STPC_® INDUSTRIAL # PC Compatible Embedded Microprocessor - POWERFUL X86 PROCESSOR - 64-BIT BUS ARCHITECTURE - 64-BIT 66MHz DRAM CONTROLLER - SVGA GRAPHICS CONTROLLER - 135MHz RAMDAC - UMA ARCHITECTURE - TFT DISPLAY CONTROLLER - PCI MASTER / SLAVE / ARBITER - LOCAL BUS INTERFACE - ISA (MASTER/SLAVE) INTERFACE -INCLUDING THE IPC - PC-CARD INTERFACE - PCMCIA - CARDBUS - I/O FEATURES - PC/AT+ KEYBOARD CONTROLLER - PS/2 MOUSE CONTROLLER - 2 SERIAL PORTS - 1 PARALLEL PORT - IPC - DMA CONTROLLER - INTERRUPT CONTROLLER - TIMER / COUNTERS - POWER MANAGEMENT #### STPC INDUSTRIAL OVERVIEW The STPC Industrial integrates a fully static x86 processor, fully compatible with standard fifth generation x86 processors, and combines it with powerful chipset, graphics, TFT, PC-Card, Local Bus, keyboard, mouse, serials and parallel interfaces to provide a single Industrial oriented PC compatible subsystem on a single device. The performance of the device is comparable with the performance of a typical P5 generation system. The device is packaged in a 388 Plastic Ball Grid Array (PBGA). Figure 1. Logic Diagram #### ■ X86 Processor core - Fully static 32-bit 5-stage pipeline, x86 processor fully PC compatible. - Access up to 4GB of external memory. - 8Kbyte unified instruction and data cache with write back capability. - Parallel processing integral floating point unit, with automatic power down. - Clock core speeds up to 100 MHz. - Fully static design for dynamic clock control. - Low power and system management modes. - Optimized design for 3.3V operation. #### **■ DRAM Controller** - Integrated system memory and graphic frame memory. - Supports up to 128-MByte system memory in 4 banks and down to as little as 2Mbytes. - Supports 4-MByte, 8-MByte, 16-MByte, and 32-MByte single-sided and double-sided DRAM SIMMs. - Four quad-word write buffers for CPU to DRAM and PCI to DRAM cycles. - Four quad-word read prefetch buffers for PCI masters. - Supports Fast Page Mode & EDO DRAMs. - Programmable timing for DRAM parameters including CAS pulse width, CAS pre-charge time, and RAS to CAS delay. - 60, 70, 80 & 100ns DRAM speeds. - Memory hole between 1 MByte & 8 MByte supported for PCI/ISA busses. - Hidden refresh. To check if your memory device is supported by the STPC, please refer to Table 6-24 in the Programming Manual. #### **■** Graphics Controller - 64-bit windows accelerator. - Complete backward compatibility to VGA and SVGA standards. - Hardware acceleration for text (generalized bit map expansion), bitblts, transparent blts and fills. - Up to 64 x 64 bit graphics hardware cursor. - Up to 4MB long linear frame buffer. - 8, 16, 24 and 32 bit pixels. - Drivers for Windows and other operating systems. #### ■ CRT Controller - Integrated 135MHz triple RAMDAC allowing for 1280 x 1024 x 75Hz display. - Requires external frequency synthesizer and reference sources. - 8, 16, 24 and 32-bit pixels. - Interlaced or non-interlaced output. #### TFT Interface - Programmable panel size up to 1024 by 1024 pixels. - Support for 640 x 480, 800 x 600 & 1024 x 768 active matrix TFT flat panels with 9, 12, 18-bit interface. - Support 1 & 2 Pixels per Clock. - Programmable image positionning. - Programmable blank space insertion in text mode. - Programmable horizontal and vertical image expansion in graphic mode. - A fully programmable PWM (Pulse Width Modulator) signals to adjust the flat panel brightness and contrast. - Supports PanelLinkTM high speed serial transmitter externally for high resolution panel interface. #### ■ PCI Controller - Fully compliant with PCI Version 2.1 specification. - Integrated PCI arbitration interface. Up to 3 masters can connect directly. External PAL allows for greater than 3 masters. - Translation of PCI cycles to ISA bus. - Translation of ISA master initiated cycle to PCI. - Support for burst read/write from PCI master. - 0.33X and 0.5X CPU clock PCI clock. #### ■ Local Bus interface - 66MHz, low latency bus. - Asynchronous / synchronous. - 22-bit address and 16-bit data busses. - 2 Programmable Flash EPROM Chip Select. - 4 Programmable I/O Chip Select. - Separate memory and I/O address spaces. - Memory prefetch (improved performances). #### ■ ISA master/slave - Generation of the ISA clock from either 14.318MHz oscillator clock or system clock - Programmable extra wait state for ISA cycles - Supports I/O recovery time for back to back I/O cycles. - Fast Gate A20 and Fast reset. - Supports the single ROM that C, D, or E. blocks shares with F block BIOS ROM. - Supports flash ROM. - Supports ISA hidden refresh. - Buffered DMA & ISA master cycles to reduce bandwidth utilization of the PCI and Host bus. NSP compliant. #### **■** PC-Card interface - Support one PCMCIA 2.0 / JEIDA 4.1 68-pin standard PC Card Socket. - Power Management support. - Support PCMCIA/ATA specifications. - Support I/O PC Card with pulse-mode interrupts. - Provides an ExCATM implementation to PCMCIA 2.0 / JEIDA 4.1 standards. - DMA support. #### ■ Keyboard interface ■ Fully PC/AT& compatible #### Mouse interface ■ Fully PS/2 compatible #### Serial interface - 16550A compatible - Programmable word length, stop bits, parity. - 16-bit programmable baud rate generator. - Interrupt generator. - Loop-back mode. - 8-bit scratch register. - Two 16-bit FIFOs. - Two DMA handshake lines. #### Parallel port - Standard Centronics mode supported. - Nibble mode supported. #### ■ Integrated Peripheral Controller - Two 8237/AT compatible 7-channel DMA controllers. - Two 8259/AT compatible interrupt Controller. 16 interrupt inputs - ISA and PCI. - Three 8254 compatible Timer/Counters. - Co-processor error support logic. #### Power Management - Four power saving modes: On, Doze, Standby, Suspend. - Programmable system activity detector - Supports SMM. - Supports IO trap & restart. - Independent peripheral time-out timer to monitor hard disk, serial & parallel ports. - Supports APM - Supports RTC, interrupt and DMA wake ups **ExCA** is a trademark of PCMCIA / JEIDA. **PanelLink** is a trademark of SiliconImage, Inc #### 1 GENERAL DESCRIPTION At the heart of the STPC Industrial is an advanced 64-bit processor block, dubbed the 5ST86. The 5ST86 includes a powerful x86 processor core along with a 64-bit DRAM controller, advanced 64-bit accelerated graphics and video controller, a high speed PCI local-bus controller and Industry standard PC chip set functions (Interrupt controller, DMA Controller, Interval timer and ISA bus). The STPC Industrial has in addition to the 5ST86 a TFT output, a Local Bus interface, PC Card and super I/O features. The STPC Industrial makes use of a tightly coupled Unified Memory Architecture (UMA), where the same memory array is used for CPU main memory and graphics frame-buffer. This means a reduction in total system memory for system performances that are equal to that of a