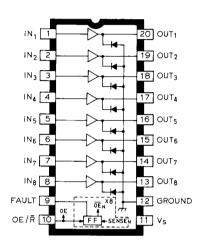
UDN-2987A 8-CHANNEL SOURCE DRIVER

With Over-Current Protection


FEATURES

- 350 mA Output Source Current
- Over-Current Protected
- Internal Ground Clamp Diodes
- Output Breakdown Voltage 35 V, Minimum
- TTL, DTL, PMOS, or CMOS Compatible Inputs
- Internal Thermal Shutdown

Providing over-current protection for each of its eight sourcing outputs, the UDN-2987A driver is used as an interface between standard low-level logic and relays, motors, solenoids, LEDs and incandescent lamps. The device includes thermal shutdown and output transient protection/clamp diodes for use with sustaining voltages to 35 V.

In this driver, each channel includes a latch to turn OFF that channel if the maximum channel current is exceeded. All channels are disabled if the thermal shutdown is activated. A common FAULT output is used to indicate either chip thermal shutdown or any over-current condition. All outputs are enabled by pulling the common OE/R input high. When OE/R is low, all outputs are inhibited and the eight latches are reset. The UDN-2987A is supplied in a 20-lead dual in-line plastic package.

Under normal operating conditions each of eight outputs will source in excess of 100 mA continuously at an ambient temperature of 25°C and a supply of 35 V. The over-current fault circuit will protect the device from short-circuits to ground with supply voltages of up to 35 V.

Dwg. No. A-13.285

The inputs are compatible with 5 V and 12 V logic systems—TTL, Schottky TTL, DTL, PMOS, and CMOS. In all cases, the output is switched on by an active high input level.

ABSOLUTE MAXIMUM RATINGS at $T_A = +25^{\circ}C$

Driver Supply Voltage, V _s
Output Sustaining Voltage, V _{CE(SUS)}
Continuous Output Current, I _{out}
FAULT Output Voltage, V _{CE}
FAULT Output Current, I _C
Input Voltage, V _{IN}
Package Power Dissipation, P _D See Graph
Operating Temperature Range, $T_a = -20^{\circ}\text{C}$ to $+85^{\circ}\text{C}$
operating reinperature hange, 14 — 20 G to + 65 G
Storage Temperature Range, $T_s \dots -55^{\circ}C$ to $+150^{\circ}C$

^{*}Outputs are disabled at approximately - 500 mA per driver.

www.DataSheet4U.com

)ataSheet4U.com

UDN-2987A 8-CHANNEL SOURCE DRIVER

FUNCTIONAL BLOCK DIAGRAM OE/R

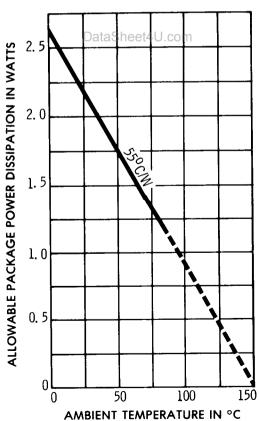
THERMAL
SHUTDOWN

OVS

C1Ω

OUTN

ONE OF EIGHT DRIVERS


COMMON CONTROL

FAULT

Dwg No. A-13.286

DataShe

ALLOWABLE POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE

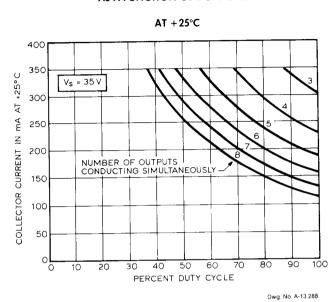
3--72

www.DataSheet4U.com

DataSheet4U.com

Dwg. No. A-11,112A

DataSheet4U.com


ELECTRICAL CHARACTERISTICS at $T_A=25\,^{\circ}\text{C}$, $V_{oE}=2.4\,\text{V}$, $V_s=35\,\text{V}$ unless otherwise noted.

