16-bit Proprietary Microcontroller

CMOS

F²MC-16LX MB90435 Series

MB90437L (S) /438L (S) /F438L (S) MB90439 (S) /F439 (S) /V540G

■ DESCRIPTION

The MB90435 series with FLASH ROM is specially designed for industrial applications.
The instruction set by $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{LX}$ CPU core inherits an AT architecture of the $\mathrm{F}^{2} \mathrm{MC}^{*}$ family with additional instruction sets for high-level languages, extended addressing mode, enhanced multiplication/division instructions, and enhanced bit manipulation instructions. The micro controller has a 32-bit accumulator for processing long word data.
The MB90435 series has peripheral resources of 8/10-bit A/D converters, UART (SCI), extended I/O serial interfaces, 8/16-bit timer, I/O timer (input capture (ICU) , output compare (OCU)) .

* : F²MC stands for FUJITSU Flexible Microcontroller.

- FEATURES

- Clock

Embedded PLL clock multiplication circuit
Operating clock (PLL clock) can be selected from : divided-by-2 of oscillation or one to four times the oscillation Minimum instruction execution time : 62.5 ns (operation at oscillation of 4 MHz , four times the oscillation clock, Vcc of 5.0 V)
Subsystem Clock : 32 kHz

(FPT-100P-M06)

100-pin Plastic LQFP

(FPT-100P-M05)

MB90435 Series

- Instruction set to optimize controller applications

Rich data types (bit, byte, word, long word)
Rich addressing mode (23 types)
Enhanced signed multiplication/division instruction and RETI instruction functions
Enhanced precision calculation realized by the 32-bit accumulator

- Instruction set designed for high level language (C language) and multi-task operations

Adoption of system stack pointer
Enhanced pointer indirect instructions
Barrel shift instructions

- Program patch function (for two address pointers)
- Enhanced execution speed : 4-byte Instruction queue
- Enhanced interrupt function : 8 levels, 34 factors
- Automatic data transmission function independent of CPU operation

Extended intelligent I/O service function (EI2OS)

- Embedded ROM size and types

Mask ROM : 64 Kbytes / 128 Kbytes / 256 Kbytes
Flash ROM : 128 Kbytes/256 Kbytes
Embedded RAM size : 2 Kbytes/4 Kbytes/6 Kbytes/8 Kbytes (evaluation chip)

- Flash ROM

Supports automatic programming, Embedded Algorithm TM*
Write/Erase/Erase-Suspend/Resume commands
A flag indicating completion of the algorithm
Hard-wired reset vector available in order to point to a fixed boot sector in Flash Memory
Erase can be performed on each block
Block protection with external programming voltage

- Low-power consumption (stand-by) mode

Sleep mode (mode in which CPU operating clock is stopped)
Stop mode (mode in which oscillation is stopped)
CPU intermittent operation mode
Clock mode
Hardware stand-by mode

- Process
$0.5 \mu \mathrm{~m}$ CMOS technology
- I/O port

General-purpose I/O ports : 81 ports

- Timer

Watchdog timer : 1 channel
8/16-bit PPG timer : 8/16-bit $\times 4$ channels
16-bit re-load timer : 2 channels

- 16-bit I/O timer

16-bit free-run timer : 1 channel
Input capture : 8 channels
Output compare : 4 channels

- Extended I/O serial interface : 1 channel
- UART 0

With full-duplex double buffer (8-bit length)
Clock asynchronized or clock synchronized (with start/stop bit) transmission can be selectively used.
(Continued)

MB90435 Series

(Continued)

- UART 1

With full-duplex double buffer (8-bit length)
Clock asynchronized or clock synchronized serial (extended I/O serial) can be used.

- External interrupt circuit (8 channels)

A module for starting an extended intelligent I/O service (EI ${ }^{2}$ OS) and generating an external interrupt which is triggered by an external input.

- Delayed interrupt generation module Generates an interrupt request for switching tasks.
- 8/10-bit A/D converter (8 channels)

8/10-bit resolution can be selectively used.
Starting by an external trigger input.
Conversion time : $26.3 \mu \mathrm{~s}$

- External bus interface : Maximum address space 16 Mbytes
- Package: QFP-100, LQFP-100
* : Embedded Algorithm is a trade mark of Advanced Micro Devices Inc.

MB90435 Series

PRODUCT LINEUP

Features	MB90F438L (S) /F439 (S)	$\begin{gathered} \hline \text { MB90437L (S) }{ }^{* 1} \\ \text { /438L (S) } / 439 \text { (S) } \end{gathered}$	MB90V540G
CPU	$\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{LX} \mathrm{CPU}$		
System clock	On-chip PLL clock multiplier ($\times 1, \times 2, \times 3, \times 4,1 / 2$ when PLL stop) Minimum instruction exection time : $62.5 \mathrm{~ns}(4 \mathrm{MHz}$ osc. PLL $\times 4$)		
ROM	Flash memory MB90F438L(S) : 128 Kbytes MB90F439(S) : 256 Kbytes	Mask ROM : MB90437L(S): 64 Kbytes MB90438L(S): 128 Kbytes MB90439(S): 256 Kbytes	External
RAM	MB90F438L(S) : 4 Kbytes MB90F439(S) : 6 Kbytes	MB90437L(S): 2 Kbytes MB90438L(S): 4 Kbytes MB90439(S): 6 Kbytes	8 Kbytes
Clocks	MB90F438L/F439 : Two clocks system MB90F438LS/F439S : One clock system	MB90437L/438L/439 : Two clocks system MB90437LS/438LS/439S : One clock system	Two clocks system*2
Operating voltage range	*5		
Temperature range	$-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$		
Package	QFP100, LQFP100		PGA-256
Emulator-specify power supply ${ }^{\text {³ }}$	-		None
UART0	Full duplex double buffer Support asynchronous/synchronous (with start/stop bit) transfer Baud rate : 4808/5208/9615/10417/19230/38460/62500/500000 bps (asynchronous) $500 \mathrm{~K} / 1 \mathrm{M} / 2 \mathrm{Mbps}$ (synchronous) at System clock $=16 \mathrm{MHz}$		
UART1 (SCI)	Full duplex double buffer Asynchronous (start-stop synchronized) and CLK-synchronous communication Baud rate : 1202/2404/4808/9615/19230/31250/38460/62500 bps (asynchronous) $62.5 \mathrm{~K} / 125 \mathrm{~K} / 250 \mathrm{~K} / 500 \mathrm{~K} / 1 \mathrm{M} / 2 \mathrm{Mbps}$ (synchronous) at 6, 8, 10, 12, 16 MHz		
Serial I/O	Transfer can be started from MSB or LSB Supports internal clock synchronized transfer and external clock synchronized transfer Supports positive-edge and nagative-edge clock synchronization Baud rate : $31.25 \mathrm{~K} / 62.5 \mathrm{~K} / 125 \mathrm{~K} / 500 \mathrm{~K} / 1 \mathrm{Mbps}$ at System clock $=16 \mathrm{MHz}$		
A/D Converter	10 -bit or 8 -bit resolution 8 input channels Conversion time : 26.3 us (per one channel)		

(Continued)
(Continued)

Features	MB90F438L (S) /F439 (S)	MB90437L (S) $/ 438 \mathrm{~L}$ (S) $/ 439$ (S)

*1 : Under development
*2 : If the one clock system is used, equip X0A and X1A with clocks from the tool side.
*3 : It is setting of DIP switch S2 when Emulator pod (MB2145-507) is used.Please refer to the MB2145-507 hardware manual (2.7 Emulator-specific Power Pin) about details.
*4 : Embedded Algorithm is a trade mark of Advanced Micro Devices Inc.
*5: OPERATING VOLTAGE RANGE

Products	Operation guarantee range
MB90F439 (S) /439 (S) /V540G	4.5 V to 5.5 V
MB90F438L (S) /437L (S) /438L (S)	3.5 V to 5.5 V

MB90435 Series

PIN ASSIGNMENT

(TOP VIEW)

(FPT-100P-M06)

MB90435 Series

(Continued)
(TOP VIEW)

(FPT-100P-M05)

- PIN DESCRIPTION

Pin No.		Pin name	Circuit type	Function
LQFP ${ }^{\text {+2 }}$	QFP*1			
$\begin{aligned} & \hline 80 \\ & 81 \end{aligned}$	$\begin{aligned} & \hline 82 \\ & 83 \end{aligned}$	$\begin{aligned} & \hline \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$	A (Oscillation)	High speed crystal oscillator input pins
78	80	X0A	A	Low speed crystal oscillator input pins. For the one clock system parts, perfom external pull-down processing.
77	79	X1A	(Oscillation)	Low speed crystal oscillator input pins. For the one clock system parts, leave it open.
75	77	$\overline{\text { RST }}$	B	External reset request input pin
50	52	HST	C	Hardware standby input pin
83 to 90	85 to 92	P00 to P07	1	General I/O port with programmable pull-up. This function is enabled in the single-chip mode.
		AD00 to AD07		I/O pins for 8 lower bits of the external address/data bus. This function is enabled when the external bus is enabled.
91 to 98	93 to 100	P10 to P17	1	General I/O port with programmable pull-up. This function is enabled in the single-chip mode.
		AD08 to AD15		I/O pins for 8 higher bits of the external address/data bus. This function is enabled when the external bus is enabled.
99 to 6	1 to 8	P20 to P27	1	General I/O port with programmable pull-up. In external bus mode, this function is valid when the corresponding bits in the external address output control register (HACR) are set to "1",
		A16 to A23		8 -bit output pins for A16 to A23 at the external address bus. In external bus mode, this function is valid when the corresponding bits in the external address output control register (HACR) are set to " 0 ".
7	9	P30	1	General I/O port with programmable pull-up. This function is enabled in the single-chip mode.
		ALE		Address latch enable output pin. This function is enabled when the external bus is enabled.
8	10	P31	1	General I/O port with programmable pull-up. This function is enabled in the single-chip mode.
		$\overline{\mathrm{RD}}$		Read strobe output pin for the data bus. This function is enabled when the external bus is enabled.
10	12	P32	1	General I/O port with programmable pull-up. This function is enabled in the single-chip mode or when the $\overline{\mathrm{WR}} / \overline{\mathrm{WRL}}$ pin output is disabled.
		WRL		Write strobe output pin for the data bus. This function is
		$\overline{W R}$		output are enabled. $\overline{\text { WRL }}$ is write-strobe output pin for the lower 8 bits of the data bus in 16 -bit access. WR is write-strobe output pin for the 8 bits of the data bus in 8 -bit access.

