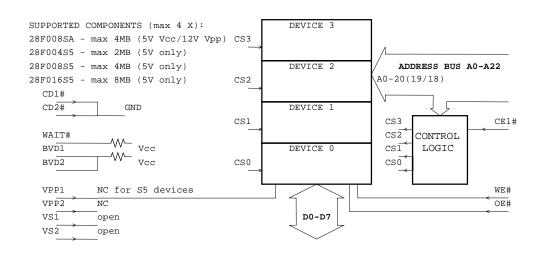
Eight Bit Flash Memory Card (Intel based) 512KB, 1, 2, 4 and 8 MEGABYTE

General Description

The FEA Econo Flash card series offers a low cost and high performance eight bit linear Flash solid state storage solution for code/data storage and embedded applications.


Packaged in PCMCIA type I or a type I half-card housing, the FEA card series is based on Intel/Sharp Flash memory devices: 28F0004S5 (4Mb), 28F0008S5 (8Mb) or 28F016S5 (16Mb) for 5V only applications and 28F008SA (8Mb) for 5V/12V applications. Device codes are A7h, A6h, AAh, and A2h respectively. Systems should be able to recognize all codes. The PC Card form factor offers an industry standard pinout and mechanical outline, allowing density upgrades without system design changes.

The FEA card series is designed as a simple x8 linear array of Flash devices. The 512KB density cards are built with 4 Mb components (5V only), 2MB and 4MB density options may be built with either 8Mb or 16Mb components, and the 8MB density cards are built with 16Mb components. All components have uniform 64Kbyte sectors and use identical embedded automated write and erase algorithms. The 8 bit design provides very low power operation as only one component is active at a time. The Intel Flash components provide very low standby current in Sleep Mode.

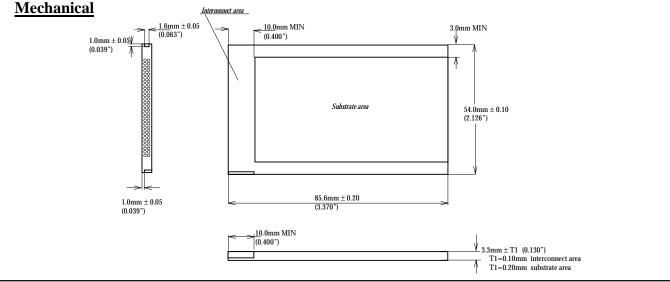
Features

- Low cost Linear Flash Card
- Single 5 Volt Supply (S5 devices) or 5V Vcc / 12V Vpp (SA devices)
- Based on Intel/Sharp Flash Components - very low power in Sleep Mode
- Fast Read Performance
 100ns or 150ns Maximum Access Time
- x8 Data Interface
- High Performance Random Writes - 10µs Typical Byte Write Time
- Automated Write and Erase Algorithms - Intel Command Set
- 50µA Typical Power-Down
- 100,000 Erase Cycles per Block
- 64K word symmetrical Block Architecture
- PC Card Standard Type I Form Factor

