TECHNICAL MANUAL

LSI53C180 Ultra160 SCSI Bus Expander

Version 1.3

June 2001

This document contains proprietary information of LSI Logic Corporation. The information contained herein is not to be used by or disclosed to third parties without the express written permission of an officer of LSI Logic Corporation.

LSI Logic products are not intended for use in life-support appliances, devices, or systems. Use of any LSI Logic product in such applications without written consent of the appropriate LSI Logic officer is prohibited.

Document DB14-000118-03, Fourth Edition (June 2001)
This document describes the LSI Logic Corporation LSI53C180 Ultra160 SCSI
Bus Expander and will remain the official reference source for all
revisions/releases of this product until rescinded by an update.

To receive product literature, visit us at http://www.lsilogic.com.

LSI Logic Corporation reserves the right to make changes to any products herein at any time without notice. LSI Logic does not assume any responsibility or liability arising out of the application or use of any product described herein, except as expressly agreed to in writing by LSI Logic; nor does the purchase or use of a product from LSI Logic convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual property rights of LSI Logic or third parties.

Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

TRADEMARK ACKNOWLEDGMENT

The LSI Logic logo design, LVD Link, and TolerANT are trademarks or registered trademarks of LSI Logic Corporation. All other brand and product names may be trademarks of their respective companies.

MH

Preface

This manual provides a description of the LSI53C180 Ultra160 SCSI Bus Expander chip that supports all combinations of Single-Ended and Low Voltage Differential SCSI bus conversions.

Currently the LSI53C140 is offered in a 192-BGA package so that customers who are designing Ultra2 can easily upgrade to Ultra160. Refer to System Engineering Note S11006 for design considerations using the LSI53C140 and LSI53C180.

Audience

This manual assumes some prior knowledge of current and proposed SCSI standards. For background information, please contact:

ANSI

11 West 42nd Street New York, NY 10036 (212) 642-4900 Ask for document number X3.131-199X (SCSI-2)

Global Engineering Documents

15 Inverness Way East Englewood, CO 80112 (800) 854-7179 or (303) 397-7956 (outside U.S.) FAX (303) 397-2740 Ask for document number X3.131-1994 (SCSI-2) or X3.253 (SCSI Parallel Interface-3 (SPI-3))

Preface iii

ENDL Publications

14426 Black Walnut Court Saratoga, CA 95070 (408) 867-6642

Document names: SCSI Bench Reference, SCSI Encyclopedia, SCSI Tutor

Prentice Hall

113 Sylvan Avenue
Englewood Cliffs, NJ 07632
(800) 947-7700
Ask for document number ISBN 0-13-796855-8,
SCSI: Understanding the Small Computer System Interface

LSI Logic World Wide Web Home Page

www.lsil.com

Organization

This document has the following chapters and appendixes:

- Chapter 1, Introduction, contains the general information about the LSI53C180 product.
- Chapter 2, Functional Descriptions, describes the main functional areas of the chip in more detail, including the interfaces to the SCSI bus and external memory.
- Chapter 3, Specifications, contains the pin diagram, signal descriptions, electrical characteristics, AC timing diagrams, and mechanical drawing of the LSI53C180.
- Appendix A, Wiring Diagrams, contains wiring diagrams that show typical LSI53C180 usage.
- Appendix B, Glossary, contains commonly used terms and their definitions.

Revision Record

Date	Version	Remarks
2/00	1.0	Version 1.0
11/00	1.1	All product names changed from SYM to LSI.
4/01	1.2	Changes in Chapter 2 to how Warm Swap Enable is designated. Changes in Chapter 3 to DC Characteristics.
6/01	1.3	Changes to wiring diagrams in Appendix A.

Preface

Contents

Chapter 1	Introduction				
	1.1	General	Description	1-1	
		1.1.1	Applications	1-3	
		1.1.2	Features	1-5	
		1.1.3	Specifications	1-6	
	1.2	Ultra160) SCSI	1-6	
		1.2.1	Double Transition (DT) Clocking	1-6	
		1.2.2	Cyclic Redundancy Check (CRC)	1-6	
		1.2.3	Domain Validation	1-7	
		1.2.4	Parallel Protocol Request	1-7	
		1.2.5	Benefits of LVD Link	1-7	
Chapter 2	Functional Descriptions				
	2.1	Interface	e Signal Descriptions	2-1	
		2.1.1	SCSI A Side and B Side Control Blocks	2-2	
		2.1.2	Retiming Logic	2-4	
		2.1.3	Precision Delay Control	2-4	
		2.1.4	State Machine Control	2-4	
		2.1.5	DIFFSENS Receiver	2-5	
		2.1.6	Dynamic Transmission Mode Changes	2-5	
		2.1.7	SCSI Signal Descriptions	2-5	
		2.1.8	Control Signals	2-11	
		2.1.9	SCSI Termination	2-13	
	2.2	Internal	Control Descriptions	2-14	
		2.2.1	Self-Calibration	2-14	
		2.2.2	Delay Line Structures	2-14	
		2.2.3	Busy Filters	2-15	

Contents vii

Chapter 3	Speci	ifications	
-	3.1	Signal Descriptions	3-1
	3.2	Electrical Characteristics	3-7
		3.2.1 DC Characteristics	3-8
		3.2.2 TolerANT Technology Electrical Characteristics	3-12
		3.2.3 AC Characteristics	3-16
		3.2.4 SCSI Interface Timing	3-16
	3.3	Mechanical Drawings	3-19
		3.3.1 LSI53C180 192-Pin BGA Mechanical Drawing	3-20
Appendix A	Wirin	g Diagrams	
	A.1	LSI53C180 Wiring Diagrams	A-1
Appendix B	Gloss	sary	
	Index	(
	Custo	omer Feedback	
Figures			
	1.1	LSI53C180 SCSI Bus Modes	1-2
	1.2	LSI53C180 Server Clustering	1-3
	1.3	LSI53C180 SCSI Bus Device	1-4
	2.1	LSI53C180 Block Diagram	2-2
	2.2	LSI53C180 Signal Grouping	2-6
	3.1	Left Half of LSI53C180 192-Pin BGA Top View	3-2
	3.2	Right Half of LSI53C180 192-Pin BGA Top View	3-3
	3.3	LSI53C180 Functional Signal Grouping	3-4
	3.4	LVD Driver	3-9
	3.5	LVD Receiver	3-10
	3.6	External Reset Circuit	3-12
	3.7	Rise and Fall Time Test Conditions	3-14
	3.8	SCSI Input Filtering	3-14
	3.9	Hysteresis of SCSI Receivers	3-14
	3.10	Input Current as a Function of Input Voltage	3-15

Contents

	3.11	Output Current as a Function of Output Voltage	3-15
	3.12	Clock Timing	3-16
	3.13	Input/Output Timing - Single Transition	3-17
	3.14	Input/Output Timing - Double Transition	3-18
	3.15	192-Pin PBGA (IJ, I2) Mechanical Drawing	3-20
	A.1	LSI53C180 Wiring Diagram 1 of 4	A-2
	A.2	LSI53C180 Wiring Diagram 2 of 4	A-3
	A.3	LSI53C180 Wiring Diagram 3 of 4	A-4
	A.4	LSI53C180 Wiring Diagram 4 of 4	A-5
Tables			
	1.1	Types of Operation	1-2
	1.2	SCSI Bus Distance Requirements	1-4
	1.3	Transmission Mode Distance Requirements	1-4
	2.1	DIFFSENS Voltage Levels	2-5
	2.2	Mode Sense Control Voltage Levels	2-11
	2.3	RESET/ Control Signal Polarity	2-12
	2.4	WS_ENABLE Signal Polarity	2-12
	2.5	XFER_ACTIVE Signal Polarity	2-13
	3.1	SCSI A Side Interface Pins	3-5
	3.2	SCSI B Side Interface Pins	3-6
	3.3	Chip Interface Control Pins	3-6
	3.4	Power and Ground Pins	3-7
	3.5	Absolute Maximum Stress Ratings	3-8
	3.6	Operating Conditions	3-8
	3.7	LVD Driver SCSI Signals—B_SD[15:0]±, B_SDP[1:0]±,	
		B_SCD±, B_SIO±, B_SMSG±, B_SREQ±, B_SACK±,	
		B_SBSY±, B_SATN±, B_SSEL±, B_SRST±	3-9
	3.8	LVD Receiver SCSI Signals—B_SD[15:0]±, B_SDP[1:0]±,	
		B_SCD±, B_SIO±, B_SMSG±, B_SREQ±, B_SACK±,	
		B_SBSY±, B_SATN±, B_SSEL±, B_SRST±	3-9
	3.9	DIFFSENS SCSI Signal	3-10
	3.10	Input Capacitance	3-10
	3.11	Bidirectional SCSI Signals—A_SD[15:0]/, A_SDP[1:0]/,	
		A_SREQ/, A_SACK/, B_SD[15:0]±, B_SDP[1:0]±,	0.44
		B_SREQ±, B_SACK±	3-11

Contents ix

3.12	Bidirectional SCSI Signals—A_SCD/, A_SIO/,	
	A_SMSG/, A_SBSY/, A_SATN/, A_SSEL/, A_SRST/,	
	B_SCD±, B_SIO±, B_SMSG±, B_SBSY±, B_SATN±,	
	B_SSEL±, B_SRST±	3-11
3.13	Input Control Signals—CLOCK, RESET/, WS_ENABLE	3-11
3.14	Output Control Signals—BSY_LED, XFER_ACTIVE	3-12
3.15	TolerANT Technology Electrical Characteristics	3-12
3.16	Clock Timing	3-16
3.17	Input Timing - Single Transition	3-16
3.18	Output Timing - Single Transition	3-17
3.19	Input Timing - Double Transition	3-17
3.20	Output Timing - Double Transition	3-18

Contents

Chapter 1 Introduction

This chapter describes the LSI53C180 Ultra160 SCSI Bus Expander and its applications. It includes these sections:

- Section 1.1, "General Description," page 1-1
- Section 1.2, "Ultra160 SCSI," page 1-6

1.1 General Description

The LSI53C180 Ultra160 SCSI Bus Expander is a single chip solution allowing the extension of SCSI device connectivity and/or cable length limits. A SCSI bus expander couples bus segments together without any impact to the SCSI protocol, software, or firmware. The LSI53C180 Ultra160 SCSI Bus Expander connects Single-Ended (SE) Ultra and Low Voltage Differential (LVD) Ultra160 peripherals together in any combination. The LSI53C180 does not support High Voltage Differential (HVD) mode.

The LSI53C180 is capable of supporting any combination of SE or LVD bus mode on either the A or B Side port. This provides the system designer with maximum flexibility in designing SCSI backplanes to accommodate any SCSI bus mode. The LSI53C180 has independent RBIAS pins allowing margining for each bus. A 10 k Ω pull-up resistor on RBIAS is required to provide the correct LVD levels.

Figure 1.1 LSI53C180 SCSI Bus Modes

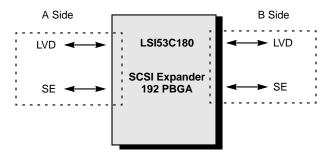
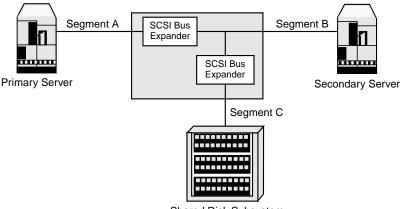


Figure 1.1 shows the two SCSI bus modes available on the A or B Side. LVD Link™ transceivers provide the multimode LVD or SE capability. The LSI53C180 operates as both an expander and converter. In both SCSI Bus Expander and Converter modes, cable segments are isolated from each other. This feature maintains the signal integrity of each cable segment.

Table 1.1 shows the types of operational modes for the LSI53C180.

Table 1.1 Types of Operation

Signal Type	Speed
LVD to LVD	Ultra160
SE to SE	Ultra
LVD to SE	Ultra
SE to LVD	Ultra


The LSI53C180 provides additional control capability through the pin level isolation mode (Warm Swap Enable). This feature permits logical disconnection of both the A Side bus and the B Side bus without disrupting SCSI transfers currently in progress. For example, devices on the logically disconnected B Side can be swapped out while the A Side bus remains active.

The LSI53C180 is based on previous bus expander technology, which includes signal filtering along with retiming to maintain skew budgets. The LSI53C180 is independent of software.

1.1.1 Applications

- Server clustering environments
- Expanders creating distinct SCSI cable segments that are isolated from each other

Figure 1.2 LSI53C180 Server Clustering

Shared Disk Subsystem

Figure 1.2 demonstrates how SCSI bus expanders are used to couple bus segments together without any impact on the SCSI protocol or software. Configurations that use the LSI53C180 SCSI Bus Expander in the Ultra160 mode (LVD to LVD) allow the system designer to take advantage of the inherent cable distance, device connectivity, data reliability, and increased transfer rate benefits of LVD signaling with Ultra160 SCSI peripherals.

In the Figure 1.2 example, two LSI53C180 expanders are used to configure three segments. This configuration allows segment A to be treated as a point-to-point segment. Segments B and C are treated as load segments with at least 8 inches between every node. Table 1.2 shows the various distance requirements for each SCSI bus mode.


Table 1.2 SCSI Bus Distance Requirements

Segment	Mode	Length Limit
А	LVD (Ultra160)	25 meters
	SE (Ultra)	3 meters ¹
В	LVD (Ultra160)	12 meters
	SE (Ultra)	1.5 meters
С	LVD (Ultra160)	12 meters
	SE (Ultra)	1.5 meters

1. The length may be more, possibly 6 meters, as no devices are attached to it.

In the second example, Figure 1.3, the LSI53C180 is cascaded to achieve four distinct SCSI segments. Segments A and D can be treated as point-to-point segments. Segments B and C are treated as load segments with at least 8-inch spacing between every node.

