NEC

User’s Manual

SM850

System Simulator Ver. 2.00 or Later

External Part User Open Interface Specifications

Target Device
V850 Series™

Document No. U14873EJ2V0OUMOO0 (2nd edition)
Date Published October 2002 CP(K)

© NEC Corporation 2000
Printed in Japan

[MEMO]

2 User’'s Manual U14873EJ2VOUM

V850 Series, V852, V853, V850/SA1, V850/SB1, V850/SB2, V850/SC1, V850/SC2, V850/SC3, V850/SF1,
V850/SV1, V850E/MS1, V850E/MS2, V850E/MA1, VB50E/MA2, VB50E/IA1, and V850E/IA2 are trademarks of
NEC Corporation.

Pentium is a trademark of Intel Corporation.

Windows and WindowsNT are either a registered trademark or a trademark of Microsoft Corporation in the
United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

User’s Manual U14873EJ2VOUM 3

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these
products may be prohibited without governmental license. To export or re-export some or all of these products from a
country other than Japan may also be prohibited without a license from that country. Please call an NEC sales
representative.

e The information in this document is current as of October, 2002. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all
products and/or types are available in every country. Please check with an NEC sales representative
for availability and additional information.

* No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.

* NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.

* Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.

* While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.

®* NEC semiconductor products are classified into the following three quality grades:

"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products

developed based on a customer-designated "quality assurance program" for a specific application. The

recommended applications of a semiconductor product depend on its quality grade, as indicated below.

Customers must check the quality grade of each semiconductor product before using it in a particular

application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's

data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not

intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.

(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).

MSE 00.4

4 User’'s Manual U14873EJ2VOUM

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized

representatives and distributors. They will verify:
 Device availability

« Ordering information

 Product release schedule

« Availability of related technical literature

« Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

« Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.) * Filiale Italiana
Santa Clara, California Milano, Italy
Tel: 408-588-6000 Tel: 02-66 75 41
800-366-9782 Fax: 02-66 75 42 99
Fax: 408-588-6130
800-729-9288 e Branch The Netherlands
Eindhoven, The Netherlands
NEC do Brasil S.A. Tel: 040-244 58 45
Electron Devices Division Fax: 040-244 45 80
Guarulhos-SP, Brasil
Tel: 11-6462-6810
Fax: 11-6462-6829

e Branch Sweden
Taeby, Sweden
Tel: 08-63 80 820

NEC Electronics (Europe) GmbH Fax: 08-63 80 388

Duesseldorf, Germany
Tel: 0211-65 03 01
Fax: 0211-65 03 327

» United Kingdom Branch
Milton Keynes, UK
Tel: 01908-691-133

« Sucursal en Espafia Fax: 01908-670-290

Madrid, Spain
Tel: 091-504 27 87
Fax: 091-504 28 60

* Succursale Francaise
Vélizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

User’s Manual U14873EJ2VOUM

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Shanghai, Ltd.
Shanghai, P.R. China

Tel: 021-6841-1138

Fax: 021-6841-1137

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-2719-2377

Fax: 02-2719-5951

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore

Tel: 253-8311

Fax: 250-3583

J02.4

[MEMO]

6 User’'s Manual U14873EJ2VOUM

Target Readers

Purpose

Organization

How to Use This Manual

Conventions

INTRODUCTION

The contents described in this manual use the Windows™ 98/WindowsMe/Windows
NT™ 4.0/Windows2000/WindowsXP 32-bit application program format and this manual
is therefore intended for users who have experience creating Windows
98/WindowsMe/Windows NT 4.0/Windows2000/WindowsXP 32-bit application programs.

The purpose of this manual is to describe the interface specifications so to enable users
to create custom settings for standard external parts that cannot otherwise be used for
the SM850 System Simulator. The functions, programming rules, and programming
steps that users need to create programs for customized parts are described in this
manual.

This manual is broadly divided into the following sections.

¢ General

e Download

¢ Programming

¢ Function reference

¢ Operations during CPU reset
e Programming examples

¢ Error messages

It is assumed that readers of this manual have general knowledge of microcomputers
and the C programming language. Readers will need to have a basic knowledge of how
to create Windows 98/WindowsMe/Windows NT 4.0/Windows2000/WindowsXP 32-bit
application programs.

For information on functions the user can use to create programs for customized parts:
— See CHAPTER 4 FUNCTION REFERENCE.

For information on the meanings and causes of messages:
— See APPENDIX A ERROR MESSAGES.

Data significance: Higher digits on the left and lower digits on the right
Note: Footnote for item marked with Note in the text
Caution: Information requiring particular attention

Remark: Supplementary information

Numerical representation: Binary ... XXXX or XXXXB

Decimal ... XXXX
Hexadecimal ... OxXXXX
Prefix indicating the power of 2 (address space, memory capacity):
K (Kilo): 2 =1024
M (Mega): 2%° = 1024°

User’s Manual U14873EJ2VOUM 7

Related Documents Refer to the documents listed below when using this manual.
The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Documents related to development tools (User's Manuals)

Document Name Document No.

IE-703002-MC (In-circuit emulator for V853™, v850/SA1™, v850/SB1™, v850/SsB2™, v850/SC1™, | U11595E
v850/SC2™, v850/sCc3™, ves0/SF1™, ves0/sv1™)

IE-V850E-MC (In-circuit emulator for V850E/IA1™, V850E/IA2™), U14487E
IE-V850E-MC-A (In-circuit emulator for V850E/MA1™, V850E/MA2™)
IE-703003-MC-EM1 (In-circuit emulator option board for V853) U11596E
IE-703017-MC-EM1 (In-circuit emulator option board for V850/SA1) U12898E
IE-703037-MC-EM1 (In-circuit emulator option board for V850/SB1, V850/SB2) U14151E
IE-703040-MC-EM1 (In-circuit emulator option board for V850/SV1) U14337E
IE-703079-MC-EM1 (In-circuit emulator option board for V850/SF1) U15447E
IE-703102-MC (In-circuit emulator for V850E/MS1™, V850E/MS2™) U13875E
IE-703102-MC-EM1, IE-703102-MC-EM1-A (In-circuit emulator option board for V850E/MS1, V850E/MS2) | U13876E
IE-703107-MC-EM1 (In-circuit emulator option board for V850E/MA1) U14481E
IE-703116-MC-EM1 (In-circuit emulator option board for V850E/IA1) U14700E
CA850 Ver. 2.50 C Compiler Package Operation U16053E
C Language U16054E
PM plus U16055E
Assembly Language U16042E
ID850 Ver. 2.40 Integrated Debugger Operation, Windows Based U15181E
SM850 Ver. 2.40 System Simulator Operation, Windows Based U15182E
SM850 Ver. 2.00 or Later System Simulator External Part User Open Interface | This manual
Specifications
RX850 Ver. 3.13 or Later Real-Time OS Basics U13430E
Installation U13410E
Technical U13431E
RX850 Pro Ver. 3.13 Real-Time OS Fundamental U13773E
Installation U13774E
Technical U13772E
RD850 Ver. 3.01 Task Debugger U13737E
RD850 Pro Ver. 3.01 Task Debugger U13916E
AZ850 Ver. 3.10 System Performance Analyzer U14410E
PG-FP3 Flash Memory Programmer U13502E
PG-FP4 Flash Memory Programmer U15260E

User’'s Manual U14873EJ2VOUM

CONTENTS

CHAPTER 1 GENERAL ... oo iiceeee it tieeme i s s s ss s smasasr s e s s s s s s s s s s e s e s s ma s s s s e s e s s maa s s s e e e e s s nnnaa s e sereneesnnnnnan 13
1.1 General Description of External Part User Open Interface Specificationsccccceeen.... 13

1.2 General Description of User Custom Parts...........cccciiiiiiiiiiiisii e 13
1.21 Types Of CUSIOMIZALIONccoiiiiii e e 13

1.2.2 USEI-Created filESo 13

1.2.3 Positioning of USer-customMIZed PArtSc..vviiiiiiiiiiiiee e e e e sanaes 14

LIPS T =1 471 o o114 1= 41 S PP 15
1.3.1 Development ENVIFONMENTcooiiiieiiee e e e e e e e s e e e e e e s s annaaeeeeesnnnees 15

1.3.2 Operating ENVIFONMENTcooiiiiiiiiiii ettt e e e e e et e e e e e e s esnaatreeeeaeeeesasbseaeeeaaannees 15
CHAPTER 2 DOWNLOAD ...ttt iiissessirssssirsssssssassssrsassssssassssssssssssesssssstensssssensssssensssssenssssssssnnsnns 16
2% RN Yo 171V 4| U ¥ T I 17
287 1 2] o - ' [P SO 17
CHAPTER 3 PROGRAMMING.........ccooitteiiiiirrrnmesss s e e s e s nsassss s s s e s e s s mssssss s e e s ssnmsssssssersnnnnnsssssssrennnnnsnnnnnes 18
3.1 Programming Configuration and Processing FIOW.............ccccvcmriimriiicccccsscereeen s ssmneeenes 18
3.1.1 Customization via Parts WINAOWooooiiiiiiiiiee e eeeees 18

3.1.2 Customization via USEr WINAOWoooiiiiiiiii et eeeees 19

3.2 Steps in Creation of Customized Partsccccccccccmimiiiiincccceeerre e 21
3.2.1 Customization via Parts WINAOWooooiiiiiiiiiee et eeeees 21

3.2.2 Customization via USEr WINAOWoooiiiiiiii ettt e eeees 21

B T = - T o2 21 | =PRSS 23
3.3.1 [0 Y=Y o (0] 0T (o] o 23

3.3.2 EXIErNal Vari@bIEsiiiiei e 23

3.3.3 FUNCHON NAMES ...ttt et e e et e e e e e ettt e e e e e e e eeeeeeeeeeerannnns 23

3.3.4 ACHVE NIGN/IOW ...ttt e et e e e e e s et e e e e e e e e e e e e et aaaaaaeae s 23

3.35 e LT =10 1= SOOI 24

3.3.6 INCIUAE fIl€, SOUICE i@coveeeeeeeeeeeee ettt e e e e e e e e e e e e e e eeeeanes 24

3.4 Module Definition (DEF) File.....cccciiiiiiiiiiiii i ssssss s 25
3.4.1 EXPORTS deCIArationcccocoeeeieieeieieee e 25
CHAPTER 4 FUNCTION REFERENCE oottt rrssesss s s e e s s s man s s s s s s s smnass e s s e e e mnmnnananss 26
4.1 Customization via Parts WiNAOW ... e rse s s r s s smns s e s e e s mnmsssnnns 26
4.2 Customization via User WindOWcccoiiiiiiiiiiiiiiiiieie s s ss s s s s ssssssssssssssssssssssssssssssssnsnsnnsnsnsnnnnn 48
CHAPTER 5 OPERATIONS DURING CPU RESET ...ttt rrrecessss s s e s s nemsssssss e s s semmnnsnns 76
5.1 Parts Customized via Parts WiNAOW...........cccvoriiirrrrrrr s s s s s s ss s s s s 76
5.2 Parts Customized via User WindoWw...........oouieeeeiiiiiiiiiceeiiis e rrsecsssss s s e s sssssssssssessssmssssssssssssnnes 76
CHAPTER 6 PROGRAMMING EXAMPLES........cccciiiiiiiiieeeirrrrrrssssssssssrssssssssssssssessnssnssssssseessssnsnnnen 77
6.1 Example of Parts Customized via Parts Window ... 78

User's Manual U14873EJ2VOUM 9

6.1.1 Description Of SAMPIESooiii ettt e et e e e e e e e e e nnneeeas 78

B.1.2 SOUICE EXAMPIES.euiiiiiii ettt e e et e e e e e s et e et e e e e e s st b e aeeeaeeeseansssseeeasssraneaaaeas 79
<1> Target program (program for V852)ooui i 79
<2> Custom part source file UPSWOO.C.........oeiiiiiiiiiiiiee et 80
<3> Definition file UPSWOO.AETocoiiiiiiiiiie e 83
<4> MakKe file UPSWOO.MAK. ...t e e e e e e e e eeaa e as 84
6.2 Example of Parts Customized via User WindOWw.........cccccoicccccmmmmmreminsnscccssenese s s ss s ssssessseees 89
6.2.1 DeSCription Of SAMPIEScoiiiiiii et e e e e e e et e e e e e e e s atae e e e eaarnees 89
6.2.2 SOUICE EXAMPIES. ...ttt e oottt e e e e e et e et e e e e e e e e ntbeeeeeaaaeeaannnseeee e nnnneeeaaaaas 90
<1> Target program (program for V853)ccoiiiiiiiiiiii e 90
<2> Custom part source file UOadda00.C..........ccoviiiiiiiiiie e 91
<3> Definition file UOaddal0.def ..ot 99
<4> Make file UOaddal0.maK.........ccceeiiiiuiiiiiiaee et e e e e e e e e e e e e e e e e e aneeeeeeaaeeann 100
APPENDIX A ERROR MESSAGESoiiiiiiiccerirr i ssscsssesr e ssss s ssssss e s s ss s s ssssms s e s s ssssssssmnnsssnsssnnnn 104
S N = o g o o= 3 T 104
A.2 Error and Warning MeSSAgescccccommiiiiiiiiiiiinmrrse s sssssssssms s sssms s s mmmn e s s e s nnns 104
A.21 e o Y [T Vo 1P UURUURRRP 105
A2.2 WarNNG MESSAGESuuueeiiiiieiiiiie i e e e ettt e e e e e e et e e e e e e e s e aebeeeeaaeaeaanbseeeeeaaeeaaanneeaaeeeannnneeas 107
10

User's Manual U14873EJ2V0OUM

LIST OF FIGURES

Figure No. Title Page
1-1 Configuration Diagram of V850 SimMUIGTOr.........coiiiiiiiiiee e e e e 14
2-1 SMB50 Simulator PartS WINAOW..........cciiuiiiiiiiiie ettt e e e 16
2-2 (@ 1= T B IT=1 oo I = o) PO PUPRPR 17
3-1 Programming Configuration and Processing Flow for Customization via Parts Window 18
3-2 Programming Configuration and Processing Flow for Customization via User Window 20
3-3 (@7 =Y 1110 o T (o SRS 22
4-1 PUSN-BULIONS ...ttt b e et s bt e e e e e e e e e e anree s 27
4-2 B e Te o] (=3 =101 1 (o] o - T PP PPT U OUPUPPPPPPOt 28
4-3 GroUP SEIECE BULIONSuuiiceece aaaaeas 30
4-4 Bitmap Images for Inactive LED (Left) and Active LED (Right).......c.c..ueeiiiiiiiii e, 33
4-5 Pictures for Inactive LED (Left) and Active LED (Right)........coooiiriiii e 33
4-6 LED FUNCHON SEEPEI POt ...t e e e e 34
4-7 MatriX LED FUNCHON ..ottt e e e e e e nnneee s 35
4-8 Active LED (Left) and Inactive LED (RIight)cooiiieiee e 36
4-9 51 o] o] 1o T V.o (o] L PSP PPPRPRN: 37
4-10 Vertical Scroll Bar ANalOg INPUL.......ooi oo e e e e e s e e e e e e s snaneeeeeeeeesannnnes 38
6-1 Example of Parts Customized via Parts WINAOWuuueeniiii e 78
6-2 Example of Parts Customized via UsSer WiNAOWuuuuueeiiii e 89

User's Manual U14873EJ2VOUM 1

LIST OF TABLES

Table No. Title Page
4-1 Customization Functions Used in Parts Windowcccccooiiiiiiiiiii e 26
4-2 Customization Functions Used in USer WINAOWc.cociiiiiiiniiiiiie e 48
5-1 Parts Customized via Parts Window During CPU ReSetcoviiiiiiiiiiiiiii e 76
A-1 The Function Names For Which The Error OCCUITedccocoiiiiiiiiiiiiiie e 104
12

User's Manual U14873EJ2V0OUM

CHAPTER 1 GENERAL

1.1 General Description of External Part User Open Interface Specifications

In addition to simulating the operations of the actual target system, the SM850 can simulate the operations of a
dummy target system.