(Continued)

MB90435 Series

Pin No.		Pin name	Circuit type	Function
LQFP ${ }^{\text {2 }}$	QFP*1			
11	13	P33	1	General I/O port with programmable pull-up. This function is enabled in the single-chip mode, external bus 8 -bit mode or when $\overline{W R H}$ pin output is disabled.
		$\overline{\text { WRH }}$		Write strobe output pin for the 8 higher bits of the data bus. This function is enabled when the external bus is enabled, when the external bus 16 -bit mode is selected, and when the WRH output pin is enabled.
12	14	P34	1	General I/O port with programmable pull-up. This function is enabled in the single-chip mode or when the hold function is disabled.
		HRQ		Hold request input pin. This function is enabled when both the external bus and the hold functions are enabled.
13	15	P35	1	General I/O port with programmable pull-up. This function is enabled in the single-chip mode or when the hold function is disabled.
		HAK		Hold acknowledge output pin. This function is enabled when both the external bus and the hold functions are enabled.
14	16	P36	1	General I/O port with programmable pull-up. This function is enabled in the single-chip mode or when the external ready function is disabled.
		RDY		Ready input pin. This function is enabled when both the external bus and the external ready functions are enabled.
15	17	P37	H	General I/O port with programmable pull-up. This function is enabled in the single-chip mode or when the CLK output is disabled.
		CLK		CLK output pin. This function is enabled when both the external bus and CLK outputs are enabled.
16	18	P40	G	General I/O port. This function is enabled when UARTO disables the serial data output.
		SOTO		Serial data output pin for UARTO. This function is enabled when UART0 enables the serial data output.
17	19	P41	G	General I/O port. This function is enabled when UARTO disables serial clock output.
		SCKO		Serial clock I/O pin for UARTO. This function is enabled when UART0 enables the serial clock output.
18	20	P42	G	General I/O port. This function is always enabled.
		SINO		Serial data input pin for UARTO. Set the corresponding Port Direction Register to input if this function is used.
19	21	P43	G	General I/O port. This function is always enabled.
		SIN1		Serial data input pin for UART1. Set the corresponding Port Direction Register to input if this function is used.

(Continued)

MB90435 Series

Pin No.		Pin name	Circuit type	Function
LQFP ${ }^{\text {2 }}$	QFP* ${ }^{1}$			
20	22	P44	G	General I/O port. This function is enabled when UART1 disables the clock output.
		SCK1		Serial clock pulse I/O pin for UART1. This function is enabled when UART1 enables the serial clock output.
22	24	P45	G	General I/O port. This function is enabled when UART1 disables the serial data output.
		SOT1		Serial data output pin for UART1. This function is enabled when UART1 enables the serial data output.
23	25	P46	G	General I/O port. This function is enabled when the Extended I/O serial interface disables the serial data output.
		SOT2		Serial data output pin for the Extended I/O serial interface. This function is enabled when the Extended I/O serial interface enables the serial data output.
24	26	P47	G	General I/O port. This function is enabled when the Extended I/O serial interface disables the clock output.
		SCK2		Serial clock pulse I/O pin for the Extended I/O serial interface This function is enabled when the Extended I/O serial interface enables the Serial clock output.
26	28	P50	D	General I/O port. This function is always enabled.
		SIN2		Serial data input pin for the Extended I/O serial interface . Set the corresponding Port Direction Register to input if this function is used.
27 to 30	29 to 32	P51 to P54	D	General I/O port. This function is always enabled.
		INT4 to INT7		External interrupt request input pins for INT4 to INT7. Set the corresponding Port Direction Register to input if this function is used.
31	33	P55	D	General I/O port. This function is always enabled.
		ADTG		Trigger input pin for the A/D converter. Set the corresponding Port Direction Register to input if this function is used.
36 to 39	38 to 41	P60 to P63	E	General I/O port. This function is enabled when the analog input enable register specifies a port.
		ANO to AN3		Analog input pins for the $8 / 10$-bit A/D converter. This function is enabled when the analog input enable register specifies A / D.
41 to 44	43 to 46	P64 to P67	E	General I/O port. The function is enabled when the analog input enable register specifies a port.
		AN4 to AN7		Analog input pins for the $8 / 10-$ bit A/D converter. This function is enabled when the analog input enable register specifies A / D.
45	47	P56	D	General I/O port. This function is always enabled.
		TINO		Event input pin for the 16 -bit reload timers 0 . Set the corresponding Port Direction Register to input if this function is used.

(Continued)

MB90435 Series

Pin No.		Pin name	Circuit type	Function
LQFP**	QFP*1			
46	48	P57	D	General I/O port. This function is enabled when the 16-bit reload timers 0 disables the output.
		TOT0		Output pin for the 16 -bit reload timers 0 . This function is enabled when the 16 -bit reload timers 0 enables the output.
51 to 56	53 to 58	P70 to P75	D	General I/O ports. This function is always enabled.
		IN0 to IN5		Trigger input pins for input captures ICU0 to ICU5. Set the corresponding Port Direction Register to input if this function is used.
57, 58	59, 60	P76, P77	D	General I/O ports. This function is enabled when the OCU disables the waveform output.
		OUT2, OUT3		Event output pins for output compares OCU2 and OCU3. This function is enabled when the OCU enables the waveform output.
		IN6, IN7		Trigger input pins for input captures ICU6 and ICU7. Set the corresponding Port Direction Register to input and disable the OCU waveform output if this function is used.
59, 62	61 to 64	P80 to P83	D	General I/O ports. This function is enabled when 8/16-bit PPG disables the waveform output.
		$\begin{aligned} & \text { PPGO to } \\ & \text { PPG3 } \end{aligned}$		Output pins for $8 / 16$-bit PPGs. This function is enabled when 8/16-bit PPG enables the waveform output.
63,64	65,66	P84, P85	D	General I/O ports. This function is enabled when the OCU disables the waveform output.
		OUT0, OUT1		Waveform output pins for output compares OCU0 and OCU1. This function is enabled when the OCU enables the waveform output.
65	67	P86	D	General I/O port. This function is always enabled.
		TIN1		Input pin for the 16-bit reload timers 1 . Set the corresponding Port Direction Register to input if this function is used.
66	68	P87	D	General I/O port. This function is enabled when the 16-bit reload timers 0 disables the output.
		TOT1		Output pin for the 16-bit reload timers 1. This function is enabled when the 16 -bit reload timers 1 enables the output.
67 to 70	69 to 72	P90 to P93	D	General I/O port. This function is always enabled.
		INT0 to INT3		External interrupt request input pins for INT0 to INT3. Set the corresponding Port Direction Register to input if this function is used.
71	73	P94	D	General I/O port.

(Continued)

MB90435 Series

(Continued)

Pin No.		Pin name	Circuit type	Function
LQFP ${ }^{\text {2 }}$	QFP* ${ }^{1}$			
72	74	P95	D	General I/O port.
73	75	P96	D	General I/O port.
74	76	P97	D	General I/O port.
76	78	PA0	D	General I/O port.
32	34	AV ${ }_{\text {cc }}$	Power supply	Power supply pin for the A/D Converter. This power supply must be turned on or off while a voltage higher than or equal to AV cc is applied to Vcc .
35	37	AVss	Power supply	Power supply pin for the A/D Converter.
33	35	AVRH	Power supply	External reference voltage input pin for the A/D Converter. This power supply must be turned on or off while a voltage higher than or equal to AVRH is applied to AVcc .
34	36	AVRL	Power supply	External reference voltage input pin for the A/D Converter.
$\begin{aligned} & 47 \\ & 48 \end{aligned}$	$\begin{aligned} & 49 \\ & 50 \end{aligned}$	$\begin{aligned} & \hline \text { MD0 } \\ & \text { MD1 } \end{aligned}$	C	Input pins for specifying the operating mode. The pins must be directly connected to Vcc or V_{ss}.
49	51	MD2	F	Input pin for specifying the operating mode. The pin must be directly connected to V_{cc} or V_{ss}.
25	27	C	-	Power supply stabilization capacitor pin. It should be connected externally to an $0.1 \mu \mathrm{~F}$ ceramic capacitor.
21, 82	23, 84	V cc	Power supply	Input pin for power supply (5.0 V)
9, 40, 79	$\begin{gathered} 11,42, \\ 81 \end{gathered}$	Vss	Power supply	Input pin for power supply (0.0 V)

*1 : FPT-100P-M06
*2 : FPT-100P-M05

MB90435 Series

I/O CIRCUIT TYPE

Circuit type	Diagram	Remarks
A		- High-speed oscillation feedback resistor : $1 \mathrm{M} \Omega$ approx. - Low-speed oscillation feedback resistor : $10 \mathrm{M} \Omega$ approx.
B		- Hysteresis input - Pull-up resistor : $50 \mathrm{k} \Omega$ approx.
C		- Hysteresis input
D		- CMOS level output - CMOS Hysteresis input

(Continued)

MB90435 Series

Circuit type	Diagram	Remarks
E		- CMOS level output - CMOS Hysteresis input - Analog input
F		- Hysteresis input - Pull-down Resistor : $50 \mathrm{k} \Omega$ approx. (except FLASH devices)
G		- CMOS level output - CMOS Hysteresis input - TTL level input (FLASH devices in FLASH writer mode only)

(Continued)

MB90435 Series

MB90435 Series

HANDLING DEVICES

(1) Preventing latch-up

CMOS IC chips may suffer latch-up under the following conditions:

- A voltage higher than V_{cc} or lower than $\mathrm{V}_{\text {ss }}$ is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between V_{cc} and $\mathrm{V} s$.
- The AVcc power supply is applied before the Vcc voltage.