Figure 1.3 LSI53C180 SCSI Bus Device

Table 1.3 Transmission Mode Distance Requirements

Segment	Mode	Length Limit
A, D	LVD (Ultra160)	25 meters
	SE (Ultra)	1.5 meters
B, C	LVD (Ultra160)	12 meters
	SE (Ultra)	1.5 meters

1.1.2 Features

- A flexible SCSI bus expander that supports any combination of LVD or SE transceivers
- Creates distinct SCSI bus segments that are isolated from each other
- Integrated LVD Link transceivers for direct attachment to either LVD or SE bus segments
- Operates as a SCSI Bus Expander
 - LVD to LVD (Ultra160 SCSI)
 - SE to SE (Ultra SCSI)
- Operates as a SCSI Bus Converter
 - LVD to SE (Ultra SCSI)
 - SE to LVD (Ultra SCSI)
- Targets and initiators may be located on either the A or B Side of the device
- Accepts any asynchronous or synchronous transfer speed up to Ultra160 SCSI (for LVD to LVD mode only)
- Supports dynamic addition/removal of SCSI bus segments using the isolation mode
- Does not consume a SCSI ID
- Propagates the RESET/ signal from one side to the other regardless of the SCSI bus state
- Notifies initiator(s) of changes in transmission mode (SE/LVD) on A or B Side segments by using the SCSI bus RESET/
- SCSI Busy LED driver for activity indicator
- Up to four LSI53C180s may be cascaded
- Does not require software
- Supports Double Transition (DT) clocking
- Supports Cyclic Redundancy Check (CRC) in DT data phases
- Supports Domain Validation

1.1.3 Specifications

- 40 MHz Input Clock
- 192-pin Plastic Ball Grid Array package (PBGA). This package is a drop in replacement for the LSI53C140 when the design uses the LSI53C180 pinout.
- Compliant with the SCSI Parallel Interface-3 (SPI-3)
- Compliant with SCSI Enhanced Parallel Interface (EPI) Specifications

1.2 Ultra160 SCSI

The LSI53C180 SCSI Bus Expander supports Ultra160 SCSI. This interface is an extension of the SCSI-3 standards that expands the bandwidth of the SCSI bus to allow faster synchronous data transfers, up to 160 Mbytes/s. Ultra160 SCSI provides a doubling of the data rate over the Ultra2 SCSI interface. All new speeds after Ultra2 are wide.

1.2.1 Double Transition (DT) Clocking

Ultra160 provides DT clocking for LVD transfers where clocking is defined on the rising and falling edges of the clock. The latching of data on both the assertion edge and the negation edge of the REQ/ACK signal represents DT data phases. DT data phase encompasses both the DT Data In and the DT Data Out phase. DT data phases use only 16-bit, synchronous transfers.

Information unit and data group transfers use DT data phases to transfer data. Information unit transfers transmit all nexus, task management, task attribute, command, data, and protection. Data group transfers transmit all data and protection. The number of bytes transferred for an information unit or data group is always a multiple of four. Refer to the SCSI Parallel Interface-3 (SPI-3) for more detailed information about DT clocking.

1.2.2 Cyclic Redundancy Check (CRC)

Ultra160 supports CRC, which represents error checking code to detect the validity of data. CRC increases the reliability of data transfers since four bytes of code are transferred along with data. All single bit errors, two bits in error, or other error types within a single 32-bit range are detected. Refer to SPI-3 to see how CRC generation and transmission occur during data transfers.

1.2.3 Domain Validation

Domain Validation is a procedure that allows a host computer and target SCSI peripheral to negotiate and find the optimal transfer speed. This procedure improves overall reliability of the system by ensuring integrity of the data transferred.

1.2.4 Parallel Protocol Request

Parallel Protocol Request (PPR) messages negotiate a synchronous data transfer agreement, a wide data transfer agreement, and set the protocol options between two SCSI devices. This message exchange negotiates limits about data transmission and establishes an agreement between the two SCSI devices. This agreement applies to ST Data In, ST Data Out, DT Data In, and DT Data Out phases.

For example, a SCSI device could initiate a PPR message whenever it is appropriate to negotiate a data transfer agreement. If the target device is capable of supporting any of the PPR options, it will respond with a PPR message. If not, it responds with a Message Reject message and the two SCSI devices use either SDTR or WDTR messages to negotiate an agreement.

1.2.5 Benefits of LVD Link

The LSI53C180 supports LVD technology for SCSI, a signaling technology that increases the reliability of SCSI data transfers over longer distances than those supported by SE SCSI technology. The low current output of LVD allows the I/O transceivers to be integrated directly onto the chip. LVD provides the reliability of HVD SCSI technology without the added cost of external differential transceivers. LVD allows a longer SCSI cable and more devices on the bus. LVD provides a long-term migration path to even faster SCSI transfer rates without compromising signal integrity, cable length, or connectivity.

For backward compatibility to existing SE devices, the LSI53C180 features multimode LVD Link transceivers that can switch between LVD and SE modes.

Ultra160 SCSI 1-7

Some features of integrated LVD Link multimode transceivers are:

- Supports SE or LVD technology
- Allows greater device connectivity and longer cable length
- LVD Link transceivers save the cost of external differential transceivers
- Supports a long-term performance migration path

Chapter 2 Functional Descriptions

This chapter describes all signals, their groupings, and their functions. It includes these topics:

- Section 2.1, "Interface Signal Descriptions," page 2-1
- Section 2.2, "Internal Control Descriptions," page 2-14

2.1 Interface Signal Descriptions

The LSI53C180 has no programmable registers, and therefore, no software requirements. SCSI control signals control all LSI53C180 functions. Figure 2.1 shows a block diagram of the LSI53C180 device, which is divided into these specific areas:

- A Side SCSI Control Block
 - LVD and SE Drivers and Receivers
- B Side SCSI Control Block
 - LVD and SE Drivers and Receivers
- Retiming Logic
- Precision Delay Control
- State Machine Control

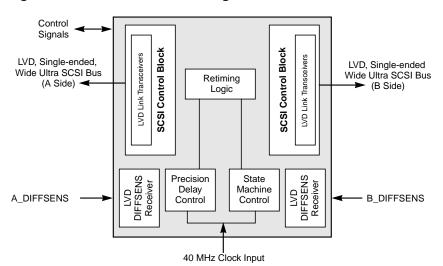


Figure 2.1 LSI53C180 Block Diagram

In its simplest form, the LSI53C180 passes data and parity from a source bus to a load bus. The side asserting, deasserting, or releasing the SCSI signals is the source side. The model of the LSI53C180 represents pieces of wire that allow corresponding SCSI signals to flow from one side to the other side. The LSI53C180 monitors arbitration and selection by devices on the bus so it can enable the proper drivers to pass the signals along. In addition, the LSI53C180 does signal retiming to maintain the signal skew budget from the source bus to the load bus.

2.1.1 SCSI A Side and B Side Control Blocks

The SCSI A Side pins are connected internally to the corresponding SCSI B Side pins, forming bidirectional connections to the SCSI bus.

In the LVD/LVD mode, the SCSI A Side and B Side control blocks connect to both targets and initiators and accept any asynchronous or synchronous data transfer rates up to the 160 Mbytes/s rate of Wide Ultra160 SCSI. TolerANT[®] and LVD Link technologies are part of both the A Side and B Side control blocks.

2.1.1.1 LSI53C180 Requirements for Synchronous Negotiation

The LSI53C180 builds a table of information regarding devices on the bus in on-chip RAM. The PPR, SDTR, and WDTR information for each

device is taken from the MSG bytes during negotiation. For all devices in the configuration to communicate accurately through the LSI53C180 at Ultra160 (Fast-80) rates, it is necessary for a complete synchronous negotiation to take place between the initiator and target(s) prior to any data transfer. On a 16-bit bus, the LSI53C180 at Ultra160 approaches rates of 160 Mbytes/s. The LSI53C180 defaults to Fast-20 rates when a valid negotiation between the initiator and target has not occurred.

2.1.1.2 TolerANT Technology

In SE mode, the LSI53C180 features TolerANT technology, which includes active negation on the SCSI drivers and input signal filtering on the SCSI receivers. Active negation causes the SCSI Request, Acknowledge, Data, and Parity signals to be actively driven HIGH rather than passively pulled up by terminators.

TolerANT receiver technology improves data integrity in unreliable cabling environments, where other devices would be subject to data corruption. TolerANT receivers filter the SCSI bus signals to eliminate unwanted transitions without the long signal delays associated with RC-type input filters. This improved driver and receiver technology helps eliminate double clocking of data, the single biggest reliability issue with SCSI operations.

The benefits of TolerANT technology include increased immunity to noise on the deasserting signal edge, better performance due to balanced duty cycles, and improved SCSI transfer rates. In addition, TolerANT SCSI devices prevent glitches on the SCSI bus at power-up or power-down, so other devices on the bus are also protected from data corruption.

2.1.1.3 LVD Link Technology

To support greater device connectivity and longer SCSI cables, the LSI53C180 features LVD Link technology, the LSI Logic implementation of multimode LVD SCSI. LVD Link transceivers provide the inherent reliability of differential SCSI, and a long-term migration path of faster SCSI transfer rates.

LVD Link technology is based on current drive. Its low output current reduces the power needed to drive the SCSI bus. Therefore, the I/O drivers can be integrated directly onto the chip. This reduces the cost and complexity compared to traditional (high power) differential designs.

LVD Link lowers the amplitude of noise reflections and allows higher transmission frequencies.

The LVD Link transceivers in Side A and Side B operate in the LVD or SE modes. The LSI53C180 automatically detects the type of signal connected, based on the voltages detected by A_DIFFSENS and B DIFFSENS.

2.1.2 Retiming Logic

The SCSI signals, as they propagate from one side of the LSI53C180 to the other side, are processed by logic circuits that retime the bus signals, as needed, to guarantee or improve the required SCSI timings. The retiming logic is governed by the State Machine Controls that keep track of SCSI phases, the location of initiator and target devices, and various timing functions. In addition, the retiming logic contains numerous delay elements that are periodically calibrated by the Precision Delay Control block in order to guarantee specified timing such as output pulse widths, setup and hold times, and other elements.

When a synchronous negotiation takes place between devices, a nexus is formed, and the corresponding information on that nexus is stored in the on-chip RAM. This information remains in place until a chip reset, power down, or renegotiation occurs. This enables the chip to make more accurate retiming adjustments.

2.1.3 Precision Delay Control

The Precision Delay Control block provides calibration information to the precision delay elements in the Retiming Logic block. This calibration information provides precise timing as signals propagate through the device. As the LSI53C180 voltage and temperature vary over time, the Precision Delay Control block periodically updates the delay settings in the Retiming Logic. The purpose of these updates is to maintain constant and precise control over bus timing.

2.1.4 State Machine Control

The State Machine Control tracks the SCSI bus phase protocol and other internal operating conditions. This block provides signals to the Retiming Logic that identify how to properly handle SCSI bus signal retiming based on SCSI protocol.

2.1.5 DIFFSENS Receiver

The LSI53C180 contains LVD DIFFSENS receivers that detect the voltage level on the A Side or B Side DIFFSENS lines to inform the LSI53C180 of the transmission mode being used by the SCSI buses. A device does not change its present signal driver or receiver mode based on the DIFFSENS voltage levels unless a new mode is sensed continuously for at least 100 ms.

Transmission mode detection for SE or LVD is accomplished through the use of the DIFFSENS lines. Table 2.1 shows the voltages on the DIFFSENS lines and modes they will cause.

Table 2.1 DIFFSENS Voltage Levels

Voltage	Mode
-0.35 to +0.5	SE
+0.7 to +1.9	LVD

2.1.6 Dynamic Transmission Mode Changes

Any dynamic mode change (SE/LVD) on a bus segment is considered to be a significant event that requires the initiator to determine whether the mode change meets the requirements for that bus segment.

The LSI53C180 supports dynamic transmission mode changes by notifying the initiator(s) of changes in transmission mode (SE/LVD) on A or B Side segments by using the SCSI bus RESET. The DIFFSENS line detects a valid mode switch on the bus segments. After the DIFFSENS state is present for 100 ms, the LSI53C180 generates a SCSI reset on the opposite bus from the one that the transmission mode change occurred on. This reset informs any initiators residing on the opposite segment about the change in the transmission mode. The initiator(s) then renegotiates synchronous transfer rates with each device on that segment.

2.1.7 SCSI Signal Descriptions

For a description of a specific signal, see Section 3.1, "Signal Descriptions," in Chapter 3. For signal electrical characteristics, see Section 3.2, "Electrical Characteristics." For SCSI bus signal timing, see

Section 3.2.4, "SCSI Interface Timing." Figure 2.2 shows the LSI53C180 signal grouping. A description of the signal groups follows.

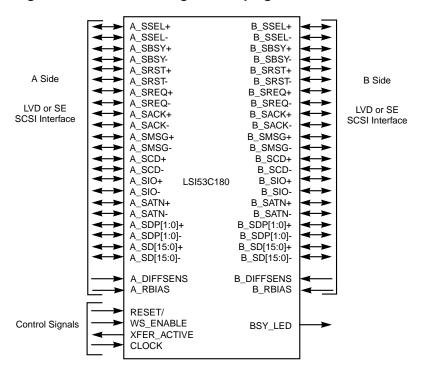


Figure 2.2 LSI53C180 Signal Grouping

2.1.7.1 Data and Parity (SD and SDP)

The signals named A_SD[15:0] and A_SDP[1:0] are the data and parity signals from the A Side, and B_SD[15:0] and B_SDP[1:0] are the data and parity signals from the B Side of the LSI53C180. These signals are sent and received from the LSI53C180 by using SCSI compatible drivers and receiver logic designed into the LSI53C180 interfaces. This logic provides the multimode LVD and SE interfaces in the chip. This logic also provides the necessary drive, sense thresholds, and input hysteresis to function correctly in a SCSI bus environment.

The LSI53C180 receives data and parity signals and passes them from the source bus to the load bus and provides any necessary edge shifting to guarantee the skew budget for the load bus. Either side of the LSI53C180 may be the source bus or the load bus. The side that is asserting, deasserting, or releasing the SCSI signals is the source side. These steps describe the LSI53C180 data processing:

- Asserted data is accepted by the receiver logic as soon as it is received. Once the clock signal (REQ/ACK) has been received, data is gated from the receiver latch.
- 2. The path is next tested to ensure the signal if being driven by the LSI53C180 is not misinterpreted as an incoming signal.
- The data is then leading edge filtered. The assertion edge is held for a specified time to prevent any signal bounce. The duration is controlled by the input signal.
- 4. The next stage uses a latch to sample the signal. This provides a stable data window for the load bus.
- 5. The final step develops pull-up and pull-down controls for the SCSI I/O logic, including 3-state controls for the pull-up.
- 6. A parallel function ensures that bus (transmission line) recovery occurs for a specified time after the last signal deassertion on each signal line.

2.1.7.2 SCSI Bus Activity LED (BSY_LED)

Internal logic detects SCSI bus activity and generates a signal that produces an active HIGH output. This output can be used to drive a LED to indicate SCSI activity.

The internal circuitry is a digital one shot that is an active HIGH with a minimum pulse width of 16 ms. The BSY_LED output current is 8 mA. This output may have an LED attached to it with the other lead of the LED grounded through a suitable resistor.

2.1.7.3 Select Control (SSEL)

A_SSEL and B_SSEL are control signals used during bus arbitration and selection. Whichever side asserts, SSEL propagates it to the other side. If both signals are asserted at the same time, the A Side receives SSEL and sends it to the B Side. This output has pull-down control for an open collector driver. The processing steps for the signals are:

- 1. The input signal is blocked if it is being driven by the LSI53C180.
- The next stage is a leading edge filter. This ensures that the output does not switch for a specified time after the leading edge. The duration of the input signal then determines the duration of the output.
- 3. A parallel function ensures that bus (transmission line) recovery occurs for a specified time after the last signal deassertion on each signal line.