comparable frame buffer and system memory based system, and generally much better, due to the higher memory bandwidth allowed by attaching the graphics engine directly to the 64-bit processor host interface running at the speed of the processor bus rather than the traditional PCI bus. The 64-bit wide memory array provides the system with 320MB/s peak bandwidth, double that of an equivalent system using 32 bits. This allows for higher resolution screens and greater color depth. The processor bus runs at 66Mhz further increasing "standard" bandwidth by at least a factor of two. The 'standard' PC chipset functions (DMA, interrupt controller, timers, power management logic) are integrated together with the x86 processor core; additional functions such as communication ports are accessed by the STPC Industrial via an internal ISA bus. The PCI bus is the main data communication link to the STPC Industrial chip. The STPC Industrial translates appropriate host bus I/O and Memory cycles onto the PCI bus. It also supports the generation of Configuration cycles on the PCI bus. The STPC Industrial, as a PCI bus agent (host bridge class), fully complies with PCI specification 2.1. The chip-set also implements the PCI mandatory header registers in Type 0 PCI configuration space for easy porting of PCI aware system BIOS. The device contains a PCI arbitration function for three external PCI devices. Graphics functions are controlled through the onchip SVGA controller and the monitor display is produced through the 2D graphics display engine. This Graphics Engine is tuned to work with the host CPU to provide a balanced graphics system with a low silicon area cost. It performs limited graphics drawing operations which include hardware acceleration of text, bitblts, transparent blts and fills. The results of these operations change the contents of the on-screen or off-screen frame buffer areas of DRAM memory. The frame buffer can occupy a space up to 4 Mbytes anywhere in the physical main memory. The maximum graphics resolution supported is 1280x1024 in 65536 colours at 75Hz refresh rate and is VGA and SVGA compatible. Horizontal timing fields are VGA compatible while the vertical fields are extended by one bit to accommodate above display resolution. To generate the TFT output, the STPC Industrial extracts the digital video stream before the RAMDAC and reformats it to the TFT format. The height and width of the flat panel are programmable through configuration registers up to a size of 1024 by 1024. By default, lower resolution images cover only a part of the larger TFT panel. The STPC Industrial allows to expand the image vertically and horizontally in text mode by inserting programmable blank pixels. It allows expantion of the image vertically and horizontally in graphics mode by replicating pixels. The replication of J every K pixel is independently programmable in the vertical and horizontal directions. PanelLinkTM is a proprietary interconnect protocol defined by Silicon Image, Inc. It consists of a transmitter that takes parallel video/graphics data from the host LCD graphics controller
and transmits it serially at high speed to the receiver which controls the TFT panel. The TFT interface is designed to support the connection of this control signal to the PanelLinkTM transmitter. The STPC Industrial CARDBUS / PCMCIA controller has been specifically designed to provide the interface with PC-Cards which contain additional memory or I/O and provides an **ExCA**TM implementation to PCMCIA 2.0 / JEIDA 4.1 standards. The power management control facilities include socket power control, insertion/removal capability, power saving with Windows inactivity, NCS controlled Chip Power Down, together with further controls for 3.3v suspend with Modem Ring Resume Detection. The need for system configuration jumpers is eliminated by providing address mapping support for PCMCIA 2.0 / JEIDA 4.1 PC-Card memory together with address windowing support for I/O space. Selectable interrupt steering from PC-Card to internal system bus is also provided. The STPC Industrial implements a multi-function parallel port. The standard PC/AT compatible logical address assignments for LPT1, LPT2 and LPT3 are supported. The parallel port can be configured for any of the following 3 modes and supports the IEEE Standard 1284 parallel interface protocol standards as follow: - -Compatibility Mode (Forward channel, standard) - -Nibble Mode (Reverse channel, PC compatible) - -Byte Mode (Reverse channel, PS/2 compatible) The STPC Industrial BGA package has 388 balls, but this is not sufficient for all the integrated functions, therefore some features are sharing the same balls and can not be used at the same time. The STPC Industrial configuration is done by 'strap options'. It is a set of pull-up or pull-down resistors on the memory data bus, checked on reset, which auto-configure the STPC Industrial. We can distinguish three main blocks *independently configurables*: The ISA / Local Bus block, the Serial 1 / TFT block, and the PCI / PC Card block. From the first block, we can activate either the ISA bus and some IPC additionnal features, or the Local bus, the parallel port and the second serial interface From the second block, we can activate either the first serial port, or the TFT extension to get from 4 bit per colour to 6 bit per colour. From the third block, we can activate either the PCI bus, or the PC Card interface (CardBus/PCMCIA/ZoomVideo). The STPC Industrial core is compliant with the Advanced Power Management (APM) specification to provide a standard method by which the BIOS can control the power used by personal computers. The Power Management module (PMU) controls the consumption providing a comprehensive set of features that control the power usage and supports compliance with the United States Environmental Protection Agency's Energy Star Computer Program. The PMU provides following hardware structures to assist the software in managing the power consumption by the system. - System Activity Detection. - 3 power-down timers detecting system inactivity: - Doze timer (short durations). - Stand-by timer (medium durations). - Suspend timer (long durations). - House-keeping activity detection. - House-keeping timer to cope with short bursts of house-keeping activity while dozing or in stand-by state. - Peripheral activity detection. - Peripheral timer detecting peripheral inactivity - SUSP# modulation to adjust the system performance in various power down states of the system including full power on state. - Power control outputs to disable power from different planes of the board. Lack of system activity for progressively longer periods of time is detected by the three power down timers. These timers can generate SMI interrupts to CPU so that the SMM software can put the system in