Latch-up may increase the power supply current drastically, causing thermal damage to the device.
For the same reason, care must also be taken in not allowing the analog power-supply voltage (AVcc, AVRH) to exceed the digital power-supply voltage.

(2) Handling unused pins

Leaving unused input pins open may result in misbehavior or latch up and possible permanent damage of the device. Therefor they must be pulled up or pulled down through resistors. In this case those resistors should be more than $2 \mathrm{k} \Omega$.
Unused bi-directional pins should be set to the output state and can be left open, or the input state with the above described connection.

(3) Using external clock

To use external clock, drive X0 pin only and leave X1 pin unconnected.
Below is a diagram of how to use external clock.

(4) Use of the sub-clock

Use one clock system parts when the sub-clock is not used. In that case, pull-down the pin XOA and leave the pin X1A open. When using two clock system parts, a 32 kHz oscillator has to be connected to the X0A and X1A pins.
(5) Power supply pins ($\mathrm{Vcc} / \mathrm{Vss}$)

In products with multiple V_{cc} or V ss pins, the pins of a same potential are internally connected in the device to avoid abnormal operations including latch-up. However you must connect the pins to an external power and a ground line to lower the electro-magnetic emission level to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating.
Make sure to connect V_{cc} and $\mathrm{V}_{\text {ss }}$ pins via the lowest impedance to power lines.
It is recommended to provide a bypass capacitor of around $0.1 \mu \mathrm{~F}$ between V_{cc} and $\mathrm{V}_{\text {ss }}$ pins near the device.

MB90435 Series

(6) Pull-up/down resistors

The MB90435 Series does not support internal pull-up/down resistors (except Port0 - Port3 : pull-up resistors). Use external components where needed.

(7) Crystal Oscillator Circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via the shortest distances from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuits do not cross the lines of other circuits. It is highly recommended to provide a printed circuit board artwork surrounding X0 and X1 pins with a ground area for stabilizing the operation.
(8) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (ANO to AN7) after turning-on the digital power supply (V_{cc}) .
Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).
(9) Connection of Unused Pins of A/D Converter

Connect unused pins of A / D converter to $\mathrm{AV} \mathrm{cc}=\mathrm{V} c \mathrm{c}, \mathrm{AV} \mathrm{ss}=\mathrm{AVRH}=\mathrm{V} s \mathrm{~s}$.
(10) N.C. Pin

The N.C. (internally connected) pin must be opened for use.
(11) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at $50 \mu \mathrm{~s}$ or more (0.2 V to 2.7 V).
(12) Initialization

In the device, there are internal registers which are initialized only by a power-on reset. To initialize these registers, please turn on the power again.
(13) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions

In the Signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in "00н".
If the values of the corresponding bank registers (DTB, ADB, USB, SSB) are set to other than " 00 H ", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.
(14) Using REALOS

The use of $\mathrm{El}^{2} \mathrm{OS}$ is not possible with the REALOS real time operating system.
(15) Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

MB90435 Series

BLOCK DIAGRAM

$\mathrm{X0}, \mathrm{X} 1$
X0A, X1A
$\overline{\mathrm{RST}}$
HST

MB90435 Series

MEMORY MAP

The memory space of the MB90435 Series is shown below.

Note : The high-order portion of bank 00 gives the image of the FF bank ROM to make the small model of the C compiler effective. Since the low-order 16 bits address are the same, the table in ROM can be referenced without using the "far" specification in the pointer declaration.
For example, an attempt to access $00 \mathrm{COO} \mathrm{H}_{\mathrm{H}}$ accesses the value at FFCOOO in ROM. The ROM area in bank FF exceeds 48 Kbytes, and its entire image cannot be shown in bank 00 . The image between FF 4000 H and FFFFFFF is visible in bank 00, while the image between FFOOOOH $_{\boldsymbol{H}}$ and FF3FFFF is visible only in bank FF.

MB90435 Series

I/O MAP

Address	Register	Abbreviation	Access	Resource name	Initial value
00н	Port 0 data register	PDR0	R/W	Port 0	XXXXXXXX
01н	Port 1 data register	PDR1	R/W	Port 1	XXXXXXXX
02н	Port 2 data register	PDR2	R/W	Port 2	XXXXXXXX
03н	Port 3 data register	PDR3	R/W	Port 3	ХХХХХХХХХв
04	Port 4 data register	PDR4	R/W	Port 4	XXXXXXXX
05н	Port 5 data register	PDR5	R/W	Port 5	XXXXXXXX
06н	Port 6 data register	PDR6	R/W	Port 6	XXXXXXXX
07	Port 7 data register	PDR7	R/W	Port 7	XXXXXXXX
08н	Port 8 data register	PDR8	R/W	Port 8	XXXXXXXX
09н	Port 9 data register	PDR9	R/W	Port 9	XXXXXXXX
ОАн	Port A data register	PDRA	R/W	Port A	$\ldots{ }^{\text {¢ }}$
OBr to $0 \mathrm{FH}_{\mathrm{H}}$	Reserved				
10н	Port 0 direction register	DDR0	R/W	Port 0	00000000 в
11н	Port 1 direction register	DDR1	R/W	Port 1	00000000 в
12н	Port 2 direction register	DDR2	R/W	Port 2	00000000 в
13н	Port 3 direction register	DDR3	R/W	Port 3	00000000 в
14 н	Port 4 direction register	DDR4	R/W	Port 4	00000000 в
15 н	Port 5 direction register	DDR5	R/W	Port 5	00000000 в
$16{ }_{\text {H }}$	Port 6 direction register	DDR6	R/W	Port 6	00000000 в
17\%	Port 7 direction register	DDR7	R/W	Port 7	$00000000_{\text {в }}$
18н	Port 8 direction register	DDR8	R/W	Port 8	$00000000{ }_{\text {в }}$
19н	Port 9 direction register	DDR9	R/W	Port 9	0000000 в
1 Ан $^{\text {¢ }}$	Port A direction register	DDRA	R/W	Port A	--- ${ }^{\text {¢ }}$
1Вн	Analog Input Enable register	ADER	R/W	Port 6, A/D	11111111 B
1 CH	Port 0 pull-up control register	PUCR0	R/W	Port 0	00000000 в
1D ${ }_{\text {H }}$	Port 1 pull-up control register	PUCR1	R/W	Port 1	00000000 в
1Ен	Port 2 pull-up control register	PUCR2	R/W	Port 2	00000000 в
$1 \mathrm{~F}_{\mathrm{H}}$	Port 3 pull-up control register	PUCR3	R/W	Port 3	00000000 в
20н	Serial Mode Control Register 0	UMC0	R/W	UARTO	00000100 в
21н	Serial Status Register 0	USRO	R/W		00010000 в
22н	Serial input data register 0/ Serial output data register 0	UIDRO/ UODR0	R/W		ХХХХХХХХХ
23н	Rate and data register 0	URD0	R/W		0000000 X $^{\text {¢ }}$

(Continued)