Standard external parts are provided with the SM850 for building a dummy target system. Setup dialog boxes are
also provided for each external part to enable easier implementation of standard external parts.

In addition, parts that cannot be set up using a setup dialog box for standard external parts still can be
implemented via user programming as user-specified external parts.

The external part user open interface specifications include the function specifications for the SM850's interface,
which the user needs to create programs for customized parts.

1.2 General Description of User Custom Parts

1.21 Types of customization
Parts can be customized by the user's programming in the following two ways.

(1) Customization via Parts window
Parts can be customized using the customization function that facilitates the creation of parts by simply giving
the relevant pins and action information as parameters.
Based on information that is called within a user's function, the corresponding part is pasted into the Parts
window and all of the related simulation processing is executed.

(2) Customization via user window
Users can customize parts with functions that can be used to create parts and windows.
The handle notification function for a user window can be used to enable processing of windows and input
from user parts, and the simulation call function can be used to perform output display processing to user parts.

1.2.2 User-created files

User-customized parts are implemented by user-created programs based on the specifications described in this
manual. These user-created programs end up as DLL files.

The DLL files for user-customized parts are loaded into the external parts GUI block before simulation processing is
executed.

User’s Manual U14873EJ2VOUM 13

CHAPTER 1 GENERAL

1.2.3 Positioning of user-customized parts

Figure 1-1. Configuration Diagram of V850 Simulator

Input from user

N —

Debugger block

Simulator block

External parts GUI block

User-customized external
parts block (DLL file)

v N
External parts External parts user
block open interface block

Instruction simulation block, peripheral simulation block, peripheral GUI block

Debugger block

Any directive from the user that causes any function to be executed by the simulator is
called a command. The debugger block provides an environment in which the user can
enter such commands via the keyboard or the mouse.

Peripheral GUI block

This block provides a setup environment that enables the user to easily set the desired
input information to a port via a window.

DLL

DLL stands for "Dynamic Link Library." DLLs are Windows modules that contain
executable code and data that can be accessed by functions within Windows
applications or other DLLs.

External parts GUI block

This block enables external part operations to be performed via a window.

External parts block

This is part of the external parts GUI block, which is used to control standard external
parts.

User-customized external parts block

This is part of the external parts GUI block, which is used for user-created external parts.

External parts user open interface
block

This is part of the external parts GUI block, which is used as an interface between the
external parts block and the user-customized external parts block.

14

User’s Manual U14873EJ2VOUM

CHAPTER 1 GENERAL

1.3 Environment

1.3.1 Development environment
The following describes the development environment under which users write programs according to this

manual's specifications in order to create DLL files.

Hardware environment: IBM PC/AT™ compatible
(CPU: Pentium™ 166 MHz or above is recommended)

Software environment: Windows 98/Windows NT 4.0/Window 2000/Windows Me/Windows XP
Microsoft Visual C++ V5.00 or later

1.3.2 Operating environment
The operating environment of the simulator that loads and operates user-created files is described below.

Hardware environment: IBM PC/AT compatible

(CPU: Pentium 166 MHz or above is recommended)
Software environment: Windows 98/Windows NT 4.0/Window 2000/Windows Me/Windows XP

User’s Manual U14873EJ2VOUM 15

CHAPTER 2 DOWNLOAD

This chapter describes the steps for downloading to the simulator user-customized parts that have been created as

described in Chapters 3 and 4.
Before user-customized external parts (DLL files) can be actually used, they must be loaded into the simulator.

To remove loaded user-customized external parts (DLL files), unload them from the simulator.

Use the Parts window to load and unload user-customized external parts (DLL files).

Figure 2-1. SM850 Simulator Parts Window

Skl Crae: Dption Help

AlAOQ0al

Mocde Edit Parts Bitmap

File 1
o S] 2 QA vsf oo

I EEE
Unload

16 User's Manual U14873EJ2VOUM

CHAPTER 2 DOWNLOAD

21 Download
Operation steps

(1) In the Parts window, select [Customize] menu— [Load] from the menu bar to open the Open dialog box.

Figure 2-2. Open Dialog Box

Look in: Iﬁ Uoadds00

(%] uoadd=00ll;

File oftype: [DLL File® dil R4 Cancal |

(2) In the Open dialog box, select a customized external part DLL file, then click the <Open> button. The specified
DLL file is then loaded into the simulator. Once this has been done, the part created by the customization
function in the Parts window is pasted in the Parts window. If the part was customized via a user window, it is

displayed in a user window.

(a) Up to six user-customized external part DLLs can be loaded into the simulator.

(b) A user-customized external part DLL file that is downloaded to the simulator remains valid even after the
Parts window is closed. The next time the Parts window is opened, the same DLL file will be automatically
downloaded.

(c) The name of the loaded user-customized external part DLL file is added to the pull-down menu under
[Customize] menu of the Parts window.

(d) The user-customized external part that is displayed in the Parts window can be relocated. However, the
information about the relocation cannot be saved. After relocation, if you have performed either the
following sets of operations, the location of each part is neither saved nor completed. Therefore, be sure
to locate each part again.

* If the status is saved to a project file (xxxx.prj) or to a file to which display information for the Parts
window is to be saved (xxxx.pnl), and then these files are read

* If the Parts window is closed while customized external part DLL information remains loaded, and then
the Parts window is opened again

2.2 Unload
Operation steps

(1) Select [Customize] menu — [Unload] from the menu bar in the Parts window.

(2) This unloads (removes) all of the customized external part DLLs that are currently loaded in the simulator.
Parts that have been created by the Parts window's customization function are deleted from the Parts window.
Also, if there are any programs that have been customized via a user window, the user window is closed.

User’s Manual U14873EJ2VOUM 17

CHAPTER 3 PROGRAMMING

3.1 Programming Configuration and Processing Flow

This chapter describes the basic programming used for customization via the Parts window and customization via

the user window.

3.1.1 Customization via Parts window

Configuration

The configuration includes user functions that are called only once after the DIIMain function (required to create

DLL files) and the DLL files have been loaded.

Function references described in Chapter 4 must be included either in user functions or in functions subordinate

to user functions.

Processing flow

The simulator's external parts block is used to create parts based on the specified function's part information and

performs all simulation related to parts associated with the simulator's external parts block.

Figure 3-1 shows the relation between user-created DLL files and external parts in the simulator, as well as the

configuration of functions.

Figure 3-1. Programming Configuration and Processing Flow for Customization via Parts Window

External parts block

External parts user
open I/F block

Called once after
UPusr.dll is loaded

User-customized file
UPusr.c

#include<Windows.h>
#include"uparts32.h"

Uparts_usr () {

18

[~ UpPushBtm(...);
L upMtxLed(....);

User’s Manual U14873EJ2VOUM

CHAPTER 3 PROGRAMMING

3.1.2 Customization via user window

Configuration
The configuration includes the DIIMain function (required to create DLL files), the created window's callback
functions, user functions, and simulation call functions that are called at a set interval during simulations.
User functions and their subordinate functions are used to report simulation call functions and the motor pin
names. The creation of parts and programming of I/O actions are done using the user-created window's callback
functions and simulation call functions.

Processing flow
Simulation of customized parts is performed as the simulator works with the external parts block using functions
that capture and set I/O information on pins and ports. The pin output information also can be redrawn (or
otherwise processed) by calling simulation call functions from the external parts block.

Figure 3-2 shows the relation between DLL files customized via a user-created window and external parts in the
simulator, as well as the configuration of functions.

User’s Manual U14873EJ2VOUM 19

CHAPTER 3 PROGRAMMING

Figure 3-2. Programming Configuration and Processing Flow for Customization via User Window

——— External part user open I/F is called

—— Called by external part

External parts block

User window's
callback function

User-customized file

UOusrwin.c

#include<Windows.h>
#include "uparts32.h"

unsigned long psw_reg;

Dl1lMain(.....) {
RegisterClass () ;

}

WindProc (HWND hwnd,) {

switch (msg) {

case WM_COMMON :
switch (wParam) {
case IDM_BTM1:

UpSetPin("p21",1,50) ;

}

case WM _DESTROY:

Called once after
UOusrwin.dll is loaded

UpCloseUserWnd (hwnd) ;

External parts
user open I/F block

_\

L\

Called once each time a
simulation is executed

N

}
}
Uparts_usrwin() {
— int i;
hwnd=CreateWindow (.......)

UpSetUserWnd (hwnd) ;
UpCallFuncName ("Update_usrwin") ;
UpResetFuncName ("Upsur_reset") ;
UpSaveProjName ("UpSave_usrproj") ;
UpLoadProjName ("UpLoad_usrproj") ;
i=UplnitPin("p21",HIGH) ;

}

Update usrwin(unsigned long simtime) {

20

N
Called when CPU
reset occurs

Called when saving to
project file

N~

project file

Called when reading from

val=UpGetPin ("p32") ;

}

Upusr_reset () {

}

UpSave_usrproj (char *filename) {

WritePrivateProfileString("User Window", ..

}

UpLoad_usrproj (char *filename) {
GetPrivateProfileString ("User DLL Window",

...,filename) ;

,"filename) ;

User’s Manual U14873EJ2VOUM

CHAPTER 3 PROGRAMMING

3.2 Steps in Creation of Customized Parts

3.21

3.2.2

Customization via Parts window

Program the external parts to be customized when creating a DLL file using Windows programming methods.

Be sure to include the file "uparts32.h" in this programming and add "uparts32.cpp" to the project.

Use Windows programming methods to create a module definition (DEF) file"°', a make file, and, if necessary,

a resource file, then compile to create a user-created DLL file.

* When compiling, specify the option (/Zp1) for single-byte alignment of structure members.

* Specify "UP" as the first two characters in the name of the created DLL file.

* To operate the DLL file in an environment in which Microsoft Visual C++ is not installed, create the DLL file
using the released version.

Enter the user-created DLL file name in the place for specifying the simulator's external parts customization

files (See 2.1 Download).

In addition to the standard parts that are already displayed in the Parts window, the user-created customized

parts are displayed.

Set the Parts window to location mode and locate the parts.

Select [Save As...] from [File] menu of the Parts window and save the current status so that there will not be

any need to load the user-created DLL files when performing the next simulation.

Customization via user window

Program the external parts to be customized when creating a DLL file using Windows programming methods.

Be sure to include the file "uparts32.h" in this programming and add "uparts32.cpp" to the project.

Use Windows programming methods to create a module definition (DEF) fileN°, a make file, and, if necessary,

a resource file, then compile to create a user-created DLL file.

* When compiling, specify the option (/Zp1) for single-byte alignment of structure members.

» Specify "UQO" as the first two characters in the name of the created DLL file.

* To operate the DLL file in an environment in which Microsoft Visual C++ is not installed, create the DLL file
using the released version.

Enter the user-created DLL file name in the place for specifying the simulator's external parts customization

files (See 2.1 Download).

The window created by the user and the corresponding customized parts are displayed.

Note See 3.4 Module Definition (DEF) File.

User’s Manual U14873EJ2VOUM 21

CHAPTER 3 PROGRAMMING

22

Figure 3-3. Creation Flow

usr.def

usr.c

uparts32.h uparts32.cpp

\

Compile

UPusr.dll
UOQusr.dll

External parts
block

User’s Manual U14873EJ2VOUM

CHAPTER 3 PROGRAMMING

3.3 Basic Rules
The basic rules for user programming of customized parts are described below.

3.3.1 User functions
User functions are main functions that are described by users.

(1) When a user-created DLL file is loaded to the simulator, it becomes a function that is called by the simulator.
(2) The function references described in Chapter 4 must be contained in user functions or functions that are
subordinate to user functions.
(3) User function names are function names in which the name of the user-created DLL file minus the first two
characters is added to "UParts_".
(4) The first two characters of the user-created DLL file name are fixed.
(a) Customization via Parts window
Always use "UP" as the first two characters of the user-created DLL file name.
Example: UPusr.dll - UParts_usr()
(b) Customization via user window
Always use "UQO" as the first two characters of the user-created DLL file name.
Example: UOusr.dll - UParts_usr()
(5) Use void type with no parameters for user functions.
(6) Enter an EXPORTS declaration°* in the module definition file for user functions.

Note See 3.4.1 EXPORTS declaration.

3.3.2 External variables
When using external variables, always add "UP" to the start.

Example: int UPglobal

3.3.3 Function names

Function names are the names that are given to user-created external parts.

If you do not wish to use a function name as the part name, enter a NULL string as the parameter of the function
used to create the part.

3.3.4 Active high/low

The "active high/low" designation specifies the relation between a pin's value and its active state (when a part
connected to a pin is operating). If the function used to create a part includes a parameter for specifying "active
high/low," specify one of the following macros (the macros "HIGH" and "LOW" are defined in uparts32.h).

Operation using 1 (high): HIGH
Operation using 0 (low): LOW

User’s Manual U14873EJ2VOUM 23

CHAPTER 3 PROGRAMMING

3.3.5 Pin names

Some of the parameters in functions used to create parts are for specifying pin names or port names. In such
cases, each pin name or port name is specified as a character string, and its name should be as described in the
target device's User's Manual. Specifications are not case-sensitive.

3.3.6 Include file , Source file
The include file "uparts32.h" and source file "uparts32.cpp" that are used for user customization are bundled in the
SMB850 product package. Include "uparts32.h" and add "uparts32.cpp" to the project.

» "uparts32.h" contains descriptions of macro definitions for active high/low status, and IMPORTS declarations for

functions described in CHAPTER 4 FUNCTION REFERENCE.
* When compiling, be sure to set the include path in the directory where the file "uparts32.h" is located.

24 User's Manual U14873EJ2VOUM

CHAPTER 3 PROGRAMMING

3.4 Module Definition (DEF) File

A module definition (DEF) file must be created to include the EXPORTS declaration, as described in the module
definition file for Windows programming.
The IMPORTS declaration is already included in the file "Uparts32.h" and therefore does not need to be considered.

3.41 EXPORTS declaration

Be sure to enter an EXPORTS declaration for user functions and simulation call functions.

You must also enter an EXPORTS declaration for functions used to read or save project files, for reset functions,
and some other functions.

Example: EXPORTS UParts_usrwin
UPdata_usrwin

User’s Manual U14873EJ2VOUM 25

CHAPTER 4 FUNCTION REFERENCE

4.1 Customization via Parts window

The functions that can be called from within user functions and pasted into the Parts window to perform all
simulation processing are listed below.

These functions can be used to easily create parts simply by specifying pins and action information as parameters.

Note, however, that even if the user has created a window, all parts that are created by this function are still pasted
in the Parts window.