decreasing states of power consumption. Alternatively, system activity in a power down state can generate SMI interrupt to allow the software to bring the system back up to full power on state. The chip-set supports up to three power down states described above, these correspond to decreasing levels of power savings. Power down puts the STPC Industrial into suspend mode. The processor completes execution of the current instruction, any pending decoded instructions and associated bus cycles. During the suspend mode, internal clocks are stopped. Removing power down, the processor resumes instruction fetching and begins execution in the instruction stream at the point it had stopped. Because of the static nature of the core, no internal data is lost... Figure 1.1. Functionnal description. Figure 1.2. PCI, PCMCIA & CARDBUS modes: Figure 1.3. Local Bus and ISA bus modes: Figure 1.4. TFT in normal (serial 1 available) and extended modes (serial 1 unavailable). **IDE Serial Ports** Super I/O **Parallel Port Floppy** RTC Flash ISA MUX **IRQ Monitor** SVGA <u>MUX</u> DMA.REQ TFT **STPC Industrial** - Keyboard DMA.ACK DMUX Mouse **PCI** 4x 16-bit EDO DRAMs Figure 2. Typical PC oriented Application Figure 3. Typical Embedded Application #### 2 PIN DESCRIPTION #### 2.1. INTRODUCTION The STPC Industrial integrates most of the functionalities of the PC architecture. Therefore, many of the traditional interconnections between the host PC microprocessor and the peripheral devices are totally internal to the STPC Industrial. This offers improved performance due to the tight coupling of the processor core and it's peripherals. As a result many of the external pin connections are made directly to the on-chip peripheral functions. Figure 2-1 shows the STPC Industrial external interfaces. It defines the main buses and their function. Table 2-1 describes the physical implementation listing signal types and their functionalities. Table 2-2 provides a full pin listing and descrip- Table 2-4 provides a full listing of the STPC Industrial package pin location physical connection. Please refer to the pin allocation drawing for refer- Due to the number of pins available for the package, and the number of functional I/Os, some pins have several functions, selectable by strap option on Reset. Table 2-3 provides a summary of these pins and their functions. **Table 2-1. Signal Description** | Group name | Q | ty | |--|----|-----| | Basic Clocks, Reset & Xtal (SYS) | | 13 | | DRAM Controller(DRAM) | | 89 | | PCI Controller | 55 | 64 | | PC Card Interface | 64 | 04 | | Keyboard/Mouse Controller (SIO) | | 4 | | Local Bus I/F, Parallel I/F, Serial 2 75 | | 75 | | ISA Interface/IPC extensions 73 | | 73 | | Serial 1 (SIO) 8 | | 26 | | TFT output 24 | | | | VGA Controller (VGA) | 10 | | | Grounds | 74 | | | V_{DD} | 16 | | | Analog specific V _{CC} /V _{DD} | 16 | | | Reserved | 1 | | | Total Pin Count | | 388 | Figure 2-1. STPC Industrial External Interfaces Table 2-2. Definition of Signal Pins | Signal Name | Dir | Description | Qty | |--------------------------|----------|--|---------------| | BASIC CLOCKS AND RE | SETS | | | | SYSRSTI#* | I | System Reset / Power good | 1 | | SYSRSTO#* | 0 | Reset Output to System | 1 | | XTALI | I | 14.3 MHz Crystal Input | 1 | | XTALO | 0 | 14.3 MHz Crystal Output | 1 | | PCI_CLKI* | I | 33 MHz PCI/CardBus Input Clock | 1 | | PCI_CLKO | 0 | 33 MHz PCI/CardBus Output Clock | 1 | | ISA_CLK, ISA_CLK2X | 0 | ISA Clock x1 and x2 (also Multiplexer Select Line For IPC) | 2 | | CLK14M | 0 | ISA bus synchronisation clock | 1 | | HCLK* | I/O | 33 / 66 MHz Host Clock (Test) | 1 | | DEV_CLK* | 0 | 24 MHz Peripheral Clock | 1 | | GCLK2X | I/O | 80 MHz Graphics Clock | 1 | | DCLK | I/O | 135 MHz Dot Clock | 1 | | V _{DD} _xxx_PLL | | Power Supply for PLL Clocks | | | | | | | | MEMORY INTERFACE | | | | | MA[11:0] | 0 | Memory Address | 12 | | RAS#[3:0] | 0 | Row Address Strobe | 4 | | CAS#[7:0] | 0 | Column Address Strobe | 8 | | MWE# | 0 | Write Enable | 1 | | MD[63:0] | I/O | Memory Data | 64 | | LOCAL DUC INTEDEACE | (COMPINE | D WITH ICA PHC) | | | LOCAL BUS INTERFACE | COMBINE | Address Bus [21:0] | 22 | | PA[21:0]* | 1/0 | Address Bus [21:0] Data Bus [15:0] | | | PD[15:0]*
PRDY#* | | | 16 | | | 1 | Ready | 1 | | PWR#[1:0]* | 0 | Memory and I/O Bood sireals | 2 | | PRD#[1:0]* | 0 | Memory and I/O Read signals | 2 | | FCS#[1:0]*, IOCS#[3:0]* | 0 | Flash Memory and I/O Chip Select | 6 | | ISA BUS INTERFACE (CC | MBINED W | VITH LOCAL BUS, PARALLEL PORT, SERIAL INTERFACE) | | | LA[23:17]* | 0 | Unlatched Address | 7 | | SA[19:0]* | 0 | Latched Address | 20 | | SD[15:0]* | I/O | Data Bus | 16 | | IOCHRDY* | 1 | I/O Channel Ready | 1 | | ALE* | 0 | Address Latch Enable | <u>.</u>
1 | | BHE#* | 0 | System Bus High Enable | 1 | | MEMR#*, MEMW#* | I/O | Memory Read & Write | 2 | | SMEMR#*, SMEMW#* | 0 | System Memory Read and Write | 2 | | IOR#*, IOW#* | I/O | I/O Read and Write | 2 | | MASTER#* | I | Add On Card Owns Bus | 1 | | MCS16#*, IOCS16#* | 1 | Memory Chip Select 16, I/O Chip Select 16 | 2 | | REF#* | I | Refresh Cycle | 1 | | AEN* | 0 | Address Enable | 1 | | IOCHCK#* | 1 | I/O Channel Check (ISA) | 1 | | RTCRW#* | 0 | RTC Read / Write# | 1 | | RTCDS#* | 0 | RTC Data Strobe | 1 | | RTCAS#* | 0 | RTC Address Strobe | 1 | | e: :=:: | | | • | **Table 2-2. Definition of Signal Pins** | Signal Name | Dir | Description | Qty | |---------------------------|-----------|--|----------| | RMRTCCS#* | 0 | ROM / RTC Chip Select | 1 | | GPIOCS#* | I/O | General Purpose Chip Select | 1 | | IRQ_MUX[3:0]* | 1 | Multiplexed Interrupt Request | 4 | | DACK_ENC[2:0]* | 0 | DMA Acknowledge | 3 | | DREQ_MUX[1:0]* | I | Multiplexed DMA Request | 2 | | TC* | 0 | ISA Terminal Count | 1 | | | | | | | KEYBOARD & MOUSE IN | TERFACE | | | | KBDATA*, MDATA* | 1 | Keyboard & Mouse Data Line | 2 | | KBCLK*, MCLK* | 0 | Keyboard & Mouse Clock Line | 2 | | | | | | | - | | IBINED WITH TFT INTERFACE / SERIAL 2 COMBINED W | | | SIN1*, SIN2* | I | Serial Data In (Serial 1, 2) | 2 | | SOUT1*, SOUT2* | 0 | Serial Data Out (Serial
