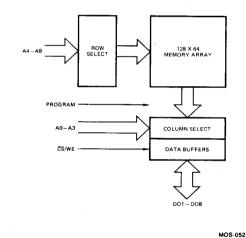
Am9708/Am2708

DISTINCTIVE CHARACTERISTICS


- Direct replacement for Intel 2708/8708
- Interchangeable with Am9208, Am9216 masked ROMs
- · Full military temperature operation
- Fast programming time typically 50sec
- TTL compatible interface signals /
- Fully static operation no clocks
 Fast access time 350ns
- Three-state outputs

GENERAL DESCRIPTION


The Am2708 is an 8,192-bit erasable and programmable MOS read-only memory. It is organized as 1024 words by 8 bits per word. Erasing the data in the EROM is accomplished by projecting ultraviolet light through a transparent window for a predetermined time period.

When the Chip Select/Write Enable input is at the high logic level, the device is unselected and the data lines are in their high impedance state. The device is selected when \overline{CS} /WE is at the low logic level. The contents of a particular memory location, specified by the 10 address lines, will be available on the data lines after the access time has elapsed. For programming, \overline{CS} /WE is connected to +12V and is used in conjunction with the Program input. The Address and Data lines are TTL compatible for all operating and programming modes.

BLOCK DIAGRAM

CONNECTION DIAGRAM Top View

ORDERING INFORMATION

Package Type	Ambient Temperature Specification	Order Number
Hermetic DIP Transparent Window	0°C ≤ T _A ≤ +70°C	AM2708DC (450ns) AM2708-1DC (350ns
Hermetic DIP Transparent Window	-55°C ≤ T _A ≤ +125°C	AM9708DM (480ns)

Am9708/2708

MAXIMUM RATINGS above which the useful life may be impaired

Storage Temperature	-65°C to +150°(
Ambient Temperature with Power Applied	−55°C to +125° (
All Signal Voltages, except Program and CS/WE, with Respect to VBB	-0.3V to +15\
Program Input Voltage with Respect to VBB	-0.3V to +35\
CS/WE Input with Respect to VBB	-0.3V to +2 0 \
VCC and VSS with Respect to VBB	-0.3V to +15\
VDD with Respect to VBB	-0.3V to +20V
Power Dissipation	1.5\

The product described by this specification includes internal circuitry designed to protect input devices from excessive accumulation of static charge. It is suggested, nevertheless, that conventional precautions be observed during storage, handling and use in order to avoic exposure to any voltages that exceed the maximum ratings.

OPERATING RANGE

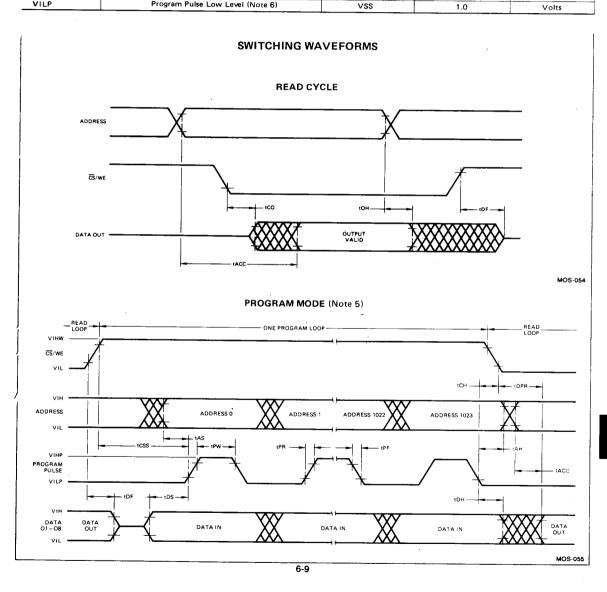
Ambient Temperature	VDD	VCC	VBB	VSS	
0°C to +70°C	+12V ±5%	+5V ±5%	−5V ±5%	. 0V	
-55°C to +125°C	+12V ±10%	+5V ±10%	-5V ±10%	0V	

PROGRAMMING CONDITIONS

Ambient Temperature	VDD	VCC	VBB	vss	CS/WE	VIHP
+25°C	+12V ± 5%	+5V ± 5%	-5V ± 5%	0∨	+12V ± 5%	26V ± 1V

READ OPERATION

ELECTRICAL CHARACTERISTICS over operating range (Notes 1, 7)