Table 4-1. Customization Functions Used in Parts Window

Function Name Prototype Page

Push-button function UpPushBtm(pname, actype, btmname) 27
Toggle button function UpTglBtm(pname, actype, btmname) 28
Group select button (exclusive push-button) UpSelectBtm(gname, pnames, pnum, actype, btmnames) 29
function

Hold time setup function UpSetPBtmtime(time) 31
LED function UpLed(pname, actype, ledname, pictype) 32
LED function set per port UpPortLed(portname, actype, ledname, pictype) 34
Matrix LED function UpMtxLed(pnames1, pnames2, pnum1, pnum2, actype1, actype2) 35
DC motor function UpDcMtr(pname, actype, mtrname) 36
Stepping motor function UpStpingMtr(pnames, num, actype, reiji, step) 37
Vertical scroll bar analog input function UpScalelnterAD(pname, adname) 38
Reference voltage value setup function UpSetAVref(avref) 39
Bitmap setup function for button UpSetBtmBmp(actbmp, nactbmp) 40
Bitmap setup function for LED UpSetLedBmp(actbmp, nactbmp) 41
Bitmap setup function for DC motor UpSetMtrBmp(actbmp, nactbmp) 42
LED picture setup function UpSetLedPic(type, color) 43
Serial pin data input function UpSerial_data(serpname, data, count, first, bitnum) 44
Window title function UpPanelTitleName(title) 45
Bitmap display function UpSetUsrBmp(bmpname) 46
Character string display function UpWriteString(string) 47

26 User's Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

Push-button function

void UpPushBtm(pname, actype, btmname)

char *pname ; /* Pin name */

int actype ; I* Active high/low */

char *btmname ; /* Function name */
[Function]

This function creates one push-button. A push-button is a button icon that sets and holds input status for a
specified hold time only after the button has been clicked. The hold time is set using the hold time setup function
UpSetPBtmtime().

The time set in UpSetPBtmtime described before this function is assumed as the hold time. If a hold time is not set,
the default value 0.5 ms is used.

[Parameters]
pname Specifies the pin name as a character string.
actype Specifies a value to be input using a push-button. Specify HIGH to enter a "1" (high value) or
LOW to enter a "0" (low value).
btmname Specifies the name of the push-button function. Since this function name is displayed on the

button, the character string is limited to 16 single-byte characters.

[Return value]

None

[Example]

UpSetPBtmtime(50) ;
UpPushBtm("p20", HIGH, "START") ;
UpPushBtm("p20", LOW, "STOP") ;

Figure 4-1. Push-Buttons

| sTART I | S TOP I

User’s Manual U14873EJ2VOUM 27

CHAPTER 4 FUNCTION REFERENCE

Toggle button function

void
char
int

char

[Function]

UpTglBtm(pname, actype, btmname)

pname ; / Pin name */
actype ; /* Active high/low */
btmname ; / Function name */

This function creates one toggle button. When clicked, a toggle button sets and holds input status until the same
button is clicked again.

This button's initial mode is inactive mode. The first time this button is clicked, the value specified by the parameter

actype is input.

[Parameters]

pname
actype

btmname

[Return value]

None

[Example]

Specifies the pin name as a character string.

Specifies a value to be input using the toggle button. Specify HIGH to enter a "1" (high value)
or LOW to enter a "0" (low value).

Specifies the name of the toggle button function. Since this function name is displayed on the
button, the character string is limited to 16 single-byte characters.

UpTgIBtm("p22", HIGH, "START") ;
UpTgIBtm("p23", LOW, "STOP") ;

28

Figure 4-2. Toggle Buttons

User’s Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

Group select button (exclusive push-button) function

void
char
char
int
int
char

[Function]

UpSelectBtm(gname, pnames, pnum, actype, btmnames)

gname ; [Group name */
**pnames ; /* Pin name */

pnum ; /* Number of buttons */
actype ; [* Active high/low */
btmnames ; / Function name */

Several buttons can be grouped together as exclusive buttons. Clicking one of the group of buttons that is

enclosed in a frame enters an active value for the clicked button only.

The entered value remains in effect until another button is clicked. In other words, there can be only one active

button at a time within the button group.

[Parameters]

gname
pnames

pnum
actype

btmnames

[Return value]

None

Specifies the name assigned to the group. This group name is shown at the top of the group
select buttons.

Specifies pin names (character strings) for each button.

Specifies the number of buttons.

Specifies the value entered by clicking a group select button. Specify HIGH to enter a "1"
(high value) or LOW to enter a "0" (low value). The active status for all group buttons is the
same.

Specifies the names assigned to individual buttons. Since this function name is displayed on
the button, the character string is limited to 10 single-byte characters.

User’s Manual U14873EJ2VOUM 29

CHAPTER 4 FUNCTION REFERENCE

[Example]
static char *sizePin[4] = {"p30", "p31", "p32", "p33"} ;
static char *sizeName[4] = {"B5", "A4", "B4", "A3"};
UpSelectBtm("Size", sizePin, 4, HIGH, sizeName) ;

Figure 4-3. Group Select Buttons

- Size —

65

b4

B4

LEEE

435

30 User's Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

Hold time setup function

void UpSetPBtmtime(time)
char *time ; /* Hold time */
[Function]

This function specifies the hold time for a push-button.

[Parameter]

time Sets a hold time character string. The unit for this setting is ms (milliseconds).
The range of settings is 0.001 to 999 ms.

[Return value]

None

[Example]
UpSetPBtmtime("0.2") ;

User’s Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

LED function

void UpLed(pname, actype, ledname, pictype)

char *pname ; /* Pin name */

int actype ; /* Active high/low */

char *ledname ; /* Function name */

char pictype ; /* Picture type */
[Function]

This function creates one LED.
When the specified pin's status is active, an active bitmap (or color picture) is displayed. When the pin's status is
inactive, an inactive bitmap (or colorless picture) is displayed.

[Parameters]
pname Specifies the pin name as a character string.
actype Specifies the value to be displayed on the LED. Specify "1" for active high or "0" for active
low.
ledname Specifies the LED's function name. This function name is shown on the LED. There is no
limit on the number of characters.
pictype Specifies the type of picture (or bitmap image) used in the LED display.

If 1: The default bitmap type is a light bulb-type bitmap image. However, any bitmap
specified by the UpSetLedBmp() function is displayed instead of the default bitmap.

If 0: The default picture type is a rectangular picture. Any picture specified by the
UpSetLedPic() function is displayed instead of the default picture.

[Return value]

32

None

User’s Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

[Example]

UpLed("p40", LOW, "Reserved", 1) ;
UpLed("p21", HIGH, "Power", 1) ;

Figure 4-4. Bitmap Images for Inactive LED (Left) and Active LED (Right)

Fezerwved Power
A -
UpLed("p41", LOW, "L", 0) ;
UpLed("p22", HIGH, "H", 0) ;
Figure 4-5. Pictures for Inactive LED (Left) and Active LED (Right)

L H
] I

User’s Manual U14873EJ2VOUM

33

CHAPTER 4 FUNCTION REFERENCE

LED function set per port

void UpPortLed(portname, actype, ledname, pictype)
char *portname ; /* Port name */
unsigned char actype ; /* Active high/low */
char *ledname ; /* Function name */
char pictype ; /* Picture type */
[Function]

This function creates a set of LEDs corresponding to pins assigned to a particular port (eight LEDs make one set).
An active bitmap (or color picture) is displayed for each pin that is active and an inactive bitmap (or colorless
picture) is displayed for each pin that is inactive.

[Parameters]

portname Specifies the port name as a character string.

actype Specifies the value for displaying an active bitmap. Specify "1" if a value of "1" (high) is active
or specify "0" if a value of "0" (low) is active.
The 8-bit data that sets the status of eight LEDs is specified bitwise. The port's lowest pin is
specified as the LSB, then the other seven bits are specified in order from LSB to MSB.

ledname Specifies a name to be assigned to an LED. This function name is shown below the bitmap.
There is no limit on the number of characters.

pictype Specifies the picture type used in the LED display. "1" specifies bitmap and "0" specifies a

rectangular picture.

[Return value]

None

[Example]
UpPortLed("p3",0xfc,"Number",1) ;

Figure 4-6. LED Function Set Per Port

P30 P31 paz P53 P34 [aia] P36 P37
N Umber Left pin name
is not shown.

34 User's Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

Matrix LED function

void UpMixLed(pnames1, pnames2, pnum1, pnum2, actype1, actype?2)
char **pnames1 ; /* Output 1 pin names */

char **pnames2 ; /* Output 2 pin names */

int pnum1 ; /* Output 1 pin number */

int pnum?2 ; /* Output 2 pin number */

int actypet ; * Active high/low for output 1*/

int actype?2 ; I* Active high/low for output 2*/

[Function]

This function creates an LED on a matrix. When any intersection is active on the matrix of the output 1 and output
2 pins, a matrix LED showing the active bitmap is created (the active bitmap is fixed and cannot be specified).

[Parameters]
pnames1 Specifies the output 1 pin names (character strings) for all output 1 pins only.
pnames?2 Specifies the output 2 pin names (character strings) for all output 2 pins only.
pnum1 Specifies the number of output 1 pins.
pnum?2 Specifies the number of output 2 pins.
actype1 Specifies the value for displaying output 1. Specify "1" for active high status or "0" for active

low status. The active status for output 1 is the same for all output 1 pins.
actype2 Specifies the value for displaying output 2. Specify "HIGH" for active high status or "LOW" for
active low status. The active status for output 2 is the same for all output 2 pins.

[Return value]

None

[Example]
static char *out1[4] = {"p30", "p31", "p32", "p33"} ;
static char *out2[4] = {"p24", "p25", "p26", "p27"} ;
UpMtxLed((char *)out1, (char *)out2, 4, 4, HIGH, HIGH) ;

Figure 4-7. Matrix LED Function

Output1 Pin names are not shown

p30 p31 p32 p33

27
026

Output2

025
24

User’s Manual U14873EJ2VOUM 35

CHAPTER 4 FUNCTION REFERENCE

DC motor function

void UpDcMtr(pname, actype, mtrname)

char *pname ; /* Pin name */

int actype ; /* Active high/low */

char *mtrname ; /* Function name */
[Function]

This function creates a DC motor icon. An active bitmap is displayed when the specified pin becomes active, and
the inactive bitmap is displayed when the specified pin is inactive.

This function also displays the total active time that has elapsed since the start of a simulation. The displayed time
is based on the main system clock. When a reset occurs or when the elapsed time value exceeds a 10-digit
decimal value, the displayed time is cleared to zero.

[Parameters]
pname Specifies the pin name as a character string.
actype Specifies the status when the motor is displayed as active. Specify HIGH for active high
status or LOW for active low status.
mirname Specifies the DC motor function's name. This function name is shown under the motor icon.

[Return value]

None

[Example]
UpDcMtr("p41", HIGH, "Motor") ;

Figure 4-8. Active LED (Left) and Inactive LED (Right)

7750 1600
Motar Maotar

36 User's Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

Stepping motor function

void UpStpingMtr(pnames, num, actype, reiji, step)

char **pnames ; /* Pin names */

int num ; /* Number of pins per channel */

int actype ; [* Active high/low */

char reiji ; /* Excitation method */

short step ; /* Minimum step angle */
[Function]

This function creates a stepping motor that is operated via several pins.
The motor is displayed according to its direction of rotation, with the rotation speed and step angles.

[Parameters]
pname Specifies pin names (character strings) for all pins.
num Specifies the number of pins per channel (4 or 8).
actype Specifies the status when the motor is displayed as active. Specify HIGH for active high
status or LOW for active low status. The active status is the same for all pins.
reifi Specifies the excitation method. Set "0" for single phase or "1" for single/dual phase.
step Specifies an integer fraction of 360 as the minimum step angle.

[Return value]

None

[Remarks]

Once operation of this function is started, the first value other than zero that is output to a connected pin is taken as
the initial value. At that point, the stepping motor is shown as stopped (not rotating).

[Example]

char *mtrpin[4] = {"p00", "p01", "p02", "p03"} ;
UpStpingMtr((char *)mtrpin, 4, HIGH, 1, 10) ;

Figure 4-9. Stepping Motor

0x0 0x0 0x0 Ox0 < Number of positive revolutions
Ox0 0x0 0x0 0x0 <—— Number of negative revolutions
0 0 0 0 -<——— Rotation angle

C mark and yellow motor means negative rotation

Green motor means stopped

C mark and red motor means positive rotation

User’s Manual U14873EJ2VOUM 37

CHAPTER 4 FUNCTION REFERENCE

Vertical scroll bar analog input function

void UpScalelnterAD(pname, adname)

char *pname ; /* Pin name */

char *adname ; /* Function name */
[Function]

This function creates an analog input part for a vertical scroll bar.
Move the scroll button and right-click the mouse over the scroll bar to enable input of analog data. Input values are
used to create a part that is shown in red.

[Parameters]
pname Specifies the name of analog input pin as a character string.
adname Specifies the function name of the scroll bar-type input part. This function name is displayed

above the scroll bar-type input part and there is no limit on the number of characters.

[Return value]

None

[Remarks]

The scroll bar's operating range is determined either by settings made via the reference voltage value setup
function UpSetAVref() or by the reference voltage value settings made via the Standard Level Gauge Pin Setting

Note

dialog box"" . If neither of these settings have been made, the default value of 5.0 V is used.

Note See CHAPTER 7 WINDOW REFERENCE in the SM850 V2.50 System Simulator Operation (U16218E).

[Example]
UpScalelnterAD("ani1", "Voltage") ;

Figure 4-10. Vertical Scroll Bar Analog Input

Valtage

F

38 User's Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

Reference voltage value setup function

void UpSetAVref(avref)
char *avref ; /* Reference voltage value */
[Function]

This function sets the reference voltage value for the A/D converter.

This reference voltage value is used to determine the operating range for an analog input part.

Any setting that is within the range for operating power supply voltage (see the User's Manual of each device) can
be set.

Values can be set as precisely as the first decimal place, but subsequent decimal places are rounded off.

[Parameter]

avref Specifies the reference voltage value as a character string.

[Return value]

None

[Remarks]

If this function or the standard setting is not set, the analog input part will operate using the default voltage value of
50V.

[Example]
UpSetAVref("3.5") ;

User’s Manual U14873EJ2VOUM 39

CHAPTER 4 FUNCTION REFERENCE

Bitmap setup function for button

void UpSetBtmBmp(actbmp, nactbmp)

char *actbmp ; /* Active bitmap name character string */

char *nactbmp ; /* Inactive bitmap name character string */
[Function]

This function sets the bitmap for a button. A button display can be changed by entering this function immediately
before the target button's function. The same bitmap will be displayed until it is set again by this function. The
bitmap file should be stored in the same directory as the simulator or its name should be specified with the full path.

[Parameters]
actbmp Specifies a character string for the bitmap file name displayed when active.
nactbmp Specifies a character string for the bitmap file name displayed when inactive.

[Return value]

None

[Remarks]

If a button function is described without describing this function first, the standard button's bitmap is displayed (see
the image shown in Figure 4-1). The button name is not shown when setting this function.

[Example]

UpSetBtmBmp("on.bmp", "off.bmp") ;
UpPushBtm("p21", LOW, "START") ;

40 User's Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

Bitmap setup function for LED

void UpSetLedBmp(actbmp, nactbmp)

char *actbmp ; /* Active bitmap name character string */

char *nactbmp ; I* Inactive bitmap name character string */
[Function]

This function sets the bitmap for an LED. An LED display can be changed by entering this function immediately
before the target LED's function. This function is valid only if the bitmap has been specified by an LED function.
The same bitmap will be displayed until it is set again by this function. The bitmap file should be stored in the
same directory as the simulator or its name should be specified with the full path.

