

Semiconductor

http://www.auk.co.kr

SOT-25

Low Power Single OP-AMP SN321

Description

The SN321 consists of a high gain Internally frequency compensated operational amplifier designed to operate from a single power supply over a wide range of voltage.

The input common mode range includes ground and the device is able to operate in single supply applications, even in dual supply applications. it is also can be driven large capacitive loads.

The SN321 is available in the SOT-25(SOT23-5) package.

Application

- Power supplies
- Chargers
- Desktops
- Conventional operational amplifiers
- Communications infrastructure

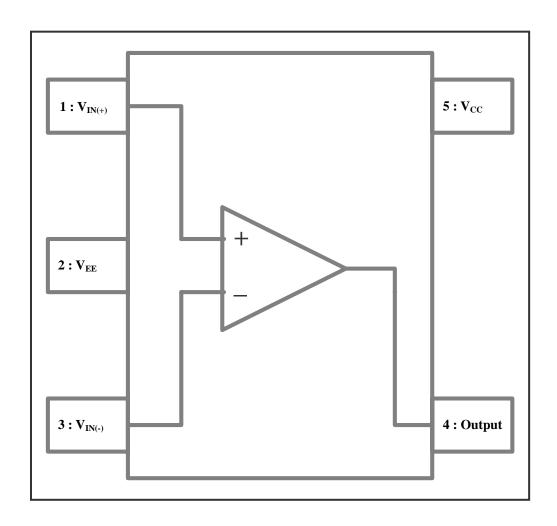
ORDERING INFORMATION

Product Name.	Marking	Package Name		
SN321	321□	SOT-25		

[Marking Detail Information]

321 : P/N Marking

: Year & Week Code


Features and Benefits

- ♦ Input common mode voltage range includes ground
- ♦ Internally frequency compensated for unity gain
- ♦ Large DC voltage gain : 100dB
- ♦ Wide bandwidth for unity gain: 1 MHz
- Very low power consumption
- Wide supply voltage range:

[Single : $3V \sim 30V$, Dual : $\pm 1.5 \sim \pm 15V$]

♦ Internal Block Diagram

Pin Description

No	Symbol	I/O	Description
1	$V_{IN(+)}$	I	OP-Amp's Non-inverting Input
2	$ m V_{EE}$	GND	GND
3	$V_{\text{IN}(-)}$	I	OP-Amp's Inverting Input
4	Output	О	Output
5	V_{CC}	V_{CC}	V _{CC} for OP-AMP

Absolute maximum ratings

Characteristic	Symbol	Ratings	Unit
Supply voltage	V_{CC}	36 or ±18	V
Differential input voltage	V_{IND}	32	V
Input voltage	$ m V_{IN}$	-0.3 ~ +32	V
Power Dissipation	P_D	300	mW
Operating temperature	T_{opr}	-45 ~ +85	°C
Storage temperature	$T_{ m stg}$	-55 ~ 150	°C

^{*} Mount on a glass epoxy circuit board of 30x30mm Pad dimension of 50mm2

Electrical Characteristics

(Unless otherwise specified. $V_{CC} = 5V$ and $-45~^{\circ}C \le Ta \le +85~^{\circ}C$)