Block Diagram

PCMCIA Flash Memory Card

FEA Series


Pinout

Pin	Signal name	I/O	Function	Active	Pin	Signal name	I/O	Function
1	GND		Ground		35	GND		Ground
2	DQ3	I/O	Data bit 3		36	CD1#	0	Card Detec
3	DQ4	I/O	Data bit 4		37	DQ11	I/O	Data bit 1
4	DQ5	I/O	Data bit 5		38	DQ12	I/O	Data bit 1
5	DQ6	I/O	Data bit 6		39	DQ13	I/O	Data bit 1
6	DQ7	I/O	Data bit 7		40	DQ14	I/O	Data bit 14
7	CE1#		Card enable 1	LOW	41	DQ15	I	Data bit 1
8	A10		Address bit 10		42	CE2#	I	Card Enable
9	OE#	1	Output enable	LOW	43	VS1	0	Voltage Sens
10	A11	1	Address bit 11		44	RFU		Reserved
11	A9		Address bit 9		45	RFU		Reserved
12	A8	I	Address bit 8		46	A17	I	Address bit
13	A13	I	Address bit 13		47	A18	1	Address bit
14	A14	Ι	Address bit 14		48	A19	I	Address bit
15	WE#	1	Write Enable	LOW	49	A20	Ι	Address bit
16	RDY/BSY#	0	Ready/Busy	N.C.	50	A21	Ι	Address bit
17	Vcc		Supply Voltage		51	Vcc		Supply Volta
18	Vpp1		12VProg. Voltage	1)	52	Vpp2		12V Prog. Vo
19	A16	Ι	Address bit 16		53	A22	Ι	Address bit
20	A15	Ι	Address bit 15		54	A23	Ι	Address bit
21	A12	Ι	Address bit 12		55	A24	I	Address bit
22	A7		Address bit 7		56	A25	Ι	Address bit
23	A6	Ι	Address bit 6		57	VS2	0	Voltage Sens
24	A5	Ι	Address bit 5		58	RST	I	Card Rese
25	A4	Ι	Address bit 4		59	Wait#	0	Extended Bus
26	A3	Ι	Address bit 3		60	RFU		Reserved
27	A2	Ι	Address bit 2		61	REG#	1	Attrib Mem S
28	A1	Ι	Address bit 1		62	BVD2	0	Bat. Volt. Det
29	A0	Ι	Address bit 0		63	BVD1	0	Bat. Volt. Det
30	DQ0	I/O	Data bit 0		64	DQ8	I/O	Data bit 8
31	DQ1	I/O	Data bit 1		65	DQ9	I/O	Data bit 9
32	DQ2	I/O	Data bit 2		66	DQ10	0	Data bit 1
33	WP	0	Write Potect	2)	67	CD2#	0	Card Detec
34	GND		Ground		68	GND		Ground

35	GND		Giouria	
36	CD1#	0	Card Detect 1	LOW
37	DQ11	I/O	Data bit 11	N.C.
38	DQ12	I/O	Data bit 12	N.C.
39	DQ13	I/O	Data bit 13	N.C.
40	DQ14	I/O	Data bit 14	N.C.
41	DQ15	Ι	Data bit 15	N.C.
42	CE2#	-	Card Enable 2	N.C.
43	VS1	0	Voltage Sense 1	N.C.
44	RFU		Reserved	
45	RFU		Reserved	
46	A17	Ι	Address bit 17	
47	A18	Ι	Address bit 18	512KB ³⁾
48	A19	Т	Address bit 19	1MB ³⁾
49	A20	-	Address bit 20	2MB ³⁾
50	A21	Ι	Address bit 21	4MB 3)
51	Vcc		Supply Voltage	
52	Vpp2		12V Prog. Voltage	N.C.
53	A22	Ι	Address bit 22	8MB ³⁾
54	A23	-	Address bit 23	N.C.
55	A24	-	Address bit 24	N.C.
56	A25	-	Address bit 25	N.C.
57	VS2	0	Voltage Sense 2	N.C.
58	RST	-	Card Reset	N.C.
59	Wait#	0	Extended Bus cycle	N.C.
60	RFU		Reserved	
61	REG#	-	Attrib Mem Select	N.C.
62	BVD2	0	Bat. Volt. Detect 2	
63	BVD1	0	Bat. Volt. Detect 1	
64	DQ8	I/O	Data bit 8	N.C.
65	DQ9	I/O	Data bit 9	N.C.
66	DQ10	0	Data bit 10	N.C.
67	CD2#	0	Card Detect 2	LOW
68	GND		Ground	

Notes:

- 1. Vpp1 connected only for versions with 28F008SA devices.
- 2. Connected to GND no write protection.
- 3. Shows density for which specified address bit is MSB. Higher order addresses are not connected (i.e. for 4MB card A21 is MSB, A22-A25 are N.C.).