Parameters	Description	Test Conditions		Min.	Тур.	Max.	Units
VIL	input LOW Voltage			VSS		0.65	Volts
VIH	Input HIGH Voltage	$T_A = 0$ °C to +70°C		3.0		VCC+1	Volts
VIII	IIIput nion voltage	$T_A = -55^{\circ}C \text{ to } +$	125°C	2.4		VCC+1	Volts
VOL	Output LOW Voltage	IOL = 1.6mA				0.45	Volts
VOH	Output HIGH Voitage	$IOH = -100\mu A$		3.7			Volts
¥011	Output High Voltage	IOH = -1.0mA	,	2.4			Volts
ILI	Address and Chip Select Input Load Current	VSS ≤ VIN ≤ VCC			1.0	10	μΑ
ILO	Output Leakage Current	VOUT = Worst Case CS/WE = + 5.0V			1.0	10	μΑ
IDD VDD Supply Current	DD VDD Supply Current		T _A = 0°C		50	65	_
	VDD Supply Current		T _A = -55°C			80	mA
ICC	VCC Supply Current	All inputs HIGH.	T _A = 0°C		6.0	10	
	vec supply culterit	CS/WE = +5.0V	T _A = -55°C			15	mA
IBB	VBB Supply Current		T _A = 0°C		30	45	
	voo cappiy carrent		$T_A = -55^{\circ}C$			60	mA
PD	Power Dissipation	T _A = 70°C				800	mW
CIN	Input Capacitance	T _A = 25°C f = 1MHz			4.0	6.0	pF
соит	Output Capacitance	All pins at 0V			8.0	12.0	pF

READ OPERATION

	G CHARACTERISTICS over oper			T _A ≤ 70°C	-55 C ≈ 1	_A ≤ +125°C	i
Parameters	Description	Test Conditions	Min.	Max.	Min.	Max.	Unita
tACC	Address to Output Access Time			2708 2708-1		480	ns
	(Note 3)	tr = tf ≤ 20ns		450 350		1 -00	
tCO	Chip Select to Output on Delay (Note 4)	Output Load: One Standard		120		150	ns
tDF	Chip Select to Output OFF Delay	TTL Gate Plus	0	120	0	150	
tOH	Previous Read Data Valid with Respect to Address Change	100pF	0		0		

arameter	Description	Min.	Max.	Unit
tAS	Address Set Up Time	10 *		μs
tCSS	CS/WE Set Up Time	10		μs
tDS	Data Set Up Time	10		μs
tAH	Address Hold Time (Note 5)	1.0		μs
tCH	C\$/WE Hold Time (Note 5)	0,5		μς
tDH	Data Hold Time	1.0		μs
tDF	Chip Select to Output Off Delay	0	120	ns ns
tDPR	Program to Read Delay		10	us us
tPW	Program Pulse Width	0.1	1.0	ms ms
tPR, tPF	Program Pulse Transition Times	0.5	2.0	μs
VIHW	CS/WE Input High Level	11.4	12.6	Volts
VIHP	Program Pulse High Level (Note 6)	25	27	Volts
VILP	Program Pulse Low Level (Note 6)	VSS	1.0	Volts

'ROGRAMMING CHARACTERISTICS under programming conditions

PROGRAMMING THE Am2708

All 8192 bits of the Am2708 are in the logic HIGH state after erasure. When any of the output bits are programmed, the output state will change from HIGH to LOW, Programming of the device is initiated by raising the CS/WE input to +12V. A memory location is programmed by addressing the device and supplying 8 data bits in parallel to the data out lines. When address and data bits are set up, a programming pulse is applied to the program input. All addresses are programmed sequentially in a similar manner. One pass through all 1024 addresses is considered one program loop. The number of program loops (N) required to complete the programming cycle is a function of the program pulse width (tPW) such that $N \ge 100 \text{ms/tPW}$ requirement is met. Do not apply more than one program pulse per address without sequentially programming all other addresses. There should be N successive loops through all locations. The Program pin will source the IIPL current when it is low (VILP) and CS/WE is high (VIHW). The Program pin should be actively bulled down to maintain its low level.

ERASING THE Am2708

The Am2708 can be erased by exposing the die to high-intensity, short-wave, ultra-violet light at a wavelength of 2537 angstroms through the transparent lid. The recommended dosage is ten watt-seconds per square centimeter. This erasing condition can be obtained by exposing the die to model S-52 ultraviolet lamp manufactured by Ultra-Violet Products, Inc. or Product Specialties, Inc. for approximately 20 to 30 minutes from a distance of about 2.5 centimeters above the transparent

lid. The light source should not be operated with a short-wave filter installed. All bits will be in a logic HIGH state when erasure is complete

CAUTION

Ultraviolet radiation is invisible and can damage human eyes. Precautions should be taken to avoid exposure to direct or reflected ultraviolet radiation. It will often be convenient to fully enclose the ultraviolet source and the EROMs being erased to prevent accidental exposure.

Ultraviolet lamps can also ionize oxygen and create ozone which can be harmful to humans. Erasing should be carried out in a well ventilated area in order to minimize the concentration of ozone.

NOTES:

- Typical values are for T_A = 25°C, nominal supply voltages and nominal processing parameters.
- 2. Timing reference levels (Read) —
 Inputs: High = 2.8V (DC), 2.2V (DM); Low = 0.8V
 Outputs: High = 2.4V, Low = 0.8V
- 3. Typical access time is 280ns.
- 4. Typical chip select to output on delay is 60ns.
- 5. tAH must be greater than tCH.
- VIHP VILP ≥ 25 Volts.
- VBB must be applied prior to VCC and VDD. VBB must also be the last power supply switched off.