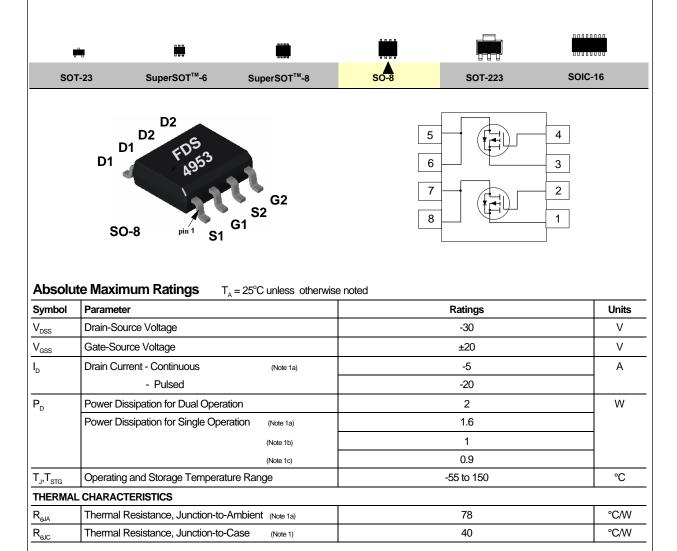


SEMICONDUCTOR TM

February 1999

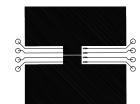
FDS4953

Dual P-Channel, Logic Level, PowerTrench[™] MOSFET


General Description

These P-Channel Logic Level MOSFETs are produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance.

These devices are well suited for portable electronics applications: load switching and power management, battery charging circuits, and DC/DC conversion.

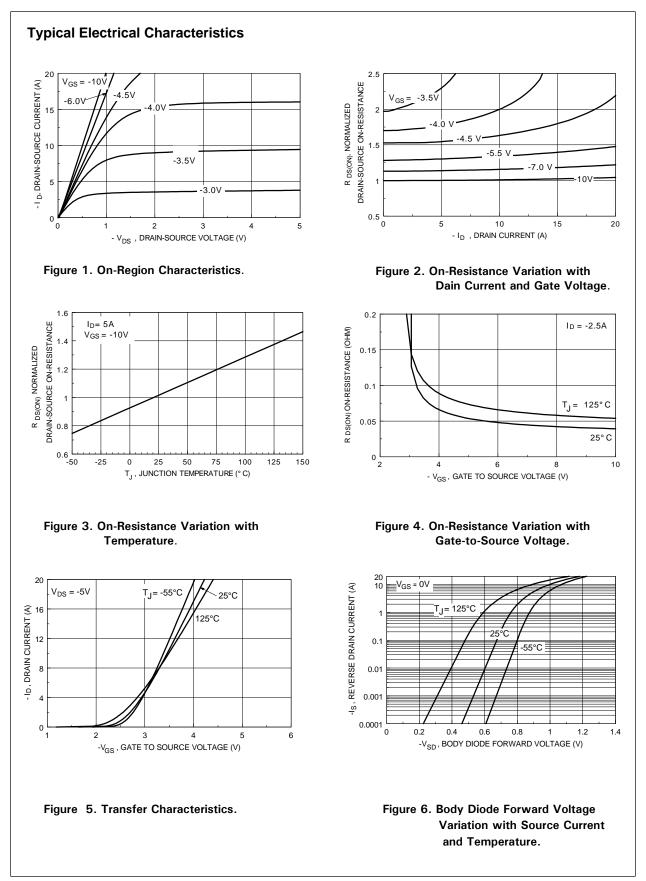

Features

- $\begin{array}{c|c} \bullet & -5 \text{ A, } -30 \text{ V. } \mathsf{R}_{\mathsf{DS}(\mathsf{ON})} = 0.053 \ \Omega \ @ \ \mathsf{V}_\mathsf{GS} = -10 \text{ V,} \\ \mathsf{R}_\mathsf{DS}(\mathsf{ON}) = 0.095 \ \Omega \ @ \ \mathsf{V}_\mathsf{GS} = -4.5 \text{ V.} \end{array}$
- Low gate charge (8nC typical).
- High performance trench technology for extremely low R_{DS(ON)}.
- High power and current handling capability.