Characteristic	Symbol	Test Cone	dition	Min.	Typ.	Max.	Unit
Input offset voltage	V_{IOS}	$5V \le V_{CC} \le 30V$	(Ta=25 °C)	-	±2	±7	mV
	V IOS	$Rg = 0\Omega, 0V \le V_{IC}$	$Rg = 0\Omega, 0V \le V_{IC} \le V_{CC} - 1.5V$		-	±9	111 v
Input offset voltage drift	$\Delta V_{IOS}/\Delta T$	$Rg = 0\Omega$		-	7	-	μV/°C
Input offset current	I_{IOS}		(Ta=25 °C)	-	±5	±50	nA
input offset current		-		-		±150	
Input offset current drift	$\Delta I_{IOS}/\Delta T$	-		-	10	-	pA/°C
Input bias current	$ m I_{IB}$	_	(Ta=25 °C)	-	45	250	nA
input olas cultent	IB	_		-	40	500	
Input common mode voltage range	V_{ICR}	V - 20V	(Ta=25 °C)	0	-	V _{CC} -1.5	V
	▼ ICR	V _{CC} = 30V		0	-	V _{CC} -2	V
Supply current	I_{CC}	$V_{CC} = 30V, R_L = \infty$		-	1	2	mA
Suppry current	1CC	$V_{CC} = 5V, R_L = \infty$		-	0.7	1.2	IIIA
Large signal voltage	G_{V}		(Ta=25 °C)	25	100	ı	V/mV
gain		$R_L \ge 2 \text{ K}\Omega$		15	-	-	V / 111 V
	V_{OH}	$V_{CC} = 30V$	$R_L=2~K\Omega$	26	-	-	V
Output voltage swing			$R_L=10 \text{ K}\Omega$	27	28	-	•
	V_{OL}	V_{CC} =5V, $R_L \le 10 \text{ K}\Omega$		-	3	20	mV
Common mode rejection ratio	CMRR	(Ta=25 °C)		65	90	-	dB
Power supply rejection ratio	PSRR	(Ta=25 °C)		65	100	-	dB
Output cource current	I_{O^+}	$V_{CC} = 15V$	(Ta=25 °C)	20	40	ı	mA
Output source current		$V_{IN+} = 1V, V_{IN-} = 0V$		10	20	-	ша
Output sink current	I _O .	$V_{CC} = 15V$	(Ta=25 °C)	10	20	ı	mA
		$V_{IN+} = 0V, V_{IN-} = 1V$		5	8	ı	ША
		$V_{OUT} = 200 \text{mV},$ $V_{IN+} = 0 \text{V}, V_{IN-} = 1 \text{V}$	(Ta=25 °C)	12	50	-	μΑ
Output short circuit to ground	I _{SC}	Ta=25 °C	<u>'</u>	-	40	60	mA

