: Table 23-9: Table 23-10: Table 23-11: Table 23-12: Table 23-13:	A/D Conversion Requirements 215 Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices) 220 Clock Timing Requirements 226 CLKOUT and I/O Timing Requirements 228 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Requirements 229 Timer0 and Timer1 Clock Requirements 230 Capture/Compare/PWM Requirements (CCP1 and CCP2) 231 Parallel Slave Port Requirements for the PIC16C74 Only PIC16C74 Only 232 SPI Mode Requirements 233 I ² C Bus Start/Stop Bits Requirements 234 I ² C Bus Data Requirements 235 Serial Port Synchronous Transmission Requirements Requirements 236 Serial Port Synchronous Receive Requirements PIC16C73-04 (Commercial, Industrial) PIC16C73-04 (Commercial, Industrial) PIC16C73-10 (Commercial, Industrial) PIC16C73-20 (Commercial, Industrial) PIC16C73-20 (Commercial, Industrial) PIC16C74-20 (Commercial, Industrial)
Table 23-1: Table 23-2: Table 23-3: Table 23-3: Table 23-4: Table 23-5: Table 23-6: Table 23-7: Table 23-7: Table 23-7: Table 23-9: Table 23-10: Table 23-11: Table 23-12: Table 23-13:	A/D Conversion Requirements 215 Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices) 220 Clock Timing Requirements 226 CLKOUT and I/O Timing Requirements 228 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Requirements 229 Timer0 and Timer1 Clock Requirements 230 Capture/Compare/PWM Requirements 231 Parallel Slave Port Requirements for the PIC16C74 Only PIC16C74 Only 232 SPI Mode Requirements 233 I ² C Bus Start/Stop Bits Requirements 234 I ² C Bus Data Requirements 235 Serial Port Synchronous Transmission Requirements Requirements 236 A/D Converter Characteristics: PIC16C73-04 (Commercial, Industrial) PIC16C73-10 (Commercial, Industrial) PIC16C73-20 (Commercial, Industrial) PIC16C73-04 (Commercial, Industrial) PIC16C74-20 (Commercial, Industrial) PIC16C73-04 (Commercial, Industrial) PIC16C74-04 (Commercial, Industrial) PIC16C73-04 (Commercial, Industrial) PIC16C74-04 (Commercial, Industrial) P
Table 23-1: Table 23-2: Table 23-3: Table 23-3: Table 23-4: Table 23-5: Table 23-6: Table 23-7: Table 23-7: Table 23-7: Table 23-9: Table 23-10: Table 23-11: Table 23-12: Table 23-13:	A/D Conversion Requirements 215 Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices) 220 Clock Timing Requirements 226 CLKOUT and I/O Timing Requirements 228 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Requirements 229 Timer0 and Timer1 Clock Requirements 230 Capture/Compare/PWM Requirements 231 Parallel Slave Port Requirements for the PIC16C74 Only PIC16C74 Only 232 SPI Mode Requirements 233 I ² C Bus Start/Stop Bits Requirements 234 I ² C Bus Data Requirements 235 Serial Port Synchronous Transmission Requirements Requirements 236 A/D Converter Characteristics: PIC16C73-04 (Commercial, Industrial) PIC16C73-10 (Commercial, Industrial) PIC16C73-20 (Commercial, Industrial) PIC16C73-04 (Commercial, Industrial) PIC16C73-20 (Commercial, Industrial) PIC16C73-04 (Commercial, Industrial) PIC16C73-04 (Commercial, Industrial) PIC16C73-04 (Commercial, Industrial) PIC16C73-04 (Commercial, Industrial)

Table 25-1:	Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices)244
Table 25-2:	Clock Timing Requirements
Table 25-3:	CLKOUT and I/O Timing Requirements 252
Table 25-4:	Reset, Watchdog Timer, Oscillator
	Start-up Timer and Power-up Timer
	Requirements253
Table 25-5:	Timer0 and Timer1 Clock Requirements 254
Table 25-6:	Capture/Compare/PWM Requirements
	(CCP1 and CCP2) 255
Table 25-7:	Parallel Slave Port Requirements for the
	PIC16C74A Only256
Table 25-8:	SPI Mode Requirements257
Table 25-9:	I ² C Bus Start/Stop Bits Requirements 258
Table 25-10:	I ² C Bus Data Requirements
Table 25-11:	Serial Port Synchronous Transmission
	Requirements
Table 25-12:	Serial Port Synchronous Receive
T-1-1-05-40	Requirements
Table 25-13:	A/D Converter Characteristics:
	PIC16C73A-04 (Commercial, Industrial,
	Automotive) PIC16C74A-04 (Commercial, Industrial,
	Automotive)
	PIC16C73A-10 (Commercial, Industrial,
	Automotive)
	PIC16C74A-10 (Commercial, Industrial,
	Automotive)
	PIC16C73A-20 (Commercial, Industrial,
	Automotive)
	PIC16C74A-20 (Commercial, Industrial,
	Automotive)

