## HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

n HIGH VOLTAGE CAPABILITY
n LOW SPREAD OF DYNAMIC PARAMETERS
n MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
n VERY HIGH SWITCHING SPEED

## APPLICATION

n COMPACT FLUORESCENT LAMPS (CFLS)
n SWITCH MODE POWER SUPPLIES (AC / DC CONVERTERS)

## DESCRIPTION

The device is manufactured using high voltage Multi-Epitaxial Planar technology for high switching speeds and high voltage capability.
It uses a Cellular Emitter structure with planar edge termination to enhance switching speeds while maintaining a wide RBSOA.

Figure 1: Package


Figure 2: Internal Schematic Diagram


Table 1: Order Code

| Part Number | Marking | Package | Packaging |
| :---: | :---: | :---: | :---: |
| STX13005 | X13005 | TO-92 | Bulk |
| STX13005-AP | X13005 | TO-92 AP | Ammopack |

Table 2: Absolute Maximum Ratings

| Symbol | Parameter | Value | Unit |
| :---: | :--- | :---: | :---: |
| $\mathrm{V}_{\mathrm{CES}}$ | Collector-Emitter Voltage $\left(\mathrm{V}_{\mathrm{BE}}=0\right)$ | 700 | V |
| $\mathrm{~V}_{\mathrm{CEO}}$ | Collector-Emitter Voltage $\left(\mathrm{I}_{\mathrm{B}}=0\right)$ | 400 | V |
| $\mathrm{~V}_{\text {EBO }}$ | Emitter-Base Voltage $\left(\mathrm{I}_{\mathrm{C}}=0, \mathrm{I}_{\mathrm{B}}=1.5 \mathrm{~A}, \mathrm{t}_{\mathrm{p}}<10 \mathrm{~ms}\right)$ | $\mathrm{V}_{(\mathrm{BR}) \text { EBO }}$ | V |
| $\mathrm{I}_{\mathrm{C}}$ | Collector Current | 3 | A |
| $\mathrm{I}_{\mathrm{CM}}$ | Collector Peak Current $\left(\mathrm{t}_{\mathrm{p}}<5 \mathrm{~ms}\right)$ | 6 | A |
| $\mathrm{I}_{\mathrm{B}}$ | Base Current | 1.5 | A |
| $\mathrm{I}_{\mathrm{BM}}$ | Base Peak Current $\left(\mathrm{t}_{\mathrm{p}}<5 \mathrm{~ms}\right)$ | 3 | A |
| $\mathrm{P}_{\text {tot }}$ | Total Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 2.8 | W |


| Symbol | Parameter | Value | Unit |
| :---: | :--- | :---: | :---: |
| $\mathrm{T}_{\text {stg }}$ | Storage Temperature | -65 to 150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\boldsymbol{J}}$ | Max. Operating Junction Temperature | 150 | ${ }^{\circ} \mathrm{C}$ |

Table 3: Thermal Data

| Symbol | Parameter |  | Unit |  |
| :---: | :--- | :--- | :--- | :---: |
| $\mathrm{R}_{\text {thj-case }}$ | Thermal Resistance Junction-Case | Max | 44.6 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{R}_{\mathrm{thj}-\mathrm{amb}}$ | Thermal Resistance Junction-ambient | Max | 150 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