1, 2) | 2 | | CTS1#*, CTS2#* | 1 | Clear To Send (Serial 1, 2) | 2 | | RTS1#*, RTS2#* | 0 | Request To Send (Serial 1, 2) | 2 | | DSR1#*, DSR2#* | I | Data Set Ready (Serial 1, 2) | 2 | | DTR1#*, DTR2#* | 0 | Data Terminal Ready (Serial 1,2) | 2 | | DCD1#*, DCD2#* | I | Data Carrier Detect (Serial 1, 2) | 2 | | RI1#*, RI2#* | 1 | Ring Indicator (Serial 1, 2) | 2 | | | | | | | PARALLEL PORT (COMB | INED WITI | | <u> </u> | | PE* | I | Paper End | 1 | | SLCT* | 1 | SELECT | 1 | | BUSY#* | 1 | BUSY | 1 | | ERR#* | I | ERROR | 1 | | ACK#* | I | Acknowledge | 1 | | PDDIR#* | 0 | Parallel Device Direction | 1 | | STROBE#* | 0 | PCS / STROBE# | 1 | | INIT#* | 0 | INIT | 1 | | AUTPFDX#* | 0 | Automatic Line Feed | 1 | | SLCTIN#* | 0 | SELECT IN | 1 | | PPD[7:0]* | I/O | Data Bus | 8 | | BOHOLA INITED 1: 50 10 10 | | WELL DOLL (A A D D D LIO) | | | PCMCIA INTERFACE (CO | | | 1 4 | | RESET* | 0 | Reset | 1 | | A[25:0]* | 0 | Address Bus | 26 | | D[15:0]* | 1/0 | Data Bus | 16 | | IORD#*, IOWR#* | 0 | I/O Read and Write | 2 | | DREQ#* / WP* / IOIS16#* | 1 | DMA Request // Write Protect // I/O Size is 16-bit | 1 | | BVD1*, BVD2* | 1 | Battery Voltage Detect | 2 | | READY#*/BUSY#*/IREQ#* | I | Ready / Busy // Interrupt Request | 1 | | WAIT#* | I | Wait | 1 | | INPACK#* | 1 | Input Port Acknowledge | 1 | | OE#* / TCw* | 0 | Output Enable // DMA Terminal Count | 1 | | WE#* / TCr* | 0 | Write Enable // DMA Terminal Count | 1 | | DACK* / REG#* | 0 | DMA Acknowledge // Register | 1 | | CD1#*, CD2#* | I | Card Detect | 2 | **Table 2-2. Definition of Signal Pins** | Signal Name | Dir | Description | Qty | |---------------------|-------------|--------------------------------------|-----| | CE1#*, CE2#* | 0 | Card Enable | 2 | | VS1#*, VS2#* | I | Voltage Sense | 2 | | VCC5_EN* | 0 | Power Switch control : 5 V power | 1 | | VCC3_EN* | 0 | Power Switch control : 3.3 V power | 1 | | VPP_PGM* | 0 | Power Switch control : Program power | 1 | | VPP_VCC* | 0 | Power Switch control : VCC power | 1 | | CARDBUS INTERFACE | (COMBINED | WITH PCI / PCMCIA) | | | CCLKRUN* | I/O | Clock | 1 | | CRST#* | 0 | Reset | 1 | | CSTSCHG#* | ı | System Change | 1 | | CAD[31:0]* | I/O | Address / Data | 32 | | CBE[3:0]* | I/O | Bus Commands / Byte Enables | 4 | | CFRAME#* | I/O | Cycle Frame | 1 | | CTRDY#* | I/O | Target Ready | 1 | | CIRDY#* | I/O | Initiator Ready | 1 | | CSTOP#* | I/O | Stop Transaction | 1 | | CDEVSEL#* | I/O | Device Select | 1 | | CPAR* | I/O | Parity Signal Transactions | 1 | | CSERR#* | I | System Error | 1 | | CPERR#* | I/O | Parity Error | 1 | | CBLOCK#* | I/O | PCI Lock | 1 | | CCD[2:1]* | I | Card Detect | 2 | | CINT#* | I | Interrupt Request | 1 | | CREQ#* | I | Request | 1 | | CGNT#* | 0 | Grant | 1 | | PCI INTERFACE (COMB | INED WITH I |
PCMCIA / CARDBUS) | | | AD[31:0]* | I/O | Address / Data | 32 | | BE[3:0]* | I/O | Bus Commands / Byte Enables | 4 | | FRAME#* | I/O | Cycle Frame | 1 | | TRDY#* | I/O | Target Ready | 1 | | IRDY#* | I/O | Initiator Ready | 1 | | STOP#* | I/O | Stop Transaction | 1 | | DEVSEL#* | I/O | Device Select | 1 | | PAR* | I/O | Parity Signal Transactions | 1 | | SERR#* | 0 | System Error | 1 | | LOCK#* | I | PCI Lock | 1 | | PCI_REQ#[2:0]* | I | PCI Request | 3 | | PCI_GNT#[2:0]* | 0 | PCI Grant | 3 | | PCI_INT[3:0]* | I | PCI Interrupt Request | 4 | | | | | | ## **PIN DESCRIPTION** **Table 2-2. Definition of Signal Pins** | Signal Name | Dir | Description | Qty | |------------------------|----------|--|-----| | MONITOR INTERFACE | ! | - | | | RED, GREEN, BLUE | 0 | Red, Green, Blue | 3 | | VSYNC* | I/O | Vertical Sync | 1 | | HSYNC* | I/O | Horizontal Sync | 1 | | VREF_DAC | I | DAC Voltage reference | 1 | | RSET | ļ | Resistor Set | 1 | | COMP | I | Compensation | 1 | | DDC[1:0]* | I/O | Display Data Channel Serial Link | 2 | | SCL / DDC[1]* | I/O | I ² C Interface - Clock / Can be used for VGA DDC[1] signal | 1 | | SDA / DDC[0]* | I/O | I ² C Interface - Data / Can be used for VGA DDC[0] signal | 1 | | | | | | | TFT INTERFACE (COMBI | NED WITH | SERIAL 1) | | | R[5:0], G[5:0], B[5:0] | 0 | Red, Green, Blue | 18 | | FPLINE | 0 | Horizontal Sync | 1 | | FPFRAME | 0 | Vertical Sync | 1 | | DE | 0 | Data Enable | 1 | | ENAVDD | 0 | Enable Vdd of flat panel | 1 | | ENVCC | 0 | Enable Vcc of flat panel | 1 | | PWM | 0 | PWM back-light control | 1 | | | | | | | MISCELLANEOUS | • | · · | | | SPKRD* | 0 | Speaker Device Output | 1 | | SCAN_ENABLE | ļ | Test Pin - Reserved | 1 | Note; * denotes that the pin is V_{5T} (see Section 4) #### 2.2. SIGNAL DESCRIPTIONS #### 2.2.2 BASIC CLOCKS AND RESETS **SYSRSTI#** System Reset/Power good. This input is low when the reset switch is depressed. Otherwise, it reflects the power supply's power good signal. PWGD is asynchronous to all clocks, and acts as a negative active reset. The reset circuit initiates a hard reset on the rising edge of PWGD. SYSRSTO# Reset Output to System. This is the system reset signal and is used to reset the rest of the components (not on Host bus) in the system. The ISA bus reset is an externally inverted buffered version of this output and the PCI bus reset is an externally buffered version of this output. XTALI 14.3 MHz Crystal Input **XTALO** 14.3 MHz Crystal Output. These pins are the 14.318 MHz crystal input; This clock is used as the reference clock for the internal frequency synthesizer to generate the HCLK and CLK24M. A 14.318 MHz Series Cut Quartz Crystal should be connected between these two pins. Balance capacitors of 15 pF should also be added. In the event of an external oscillator providing the master clock signal to the STPC Industrial device, the TTL #### PCI_CLKI 33 MHz PCI Input Clock signal should be provided on XTALO. This signal must be connected to a clock generator and is usually connected to PCI_CLKO. **PCI_CLKO** 33 MHz PCI Output Clock. This is the master PCI bus clock output **ISA_CLK** ISA Clock Output (also Multiplexer Select Line For IPC). This pin produces the Clock signal for the ISA bus. It is also used with ISA_CLK2X as the multiplexer control lines for the Interrupt Controller Interrupt input lines. This is a divided down version of the PCICLK or OSC14M. **ISA_CLKX2** *ISA Clock Output* (also Multiplexer Select Line For IPC). This pin produces a signal at twice the frequency of the ISA bus Clock signal. It is also used with ISA_CLK as the multiplexer control lines for the Interrupt Controller Interrupt input lines. **CLK14M** ISA bus synchronisation clock. This is the buffered 14.318 MHz clock to the ISA bus. This clock also provides the reference clock to the frequency synthesizer that generates GCLK2X and DCLK. **HCLK** *Host Clock.* This is the host 1X clock. Its frequency can vary from 50 MHz to 75 MHz. All host transactions and PCI transactions are synchronized to this clock. Host transactions executed by the DRAM controller are also driven by this clock. **DEV_CLK** 24 MHz Peripheral Clock (floppy drive). This 24 MHZ signal is provided as a convenience for the system integration of a Floppy Disk driver function in an external chip. **GCLK2X** 80 MHz Graphics Clock. This is the Graphics 2X clock, which drives the graphics engine and the DRAM controller to execute the graphics and display cycles. Normally GCLK2X is generated by the internal frequency synthesizer, and this pin is an output. By setting a bit in Strap Register 2, this pin can be made an input so that an external clock can replace the internal frequency synthesizer. **DCLK** 135 MHz Dot Clock. This is the dot clock, which drives graphics display cycles. Its frequency can go from 8 MHz (using internal PLL) up to 135 MHz, and it is required to have a worst case duty cycle of 60-40. The direction can be controlled by a strap option or an internal register bit. #### 2.2.3 MEMORY INTERFACE **MA[11:0]** *Memory Address.