Table 25-14:	A/D Converter Characteristics: PIC16LC73A-04 (Commercial, Industrial, Automotive) PIC16LC74A-04 (Commercial, Industrial,
	Automotive)262
Table 25-15:	A/D Conversion Requirements263
Table E-1:	PIC16C5X Family of Devices285
Table E-2:	PIC16C62X Family of Devices286
Table E-3:	PIC16C6X Family of Devices
Table E-4:	PIC16C7X Family of Devices
Table E-5:	PIC16C8X Family of Devices
Table E-6:	PIC17CXX Family of Devices290
Table E-7:	Pin Compatible Devices291

NOTES:

CONNECTING TO MICROCHIP BBS

Connect worldwide to the Microchip BBS using the CompuServe[®] communications network. In most cases a local call is your only expense. The Microchip BBS connection does not use CompuServe membership services, therefore **you do not need CompuServe membership to join Microchip's BBS**.

There is **no charge** for connecting to the BBS, except for a toll charge to the CompuServe access number, where applicable. You do not need to be a CompuServe member to take advantage of this connection (you never actually log in to CompuServe).

The procedure to connect will vary slightly from country to country. Please check with your local CompuServe agent for details if you have a problem. CompuServe service allows multiple users at baud rates up to 14400 bps.

The following connect procedure applies in most locations:

- 1. Set your modem to 8 bit, No parity, and One stop (8N1). This is not the normal CompuServe setting which is 7E1.
- 2. Dial your local CompuServe access number.
- Depress <ENTER→> and a garbage string will appear because CompuServe is expecting a 7E1 setting.
- 4. Type +, depress <ENTER and Host Name: will appear.
- 5. Type **MCHIPBBS**, depress < **ENTER**, → and you will be connected to the Microchip BBS.

In the United States, to find CompuServe's phone number closest to you, set your modem to 7E1 and dial (800) 848-4480 for 300-2400 baud or (800) 331-7166 for 9600-14400 baud connection. After the system responds with Host Name:, type

NETWORK, depress < ENTER, → >

and follow CompuServe's directions.

For voice information (or calling from overseas), you may call (614) 457-1550 for your local CompuServe number.

Trademarks:

The Microchip logo, name and PIC are registered trademarks of Microchip Technology Incorporated in the U.S.A.

PICMASTER, MPLAB, PICSTART, PRO MATE and fuzzyLAB are trademarks, and SQTP is a service mark of Microchip Technology Incorporated.

fuzzyTECH is a registered trademark of Inform Software Corporation.

I²C is a trademark of Philips Corporation.

IBM, IBM PC-AT are registered trademarks of International Business Machines Corp.

Pentium is a trademark of Intel Corporation.

MS-DOS and Microsoft Windows are registered trademarks of Microsoft Corporation. Windows is a trademark of Microsoft Corporation.

CompuServe is a registered trademark of CompuServe Incorporated.

All other trademarks mentioned herein are the property of their respective companies.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	recimical r ablications Manager	Total Pages Sent
RE:		
Fro	m: Name	
	Company	
		FAX: ()
Anr	blication (optional):	FAX: ()
	uld you like a reply?YN	
000		
De	vice: PIC16C7X Literature N	Number: DS30390B
Que	estions:	
1	What are the best features of this document	2
1.		1
2.	How does this document meet your hardwar	e and software development needs?
3.	Do you find the organization of this data she	et easy to follow? If not, why?
4.	What additions to the data sheat do you thin	k would onbance the structure and subject?
4.	What additions to the data sheet do you thin	
5.	What deletions from the data sheet could be	made without affecting the overall usefullness?
6.	Is there any incorrect or misleading information	ion (what and where)?
7.	How would you improve this document?	
0	How would you improve our coffware, custor	ns, and silicon products?
8.	How would you improve our software, syster	ns, and smoon products?

PIC16C7X Product Identification System

To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office.