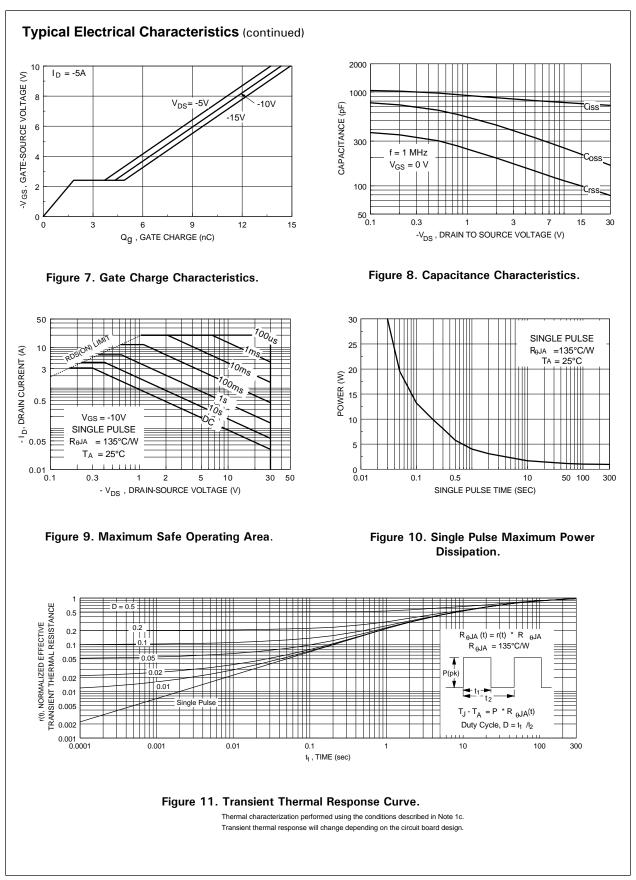
© 1999 Fairchild Semiconductor Corporation