* These 12 multiplexed memory address pins support external DRAM with up to 4K refresh. These include all 16M x N and some 4M x N DRAM modules. The address signals must be externally buffered to support more than 16 DRAM chips. The timing of these signals can be adjusted by software to match the timings of most DRAM modules. **MD[63:0]** *Memory Data.* This is the 64-bit memory data bus. If only half of a bank is populated, MD63-32 is pulled high, data is on MD31-0. MD20-0 are also used as inputs at the rising edge of PWGD to latch in power-up configuration information into the ADPC strap registers. **RAS#[3:0]** Row Address Strobe. There are four active low row address strobe outputs, one each for each bank of the memory. Each bank contains 4 or 8 bytes of data. The memory controller allows half of a bank (4 bytes) to be populated to enable memory upgrade at finer granularity. The RÁS# signals drive the SIMMs directly without any external buffering. These pins are always outputs, but they can also simultaneously be inputs, to allow the memory controller to monitor the value of the RAS# signals at the pins. **CAS#[7:0]** Column Address Strobe. There are 8 active low column address strobe outputs, one each for each Byte of the memory. The CAS# signals drive the SIMMs either directly or through external buffers. These pins are always outputs, but they can also simultaneously be inputs, to allow the memory controller to monitor the value of the CAS# signals at the pins. **MWE#** Write Enable. Write enable specifies whether the memory access is a read (MWE# = H) or a write (MWE# = L). This single write enable controls all DRAMs. It can be externally buffered to boost the maximum number of loads (DRAM chips) supported. The MWE# signals drive the SIMMs directly without any external buffering. # 2.2.4 LOCAL BUS INTERFACE (Combined with ISA Bus) PA[21:0] Memory Address. This is the 22-bit Local Bus Address **PD[15:0]** *Data Bus.* This is the 16-bit bidirectional Local Bus Data bus. **PRDY#** Ready. This input signals the Local Bus Ready state. **PWR#1**
Memory and I/O Write signal for MS Byte PWR#0 Memory and I/O Write signal for LS Byte. **PRD#1** Memory and I/O Read signals for MS Byte. PRD#0 Memory and I/O Read signals for LS Byte. FCS#[1:0], IOCS#[3:0] Flash Memory and I/O Chip select. #### 2.2.5 ISA BUS INTERFACE **LA[23:17]** *Unlatched Address.* These unlatched ISA Bus pins address bits 23-17 on 16-bit devices. When the ISA bus is accessed by any cycle initiated from the PCI bus, these pins are in output mode. When an ISA bus master owns the bus, these pins are tristated. **SA[19:0]** Unlatched Address. These are the 20 low bits of the system address bus of ISA. These pins are used as an input when an ISA bus master owns the bus and are outputs at all other times. **SD[15:0]** I/O Data Bus (ISA). These are the external ISA data bus pins. **IOCHRDY** *IO Channel Ready.* IOCHRDY is the IO channel ready signal of the ISA bus and is driven as an output in response to an ISA master cycle targeted to the host bus or an internal register of the STPC Industrial. The STPC Industrial monitors this signal as an input when performing an ISA cycle on behalf of the host CPU, DMA master or refresh. ISA masters which do not monitor IOCHRDY are not guaranteed to work with the STPC Industrial since the access to the system memory can be considerably delayed due to CRT refresh or a write back cycle. **ALE** Address Latch Enable. This is the address latch enable output of the ISA bus and is asserted by the STPC Industrial to indicate that LA23-17, SA19-0, AEN and SBHE# signals are valid. The ALE is driven high during refresh, DMA master or an ISA master cycles by the STPC Industrial. ALE is driven low after reset. **BHE#** System Bus High Enable. This signal, when asserted, indicates that a data Byte is being transferred on SD15-8 lines. It is used as an input when an ISA master owns the bus and is an output at all other times. **MEMR#** *Memory Read.* This is the memory read command signal of the ISA bus. It is used as an input when an ISA master owns the bus and is an output at all other times. The MEMR# signal is active during refresh. **MEMW#** *Memory Write.* This is the memory write command signal of the ISA bus. It is used as an input when an ISA master owns the bus and is an output at all other times. **SMEMR#** System Memory Read. The STPC Industrial generates SMEMR# signal of the ISA bus only when the address is below one MByte or the cycle is a refresh cycle. **SMEMW#** System Memory Write. The STPC Industrial generates SMEMW# signal of the ISA bus only when the address is below one MByte. IOR# I/O Read. This is the IO read command signal of the ISA bus. It is an input when an ISA master owns the bus and is an output at all other times. **IOW#** I/O Write. This is the IO write command signal of the ISA bus. It is an input when an ISA master owns the bus and is an output at all other times. **MASTER#** Add On Card Owns Bus. This signal is active when an ISA device has been granted bus ownership. MCS16# Memory Chip Select16. This is the decode of LA23-17 address pins of the ISA address bus without any qualification of the command signal lines. MCS16# is always an input. The STPC Industrial ignores this signal during IO and refresh cycles. IOCS16# IO Chip Select16. This signal is the decode of SA15-0 address pins of the ISA address bus without any qualification of the command signals. The STPC Industrial does not drive IOCS16# (similar to PC-AT design). An ISA master access to an internal register of the STPC Industrial is executed as an extended 8-bit IO cycle. **REF#** Refresh Cycle. This is the refresh command signal of the ISA bus. It is driven as an output when the STPC Industrial performs a refresh cycle on the ISA bus. It is used as an input when an ISA master owns the bus and is used to trigger a refresh cycle. The STPC Industrial performs a pseudo hidden refresh. It requests the host bus for two host clocks to drive the refresh address and capture it in external buffers. The host bus is then relinquished while the refresh cycle continues on the ISA bus. **AEN** Address Enable. Address Enable is enabled when the DMA controller is the bus owner to indicate that a DMA transfer will occur. The enabling of the signal indicates to IO devices to ignore the IOR#/IOW# signal during DMA transfers. **IOCHCK#** *IO* Channel Check. IO Channel Check is enabled by any ISA device to signal an error condition that can not be corrected. NMI signal becomes active upon seeing IOCHCK# active if the corresponding bit in Port B is enabled. **GPIOCS#** *I/O General Purpose