2.1.7.4 Busy Control (SBSY)

A_SBSY and B_SBSY signals are propagated from the source bus to the load bus. The busy control signals go through this process:

- 1. The bus is tested to ensure the signal if being driven by the LSI53C180 is not misinterpreted as an incoming signal.
- The data is then leading edge filtered. The assertion edge is held for a specified time to prevent any signal bounce. The input signal controls the duration.
- 3. The signal path switches the long and short filters used in the circuit depending upon the current state of the LSI53C180. The current state of the LSI53C180 State Machine that tracks SCSI phases selects the mode. The short filter mode passes data through, while the long filter mode indicates the bus free state. When the Busy (SBSY) and Select (SSEL) sources switch from side to side, the long filter mode is used. This output is then fed to the output driver, which is a pull-down open collector only.
- 4. A parallel function ensures that bus (transmission line) recovery is available for a specified time after the last signal deassertion on each signal line.

2.1.7.5 Reset Control (SRST)

A_SRST and B_SRST are also passed from the source to the load bus. This output has pull-down control for an open collector driver. The reset signals are processed in this sequence:

1. The input signal is blocked if it is already being driven by the LSI53C180.

- The next stage is a leading edge filter. This ensures that the output will not switch during a specified time after the leading edge. The duration of the input signal then determines the duration of the output.
- 3. A parallel function ensures that bus (transmission line) recovery occurs for a specified time after the last signal deassertion on each signal line.

When the LSI53C180 senses a true mode change on either bus, it generates a SCSI reset to the opposite bus. For example, when LVD mode changes to SE mode, a reset occurs.

2.1.7.6 Request and Acknowledge Control (SREQ and SACK)

A_SREQ, A_SACK, B_SREQ, and B_SACK are clock and control signals. Their signal paths contain controls to guarantee minimum pulse widths, filter edges, and do some retiming when used as data transfer clocks. In DT clocking, both leading and trailing edges are filtered, while only the leading edge is filtered in single transition clocking. SREQ and SACK have paths from the A Side to the B Side and from the B Side to the A Side. The received signal goes through these processing steps before being sent to the opposite bus:

- The asserted input signal is sensed and forwarded to the next stage
 if the direction control permits it. The direction controls are developed
 from state machines that are driven by the sequence of bus control
 signals.
- 2. The signal must then pass the test of **not** being regenerated by the LSI53C180.
- 3. The next stage is a leading edge filter. This ensures that the output does not switch during the specified hold time after the leading edge. The duration of the input signal determines the duration of the output after the hold time. The circuit guarantees a minimum pulse rate.
- 4. The next stage passes the signal if it is not a data clock. If SREQ or SACK is a data clock, it delays the leading edge to improve data output setup times. The input signal again controls the duration.
- 5. This stage is a trailing edge signal filter. When the signal deasserts, the filter does not permit any signal bounce. The output signal deasserts at the first deasserted edge of the input signal.

- 6. The last stage develops pull-up and pull-down signals with drive and 3-state control.
- 7. A parallel function ensures that bus (transmission line) recovery occurs for a specified time after the last signal deassertion on each signal line.

2.1.7.7 Control/Data, Input/Output, Message, and Attention Controls (SCD, SIO, SMSG, and SATN)

A_SCD, A_SIO, A_SMSG, A_SATN, B_SCD, B_SIO, B_SMSG, and B SATN are control signals that have the following processing steps:

- 1. The input signal is blocked if it is being driven by the LSI53C180.
- The next stage is a leading edge filter. This ensures the output does not switch for a specified time after the leading edge. The duration of the input signal determines the duration of the output.
- 3. The final stage develops pull-up and pull-down controls for the SCSI I/O logic, including 3-state controls for the pull-up.
- 4. A parallel function ensures that bus (transmission line) recovery is for a specified time after the last signal deassertion on each signal line.

2.1.7.8 Multimode Signal Control

A_SD[15:0], A_SDP[1:0], A_SBSY, A_SSEL, A_SCD, A_SIO, A_SMSG, A_SREQ, A_SACK, A_SATN, A_SRST, B_SD[15:0], B_SDP[1:0], B_SBSY, B_SSEL, B_SCD, B_SIO, B_SMSG, B_SREQ, B_SACK, B_SATN, and B_SRST are all multimode signals. The mode is controlled by the voltage sensed at the DIFFSENS input. The A and B Sides are independently controlled.

When the correct DIFFSENS voltage selects SE mode, the plus signal leads are internally tied to ground and the minus SCSI signals are the SE input/outputs.

When the correct DIFFSENS voltage selects LVD mode, the plus and minus signal leads are the differential signal pairs.

A transition from any mode to another mode causes a SCSI RST to be asserted on the opposite SCSI bus as a notification of state change.

2.1.7.9 A and B Differential Sense (A_DIFFSENS and B_DIFFSENS)

These control pins determine the mode of SCSI bus signaling that will be expected.

Table 2.2 Mode Sense Control Voltage Levels

Voltage	Mode
-0.35 to +0.5	SE
+0.7 to +1.9	LVD

For example, if a differential source is plugged into the B Side that has been configured to run in the differential mode and if a SE source is detected, then the B Side is disabled and no B Side signals are driven. This protection mechanism is for SE interfaces that are connected to differential drivers.

2.1.7.10 A and B RBIAS (LVD Current Control)

These control pins require a 10 K 1% resistor connected to V_{DD}.

2.1.8 Control Signals

This section provides information about the RESET/, WS_ENABLE, and XFER_ACTIVE pins. It also describes the function of the CLOCK input.

2.1.8.1 Chip Reset (RESET/)

This general purpose chip reset forces all of the internal elements of the LSI53C180 into a known state. It brings the State Machine to an idle state and forces all controls to a passive state. The minimum RESET/input asserted pulse width is 100 ns.

The LSI53C180 also contains an internal Power On Reset (POR) function that is ORed with the chip reset pin. This eliminates the need

for an external chip reset if the power supply meets ramp up specifications.

Table 2.3 RESET/ Control Signal Polarity

Signal Level	State	Effect
LOW = 0	Asserted	Reset is forced to all internal LSI53C180 elements.
HIGH = 1	Deasserted	LSI53C180 is not in a forced reset state.

2.1.8.2 Warm Swap Enable (WS_ENABLE/)

This input removes the chip from an active bus without disturbing the current SCSI transaction (for Warm Swap). When the WS_ENABLE/ pin is asserted, after detection of the next bus free state, the SCSI signals are 3-stated. This occurs so that the LSI53C180 no longer passes through signals until the WS_ENABLE/ pin is deasserted HIGH and both SCSI buses enter the Bus Free state. As an indication that the chip is idle, or ready to be warm swapped, the XFER_ACTIVE signal deasserts LOW. An LED or some other indicator could be connected to the XFER_ACTIVE signal. To isolate buses in certain situations, use this Warm Swap Enable feature.

Table 2.4 WS ENABLE/ Signal Polarity

Signal Level	State	Effect
LOW = 0	Asserted	The LSI53C180 is requested to go off-line after detection of a SCSI Bus Free state.
HIGH = 1	Deasserted	The LSI53C180 is enabled to run normally.

2.1.8.3 Transfer Active (XFER_ACTIVE)

This output is an indication that the chip has finished its internal testing, the SCSI bus has entered a Bus Free state, and SCSI traffic can now

pass from one bus to the other. The signal is asserted HIGH when the chip is active.

Table 2.5 XFER_ACTIVE Signal Polarity

Signal Level	State	Effect
HIGH = 1	Asserted	Indicates normal operation, and transfers through the LSI53C180 are enabled.
LOW = 0	Deasserted	The LSI53C180 has detected a Bus Free state due to WS_ENABLE being LOW, thus disabling transfers through the device.

2.1.8.4 Clock (CLOCK)

This is the 40 MHz oscillator input to the LSI53C180. It is the clock source for the protocol control state machines and timing generation logic. This clock is not used in any bus signal transfer paths.

2.1.9 SCSI Termination

The terminator networks provide the biasing needed to pull signals to an inactive voltage level, and to match the impedance seen at the end of the cable with the characteristic impedance of the cable. Terminators must be installed at the extreme ends of each SCSI segment, and only at the ends. No SCSI segment should ever have more or less than two terminators installed and active. SCSI host adapters should provide a means of accommodating terminators. The terminators should be socketed, so they may be removed if not needed. Otherwise, the terminators should be disabled by software means.

Multimode terminators are required because they provide both LVD and SE termination, depending on what mode of operation is detected by the DIFFSENS pins.

Important:

LSI Logic recommends that active termination be used for the bus connections to the LSI53C180. The Unitrode 5630 or Dallas 2108 commonly used for Ultra2 buses can also be used interchangeably for Ultra160. The Unitrode 5628 can be used for Ultra160 and allows use of two devices on the SCSI bus rather than three.

2.2 Internal Control Descriptions

This section provides information about self-calibration, delay line structures, and busy filters.

2.2.1 Self-Calibration

The LSI53C180 contains internal logic that adjusts the internal timing based on analyzing the time through a long asynchronous inverter logic chain versus a synchronous counter. The timing functions use the resulting self-calibration value to adjust to their nominal values based on the performance of this circuit.

The LSI53C180 has 24 critical timing chains and each has its own calibration circuit and stored calibration value. The counter logic is replicated four times so four calibrations can occur in parallel. This allows the 24 calibration values to be updated by six calibration cycles.

Self-calibration is triggered every 8.1 seconds to account for temperature and voltage changes.

2.2.2 Delay Line Structures

Some fixed delay functions are required within the signal and control interfaces from bus to bus. The LSI53C180 uses programmable delay lines to implement delays. The incremental points in the chain are selected by multiplexers. Self-calibration takes care of process, temperature, and voltage effects.

2.2.2.1 Data Path

The data path through the LSI53C180 includes two levels of latches. One latch is in the receiver and the input clock, REQ or ACK, generates the hold. This level captures the data that may have minimal setup and hold. A second latch occurs to hold the data in order to transmit optimal signals on the isolated bus. This level provides maximum setup and hold along with a regenerated clock. The data path also provides a timer for each data bit that protects reception from a target bus for a nominal 30 ns after the driver is deasserted.

2.2.2.2 REQ/ACK

These input clock signals get edge filtered and stretched to minimum values to avoid glitches. In DT clocking, both leading and trailing edges are filtered, while only the leading edge is filtered in single transition clocking. These filters provide edge filtering to remove noise within the initial signal transition. The current transmission speed selects the time values.

2.2.3 Busy Filters

The busy control signal passes from source to load bus with filtering selected by the current state of the SCSI bus. This filter provides a synchronized leading edge signal that is not true until the input signal has been stable. The trailing edge occurs within several nanoseconds of the input being deasserted. When the BSY signal is asserted before and after the SEL signal, the filter is on.

Chapter 3 Specifications

This chapter provides the pin descriptions associated with the LSI53C180 as well as electrical characteristics. It includes these topics:

- Section 3.1, "Signal Descriptions," page 3-1
- Section 3.2, "Electrical Characteristics," page 3-7
- Section 3.3, "Mechanical Drawings," page 3-20

3.1 Signal Descriptions

The LSI53C180 is packaged in a 192-pin Ball Grid Array (BGA) shown in Figure 3.1 and Figure 3.2. The LSI53C180 signal grouping is shown in Figure 3.3. Tables 3.1 through 3.4 list the signal descriptions grouped by function:

- SCSI A Side Interface Pins (Table 3.1)
- SCSI B Side Interface Pins (Table 3.2)
- Chip Interface Control Pins (Table 3.3)
- Power and Ground Pins (Table 3.4)

Figure 3.1 and Figure 3.2 display the left and right halves of the LSI53C180 192-pin BGA top view.

Figure 3.1 Left Half of LSI53C180 192-Pin BGA Top View

A1	A2	A3	A4	A5	A6	A7	A8	A9
[^:	n2	7.5	n-1	~	no	n'	70	A-9
NC.	VDD _{IO}	NC	NC	NC	VEED ACTIVE	RESET/	A_DIFFSENS	A 6D42
NC B1	B2	B3	B4	B5	XFER_ACTIVE B6	B7	B8	A_SD12- B9
B_SD11+	B_SD11-	NC	NC	WS_ENABLE/	BSY_LED	NC	VDD _{CORE}	A_SD12+
C1	C2	C3	C4	C5	C6	C7	C8	C9
B_SD10+ D1	B_SD10- D2	B_DIFFSENS D3	NC	VDD _{SCSI}	NC	VSS	CLOCK	VDD _{SCSI}
DI	D2	D3						
B_SD9+	B_SD9-	NC						
E1	E2	E3						
B_SD8+	B_SD8-	VDD _{SCSI}						
F1	F2	F3						
B_SIO+ G1	B_SIO- G2	NC G3				G7	G8	G9
	02	33				, , , , , , , , , , , , , , , , , , ,	00	0.0
B_SREQ+	B_SREQ-	VSS				VSS	vss	VSS
H1	H2	H3				H7	H8	H9
B_SCD-	B_SSEL+	B_SCD+				VSS	VSS	VSS
J1	J2	J3				J7	J8	
B_SSEL- K1	B_SMSG+ K2	VDD _{SCSI}				VSS K7	VSS K8	K9
	_							
B_SMSG-	B_SRST+	VDD _{CORE}				VSS	VSS	vss
L1	L2	L3				L7	L8	L9
B_SRST-	NC	VSS				VSS	VSS	VSS
M1	M2	МЗ						
B_SACK+ N1	B_SACK- N2	B_SBSY+ N3						
B_SBSY-	B_SATN+	VDD _{SCSI}						
P1	P2	P3						
B_SATN-	B_SDP0- R2	B_SDP0+	R4	De	De	R7	IDo	R9
R1	n.c	17.3	17.44	R5	R6	N/	R8	L/a
B_RBIAS	P CD7	B_SD7-	NC	VDD _{SCSI}	B_SD2+	vss	B 600	VDD _{SCSI}
T1	B_SD7+ T2	T3	T4	T5	T6	T7	B_SD0- T8	T9
NC	B_SD6+	B_SD5+	B_SD4+	B_SD3+	B_SD2-	B_SD1+	B_SD0+	B_SDP1+
U1	U2	U3	U4	U5	U6	U7	U8	U9
NC	B_SD6-	B_SD5-	B_SD4-	B_SD3-	NC	B_SD1-	VDD _{CORE}	B_SDP1-