MB90435 Series

Address	Register	Abbreviation	Access	Resource name	Initial value
24H	Serial mode register 1	SMR1	R/W		00000000 в
25 H	Serial control register 1	SCR1	R/W		00000100 в
26H	Serial input data register 1/ Serial output data register 1	$\begin{aligned} & \hline \text { SIDR1/ } \\ & \text { SODR1 } \end{aligned}$	R/W	UART1	XXXXXXXXв
27H	Serial status register 1	SSR1	R/W		$00001 _00$ в
28H	UART1 prescaler control register	U1CDCR	R/W		$0 _\ldots-1111$ в
29H	Serial Edge select register	SES1	R/W		Ов
2 Ан $^{\text {¢ }}$	Prohibited				
$2 \mathrm{~B}_{\text {н }}$	Serial I/O prescaler	SCDCR	R/W	Extended I/O Serial Interface	$0 _-\quad 1111$ в
$2 \mathrm{C}_{\mathrm{H}}$	Serial mode control register	SMCS	R/W		0000 в
$2 \mathrm{D}_{\mathrm{H}}$	Serial mode control register	SMCS	R/W		00000010 в
2 EH	Serial data register	SDR	R/W		
2 FH	Serial Edge select register	SES2	R/W		Ов
30 H	External interrupt enable register	ENIR	R/W	External Interrupt	00000000 в
31н	External interrupt request register	EIRR	R/W		XXXXXXXX
32н	External interrupt level register	ELVR	R/W		00000000 в
33 ${ }^{\text {}}$	External interrupt level register	ELVR	R/W		00000000 в
34 H	A/D control status register 0	ADCS0	R/W	A/D Converter	00000000 в
35 ${ }^{\text {}}$	A/D control status register 1	ADCS1	R/W		00000000 в
36	A/D data register 0	ADCR0	R		ХХХХХХХХХв
37 H	A/D data register 1	ADCR1	R/W		$00001_{\text {_ }} \mathrm{XX}_{\text {B }}$
38н	PPG0 operation mode control register	PPGC0	R/W	16-bit Programmable Pulse Generator 0/1	$0_{\sim} 0000_{\text {- }} 1_{\text {в }}$
39 ${ }_{\text {+ }}$	PPG1 operation mode control register	PPGC1	R/W		$0 _000001_{\text {в }}$
ЗАн	PPG0/1 clock selection register	PPG01	R/W		$000000 \ldots$ в
3Вн	Prohibited				
$3 \mathrm{C}_{\mathrm{H}}$	PPG2 operation mode control register	PPGC2	R/W	16-bit Programmable Pulse Generator 2/3	0_000_-1в
3D	PPG3 operation mode control register	PPGC3	R/W		$0 _00000$ 1в
$3 \mathrm{E}_{\text {н }}$	PPG2/3 Clock Selection Register	PPG23	R/W		$000000{ }_{\text {_ }}{ }^{\text {¢ }}$
3FH	Prohibited				
40 H	PPG4 operation mode control register	PPGC4	R/W	16-bit Programmable Pulse Generator 4/5	
41H	PPG5 operation mode control register	PPGC5	R/W		$0 _000001$ в
42 H	PPG4/5 clock selection register	PPG45	R/W		$000000{ }_{\text {_ }}{ }^{\text {B }}$
43н	Prohibited				
44H	PPG6 operation mode control register	PPGC6	R/W	16-bit Programmable Pulse Generator 6/7	
45H	PPG7 operation mode control register	PPGC7	R/W		$0 _000001$ в
46 ${ }^{\text {H}}$	PPG6/7 clock selection register	PPG67	R/W		$000000 \ldots$ в

(Continued)

MB90435 Series

Address	Register	Abbreviation	Access	Resource name	Initial value
47н to 4Вн	Prohibited				
$4 \mathrm{C}_{\mathrm{H}}$	Input capture control status register 0/1	ICS01	R/W	Input Capture 0/1	00000000 в
4D	Input capture control status register 2/3	ICS23	R/W	Input Capture 2/3	00000000 в
4Ен	Input capture control status register 4/5	ICS45	R/W	Input Capture 4/5	00000000 в
4FH	Input capture control status register 6/7	ICS67	R/W	Input Capture 6/7	00000000 в
50н	Timer control status register 0	TMCSR0	R/W	16-bit Reload Timer 0	00000000 в
51н	Timer control status register 0	TMCSR0	R/W		0000 в
52н	Timer register 0/reload register 0	TMR0/ TMRLR0	R/W		XXXXXXXХв
53н	Timer register 0/reload register 0	TMR0/ TMRLR0	R/W		XXXXXXXХв
54н	Timer control status register 1	TMCSR1	R/W	16-bit Reload Timer 1	00000000 в
55	Timer control status register 1	TMCSR1	R/W		----0000в
56н	Timer register 1/reload register 1	TMR1/ TMRLR1	R/W		XXXXXXXХв
57\%	Timer register 1/reload register 1	TMR1/ TMRLR1	R/W		
58н	Output compare control status register 0	OCS0	R/W	Output Compare 0/1	
59н	Output compare control status register 1	OCS1	R/W		00000 в
5 н $^{\text {}}$	Output compare control status register 2	OCS2	R/W	Output Compare 2/3	$0000 \ldots 00$ в
$5 \mathrm{~B}_{\text {н }}$	Output compare control status register 3	OCS3	R/W		- - 00000 в
5Сн to 6Вн	Prohibited				
$6 \mathrm{C}_{\mathrm{H}}$	Timer Counter Data register	TCDT	R/W	I/O Timer	00000000 в
6D	Timer Counter Data register	TCDT	R/W		00000000 в
6Ен	Timer Counter Control status register	TCCS	R/W		00000000 в
6F\%	ROM mirror function selection register	ROMM	R/W	ROM Mirror	------- ${ }^{18}$
70н to 7FH	Reserved				
80н to 8FH	Reserved				
90н to 9Dн	Prohibited				
9Ен	Program address detection control status register	PACSR	R/W	Address Match Detection Function	0000000 Ов
9FH	Delayed interrupt/release register	DIRR	R/W	Delayed Interrupt	------ $0_{\text {в }}$
$\mathrm{AOH}^{\text {H}}$	Low-power mode control register	LPMCR	R/W	Low Power Controller	00011000 в
A1H	Clock selection register	CKSCR	R/W	Low Power Controller	11111100 в

(Continued)

MB90435 Series

(Continued)

Address	Register	Abbreviation	Access	Resource name	Initial value
A2н to A4н	Prohibited				
A_{H}	Automatic ready function select register	ARSR	W	External Memory Access	0011 __008
A6	External address output control register	HACR	W		00000000 B
A7 ${ }^{\text {}}$	Bus control signal selection register	ECSR	W		0000000 _
A8H	Watchdog Timer control register	WDTC	R/W	Watchdog Timer	XXXXX 111 B
A9 ${ }_{\text {H }}$	Time Base Timer Control register	TBTC	R/W	Time Base Timer	1--00100в
ААн	Watch timer control register	WTC	R/W	Watch Timer	$1 \times 000000 \mathrm{~B}$
ABн to ADн	Prohibited				
АЕн	Flash memory control status register (Flash only, otherwise reserved)	FMCS	R/W	Flash Memory	000×00008
AFH	Prohibited				
BOH	Interrupt control register 00	ICROO	R/W	Interrupt controller	00000111_{B}
B1н	Interrupt control register 01	ICR01	R/W		00000111 B
В2н	Interrupt control register 02	ICR02	R/W		00000111 B
В3н	Interrupt control register 03	ICR03	R/W		00000111 B
B4	Interrupt control register 04	ICR04	R/W		00000111 B
B5	Interrupt control register 05	ICR05	R/W		00000111 B
B6	Interrupt control register 06	ICR06	R/W		00000111 B
B7 ${ }^{\text {}}$	Interrupt control register 07	ICR07	R/W		00000111 B
B8н	Interrupt control register 08	ICR08	R/W		00000111 B
B9н	Interrupt control register 09	ICR09	R/W		$00000111^{\text {B }}$
ВАн	Interrupt control register 10	ICR10	R/W		00000111_{B}
BBH	Interrupt control register 11	ICR11	R/W		00000111 B
BCH	Interrupt control register 12	ICR12	R/W		00000111 B
BD	Interrupt control register 13	ICR13	R/W		00000111 B
ВЕн	Interrupt control register 14	ICR14	R/W		$00000111^{\text {B }}$
BF\%	Interrupt control register 15	ICR15	R/W		00000111 B
COH to FF H	External				

Address	Register	Abbreviation	Access	Resource name	Initial value
1FF0н	Program address detection register 0	PADR0	R/W	Address Match Detection Function	XXXXXXXX ${ }_{\text {¢ }}$
1FF1н	Program address detection register 0	PADR0	R/W		XXXXXXXX ${ }_{\text {B }}$
1FF2н	Program address detection register 0	PADR0	R/W		XXXXXXXX ${ }_{\text {B }}$
1FF3н	Program address detection register 1	PADR1	R/W		XXXXXXXX
1FF4 ${ }^{\text {¢ }}$	Program address detection register 1	PADR1	R/W		XXXXXXXX
1FF5	Program address detection register 1	PADR1	R/W		XXXXXXXX ${ }_{\text {¢ }}$

Address	Register	Abbreviation	Access	Resource name	Initial value
3900н	Reload L	PRLLO	R／W	16－bit Programmable Pulse Generator 0／1	XXXXXXXX
3901н	Reload H	PRLH0	R／W		XXXXXXXX
3902н	Reload L	PRLL1	R／W		XXXXXXXX
3903н	Reload H	PRLH1	R／W		XXXXXXXX
3904н	Reload L	PRLL2	R／W	16－bit Programmable Pulse Generator 2／3	XXXXXXXX
3905 ${ }_{\text {H }}$	Reload H	PRLH2	R／W		XXXXXXXX
3906н	Reload L	PRLL3	R／W		
3907 ${ }_{\text {H }}$	Reload H	PRLH3	R／W		XXXXXXXX
3908н	Reload L	PRLL4	R／W	16－bit Programmable Pulse Generator 4／5	XXXXXXXX
3909н	Reload H	PRLH4	R／W		XXXXXXXX
390Ан	Reload L	PRLL5	R／W		XXXXXXXX
390В ${ }_{\text {н }}$	Reload H	PRLH5	R／W		XXXXXXXX ${ }_{\text {¢ }}$
390Cн	Reload L	PRLL6	R／W	16－bit Programmable Pulse Generator 6／7	XXXXXXXX
390䅛	Reload H	PRLH6	R／W		XXXXXXXX ${ }_{\text {¢ }}$
390Eн	Reload L	PRLL7	R／W		
390FH	Reload H	PRLH7	R／W		XXXXXXXX ${ }_{\text {¢ }}$
$\begin{gathered} \hline \text { 3910 } \text { to } \\ 3917 \mathrm{H} \end{gathered}$	Reserved				
3918н	Input Capture Register 0	IPCP0	R	Input Capture 0／1	ХХХХХХХХв
3919н	Input Capture Register 0	IPCP0	R		XXXXXXXX
391 Ан	Input Capture Register 1	IPCP1	R		ХХХХХХХХХв
391浐	Input Capture Register 1	IPCP1	R		ХХХХХХХХв
391浐	Input Capture Register 2	IPCP2	R	Input Capture 2／3	XXXXXXXX ${ }_{\text {¢ }}$
	Input Capture Register 2	IPCP2	R		XXXXXXXX
391E ${ }_{\text {н }}$	Input Capture Register 3	IPCP3	R		XXXXXXXX ${ }_{\text {B }}$
391FH	Input Capture Register 3	IPCP3	R		XXXXXXXX ${ }_{\text {B }}$
3920 ${ }_{\text {H }}$	Input Capture Register 4	IPCP4	R	Input Capture 4／5	XXXXXXXX
3921н	Input Capture Register 4	IPCP4	R		XXXXXXXX ${ }_{\text {B }}$
3922н	Input Capture Register 5	IPCP5	R		XXXXXXXX
3923н	Input Capture Register 5	IPCP5	R		XXXXXXXX
3924н	Input Capture Register 6	IPCP6	R	Input Capture 6／7	ХХХХХХХХХВ
3925 ${ }^{\text {H }}$	Input Capture Register 6	IPCP6	R		XXXXXXXX
3926н	Input Capture Register 7	IPCP7	R		XXXXXXXX
3927 ${ }^{\text {H}}$	Input Capture Register 7	IPCP7	R		XXXXXXXX ${ }_{\text {¢ }}$