Chip Select* 1. This output signal is used by the external latch on ISA bus to latch the data on the SD[7:0] bus. The latch can be use by PMU unit to control the external peripheral devices to power down or any other desired function. **RTCRW#** Real Time Clock RW#. This pin is used as RTCRW#. This signal is asserted for any I/O write to port 71h. **RTCDS#** Real Time Clock DS. This pin is used as RTCDS. This signal is asserted for any I/O read to port 71h. RTCAS# Real time clock address strobe. This signal is asserted for any I/O write to port 70h. RMRTCCS# ROM/Real Time clock chip select. This pin is a multi-function pin. This signal is asserted if a ROM access is decoded during a memory cycle. It should be combined with MEMR# or MEMW# signals to properly access the ROM. During an IO cycle, this signal is asserted if ac- cess to the Real Time Clock (RTC) is decoded. It should be combined with IOR# or IOW# signals to properly access the real time clock. **IRQ_MUX[3:0]** Multiplexed Interrupt Request. These are the ISA bus interrupt signals. They are to be encoded before connection to the STPC Industrial using ISACLK and ISACLKX2 as the input selection strobes. Note that IRQ8B, which by convention is connected to the RTC, is inverted before being sent to the interrupt controller, so that it may be connected directly to the IRQ# pin of the RTC. #### 2.2.6 IPC (Combined with Serial Interface) **DACK_ENC[2:0]** *DMA Acknowledge.* These are the ISA bus DMA acknowledge signals. They are encoded by the STPC Industrial before output and should be decoded externally using ISACLK and ISACLKX2 as the control strobes. **DREQ_MUX[1:0]** ISA Bus Multiplexed DMA Request. These are the ISA bus DMA request signals. They are to be encoded before connection to the STPC Industrial using ISACLK and ISACLKX2 as the input selection strobes. **TC** ISA Terminal Count. This is the terminal count output of the DMA controller and is connected to the TC line of the ISA bus. It is asserted during the last DMA transfer, when the Byte count expires. ### 2.2.7 KEYBOARD/MOUSE INTERFACE **KBCLK**, *Keyboard Clock line*. Keyboard data is latched by the controller on each negative clock edge produced on this pin. The keyboard can be disabled by pulling this pin low by software control. **KBDATA**, *Keyboard Data Line*. 11 bits of data are shifted serially through this line when data is being transferred. Data is synchronised to KBCLK. **MCLK**, *Mouse Clock line*. Mouse data is latched by the controller on each negative clock edge produced on this pin. The mouse can be disabled by pulling this pin low by software control. **MDATA**, *Mouse Data Line*. 11 bits of data are shifted serially through this line when data is being transferred. Data is synchronised to MCLK. Note: **MCLK** and **MDATA** must be pulled when the STPC Mouse interface is **not used**. # 2.2.8 SERIAL INTERFACE (Serial 1 combined with TFT Interface) (Serial 2 combined with IPC) **SIN1, SIN2** *Input Serial input.* Data is clocked in using RCLK/16. **SOUT1, SOUT2** *Serial Output.* Data is clocked out using TCLK/16 (TCLK=BAUD#). DCD1#, DCD2# Input Data carrier detect. RI1#, RI2# Input Ring indicator. DSR1#, DSR2# Input Data set ready. CTS1#, CTS2# Input Clear to send. RTS1#, RTS2# Output Request to send. DTR1#, DTR2# Output Data terminal read. # 2.2.9 PARALLEL PORT (Combined with ISA Bus an IPC) PE Paper End. Input status signal from printer. **SLCT** *Printer Select.* Printer selected input. **BUSY#** *Printer Busy.* Input status signal from printer. **ERR#** *Error*. Input status signal from printer. **ACK#** Acknowledge. Input status signal from printer. **PDDIR#** Parallel Device Direction. Bidirectional control line output. **STROBE#** *PCS/Strobe#*. Data transfer strobe line to printer. **INIT#** *Initialize Printer.* This output sends an initialize command to the connected printer. **AUTPFDX#** Automatic Line feed. This output sends a command to the connected printer to automatically generate line feed on received carriage returns. **SLCTIN#** Select In. Printer select output. **PPD[7-0]** *Printer Data Lines* Data transfer lines to printer. Bidirectional depending on modes. **Important Note:** Where the Parallel Port is not used, PPD[0], connected to device pin C25, must be pulled up to '1'. This is to avoid memory access problems associated with the MCS16 Memory Chip Select line when in the ISA Bus mode. # 2.2.10 PCMCIA INTERFACE (Combined with PCI / Cardbus) **RESET** Card Reset. This output forces a hard reset to a PC Card. **A[25:0]** Address Bus. These are the 25 low bits of the system address bus of the PCMCIA bus. These pins are used as an input when an PCMCIA bus owns the bus and are outputs at all other times. **D[15:0]** I/O Data Bus (PCMCIA). These are the external PCMCIA data bus pins. **CA[25-0]** Card Address. Used with the lower 11 bits of the ISA Address Bus to generate the Card Address. IORD# I/O Read. This output is used with REG# to gate I/O read data from the PC Card, (only when REG# is asserted). **IOWR#** I/O Write. This output is used with REG# to gate I/O write data from the PC Card, (only when REG# is asserted). **WP** Write Protect. This input indicates the status of the Write Protect switch (if fitted) on memory PC Cards (asserted when the switch is set to write protect). **BVD1, BVD2** Battery Voltage Detect. These inputs will be generated
by memory PC Cards that include batteries and are an indication of the condition of the batteries. BVD1 and BVD2 are kept asserted high when the battery is in good condition. **READY#/BUSY#/IREQ#** Ready/busy/Interrupt request. This input is driven low by memory PC Cards to signal that their circuits are busy processing a previous write command. **WAIT#** Bus Cycle Wait. This input is driven by the PC Card to delay completion of the memory or I/O cycle in progress. **OE#** Output Enable. OE# is an active low output which is driven to the PC Card to gate Memory Read data from memory PC Cards. **WE#/PRGM#** Write Enable. This output is used by the host for gating Memory Write data. WE# is also used for memory PC Cards that have programmable memory. **REG#** Attribute Memory Select. This output is inactive (high) for all normal accesses to the Main Memory of the PC Card. I/O PC Cards will only respond to IORD# or IOWR# when REG# is active (low). Also see Section 2.2.6 **CD1#, CD2#** Card Detect. These inputs provide for the detection of correct card insertion. CD#1 and CD#2 are positioned at opposite ends of the connector to assist in the detection process. These inputs are internally grounded on the PC Card therefore they will be forced low whenever a card is inserted in a socket. **CE1#, CE2#** Card Enable. These are active low output signals provided from the PCIC. CE#1 enables even Bytes, CE#2 odd Bytes. **ENABLE#** Enable. This output is used to activate/ select a PC Card socket. ENABLE# controls the external address buffer logic.C card has been detected (CD#1 and CD#2 = '0'). **ENIF#** *ENIF*. This output is used to activate/select a PC Card socket. **EXT_DIR** EXternal Transceivers Direction Control. This output is high during a read and low during a write. The default power up condition is write (low). Used for both Low and High Bytes of the Data Bus. VCC_EN#, VPP1_EN0, VPP1_EN1, VPP 2_EN0, VPP2_EN1 Power Control. Five output signals used to control voltages (VPP1, VPP2 and VCC) to a PC Card socket. Also see Section 13.7.5. **GPI#** General Purpose Input. This signal is hardwired to 1. # 2.2.11 CARDBUS INTERFACE (Combined with PCI / PCMCIA) For card bus pinouts, refer to the PCI pinout. #### 2.2.12 PCI INTERFACE **AD[31:0]** *PCI Address/Data.