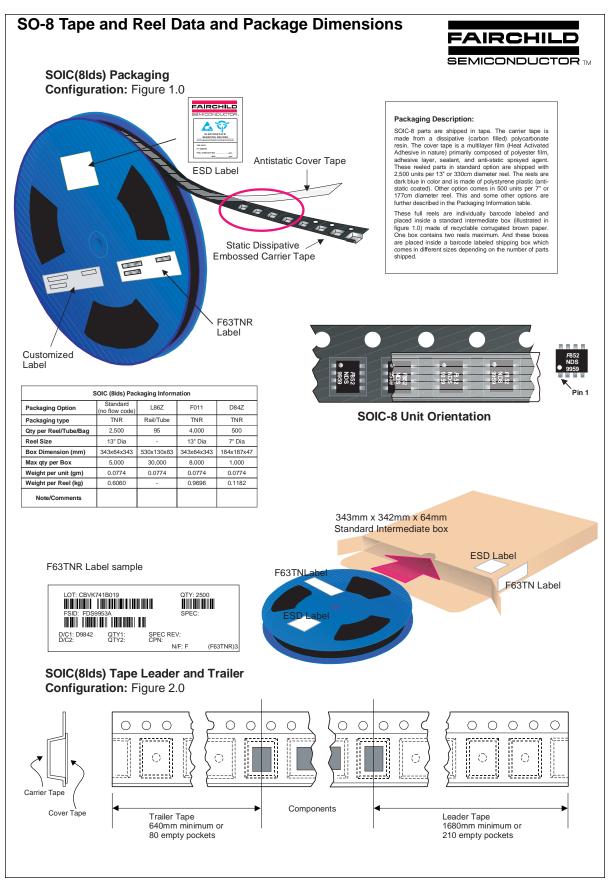
$\begin{array}{c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Symbol	Parameter	Conditions	Min	Тур	Max	Units
$\begin{array}{c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	OFF CHAR	ACTERISTICS					
$ \begin{array}{ c c c c c } \hline \mbox{Loss J} & \mbox{Zero Gate Voltage Drain Current} & V_{05} = -24 \ V, V_{05} = 0 \ V & \ \hline \mbox{T}_{J} = 55^{\circ} \ C & \ -10 \ \mu \ $	BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_{D} = -250 \mu A$	-30			V
$\begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \hline \end{tabular} \\ \hline \e$	$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	I_{D} = -250 µA, Referenced to 25 °C		-20		mV/°C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -24 V, V_{GS} = 0 V$			-1	μA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			T _J = 55°C			-10	μA
$\begin{array}{ c c c c c c } \hline ON \mbox{CHARACTERISTICS} (\mbox{Null e} 2) \\ \hline V_{(S)(W)} & Gate Threshold Voltage Temp. Coefficient } & I_0 = 250 \ \mu\text{A}, Referenced to 25 °C & 4 & mV/C \\ I_0 = 250 \ \mu\text{A}, Referenced to 25 °C & 4 & mV/C \\ \hline A_{(S)(W)} & Static Drain-Source On-Resistance & V_{OS} = -10 \ V, \ I_0 = -5 \ A & 0.04 & 0.053 \\ \hline $T_{J} = 125^{\circ}\text{C} & 0.055 & 0.085 \\ \hline $V_{OS} = -4.5 \ V, \ I_0 = -3.3 \ A & 0.058 & 0.095 \\ \hline $V_{OS} = -10 \ V, \ V_{OS} = -5 \ V & -20 & A \\ \hline $V_{OS} = -10 \ V, \ V_{OS} = -5 \ V & -20 & A \\ \hline $V_{OS} = -10 \ V, \ V_{OS} = -5 \ A & 11 & S \\ \hline $V_{OS} = -10 \ V, \ V_{OS} = -5 \ A & 11 & S \\ \hline $V_{OS} = 0 \ V_{OS} = -15 \ V, \ V_{OS} = 0 \ V, \\ \hline $f = 1.0 \ \text{MHz} & 220 \ PF \\ \hline $C_{OS} & Output \ Capacitance & V_{OS} = -15 \ V, \ V_{OS} = 0 \ V, \\ \hline $f = 1.0 \ \text{MHz} & 220 \ PF \\ \hline $C_{OS} & Output \ Capacitance & V_{OS} = -15 \ V, \ I_0 = -1 \ A \\ \hline $t_0(m) & Tum \ On \ Delay \ Time & V_{OS} = -15 \ V, \ I_0 = -1 \ A \\ \hline $t_0(m) & Tum \ On \ Bea \ Time & V_{OS} = -10 \ V, \ R_{GEN} = 6 \ \Omega & 14 \ 25 \ ns \\ \hline $t_{O(m)} & Tum \ Off \ Delay \ Time & V_{OS} = -10 \ V, \ R_{GEN} = 6 \ \Omega & 14 \ 25 \ ns \\ \hline $t_{O(m)} & Tum \ Off \ Delay \ Time & V_{OS} = -15 \ V, \ I_0 = -5 \ A & 16 \ 27 \ ns \\ \hline $Q_{Q_{S}} & Gate-Drain \ Charge & V_{OS} = -15 \ V, \ I_0 = -5 \ A & 16 \ 27 \ ns \\ \hline $Q_{Q_{S}} & Gate-Drain \ Charge & V_{OS} = -15 \ V, \ I_0 = -5 \ A & 16 \ 27 \ ns \\ \hline $Q_{Q_{S}} & Gate-Drain \ Charge & V_{OS} = -15 \ V, \ I_0 = -5 \ A & 16 \ 27 \ ns \\ \hline $Q_{Q_{S}} & Gate-Drain \ Charge & V_{OS} = -5 \ V & 1.8 \ nC \\ \hline $Q_{Q_{S}} & Gate-Drain \ Charge & V_{OS} = -5 \ V & 1.8 \ nC \\ \hline $Q_{Q_{S}} & Gate-Drain \ Charge & V_{OS} = -5 \ V & 1.8 \ nC \\ \hline $Q_{Q_{S}} & Gate-Drain \ Charge & V_{OS} = -5 \ V & 1.8 \ nC \\ \hline $Q_{Q_{S}} & Gate-Drain \ Charge & V_{OS} = -5 \ V & 1.8 \ nC \\ \hline $Q_{Q_{S}} & Gate-Drain \ Charge & V_{OS} = -5 \ V & 1.8 \ nC \\ \hline $Q_{Q_{S}} & Gate-Drain \ Charge & V_{OS} = -5 \ V & 1.8 \ nC \\ \hline $Q_{Q_{S}} & Gate-Drain \ Charge & V_{OS} = -5 \ V & 1.8 \ nC \\ \hline $Q_{$		Gate - Body Leakage, Forward	$V_{GS} = 20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			100	nA
$\begin{array}{ c c c c c } \hline ONCHARACTERISTICS (\ \mbox{(Neta c2)} & \ (N$		Gate - Body Leakage, Reverse	$V_{GS} = -20 V, V_{DS} = 0 V$			-100	nA
$ \frac{\Delta V_{GSPI}/\Delta T_{\rm J}}{\Delta M_{GSPI}/\Delta T_{\rm J}} \begin{array}{c c c c c c c } Gate Threshold Voltage Temp. Coefficient & I_{\rm D} = 250 \ \mu A, Referenced to 25 °C & 4 & mV/Cl \\ \hline I_{\rm J} = 125 °C & 0.04 & 0.053 \\ \hline I_{\rm J} = 125 °C & 0.055 & 0.085 \\ \hline I_{\rm J} = 125 °C & 0.055 & 0.085 \\ \hline I_{\rm J} = 125 °C & 0.055 & 0.085 \\ \hline I_{\rm J} = 125 °C & 0.055 & 0.085 \\ \hline I_{\rm J} = 125 °C & 0.055 & 0.085 \\ \hline I_{\rm J} = 125 °C & 0.055 & 0.085 \\ \hline I_{\rm J} = 125 °C & 0.055 & 0.085 \\ \hline I_{\rm J} = 125 °C & 0.055 & 0.085 \\ \hline I_{\rm J} = 10 V, \ I_{\rm D} = -5 \ A & 0.058 & 0.095 \\ \hline I_{\rm J} = 10 V, \ I_{\rm D} = -5 \ A & 11 & S \\ \hline I_{\rm J} = 10 V, \ I_{\rm D} = -5 \ A & 11 & S \\ \hline I_{\rm J} = 10 V, \ I_{\rm D} = -5 \ A & 11 & S \\ \hline I_{\rm J} = 10 V, \ I_{\rm D} = -5 \ A & 11 & S \\ \hline I_{\rm J} = 10 V, \ I_{\rm D} = -5 \ A & 11 & S \\ \hline I_{\rm J} = 10 V, \ I_{\rm D} = -5 \ A & 11 & S \\ \hline I_{\rm J} = 10 V, \ I_{\rm D} = -5 \ A & 11 & S \\ \hline I_{\rm J} = 10 V, \ I_{\rm D} = -5 \ A & 11 & S \\ \hline I_{\rm J} = 10 V, \ I_{\rm D} = -5 \ A & 11 & S \\ \hline I_{\rm J} = 10 V, \ I_{\rm D} = -5 \ A & 100 & P \ F \\ \hline I_{\rm Cas} & 0.040 \ L Capacitance & V_{\rm DS} = -15 \ V, \ I_{\rm D} = -5 \ A & 100 & P \ F \\ \hline I_{\rm Cas} & Reverse Transfer Capacitance & V_{\rm DS} = -15 \ V, \ I_{\rm D} = -1 \ A & V_{\rm DS} = -10 \ V, \ I_{\rm D} = -1 \ A & 11 & 25 \ I_{\rm S} & 100 \ P \ F \ I_{\rm D} & 11 & 25 \ I_{\rm S} & 100 \ P \ F \ I_{\rm D} & 11 \ I_{\rm S} & 100 \ P \ F \ I_{\rm D} & 100 \ I_{\rm S} & 12 \ I_{\rm S} &$		CTERISTICS (Note 2)	·				