[Parameters]
actbmp Specifies a character string for the bitmap file name displayed when active.
nactbmp Specifies a character string for the bitmap file name displayed when inactive.

[Return value]

None

[Remarks]

If an LED function is described without describing this function first, the standard LED's bitmap is displayed (see
the image shown in Figure 4-4).

[Example]

UpSetLedBmp("lighton.bmp", "lightoff.bmp") ;
UpLed("p31", HIGH, "Power", 1) ;

User’s Manual U14873EJ2VOUM 41

CHAPTER 4 FUNCTION REFERENCE

Bitmap setup function for DC motor

void UpSetMtrBmp(actbmp, nactbmp)

char *actbmp ; /* Active bitmap name character string */

char *nactbmp ; /* Inactive bitmap name character string */
[Function]

This function sets the bitmap for a DC motor. A DC motor display can be changed by entering this function
immediately before the target DC motor's function. The same bitmap will be displayed until it is set again by this
function. The bitmap file should be stored in the same directory as the simulator or its name should be specified
with the full path.

[Parameters]
actbmp Specifies a character string for the bitmap file name displayed when active.
nactbmp Specifies a character string for the bitmap file name displayed when inactive.

[Return value]

None

[Remarks]

If a DC motor function is described without describing this function first, the standard DC motor's bitmap is
displayed (see the image shown in Figure 4-8).

[Example]

42

UpSetMtrBmp("trun.bmp”, "stop.bmp") ;
UpDcMtr("p32", HIGH, "Motor") ;

User’s Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

LED picture setup function

void UpSetLedPic(type, color)

char type ; [* Picture type */

char color ; /* Picture fill color when active */
[Function]

This function sets the type of picture and fill color (when active) to be used in an LED display. An LED display can
be changed by entering this function immediately before the target LED's function. This function is valid only if a

picture has been specified by an LED function. The same picture will be displayed until it is set again by this
function.

[Parameters]
type Specifies the type of picture (macro is defined in uparts32.h).
Macro PIC_RECT: Rectangle
Macro PIC_ELL: Ellipse
color Specifies fill color when active (macro is defined in uparts32.h).

Macro PIC_RED: Red
Macro PIC_YELLOW: Yellow
Macro PIC_GREEN: Green

[Return value]

None

[Example]

UpSetLedPic(PIC_RECT, PIC_GREEN) ;
UpLed("p32", HIGH, "Test", 0) ;

User’s Manual U14873EJ2VOUM 43

CHAPTER 4 FUNCTION REFERENCE

Serial pin data input function

void UpSerial_data(serpname, data, count, first, bitnum)

char *serpname ; /* Serial pin name character string */

unsigned short *data ; /* Pointer to data array */

unsigned short count ; /* Number of data arrays */

char first ; /* First bit (MSB or LSB)*/

char bitnum ; /* Number of bits in transfer data */
[Function]

This function sets values in order starting from the specified first data bit, using the number of bits in the data
transferred to the serial pin as one unit.

[Parameters]

serpname Specifies the character string for the name of the serial data input pin.

data Specifies a pointer to an array in which the value set to the serial data input pin has been
stored in units consisting of the number of transfer data bits.

count Specifies the number of arrays in which values set to the serial data input pin have been
stored in units consisting of the number of transfer data bits.

first Specifies whether data equivalent to the number of bits in the transfer data will be set
sequentially with the MSB first or the LSB first. "1" is specified to set sequentially with the
MSB first and "0" is specified to set sequentially with the LSB first.

bitnum Specifies the number of bits in the transfer data.

When using UART (Universal Asynchronous Receiver/Transmitter), the start bit, parity bit,
and stop bit are included in the data and data bit count.

[Return value]

None

[Example]

To set 8-bit data sequentially from LSB first to serial pin SER1:
unsigned short data[3] = {Oxff, O0xa0, 0x3b} ;
Upserial_data("SER1", data, 3, 0, 8) ;

The data is input to SER1 as shown below.
<~ 111111110000010111011100

44 User's Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

Window title function

void UpPanelTitleName(title)
char *title ; /* Title name */
[Function]

This function displays a name in the title bar of the Parts window.

[Parameter]

title Specifies the character string for the name to be displayed in the title bar of the Parts window.

[Return value]

None

[Example]
UpPanelTitleName("System for printer") ;

User’s Manual U14873EJ2VOUM 45

CHAPTER 4 FUNCTION REFERENCE

Bitmap display function

void UpSetUsrBmp(bmpname)
char *bmpname ; /* Bitmap file name */
[Function]

This function displays a bitmap that is always displayed, without any relation to simulations.

The bitmap is displayed to the right of the part that is at the bottom right in the set of currently displayed parts. If
there is not enough room in the window to display the bitmap to the right of the bottom right part, it is displayed
below the bottom right part.

[Parameter]
bmpname Specifies a character string as the bitmap file name. The bitmap file should be stored in the

same directory as the simulator or its name should be specified with the full path.

[Return value]
None

[Example]
UpSetUsrBmp("printer.omp") ;

46 User's Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

Character string display function

void UpWriteString(string)
char *string ; [* Character string to be displayed */
[Function]

This function displays a character string.

The character string is displayed to the right of the part that is at the bottom right in the set of currently displayed
parts. If there is not enough room in the window to display the character string to the right of the bottom right part,
it is displayed below the bottom right part.

[Parameter]

string Specifies the character string to be displayed.

[Return value]

None

[Example]
UpWriteString("Power") ;

User’s Manual U14873EJ2VOUM 47

CHAPTER 4 FUNCTION REFERENCE

4.2 Customization via User Window

The following functions are provided to enable the user to freely customize user-created windows and parts. The

handle notification function for user windows can be used to enable processing of windows and input from user parts,

and the simulation call function can be used to perform output display processing to user parts.

Table 4-2. Customization Functions Used in User Window

USB function

Function Name Prototype Page
Window handle notification function UpSetUserWnd(hUwnd) 49
Window close function UpCloseUserWnd(hwnd) 50
Simulation call function UpCallFuncName(fname) 51
Motor pin notification function UplnitMtrPin(pname,actype) 52
Stepping motor notification function UplnitStpingMtr(pname, num, actype, reiji, step) 53
Pin active value natification function UplInitPin(pname, actype) 54
Port active value notification function UplInitPort(portname, actype) 55
AD input pin notification function UplInitAD(pname) 56
Project file read function name notification function | UpLoadProjName(funcname) 57
Project file save function name notification UpSaveProjName(funcname) 58
function
Reset function name notification function UpResetFuncName(funcname) 59
Pin value capture function UpGetPin(pname, val) 60
Port data capture function UpGetPort(portname, data) 61
DA output pin value capture function UpGetDA(pname, val) 62
Memory area data capture function UpGetMem(addr, data) 63
DC motor active time clear function UpCIrMtrAcClk(pname) 64
Stepping motor information capture function UpGetStpingMtr(pnames, num, posrev, negrev, angle) 65
Value setting function for pins UpSetPin(pname, val, time) 66
Data setting function for ports UpSetPort(portname, data, time) 67
Value setting function for AD input pin UpSetAD(pname, val) 68
Data setting function for memory area UpSetMem(addr, data) 69
Active time notification function for motor UpGetMtrAcClk(pname, val, actime) 70
Time conversion notification for one main system UpSimtimeSec(void) 71
clock pulse
Function for transmitting packets from HOST using | UpSetUSBPack(total, total_bit, data) 72
USB function
Function for receiving packets from Function using | UpGetUSBPack(total, data) 73
USB function
Function for transmitting signals from HOST using UpSetUSBSig(sig) 74
USB function
Function for receiving signals from Function using UpGetUSBSig(sig) 75

48 User's Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

Window handle notification function

void UpSetUserWnd(hUwnd)
HANDLE hUwnd ; /* Handle of user window */
[Function]

This function notifies the simulator of a user-created window handle.

The user should describe this function immediately after creating a window.

[Parameter]

hUwnd Handle of a user-created window

[Return value]

None

[Example]

HWND hwnd;
hwnd = CreateWindow(........);
UpSetUserWnd(hwnd) ;

User’s Manual U14873EJ2VOUM

49

CHAPTER 4 FUNCTION REFERENCE

Window close function

void UpCloseUserWnd(hwnd)
HWND hwnd ; /* Handle of window to be closed */
[Function]

This function notifies the simulator that a user-created window is being closed.
This function is described with the user-created window callback function's message WM_DESTROY.

[Parameter]

hwnd Handle of user-created window to be closed

[Return value]

None

[Example]
WM_DESTROY:

UpCloseUserWnd(hwnd) ;

50 User's Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

Simulation call function

void UpCallFuncName(fname)
char *fname ; /* Simulation call function name */
[Function]

This function reports the name of the function that is called from the simulator at a specified interval°t

simulation.

during
This function must be described within the user function UParts_xxx().
Note This function is called once per command execution.

[Parameter]

fname Specifies the name of the function called from the simulator.

[Return value]

None

[Remarks]

The simulation call function should be specified as follows in the function specifications.

The simulation's execution time is received via an unsigned long type parameter.

The simulation's execution time is time that has elapsed since the previous function call, and its measurement unit
is the main system clock.

Be sure to enter an EXPORTS declaration (see 3.4.1 EXPORTS declaration) in a module definition file for the
simulation call function.

void Update_usrwin(unsigned long simtime)

[Example]

UpCallFuncName("Update_usrwin") ;

User’s Manual U14873EJ2VOUM 51

CHAPTER 4 FUNCTION REFERENCE

Motor pin notification function

void UpInitMtrPin(pname, actype)

char *pname ; /* Pin name */

int actype ; /* Active high/low */
[Function]

This function reports the pin name specified for the motor to capture the motor value and active time via the active
time notification function for motor.

When using the motor pin, this function must be described within the user function UParts_xxx().

When not using the motor pin, there is no need to describe this function.

[Parameters]
pname Specifies a character string for the name of the pin connected to the motor.
actype Specifies that the motor is in active mode. Specify HIGH for active high status or LOW for

active low status.

[Return value]

None

[Remarks]

Unless notification is already included in the user function, even if the information is captured by the active time
notification function for motor UpGetMtrAcCIk() during a simulation, the captured value is not guaranteed.

[Example]
UplnitMtrPin("p41", HIGH)

52 User's Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

Stepping motor notification function

int UplnitStpingMtr(pnames, num, actype, reiji, step)

char **pnames ; /* Pin name */

int num ; /* Number of pins per channel */

int actype ; [* Active high/low */

char reiji ; /* Excitation method */

short step ; /* Minimum step angle */
[Function]

This function connects a stepping motor that is operated via several pins to the specified pin.
When using the stepping motor, this function must be described within the user function UParts_xxx(). When not
using the stepping motor, there is no need to describe this function.

[Parameters]
pnames Specifies pin names (character strings) for all pins.
num Specifies the number of pins per channel (4 or 8).
actype Specifies the status when the motor is displayed as active. Specify HIGH for active high
status or LOW for active low status. The active status is the same for all pins.
reifi Specifies the excitation method. Set "0" for single phase or "1" for single/dual phase.
step Specifies an integer fraction of 360 as the minimum step angle.

[Return value]

If set correctly: 1
If not set correctly: 0

[Example]

char *mtrpin[4] = {"p00", "p01", "p02"," p03"} ;
UplnitStpingMtr((char *)mtrpin, 4, HIGH, 1, 10) ;

User’s Manual U14873EJ2VOUM 53

CHAPTER 4 FUNCTION REFERENCE

Pin active value notification function

int UplnitPin(pname, actype)

char *pname ; /* Pin name */

int actype ; /* Active value of pin */
[Function]

This function sets the active mode value for one pin.
When there is a value to be input for a pin, this function must be described within the user function UParts_xxx().
When there is no value to be input for a pin, there is no need to describe this function.

[Parameters]
pname Specifies the pin name as a character string.
actype Specifies the active value of a pin. Specify HIGH for active high status or LOW for active low
status.
[Return value]
If pin's active value was set correctly: 1

If pin's active value was not set correctly: 0

[Example]

When set to operate when pin P46 is active high (when input value = 1):

int ret;
ret=UplnitPin(“P46”, HIGH) ;

54 User's Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

Port active value notification function

int UplnitPort(portname, actype)

char *portname ; /* Port name */

unsigned char actype ; /* Active value of port */
[Function]

This function sets the active mode value for one port.
When there is a value to be input for a port, this function must be described within the user function UParts_xxx().
When there is no value to be input for a port, there is no need to describe this function.

[Parameters]
portname Specifies the port name as a character string.
actype Specifies the active value for each pin of a port.
Specify "1" for port pins that have active high status or "0" for port pins that have active low
status.

Values are specified bitwise for 8 bits, starting from the port's lowest pin as the LSB.

[Return value]

If port's active value was set correctly: 1
If port's active value was not set correctly: 0

[Example]
When port 4's pins P40 and P41 are set as active high and pins P42 to P47 are set as active low:

int ret;
ret=UplnitPort(“P4”, 0x03) ;

When port 2's pin P27 only is set as active high and pins P20 to P26 are set as active low:

int ret;
ret=UplInitPort(“P2”, 0x80) ;

User’s Manual U14873EJ2VOUM 55

CHAPTER 4 FUNCTION REFERENCE

AD input pin notification function

int UplnitAD(pname)
char *pname ; /* AD input pin name */
[Function]

This function notifies the simulator of the AD input pin used to input a value from the user open interface function.
If UpSetAD() includes a value to be input to the AD input pin, this function must be described within the user
function UParts_xxx(). When the user open interface function does not include a value to be input to the AD input
pin, there is no need to describe this function.

[Parameter]

pname Specifies the AD input pin name as a character string.

[Return value]

Normal end: 1
Abnormal end: 0 (if the AD input pin does not exist in a device used in the current simulation)

[Example]
UpInitAD(“ANIQ") ;

56 User's Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

Project file read function name notification function

int UpLoadProjName(funcname)
char *funcname ; I* Project file read function name */
[Function]

When the simulator's project file is being read, this function reports the name of the function that simultaneously
reads the information in the user window from the project file.
This function must be described within the user function UParts_xxx().

[Parameter]

funcname Specifies the name of the function that reads the project file that has been called from the
simulator.

[Return value]

None

[Remarks]

The project file read function's specifications are as follows.

* The project file name character string is received via the char * type parameter.

* User window information is also read from the file named by the project file name that was received via the
parameter. At that time, select either the GetPrivateProfileString or GetPrivateProfileInt function for the library
used with the read operation.

* The section name used by the user is "User DLL Window".

* An EXPORTS declaration is required in a module definition file for the project file read function.

void UpLoad_usrproj(char *filename)

[Example]
UpLoadProjName(“UpLoad_usrproj”) ;

User’s Manual U14873EJ2VOUM 57

CHAPTER 4 FUNCTION REFERENCE

Project file save function name notification function

int UpSaveProjName(funcname)
char *funcname ; /* Project file save function name */
[Function]

When the simulator's project file is being saved, this function reports the name of the function that simultaneously
saves the information in the user window to the project file.
This function must be described within the user function UParts_xxx().