Figure 3.2 Right Half of LSI53C180 192-Pin BGA Top View

		1	1				
A10	A11	A12	A13	A14	A15	A16	A17
A_SD13-	A_SD14+	A_SD15+	A_SD0-	A_SD1-	A_SD2-	A_SD3-	NC
B10	B11	B12	B13	B14	B15	B16	B17
A_SD14-	A_SD15-	A_SDP1-	A_SD0+	A_SD1+	A_SD2+	A_SD3+	A_SD4-
C10	C11	C12	C13	C14	C15	C16	C17
A_SD13+	VSS	A_SDP1+	VDD _{SCSI}	NC	NC	A_SD5-	A_SD4+
					D15	D16	D17
					A_SD5+	A_SD6+	A_SD6-
					E15	E16	E17
					VDD _{SCSI}	A_SD7+	A_SD7-
					F15	F16	F17
					NC	A_SDP0+	A_SDP0-
G10	G11	1			G15	A_SDP0+ G16	G17
1/00					1100		
VSS H10	VSS H11	-			VSS H15	A_SATN+ H16	A_SATN- H17
1110	l''''				1113	1110	,
VSS J10	VSS J11				J15	A_SBSY+ J16	A_SBSY- J17
J10	J11				J15	J16	J17
VSS	VSS]			VDD	A_SACK+	A_SACK-
K10	K11				K15	K16	K17
VSS	VSS				VDD _{CORE}	A_SRST-	A_RBIAS
L10	L11]			L15	L16	L17
VSS	vss				VSS	A_SMSG-	A_SRST+
		•			M15	M16	M17
					A_SSEL+	A_SSEL-	A_SMSG+
					N15	N16	N17
					VDD _{SCSI}	A_SCD+	A_SCD-
					P15	P16	P17
					NC	A_SREQ+	A_SREQ-
R10	R11	R12	R13	R14	R15	R16	R17
NO.	VCC	NO.	VDD _{SCSI}	A 0040.	A CD0	A 610 ·	4 610
NC T10	VSS T11	NC T12	T13	A_SD10+ T14	A_SD9- T15	A_SIO+ T16	A_SIO- T17
B_SD15+ U10	B_SD14+ U11	B_SD13+ U12	B_SD12+ U13	A_SD11+ U14	A_SD10- U15	A_SD8+ U16	A_SD8-
15.10		"	1010	014	010	0.10	"
B_SD15-	B_SD14-	B_SD13-	B_SD12-	A_SD11-	A_SD9+	NC	NC

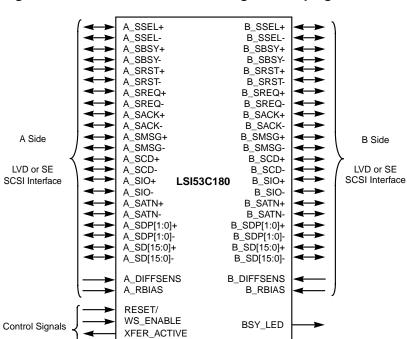


Figure 3.3 LSI53C180 Functional Signal Grouping

CLOCK

Table 3.1 SCSI A Side Interface Pins

SCSI A	BGA Pin	Туре	Description
A_SSEL+,-	M15, M16	I/O	A Side SCSI bus Select control signal.
A_SBSY+,-	H16, H17	I/O	A Side SCSI bus Busy control signal.
A_SRST+,-	L17, K16	I/O	A Side SCSI bus Reset control signal.
A_SREQ+,-	P16, P17	I/O	A Side SCSI bus Request control signal.
A_SACK+,-	J16, J17	I/O	A Side SCSI bus Acknowledge control signal.
A_SMSG+,-	M17, L16	I/O	A Side SCSI bus Message control signal.
A_SCD+,-	N16, N17	I/O	A Side SCSI bus Control and Data control signal.
A_SIO+,-	R16, R17	I/O	A Side SCSI bus Input and Output control signal.
A_SATN+,-	G16, G17	I/O	A Side SCSI bus Attention control signal.
A_SDP[1:0]+,-	C12, B12, F16, F17	I/O	A Side SCSI bus Data Parity signal.
A_SD[15:0]+,-	A12, B11, A11, B10, C10, A10, B9, A9, T14, U14, R14, T15, U15, R15, T16, T17, E16, E17, D16, D17, D15, C16, C17, B17, B16, A16, B15, A15, B14, A14, B13, A13	I/O	A Side SCSI bus Data signals.
A_DIFFSENS	A8	I	A Side SCSI bus Differential Sense signal.
A_RBIAS	K17	RBIAS	LVD current control.

Table 3.2 SCSI B Side Interface Pins

SCSI B	Pin	Туре	Description
B_SSEL+,-	H2, J1	I/O	B Side SCSI bus Select control signal.
B_SBSY+,-	M3, N1	I/O	B Side SCSI bus Busy control signal.
B_SRST+,-	K2, L1	I/O	B Side SCSI bus Reset control signal.
B_SREQ+,-	G1, G2	I/O	B Side SCSI bus Request control signal.
B_SACK+,-	M1, M2	I/O	B Side SCSI bus Acknowledge control signal.
B_SMSG+,-	J2, K1	I/O	B Side SCSI bus Message control signal.
B_SCD+,-	H3, H1	I/O	B Side SCSI bus Control and Data control signal.
B_SIO+,-	F1, F2	I/O	B Side SCSI bus Input and Output control signal.
B_SATN+,-	N2, P1	I/O	B Side SCSI bus Attention control signal.
B_SDP[1:0]+,-	T9, U9, P3, P2	I/O	B Side SCSI bus Data Parity signal.
B_SD[15:0]+,-	T10, U10, T11, U11, T12, U12, T13, U13, B1, B2, C1, C2, D1, D2, E1, E2, R2, R3, T2, U2, T3, U3, T4, U4, T5, U5, R6, T6, T7, U7, T8, R8	I/O	B Side SCSI bus Data signals.
B_DIFFSENS	C3	I	B Side SCSI bus Differential Sense signal.
B_RBIAS	R1	RBIAS	LVD current control.

Table 3.3 Chip Interface Control Pins

Control	Pin	Туре	Description
RESET/	A7	I	Master Reset for LSI53C180, active LOW.
WS_ENABLE/	B5	I	Enable/disable SCSI transfers through the LSI53C180.
XFER_ACTIVE	A6	0	Transfers through the LSI53C180 are enabled/disabled.
CLOCK	C8	I	Oscillator input for LSI53C180 (40 MHz).
BSY_LED	В6	0	SCSI activity LED output, 8 mA.

Table 3.4 Power and Ground Pins

Power and Ground	Pin	Туре	Description
VDD _{SCSI}	C5, C9, C13, E3, E15, J3, J15, N3, N15, R5, R9, R13	I	Power supplies to the SCSI bus I/O pins.
VDD _{CORE}	B8, K3, K15, U8	I	Power supplies to the CORE logic.
VDD _{IO}	A2	I	Power supplies to the I/O logic.
VSS	C7, C11, G3, G7, G8, G9, G10, G11, G15, H7, H8, H9, H10, H11, J7, J8, J10, J11, K7, K8, K9, K10, K11, L3, L7, L8, L9, L10, L11, L15, R7, R11	I	Ground ring.
NC	A1, A3, A4, A5, A17, B3, B4, B7, C4, C6, C14, C15, D3, F3, F15, H15, L2, P15, R4, R10, R12, T1, U1, U6, U16, U17	N/A	No Connections.

Note:

- All V_{DD} pins must be supplied 3.3 V. The LSI53C180 output signals drive 3.3 V.
- If the power supplies to the VDD_{IO} and VDD_{CORE} pins in a chip testing environment are separated, either power up the pins simultaneously or power up VDD_{CORE} before VDD_{IO}. The VDD_{IO} pin must always power down before the VDD_{CORE} pin.

3.2 Electrical Characteristics

This section specifies the DC and AC electrical characteristics of the LSI53C180. These electrical characteristics are listed in four categories:

- DC Characteristics
- TolerANT Technology Electrical Characteristics
- AC Characteristics
- SCSI Interface Timing

3.2.1 DC Characteristics

Table 3.5 Absolute Maximum Stress Ratings¹

Symbol	Parameter	Min	Max	Units	Test Conditions
T _{STG}	Storage temperature	-55	150	°C	-
V _{DD}	Supply voltage	-0.5	4.5	V	_
V _{IN}	Input Voltage	V _{SS} -0.3	V _{DD} +0.3	V	-
V _{IN5V}	Input Voltage (5 V TolerANT pins)	V _{SS} -0.3	5.25	V	-
I _{LP} ²	Latch-up current	±150	_	mA	-
ESD	Electrostatic discharge	_	2 K	V	MIL-STD 883C, Method 3015.7

Stresses beyond those listed above may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions beyond those indicated in the Operating Conditions section of the manual is not implied.

Table 3.6 Operating Conditions¹

Symbol	Parameter	Min	Max	Units	Test Conditions
V _{DD}	Supply voltage	3.13	3.47	V	_
I _{DD}	SE Mode Supply ² Current (dynamic)	_	200	mA	_
I _{DD-I/O}	LVD Mode Supply Current (dynamic)	_	600	mA	_
I _{DD}	Supply current (static)	_	1	mA	-
T _A	Operating free air	0	70	°C	_
θ_{JA}	Thermal resistance (junction to ambient air)	_	35	°C/W	-

^{1.} Conditions that exceed the operating limits may cause the device to function incorrectly.

^{2. -2} V < VPIN < 8 V.

^{2.} Core and analog supply only.

Table 3.7 LVD Driver SCSI Signals—B_SD[15:0]±, B_SDP[1:0]±, B_SCD±, B_SIO±, B_SMSG±, B_SREQ±, B_SACK±, B_SBSY±, B_SATN±, B_SSEL±, B_SRST±1

Symbol	Parameter	Min	Max	Units	Test Conditions
I _O +	Source (+) current	9.6	14.4	mA	Asserted state
I ₀ -	Sink (-) current	-9.6	-14.4	mA	Asserted state
I _O +	Source (+) current	-6.4	-9.6	mA	Negated state
I _O -	Sink (-) current	6.4	9.6	mA	Negated state
I _{OZ}	3-state leakage	-20	20	μΑ	V _{PIN} = 0 V, 3.47 V

^{1.} V_{CM} = 0.7 - 1.8 V, R_L = 0 - 110 Ω , R_{bias} = 10 $k\Omega$.

Figure 3.4 LVD Driver

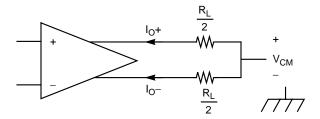


Table 3.8 LVD Receiver SCSI Signals—B_SD[15:0]±, B_SDP[1:0]±, B_SCD±, B_SIO±, B_SMSG±, B_SREQ±, B_SACK±, B_SBSY±, B_SATN±, B_SSEL±, B_SRST±1

Symbol	Parameter	Min	Max	Units	Test Conditions
VI	LVD receiver voltage asserting	60	_	mV	-
V _I	LVD receiver voltage negating	_	-60	mV	_

^{1.} $V_{CM} = 0.7 - 1.8 \text{ V}.$

Figure 3.5 LVD Receiver

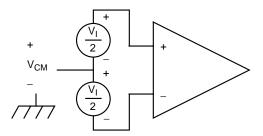


Table 3.9 DIFFSENS SCSI Signal

Symbol	Parameter	Min	Max	Units	Test Conditions ¹
Vs	LVD sense voltage	0.7	1.9	V	Note 1
V _{IL}	Single-ended sense voltage	V _{SS} -0.3	0.5	V	Note 1
I _{OZ}	3-state leakage	-10	10	μА	V _{PIN} = 0 V, 5.25 V

^{1.} Functional test specified for each mode (V_S and V_{IL}).

Table 3.10 Input Capacitance

Symbol	Parameter	Min	Max	Units	Test Conditions
C _I	Input capacitance of input pads	_	7	pF	_
C _{IO}	Input capacitance of I/O pads	_	10	pF	_

Table 3.11 Bidirectional SCSI Signals—A_SD[15:0]/, A_SDP[1:0]/, A_SREQ/, A_SACK/, B_SD[15:0] \pm , B_SREQ \pm , B_SACK \pm

Symbol	Parameter	Min	Max	Units	Test Conditions
V _{IH}	Input high voltage	2.0	V _{DD} +0.3	V	_
V _{IL}	Input low voltage	V _{SS} -0.3	0.8	V	_
V _{OH} ¹	Output high voltage	2.0	V _{DD}	V	I _{OH} = 7.0 mA
V _{OL}	Output low voltage	V _{SS}	0.5	V	48 mA
I _{OZ}	3-state leakage	-20	20	μА	V _{PIN} = 0 V, 3.47 V

^{1.} TolerANT active negation enabled.

Table 3.12 Bidirectional SCSI Signals—A_SCD/, A_SIO/, A_SMSG/, A_SBSY/, A_SATN/, A_SSEL/, A_SRST/, B_SCD±, B_SIO±, B_SMSG±, B_SBSY±, B_SATN±, B_SSEL±, B_SRST±

Symbol	Parameter	Min	Max	Units	Test Conditions
V _{IH}	Input high voltage	2.0	V _{DD} +0.3	V	-
V _{IL}	Input low voltage	V _{SS} -0.3	0.8	V	_
V _{OL}	Output low voltage	V _{SS}	0.5	V	48 mA
l _{OZ}	3-state leakage	-20	20	μΑ	V _{PIN} = 0 V, 3.47 V

Table 3.13 Input Control Signals—CLOCK, RESET/, WS_ENABLE

Symbol	Parameter	Min	Max	Units	Test Conditions
V _{IH}	Input high voltage	2.0	V_{DD}	V	_
V _{IL}	Input low voltage	V _{SS} -0.3	0.8	V	_
I _{OZ}	3-state leakage	-10	10	μΑ	V _{PIN} = 0 V, 5.25 V

Figure 3.6 External Reset Circuit

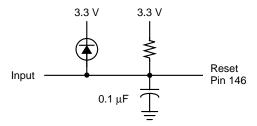


Table 3.14 Output Control Signals—BSY_LED, XFER_ACTIVE

Symbol	Parameter	Min	Max	Units	Test Conditions
V _{OH}	Output high voltage	2.4	V _{DD}	V	8 mA
V _{OL}	Output low voltage	V _{SS}	0.4	V	8 mA
I _{OZ}	3-state leakage	-10	10	μΑ	-

3.2.2 TolerANT Technology Electrical Characteristics

Table 3.15 TolerANT Technology Electrical Characteristics¹

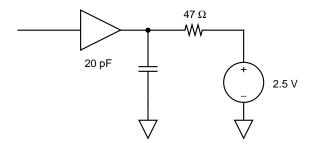
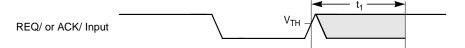

Symbol	Parameter	Min	Max	Units	Test Conditions
V _{OH} ²	Output high voltage	2.0	V _{DD} +0.3	V	I _{OH} = -7 mA
V _{OL}	Output low voltage	V _{SS}	0.5	V	I _{OL} = 48 mA
V _{IH}	Input high voltage	2.0	V _{DD} +0.3	V	_
V _{IL}	Input low voltage	V _{SS} -0.3	0.8	V	Referenced to V _{SS}
V _{IK}	Input clamp voltage	-0.66	-0.77	V	V _{DD} = 4.75; I _I = -20 mA
V _{TH}	Threshold, HIGH to LOW	1.0	1.2	V	_
V _{TL}	Threshold, LOW to HIGH	1.4	1.6	V	_
V _{TH} -V _{TL}	Hysteresis	300	500	mV	_
I _{OH} ²	Output high current	2.5	24	mA	V _{OH} = 2.5 V
I _{OL}	Output low current	100	200	mA	V _{OL} = 0.5 V
l _{OSH} ²	Short-circuit output high current	_	625	mA	Output driving low, pin shorted to V _{DD} supply ³
I _{OSL}	Short-circuit output low current	_	95	mA	Output driving high, pin shorted to V _{SS} supply
I _{LH}	Input high leakage	_	20	μΑ	V _{DD} +/- 5%, V _{PIN} = 2.7 V
I _{LL}	Input low leakage	-20	_	μΑ	V _{DD} +/- 5%, V _{PIN} = 0 V
I _{PD}	Power down leakage	_	20		$V_{DD} = 0 \text{ V},$ $V_{PIN} = 1.2 \text{ V}$
R _I	Input resistance	20	_	ΜΩ	SCSI pins ⁴
C _P	Capacitance per pin	_	15	pF	PQFP
t _R ²	Rise time, 10% to 90%	4.0	18.5	ns	Figure 3.7
(Sheet 1 of	2)				

Table 3.15 TolerANT Technology Electrical Characteristics¹ (Cont.)