Active

Card Signal Description

Symbol	Туре	Name and Function
A0 - A25	INPUT	ADDRESS INPUTS: A0 through A25 enable direct addressing of
		up to 64MB of memory on the card. The memory will wrap at the
		card density boundary. The system should not try to access memory
		beyond the card density. The upper addresses are not connected.
DQ0 - DQ15	INPUT/OUT	DATA INPUT/OUTPUT: DQ0 THROUGH DQ15 constitute the
		bi-directional databus. DQ0 - DQ7 constitute the lower (even) byte.
		DQ8 – DQ15 are not connected. DQ7 is the MSB.
CE1#, CE2#	INPUT	CARD ENABLE 1 AND 2: CE1# enables even byte accesses,
		CE2# enables odd byte accesses. CE2# is not connected.
OE#	INPUT	OUTPUT ENABLE: Active low signal enabling read data from the
		memory card.
WE#	INPUT	WRITE ENABLE: Active low signal gating write data to the
		memory card.
RDY/BSY#	N.C.	READY/BUSY OUTPUT: Indicates status of internally timed erase
		or program algorithms. A high output indicates that the card is ready
		to accept accesses. This signal is not connected.
CD1#, CD2#	OUTPUT	CARD DETECT 1 and 2: Provide card insertion detection. These
- , -		signals are connected to ground internally on the memory card. The
		host socket interface circuitry shall supply 10K-ohm or larger pull-up
		resistors on these signal pins.
WP	OUTPUT	WRITE PROTECT: This signal is pulled low internally. This
		signifies write protect = "off " for all cases.
VPP1		PROGRAM/ERASE POWER SUPPLY: Provides programming
		voltage 12.0V for lower byte $(D0 – D7)$ memory components. VPP1
		is connected only for cards with 28F008SA devices, not connected
		for 5V only card.
VPP2	N.C.	PROGRAM/ERASE POWER SUPPLY: Provides programming
	1	voltage 12.0V for upper byte (D8 – D15) memory components.
		VPP2 is not connected
VCC		CARD POWER SUPPLY: 5.0V
GND		GROUND: for all internal circuitry.
REG#	N.C.	ATTRIBUTE MEMORY SELECT: N.C. (only used with cards
		built with optional attribute memory).
RST	N.C	RESET: Active high signal for placing card in Power-on default
		state. Reset can be used as a Power-Down signal for the memory
		array.
WAIT#	OUTPUT	WAIT: This signal is pulled high internally for compatibility. No
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	001101	wait states are generated.
BVD1, BVD2	OUTPUT	BATTERY VOLTAGE DETECT: These signals are pulled high to
D (D 1, D (D 2	001101	maintain SRAM card compatibility.
VS1, VS2	OUTPUT	VOLTAGE SENSE: Notifies the host socket of the card's VCC
, 01, 102		requirements. VS1 and VS2 are open to indicate a 5V card has been
		inserted.
RFU	1	RESERVED FOR FUTURE USE
N.C.		NO INTERNAL CONNECTION TO CARD: pin may be driven
11.0.		or left floating
	1	or ion moaning

Functional Truth Table

Function Mode	/REG	/CE2	/CE1	/OE	/WE	D15-D8	D7-D0
Standby Mode	Х	Х	Н	Х	Х	High-Z	High-Z
Read Low Byte Access	Х	Х	L	L	Н	High-Z	Even-Byte
Write Low Byte Access	Х	Х	L	Н	L	Х	Even-Byte

DC Characteristics (1)

Symbol	Parameter	Notes	Typ ⁽³⁾	Max	Units	Test Conditions
ICCR	VCC Read Current		20	35	mA	VCC = 5.25V tcycle = 125ns
ICCW	VCC Program Current	S5 components		75	mA	
		SA components	10	30	mA	
IPPW	VPP Program Current	SA components	10	30	mA	VPP = VPPH
ICCE	VCC Block Erase Current	S5 components		50	mA	
		SA components	10	30	mA	
IPPE	VPP Block Erase Current	SA components	10	30	mA	
ICCS	VCC Standby Current	S5 components, 2)	50	100	μA	VCC = 5.25V
		SA components, 2)	100		μA	

CMOS Test Conditions: VIL = VSS \pm 0.2V, VIH = VCC \pm 0.2V

Notes:

1. All currents are RMS values unless otherwise specified.

2. Control Signals: CE1#, CE2#, OE#, WE#.

3. Typical: VCC = 5V, T = $+25^{\circ}$ C.

AC Characteristics (1)