[Parameter]

funcname Specifies the name of the function that saves the project file that has been called from the
simulator.

[Return value]

None

[Remarks]

The project file save function's specifications are as follows.
* The project file name character string is received via the char * type parameter.
* User window information is also written to the file named by the project file name that was received via the
parameter. At that time, select the WritePrivateProfileString function for the library used with the write operation.
* The section name used by the user is "User DLL Window".
* An EXPORTS declaration is required in a module definition file for the project file save function.
void UpSave_usrproj(char *filename)

[Example]
UpSaveProjName(“UpSave_usrproj”) ;

58 User's Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

Reset function name notification function

int UpResetFuncName(funcname)
char *funcname ; /* Reset function name */
[Function]

When a CPU reset is called by the simulator, this function reports the function name that is used for the user
window's reset processing.
This function must be described within the user function UParts_xxx().

[Parameter]

funcname Specifies the name of the reset function called by the simulator.

[Return value]

None

[Remarks]

The reset function's specifications are as follows.

* ltis a void type function since it has no parameters.

* An EXPORTS declaration is required in a module definition file for the reset function.
void Upreset_usrwin(void)

[Example]

UpResetFunName(“Upreset_usrwin”) ;

User’s Manual U14873EJ2VOUM 59

CHAPTER 4 FUNCTION REFERENCE

Pin value capture function

int UpGetPin(pname, val)

char *pname ; /* Pin name */

char *val ; /* Pointer to area where pin value is stored */
[Function]

This function captures the value for one pin.

[Parameters]
pname Specifies the pin name as a character string.
val Specifies a pointer to the area where the pin value is stored.

[Return value]

If pin value was successfully captured: 1
If pin value was not successfully capturedN°te: 0

Note "0"is also returned if the pin value is undefined.

[Example]

char val;
int ret ;
ret = UpGetPin(“p46", &val) ;

60 User's Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

Port data capture function

int UpGetPort(portname, data)

char *portname ; /* Port name */

unsigned char *data ; I* Pointer to area where port data is stored */
[Function]

This function captures port data.

[Parameters]
portname Specifies the port name as a character string.
data Specifies a pointer to the area where the port data is stored.

[Return value]

If port data was successfully captured: 1
If port data was not successfully capturedN°te: 0

Note "0"is also returned if the port values include any undefined values.

[Example]

unsigned char data;
int ret;
ret = UpGetPort(“p4", (unsigned char *)&data) ;

User’s Manual U14873EJ2VOUM

61

CHAPTER 4 FUNCTION REFERENCE

DA output pin value capture function

int UpGetDA(pname, val)

char *pname ; /* DA output pin name */

unsigned short ~ *val ; /* DA output value */
[Function]

This function sets the value of the DA output pin.

[Parameters]
pname Specifies the DA output pin name as a character string.
val Specifies a pointer to the area where the value of the DA output pin is stored.

[Return value]

Normal end: 1

Abnormal end"°*: 0

Note "0"is also returned if the value of the DA output pin is undefined.

[Example]

unsigned short daval ;
UpGetDA(“ANOOQ", &daval) ;

62 User's Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

Memory area data capture function

int UpGetMem(addr, data)

unsigned long adadr ; /* Address */

unsigned char *data ; /* Data storage area */
[Function]

This function captures the data in the memory area.

[Parameters]
addr Specifies an address in the memory area to be captured.
data Specifies the data storage area.

[Return value]

If data was successfully captured: 1
If data was not successfully captured: 0

[Example]

unsigned char data;
int ret;
ret = UpGetMem(0xffe000, (unsigned char *)&data) ;

User’s Manual U14873EJ2VOUM

63

CHAPTER 4 FUNCTION REFERENCE

DC motor active time clear function

void UpCIrMtrAcClk(pname)
char *pname ; /* Pin name */
[Function]

This function zero-clears the active time of the specified motor-connected pin.

[Parameter]

pname Specifies the motor-connected pin name as a character string.

[Return value]

None

[Remarks]

When using this function, call the motor pin notification function UplnitMtrPin() from within a user function so that
the pin name is reported in advance.

[Example]
UpCIrMtrAcCIk(“p41") ;

64 User's Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

Stepping motor information capture function

int UpGetStpingMtr(pnames, num, posrev, negrev, angle)
char **pnames ; /* Pin names */
int num ; /* Number of pins per channel (specify 4 or 8) */
unsigned long *posrev ; /* Area for storing the number of positive revolutions */
unsigned long *negrev ; /* Area for storing the number of negative revolutions */
unsigned long *angle ; /* Area for storing angle */

[Function]

This function captures the number of positive/negative revolutions and current angle of the stepping motor that is
connected to the pin names previously reported by the stepping motor notification function UplnitStpingMtr.

[Parameters]
pnames Specifies pin names (character strings) for all pins.
num Specifies the number of pins per channel (4 or 8).
posrev Specifies the area where the number of positive revolutions is stored.
negrev Specifies the area where the number of negative revolutions is stored.
angle Specifies the area where the angle is stored.

[Return value]

If successfully captured: 1
If not successfully captured: 0

[Example]

char *mtrpin[4] = {"p00", "p01", "p02", "p03"} ;
unsigned long posrev ;

unsigned long negrev ;

unsigned long angle ;

UplnitStpingMtr((char *)mtrpin, 4, HIGH, 1, 10) ;

UpGetStpingMtr((char *)mtrpin, 4, &posrev, &negrev, &angle) ;

User’s Manual U14873EJ2VOUM 65

CHAPTER 4 FUNCTION REFERENCE

Value setting function for pins

void UpSetPin(pname, val, time)

char *pname ; /* Pin name */

char val ; /* Active value */

unsigned long time ; /* Hold time */
[Function]

This function sets a pin value.

[Parameters]
pname Specifies the pin name as a character string.
val Sets value when pin is active.
time Sets a time for holding data. The time measurement unit is the main system clock.

[Return value]

None

[Remarks]

When using this function, call the pin active value notification function UplnitPin() from within a user function so that
the pin name is reported in advance. If the pin active value that is reported by UplnitPin was set as macro HIGH,
setting "1" as the active value for this UpSetPin function sets the pin to active mode. Similarly, if the pin active
value that is reported by UplnitPin was set as macro LOW, setting "0" as the active value for this UpSetPin function
sets the pin to active mode. If "0" is set as the hold time, the active value is held.

[Example]

If UpnitPin("p31", HIGH) is described and the pin P31 is reported as active high, the description shown below sets
the active high input to be held for 50 pulses of the main system clock.

char val ; val=1;
UpSetPin(“p31”, val, 50L) ;

66 User's Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

Data setting function for ports

void UpSetPort(portname, data, time)

char *portname ; /* Port name */

unsigned char data ; /* Data */

unsigned long time ; /* Hold time */
[Function]

This function sets the data for one port.

[Parameters]
portname Specifies the port name as a character string.
data Specifies values set to the port.
time Sets a time for holding data. The time measurement unit is the main system clock.

[Return value]

None

[Remarks]

When using this function, call the port active value notification function UplnitPort() from within a user function so
that the pin names are reported in advance. If the active value of the port's pins that is reported by UplnitPort was
set as active high, "1" is set bitwise, and if it was set as active low, "0" is set bitwise. If pins belonging to this port
are set to active mode by this UpSetPort function, the data's bit values for the corresponding pins should be the
same as the bit values corresponding to the pins whose active values were set by UpSetPort.

If "0" is set as the hold time, the active value is held.

[Example]

If UplnitPort("p4",0x03) is described and the port P4's pins P40 and P41 are reported as active high while pins P42
to P47 are reported as active low, the description shown below sets port P4's pins P40, P42, and P43 to active
mode and holds the active mode for 50 pulses of the main system clock.

unsigned char data;

data = 0xf1 ;
UpSetPort(“p4", data, 50L) ;

User’s Manual U14873EJ2VOUM 67

CHAPTER 4 FUNCTION REFERENCE

Value setting function for AD input pin

int UpSetAD(pname, val)

char *pname ; /* AD input pin name */

unsigned short val; /* AD input value */
[Function]

This function sets the value of the AD input pin.

[Parameters]
pname Specifies AD input pin name as a character string.
val Sets value to be input to AD input pin.

[Return value]

Normal end: 1

Abnormal end“**®: 0

Note "0"is returned if the AD input pin does not exist in a device used in the current simulation.

[Remarks]

When using this function, the AD input pin connection notification function UpInitAD() must be called from within a
user function so that the AD input pin name is reported in advance.

[Example]

unsigned short adval ;

adval =10 ;
UpSetAD(“ANIO", adval) ;

68 User's Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

Data setting function for memory area

int UpSetMem(addr, data)

unsigned long adadr ; /* Address */

unsigned char data ; /* Data */
[Function]

This function sets data in a memory area.

[Parameters]
addr Specifies an address in the target memory area.
data Specifies data.

[Return value]

If value is set correctly: 1
If value is not set correctly: 0

[Example]

int ret;
ret = UpSetMem(0xffe300, 0x72) ;

User’s Manual U14873EJ2VOUM

69

CHAPTER 4 FUNCTION REFERENCE

Active time notification function for motor

int UpGetMtirAcClk(pname, val, actime)

char *pname ; /* Pin name */

char *val ; /* Value */

unsigned long *actime ; /* Active time */
[Function]

This function captures the active time of the pin specified for a motor.

This function is valid only for pins connected to a motor part that has already been created using the motor pin
notification function UpInitMtrPin().

The active time is the total time that has elapsed since the start of a simulation. When a reset occurs or when the
elapsed time value exceeds a 10-digit decimal value, the active time is cleared to zero.

The active time is measured in pulses of the main system clock.

[Parameters]
pname Specifies the motor-connected pin name as a character string.
val Sets the value of the pin.
actime Uses a two-dimensional array to represent the active time as the total time that has elapsed

since the start of a simulation.
actime[1]x0x100000000+actime[0]

Example: actime[1] = 0x390 ; actime[0] = 0x10052688 ;
Total time = 0x39010052688 main system clock

[Return value]

If set pin was a pin set by DC motor function: 0
If set pin was not a pin set by DC motor function: -1

[Remarks]
When using this function, call the motor pin notification function UplInitMtrPin() from within a user function so that

the pin name is reported in advance.

[Example]

char val;

unsigned long actime[2] ;

UpGetMtrAcClk("p41", &val,actime) ;

wsprintf(timebuf, "Rotation time = #%Ix%08Ix \n", actime[1], actime[0]) ;
TextOut(hdc, 240, 320, timebuf, sizeof(timebuf)) ;

70 User's Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

Time conversion notification for one main system clock pulse

unsigned long UpSimtimeSec(void)

[Function]

This function converts one pulse of the main system clock to a nanosecond value.

[Parameter]

None

[Return value]

The nanosecond value converted from one pulse of the main system clock is returned.

[Example]

unsigned long simtime ;
simtime = UpSimtimeSec() ;

User’s Manual U14873EJ2VOUM

7

CHAPTER 4 FUNCTION REFERENCE

Function for transmitting packets from HOST using USB function

BOOL UpSetUSBPack(total, total_bit, data)

unsigned char total ; /* Number of data arrays */

unsigned char total_bit ; /* Number of bits in transmit data */

unsigned char *data ; /* Pointer to packet data array */
[Function]

This function uses the USB function to set packet transmission information from the HOST.

[Parameters]
total Specifies the number of packet data arrays.
total_bit Specifies the converted total bits of the data to be transmitted.
data Specifies a pointer to the packet data array to be transmitted.

[Return value]

Normal end: 1
Abnormalend: 0

[Remarks]

This function is supported only for devices that include USB function.

72 User's Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

Function for receiving packets from Function using USB function

void UpGetUSBPack(total, data)

unsigned char total ; /* Number of data arrays */

unsigned char *data ; [* Pointer to packet data array */
[Function]

This function uses the USB function to receive packet data from Function.

[Parameters]
total Specifies the number of packet data arrays.
data Specifies a pointer to the packet data array to be transmitted.

[Return value]

None

[Remarks]

This function is supported only for devices that include USB function.

User’s Manual U14873EJ2VOUM

73

CHAPTER 4 FUNCTION REFERENCE

Function for transmitting signals from HOST using USB function

void UpSetUSBSig(sig)
unsigned char sig; /* Transmit signal ID */
[Function]

This function uses the USB function to transmit a signal from the HOST.

[Parameter]
sig Specifies the transmit signal ID.
0: USBreset
1: Resume

[Return value]

None

[Remarks]

This function is supported only for devices that include USB function.

74 User's Manual U14873EJ2VOUM

CHAPTER 4 FUNCTION REFERENCE

Function for receiving signals from Function using USB function

void UpGetUSBSig(sig)
unsigned char *sig ; /* Receive signal ID */
[Function]

This function uses the USB function to receive a signal from Function.

[Parameter]
sig Specifies the receive signal ID.
0: USBreset
1: Resume

[Return value]

None

[Remarks]

This function is supported only for devices that include USB function.

User’s Manual U14873EJ2VOUM

75

CHAPTER 5 OPERATIONS DURING CPU RESET

This chapter describes the operations of custom parts when a CPU reset is triggered by the simulator debugger.

5.1 Parts Customized via Parts Window

The parts for functions that are specified by customization via the Parts window are listed below.

Table 5-1. Parts Customized via Parts Window During CPU Reset

Part Name

Status

Push-button

All are set to inactive mode.

Toggle button

All are set to inactive mode.

Group select button

All are set to non-pressed mode.

LED

All are set to inactive mode.

LED set per port

All are set to inactive mode.

Matrix LED

All are set to OFF mode.

DC motor

All are set to inactive mode and total active time is set to 0.

Stepping motor

All are set to inactive mode and the number of positive revolutions, the number of negative
revolutions, and rotation angle are all set to 0.

Vertical scroll bar analog input

Input value is set to 0 and scroll bar's scroll button is set to the bottom edge.

Serial pin data input

Returns to start of data.

5.2 Parts Customized via User Window

When a CPU reset has been triggered by the simulator debugger, if the function name has already been reported

by the reset function name notification function UpResetFuncName(), the user window's reset processing function is

performed.

76

User’s Manual U14873EJ2VOUM

CHAPTER 6 PROGRAMMING EXAMPLES

This chapter presents some examples of customized parts.
Among the sources cited below:

<1> refers to the target program.
Programs are compiled and linked using the CA850 to create load module files (xxxx.OUT).

<2> and subsequent sources refer to files that are required when creating customized parts.
This manual specifies that Visual C++ is used to create dynamic link library (xxxx.DLL).

When compiling, be sure to specify the /Zp1 option. (/Zp1 option: sets single-byte alignment of structure
members)

Remark The source program examples for customized parts are coded using ifdef statements and other

elements that make it easier to switch from creating 16-bit dynamic link libraries to creating 32-bit
dynamic link libraries.

If using SM850 V2.00 or a later version, be sure to create 32-bit dynamic link libraries.

User’s Manual U14873EJ2VOUM 77

CHAPTER 6 PROGRAMMING EXAMPLES

6.1 Example of Parts Customized via Parts Window

6.1.1 Description of samples

The items displayed in the Parts window include eight LEDs and eight switches, of which two (P50 and P51) are
push-buttons, two (P52 and P53) are toggle buttons, and four (P54, P55, P56, and P57) are select buttons. When a
switch is set ON or OFF, its corresponding LED is also set ON or OFF.