$ \frac{\Delta V_{GSPI}/\Delta T_{\rm J}}{\Delta M_{GSPI}/\Delta T_{\rm J}} \begin{array}{c c c c c c c } Gate Threshold Voltage Temp. Coefficient & I_{\rm D} = 250 \ \mu A, Referenced to 25 °C & 4 & mV/Cl \\ \hline I_{\rm J} = 125 °C & 0.04 & 0.053 \\ \hline I_{\rm J} = 125 °C & 0.055 & 0.085 \\ \hline I_{\rm J} = 125 °C & 0.055 & 0.085 \\ \hline I_{\rm J} = 125 °C & 0.055 & 0.085 \\ \hline I_{\rm J} = 125 °C & 0.055 & 0.085 \\ \hline I_{\rm J} = 125 °C & 0.055 & 0.085 \\ \hline I_{\rm J} = 125 °C & 0.055 & 0.085 \\ \hline I_{\rm J} = 125 °C & 0.055 & 0.085 \\ \hline I_{\rm J} = 125 °C & 0.055 & 0.085 \\ \hline I_{\rm J} = 10 V, \ I_{\rm D} = -5 \ A & 0.058 & 0.095 \\ \hline I_{\rm J} = 10 V, \ I_{\rm D} = -5 \ A & 11 & S \\ \hline I_{\rm J} = 10 V, \ I_{\rm D} = -5 \ A & 11 & S \\ \hline I_{\rm J} = 10 V, \ I_{\rm D} = -5 \ A & 11 & S \\ \hline I_{\rm J} = 10 V, \ I_{\rm D} = -5 \ A & 11 & S \\ \hline I_{\rm J} = 10 V, \ I_{\rm D} = -5 \ A & 11 & S \\ \hline I_{\rm J} = 10 V, \ I_{\rm D} = -5 \ A & 11 & S \\ \hline I_{\rm J} = 10 V, \ I_{\rm D} = -5 \ A & 11 & S \\ \hline I_{\rm J} = 10 V, \ I_{\rm D} = -5 \ A & 11 & S \\ \hline I_{\rm J} = 10 V, \ I_{\rm D} = -5 \ A & 11 & S \\ \hline I_{\rm J} = 10 V, \ I_{\rm D} = -5 \ A & 100 & P \ F \\ \hline I_{\rm Cas} & 0.040 \ L Capacitance & V_{\rm DS} = -15 \ V, \ I_{\rm D} = -5 \ A & 100 & P \ F \\ \hline I_{\rm Cas} & Reverse Transfer Capacitance & V_{\rm DS} = -15 \ V, \ I_{\rm D} = -1 \ A & V_{\rm DS} = -10 \ V, \ I_{\rm D} = -1 \ A & 11 & 25 \ I_{\rm S} & 100 \ P \ F \ I_{\rm D} & 11 & 25 \ I_{\rm S} & 100 \ P \ F \ I_{\rm D} & 11 \ I_{\rm S} & 100 \ P \ F \ I_{\rm D} & 100 \ I_{\rm S} & 12 \ I_{\rm S} &$	V _{GS(th)}	Gate Threshold Voltage	$V_{\text{DS}} = V_{\text{GS}}, \ I_{\text{D}} = -250 \ \mu\text{A}$	-1	-1.7	-3	V
$\begin{tabular}{ c c c c c c c } \hline T_{J} = 125°C & 0.055 & 0.085 \\ \hline V_{GS} = -45 V, I_{D} = -3.3 A & 0.058 & 0.095 \\ \hline V_{GS} = -10 V, V_{DS} = -5 V & -20 & A \\ \hline V_{GS} = 0 V, V_{DS} = -10 V, V_{DS} = -5 V & -20 & P \\ \hline V_{DS} = -10 V, I_{D} = -5 A & 11 & S \\ \hline V_{DNAMIC} CHARACTERISTICS \\ \hline C_{SS} & Input Capacitance & V_{DS}$ = -15 V, V_{GS} = 0 V, f = 1.0 MHz & 750 & p \\ \hline C_{SS} & Output Capacitance & V_{DS}$ = -15 V, V_{GS} = 0 V, f = 1.0 MHz & 220 & p \\ \hline C_{SS} & Reverse Transfer Capacitance & 100 & p \\ \hline $SWITCHING$ CHARACTERISTICS (Note 2) & 100 & p \\ \hline $SWITCHING$ CHARACTERISTICS (Note 2) & V_{DS}$ = -15 V, I_{D} = -1 A & 12 & 22 & ns \\ \hline t_{V} & Turn - On Delay Time & V_{DS}$ = -10 V, R_{GEN} = 6 \Omega & 14 & 25 & ns \\ \hline t_{V} & Turn - Off Delay Time & V_{DS}$ = -15 V, I_{D} = -5 A, & 116 & 277 & ns \\ \hline Q_{g1} & Total Gate Charge & V_{DS}$ = -15 V, I_{D} = -5 A, & 8 & 12 & nC \\ \hline Q_{g2} & Gate-Drain Charge & V_{DS}$ = -5 V & 1.8 & nC \\ \hline Q_{g3} & Gate-Drain Charge & V_{DS}$ = -5 V & 1.3 & nC \\ \hline $D_{CRIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS \\ \hline $SWITCHINOS Drain-Source Diode Forward Current & $V_{-1.3}$ A \\ \hline $Maximum Continuous Drain-Source Diode Forward Current & $V_{-1.3}$ A \\ \hline \end{tabular}$	$\Delta V_{GS(th)} / \Delta T_J$	Gate Threshold Voltage Temp. Coefficient	I_D = 250 µA, Referenced to 25 °C		4		mV/°C