 $VCC = 5V \pm 5\%$, $TA = 0^{\circ}C$ to $+ 70^{\circ}C$

		100ns		150ns		
SYM	Parameter	Min	Max	Min	Max	Unit
$t_{\rm C}({\rm R})$	Read Cycle Time	100		150		ns
$t_a(A)$	Address Access Time		100		150	ns
t _a (CE)	Card Enable Access Time		100		150	ns
t _a (OE)	Output Enable Access Time		50		75	ns
t _c W	Write Cycle Time	100		150		ns
t _w (WE)	Write Pulse Width	60		80		ns

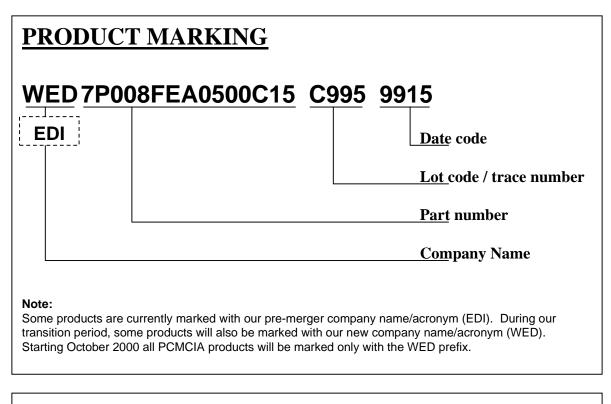
Note: AC timing diagrams and characteristics are guaranteed to meet or exceed PCMCIA 2.1 specifications.

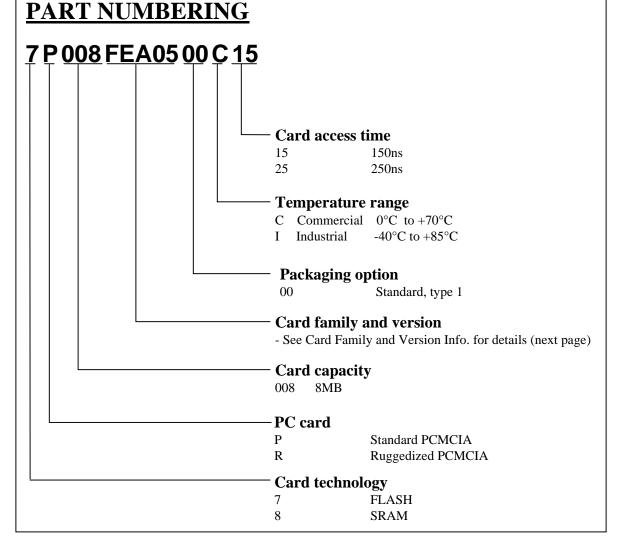
Data Write and Erase Performance (1,3)

 $VCC = 5V \pm 5\%$, TA = 0°C to + 70°C

SYM	Parameter	Notes	Min	Typ ⁽¹⁾	Max	Units	Test Conditions
t _{wHQV1} t _{EHQV1}	Word/Byte Program time	2		8µs	3ms		
t _{WHQV2} t _{EHQV2}	Block Program Time	2		0.4	2.1	sec	Word Program Mode
	Block Erase Time	2		0.6	10	sec	
	Full Chip Erase Time	2,4		38.4		sec	

Notes:


1. Typical: Nominal voltages and TA = 25° C.


- 2. Excludes system overhead.
- 3. Valid for all speed options.
- 4. Chip erase time based on 8 Mbit Flash components.

PCMCIA Flash Memory Card

FEA Series

Ordering Information

Eight Bit Flash Memory Card

7P XXX FEA YY 00 T ZZ

where

XXX:	512 001 002 004 008	512KB (YY 01 only) 1MB (YY 02, 03) 2MB (YY 02, 03, 05) 4MB (YY 02, 03, 05) 8MB (YY 05 only)
YY:	01 02 03 05	28F008SA base 28F004S5 base 28F008S5 base 28F016S5 base
T:	C I M	Commercial Industrial Military Temp
ZZ:	10 15	100ns 150ns

Revision his	story:	
rev level	description	date
rev 0	initial release	Feb 2, 1998
rev 1	Logo change	May 27, 1999
rev 2	added page 5 Page Header Change	May 31, 2000
rev 3	Corrected errors, pg. 4	August 1, 2000

White Electronic Designs Corporation

One Research Drive, Westborough, MA 01581, USA

tel: (508) 366 5151 fax: (508) 836 4850 www.whiteedc.com

NS
Ì