（Continued）

MB90435 Series

(Continued)

Address	Register	Abbreviation	Access	Resource name	Initial value
3928н	Output Compare Register 0	OCCP0	R/W	Output Compare 0/1	XXXXXXXX ${ }_{\text {¢ }}$
3929н	Output Compare Register 0	OCCP0	R/W		XXXXXXXX
392Ан	Output Compare Register 1	OCCP1	R/W		XXXXXXXX
392Вн	Output Compare Register 1	OCCP1	R/W		XXXXXXXX
392С ${ }_{\text {н }}$	Output Compare Register 2	OCCP2	R/W	Output Compare 2/3	XXXXXXXX ${ }_{\text {¢ }}$
392D	Output Compare Register 2	OCCP2	R/W		XXXXXXXX
392Ен	Output Compare Register 3	OCCP3	R/W		XXXXXXXX
392F	Output Compare Register 3	OCCP3	R/W		XXXXXXXX
$\begin{aligned} & \text { 3930н to } \\ & \text { 39FFн } \end{aligned}$	Reserved				
$\begin{gathered} \hline \text { 3AOOH to } \\ \text { 3AFF }_{H} \end{gathered}$	Reserved				
$\begin{aligned} & \text { 3B00н to } \\ & \text { 3BFFH } \end{aligned}$	Reserved				
$\begin{gathered} \text { 3COOH to } \\ 3 \text { CFFH } \end{gathered}$	Reserved				
$\begin{gathered} \text { 3DOOH to } \\ \text { 3DFFH } \end{gathered}$	Reserved				
$\begin{aligned} & \text { 3EOOH to } \\ & 3 F F F_{\mathrm{H}} \end{aligned}$	Reserved				

- Read/write notation

R/W : Reading and writing permitted
R : Read-only
W : Write-only

- Initial value notation

0 : Initial value is " 0 ".
1 : Initial value is " 1 ".
X : Initial value is undefined.

Note : Any write access to reserved addresses in I/O map should not be performed. A read access to reserved addresses results in reading " X ".

MB90435 Series

INTERRUPT MAP

Interrupt cause	$\mathrm{El}^{2} \mathrm{OS}$ clear	Interrupt vector		Interrupt control register	
		Number	Address	Number	Address
Reset	N/A	\#08	FFFFDCH	-	-
INT9 instruction	N/A	\#09	FFFFD8н	-	-
Exception	N/A	\#10	FFFFD4н	-	-
Reserved	N/A	\#11	FFFFD0н	ICR00	0000B0н
Reserved	N/A	\#12	FFFFCCH		
Reserved	N/A	\#13	FFFFC8н	ICR01	0000B1н
Reserved	N/A	\#14	FFFFC4		
External Interrupt INT0/INT1	*1	\#15	FFFFCOH	ICR02	0000B2н
Time Base Timer	N/A	\#16	FFFFBC ${ }_{\text {H }}$		
16-bit Reload Timer 0	*1	\#17	FFFFB8	ICR03	0000B3 ${ }^{\text {H }}$
8/10-bit A/D Converter	*1	\#18	FFFFB4 ${ }_{\text {¢ }}$		
I/O Timer	N/A	\#19	FFFFB0н	ICR04	0000B4н
External Interrupt INT2/INT3	*1	\#20	FFFFACH		
Serial I/O	*1	\#21	FFFFA8н	ICR05	0000B5
8/16-bit PPG 0/1	N/A	\#22	FFFFA4		
Input Capture 0	*1	\#23	FFFFA0н	ICR06	0000B6н
External Interrupt INT4/INT5	*1	\#24	FFFF9CH		
Input Capture 1	*1	\#25	FFFF98 ${ }_{\text {¢ }}$	ICR07	0000B7 ${ }^{\text {H }}$
8/16-bit PPG 2/3	N/A	\#26	FFFF94н		
External Interrupt INT6/INT7	*1	\#27	FFFF90н	ICR08	0000B8H
Watch Timer	N/A	\#28	FFFF8C ${ }_{\text {H }}$		
8/16-bit PPG 4/5	N/A	\#29	FFFF88 ${ }_{\text {¢ }}$	ICR09	0000B9н
Input Capture 2/3	*1	\#30	FFFF84 ${ }_{\text {¢ }}$		
8/16-bit PPG 6/7	N/A	\#31	FFFF80 ${ }_{\text {H }}$	ICR10	0000ВАн
Output Compare 0	*1	\#32	FFFF7CH		
Output Compare 1	*1	\#33	FFFF78	ICR11	0000BBн
Input Capture 4/5	*1	\#34	FFFF74		
Output Compare 2/3-Input Capture 6/7	*1	\#35	FFFF70н	ICR12	0000BCH
16-bit Reload Timer 1	*1	\#36	FFFF6C ${ }_{\text {н }}$		
UART 0 RX	*2	\#37	FFFF68 ${ }_{\text {¢ }}$	ICR13	0000BD
UART 0 TX	*1	\#38	FFFF64 ${ }_{\text {¢ }}$		
UART 1 RX	*2	\#39	FFFF60н	ICR14	0000BEH
UART 1 TX	*1	\#40	FFFF5CH		
Flash Memory	N/A	\#41	FFFF58 ${ }^{\text {¢ }}$	ICR15	0000BFH
Delayed interrupt	N/A	\#42	FFFF54н		

MB90435 Series

*1 : The interrupt request flag is cleared by the EI²OS interrupt clear signal.
*2 : The interrupt request flag is cleared by the El²OS interrupt clear signal. A stop request is available.
Notes : •N/A : The interrupt request flag is not cleared by the $\mathrm{El}^{2} \mathrm{OS}$ interrupt clear signal.

- For a peripheral module with two interrupt causes for a single interrupt number, both interrupt request flags are cleared by the EI²OS interrupt clear signal.
- At the end of $\mathrm{El}^{2} \mathrm{OS}$, the $\mathrm{El}^{2} \mathrm{OS}$ clear signal will be asserted for all the interrupt flags assigned to the same interrupt number. If one interrupt flag starts the $\mathrm{El}^{2} \mathrm{OS}$ and in the meantime another interrupt flag is set by a hardware event, the later event is lost because the flag is cleared by the $\mathrm{El}^{2} \mathrm{OS}$ clear signal caused by the first event. So it is recommended not to use the $\mathrm{EI}^{2} \mathrm{OS}$ for this interrupt number.
- If $\mathrm{El}^{2} \mathrm{OS}$ is enabled, $\mathrm{El}^{2} \mathrm{OS}$ is initiated when one of the two interrupt signals in the same interrupt control register (ICR) is asserted. This means that different interrupt sources share the same EI²OS Descriptor which should be unique for each interrupt source. For this reason, when one interrupt source uses the $\mathrm{EI}^{2} \mathrm{OS}$, the other interrupt should be disabled.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

$$
\left(\mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}=0.0 \mathrm{~V}\right)
$$