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = -10 \text{ V}, I_{D} = -5 \text{ A}$		0.04	0.053	Ω
$\begin{array}{ c c c c c c } \hline D_{0} & On-State Drain Current & V_{GS} = -10 \ V, \ V_{DS} = -5 \ V & -20 & A \\ \hline V_{DFS} & Forward Transconductance & V_{DS} = -10 \ V, \ I_{D} = -5 \ A & 11 & S \\ \hline DYNAMIC CHARACTERISTICS & & & & & & & & & & & & & & & & & & &$			T _J =125°C		0.055	0.085	
G_{FS} Forward Transconductance $V_{DS} = -10 \text{ V}, \text{ I}_{D} = -5 \text{ A}$ 11SDYNAMIC CHARACTERISTICS $V_{DS} = -15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ 750 pF C_{GS} Output Capacitance $V_{DS} = -15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ 750 pF C_{GS} Output Capacitance $V_{DS} = -15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ 100 pF C_{GS} Reverse Transfer Capacitance $V_{DS} = -15 \text{ V}, \text{ I}_{D} = -1 \text{ A}$ 12 220 pFSWITCHING CHARACTERISTICS (Note 2) $V_{DS} = -15 \text{ V}, \text{ I}_{D} = -1 \text{ A}$ 12 22 ns $t_{D(or)}$ Turn - On Delay Time $V_{DS} = -15 \text{ V}, \text{ I}_{D} = -1 \text{ A}$ 12 22 ns $t_{D(of)}$ Turn - Off Delay Time $V_{DS} = -10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ 14 25 ns $t_{D(of)}$ Turn - Off Fall Time $V_{DS} = -15 \text{ V}, \text{ I}_{D} = -5 \text{ A},$ 8 12 nc Q_{g} Total Gate Charge $V_{DS} = -5 \text{ V}, \text{ I}_{D} = -5 \text{ A},$ 8 12 nc Q_{gd} Gate-Drain Charge $V_{GS} = -5 \text{ V}$ 1.8 nc Q_{gd} Gate-Drain Charge $V_{GS} = -5 \text{ V}$ 1.8 nc Q_{gd} Maximum Continuous Drain-Source Diode Forward Current -1.3 A			$V_{GS} = -4.5 \text{ V}, \ I_{D} = -3.3 \text{ A}$		0.058	0.095	
DYNAMIC CHARACTERISTICS C_{ss} Input Capacitance $V_{DS} = -15 \ V, \ V_{GS} = 0 \ V, \ f = 1.0 \ MHz$ 750pF C_{ss} Output Capacitance100pF C_{rss} Reverse Transfer Capacitance100pFSWITCHING CHARACTERISTICS (Note 2) $V_{DS} = -15 \ V, \ I_D = -1 \ A$ 1222ns $t_{D(on)}$ Turn - On Delay Time $V_{DS} = -15 \ V, \ I_D = -10 \ V, \ R_{GEN} = 6 \ \Omega$ 1425ns $t_{D(off)}$ Turn - Off Delay Time $V_{DS} = -15 \ V, \ I_D = -5 \ A, \ R_{gen}$ 1627ns t_{q} Total Gate Charge $V_{DS} = -15 \ V, \ I_D = -5 \ A, \ R_{gen}$ 812nC Q_{qd} Gate-Drain Charge $V_{GS} = -5 \ V$ 1.8nC Q_{qd} Gate-Drain Charge $V_{GS} = -5 \ V$ 1.8nCDRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS-1.3A	D(ON)	On-State Drain Current	$V_{GS} = -10 \text{ V}, V_{DS} = -5 \text{ V}$	-20			А
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9 _{FS}	Forward Transconductance	$V_{DS} = -10 \text{ V}, I_{D} = -5 \text{ A}$		11		S