An example is shown below.
Figure 6-1. Example of Parts Customized via Parts Window

Port 6: Output mode (LED) uPD703002

P6: Bit0O | P6:Bitl | P6: Bit2 | P6:Bit3 || P6:Bit4 | P6:Bit5 | P6: Bit6 P6: Bit7

olololololol|lolo

(Ps: Bito)| (Ps: Bitt) | (Ps: Bit2) | (P5: Bit3) || (P5: Bita)| (P5: Bits)| (P5: Bits) || (P5: Bit7) ~| P50to P57 P

[}

Parts window) Processing of samplel.c
Port 5: Input mode (switch)

HiLT
Edit Parts Bitmap Customize Draw Option Help

) e A o e s) S | 3 il N P [(S 9

File Mode

=l

Bitd EBitl Bit2 Bit3 [Gelect
@ @ @ @ P Eit0 I P Bitl I T Bit2 I T EBit3 I

78 User's Manual U14873EJ2VOUM

CHAPTER 6 PROGRAMMING EXAMPLES

6.1.2 Source examples

<1> Target program (program for V852)

(1/1) SAMPLE1.C

#pragma ioreg

main ()

{

MM = 0xBO;
PM5 = OXFF;
PM6 = 0;
P6 = 0;
while (1)
P6 = P5;
!

User’s Manual U14873EJ2VOUM

79

CHAPTER 6 PROGRAMMING EXAMPLES

<2> Custom part source file UPsw00.c

(1/3) UPsw00.c

/*
* User Open I/F Sample Program (UPsw00.c)
*
* P50 (I) Switch 0 P60 (O) LED O
* P51 (I) Switch 1 Pel (O) LED 1
* P52 (I) Switch 2 P62 (0) LED 2
* P53 (I) Switch 3 P63 (0) LED 3
* P54 (I) Switch 4 P64 (0) LED 4
* P55 (I) Switch 5 P65 (0) LED 5
* P56 (I) Switch 6 P66 (0) LED 6
* P57 (I) Switch 7 P67 (0) LED 7
*/
#include <Windows.h>
#include <string.h>
typedef unsigned char UCHAR;
typedef unsigned short USHORT;
typedef unsigned long ULONG;
#if 1 /* Specify 0 for 16-bit version */

#include "uparts32.h"
#else

#include "uparts.h"
#endif

#ifdef WIN32
BOOL APIENTRY Dl1lMain (HANDLE, DWORD, LPVOID) ;

#else
BOOL LibMain (HANDLE, WORD, WORD, LPSTR) ;
int WEP(int) ;

#endif

void UParts_ sw00 (void) ;

80 User's Manual U14873EJ2VOUM

CHAPTER 6 PROGRAMMING EXAMPLES

(2/3) UPsw00.c

/**/

/* DLL Main */

/**/

#ifdef WIN32

BOOL APIENTRY DllMain (HANDLE hModele, DWORD ul_reason for call, LPVOID lpReserved)

{

return (TRUE) ;

#telse

BOOL LibMain (HANDLE hInstance, WORD wDataSeg, WORD cbHeapSize, LPSTR lpszCmdLine)

{
if (cbHeapSize > 0) {
UnlockData (0) ;

}

return (TRUE) ;

#endif

#ifndef WIN32

/**/

/* WEP */

/**/

int WEP (int nParameter)
{
switch (nParameter)
case WEP_SYSTEM EXIT:
break;
case WEP_FREE DLL:
break;

}

return (1) ;

#endif

User’s Manual U14873EJ2VOUM 81

CHAPTER 6 PROGRAMMING EXAMPLES

(3/3) UPsw00.c

/**/

/*

UParts_sw00 (void)

*/

/**/

void UParts_sw00 (void)

{
static char *pin([4] = { "p54", "p55", "p5e", "P57" };
static char *name[4] = { "S Bit4", "S Bit5", "S Bité", "S Bit7" };
UpSetPBtmtime ("3.0") ;
UpLed ("P60", HIGH, "Bito", 1);
UpLed ("P61", HIGH, "Bitl", 1);
UpLed ("P62", HIGH, "Bit2", 1);
UpLed ("P63", HIGH, "Bit3", 1);
UpLed ("P64", HIGH, "Bit4", 1);
UpLed ("P65", HIGH, "Bit5", 1);
UpLed ("P66", HIGH, "Bite", 1);
UpLed ("P67", HIGH, "Bit7", 1);
UpPushBtm ("P50", HIGH, "P Bit0");
UpPushBtm("P51", HIGH, "P Bitl");
UpTglBtm ("P52", HIGH, "T Bit2");
UpTglBtm ("P53", HIGH, "T Bit3");
UpSelectBtm("Select", pin, 4, HIGH, name) ;
}

/* UPsw00.c */

82

User’s Manual U14873EJ2VOUM

CHAPTER 6 PROGRAMMING EXAMPLES

<3> Definition file UPsw00.def

(1/1) UPsw00.def

LIBRARY

; EXETYPE

UPSWO0O0

WINDOWS 3.1

DESCRIPTION 'User Open I/F Panel swO0O0'

; STUB

CODE
DATA

HEAPSIZE

EXPORTS
;. WEP

'WINSTUB.EXE'

PRELOAD MOVEABLE DISCARDABLE
PRELOAD SINGLE

3072

@l

UParts_sw00 @2

; IMPORTS
; SU850
; SU850
; SU850
; SU850
; SU850

.UpSetPBtmtime
.UpLed
.UpPushBtm
.UpTglBtm
.UpSelectBtm

User’s Manual U14873EJ2VOUM

83

CHAPTER 6 PROGRAMMING EXAMPLES

<4> Make file UPsw00.mak

(1/5) UPsw00.mak

Microsoft Developer Studio Generated NMAKE File, Based on upsw00.dsp
IIF "$(CFG)" == ""

CFG=upsw00 - Win32 Debug

IMESSAGE Configuration not specified. Set default upsw00 - Win32 Debug.
!ENDIF

ITF "S(CFG)" != "upswO0 - Win32 Release" && "S(CFG)" != "upsw00 - Win32 Debug"
IMESSAGE Specified build mode "$(CFG)" is not correct.
IMESSAGE Configuration can be specified during execution of NMAKE.

IMESSAGE Defines command-line macro setting. Example:

IMESSAGE

IMESSAGE NMAKE /f "upsw00.mak" CFG="upsw00 - Win32 Debug"
IMESSAGE

IMESSAGE Selectable build modes:

IMESSAGE

IMESSAGE "upsw00 - Win32 Release" (for "Win32 (x86) Dynamic-Link Library")
IMESSAGE "upsw00 - Win32 Debug" (for "Win32 (x86) Dynamic-Link Library")
IMESSAGE

I ERROR Invalid configuration was specified.

!ENDIF

ITF "$(0S)" == "Windows NT"
NULL=

'ELSE

NULL=nul

!ENDIF

ITF "S$(CFG)" == "upswO0 - Win32 Release"

OUTDIR=.\Release
INTDIR=.\Release
Begin Custom Macros
OutDir=.\Release

End Custom Macros

ALL : "$(OUTDIR) \upsw00.d1l"

84 User's Manual U14873EJ2VOUM

CHAPTER 6 PROGRAMMING EXAMPLES

(2/5) UPsw00.mak

CLEAN
-@erase "$ (INTDIR) \Upsw00.o0bj"
-@erase "$ (INTDIR)\vc60.idb"
-@erase "$ (OUTDIR) \upsw00.dl1l"
-@erase "$ (OUTDIR) \upsw00.exp"
-@erase "$(OUTDIR) \upsw00.lib"
"S$ (OUTDIR) "

if not exist "$(OUTDIR)/S$(NULL)" mkdir "$ (OUTDIR)"

CPP=cl.exe

CPP PROJ=/nologo /Zpl /MT /W3 /GX /02 /D "WIN32" /D "NDEBUG" /D " WINDOWS" /D " MBCS"
/D " USRDLL" /D "UPSW00_ EXPORTS" /Fp"$ (INTDIR)\upsw0O.pch" /YX /Fo"$ (INTDIR)\\" /Fd"
$ (INTDIR)\\" /FD /c

.c{$ (INTDIR) }.obj::
S (CPP) @<<
$ (CPP_PROJ) $<

.cpp{$ (INTDIR) }.obj: :
$ (CPP) @<<
$ (CPP_PROJ) $<

.cxx{$ (INTDIR) } .0bj: :
$ (CPP) @=<«<
$ (CPP_PROJ) S<

.c{$ (INTDIR) }.sbr::
S (CPP) @<<
$ (CPP_PROJ) $<

.cpp{$ (INTDIR) }.sbr: :
$ (CPP) @<<
$ (CPP_PROJ) $<

<<

.cxx{$ (INTDIR) } .sbr: :
S (CPP) @<<
$ (CPP_PROJ) $<

User’s Manual U14873EJ2VOUM 85

CHAPTER 6 PROGRAMMING EXAMPLES

(3/5) UPsw00.mak

MTL=midl.exe

MTL_PROJ=/nologo /D "NDEBUG" /mktyplib203 /win32
RSC=rc.exe

BSC32=bscmake.exe

BSC32 FLAGS=/nologo /o"$ (OUTDIR) \upsw00.bsc"
BSC32_ SBRS= \

LINK32=1ink.exe
LINK32 FLAGS=kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib
shell32.1ib ole32.1lib oleaut32.lib uuid.lib odbc32.1lib odbccp32.1lib /nologo /dll /in
cremental :no /pdb:"$ (OUTDIR) \upsw00.pdb" /machine:I386 /def:".\Upsw00.def" /out:"$(OU
TDIR) \upsw00.d11l" /implib:"$ (OUTDIR) \upsw00.lib"
DEF_FILE= \

" . \Upsw00.def"
LINK32 OBJS= \

"$ (INTDIR) \Upsw00.0obj" \

".\si85032.1ib"

"$ (OUTDIR) \upsw00.d1l1l" : "$(OUTDIR)" $(DEF_FILE) $(LINK32 OBJS)
$ (LINK32) @<<
$ (LINK32_FLAGS) $(LINK32_OBJS)

<<
IELSEIF "$(CFG)" == "upsw00 - Win32 Debug"

OUTDIR=.\Debug
INTDIR=.\Debug
Begin Custom Macros
OutDir=.\Debug

End Custom Macros
ALL : "$(OUTDIR)\upsw00.dll"

CLEAN
-@erase "$ (INTDIR) \Upsw00.obj"
-@erase "$ (INTDIR)\vcé60.idb"
-@erase "$ (INTDIR)\vc60.pdb"

-@erase "$ (OUTDIR) \upsw00.d1l"

(

(

(

(

-@erase "$ (OUTDIR

-@erase "$ (OUTDIR) \upsw00.ilk"
(
(

\upsw00.exp"

)
)
)
)
)
)
-@erase "$ (OUTDIR) \upsw00.lib"
)

-@erase "$ (OUTDIR) \upswO00.pdb"

86 User's Manual U14873EJ2VOUM

CHAPTER 6 PROGRAMMING EXAMPLES

(4/5) UPsw00.mak

"$ (OUTDIR) "

if not exist

CPP=cl.exe

CPP_PROJ=/nologo /Gd /Zpl /MTd /W3 /Gm /GX /Zi /Od /D "WIN32" /D " DEBUG" /D " WINDOWS

n /D
DIR)\\"

" MBCS" /D " USRDLL" /D
/FA"$ (INTDIR)\\" /FD /c

"UPSWO0_EXPORTS"

.c{$ (INTDIR) } .0bj::
$ (CPP)
$ (CPP_PROJ)

@<<

S<

.cpp{$ (INTDIR) }.obj: :
$ (CPP)
$ (CPP_PROJ)

@<<

S<

.cxx{$ (INTDIR) }.obj: :
$ (cpp)
$ (CPP_PROJ)

@<<

S<

.c{$ (INTDIR) }.sbr::
$ (CPP)
$ (CPP_PROJ)

@<<

S<

<<

.cpp{$ (INTDIR) } .sbr: :
$ (CPP)
$ (CPP_PROJ)

@<<

S<

.cxx{$ (INTDIR) }.sbr::
$ (CPP)
$ (CPP_PROJ)

@<<
S<

<<

MTL=midl.exe
MTL_PROJ=/nologo /D
RSC=rc.exe
BSC32=bscmake.exe
BSC32 FLAGS=/nologo
BSC32 SBRS= \

/o"s$ (OUTDIR) \upsw00.bsc"

"$ (OUTDIR) /$ (NULL) " mkdir "$ (OUTDIR)"

" DEBUG" /mktyplib203 /win32

/Fp"$ (INTDIR) \upsw00.pch" /YX /Fo"$ (INT

User’s Manual U14873EJ2VOUM

87

CHAPTER 6 PROGRAMMING EXAMPLES

(5/5) UPsw00.mak

LINK32=1ink.exe
LINK32 FLAGS=kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib
shell32.1ib ole32.1ib oleaut32.lib uuid.lib odbec32.1ib odbccp32.1ib /nologo /dll /in
cremental:yes /pdb:"$ (OUTDIR) \upsw00.pdb" /debug /machine:I1386 /def:".\Upsw00.def" /o
ut:"sS (OUTDIR) \upsw00.d1l1l" /implib:"$ (OUTDIR) \upsw00.lib" /pdbtype:sept
DEF_FILE= \

" . \Upsw00.def"
LINK32 OBJS= \

"$ (INTDIR) \Upsw00.obj" \

".\si85032.1ib"

"$ (OUTDIR) \upsw00.d11" : "3$(OUTDIR)" $(DEF_FILE) $(LINK32 OBJS)
$ (LINK32) @<<
$ (LINK32_FLAGS) $(LINK32_OBJS)

<<

!ENDIF

ITF "$ (NO_EXTERNAL DEPS)" != "1"
ITF EXISTS ("upswO00.dep")
I INCLUDE "upswOO.dep"

IELSE
IMESSAGE Warning: cannot find "upsw00.dep"

!ENDIF
!ENDIF

IIF "$(CFG)" == "upsw00 - Win32 Release" || "$(CFG)" == "upsw00 - Win32 Debug"

SOURCE=.\Upsw00.c

"$ (INTDIR) \Upsw00.obj" : $(SOURCE) "$(INTDIR)"

!ENDIF

88 User's Manual U14873EJ2VOUM

CHAPTER 6 PROGRAMMING EXAMPLES

6.2 Example of Parts Customized via User Window

6.2.1 Description of samples
The items displayed in the user custom window include a part that sets a value to the AD input pin and a part that

captures values from the DA output pin.

Pressing the ANIO button in the user custom window causes the analog value input to analog input pin ANIO to be
incremented by 10. When the AD value reaches 250, it is cleared to zero.

The analog value from ANIO undergoes AD conversion and the resulting digital value is then DA converted and
output to ANOO as an analog value. The display of "DA Value = XXXX" is updated to the current value when the
ANOO button in the user custom window is pressed.

An example is shown below.