Characteristic		Test Conditions	Limits			
	Symbol		Min.	Тур.	Max.	Units
Functional Supply Range	V _s		7.0		35	٧
Output Leakage Current	I _{CEX}	$V_{IN} = 0.4 V^*$		< - 5	- 200	μΑ
Output Sustaining Voltage	V _{CE(SUS)}	$I_{out} = -350 \text{ mA}, L = 2.0 \text{ mH}$	35			٧
Output Saturation Voltage	V _{OUT(SAT)}	$V_{IN} = 2.4 \text{ V}, I_{OUT} = -100 \text{ mA}$	_	1.6	1.8	٧
		$V_{iN} = 2.4 \text{ V}, I_{out} = -225 \text{ mA}$		1.7	1.9	V
		$V_{IN} = 2.4 \text{ V}, I_{OUT} = -350 \text{ mA}$		1.8	2.0	٧
Channel Shutdown Threshold	I _M	$V_{IN} = 2.4 \text{ V}$	- 400	- 500		mA
FAULT Leakage Current	I _{CEX}	$V_{cc} = 35 \text{ V}$	_	<1.0	100	μΑ
FAULT Saturation Voltage	V _{CE(SAT)}	$I_c = 30 \text{ mA}$	_	0.3	8.0	٧
Input Voltage	V _{IN(ON)}		2.4	_	_	٧
	V _{IN(OFF)}				0.4	٧
Input Current	I _{IN(ON)}	$V_{IN} = 2.4 \text{ V}$	_	125	170	μΑ
		$V_{iN} = 5.0 V$		840	1020	μΑ
		$V_{iN} = 12 \text{ V}$	_	1500	1800	μΑ
	I _{IN(OFF)}	$V_{IN} = 0.4 \text{ V}$			15	μΑ
Clamp Diode Leakage Current	I _R	$V_R = 35 \text{ V}, T_A = 70^{\circ}\text{C}$	_		50	μΑ
Clamp Diode Forward Voltage	V _F	$I_F = 350 \text{ mA}$		1.5	1.8	٧
Supply Current	I _{S(ON)}	V _{IN} = 2.4 V*, Outputs Open	_	13	18	mA
	I _{s (OFF)}	$V_{iN} = 0.4 V^*$		8.0	12	mA
Thermal Shutdown	T,	DataSheet4U.com		165		°C
Thermal Hysteresis	T,			15	_	°C
Propagation Delay Time	t _{PLH}	$R_L = 100\Omega$		0.3	0.6	μS
	t _{PHL}	$R_L = 100\Omega$		2.0	4.0	μs
Dead Time	t _d			1.0		μS

^{*}All inputs simultaneously.

www.DataSheet4U.com

ALLOWABLE OUTPUT CURRENT AS A FUNCTION OF DUTY CYCLE

DataSheet4U.com

400

350

300 250

200

150

100

50

COLLECTOR CURRENT IN MA AT +50°C

AT +50°C

2

Vs = 35 V

NUMBER OF OUTPUTS
CONDUCTING SIMULTANEOUSLY

ONDUCTING SIMULTANEOUSLY

DataSheet4U.com

www.DataSheet4U.com

DataSheet/III.com

3--74

O 40 50 60 T PERCENT DUTY CYCLE

DataSheet4U.com

DataSheet

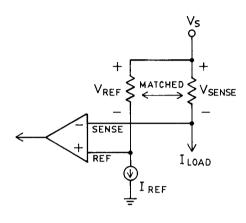
Dwg. No A-13,289

APPLICATIONS INFORMATION AND CIRCUIT DESCRIPTION

As with all power integrated circuits, the UDN-2987A has a maximum allowable output current rating. The $500\,\mathrm{mA}$ rating does not imply that operation at that value is permitted or even obtainable. The channel output current trip point is specified as $-400\,\mathrm{mA}$, minimum; therefore, attempted operation at current levels greater than $-400\,\mathrm{mA}$ may cause a fault indication and channel shutdown. The device is tested at a maximum of $-350\,\mathrm{mA}$ and that is the recommended maximum output current per driver. It provides protection for current overloads or shorted loads up to $35\,\mathrm{V}$.

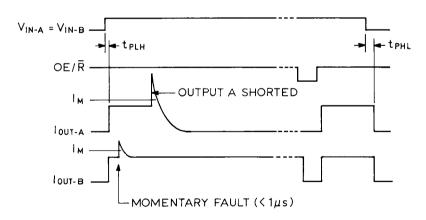
All outputs are enabled by pulling the OE/R input high. When OE/R is low or allowed to float (internal pull-down), all outputs are inhibited and the latches are reset. The latches are also reset during power-up, regardless of the state of the OE/R input.

The load current causes a small voltage drop across the internal low-value sense resistor. This voltage is compared to the voltage drop across a reference resistor with a constant current. The two resistors are matched to eliminate errors due to manufacturing tolerances or temperature effects. Each channel includes a comparator and its own latch. An over-current fault ($V_{\text{SENSE}} > V_{\text{REI}}$) will set the affected latch and shut down only that channel. All other channels will continue to operate normally. The latch includes a 1 μ s delay (t_d) to prevent unwanted triggering due to crossover currents generated when switching inductive loads. For an abrupt short circuit, the delay and output switching times will allow a brief, permissable current in excess of the trip current before the output driver is turned off.


A common thermal shutdown disables all outputs if the chip temperature exceeds $+165^{\circ}$ C. At thermal shutdown, all latches are reset. The outputs are disabled until the chip cools down to about $+150^{\circ}$ C (thermal hysteresis).

A common open-collector FAULT output is used to indicate any channel over-current condition or chip thermal shutdown.

DataShe


www.DataSheet4U.com

OVER-CURRENT FAULT SENSE

Owg No A-13.292

DataSheet4U.com OUTPUT CURRENT WAVESHAPES

Dwg. No. A-13,293

DataSheet4U.com

www.DataSheet4U.com