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	dynamic C	HARACTERISTICS					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C _{iss}	Input Capacitance	$V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V},$		750		pF
SWITCHINGCHARACTERISTICS (Note 2)(Note 2) $b_{D(n)}$ Turn - On Delay Time $V_{DS} = -15 \ V, \ I_D = -1 \ A$ 1222ns t_r Turn - On Rise Time $V_{GEN} = -10 \ V, \ R_{GEN} = 6 \ \Omega$ 1425ns $b_{D(off)}$ Turn - Off Delay Time2438ns t_r Turn - Off Fall Time1627ns Q_g Total Gate Charge $V_{DS} = -15 \ V, \ I_D = -5 \ A,$ 812nC Q_{gs} Gate-Source Charge $V_{GS} = -5 \ V$ 1.8nC Q_{gd} Gate-Drain Charge3nCDRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS-1.3A	C _{oss}	Output Capacitance	f = 1.0 MHz		220		pF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C _{rss}	Reverse Transfer Capacitance			100		pF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SWITCHING	CHARACTERISTICS (Note 2)		1			1
Turn - Off Delay Time 24 38 ns t_{0} Turn - Off Fall Time1627ns Q_{g} Total Gate Charge $V_{DS} = -15 \text{ V}, \ I_D = -5 \text{ A},$ 812nC Q_{gs} Gate-Source Charge $V_{GS} = -5 \text{ V}$ 1.8nC Q_{gd} Gate-Drain Charge3nCDRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS-1.3A	t _{D(on)}	Turn - On Delay Time	$V_{DS} = -15 V, I_{D} = -1 A$		12	22	ns
UpperformData Data Data Data Data Data Data Data	t,	Turn - On Rise Time	V_{GEN} = -10 V, R_{GEN} = 6 Ω		14	25	ns
Q_g Total Gate Charge $V_{DS} = -15 \text{ V}, \text{ I}_D = -5 \text{ A},$ 8 12 nC Q_{gs} Gate-Source Charge $V_{GS} = -5 \text{ V}$ 1.8 nC Q_{gd} Gate-Drain Charge 3 nC DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS 3 nC l_S Maximum Continuous Drain-Source Diode Forward Current -1.3 A	t _{D(off)}	Turn - Off Delay Time			24	38	ns
Q_{gs} Gate-Source Charge V_{gs} = -5 V 1.8 nC Q_{gd} Gate-Drain Charge 3 nC DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS I_{s} Maximum Continuous Drain-Source Diode Forward Current -1.3 A	t,	Turn - Off Fall Time			16	27	ns
And Control of C	Q _g	Total Gate Charge	$V_{DS} = -15 V, I_{D} = -5 A,$		8	12	nC
Drain-Source Diode Characteristics and Maximum Ratings s Maximum Continuous Drain-Source Diode Forward Current -1.3 A	Q _{gs}	Gate-Source Charge	$V_{GS} = -5 V$		1.8		nC
s Maximum Continuous Drain-Source Diode Forward Current -1.3 A	⊋ ^{gd}	Gate-Drain Charge			3		nC
5 · · · · · · · · · · · · · · · · · · ·	DRAIN-SOU	RCE DIODE CHARACTERISTICS AND MAXIMU	JM RATINGS				
V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 V$, $I_S = -1.3 A$ (Note 2) -0.75 -1.2 V	l _s	Maximum Continuous Drain-Source Diode For	rward Current			-1.3	Α
	V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = -1.3 A$ (Note 2)		-0.75	-1.2	V