Symbol	Parameter	Min	Max	Units	Test Conditions
t _F	Fall time, 90% to 10%	4.0	18.5	ns	Figure 3.7
dV _H /dt	Slew rate, LOW to HIGH	0.15	0.50	V/ns	Figure 3.7
dV _L /dt	Slew rate, HIGH to LOW	0.15	0.50	V/ns	Figure 3.7
ESD	Electrostatic discharge	2	_	kV	MIL-STD-883C; 3015-7
	Latch-up	100	_	mA	-
	Filter delay	20	30	ns	Figure 3.8
	Ultra filter delay	10	15	ns	Figure 3.8
	Ultra3 filter delay	х	х	ns	Figure 3.8
	Extended filter delay	40	60	ns	Figure 3.8
(Sheet 2 of	2)				

^{1.} These values are guaranteed by periodic characterization; they are not 100% tested on every device.

Figure 3.7 Rise and Fall Time Test Conditions



^{2.} Active negation outputs only: Data, Parity, SREQ/, SACK/. (Minus Pins) SCSI mode only.

^{3.} Single pin only; irreversible damage may occur if sustained for one second.

^{4.} SCSI RESET pin has 10 k Ω pull-up resistor.

Figure 3.8 SCSI Input Filtering

Note: t₁ is the input filtering period.

Figure 3.9 Hysteresis of SCSI Receivers

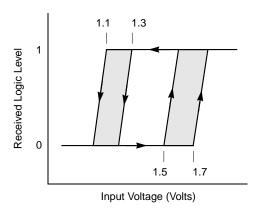


Figure 3.10 Input Current as a Function of Input Voltage

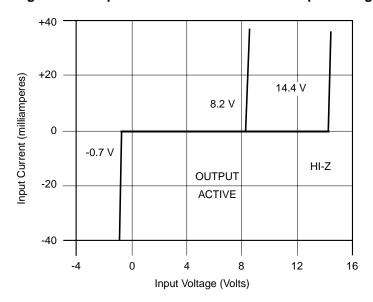
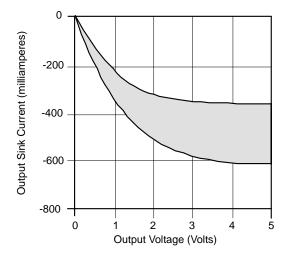
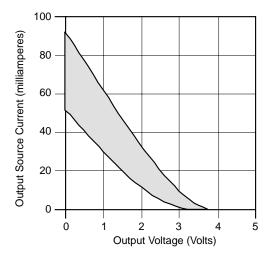
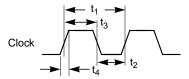




Figure 3.11 Output Current as a Function of Output Voltage


3.2.3 AC Characteristics

The AC characteristics described in this section apply over the entire range of operating conditions (refer to DC Characteristics in this chapter). Chip timing is based on simulation at worst case voltage, temperature, and processing. The LSI53C180 requires a 40 MHz clock input.

Table 3.16 Clock Timing

Symbol	Parameter	Min	Max	Units
t ₁	Clock period	24.75	25.25	ns
t ₂	Clock low time	10	15	ns
t ₃	Clock high time	10	15	ns
t ₄	Clock rise time	1	_	V/ns

Figure 3.12 Clock Timing

3.2.4 SCSI Interface Timing

Table 3.17 Input Timing - Single Transition

Symbol	Parameter	Min	Max	Units
t _{ST1}	Input data setup	4.5	_	ns
t _{ST2}	Input data hold	4.5	_	ns
t _{ST3}	Input REQ/ACK assertion pulse width	6.5	_	ns
t _{ST4}	Input REQ/ACK deassertion pulse width	6.5	_	ns

Table 3.18 Output Timing - Single Transition

Symbol	Parameter	Min	Max	Units
t _{ST5}	Output data setup	Nominal: negotiated/2	-	ns
t _{ST6}	Output data hold	Nominal: negotiated/2	_	ns
t _{ST7}	Output REQ/ACK pulse width	max [negotiated ns, t _{ST3} –5]	max [negotiated ns, t _{ST3} +5]	ns
t _{ST8}	REQ/ACK transport delay	25 ns if REQ/ACK is clock for input data, 10 ns if not	50 ns if REQ/ACK is clock for input data, 30 ns if not	ns

Note: Pulse width is a negotiated value and ranges from 12.5 to over 1000 ns.

Figure 3.13 Input/Output Timing - Single Transition

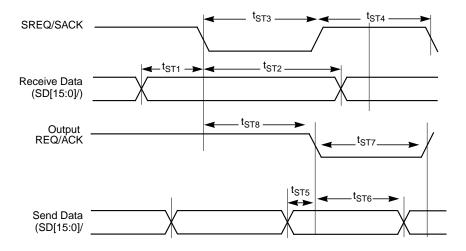


Table 3.19 Input Timing - Double Transition

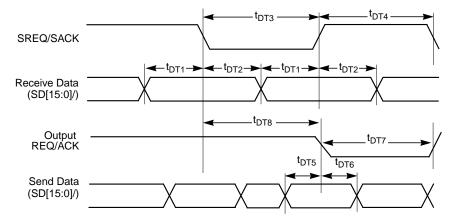

Symbol	Parameter	Min	Max	Units
t _{DT1}	Input data setup	1.25	_	ns
t _{DT2}	Input data hold	1.25	_	ns
t _{DT3}	Input REQ/ACK assertion pulse width	10	_	ns
t _{DT4}	Input REQ/ACK deassertion pulse width	10	_	ns

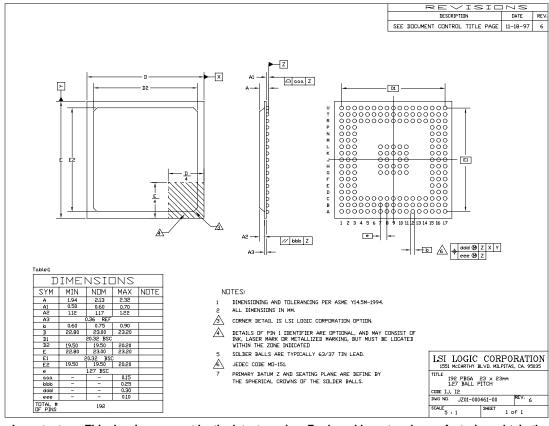
Table 3.20 Output Timing - Double Transition

Symbol	Parameter	Min	Max	Units
t _{DT5}	Output data setup	Nominal: negotiated/2	_	ns
t _{DT6}	Output data hold	Nominal: negotiated/2	_	ns
t _{DT7}	Output REQ/ACK pulse width	max [negotiated ns, t _{DT3} –5]	max [negotiated ns, t _{DT3} +5]	ns
t _{DT8}	REQ/ACK transport delay	25 ns if REQ/ACK is clock for input data, 10 ns if not	50 ns if REQ/ACK is clock for input data, 30 ns if not	ns

Note: Pulse width is a negotiated value and ranges from 12.5 to over 1000 ns.

Figure 3.14 Input/Output Timing - Double Transition

3.3 Mechanical Drawings


LSI Logic component dimensions conform to a current revision of the JEDEC Publication 95 standard package outline, using ANSI 14.5Y "Dimensioning and Tolerancing" interpretations. As JEDEC drawings are balloted and updated, changes may have occurred. To ensure the use of a current drawing, the JEDEC drawing revision level should be verified. Visit www.jedec.org representing the Solid State Technology Association. Search for Publication 95 and click on MO Mechanical Outlines for drawings and revision levels.

For printed circuit board land patterns that will accept LSI Logic components, it is recommended that customers refer to the IPC standards (Institute for Interconnecting and Packaging Electronic Circuits). Specification number IPC-SM-782, "Surface Mount Design and Land Pattern Standard" is an established method of designing land patterns. Feature size and tolerances are industry standards based on IPC assumptions.

3.3.1 LSI53C180 192-Pin BGA Mechanical Drawing

The LSI53C180 is packaged in a 192-pin Plastic Ball Grid Array (PBGA).

Figure 3.15 192-Pin PBGA (IJ, I2) Mechanical Drawing

Important: This drawing may not be the latest version. For board layout and manufacturing, obtain the most recent engineering drawings from your LSI Logic marketing representative by requesting the outline drawing for package code IJ, I2.

Appendix A Wiring Diagrams

A.1 LSI53C180 Wiring Diagrams

The following four pages of wiring diagrams are of a typical LSI53C180 in a evaluation test board application.

Figure A.1 LSI53C180 Wiring Diagram 1 of 4

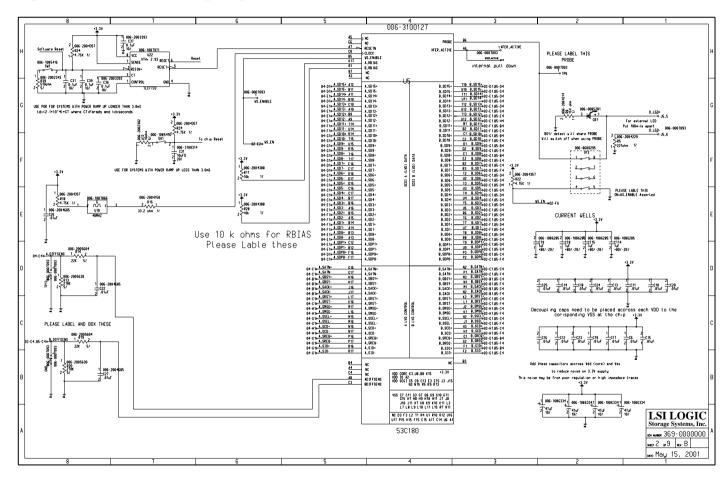


Figure A.2 LSI53C180 Wiring Diagram 2 of 4

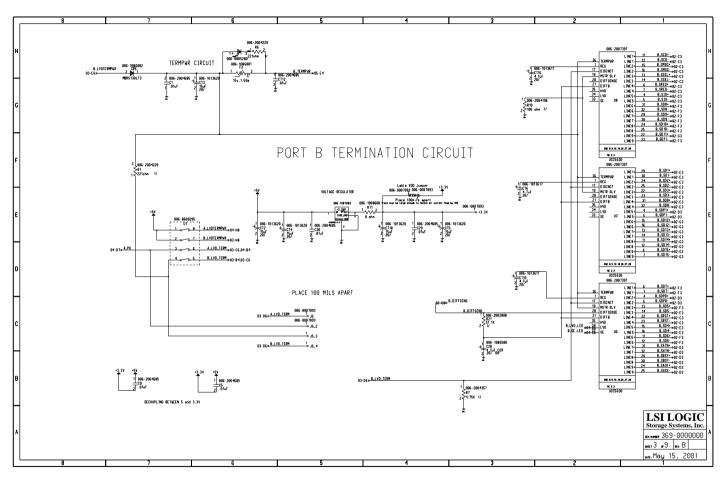


Figure A.3 LSI53C180 Wiring Diagram 3 of 4

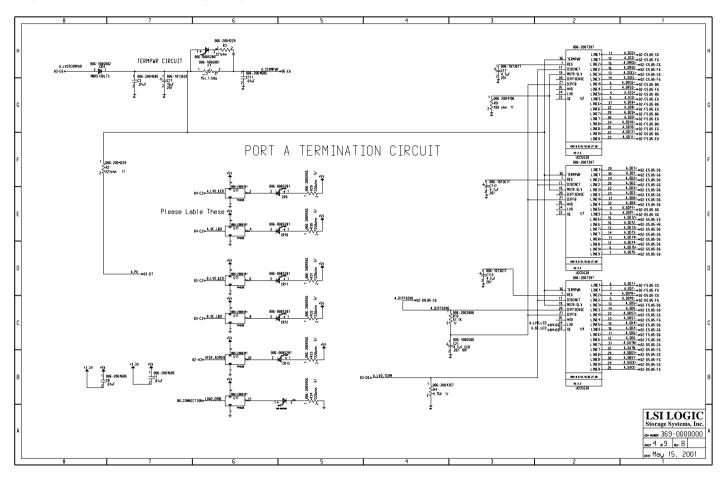
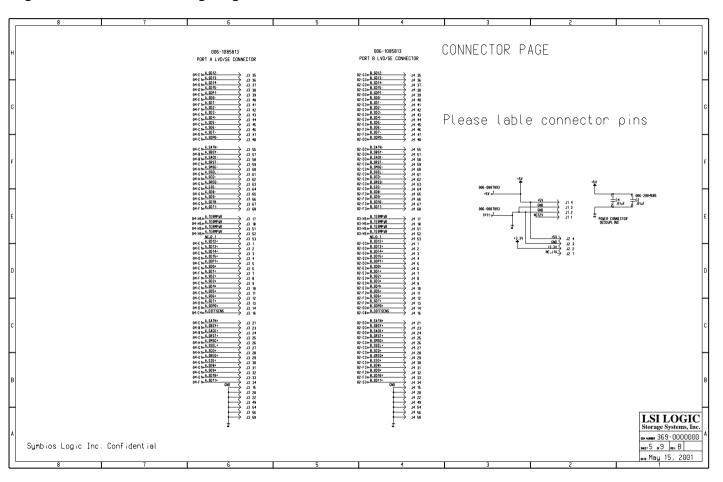



Figure A.4 LSI53C180 Wiring Diagram 4 of 4

Appendix B Glossary

ACK/ Acknowledge – Driven by an initiator, ACK/ indicates an acknowledgment

or a SCSI data transfer. In the target mode, ACK/ is received as a

response to the REQ/ signal.

ANSI American National Standards Institute.

Arbitration The process of selecting one respondent from a collection of several

candidates that request service concurrently.

Asserted A signal is asserted when it is in the state that is indicated by the name of

the signal. Opposite of negated or deasserted.

Assertion The act of driving a signal to the true state.