PAR	T NO.	-XX	<u>x</u> /	<u>xx xxx</u>			Exa	Imples
			Pattern: Package:	QTP, SQTP, ROM Code or Special RequirementsJW=PQ=MQFP (Metric PQFP)TQ=TQFP (Thin Quad Flatpack)SO=SOICSP=Skinny plastic carrierSJ=Skinny CERDIPP=PLCC	a) b)	PIC16C71 - 04/P 301 Commercial Temp., PDIP Package, 4 MHz, normal VDD limits, QTP pattern #301 PIC16LC73 - 041/SO Industrial Temp., SOIC package, 4 MHz,		
					Temperature Range:	$\begin{array}{rcl} - & = & 0^{\circ}\text{C to } +70^{\circ}\text{C (T for Tape/Reel)} \\ \text{I} & = & -40^{\circ}\text{C to } +85^{\circ}\text{C (S for Tape/Reel)} \\ \text{E} & = & -40^{\circ}\text{C to } +125^{\circ}\text{C} \end{array}$	c)	extended VDD limits PIC16C74A - 10E/P Automotive Temp.,
					Frequency Range:	04 = 200 kHz (PIC16C7X-04) 04 = 4 MHz 10 = 10 MHz 16 = 16 MHz 20 = 20 MHz		PDIP package, 10 MHz, normal VDD limits
					Device	PIC16C7X:VDD range 4.0V to 6.0VPIC16C7XT:VDD range 4.0V to 6.0V (Tape/Reel)PIC16LC7XX:VDD range 3.0V to 6.0VPIC16LC7XT:VDD range 3.0V to 6.0V (Tape/Reel)		

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

Your local Microchip Sales office (see below)
 The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277
 The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using. For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.

WORLDWIDE SALES & SERVICE

AMERICAS

Corporate Office

Microchip Technology Inc. 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 602 786-7200 Fax: 602 786-7277 *Technical Support:* 602 786-7627 *Web:* http://www.mchip.com/microchip

Atlanta

Microchip Technology Inc. 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770 640-0034 Fax: 770 640-0307

Boston

Microchip Technology Inc. 5 Mount Royal Avenue Marlborough, MA 01752 Tel: 508 480-9990 Fax: 508 480-8575 Chicago

Microchip Technology Inc. 333 Pierce Road, Suite 180

Itasca, IL 60143 Tel: 708 285-0071 Fax: 708 285-0075

Dallas

Microchip Technology Inc. 14651 Dallas Parkway, Suite 816 Dallas, TX 75240-8809 Tel: 214 991-7177 Fax: 214 991-8588

Dayton

Microchip Technology, Inc. Two Prestige Place, Suite 150 Miamisburg, OH 45342 Tel: 513 291-1654 Fax: 513 291-9175

Los Angeles

Microchip Technology Inc. 18201 Von Karman, Suite 455 Irvine, CA 92715 Tel: 714 263-1888 Fax: 714 263-1338

New York

Microchip Technology Inc. 150 Motor Parkway, Suite 416 Hauppauge, NY 11788 Tel: 516 273-5305 Fax: 516 273-5335

AMERICAS (continued)

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408 436-7950 Fax: 408 436-7955

ASIA/PACIFIC

Hong Kong Microchip Technology Unit No. 3002-3004, Tower 1 Metroplaza 223 Hing Fong Road Kwai Fong, N.T. Hong Kong Tel: 852 2 401 1200 Fax: 852 2 401 3431 Korea Microchip Technology 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku, Seoul, Korea Tel: 82 2 554 7200 Fax: 82 2 558 5934 Singapore Microchip Technology 200 Middle Road #10-03 Prime Centre Singapore 188980 Tel: 65 334 8870 Fax: 65 334 8850 Taiwan Microchip Technology 10F-1C 207 Tung Hua North Road Taipei, Taiwan, ROC Tel: 886 2 717 7175 Fax: 886 2 545 0139

EUROPE

United Kingdom Arizona Microchip Technology Ltd. Unit 6, The Courtyard Meadow Bank, Furlong Road Bourne End, Buckinghamshire SL8 5AJ Tel: 44 0 1628 851077 Fax: 44 0 1628 850259 France Arizona Microchip Technology SARL 2 Rue du Buisson aux Fraises 91300 Massy - France Tel: 33 1 69 53 63 20 Fax: 33 1 69 30 90 79 Germany Arizona Microchip Technology GmbH Gustav-Heinemann-Ring 125 D-81739 Muenchen, Germany Tel: 49 89 627 144 0 Fax: 49 89 627 144 44 Italy Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Pegaso Ingresso No. 2 Via Paracelso 23, 20041

Agrate Brianza (MI) Italy Tel: 39 039 689 9939 Fax: 39 039 689 9883

JAPAN

Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shin Yokohama Kohoku-Ku, Yokohama Kanagawa 222 Japan Tel: 81 45 471 6166 Fax: 81 45 471 6122

Printed in the USA, 12/5/95 © 1995, Microchip Technology Inc.

Information contained in this publication regarding device applications and the like is intended by way of suggestion only. No representation or warranty is given and no liability is assumed by Microchip Technology Inc. with respect to the accuracy or use of such information. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. The Microchip logo and name are registered trademarks of Microchip Technology Inc. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.