Electrical Characteristic Curves

Fig. 1 I_{CC} - V_{CC}

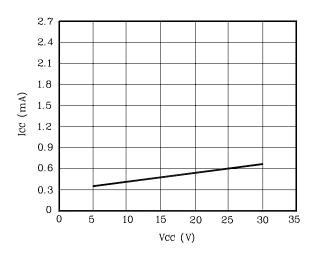


Fig. 2 I_{IB} - V_{CC}

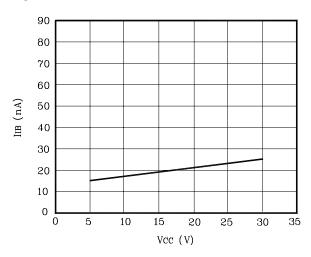


Fig. 3 V_{IOS} - T_a

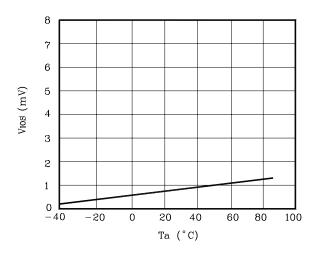


Fig. 4 I₀-T_a

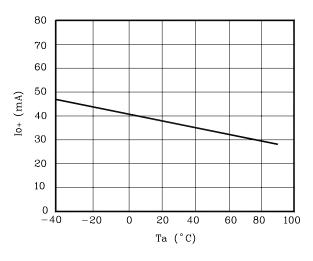
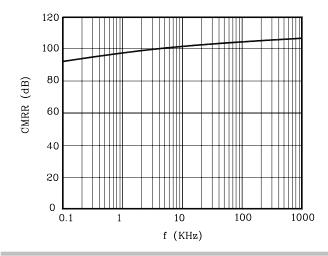
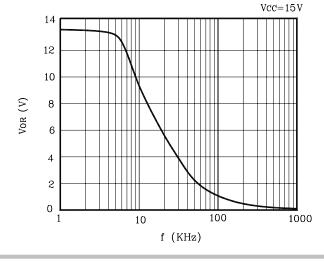
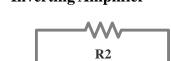
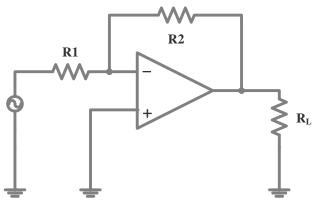
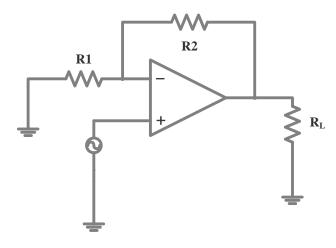


Fig. 5 CMRR-f

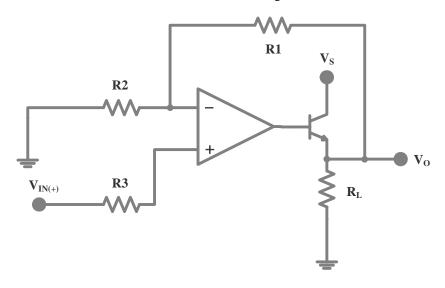




Fig. 6 V_{OR} -f

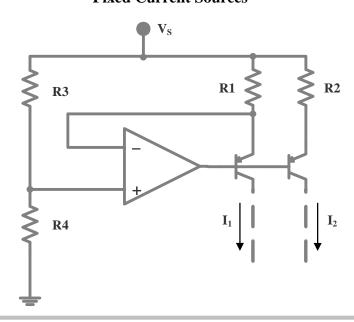



Typical Applications

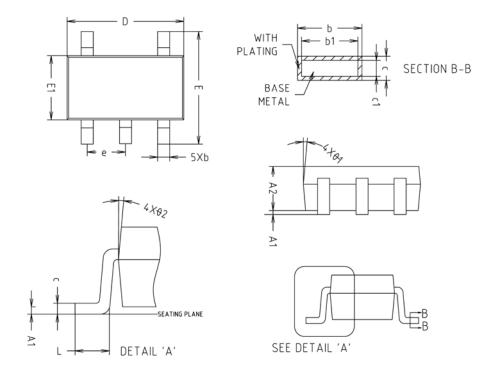
Inverting Amplifier



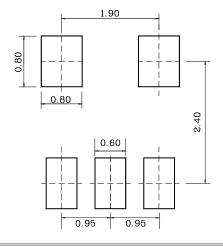
Non-inverting Amplifier



Power Amplifier



Fixed Current Sources



Outline Dimension (Unit: mm)

		WII LIMETER	·c	
SYMBOL	MILLIMETERS			NOTE
	MINIMUM	NOMINAL	MAXIMUM	
A1	0.000	0.050	0.100	
A2	1.000	1.100	1.200	
Ь	-	0.400	0.450	
Ь1	-	0.375	0.425	
С	0.110	0.150	0.190	
c1	0.085	0.125	0.165	
D	2.800	2.900	3.000	
E	2.600	2.800	3.000	
E1	1.500	1.600	1.700	
е	0.930	0.950	0.970	
L	0.400	-	-	
0 1	5° REF			
0 2		5° REF		

**** Recommend PCB solder land (Unit: mm)**

The AUK Corp. products are intended for the use as components in general electronic equipment (Office and communication equipment, measuring equipment, home appliance, etc.).

Please make sure that you consult with us before you use these AUK Corp. products in equipments which require high quality and / or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, transportation, combustion control, all types of safety device, etc.). AUK Corp. cannot accept liability to any damage which may occur in case these AUK Corp. products were used in the mentioned equipments without prior consultation with AUK Corp..

Specifications mentioned in this publication are subject to change without notice.