Asynchronous Transmission Transmission in which each byte of the information is synchronized individually through the use of Request (REQ/) and Acknowledge (ACK/)

signals.

ATN/ Attention – Driven by an initiator, indicates an attention condition. In the

target role, ATN/ is received and is responded to by entering the Message

Out Phase.

Block A block is the basic 512 byte size of storage that the storage media is

divided into. The Logical Block Address protocol uses sequential block

addresses to access the media.

BSY/ Busy – Indicates that the SCSI Bus is being used. BSY/ can be driven by

the initiator or the target device.

Bus A collection of unbroken signal lines that interconnect computer modules.

The connections are made by taps on the lines.

Bus Expander Bus expander technology permits the extension of a bus by providing

some signal filtering and retiming to maintain signal skew budgets.

Cable Skew Delay

Cable skew delay is the minimum difference in propagation time allowed between any two SCSI bus signals measured between any two SCSI devices.

C D/

Control/Data – Driven by a target. When asserted, indicates Control or Data Information is on the SCSI Bus. This signal is received by the initiator.

Connect

The function that occurs when an initiator selects a target to start an operation, or a target reselects an initiator to continue an operation.

Control Signals

The set of nine lines used to put the SCSI bus into its different phases. The combinations of asserted and negated control signals define the phases.

Controller

A computer module that interprets signals between a host and a peripheral device. Often, the controller is a part of the peripheral device, such as circuitry on a disk drive.

DB[7:0]/

SCSI Data Bits – These eight Data Bits (DB[7:0]/), plus a Parity Bit (DBP/), form the SCSI bus. DB7/ is the most significant bit and has the highest priority ID during the Arbitration Phase. Data parity is odd. Parity is always generated and optionally checked. Parity is not valid during arbitration.

Deasserted

The act of driving a signal to the false state or allowing the cable terminators to bias the signal to the false state (by placing the driver in the high impedance condition).

A signal is deasserted or negated when it is in the state opposite to that which is indicated by the name of the signal. Opposite of asserted.

Device

A single unit on the SCSI bus, identifiable by a SCSI address. It can be a processor unit, a storage unit (such as a disk or tape controller or drive), an output unit (such as a controller or printer), or a communications unit.

Differential

A signaling alternative that employs differential drivers and receivers to improve signal-to-noise ratios and increase maximum cable lengths.

Disconnect

The function that occurs when a target releases control of the SCSI bus, allowing the bus to go to the Bus Free phase.

Driver

When used in the context of electrical configuration, "driver" is the circuitry that creates a signal on a line.

External Configuration

All SCSI peripheral devices are external to the host enclosure.

External Terminator

The terminator that exists on the last peripheral device that terminates the end of the external SCSI bus.

Free

In the context of Bus Free phase, "free" means that no SCSI device is actively using the SCSI bus and, therefore, the bus is available for use.

Host

A processor, usually consisting of the central processing unit and main memory. Typically, a host communicates with other devices, such as peripherals and other hosts. On the SCSI bus, a host has a SCSI address.

Host Adapter

Circuitry that translates between a processor's internal bus and a different bus, such as SCSI. On the SCSI bus, a host adapter usually acts as an initiator.

Initiator

A SCSI device that requests another SCSI device (a target) to perform an operation. Usually, a host acts as an initiator and a peripheral device acts as a target.

Internal Configuration

All SCSI peripheral devices are internal to the host enclosure.

Internal Terminator The terminator that exists within the host that terminates the internal end of the SCSI bus.

I/O

Input/Output – Driven by a target. I/O controls the direction of data transfer on the SCSI bus. When active, this signal indicates input to the initiator. When inactive, this signal indicates output from the initiator. This signal is also used to distinguish between the Selection and Reselection Phases.

I/O Cycle

An I/O cycle is an Input (I/O Read) operation or Output (I/O Write) operation that accesses the PC Card's I/O address space.

Logical Unit

The logical representation of a physical or virtual device, addressable through a target. A physical device can have more than one logical unit.

Low (logical level)

A signal is at the low logic level when it is below approximately 0.5 volts.

LSB Abbreviation for Least Significant Bit or Least Significant Byte. That

portion of a number, address or field that occurs right-most when its value is written as a single number in conventional hexadecimal or binary notation. The portion of the number having the least weight in a

mathematical calculation using the value.

LUN Logical Unit Number. Used to identify a logical unit.

LVD Low Voltage Differential. LVD is a robust design methodology that

improves power consumption, data integrity, cable lengths and support for multiple devices, while providing a migration path for increased I/O

performance.

Mandatory A characteristic or feature that must be present in every implementation of

the standard.

MHz MegaHertz – Measurement in millions of Hertz per second. Used as a

measurement of data transfer rate.

microsecond

(μs)

One millionth of a second.

MSB Abbreviation for Most Significant Bit or Most Significant Byte. That portion

of a number, address or field that occurs left-most when its value is written as a single number in conventional hexadecimal or binary notation. The

portion of the number having the most weight in a mathematical

calculation using the value.

MSG/ Message – Driven active by a target during the Message Phase. This

signal is received by the initiator.

nanosecond

(ns)

One billionth of a second.

Negated A signal is negated or deasserted when it is in the state opposite to that

which is indicated by the name of the signal. Opposite of asserted.

Negation The act of driving a signal to the false state or allowing the cable

terminators to bias the signal to the false state.

Parity A method of checking the accuracy of binary numbers. An extra bit, called

a parity bit, is added to a number. If even parity is used, the sum of all 1s in the number and its corresponding parity is always even. If odd parity is

used, the sum of the 1s and the parity bit is always odd.

Peripheral Device

A device that can be attached to the SCSI bus. Typical peripheral devices

are disk drives, tape drives, printers, CD ROMs, or communications units.

Phase One of the eight states to which the SCSI bus can be set. During each

phase, different communication tasks can be performed.

Port A connection into a bus.

Priority The ranking of the devices on the bus during arbitration.

Protocol A convention for data transmission that encompasses timing control,

formatting, and data representation.

Receiver The circuitry that receives electrical signals on a line.

Reconnect The function that occurs when a target reselects an initiator to continue an

operation after a disconnect.

Release The act of allowing the cable terminators to bias the signal to the false

state (by placing the driver in the high impedance condition).

REQ/ Request – Driven by a target, indicates a request for a SCSI data-transfer

handshake. This signal is received by the initiator.

Reselect A target can disconnect from an initiator in order to perform a time-

consuming function, such as a disk seek. After performing the operation,

the target can "reselect" the initiator.

RESET Reset – Clears all internal registers when active. It does not assert the

SCSI RST/ signal and therefore does not reset the SCSI bus.

RST Reset – Indicates a SCSI Bus reset condition.

SCSI Address The octal representation of the unique address ([7:0]) assigned to an

SCSI device. This address is normally assigned and set in the SCSI

device during system installation.

SCSI ID (Identification) or SCSI Device

ID

The bit-significant representation of the SCSI address referring to one of

the signal lines DB7/ through DB0/.

SCSI Small Computer System Interface.

SCAM An acronym for SCSI Configured AutoMatically. SCAM is the new SCSI

automatic ID assignment protocol. SCAM frees SCSI users from locating and setting SCSI ID switches and jumpers. SCAM is the key part of Plug

and Play SCSI.

SEL/ Select – Used by an initiator to select a target, or by a target to reselect an

initiator.

Single-Ended Configuration

An electrical signal configuration that uses a single line for each signal, referenced to a ground path common to the other signal lines. The advantage of a single-ended configuration is that it uses half the pins, chips, and board area that differential/low-voltage differential configurations require. The main disadvantage of single-ended configurations is that they are vulnerable to common mode noise. Also, cable lengths are limited.

Synchronous Transmission

Transmission in which the sending and receiving devices operate continuously at the same frequency and are held in a desired phase relationship by correction devices. For buses, synchronous transmission is a timing protocol that uses a master clock and has a clock period.

Target

A SCSI device that performs an operation requested by an initiator.

Termination

The electrical connection at each end of the SCSI bus, composed of a set of resistors.

Ultra3 SCSI

A standard for SCSI data transfers. It allows a transfer rate of up to 160 Mbytes/s over a 16-bit SCSI bus. STA (SCSI Trade Association) supports using the terms "Ultra3 SCSI" over the term "Fast-80."

Index

Numerics	block B-1 BSY B-1
192-pin plastic ball grid array 1-6 3-state 2-7	BSY_LED 2-7 bus B-1
leakage 3-11	expander B-1 timing 2-4
A	busy (BSY) 2-8
A_SACK 2-9, 3-5 A_SATN 2-10, 3-5	filters 2-15
A_SBSY 2-8, 3-5 A_SCD 2-10, 3-5	C D B-2
A_SD[15:0] 2-6, 3-5 A_SDP[1:0] 2-6, 3-5	cable skew delay B-2 calibration 2-4
A_SIO 2-10, 3-5 A_SMSG 2-10, 3-5	chip reset (RESET/) 2-11 clock
A_SREQ 2-9, 3-5 A_SRST 2-8 A_SSEL 2-7	(CLOCK) 2-13 signal 2-7
Ac characteristics 3-17 to 3-19	timing 3-17 connect B-2
acknowledge ACK 2-9, B-1	control signals B-2 input 3-12
active negation 2-3 ANSI B-1	output 3-12 control/data (SCD) 2-10
applications 1-3	controller B-2
arbitration B-1	cyclic redundancy check 1-6
arbitration B-1 asserted B-1 assertion B-1	cyclic redundancy check 1-6
arbitration B-1 asserted B-1 assertion B-1 asynchronous transmission B-1 ATN B-1	D data 2-3, 2-6
arbitration B-1 asserted B-1 assertion B-1 asynchronous transmission B-1 ATN B-1 attention (SATN) 2-10	D data 2-3, 2-6 path 2-14 DB[7:0] B-2
arbitration B-1 asserted B-1 assertion B-1 assertion B-1 asynchronous transmission B-1 ATN B-1 attention (SATN) 2-10 B	D data 2-3, 2-6 path 2-14
arbitration B-1 asserted B-1 assertion B-1 asynchronous transmission B-1 ATN B-1 attention (SATN) 2-10 B B_SACK 2-9, 3-6 B_SATN 2-10	D data 2-3, 2-6 path 2-14 DB[7:0] B-2 DC characteristics 3-8 to 3-12 deasserted B-2
arbitration B-1 asserted B-1 assertion B-1 asynchronous transmission B-1 ATN B-1 attention (SATN) 2-10 B B_SACK 2-9, 3-6	D data 2-3, 2-6 path 2-14 DB[7:0] B-2 DC characteristics 3-8 tO 3-12 deasserted B-2 delay line structures 2-14 delay settings 2-4 device B-2 differential B-2 transceivers 1-8
arbitration B-1 asserted B-1 asserted B-1 assertion B-1 asynchronous transmission B-1 ATN B-1 attention (SATN) 2-10 B B_SACK 2-9, 3-6 B_SATN 2-10 B_SBSY 2-8, 3-6 B_SCD 2-10, 3-6	data 2-3, 2-6 path 2-14 DB[7:0] B-2 DC characteristics 3-8 tO 3-12 deasserted B-2 delay line structures 2-14 delay settings 2-4 device B-2 differential B-2 transceivers 1-8 DIFFSENS 2-4, 2-5 receiver 2-5
arbitration B-1 asserted B-1 asserted B-1 asserted B-1 asserten B-1 asynchronous transmission B-1 ATN B-1 attention (SATN) 2-10 B B B SACK 2-9, 3-6 B SATN 2-10 B SBSY 2-8, 3-6 B SCD 2-10, 3-6 B SD[15:0] 2-6, 3-6 B SDP[1:0] 2-6, 3-6 B SDP[1:0] 2-6, 3-6 B SMSG 2-10, 3-6 B SMSG 2-10, 3-6 B SMSG 2-10, 3-6 B SREQ 2-9	data 2-3, 2-6 path 2-14 DB[7:0] B-2 DC characteristics 3-8 tO 3-12 deasserted B-2 delay line structures 2-14 delay settings 2-4 device B-2 differential B-2 transceivers 1-8 DIFFSENS 2-4, 2-5 receiver 2-5 SCSI signal 3-10 disconnect B-2
arbitration B-1 asserted B-1 assertion B-1 assertion B-1 asynchronous transmission B-1 ATN B-1 attention (SATN) 2-10 B B_SACK 2-9, 3-6 B_SATN 2-10 B_SBSY 2-8, 3-6 B_SCD 2-10, 3-6 B_SD[15:0] 2-6, 3-6 B_SDP[1:0] 2-6, 3-6 B_SIO 2-10, 3-6 B_SIO 2-10, 3-6 B_SIO 2-10, 3-6 B_SRSQ 2-10, 3-6 B_SRSQ 2-9 B_SRST 2-8 B_SRSE 2-9 B_SRST 2-8 B_SSEL 2-7, 3-6	data 2-3, 2-6 path 2-14 DB[7:0] B-2 DC characteristics 3-8 tO 3-12 deasserted B-2 delay line structures 2-14 delay settings 2-4 device B-2 differential B-2 transceivers 1-8 DIFFSENS 2-4, 2-5 receiver 2-5 SCSI signal 3-10 disconnect B-2 distance requirements 1-3 tO 1-4 domain validation 1-7
arbitration B-1 asserted B-1 assertion B-1 asynchronous transmission B-1 ATN B-1 attention (SATN) 2-10 B B_SACK 2-9, 3-6 B_SATN 2-10 B_SBSY 2-8, 3-6 B_SCD 2-10, 3-6 B_SCD 2-10, 3-6 B_SD[15:0] 2-6, 3-6 B_SDP[1:0] 2-6, 3-6 B_SIO 2-10, 3-6 B_SMSG 2-10, 3-6 B_SMSG 2-10, 3-6 B_SREQ 2-9 B_SRST 2-8	data 2-3, 2-6 path 2-14 DB[7:0] B-2 DC characteristics 3-8 tO 3-12 deasserted B-2 delay line structures 2-14 delay settings 2-4 device B-2 differential B-2 transceivers 1-8 DIFFSENS 2-4, 2-5 receiver 2-5 SCSI signal 3-10 disconnect B-2 distance requirements 1-3 tO 1-4