Table 4: Electrical Characteristics ( $\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\text {CES }}$ | Collector Cut-off Current $\left(V_{B E}=0\right)$ | $\begin{array}{ll} \mathrm{V}_{\mathrm{CE}}=700 \mathrm{~V} & \\ \mathrm{~V}_{\mathrm{CE}}=700 \mathrm{~V} & \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C} \end{array}$ |  |  | $\begin{aligned} & 1 \\ & 5 \end{aligned}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |
| $I_{\text {CEO }}$ | Collector Cut-off Current $\left(I_{\mathrm{B}}=0\right)$ | $\mathrm{V}_{\text {CE }}=400 \mathrm{~V}$ |  |  | 1 | mA |
| $\mathrm{V}_{\text {(BR)EBO }}$ | Emitter-Base <br> Breakdown Voltage $\left(I_{C}=0\right)$ | $\mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA} \quad \mathrm{~L}=25 \mathrm{mH}$ | 9 |  | 18 | V |
| $\mathrm{V}_{\mathrm{CE} \text { (sus) }}{ }^{*}$ | Collector-Emitter Sustaining Voltage $\left(l_{\mathrm{B}}=0\right)$ | $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$ | 400 |  |  | V |
| $\mathrm{V}_{\mathrm{CE} \text { (sat) }}{ }^{*}$ | Collector-Emitter Saturation Voltage | $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}$ $\mathrm{I}_{\mathrm{B}}=200 \mathrm{~mA}$ <br> $\mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}$ $\mathrm{I}_{\mathrm{B}}=500 \mathrm{~mA}$ <br> $\mathrm{I}_{\mathrm{C}}=3 \mathrm{~A}$ $\mathrm{I}_{\mathrm{B}}=750 \mathrm{~mA}$ |  |  | $\begin{gathered} 0.5 \\ 0.6 \\ 5 \end{gathered}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$ |
| $\mathrm{V}_{\mathrm{BE} \text { (sat) }}{ }^{\text {* }}$ | Base-Emitter Saturation Voltage | $\begin{array}{ll} \hline I_{C}=1 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=200 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=500 \mathrm{~mA} \end{array}$ |  |  | $\begin{aligned} & 1.2 \\ & 1.6 \end{aligned}$ | $\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| $\mathrm{h}_{\text {FE }}{ }^{*}$ | DC Current Gain | $\begin{array}{ll} \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A} & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A} & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \end{array}$ | $\begin{gathered} 10 \\ 8 \end{gathered}$ |  | $\begin{aligned} & 30 \\ & 24 \end{aligned}$ |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$ | RESISTIVE LOAD <br> Storage Time <br> Fall Time | $\begin{array}{ll} \hline \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A} & \mathrm{~V}_{\mathrm{CC}}=125 \mathrm{~V} \\ \mathrm{I}_{\mathrm{B} 1}=-\mathrm{I}_{\mathrm{B} 2}=400 \mathrm{~mA} & \mathrm{t}_{\mathrm{p}}=30 \mu \mathrm{~s} \\ \text { (see figure 16) } & \\ \hline \end{array}$ |  | $\begin{aligned} & 1.65 \\ & 260 \end{aligned}$ |  | $\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \end{aligned}$ |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$ | INDUCTIVE LOAD <br> Storage Time <br> Fall Time | $I_{C}=1 \mathrm{~A}$ $\mathrm{~V}_{\text {Clamp }}=300 \mathrm{~V}$ <br> $\mathrm{I}_{\mathrm{B} 1}=200 \mathrm{~mA}$ $\mathrm{~V}_{\mathrm{BE} \text { (off) }}=-5 \mathrm{~V}$ <br> $\mathrm{~L}=50 \mathrm{mH}$ $\mathrm{R}_{\mathrm{BB}}=0$ <br> (see figure 15)  |  | $\begin{aligned} & 0.8 \\ & 150 \end{aligned}$ |  | $\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \end{aligned}$ |

[^0]Figure 3: Safe Operating Area


Figure 4: Output Chatacterisctics


Figure 5: DC Current Gain


Figure 6: Derating Curve


Figure 7: DC Current Gain


Figure 8: Collector-Emitter Saturation Voltage


Figure 9: Base-Emitter Saturation Voltage


Figure 10: Resistive Load Fall Time


Figure 11: Inductive Load Fall Time


Figure 12: Resistive Load Storage Time


Figure 13: Inductive Load Storage Time


Figure 14: Reverse Biased Safe Operating Area


Figure 15: Inductive Load Switching Test Circuit


Table 16: Restistive Load Switching Test Circuit
) Fast electronic switch
2) Non-inductive Resistor


| DIM. | mm. |  |  |
| :---: | :---: | :---: | :---: |
|  | MIN. | TYP | MAX. |
| A | 4.32 |  | 4.95 |
| b | 0.36 |  | 0.51 |
| D | 4.45 |  | 4.95 |
| E | 3.30 |  | 3.94 |
| e | 2.41 |  | 2.67 |
| e1 | 1.14 |  | 1.40 |
| L | 12.70 |  | 15.49 |
| R | 2.16 |  | 2.41 |
| S1 | 0.92 |  | 1.52 |
| W | 0.41 |  | 0.56 |
| V |  | $5^{\circ}$ |  |



TO-92 AMMOPACK SHIPMENT (Suffix"-AP") MECHANICAL DATA

| DIM. | MIN. |  | TYP |
| :---: | :---: | :---: | :---: |
|  |  |  | MAX. |
| A1 |  |  | 4.80 |
| T |  |  | 3.80 |
| T1 |  |  | 1.60 |
| T2 | 12.50 | 12.70 | 2.30 |
| d | 5.65 | 6.35 | 0.48 |
| P0 | 2.44 | 2.54 | 12.90 |
| P2 | -2.00 |  | 7.05 |
| F1,F2 | 17.50 | 18.00 | 2.94 |
| delta H | 5.70 | 6.00 | 2.00 |
| W | 8.50 | 9.00 | 19.00 |
| W0 | 18.50 |  | 6.30 |
| W1 | 15.50 |  | 9.25 |
| W2 |  | 16.00 | 0.50 |
| H | 3.80 |  | 20.50 |
| H0 |  |  | 16.50 |
| H1 |  |  | 25.00 |
| D0 |  |  | 4.20 |
| t |  |  | 0.90 |
| L |  |  | 11.00 |
| I1 |  |  | 1.00 |
| delta P |  |  |  |



Table 5: Revision History

| Date | Release | Change Designator |
| :---: | :---: | :--- |
| 01-Jul-2004 | 1 | First Release. |
| 11-Feb-2005 | 2 | New table on page 1. |

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners

## © 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com


[^0]:    * Pulsed: Pulsed duration $=300 \mu \mathrm{~s}$, duty cycle $\leq 1.5 \%$.