Figure 6-2. Example of Parts Customized via User Window

Analog value input

(incremented by 10) when

ANIO button is pressed
—

AD
ANIO AD Value = XXX / ANIO = conversion ADCR

Analog value is set

ANOO DA Value = XXX
\ conversion DACS0

User-created window Processing using UOadda00.c

uPD703003

o

Analog value is displayed
when ANOO button is
pressed

' User Open I/F Panel addz00 !E m

ANIO AD Value=0
ANOO | DA Value=0

User’s Manual U14873EJ2VOUM 89

CHAPTER 6 PROGRAMMING EXAMPLES

6.2.2 Source examples

<1> Target program (program for V853)

(1/1) SAMPLE2.C

#pragma ioreg
#pragma interrupt INTADfuncl

__interrupt void funcl (void) ;

__interrupt void funcl (void)

{

__ DI();
DACSO = (char)ADCRO;
ADMO = 0x90;

__EI();

return;

}

main ()

{
ADM1 = 0x07;
ADMO = 0x90;
DAM = 0x01;
ADIC = 0x02;
__EI();
while (1)
{
}

}

90

User’s Manual U14873EJ2VOUM

CHAPTER 6 PROGRAMMING EXAMPLES

<2> Custom part source file UOadda00.c

(1/8) UOadda00.c

/*
* User Open I/F Sample Program
*/
#include <stdio.h>
#include <stdlib.h>

#include <string.h>

typedef unsigned char UCHAR;
typedef unsigned short USHORT;
typedef unsigned long ULONG;

#ifdef WIN32

#include <Windows.h>
#else

#include <Windowsx.h>
#endif

(UOadda00.c)

#if 1 /* Specify 0 for 16-bit version */

#include "uparts32.h"
#else

#include "uparts.h"

#endif

#define IDM_PAST 0x1111
#define IDM NEWWIN 0x1112
#define BTN_WIDTH 70
#define BTN _HIGHT 25

#define IDD PIN BUTTON 0x10

#ifdef WIN32

BOOL APIENTRY Dl1Main (HANDLE, DWORD, LPVOID) ;

#telse

BOOL LibMain (HANDLE, WORD, WORD, LPSTR) ;

int WEP (int) ;
#endif

void UParts_adda00 (void) ;

LONG UParts adda00WndProc (HWND, unsigned, WORD, LONG) ;

void UParts_adda00Call (ULONG) ;
void UParts_addaOOReset (void) ;

void UParts_ addaOOLoadProj (char *);

void UParts_adda0OSaveProj (char *);

User’s Manual U14873EJ2VOUM

91

CHAPTER 6 PROGRAMMING EXAMPLES

(2/8) UOadda00.c

/* Window point */
#define UParts_addaOOWIDTH 300
#define UParts_addaOOHEIGHT 100

/* Title Strings */

#define STR UP_TITLE "User Open I/F Panel adda00"

/* Window Class Name */

const BYTE cnUParts_adda00[] = "UParts_addaOOWin";

HANDLE hInst;

HWND hUParts adda00Wnd;

HWND btm hwnd[2] ;

char *strbuf[2] = {"ANIO", "ANOO"};
USHORT adval = 0;

USHORT daval = 0;

char UParts Veiw str[7];

char UParts Rect str[23];

#ifdef WIN32

/**/

/* DLL Main

*/

/**/

BOOL APIENTRY Dl1lMain (HANDLE hModele,

{

WNDCLASS wndclass;

switch(ul reason for call) {
case DLL_ PROCESS ATTACH:

hInst = hModele;
wndclass.lpszClassName
wndclass.hInstance
wndclass.lpfnWndProc
wndclass.hCursor
wndclass.hIcon
wndclass.lpszMenuName

wndclass.hbrBackground

DWORD ul reason for call, LPVOID lpReserved)

(LPSTR) cnUParts_addalo0;

hInst;
(WNDPROC) UParts adda0O0WndProc;
NULL;

NULL;

NULL;

(HBRUSH) (COLOR_WINDOW + 1) ;

wndclass.style = CS_HREDRAW | CS_VREDRAW;

wndclass.cbClsExtra

0;

wndclass.cbWndExtra = DLGWINDOWEXTRA;

RegisterClass (&wndclass) ;

break;

92 User's Manual U14873EJ2VOUM

CHAPTER 6 PROGRAMMING EXAMPLES

(3/8) UOadda00.c

case DLL_ THREAD ATTACH:

break;

case DLL THREAD DETACH:
break;

case DLL PROCESS DETACH:
break;

}

return (TRUE) ;

}

#else

BOOL LibMain (HANDLE hInstance, WORD wDataSeg, WORD cbHeapSize, LPSTR lpszCmdLine)

{

WNDCLASS wndclass;

if (cbHeapSize > 0) {
UnlockData (0) ;
UnlockSegment (wDataSeg) ;

wndclass.lpszClassName = (LPSTR)cnUParts adda0o0;
wndclass.hInstance = hInstance;
wndclass.lpfnWndProc = (WNDPROC) UParts_ addaO0WndProc;
wndclass.hCursor = NULL;

wndclass.hIcon = NULL;

wndclass.lpszMenuName = NULL;

wndclass.hbrBackground = COLOR_WINDOW + 1;
wndclass.style = CS_HREDRAW | CS_VREDRAW;
wndclass.cbClsExtra = 0;

wndclass.cbWndExtra = 0;

RegisterClass (&wndclass) ;
hInst = hInstance;
return (TRUE) ;

}

#endif

#ifndef WIN32

/**/
/* WEP */
/**/

int WEP (int nParameter)

{

User’s Manual U14873EJ2VOUM 923

CHAPTER 6 PROGRAMMING EXAMPLES

(4/8) UOadda00.c

switch (nParameter)
case WEP_SYSTEM EXIT:

break;
case WEP_FREE DLL:
break;
}
return (1) ;
}
#endif

/**/

/* UParts_adda00 (void) */

/**/
void UParts_adda00 (void)

{
if (!hUParts adda00Wnd) {
hUParts_adda00Wnd = CreateWindow ((LPSTR)cnUParts adda00, /* Class name */

STR_UP_TITLE, /* Title. */
WS_OVERLAPPEDWINDOW | WS _BORDER | WS VISIBLE, /* style bits. */
CW_USEDEFAULT, /* x - default.*/
CW_USEDEFAULT, /* y - default. */
UParts_addaOOWIDTH, /* cx - default.*/
UParts_addaOOHEIGHT, /* cy - default.*/
NULL, /* No parent.*/
NULL, /* Class memu.*/
hInst, /* Creator */
NULL) ; /* Params. */

if (hUParts_ adda00Wnd) {
UpSetUserWnd (hUParts_adda00Wnd) ;
ShowWindow (hUParts adda00Wnd, SW_SHOW) ;
UpCallFuncName ((char *)"UParts adda00Call") ;
UpResetFuncName ((char *)"UParts addaOOReset") ;
UpLoadProjName ((char *)"UParts_ adda0OOLoadProj") ;
UpSaveProjName ((char *)"UParts_ adda0OSaveProj") ;

UpInitAD ("ANIO") ;

UpInitAD ("ANI1") ;

}

return;

94 User's Manual U14873EJ2VOUM

CHAPTER 6 PROGRAMMING EXAMPLES

(5/8) UOadda00.c

/**/

/* UParts_adda00WndProc (HWND, unsigned WORD, LONG) */

/**/

LONG UParts_ adda0OOWndProc (HWNND hWnd, unsigned iMessage, WORD wParam, LONG lParam)

{

HDC hDC;
PAINTSTRUCT ps;

RECT wRect;

int i;

char strval[20];

#ifdef WIN32

long WX, Wy ;
Helse

WORD WX, WYy;
Hendif

switch (iMessage) {
case WM_CREATE:

for(i = 0; 1 < 2; i++){
#ifdef WIN32

btm hwnd[i] = CreateWindow ((LPSTR) "button",strbuf[i],
WS_CHILD|BS_PUSHBUTTON|WS_VISIBLE|WS_ TABSTOP,
10, 10+30*i, BTN WIDTH,BTN HIGHT, hWnd,
HMENU) (IDD_PIN BUTTON+i),hInst,NULL) ;

Helse
btm hwnd[i] = CreateWindow ((LPSTR) "button", strbuf[il],
WS_CHILD | BS_PUSHBUTTON | WS _VISIBLE | WS_TABSTOP,
10, 10+30*i, BTN WIDTH, BTN HIGHT, hwWnd,
IDD PIN BUTTON + i, hInst, NULL);
Hendif

}

return (FALSE) ;

User’s Manual U14873EJ2VOUM 95

CHAPTER 6 PROGRAMMING EXAMPLES

(6/8) UOadda00.c

case WM_COMMAND:
switch (wParam) {
case IDD PIN BUTTON:
if (adval <= 245)
adval += 10;
else
adval = 0;
UpSetAD ("ANIO", adval);
InvalidateRect (hWwnd, NULL, TRUE) ;
UpdateWindow (hWnd) ;
break;
case IDD PIN BUTTON + 1:
UpGetDA ("ANOO", &daval) ;
InvalidateRect (hWnd, NULL, TRUE) ;
UpdateWindow (hWnd) ;
break;

}

return (FALSE) ;

case WM_PAINT:
hDC = BeginPaint (hWnd, &ps) ;
wsprintf (strval, "AD Value=%u\0", adval);
TextOut (hDC, BTN WIDTH + 40, 15, strval, lstrlen(strval));
wsprintf (strval, "DA Value=%u\0", daval) ;
TextOut (hDC, BTN WIDTH + 40, 45, strval, lstrlen(strval));
EndPaint (hWnd, &ps);
return (FALSE) ;

case WM_SYSCOLORCHANGE:
InvalidateRect (hWwnd, NULL, TRUE) ;

break;

case WM_MOVE:
GetWindowRect (hWnd, &wRect) ;
wx = wRect.right - wRect.left;

wy

wRect .bottom - wRect.top;

if ((wx != 36) && (wy != 36)) {

o\

wsprintf (UParts Rect str, "%d, %d, %d, %d", wRect.left,

wRect.top, wx, wy);
InvalidateRect (hWwnd, NULL, TRUE) ;

break;

96

User’s Manual U14873EJ2VOUM

CHAPTER 6 PROGRAMMING EXAMPLES

(7/8) UOadda00.c

case WM _SIZE:
if (wParam == SIZEICONIC) {
lstrcpy (UParts Veiw str, "Icon");
} else {
GetWindowRect (hWnd, &wRect) ;

lstrcpy (UParts Veiw str, "Normal");

o°

wsprintf (UParts Rect str, "%d,
wRect.right - wRect.left, wRect.bottom - wRect.top) ;

}

break;

case WM_DESTROY:
UpCloseUserWnd (hWwnd) ;

default:
return DefWindowProc (hWnd, iMessage, wParam, lParam);

}

return O0L;

/**/

/* UParts_adda00Call (ULONG) */

/**/
void UParts_adda00Call (ULONG time)

{

return;

/**/

/* UParts_addaOOReset (void) */

/**/
void UParts_addaOOReset (void)
adval = 0;
0;
InvalidateRect (hUParts adda0O0Wnd, NULL, TRUE) ;

daval

d, %d, %d", wRect.left, wRect.top,

User’s Manual U14873EJ2VOUM

97

CHAPTER 6 PROGRAMMING EXAMPLES

(8/8) UOadda00.c

/**/

/* UParts_adda00LoadProj (char *) */

/**/

void UParts_addaOOLoadProj (char *fname)

{

char *next ;

WORD X, Y, WX, WYy;

GetPrivateProfileString ("UOaddaOO", "Window", "Hide", UParts Veiw str, 7, fname);
if (!1strcmp (UParts Veiw str, "Icon")){ /* "Icon" mode */

ShowWindow (hUParts adda0O0Wnd, SW_SHOWMINNOACTIVE) ;

}

else { /* "Normal" mode */

GetPrivateProfileString ("UOaddal0", "Geometry", "0, 0, 0, 0",
UParts Rect str, 23, fname);
if (lstrcmp (UParts Rect str, "0, 0, 0, 0")) {
next = strtok(UParts Rect str, ",");
x = (WORD)strtoul (next, NULL, 10);
next = strtok (NULL, ",");
y = (WORD)strtoul (next, NULL, 10);
next = strtok (NULL, ",");
wx = (WORD)strtoul (next, NULL, 10);

next = strtok (NULL, "");
wy = (WORD)strtoul (next, NULL, 10);
MoveWindow (hUParts_addaOOWnd, x, y, wx, wy, TRUE);

}

ShowWindow (hUParts adda00Wnd, SW_ SHOWNORMAL) ;

/**/

/* UParts_adda00OSaveProj (char *) */

/**/

void UParts_ adda0OSaveProj (char *fname)

{

WritePrivateProfileString ("UOadda0O0", "Window", UParts Veiw str, fname);

WritePrivateProfileString("UOadda0OO0O", "Geometry", UParts Rect str, fname);

/* UOadda00.c */

98 User's Manual U14873EJ2VOUM

CHAPTER 6 PROGRAMMING EXAMPLES

<3> Definition file UOadda00.def

(1/1) UOadda00.def

LIBRARY

; EXETYPE

DESCRIPTION

; STUB

CODE
DATA

HEAPSIZE

EXPORTS

’

; IMPORTS

UOADDAOO

WINDOWS 3.1

'User Open I/F Panel adda00'

'WINSTUB.EXE'

PRELOAD MOVEABLE DISCARDABLE
PRELOAD MOVEABLE SINGLE

4096

WEP @l
UParts_adda00 @2
UParts_addaOOWndProc @3
UParts_adda00Call @4
UParts_addaOOReset @5
UParts_addaOOLoadProj @6
UParts_addaO0SaveProj @7

SU78K0 .UpSetUserWnd
SU850.UpCloseUserWnd
SU850.UpCallFuncName
SU850 .UpResetFuncName
SU850 .UpLoadProjName
SU850 .UpSaveProjName
SU850.UpInitAD

SU850 .UpSetAD

SU850 .UpGetDA

User’s Manual U14873EJ2VOUM

99

CHAPTER 6 PROGRAMMING EXAMPLES

<4> Make file UOadda00.mak
(1/4) UOadda00.mak

Microsoft Developer Studio Generated NMAKE File, Based on uoadda00.dsp
IIF "$(CFG)" == ""

CFG=uoadda00 - Win32 Debug

IMESSAGE Configuration not specified. Set default uocadda00 - Win32 Debug.
!ENDIF

ITF "S(CFG)" != "uoadda00 - Win32 Release" && "S$S(CFG)" != "uoadda00 - Win32 Debug"
IMESSAGE Specified build mode "$(CFG)" is not correct.
IMESSAGE Configuration can be specified during execution of NMAKE.

IMESSAGE Defines command-line macro setting. Example:

IMESSAGE

IMESSAGE NMAKE /f "uoadda0O0.mak" CFG="uoadda00 - Win32 Debug"
IMESSAGE

IMESSAGE Selectable build modes:

IMESSAGE

IMESSAGE "uoadda0O - Win32 Release" (for "Win32 (x86) Dynamic-Link Library")
IMESSAGE "uoadda0O - Win32 Debug" (for "Win32 (x86) Dynamic-Link Library")
IMESSAGE

I ERROR Invalid configuration was specified.