E	driver SCSI signals 3-9 receiver 3-10
electrical characteristics 3-7 to 3-19 electrostatic discharge 3-8 enable/disable SCSI transfers 3-6 ESD 3-8 external configuration B-3	receiver SCSI signals 3-9 LVD Link 1-8 benefits 1-7, 1-8 technology 2-3 transceivers 1-8, 2-4
external reset circuit 3-12 external terminator B-3	M
F	mandatory B-4 master reset 3-6
filter edges 2-9 free B-3 functional signal grouping 3-4	message (SMSG) 2-10 MHz B-4 microsecond B-4 migration path 1-8
G	MSB B-4 MSG B-4
glitches 2-3	N
Н	nanosecond B-4
high voltage differential SCSI 1-7 host B-3	negated B-4 negation B-4
adapter B-3 hysteresis of SCSI receivers 3-15	0
I	operating conditions 3-8 operating free air 3-8
I/O B-3	output control signals 3-12
cycle B-3 identification B-5	low voltage 3-11
initiator B-3	timing 3-18
input	output current function of output voltage 3-16
capacitance 3-10 I/O pads 3-10	output timing
input pads 3-10	double transition 3-19
low voltage 3-11	single transition 3-18
voltage 3-8 input clock signals 2-15	P
input control signals 3-12	
input current	parallel function 2-8, 2-9 parallel protocol request 1-7
function of input voltage 3-15 input timing	parity 2-3, 2-6, B-4
double transition 3-18	peripheral device B-4
single transition 3-17	phase B-5 port definition B-5
input/output (SIO) 2-10 internal configuration B-3	power
internal terminator B-3	down 2-3 on reset (POR) 2-11
L	up 2-3 precision
latch-up current 3-8	delay control 2-1, 2-4 priority
leading edge filter 2-7, 2-8 load bus 2-6	definition B-5
logical unit B-3	protocol definition B-5
low (logical level) B-3	pull-down 2-7, 2-10
LSB B-4 LSI53C180	pull-up 2-7, 2-10
applications 1-3	pulse width 2-9
features 1-5	R
server clustering 1-3 Ultra3 SCSI Bus Expander 1-1	
LUN B-4	RC-type input filters 2-3
LVD B-4	receiver

definition B-5	T
latch 2-7	
reconnect	target
definition B-5	definition B-6
recovery 2-10	termination
release definition B-5	definition B-6
reliability issue 2-3	test conditions
REQ B-5	rise/fall time 3-14
REQ/ACK input signals 2-15	thermal resistance 3-8 TolerANT
request 2-3	drivers and receivers 2-3
(REQ) 2-9	electrical characteristics 3-13 to 3-14
reselect B-5	receiver technology 2-3
reset control 2-8	SCSI 2-3
RESET/ signal 2-11 to 2-12, B-5	technology 2-3
retiming 2-9	benefits 2-3
logic 2-1, 2-4	transfer active 2-12 to 2-13
RST B-5	transmission mode distance requirements 1-4
S	
	U
SACK 2-9	Ultra3 SCSI 1-6
SCAM B-5	definition B-6
SCSI A side interface nine 3.5	
A side interface pins 3-5	V
Address B-5 B side interface pins 3-6	
bidirectional	VDD_CORE 3-7
signals 3-11	VDD_SCSI 3-7
bus distance requirements 1-4	•••
bus free state 2-12	W
bus protocol 2-4	
definition B-5	Wide Ultra3 SCSI 2-2
device ID B-5	WS_ENABLE 2-12
DIFFSENS signal 3-10	warm swap enable 2-12
I/O logic 2-10	V
ID B-5	X
input filtering 3-15	VEED ACTIVE
interface timings 3-17 IO 3-19	XFER_ACTIVE
parallel interconnect 3 1-6 phases 2-4	signal polarity 2-13
termination 2-13	
TolerANT technology 2-3	
SEL B-5	
select (SSEL) 2-7	
self-calibration 2-14	
server clustering 1-3	
signal	
descriptions 3-1	
groupings 2-6, 3-1	
skew 2-2 signal descriptions 2-1 to 2-13	
single transition	
timing diagram 3-18	
single-ended configuration	
definition B-6	
source bus 2-2, 2-6	
SREQ 2-9	
SSEL 2-7	
state machine 2-9	
control 2-1, 2-4	
storage temperature 3-8	
supply voltage 3-8	
synchronous transmission definition B-6	
ucililition D-0	

Index IX-3

Customer Feedback

We would appreciate your feedback on this document. Please copy the following page, add your comments, and fax it to us at the number shown.

If appropriate, please also fax copies of any marked-up pages from this document.

Important: Please include your name, phone number, fax number, and

company address so that we may contact you directly for

clarification or additional information.

Thank you for your help in improving the quality of our documents.

Reader's Comments

LSI Logic Corporation Technical Publications Fax your comments to:

M/S E-198

Fax: 408.433.4333

Please tell us how you rate this document: LSI53C810 Ultra3 SCSI Bus Expander Technical Manual. Place a check mark in the appropriate blank for each category.

	Excellent	Good	Average	Fair	Poor
Completeness of information Clarity of information Ease of finding information Technical content Usefulness of examples and illustrations Overall manual					
What could we do to improve	this docu	ment?			
If you found errors in this doonumber. If appropriate, please	-	-	-		
Please complete the informat directly for clarification or add			•	contact	you
Name			_ Date _		
Telephone					
Title					
Department				p	
Company Name					
Street					
City, State, Zip					

U.S. Distributors by State

A. E.	Avnet Electronics	Colorado	Illinois	Michigan
	vw.hh.avnet.com	Denver	North/South	Brighton
B. M.	Bell Microproducts,	A. E. Tel: 303.790.1662	A. E. Tel: 847.797.7300	I. E. Tel: 810.2
httn://www	Inc. (for HAB's) vw.bellmicro.com	B. M. Tel: 303.846.3065	Tel: 314.291.5350	Detroit
I. E.	Insight Electronics	W. E. Tel: 800.933.9953	Chicago B. M. Tel: 847.413.8530	A. E. Tel: 734.4 W. E. Tel: 888.3
	vw.insight-electronics.com	Englewood I. E. Tel: 303.649.1800	B. M. Tel: 847.413.8530 W. E. Tel: 800.853.9953	Clarkston
W.E.	Wyle Electronics	Idaho Springs	Schaumburg	B. M. Tel: 877.9
http://ww	vw.wyle.com	B. M. Tel: 303.567.0703	I. E. Tel: 847.885.9700	D. IVI. 161. 077.3
Alaban	ma			Minnesota
Alaban Daphne		Connecticut	Indiana	Champlin
I. E.	Tel: 334.626.6190	Cheshire	Fort Wayne	B. M. Tel: 800.5
Huntsv		A. E. Tel: 203.271.5700 I. E. Tel: 203.272.5843	I. E. Tel: 219.436.4250 W. E. Tel: 888.358.9953	Eden Prairie B. M. Tel: 800.2
A. E.	Tel: 256.837.8700	Wallingford	Indianapolis	B. M. Tel: 800.2 Minneapolis
B. M.	Tel: 256.705.3559	W. E. Tel: 800.605.9953	A. E. Tel: 317.575.3500	A. E. Tel: 612.3
I. E.	Tel: 256.830.1222	VV. E. 101. 000.000.000	71. E. 101. 017.070.0000	W. E. Tel: 800.8
W. E.	Tel: 800.964.9953	Delaware	Iowa	St. Louis Park
		North/South	W. E. Tel: 612.853.2280	I. E. Tel: 612.5
Alaska		A. E. Tel: 800.526.4812	Cedar Rapids	
A. E.	Tel: 800.332.8638	Tel: 800.638.5988	A. E. Tel: 319.393.0033	Mississippi
Arizon	а	B. M. Tel: 302.328.8968	Kansas	A. E. Tel: 800.6
Phoeni		W. E. Tel: 856.439.9110	W. E. Tel: 303.457.9953	W. E. Tel: 256.8
A. E.	Tel: 480.736.7000	Florida	Kansas City	Missouri
B. M.	Tel: 602.267.9551	Altamonte Springs	A. E. Tel: 913.663.7900	W. E. Tel: 630.6
W. E.	Tel: 800.528.4040	B. M. Tel: 407.682.1199	Lenexa	St. Louis
Tempe		I. E. Tel: 407.834.6310	I. E. Tel: 913.492.0408	A. E. Tel: 314.2
I.E.	Tel: 480.829.1800	Boca Raton		I. E. Tel: 314.8
Tucson		I. E. Tel: 561.997.2540	Kentucky	
A. E.	Tel: 520.742.0515	Bonita Springs	W. E. Tel: 937.436.9953	Montana
Arkans	eas	B. M. Tel: 941.498.6011	Central/Northern/ Western	A. E. Tel: 800.5
W. E.	Tel: 972.235.9953	Clearwater	A. E. Tel: 800.984.9503	W. E. Tel: 801.9
*** =-	101. 072.200.0000	I. E. Tel: 727.524.8850	Tel: 800.767.0329 Tel: 800.829.0146	Nebraska
Califor	nia	Fort Lauderdale	161. 600.629.0146	A. E. Tel: 800.3
Agoura		A. E. Tel: 954.484.5482	Louisiana	W. E. Tel: 303.4
B. M.	Tel: 818.865.0266	W. E. Tel: 800.568.9953 Miami	W. E. Tel: 713.854.9953	
Granite		B. M. Tel: 305.477.6406	North/South	Nevada
B. M.	Tel: 916.523.7047	Orlando	A. E. Tel: 800.231.0253	Las Vegas
Irvine A. E.	Tel: 949.789.4100	A. E. Tel: 407.657.3300	Tel: 800.231.5775	A. E. Tel: 800.5 W. E. Tel: 702.7
B. M.	Tel: 949.470.2900	W. E. Tel: 407.740.7450	Maine	VV. L. 161. 702.7
I. E.	Tel: 949.727.3291	Tampa	A. E. Tel: 800.272.9255	New Hampshire
W. E.	Tel: 800.626.9953	W. E. Tel: 800.395.9953	W. E. Tel: 781.271.9953	A. E. Tel: 800.2
Los An		St. Petersburg	2	W. E. Tel: 781.2
A. E.	Tel: 818.594.0404	A. E. Tel: 727.507.5000	Maryland	Nam Janaan
W. E.	Tel: 800.288.9953	Georgia	Baltimore	New Jersey North/South
Sacram	nento	Atlanta	A. E. Tel: 410.720.3400	A. E. Tel: 201.5
A. E.	Tel: 916.632.4500	A. E. Tel: 770.623.4400	W. E. Tel: 800.863.9953	Tel: 609.2
W. E.	Tel: 800.627.9953	B. M. Tel: 770.980.4922	Columbia	Mt. Laurel
San Die	•	W. E. Tel: 800.876.9953	B. M. Tel: 800.673.7461 I. E. Tel: 410.381.3131	I. E. Tel: 856.2
A. E.	Tel: 858.385.7500	Duluth	1. E. 101. 410.361.3131	Pine Brook
B. M.	Tel: 858.597.3010	I. E. Tel: 678.584.0812	Massachusetts	B. M. Tel: 973.2
I. E. W. E.	Tel: 800.677.6011	11	Boston	W. E. Tel: 800.8
San Jo	Tel: 800.829.9953	Hawaii	A. E. Tel: 978.532.9808	Parsippany
A. E.	Tel: 408.435.3500	A. E. Tel: 800.851.2282	W. E. Tel: 800.444.9953	I. E. Tel: 973.2
B. M.	Tel: 408.436.0881	Idaho	Burlington	Wayne
I. E.	Tel: 408.952.7000	A. E. Tel: 801.365.3800	I. E. Tel: 781.270.9400	W. E. Tel: 973.2
Santa (W. E. Tel: 801.974.9953	Marlborough	New Mexico
W. E.	Tel: 800.866.9953		B. M. Tel: 800.673.7459	W. E. Tel: 480.8
Woodla	and Hills		Woburn	Albuquerque
A. E.	Tel: 818.594.0404		B. M. Tel: 800.552.4305	A. E. Tel: 505.2
	ke Village			
I. E.	Tel: 818.707.2101			

Tel: 810.229.7710

Tel: 734.416.5800 Tel: 888.318.9953

Tel: 877.922.9363

Tel: 800.557.2566

Tel: 800.255.1469

Tel: 612.346.3000 Tel: 800.860.9953

Tel: 612.525.9999

Tel: 800.633.2918 Tel: 256.830.1119

Tel: 630.620.0969

Tel: 314.291.5350 Tel: 314.872.2182

Tel: 800.526.1741 Tel: 801.974.9953

Tel: 800.332.4375 Tel: 303.457.9953

Tel: 800.528.8471 Tel: 702.765.7117

Tel: 800.272.9255 Tel: 781.271.9953

Tel: 201.515.1641 Tel: 609.222.6400

Tel: 856.222.9566

Tel: 973.244.9668 Tel: 800.862.9953

Tel: 973.299.4425

Tel: 973.237.9010

Tel: 480.804.7000

Tel: 505.293.5119

U.S. Distributors by State (Continued)

New York

Hauppauge

Tel: 516.761.0960 I.E. Long Island

A. E. Tel: 516.434.7400 W. E. Tel: 800.861.9953 Rochester

A. E. Tel: 716.475.9130 I.E. Tel: 716.242.7790 W. E. Tel: 800.319.9953

Smithtown Tel: 800.543.2008 B. M.

Syracuse

Tel: 315.449.4927 A. E.

North Carolina

Raleigh

A. E. Tel: 919.859.9159 I.E. Tel: 919.873.9922 W. E. Tel: 800.560.9953

North Dakota

A. E. Tel: 800.829.0116 W. E. Tel: 612.853.2280

Ohio

Cleveland

A. E. Tel: 216.498.1100 Tel: 800.763.9953 W. E.

Dayton Tel: 614.888.3313 A. E. I.E. Tel: 937.253.7501 W. E. Tel: 800.575.9953 Strongsville

B. M. Tel: 440.238.0404 Valley View I.E. Tel: 216.520.4333

Oklahoma

W. E. Tel: 972.235.9953 Tulsa

A. E. Tel: 918.459.6000 Tel: 918.665.4664 I.E.

Oregon

Beaverton

B. M. Tel: 503.524.1075 I.E. Tel: 503.644.3300 Portland

A. E.

Tel: 503.526.6200 W. E. Tel: 800.879.9953

Pennsylvania

Mercer

I.E. Tel: 412.662.2707 Philadelphia

A. E. Tel: 800.526.4812 B. M. Tel: 877.351.2355 W. E. Tel: 800.871.9953 Pittsburgh

A. E. Tel: 412.281.4150 W. E. Tel: 440.248.9996

Rhode Island

A. E. 800.272.9255 W. E. Tel: 781.271.9953

South Carolina

A. E. Tel: 919.872.0712 W. E. Tel: 919.469.1502

South Dakota

A. E. Tel: 800.829.0116 W. E. Tel: 612.853.2280

Tennessee

W. E. Tel: 256.830.1119 East/West

Tel: 800.241.8182 A. E.

Tel: 800.633.2918

Texas

Arlington

B. M. Tel: 817.417.5993

Austin A. E.

Tel: 512.219.3700 B. M. Tel: 512.258.0725 I. E. Tel: 512.719.3090

W. E. Tel: 800.365.9953 Dallas

A. E. Tel: 214.553.4300 B. M. Tel: 972.783.4191 W. E. Tel: 800.955.9953

El Paso Tel: 800.526.9238 A. E. Houston

A. E. Tel: 713.781.6100 B. M. Tel: 713.917.0663 W. E. Tel: 800.888.9953 Richardson

I.E. Tel: 972.783.0800 Rio Grande Vallev A. E. Tel: 210.412.2047

Stafford I.E. Tel: 281.277.8200

Utah

Centerville

Tel: 801.295.3900 B. M. Murray

I.E.