Parameter	Symbol	Value		Units	Remarks
		Min	Max		
Power supply voltage	Vcc	Vss -0.3	Vss +6.0	V	
	AVcc	Vss-0.3	Vss +6.0	V	V $\mathrm{cc}=\mathrm{AV}$ cc ${ }^{\text {a }}$ *1
	AVRH, AVRL	Vss - 0.3	Vss +6.0	V	$\begin{aligned} & \text { AVcc } \geq \text { AVRH/AVRL, } \quad{ }^{\prime} 1 \\ & \text { AVRH } \geq \text { AVRL } \end{aligned}$
Input voltage	V_{1}	Vss - 0.3	Vss +6.0	V	*2
Output voltage	Vo	Vss - 0.3	Vss +6.0	V	*2
Maximum clamp current	Iclamp	-2.0	+2.0	mA	*6
Total maximum clamp current	$\Sigma \mid$ Iclamp \|	-	20	mA	*6
"L" level max output current	loL	-	15	mA	*3
"L" level avg. output current	lolav	-	4	mA	*4
"L" level max overall output current	Elo	-	100	mA	
"L" level avg. overall output current	EloLav	-	50	mA	*5
"H" level max output current	Іон	-	-15	mA	*3
"H" level avg. output current	lohav	-	-4	mA	*4
"H" level max overall output current	इІон	-	-100	mA	
"H" level avg. overall output current	\sum lohav	-	-50	mA	*5
Power consumption	Po	-	500	mW	Flash device
		-	400	mW	Mask ROM
Operating temperature	TA	-40	+105	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*1 : AVcc, AVRH, AVRL should not exceed Vcc. Also, AVRH, AVRL should not exceed AVcc, and AVRL does not exceed AVRH.
*2 : VI and V_{o} should not exceed V cc +0.3 V . V_{I} should not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the Iclamp rating supercedes the V1 rating.
*3 : The maximum output current is a peak value for a corresponding pin.
*4 : Average output current is an average current value observed for a 100 ms period for a corresponding pin.
*5 : Total average current is an average current value observed for a 100 ms period for all corresponding pins.
*6 : • Applicable to pins : P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67,
P70 to P77, P80 to P87, P90 to P97, PA0

- Use within recommended operating conditions.
- Use at DC voltage (current).
- The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the V_{cc} pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller current is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on result.
(Continued)

MB90435 Series

(Continued)

- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
- Sample recommended circuits :
- Input/Output Equivalent circuits

Note : Average output current $=$ operating current \times operating efficiency
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB90435 Series

2. Recommended Conditions
$(\mathrm{V} s \mathrm{~s}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V})$

Parameter	Symbol	Value			Units	Remarks
		Min	Typ	Max		
Power supply voltage	Vcc, AVcc	4.5	5.0	5.5	V	Under normal operation : MB90F439 (S) /439 (S) /V540G
		3.5	5.0	5.5	V	Under normal operation : MB90F438L (S) /437L (S) /438L (S)
		3.0	-	5.5	V	Maintain RAM data in stop mode
Smooth capacitor	Cs	0.022	0.1	1.0	$\mu \mathrm{F}$	*
Operating temperature	TA	-40	-	+105	${ }^{\circ} \mathrm{C}$	

*: Use a ceramic capacitor or a capacitor of better 4. AC characteristics. The Vcc Capacitor should be greater than this capacitor.
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB90435 Series

3. DC Characteristics

(MB90F438L (S) /437L (S) /438L (S) : $\mathrm{Vcc}=3.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}$ ss $=\mathrm{AVss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$) (MB90F439 (S) /439 (S) /V540G: $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$)

Parameter	$\begin{array}{\|c\|} \hline \text { Sym- } \\ \text { bol } \end{array}$	Pin name	Condition	Value			Units	Remarks
				Min	Typ	Max		
Input H voltage	V Hs	CMOS hysteresis input pin	-	0.8 Vcc	-	$\mathrm{V} \mathrm{cc}+0.3$	V	
	VIH	$\begin{aligned} & \text { TTL input } \\ & \text { pin } \end{aligned}$	-	2.0	-	-	V	
	Vнмм	MD input pin	-	V cc - 0.3	-	$\mathrm{Vcc}+0.3$	V	
Input L voltage	Vıss	CMOS hysteresis input pin	-	Vcc - 0.3	-	0.2 Vcc	V	
	VIL	TTL input pin	-	-	-	0.8	V	
	VILM	$\begin{aligned} & \text { MD input } \\ & \text { pin } \end{aligned}$	-	Vss - 0.3	-	$\mathrm{Vcc}+0.3$	V	
Output H voltage	Vон	All output pins	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$	$\mathrm{Vcc}-0.5$	-	-	V	
Output L voltage	Vol	All output pins	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
Input leak current	IL	-	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$	-5	-	5	$\mu \mathrm{A}$	
Pull-up resistance	Rup		-	25	50	100	$\mathrm{k} \Omega$	
Pull-down resistance	$\begin{array}{\|l\|} \hline \text { Roo } \\ \text { wn } \end{array}$	MD2	-	25	50	100	k Ω	

(Continued)

MB90435 Series

(Continued)
(MB90F438L (S) /437L (S) /438L (S) : Vcc $=3.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}$ ss $=\mathrm{AV}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$) (MB90F439 (S) /439 (S) /V540G: $\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$)

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Condition	Value			Units	Remarks
				Min	Typ	Max		
Power supply current*	Icc	V cc	Internal frequency : 16 MHz , At normal operating	-	40	55	mA	
			Internal frequency : 16 MHz , At Flash programming/erasing	-	50	70	mA	Flash device
	Iccs		Internal frequency : 16 MHz , At sleep mode	-	12	20	mA	
	Icts		$V_{c c}=5.0 \vee \pm 1 \%,$ Internal frequency : 2 MHz , At pseudo timer mode	-	300	600	$\mu \mathrm{A}$	
				-	600	1100	$\mu \mathrm{A}$	MB90F348L (S)
				-	200	400	$\mu \mathrm{A}$	$\begin{aligned} & \text { MB90437L (S) / } \\ & \text { 438L (S) } \\ & \hline \end{aligned}$
	Iccl		Internal frequency: 8 kHz , At sub operation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	400	750	$\mu \mathrm{A}$	MB90F438L (S)
				-	50	100	$\mu \mathrm{A}$	Mask ROM
				-	150	300	$\mu \mathrm{A}$	Flash device
	Iccls		Internal frequency : 8 kHz , At sub sleep, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	15	40	$\mu \mathrm{A}$	
	Ісст		Internal frequency : 8 kHz , At timer mode, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	7	25	$\mu \mathrm{A}$	
	$\mathrm{ICCH1}$		At stop, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	5	20	$\mu \mathrm{A}$	
	ICCH2		At hardware standby mode, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	50	100	$\mu \mathrm{A}$	
Input capacity	Cin	Other than $\mathrm{AVcc}, \mathrm{AV}$ ss, AVRH, AVRL, C, Vcc, Vss	-	-	5	15	pF	

[^0]
MB90435 Series

4. AC Characteristics

(1) Clock Timing
(MB90F438L (S) /437L (S) /438L (S) : Vcc $=3.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}$ ss $=\mathrm{AVss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$) (MB90F439 (S) /439 (S) /V540G: $\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$, $\mathrm{Vss}=\mathrm{AVss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Value			Units	Remarks
			Min	Typ	Max		
Oscillation frequency	fc	X0, X1	3	-	16	MHz	V cc $=5.0 \mathrm{~V} \pm 10 \%$
			3	-	5	MHz	$\begin{aligned} & \text { Vcc<4.5 (MB90F438L (S) / } \\ & 437 \mathrm{~L} \text { (S) /438L (S)) } \end{aligned}$
	fcı	X0A, X1A	-	32.768	-	kHz	
Oscillation cycle time	tcyL	X0, X1	62.5	-	333	ns	$\mathrm{V}_{\text {cc }}=5.0 \mathrm{~V} \pm 10 \%$
			200	-	333	ns	$\begin{aligned} & \text { Vcc<4.5 (MB90F438L (S) / } \\ & 437 \mathrm{~L}(\mathrm{~S}) / 438 \mathrm{~L}(\mathrm{~S})) \end{aligned}$
	thcyl	X0A, X1A	-	30.5	-	$\mu \mathrm{s}$	
Input clock pulse width	Ршн, PwL	X0	10	-	-	ns	Duty ratio is about 30% to 70\%.
	Pwlh, Pwll	XOA	-	15.2	-	$\mu \mathrm{s}$	
Input clock rise and fall time	tcr, tcF	X0	-	-	5	ns	When using external clock
Machine clock frequency	fcp	-	1.5	-	16	MHz	When using main clock
	flcp	-	-	8.192	-	kHz	When using sub-clock
Machine clock cycle time	tcp	-	62.5	-	666	ns	When using main clock
	tıcp	-	-	122.1	-	$\mu \mathrm{s}$	When using sub-clock

- Clock Timing

MB90435 Series

- Guaranteed PLL operation range

Power supply voltage
Vcc (V)

- External clock frequency and Machine clock frequency

MB90435 Series

AC characteristics are set to the measured reference voltage values below.

- Input signal waveform

Hysteresis Input Pin

- Output signal waveform

Output Pin

TTL Input Pin

MB90435 Series

(2) Clock Output Timing
(MB90F438L (S) /437L (S) /438L (S) : Vcc $=3.5 \mathrm{~V}$ to 5.5 V , $\mathrm{Vss}=\mathrm{AV}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$) (MB90F439 (S) /439 (S) $/ \mathrm{V} 540 \mathrm{G}: \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}$ ss $=\mathrm{AVss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Condition	Value		Units	Remarks
				Min	Max		
Cycle time	toyc	CLK	$\mathrm{V} \mathrm{cc}=5 \mathrm{~V} \pm 10 \%$	62.5	-	ns	
CLK $\uparrow \rightarrow$ CLK \downarrow	tchcl			20	-	ns	

(3) Reset and Hardware Standby Input Timing
(MB90F438L (S) /437L (S) /438L (S) : V cc $=3.5 \mathrm{~V}$ to 5.5 V , $\mathrm{V}_{\text {ss }}=\mathrm{AV}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$) (MB90F439 (S) /439 (S) /V540G: $\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Value		Units	Remarks
			Min	Max		
Reset input time	trsti	$\overline{\text { RST }}$	4 tcp	-	ns	Under normal operation
			Oscillation time of oscillator +4 tcp	-	ms	In stop mode
			100	-	$\mu \mathrm{S}$	$\begin{aligned} & \hline \begin{array}{l} \text { Pseudo timer mode } \\ \text { (MB90437L (S) /438L (S)) } \end{array} \end{aligned}$
			4 tcp	-	ns	Pseudo timer mode (Other than MB90437L (S) /438L (S))
			2 tcp	-	$\mu \mathrm{s}$	In sub clock mode, sub sleep mode and watch mode
Hardware standby input time	thstL	$\overline{\text { HST }}$	4 tcp	-	ns	Under normal operation

"tcp" represents one cycle time of the machine clock.
Oscillation time of oscillator is time that amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms . In FAR/ceramic oscillator, the oscillation time is between handreds of $\mu \mathrm{s}$ to several ms . In the external clock, the oscillation time is 0 ns .
Any reset can not fully initialize the Flash Memory if it is performing the automatic algorithm.