!ENDIF

ITF "$(0S)" == "Windows NT"
NULL=

'ELSE

NULL=nul

!ENDIF

CPP=cl.exe

MTL=midl.exe

RSC=rc.exe

ITF "$(CFG)" == "uoadda00 - Win32 Release"
OUTDIR=.\Release

INTDIR=.\Release

Begin Custom Macros

OutDir=.\Release

End Custom Macros

ALL : "$(OUTDIR)\uoadda00.dll"

100 User's Manual U14873EJ2VOUM

CHAPTER 6 PROGRAMMING EXAMPLES

(2/4) UOadda00.mak

CLEAN
-@erase "$ (INTDIR) \Uoadda00.obj"
-@erase "$ (INTDIR)\vc60.idb"
-@erase "$ (OUTDIR) \uoadda00.d11"
-@erase "$ (OUTDIR) \uoadda00.exp"
-@erase "$ (OUTDIR) \uoadda00.lib"
"S$ (OUTDIR) "

if not exist "$(OUTDIR) /S (NULL)" mkdir "$ (OUTDIR)"

CPP_PROJ=/nologo /Zpl /MT /W3 /GX /02 /D "WIN32" /D "NDEBUG" /D " WINDOWS" /D " MBCS"
/D " USRDLL" /D "UOADDAOO EXPORTS" /Fp"$ (INTDIR)\uoadda00.pch" /YX /Fo"$ (INTDIR)\\"
/FA"$ (INTDIR)\\" /FD /c

MTL PROJ=/nologo /D "NDEBUG" /mktyplib203 /win32

BSC32=bscmake.exe

BSC32 FLAGS=/nologo /o"$ (OUTDIR) \uoadda00.bsc"

BSC32 SBRS= \

LINK32=1ink.exe
LINK32 FLAGS=kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib
shell32.1ib ole32.1ib oleaut32.1lib uuid.lib odbc32.1lib odbccp32.1lib /nologo /dll /in

cremental :no /pdb:"$ (OUTDIR) \uoadda00.pdb" /machine:I1386 /def:".\Uoadda00.def" /out:"
$ (OUTDIR) \uoadda00.d1l1l" /implib:"$ (OUTDIR) \uoadda00.lib"
DEF_FILE= \

".\Uoadda00.def"
LINK32 OBJS= \

"$ (INTDIR) \Uoadda00.0bj" \

".\si85032.1ib"

"$ (OUTDIR) \uoadda00.dll" : "$(OUTDIR)" $(DEF_FILE) $(LINK32 OBJS)
$ (LINK32) @<<
$ (LINK32 FLAGS) $(LINK32 OBJS)

<<

IELSEIF "S$(CFG)" == "uoadda0O - Win32 Debug"

OUTDIR=.\Debug
INTDIR=.\Debug
Begin Custom Macros
OutDir=.\Debug

End Custom Macros

ALL : "$(OUTDIR)\uoadda00.dll"

User’s Manual U14873EJ2VOUM 101

CHAPTER 6 PROGRAMMING EXAMPLES

(3/4) UOadda00.mak

CLEAN
-@erase "$ (INTDIR) \UoaddaO0.obj"
-@erase "$ (INTDIR)\vcé60.idb"
-@erase "$ (INTDIR)\vc60.pdb"
-@erase "$ (OUTDIR) \uoadda00.dl1l"
-@erase "$ (OUTDIR) \uoaddaO0.exp"
-@erase "$ (OUTDIR) \uoadda00.ilk"
-@erase "$ (OUTDIR) \uoadda00.1lib"
-@erase "$ (OUTDIR) \uoadda00.pdb"

"S (OUTDIR) "

if not exist "$(OUTDIR)/$(NULL)" mkdir "$ (OUTDIR)"

CPP_PROJ=/nologo /Zpl /MTd /W3 /Gm /GX /ZI /Od /D "WIN32" /D " DEBUG" /D " WINDOWS"
/D " MBCS" /D " USRDLL" /D "UOADDAOO_EXPORTS" /Fp"$ (INTDIR) \uoadda00.pch" /YX /Fo"$ (INT
DIR)\\" /Fd4"$ (INTDIR)\\" /FD /GZ /c
MTL_PROJ=/nologo /D " DEBUG" /mktyplib203 /win32

BSC32=bscmake.exe

BSC32 FLAGS=/nologo /o"$ (OUTDIR)\uoadda00.bsc"

BSC32 SBRS= \
LINK32=1ink.exe
LINK32 FLAGS=kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib
shell32.1ib ole32.1ib oleaut32.lib uuid.lib odbc32.1ib odbccp32.1lib /nologo /dll /in
cremental:yes /pdb:"$(OUTDIR) \uoadda00.pdb" /debug /machine:I386 /def:".\Uoadda00.def
" /out:"$ (OUTDIR) \uoadda00.dll" /implib:"$ (OUTDIR) \uoadda00.lib" /pdbtype:sept
DEF_FILE= \

" \Uoadda00.def"

LINK32 OBJS= \
"$ (INTDIR) \Uoadda00.0bj" \
".\si85032.1lib"

"$ (OUTDIR) \uoadda00.dll" : "$(OUTDIR)" $(DEF_FILE) $(LINK32_OBJS)
$ (LINK32) @<«<
$(LINK32_FLAGS) $(LINK32_OBJS)

<<

!ENDIF

.c{$ (INTDIR) }.obj::
$ (CPP) @<<
$ (CPP_PROJ) $<

<<

102 User's Manual U14873EJ2VOUM

CHAPTER 6 PROGRAMMING EXAMPLES

(4/4) UOadda00.mak

.cpp{$ (INTDIR) }.0bj: :
$ (CPP) @<<
$ (CPP_PROJ) $<

.cxx{$ (INTDIR) }.obj::
$ (CPP) @<<
$ (CPP_PROJ) $<

<<

.c{$ (INTDIR) }.sbr::
$ (CPP) @<<
$(CPP_PROJ) $<

.cpp{$ (INTDIR) } .sbr: :
S (CPP) @<<
$ (CPP_PROJ) $<

.cxx{$ (INTDIR) }.sbr::
S (CPP) @<<
$(CPP_PROJ) $<

ITF "$ (NO_EXTERNAL DEPS)" != "1"

ITF EXISTS ("uoadda00.dep")

I INCLUDE "uoaddaOO.dep"

!ELSE

IMESSAGE Warning: cannot find "uoaddaOO.dep"
!ENDIF

!ENDIF

IIF "$(CFG)" == "uoadda00 - Win32 Release" || "S$(CFG)"
SOURCE=. \Uoadda00.c

"uoadda00 - Win32 Debug"

"$ (INTDIR) \Uoadda00.0bj" : $(SOURCE) "S$(INTDIR)"

!ENDIF

User’s Manual U14873EJ2VOUM 103

APPENDIX A ERROR MESSAGES

A.1 Error Processing

(a) If the specified pin name is not among the products that can be simulated, the Error Message dialog box
appears to report an error message.

(b) If the read DLL file is a combination of user panel custom functions and Parts custom functions, a dialog box
appears with a warning message when the first function to be read does not belong to the DLL file in
accordance with the DLL file name.

(c) If an error occurs when a user-created custom DLL is read, the part that caused the error is not created.

(d) If an error or warning occurs even once for the user panel custom functions UpGetPin(), UpGetPort(),
UpGetMem(), UpCIrMtrAcClk(), or UpGetStpingMtr(), error values may be returned or the function may not
operate correctly during subsequent uses of the function. Therefore, if an error or warning occurs, revise the
source code, create the DLL file again, and reload to avoid such problems.

A.2 Error and Warning Messages

Error messages and warning messages that may occur during execution of a function are listed below. The
abbreviated function names listed below are used to refer to the function names for which the error occurred.

Table A-1. The Function Names For Which The Error Occurred

Stepping motor functions UpStpingMtr(), UpSetStpingMtr(), UpGetStpingMtr()

LED picture setup function

UpSetLedPic()

LED functions

UpLed(), UpPortLed()

Matrix LED function

UpMtxLed()

Serial pin data input function

UpSerial_data()

Port value setup/capture functions

UpPortLed(), UpGetPort(), UpSetPort()

Hold time setup function

UpSetPBtmtime()

Vertical scroll bar analog input function

UpScalelnterAD()

Reference voltage value setup function

UpSetAVref()

Function name notification functions

UpCallFuncName(), UpLoadProjName(),
UpSaveProjName(), UpResetFuncName()

Bitmap setup functions

UpSetBtmBmp(), UpSetLedBmp(),
UpSetMtrBmp()

Button functions

UpPushBtm(), UpTgIBmp(), UpSelectBtm()

104

User’s Manual U14873EJ2VOUM

APPENDIX A ERROR MESSAGES

A 2.1 Error Messages

With the simulator, when an error is deetected, a message is output to the error dialog box and the processing

is stopped.

E10100:
Cause
User Action
Function

E10101:
Cause
User Action
Function

E10103:
Cause
User Action
Function

E10107:
Cause
User Action
Function

E1010c:
Cause
User Action
Function

E10124:
Cause
User Action
Function

E10139:
Cause
User Action
Function

E10200:
Cause
User Action
Function

E10201:
Cause
User Action
Function

The selected pin name does not exist.

The set pin does not exist.

Set a pin name that exists on the target device.
All functions that include a pin name parameter

The pin name is a 2-byte name.

The set pin name is described with 2-byte characters.
Desscribe the pin name with 1-byte characters.

All functions that include a pin name parameter

Hold time is invalid.

Retention time is not set within the settable range or is not a numerical value.
Set the retention time within the range 999msec to 0.001msec.

Hold time setup function

AVref is above/under operating voltage range.
AVref is not within the range of operating voltage.
Set it within the range of operating voltage.
Reference voltage value setup function

The selected bit map file is invalid.

A bitmap file specified in the bitmap entry dialog box is incorrect.
Set a bitmap format file.

Bitmap setup functions

The selected pin name is already set.

An attempt was made to re-set a pin that had already been set in the buttons dialog box.
Do not set a pin that has been already set.

Button functions

Allocation error.

Memory could not be secured.

Close other applications and secure memory.
All functions

The active H/L is not HIGH or LOW.

The described active H/L is a value other than HIGH or LOW.
Describe HIGH or LOW in the active H/L.

All functions that include an active high/low parameter

The chanel number is not 4 or 8.

The described number of the channels is a value other than 4 or 8.

Describe 4 or 8 for the number of the channels according to the number of the pins.
Stepping motor functions that include a minimum step angle parameter

User’s Manual U14873EJ2VOUM 105

APPENDIX A ERROR MESSAGES

106

E10202:
Cause
User Action
Function

E10203:
Cause
User Action
Function

E10204:
Cause

User Action
Function

E10205:
Cause

User Action
Function

E10206:
Cause
User Action
Function

E10207:
Cause
User Action
Function

E10208:
Cause

User Action
Function

E10209:
Cause

User Action
Function

E1020a:
Cause
User Action
Function

E1020b:
Cause
User Action
Function

The phase is not 0 or 1.

The described excitation value is a value other than 0 or 1.

Describe 0 or 1 for excitation according to the excitat ion method.
Stepping motor functions that include a minimum step angle parameter

The minimum step angle does not divide to 360.

The described minimum step angle is a value that ccannot divide 360 evenly.
Describe an integer value that can divide 360 evenly for the minimum step angle.
Stepping motor functions that include a number-of-channels parameter

The picture type is not PIC_RECT or PIC_ELL.

The described value for the type of figure in the parameter is a value other than macro
PIC_RECT or PIC_ELL.

Describe PIC_RECT or PIC_ELL for the type of figures.

LED picture setup function

The color type is not PIC_RED or PIC_YELLOW or PIC_GREEN.

The described value for the type of color in the parameter is a value other than macro
PIC_RED, PIC_YELLOW, or PIC_GREEN.

Describe one of PIC_RED, PIC_YELLOW, or PIC_GREEN for the type of color.

LED picture setup function

The view type isno O or 1.

The described value of the figure style is a value other than 0 or 1.
Describe 0 or 1 for the parameter figure style.

LED functions that include a picture type parameter

The first bit of serial input data is not MSB or LSB.

The described value of the figure style is a value other than 0 or 1.
Describe 1 or 0 for the first bit of the parameter.

Serial pin data input function

The active H/L of output1 is not HIGH or LOW.

The described value of the active H//L of output 1 for the parameter is a value other than
HIGH or LOW.

Describe HIGH or LOW for the active H/L of output 1 for the parameter.

Matrix LED function

The active H/L of output2 is not HIGH or LOW.

The described value of the active H/L of output 2 for the parameter is a value other than
HIGH or LOW.

Describe HIGH or LOW for the active H/L of output 2 for the parameter.

Matrix LED function

The port name is a 2-byte name.

The port name of the parameter is described with 2-byte characters.
Describe the port name of the parameter with 1-byte characters.
Port value setup/capture functions

The selected port name does not exsist.

A nonexistent port name is described as the port name of the parameter.
Describe a port name existing on a target device.

Port value setup/capture functions

User’s Manual U14873EJ2VOUM

APPENDIX A ERROR MESSAGES

E1020c: The parameter is NULL pointer.

Cause An incorrect parameter is described in a function.

User Action Describe a correct parameter.

Function All functions that include a pointer type parameter

E1020d: The function xxxx can not set in UOxxx.dll.

Cause This function was described in UOxxx.dll.

User Action Use it in UPxxx.dll.

Function All functions described in section 4.1

E1020e: The function xxxx can not set in UPxxx.dll.

Cause This function was described in UPxxx.dlIl.

User Action Use it in UOxxx.dll.

Function All functions described in section 4.2

E1020f: The function xxxx does not set previous.

Cause A necessary notification function was not notified previously.

User Action Call the necessary notification function previously.

Function Functions requiring advance notification function
A. 2.2 Warning Messages

With the simulator, when a warning is detected, a message is output to the warning dialog box and the

processing is continued.

W10180: Hold time is not set.

Hold time is set to 0.5 msec.
Cause Hold time is not set.
User Action Set the hold time.
Function Hold time setup function
W10181: AVref is not set. AVref is set 5.0v,continue?
Cause AVref is not set.
User Action Set AVref.
Function Reference voltage value setup function
W10280: Data cannot be input from external devices during backtrace execution.
Cause Data input during back-trace is prohibited.
User Action Do not input data while executing back-trace.
Function Vertical scroll bar analog input function

User’s Manual U14873EJ2VOUM 107

[MEMO]

108 User's Manual U14873EJ2VOUM

" - Although NEC has taken all possible steps
aC S I I I l I e eS S ag e to ensure thatthe documentation supplied

to our customers is complete, bug free
and up-to-date, we readily accept that

From: .
errors may occur. Despite all the care and
precautions we’ve taken, you may
Name encounter problemsinthe documentation.
Please complete this form whenever
Company you'd like to report errors or suggest
improvements to us.
Tel. FAX
Address
Thank you for your kind support.
North America Hong Kong, Philippines, Oceania Asian Nations except Philippines
NEC Electronics Inc. NEC Electronics Hong Kong Ltd. NEC Electronics Singapore Pte. Ltd.
Corporate Communications Dept. Fax: +852-2886-9022/9044 Fax: +65-250-3583

Fax: +1-800-729-9288
+1-408-588-6130

Europe Korea Japan
NEC Electronics (Europe) GmbH NEC Electronics Hong Kong Ltd. NEC Semiconductor Technical Hotline
Seoul Branch Fax: +81- 44-435-9608

Technical Documentation Dept.

Fax: +49-211-6503-274 Fax: +82-2-528-4411

South America Taiwan
NEC do Brasil S.A. NEC Electronics Taiwan Ltd.
Fax: +55-11-6462-6829 Fax: +886-2-2719-5951

| would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

If possible, please fax the referenced page or drawing.

Document Rating Excellent Good Acceptable Poor
Clarity a a a Qa
Technical Accuracy a a Qa a

Organization a a Qa a

CS 01.2