Tel: 801.288.9001 Salt Lake City A. E. Tel: 801.365.3800

W. E. Tel: 800.477.9953

Vermont

A. E. Tel: 800.272.9255 W. E. Tel: 716.334.5970

Virginia

A. Ĕ. Tel: 800.638.5988 W. E. Tel: 301.604.8488 Havmarket B. M. Tel: 703.754.3399 Springfield

B. M. Tel: 703.644.9045

Washington

Kirkland

I.E. Tel: 425.820.8100 Maple Valley

Tel: 206.223.0080 B. M.

Seattle

A. E. Tel: 425.882.7000 W. E. Tel: 800.248.9953

West Virginia

Tel: 800.638.5988 A. E.

Wisconsin

Milwaukee

A. E. Tel: 414.513.1500 W. E. Tel: 800.867.9953 Wauwatosa I.E. Tel: 414.258.5338

Wyoming

A. E. Tel: 800.332.9326 W. E. Tel: 801.974.9953

Direct Sales Representatives by State (Components and Boards)

E. A. Earle Associates E. L. Electrodyne - UT GRP Group 2000 Infinity Sales, Inc. I. S. ION ION Associates, Inc. Rathsburg Associ-R. A. ates, Inc. SGY Synergy Associates,

Arizona

Tempe

Tel: 480.921.3305 E. A.

California

Calabasas

I. S. Tel: 818.880.6480 Irvine I. S. Tel: 714.833.0300

San Diego

E. A.

Tel: 619.278.5441

Illinois

Elmhurst

Tel: 630.516.8400 R. A.

Indiana Cicero

Tel: 317.984.8608 R. A.

Ligonier R. A. Tel: 219.894.3184

Plainfield R. A. Tel: 317.838.0360

Massachusetts

Burlington

SGY Tel: 781.238.0870

Michigan

Byron Center

R. A. Tel: 616.554.1460

Good Rich

Tel: 810.636.6060 R. A. Novi

Tel: 810.615.4000 R. A.

North Carolina

Cary

GRP Tel: 919.481.1530

Ohio

Columbus

R. A. Tel: 614.457.2242

Dayton

R. A. Tel: 513.291.4001

Independence

Tel: 216.447.8825 R. A.

Pennsylvania

Somerset

R. A. Tel: 814.445.6976

Texas Austin

ION Tel: 512.794.9006

Arlington

ION Tel: 817.695.8000 Houston

ION Tel: 281.376.2000

Utah

Salt Lake City

Tel: 801.264.8050 E. L.

Wisconsin

Muskego

Tel: 414.679.8250

R. A. Saukville

R. A. Tel: 414.268.1152

Sales Offices and Design **Resource Centers**

LSI Logic Corporation Corporate Headquarters 1551 McCarthy Blvd Milpitas CA 95035 Tel: 408.433.8000 Fax: 408.433.8989

NORTH AMERICA

California

Irvine 18301 Von Karman Ave Suite 900 Irvine, CA 92612 ♦ Tel: 949.809.4600 Fax: 949.809.4444

Pleasanton Design Center 5050 Hopyard Road, 3rd Floor

Suite 300 Pleasanton, CA 94588 Tel: 925.730.8800 Fax: 925.730.8700

San Diego 7585 Ronson Road Suite 100 San Diego, CA 92111 Tel: 858.467.6981 Fax: 858.496.0548

Silicon Valley 1551 McCarthy Blvd Sales Office M/S C-500 Milpitas, CA 95035

♦ Tel: 408.433.8000 Fax: 408.954.3353 Design Center M/S C-410 Tel: 408.433.8000 Fax: 408.433.7695

Wireless Design Center 11452 El Camino Real Suite 210 San Diego, CA 92130

Tel: 858.350.5560 Fax: 858.350.0171

Colorado

Boulder 4940 Pearl East Circle Suite 201 Boulder, CO 80301 ♦ Tel: 303.447.3800 Fax: 303.541.0641

Colorado Springs 4420 Arrowswest Drive Colorado Springs, CO 80907 Tel: 719.533.7000 Fax: 719.533.7020

Fort Collins 2001 Danfield Court Fort Collins, CO 80525 Tel: 970.223.5100 Fax: 970.206.5549

Florida

Boca Raton 2255 Glades Road Suite 324A Boca Raton, FL 33431 Tel: 561.989.3236 Fax: 561.989.3237

Georgia

Alpharetta 2475 North Winds Parkway Suite 200 Alpharetta, GA 30004 Tel: 770.753.6146

Fax: 770.753.6147

Illinois

Oakbrook Terrace Two Mid American Plaza Suite 800 Oakbrook Terrace, IL 60181 Tel: 630.954.2234 Fax: 630.954.2235

Kentucky

Bowling Green 1262 Chestnut Street Bowling Green, KY 42101 Tel: 270.793.0010 Fax: 270.793.0040

Maryland

Bethesda 6903 Rockledge Drive Suite 230 Bethesda, MD 20817 Tel: 301.897.5800

Fax: 301.897.8389 Massachusetts

Waltham 200 West Street Waltham, MA 02451 ◆ Tel: 781.890.0180

Fax: 781.890.6158

Burlington - Mint Technology 77 South Bedford Street Burlington, MA 01803

Tel: 781.685.3800 Fax: 781.685.3801

Minnesota

Minneapolis 8300 Norman Center Drive Suite 730 Minneapolis, MN 55437 Tel: 612.921.8300

Fax: 612.921.8399

New Jersey

Red Bank 125 Half Mile Road Suite 200 Red Bank, NJ 07701 Tel: 732.933.2656 Fax: 732.933.2643

Cherry Hill - Mint Technology 215 Longstone Drive Cherry Hill, NJ 08003 Tel: 856.489.5530 Fax: 856.489.5531

New York

Fairport 550 Willowbrook Office Park Fairport, NY 14450 Tel: 716.218.0020 Fax: 716.218.9010

North Carolina Raleigh

Phase II 4601 Six Forks Road Suite 528 Raleigh, NC 27609 Tel: 919.785.4520 Fax: 919.783.8909

Oregon

Beaverton 15455 NW Greenbrier Parkway Suite 235 Beaverton, OR 97006

Tel: 503.645.0589 Fax: 503.645.6612

Texas

Austin 9020 Capital of TX Highway North Building 1 Suite 150 Austin, TX 78759 Tel: 512.388.7294 Fax: 512.388.4171

Plano 500 North Central Expressway Suite 440 Plano, TX 75074

♦ Tel: 972.244.5000 Fax: 972.244.5001

Houston 20405 State Highway 249 Suite 450 Houston, TX 77070 Tel: 281.379.7800

Fax: 281.379.7818

Canada Ontario

Ottawa 260 Hearst Way Suite 400 Kanata, ON K2L 3H1

◆ Tel: 613.592.1263 Fax: 613.592.3253

INTERNATIONAL

France

Paris LSI Logic S.A. Immeuble Europa 53 bis Avenue de l'Europe B.P. 139 78148 Velizy-Villacoublay Cedex, Paris

Tel: 33.1.34.63.13.13 Fax: 33.1.34.63.13.19

Germany

Munich LSI Logic GmbH Orleansstrasse 4 81669 Munich

Tel: 49.89.4.58.33.0 Fax: 49.89.4.58.33.108

Stuttgart Mittlerer Pfad 4 D-70499 Stuttgart

◆ Tel: 49.711.13.96.90 Fax: 49.711.86.61.428

Italy Milan

LSI Logic S.P.A.

Centro Direzionale Colleoni Palazzo Orione Ingresso 1 20041 Agrate Brianza, Milano

Tel: 39.039.687371 Fax: 39.039.6057867

Japan Tokyo

LSI Logic K.K. Rivage-Shinagawa Bldg. 14F 4-1-8 Kounan Minato-ku, Tokyo 108-0075

♦ Tel: 81.3.5463.7821 Fax: 81.3.5463.7820

Osaka Crystal Tower 14F

1-2-27 Shiromi Chuo-ku, Osaka 540-6014

♦ Tel: 81.6.947.5281 Fax: 81.6.947.5287

Sales Offices and Design Resource Centers (Continued)

Korea

Seoul

LSI Logic Corporation of Korea Ltd

10th Fl., Haesung 1 Bldg. 942, Daechi-dong, Kangnam-ku, Seoul, 135-283

Tel: 82.2.528.3400 Fax: 82.2.528.2250

The Netherlands

Eindhoven

LSI Logic Europe Ltd

World Trade Center Eindhoven Building 'Rijder' Bogert 26 5612 LZ Eindhoven Tel: 31.40.265.3580

Fax: 31.40.296.2109

Singapore

Singapore

LSI Logic Pte Ltd

7 Temasek Boulevard #28-02 Suntec Tower One Singapore 038987 Tel: 65.334.9061 Fax: 65.334.4749

Sweden

Stockholm LSI Logic AB

Finlandsgatan 14 164 74 Kista

♦ Tel: 46.8.444.15.00 Fax: 46.8.750.66.47

Taiwan

Taipei LSI Logic Asia, Inc.

Taiwan Branch

10/F 156 Min Sheng E. Road Section 3

Taipei, Taiwan R.O.C. Tel: 886.2.2718.7828 Fax: 886.2.2718.8869

United Kingdom

Bracknell

LSI Logic Europe Ltd

Greenwood House London Road

Bracknell, Berkshire RG12 2UB

◆ Tel: 44.1344.426544 Fax: 44.1344.481039

♦ Sales Offices with Design Resource Centers

Australia

New South Wales Reptechnic Pty Ltd

3/36 Bydown Street Neutral Bay, NSW 2089 ► Tel: 612.9953.9844 Fax: 612.9953.9683

Belgium Acal nv/sa

Lozenberg 4 1932 Zaventem Tel: 32.2.7205983 Fax: 32.2.7251014

China Beijing

Room 708

LSI Logic International Services Inc. Beijing Representative Office

Canway Building 66 Nan Li Shi Lu Xicheng District Beijing 100045, China Tel: 86.10.6804.2534 to 38 Fax: 86.10.6804.2521

France Rungis Cedex

Azzurri Technology France 22 Rue Saarinen

Sillic 274 94578 Rungis Cedex Tel: 33.1.41806310 Fax: 33.1.41730340

Germany Haar

EBV Elektronik

Hans-Pinsel Str. 4 D-85540 Haar Tel: 49.89.4600980 Fax: 49.89.46009840

Munich

Avnet Emg GmbH

Stahlgruberring 12 81829 Munich Tel: 49.89.45110102 Fax: 49.89.42.27.75

Wuennenberg-Haaren Peacock AG

Graf-Zepplin-Str 14 D-33181 Wuennenberg-Haaren Tel: 49.2957.79.1692 Fax: 49.2957.79.9341

Hong Kong Hong Kong

AVT Industrial Ltd

Unit 608 Tower 1 Cheung Sha Wan Plaza 833 Cheung Sha Wan Road Kowloon, Hong Kong Tel: 852.2428.0008 Fax: 852.2401.2105

Serial System (HK) Ltd

2301 Nanyang Plaza 57 Hung To Road, Kwun Tong Kowloon, Hong Kong Tel: 852.2995.7538 Fax: 852.2950.0386

India

Bangalore

Spike Technologies India Private Ltd

951, Vijayalakshmi Complex, 2nd Floor, 24th Main, J P Nagar II Phase, Bangalore, India 560078

Tel: 91.80.664.5530Fax: 91.80.664.9748

Israel

Tel Aviv

Eastronics Ltd 11 Rozanis Street

P.O. Box 39300 Tel Aviv 61392 Tel: 972.3.6458777 Fax: 972.3.6458666

Japan

Tokyo

Daito Electron

Sogo Kojimachi No.3 Bldg 1-6 Kojimachi Chiyoda-ku, Tokyo 102-8730 Tel: 81.3.3264.0326 Fax: 81.3.3261.3984

Global Electronics Corporation

Nichibei Time24 Bldg. 35 Tansu-cho Shinjuku-ku, Tokyo 162-0833 Tel: 81.3.3260.1411 Fax: 81.3.3260.7100 Technical Center Tel: 81.471.43.8200

Marubeni Solutions

1-26-20 Higashi Shibuya-ku, Tokyo 150-0001 Tel: 81.3.5778.8662 Fax: 81.3.5778.8669

Shinki Electronics

Myuru Daikanyama 3F 3-7-3 Ebisu Minami Shibuya-ku, Tokyo 150-0022 Tel: 81.3.3760.3110 Fax: 81.3.3760.3101

Yokohama-City Innotech

2-15-10 Shin Yokohama Kohoku-ku

Yokohama-City, 222-8580 Tel: 81.45.474.9037 Fax: 81.45.474.9065

Macnica Corporation

Hakusan High-Tech Park 1-22-2 Hadusan, Midori-Ku, Yokohama-City, 226-8505 Tel: 81.45.939.6140 Fax: 81.45.939.6141

The Netherlands

Eindhoven
Acal Nederland b.v.

Beatrix de Rijkweg 8 5657 EG Eindhoven Tel: 31.40.2.502602

Fax: 31.40.2.502602

Switzerland

Brugg LSI Logic Sulzer AG Mattenstrasse 6a

CH 2555 Brugg Tel: 41.32.3743232 Fax: 41.32.3743233

Taiwan

Taipei

Avnet-Mercuries Corporation, Ltd

14F, No. 145, Sec. 2, Chien Kuo N. Road Taipei, Taiwan, R.O.C. Tel: 886.2.2516.7303 Fax: 886.2.2505.7391

Lumax International Corporation, Ltd

7th Fl., 52, Sec. 3 Nan-Kang Road Taipei, Taiwan, R.O.C. Tel: 886.2.2788.3656 Fax: 886.2.2788.3568

Prospect Technology Corporation, Ltd

4FI., No. 34, Chu Luen Street Taipei, Taiwan, R.O.C. Tel: 886.2.2721.9533 Fax: 886.2.2773.3756

Wintech Microeletronics Co., Ltd

7F., No. 34, Sec. 3, Pateh Road Taipei, Taiwan, R.O.C. Tel: 886.2.2579.5858 Fax: 886.2.2570.3123

United Kingdom

Maidenhead Azzurri Technology Ltd

16 Grove Park Business Estate
Waltham Road
White Waltham

Maidenhead, Berkshire SL6 3LW

Tel: 44.1628.826826 Fax: 44.1628.829730

Milton Keynes Ingram Micro (UK) Ltd

Garamonde Drive Wymbush Milton Keynes Buckinghamshire MK8 8DF Tel: 44.1908.260422

Swindon EBV Elektronik

12 Interface Business Park Bincknoll Lane Wootton Bassett, Swindon, Wiltshire SN4 8SY Tel: 44.1793.849933 Fax: 44.1793.859555

♦ Sales Offices with Design Resource Centers