MB90435 Series

- Under normal operation, Pseudo timer mode, Sub clock mode, Sub sleep mode, Watch mode

- In stop mode

MB90435 Series

(4) Power On Reset
(MB90F438L (S) /437L (S) /438L (S) : V cc $=3.5 \mathrm{~V}$ to 5.5 V , $\mathrm{V}_{\mathrm{ss}}=\mathrm{AV}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$) (MB90F439 (S) /439 (S) /V540G: V cc $=5.0 \mathrm{~V} \pm 10 \%$, $\mathrm{V}_{\mathrm{ss}}=\mathrm{AV}$ Ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$)

Parameter	Symbol	Pinname	Condition	Value		Units	Remarks
				Min	Max		
Power on rise time	tR	Vcc	-	0.05	30	ms	*
Power off time	toff	Vcc		50	-	ms	Due to repetitive operation

*: Vcc must be kept lower than 0.2 V before power-on.
Notes: • The above values are used for creating a power-on reset.

- Some registers in the device are initialized only upon a power-on reset. To initialize these register, turn on the power supply using the above values.

Sudden changes in the power supply voltage may cause a power-on reset.
To change the power supply voltage while the device is in operation, it is recommended to raise the voltage smoothly to suppress fluctuations as shown below. In this case, change the supply voltage with the PLL clock not used. If the voltage drop is 1 V or fewer per second, however, you can use the PLL clock.

MB90435 Series

(5) Bus Timing (Read) (MB90F438L (S) (MB90F439	(S) /4 S) /439 (S)	$\begin{aligned} & 38 \mathrm{~L}(\mathrm{~S}): \mathrm{V}_{\mathrm{cc}}=3 . \\ & \text { 3) } / \mathrm{V} 540 \mathrm{G}: \mathrm{Vcc}= \end{aligned}$	$\begin{aligned} & 3.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & 5.0 \mathrm{~V} \pm 10 \% \end{aligned}$	$\begin{aligned} & \mathrm{V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs} \\ & \%, \mathrm{~V} \mathrm{ss}=\mathrm{AV} \mathrm{ss} \end{aligned}$	$\begin{aligned} & =0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}= \\ & =0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=. \end{aligned}$	$-40^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$	$\begin{aligned} & \text { to } \left.+105^{\circ} \mathrm{C}\right) \\ & \text { to } \left.+105^{\circ} \mathrm{C}\right) \end{aligned}$
Parameter	Symbol	Pin name	Condition	Min	Max	Units	Remarks
ALE pulse width	tıнLL	ALE	-	tcp/2-20	-	ns	
Valid address \rightarrow ALE \downarrow time	tavil	ALE, A16 to A23, AD00 to AD15		tcp/2-20	-	ns	
ALE $\downarrow \rightarrow$ Address valid time	tılax	ALE, AD00 to AD15		tcp/2-15	-	ns	
Valid address $\rightarrow \overline{\mathrm{RD}} \downarrow$ time	tavgl	A16 toA23, AD00 to AD15, RD		tcp - 15	-	ns	
Valid address \rightarrow Valid data input	tavov	A16 to A23, AD00 to AD15		-	$5 \mathrm{tcp} / 2-60$	ns	
$\overline{\mathrm{RD}}$ pulse width	trLRH	$\overline{\mathrm{RD}}$		$3 \mathrm{tcp} / 2-20$	-	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ Valid data input	trldv	RD, AD00 to AD15		-	$3 \mathrm{tcp} / 2-60$	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ Data hold time	trhdx	$\overline{\mathrm{RD}}$, AD00 to AD15		0	-	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow \mathrm{ALE} \mathrm{\uparrow time}$	trHLH	RD, ALE		tcp/2-15	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ Address valid time	trhax	$\overline{\mathrm{RD}}, \mathrm{A} 16$ to A23		tcp/2-10	-	ns	
Valid address \rightarrow CLK \uparrow time	tavch	A16 to A23, AD00 to AD15, CLK		tcp/2-20	-	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ CLK 个time	trLCH	RD, CLK		tcp/2-20	-	ns	
ALE $\downarrow \rightarrow$ ¢ $\overline{\mathrm{D}} \downarrow$ time	tLlRL	ALE, $\overline{\mathrm{RD}}$		tcp/2-15	-	ns	

MB90435 Series

- Bus Timing (Read)

MB90435 Series

(6) Bus Timing (Write) (MB90F438L (S) /43 (MB90F439 (S)	$\begin{aligned} & \text { (S) } / 438 \mathrm{~L} \\ & 439 \text { (S) } \mathrm{V} \end{aligned}$	$\begin{aligned} & (\mathrm{S}): \mathrm{V}_{\mathrm{cc}}=3.5 \\ & 540 \mathrm{~V}: \mathrm{V}_{\mathrm{cc}}=5.0 \end{aligned}$	$\begin{aligned} & \text { to } 5.5 \mathrm{~V}, \mathrm{~V} \\ & \mathrm{~V} \pm 10 \%, \mathrm{~V} \end{aligned}$	$\begin{aligned} & s=A V \mathrm{ss}=0.0 \\ & \mathrm{~s}=\mathrm{AV} \mathrm{ss}=0.0 \end{aligned}$	$\mathrm{V}, \mathrm{T}_{\mathrm{A}}=$	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { to }+105^{\circ} \mathrm{C} \text {) } \\ & \text { to } \left.+105^{\circ} \mathrm{C}\right) \end{aligned}$
Parameter	Symbol	Pin name	Condition	Value		Units	Remarks
				Min	Max		
Valid address $\rightarrow \overline{\mathrm{WR}} \downarrow$ time	tavwL	$\begin{aligned} & \hline \text { A16 to A23 } \\ & \text { AD00 to AD15, } \\ & \hline \overline{W R} \end{aligned}$	-	tcp - 15	-	ns	
$\overline{\text { WR pulse width }}$	twww	$\overline{\mathrm{WR}}$		$3 \mathrm{tcp} / 2-20$	-	ns	
Valid data output $\rightarrow \overline{\mathrm{WR} \uparrow \text { time }}$	tovwh	$\begin{aligned} & \mathrm{AD00} \text { to AD15, } \\ & \frac{\mathrm{WR}}{\mathrm{~W}} \end{aligned}$		$3 \mathrm{tcp} / 2-20$	-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ Data hold time	twhdx	$\frac{\mathrm{AD} 00}{\mathrm{WR}} \mathrm{to} \text { AD15, }$		20	-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ Address valid time	twhax	$\begin{aligned} & \frac{A 16}{\mathrm{WR}} \text { to } \mathrm{A} 23, \\ & \hline \end{aligned}$		tcp/2-10	-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ ALE \uparrow time	twHLH	WR, ALE		tcp/2-15	-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ CLK \uparrow time	twLCH	$\overline{\mathrm{WR}}$, CLK		tcp/2-20	-	ns	

- Bus Timing (Write)

MB90435 Series

(7) Ready Input Timing
(MB90F438L (S) /437L (S) /438L (S) : Vcc $=3.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}$ ss $=\mathrm{AVss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$) (MB90F439 (S) /439 (S) $/ \mathrm{V} 540 \mathrm{G}: \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}$ ss $=\mathrm{AVss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Condition	Value		Units	Remarks
				Min	Max		
RDY setup time	tryhs	RDY	-	45	-	ns	
RDY hold time	trүнн	RDY		0	-	ns	

Note : If the RDY setup time is insufficient, use the auto-ready function.

- Ready Input Timing

MB90435 Series

(8) Hold Timing
(MB90F438L (S) /437L (S) /438L (S) : V cc $=3.5 \mathrm{~V}$ to 5.5 V , $\mathrm{V}_{\mathrm{ss}}=\mathrm{AV}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$) (MB90F439 (S) /439 (S) /V540G: $\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}$ ss $=\mathrm{AV}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Condition	Value		Units	Remarks
				Min	Max		
Pin floating $\rightarrow \overline{\mathrm{HAK}} \downarrow$ time	txhaL	$\overline{\text { HAK }}$	-	30	tcp	ns	
$\overline{\text { HAK }}$ Time \rightarrow Pin valid time	thatv	HAK		tcp	2 tcp	ns	

Note : There is more than 1 cycle from the time HRQ is read to the time the HAK is changed.