a. 78°C/W on a 0.5 in² pad of 2oz copper.

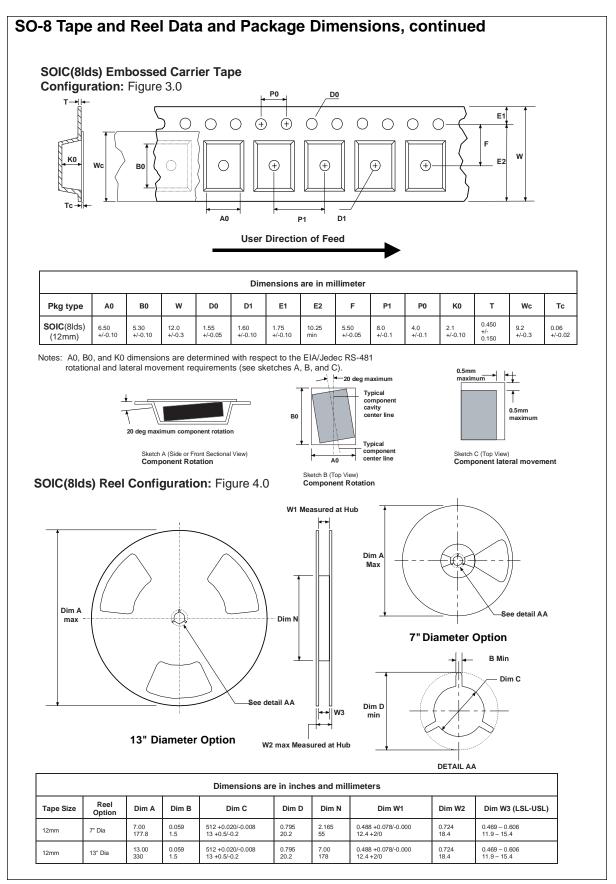

999

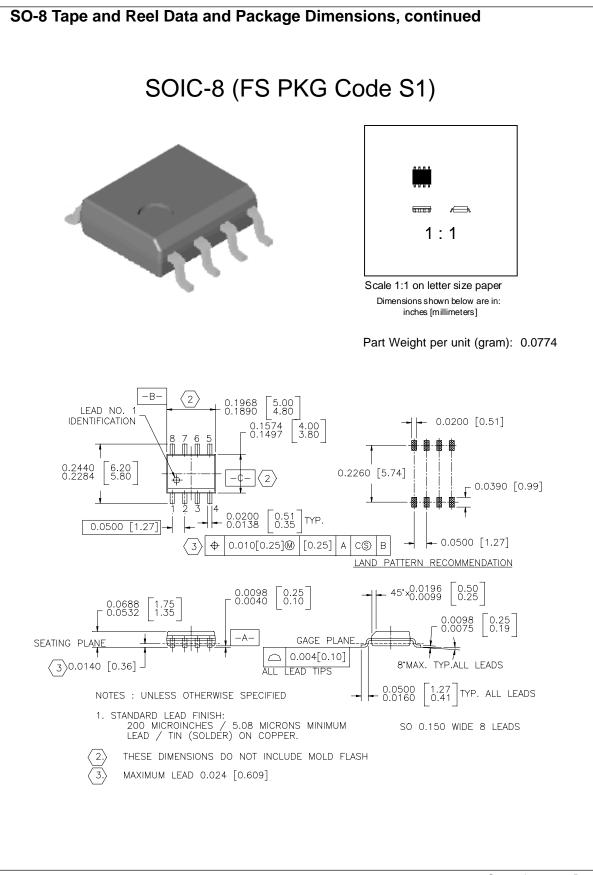
b. 125°C/W on a 0.02 in² b c copper.


c. 135°C/W on a 0.003 in² pad of 2oz copper.


Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.




FDS4953 Rev.C

July 1999, Rev. B

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QFET[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8

TinyLogic™ UHC™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.