- Hold Timing

(9) UART0/1, Serial I/O Timing
(MB90F438L (S) /437L (S) /438L (S) : Vcc $=3.5 \mathrm{~V}$ to 5.5 V , $\mathrm{Vss}=\mathrm{AV}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$) (MB90F439 (S) /439 (S) /V540G: $\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$, V ss $=\mathrm{AVss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Condition	Value		Units	Remarks
				Min	Max		
Serial clock cycle time	tscyc	SCK0 to SCK2	Internal clock operation output pins are $C L=80 \mathrm{pF}+1 \mathrm{TTL}$.	8 tcp	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tsıov	SCK0 to SCK2, SOT0 to SOT2		-80	80	ns	
Valid SIN \rightarrow SCK \uparrow	tivsh	SCK0 to SCK2, SINO to SIN2		100	-	ns	
SCK $\uparrow \rightarrow$ Valid SIN hold time	tshix	SCK0 to SCK2, SINO to SIN2		60	-	ns	
Serial clock "H" pulse width	tshst	SCK0 to SCK2	External clock operation output pins are $\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$.	4 tcp	-	ns	
Serial clock "L" pulse width	tsısh	SCK0 to SCK2		4 tcp	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tsıov	SCK0 to SCK2, SOT0 to SOT2		-	150	ns	
Valid SIN \rightarrow SCK \uparrow	tivsh	SCK0 to SCK2, SINO to SIN2		60	-	ns	
SCK $\uparrow \rightarrow$ Valid SIN hold time	tshlı	SCK0 to SCK2, SINO to SIN2		60	-	ns	

Notes : •AC characteristic in CLK synchronized mode.

- C_{L} is load capacity value of pins when testing.
- For tcp (Machine clock cycle time), refer to " (1) Clock Timing".

MB90435 Series

- Internal Shift Clock Mode

- External Shift Clock Mode

SCK

SOT

SIN

MB90435 Series

(10) Timer Input Timing
(MB90F438L (S) /437L (S) /438L (S) : Vcc $=3.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V} s \mathrm{Ss}=\mathrm{AV}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$) (MB90F439 (S) /439 (S) /V540G: Vcc $=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=\mathrm{AV}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Condition	Value		Units	Remarks
				Min	Max		
Input pulse width	ttiwh	TIN0, TIN1	-	4 tcp	-	ns	
	ttiwl	IN0 to IN7					

- Timer Input Timing

(11) Timer Output Timing
(MB90F438L (S) /437L (S) /438L (S) : Vcc $=3.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{AVss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$) (MB90F439 (S) /439 (S) /V540G: $\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+105^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Units	Remarks
				Max			
CLK $\uparrow \rightarrow$ Tout change time	tто	TOT0 to TOT1, PPG0 to PPG3	-	30	-	ns	

- Timer Output Timing

MB90435 Series

(12) Trigger Input Timing
(MB90F438L (S) /437L (S) /438L (S) : Vcc $=3.5 \mathrm{~V}$ to 5.5 V , V ss $=\mathrm{AVss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+105^{\circ} \mathrm{C}\right)$ (MB90F439 (S) /439 (S) /V540G: $\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Condition	Value		Units	Remarks
				Max			
Input pulse width	tTRGH tTRGL	INTO to INT7, ADTG	-	5 tcp	-	ns	
		1	-	$\mu \mathrm{s}$	In stop mode		

- Trigger Input Timing

MB90435 Series

5. A/D Converter

- Electrical Characteristics

Parameter	Symbol	Pin name	Value			Units	Remarks
			Min	Typ	Max		
Resolution	-	-	-	-	10	bit	
Conversion error	-	-	-	-	± 5.0	LSB	
Nonlinearity error	-	-	-	-	± 2.5	LSB	
Differential nonlinearity error	-	-	-	-	± 1.9	LSB	
Zero transition voltage	Vot	AN0 to AN7	$\begin{gathered} \text { AVRL-3.5 } \\ \text { LSB } \end{gathered}$	$\begin{gathered} \text { AVRL+0.5 } \\ \text { LSB } \end{gathered}$	$\begin{gathered} \hline \text { AVRL + 4.5 } \\ \text { LSB } \end{gathered}$	mV	
Full scale transition voltage	$V_{\text {FSt }}$	AN0 to AN7	$\begin{gathered} \text { AVRH-6.5 } \\ \text { LSB } \end{gathered}$	$\begin{gathered} \text { AVRH-1.5 } \\ \text { LSB } \end{gathered}$	$\begin{gathered} \text { AVRH }+1.5 \\ \text { LSB } \end{gathered}$	mV	
Compare time	-	-	352 tcp	-	-	ns	Internal frequency 16 MHz
Sampling time	-	-	64 tcp	-	-	ns	Internal frequency 16 MHz
Analog port input current	Iain	AN0 to AN7	-1	-	1	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{Cc}= \\ & 5.0 \mathrm{~V} \pm 1 \% \end{aligned}$
Analog input voltage range	$V_{\text {AIN }}$	AN0 to AN7	AVRL	-	AVRH	V	
Reference voltage range	-	AVRH	AVRL + 2.7	-	AV ${ }_{\text {cc }}$	V	
	-	AVRL	0	-	AVRH-2.7	V	
Power supply current	$\mathrm{IA}_{\text {A }}$	AV ${ }_{\text {cc }}$	-	5	-	mA	
	ІА	AV ${ }_{\text {cc }}$	-	-	5	$\mu \mathrm{A}$	*
Reference voltage supply current	IR	AVRH	-	400	600	$\mu \mathrm{A}$	Flash device
			-	140	260	$\mu \mathrm{A}$	Mask ROM
	IRH	AVRH	-	-	5	$\mu \mathrm{A}$	*
Offset between input channels	-	AN0 to AN7	-	-	4	LSB	

*: When not using an A/D converter, this is the current $\left(\mathrm{V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{cc}=\mathrm{AVRH}=5.0 \mathrm{~V}\right)$ when the CPU is stopped.
Note: The functionality of the A/D converter is only guaranteed for VCC $=5.0 \mathrm{~V} \pm 10 \%$ (also for MB90F438L (S) / 437L (S) /438L (S)).

MB90435 Series

- A/D Converter Glossary

Resolution : Analog changes that are identifiable with the A/D converter
Linearity error : The deviation of the straight line connecting the zero transition point ("00 00000000 " \leftarrow "00 0000 0001") with the full-scale transition point ("11 11111110" $\leftrightarrow " 1111111111 ")$ from actual conversion characteristics

Differential linearity error : The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error : The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.

$1 \mathrm{LSB}=($ Theoretical value $) \frac{\mathrm{AVRH}-\mathrm{AVRL}}{1024}[\mathrm{~V}]$
Vот (Theoretical value) $=\mathrm{AVRL}+0.5 \mathrm{LSB}[\mathrm{V}]$
$\mathrm{V}_{\text {FSt }}($ Theoretical value) $=\mathrm{AVRH}-1.5 \mathrm{LSB}$ [V]
Total error for digital output $\mathrm{N}=\frac{\mathrm{V}_{\mathrm{NT}}-\{1 \mathrm{LSB} \times(\mathrm{N}-1)+0.5 \mathrm{LSB}\}}{1 \mathrm{LSB}}$ [LSB]
V_{NT} : Voltage at a transition of digital output from $(\mathrm{N}-1)$ to N

MB90435 Series

(Continued)

Vот : Voltage at transition of digital output from " 000 H " to " 001 h "
$V_{\text {FST }}$: Voltage at transition of digital output from " 3 FEн" to " 3 FF н"

- Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions, :

- Output impedance values of the external circuit of $15 \mathrm{k} \Omega$ or lower are recommended.
- When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.

Note : When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period $=4.00 \mu \mathrm{~s}$ @machine clock of 16 MHz).

- Equipment of analog input circuit model

- Error

The smaller the | AVRH - AVRL |, the greater the error would become relatively.

MB90435 Series

6. Flash Memory Program/Erase Characteristics

Parameter	Condition	Value			Units	Remarks	
		Min	Typ	Max			
Sector erase time	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \end{aligned}$	-	1	15	s	Excludes 00н pro	ming prior erasure
Chip erase time		-	5	-	s	MB90F438L (S)	Excludes 00 н
			7	-	s	MB90F439 (S)	prior erasure
Word (16 bit width) programming time		-	16	3,600	$\mu \mathrm{s}$	Excludes system-level overhead	
Erase/Program cycle	-	10,000	-	-	cycle		

MB90435 Series

- EXAMPLE CHARACTERISTICS

- "H" level output voltage

- "L" level output voltage

- "H" level input voltage/ "L" level input voltage (Hysterisis inpiut)

MB90435 Series

- Power supply current (MB90439)

MB90435 Series

MB90435 Series

- Power supply current (MB90F439)

MB90435 Series

ORDERING INFORMATION

Part number	Package	Remarks
MB90F438LPF		
MB90F438LSPF		
MB90F439PF		
MB90F439SPF	100-pin Plastic QFP	
MB90437LPF	(FPT-100P-M06)	
MB90437LSPF		
MB90438LPF		
MB90438LSPF		
MB90439PF		
MB90439SPF		
MB90F438LPFV		
MB90F438LSPFV		
MB90F439PFV		
MB90F439SPFV	100-pin Plastic LQFP	
MB90437LPFV	(FPT-100P-M05)	
MB90437LSPFV		
MB90438LPFV		
MB90438LSPFV		
MB90439PFV		
MB90439SPFV		

MB90435 Series

PACKAGE DIMENSIONS

100-pin Plastic QFP
 (FPT-100P-M06)

Note: Pins width and pins thickness include plating thickness.

© 2001 FUJITSU LIMITED F100008S-C-4-4

100-pin Plastic LQFP
(FPT-100P-M05)
Note : Pins width and pins thickness include plating thickness.

MB90435 Series

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

[^0]: *: The power supply current testing conditions are when using the external clock.