* This is the 32-bit multiplexed address and data bus of the PCI. This bus is driven by the master during the address phase and data phase of write transactions. It is driven by the target during data phase of read transactions. **BE[3:0]#** Bus Commands/Byte Enables. These are the multiplexed command and Byte enable signals of the PCI bus. During the address phase they define the command and during the data phase they carry the Byte enable information. These pins are inputs when a PCI master other than the STPC Industrial owns the bus and outputs when the STPC Industrial owns the bus. **FRAME#** Cycle Frame. This is the frame signal of the PCI bus. It is an input when a PCI master owns the bus and is an output when STPC Industrial owns the PCI bus. **TRDY#** Target Ready. This is the target ready signal of the PCI bus. It is driven as an output when the STPC Industrial is the target of the current bus transaction. It is used as an input when STPC Industrial initiates a cycle on the PCI bus. **IRDY#** Initiator Ready. This is the initiator ready signal of the PCI bus. It is used as an output when the STPC Industrial initiates a bus cycle on the PCI bus. It is used as an input during the PCI cycles targeted to the STPC Industrial to determine when the current PCI master is ready to complete the current transaction. **STOP#** Stop Transaction. STOP# is used to implement the disconnect, retry and abort protocol of the PCI bus. It is used as an input for the bus cycles initiated by the STPC Industrial and is used as an output when a PCI master cycle is targeted to the STPC Industrial. **DEVSEL#** *I/O Device Select.* This signal is used as an input when the STPC Industrial initiates a bus cycle on the PCI bus to determine if a PCI slave device has decoded itself to be the target of the current transaction. It is asserted as an output either when the STPC Industrial is the target of the current PCI transaction or when no other device asserts DEVSEL# prior to the subtractive decode phase of the current PCI transaction. PAR Parity Signal Transactions. This is the parity signal of the PCI bus. This signal is used to guarantee even parity across AD[31:0], CBE[3:0]#, and PAR. This signal is driven by the master during the address phase and data phase of write transactions. It is driven by the target during data phase of read transactions. (Its assertion is identical to that of the AD bus delayed by one PCI clock cycle) **SERR#** System Error. This is the system error signal of the PCI bus. It may, if enabled, be asserted for one PCI clock cycle if target aborts a STPC Industrial initiated PCI transaction. Its assertion by either the STPC Industrial or by another PCI bus agent will trigger the assertion of NMI to the host CPU. This is an open drain output. **LOCK#** *PCI Lock.* This is the lock signal of the PCI bus and is used to implement the exclusive bus operations when acting as a PCI target agent. PCI_REQ#[2:0] PCI Request. These pins are the three external PCI master request pins. They indicates to the PCI arbiter that the external agents desire use of the bus. **PCI_GNT#[2:0]** *PCI Grant.* These pins indicate that the PCI bus has been granted to the master requesting it on its PCI_REQ#. **PCI_INT[3:0]** *PCI Interrupt Request.* These are the PCI bus interrupt signals. They are to be encoded before connection to the STPC Industrial using ISACLK and ISACLKX2 as the input selection strobes. #### 2.2.13 MONITOR INTERFACE **RED, GREEN, BLUE** *RGB Video Outputs.* These are the three analog color outputs from the RAM-DACs. These signals are sensitive to interference, therefore they need to be properly shielded. **VSYNC** *Vertical Synchronisation Pulse.* This is the vertical synchronization signal from the VGA controller. **HSYNC** Horizontal Synchronisation Pulse. This is the horizontal synchronization signal from the VGA controller. **VREF_DAC** *DAC Voltage reference*. This pin is an input driving the digital to analog converters. This allows an external voltage reference source to be used. **RSET** Resistor Current Set. This is the reference current input to the RAMDAC. Used to set the full-scale output of the RAMDAC. **COMP** Compensation. This is the RAMDAC compensation pin. Normally, an external capacitor (typically 10nF) is connected between this pin and V_{DD} to damp oscillations. **DDC[1:0]** *Direct Data Channel Serial Link.* These bidirectional pins are connected to CRTC register 3Fh to implement DDC capabilities. They conform to I²C electrical specifications, they have open-collector output drivers which are internally connected to V_{DD} through pull-up resistors. They can instead be used for accessing I²C devices on board. DDC1 and DDC0 correspond to SCL and SDA respectively. # 2.2.14 FLAT PANEL INTERFACE SIGNALS (Combined with Serial 1) FPFRAME, Vertical Sync. pulse Output. FPLINE, Horizontal Sync. Pulse Output. DE, Data Enable. R5-0, Red Output. G5-0, Green Output. B5-0, Blue Output. ENAVDD Enable VDD of Flat Panel. ENVCC Enable VCC of Flat Panel. PWM PWM Back-Light Control. #### 2.2.15 MISCELLANEOUS **SPKRD** Speaker Drive. This is the output to the speaker and is the AND of the counter 2 output with bit 1 of Port 61h and drives an external speaker driver. This output should be connected to a 7407 type high voltage driver. **SCAN_ENABLE** Reserved. This pin is reserved for Test and Miscellaneous functions. It has to be set to '0' or connected to ground in normal operation. Table 2-3. Signals Sharing the Same Pin | ISA BUS / IPC | LOCAL BUS | PARALLEL PORT | SERIAL INTERFACE | |----------------|--------------------|---------------|--------------------| | LA[23:22] | FCS#[0], PRD#[1] | | | | LA[21:20] | PA[21:20] | | | | LA[19:17] | PRD#[0], PWR#[1:0] | | | | SA[19:1] | PA[19:1] | | | | SA[0] | PRDY# | | | | SD[15:0] | PD[15:0] | | | | BHE# | FCS#[1] | | | | MEMR#, MEMW# | IOCS[3:2] | | | | SMEMR#, SMEMW# | IOCS[1:0] | | | | GPIOCS# | | PE | | | IOCHRDY | | SLCT | | | IOR# | | BUSY# | | | IOW# | | ERR# | | | MASTER# | | ACK# | | | MCS16# | | PDDIR# | | | IOCS16# | | INIT# | | | REF# | | AUTPFDX# | | | AEN | | SLCTIN# | | | IOCHCK# | | PPD[7] | | | RTCRW# | | PPD[5] | | | RTCDS# | | PPD[4] | | | RTCAS# | | PPD[3] | | | RMRTCCS# | | PPD[2] | | | ALE | | PPD[1] | | | DACK_ENC[0:2] | | | DCD2#, DSR2#, SIN2 | | DREQ_MUX[0:1] | | | CTS2#, RTS2# | | TC | | | SOUT2 | | | 0.0 | | | | TFT INTERFACE | SERIAL 1 | |---------------|--------------| | B[0,1] | DCD1#, CTS1# | | G[0,1] | DSR1#, RTS1# | | R[0,1] | SIN1, SOUT1 | | PCI | CARDBUS | PCMCIA | |-----------|------------|---------------| | | CCLK | A[16] | | | CRST# | RESET | | AD[31:27] | CAD[31:27] | D[10,9,1,8,0] | | AD[26:20] | CAD[26:20] | A[0:6] | | PCI | CARDBUS | PCMCIA | |------------|----------|--------------------------| | AD[19] | CAD[19] | A[25] | | AD[18] | CAD[18] | A[7] | | AD[17] | CAD[17] | A[24] | | AD[16] | CAD[16] | A[17] | | AD[15] | CAD[15] | IOWR# | | AD[14] | CAD[14] | A[9] | | AD[13] | CAD[13] | IORD# | | AD[12] | CAD[12] | A[11] | | AD[11] | CAD[11] | OE# / TCw | | AD[10] | CAD[10] | CE[2] | | AD[9] | CAD[9] | A[10] | | AD[8:0] | CAD[8:0] | D[15,7,13,6,12,5,11,4,3] | | BE[3] | CBE[3] | DACK/REG# | | BE[2] | CBE[2] | A[12] | | BE[1] | CBE[1] | A[8] | | BE[0] | CBE[0] | CE[1] | | FRAME# | CFRAME# | A[23] | | TRDY# | CTRDY# | A[22] | | IRDY# | CIRDY# | A[15] | | STOP# | CSTOP# | A[20] | | DEVSEL# | CDEVSEL# | A[21] | | PAR | CPAR | A[13] | | | | | | SERR# | CSERR# | WAIT | | LOCK# | CBLOCK# | A[19] | | PCIREQ#[2] | CREQ# | INPACK# | | PCIREQ#[1] | CCD1 | CD1# | | PCIREQ#[0] | CSTSCHG# | BVD1 | | PCIGNT#[2] | CGNT# | WE# / TCr | | PCIGNT#[1] | CCD2 | CD2# | | PCIGNT#[0] | | BVD2 | |
PCI_INT[3] | | VCC3_EN | | PCI_INT[2] | | VCC5_EN | | PCI_INT[1] | | VPP_PGM | | PCI_INT[0] | CINT# | READY# | | | CLKRUN | DREQ# / WP / IOIS16# | | | | | Table 2-4. Pinout. | Pin # C4 A3 | Pin Name SYSRSTI# SYSRSTO# | |--|----------------------------| | A3 | | | | SYSRSTO# | | | | | AB25 | XTALI | | AB23 | XTALO | | G25 | PCI_CLKI | | H23 | PCI_CLKO | | B20 | ISA_CLK | | A20 | ISA_CLK2X | | AC26 | CLK14M | | H26 | HCLK | | J26 | DEV_CLK | | AC15 | GCLK2X | | AD16 | DCLK | | | | | AE13 | MA[0] | | AC12 | MA[1] | | AF13 | MA[2] | | AD12 | MA[3] | | AE14 | MA[4] | | AC14 | MA[5] | | AF14 | MA[6] | | AD13 | MA[7] | | AE15 | MA[8] | | AD14 | MA[9] | | AF15 | MA[10] | | AE16 | MA[11] | | AD15 | RAS#[0] | | AF16 | RAS#[1] | | AC17 | RAS#[2] | | AE18 | RAS#[3] | | AD17 | CAS#[0] | | AF18 | CAS#[1] | | AE19 | CAS#[2] | | AF19 | CAS#[3] | | AD18 | CAS#[4] | | AE20 | CAS#[5] | | AC19 | CAS#[6] | | AF20 | CAS#[7] | | AD19 | MWE# | | AE21 | MD[0] | | AC20 | MD[1] | | AF21 | MD[2] | | AD20 | MD[3] | | | T | |------|----------| | Pin# | Pin Name | | AE22 | MD[4] | | AF22 | MD[5] | | AD21 | MD[6] | | AE23 | MD[7] | | AC22 | MD[8] | | AF23 | MD[9] | | AD22 | MD[10] | | AE24 | MD[11] | | AD23 | MD[12] | | AF24 | MD[13] | | AE26 | MD[14] | | AD25 | MD[15] | | AD26 | MD[16] | | AC25 | MD[17] | | AC24 | MD[18] | | AB24 | MD[19] | | AB26 | MD[20] | | AA25 | MD[21] | | Y23 | MD[22] | | AA24 | MD[23] | | AA26 | MD[24] | | Y25 | MD[25] | | Y26 | MD[26] | | Y24 | MD[27] | | W25 | MD[28] | | V23 | MD[29] | | W26 | MD[30] | | W24 | MD[31] | | V25 | MD[32] | | V26 | MD[33] | | U25 | MD[34] | | V24 | MD[35] | | U26 | MD[36] | | U23 | MD[37] | | T25 | MD[38] | | U24 | MD[39] | | T26 | MD[40] | | R25 | MD[41] | | R26 | MD[42] | | T24 | MD[43] | | P25 | MD[44] | | R23 | MD[45] | | P26 | MD[46] | | R24 | MD[47] | | | | | Pin # | Pin Name | |-------|------------------| | N25 | MD[48] | | N23 | MD[49] | | N26 | MD[50] | | P24 | MD[51] | | M25 | MD[52] | | N24 | MD[53] | | M26 | MD[54] | | L25 | MD[55] | | M24 | MD[56] | | L26 | MD[57] | | M23 | MD[58] | | K25 | MD[59] | | L24 | MD[60] | | K26 | MD[61] | | K23 | MD[62] | | J25 | MD[63] | | | | | B1 | PA[0] | | | | | P1 | LA[17] / PWR#[0] | | N3 | LA[18] / PWR#[1] | | R2 | LA[19] / PRD#[0] | | C1 | LA[20] / PA[20] | | C2 | LA[21] / PA[21] | | P3 | LA[22] / PRD#[1] | | R1 | LA[23] / FCS#[0] | | P4 | SA[0] / PRDY# | | J2 | SA[1] / PA[1] | | НЗ | SA[2] / PA[2] | | H1 | SA[3] / PA[3] | | J4 | SA[4] / PA[4] | | H2 | SA[5] / PA[5] | | G3 | SA[6] / PA[6] | | G1 | SA[7] / PA[7] | | G2 | SA[8] / PA[8] | | F1 | SA[9] / PA[9] | | F3 | SA[10] / PA[10] | | G4 | SA[11] / PA[11] | | F2 | SA[12] / PA[12] | | E1 | SA[13] / PA[13] | | E3 | SA[14] / PA[14] | | E4 | SA[15] / PA[15] | | E2 | SA[16] / PA[16] | | D1 | SA[17] / PA[17] | | | | ## **PIN DESCRIPTION** | Pin # | Pin Name | |-------|-------------------| | D3 | SA[18] / PA[18] | | D2 | SA[19] / PA[19] | | P2 | SD[0] / PD[0] | | M3 | SD[1] / PD[1] | | N1 | SD[2] / PD[2] | | M4 | SD[3] / PD[3] | | N2 | SD[4] / PD[4] | | L3 | SD[5] / PD[5] | | M1 | SD[6] / PD[6] | | M2 | SD[7] / PD[7] | | L1 | SD[8] / PD[8] | | K3 | SD[9] / PD[9] | | L2 | SD[10] / PD[10] | | K4 | SD[11] / PD[11] | | K1 | SD[12] / PD[12] | | J3 | SD[13] / PD[13] | | K2 | SD[14] / PD[14] | | J1 | SD[15] / PD[15] | | T2 | BHE# / FCS#[1] | | R3 | MEMR# / IOCS#[3] | | T1 | MEMW# / IOCS#[2] | | R4 | SMEMR# / IOCS#[1] | | U2 | SMEMW# / IOCS#[0] | | AB2 | IOCHRDY / SLCT | | AB1 | IOR# / BUSY# | | Y3 | GPIOCS# / PE | | AA3 | IOW# / ERR# | | AC2 | MASTER# / ACK# | | AB4 | MCS16# / PDDIR# | | AB3 | IOCS16# / INIT# | | AD2 | REF# / AUTPFDX# | | AC3 | AEN / SLCTIN# | | E25 | IOCHCK# / PPD[7] | | E26 | PPD[6] | | F24 | RTCRW# / PPD[5] | | D25 | RTCDS# / PPD[4] | | E23 | RTCAS# / PPD[3] | | D26 | RMRTCCS# / PPD[2] | | E24 | ALE / PPD[1] | | C25 | PPD[0] | | AC1 | STROBE# | | | | | D5 | IRQ_MUX[0] | | A4 | IRQ_MUX[1] | | C5 IRQ_MUX[2] B3 IRQ_MUX[3] AD1 SPKRD V3 DACK_ENC[0]/DCD2# Y2 DACK_ENC[1]/DSR2# W4 DACK_ENC[2] / SIN2 Y1 DREQ_MUX[0]/CTS2# W3 DREQ_MUX[1]/RTS2# AA2 TC / SOUT2 Y4 DTR2# AA1 RI2# U4 SIN1 / R[0] V1 SOUT1 / R[1] V2 CTS1 / B[1] U3 RTS1# / G[0] W2 DTR1# T3 DCD1# / B[0] W1 RI1# F25 KBCLK F26 KBDATA G24 MCLK G23 MDATA D18 RESET C18 A[0] A17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] <tr< th=""><th>Pin #</th><th>Pin Name</th></tr<> | Pin # | Pin Name | |--|-------|--------------------| | AD1 SPKRD V3 DACK_ENC[0]/DCD2# Y2 DACK_ENC[1]/DSR2# W4 DACK_ENC[2] / SIN2 Y1 DREQ_MUX[0]/CTS2# W3 DREQ_MUX[1]/RTS2# AA2 TC / SOUT2 Y4 DTR2# AA1 RI2# U4 SIN1 / R[0] V1 SOUT1 / R[1] V2 CTS1 / B[1] U3 RTS1# / G[0] W2 DTR1# T3 DCD1# / B[0] W1 RI1# F25 KBCLK F26 KBDATA G24 MCLK G23 MDATA D18 RESET C18 A[0] A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] | C5 | IRQ_MUX[2] | | V3 DACK_ENC[0]/DCD2# Y2 DACK_ENC[1]/DSR2# W4 DACK_ENC[2] / SIN2 Y1 DREQ_MUX[0]/CTS2# W3 DREQ_MUX[1]/RTS2# AA2 TC / SOUT2 Y4 DTR2# AA1 RI2# U4 SIN1 / R[0] V1 SOUT1 / R[1] V2 CTS1 / B[1] U3 RTS1# / G[0] W2 DTR1# T3 DCD1# / B[0] W1 RI1# F25 KBCLK F26 KBDATA G24 MCLK G23 MDATA D18 RESET C18 A[0] A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] | B3 | IRQ_MUX[3] | | Y2 DACK_ENC[1]/DSR2# W4 DACK_ENC[2] / SIN2 Y1 DREQ_MUX[0]/CTS2# W3 DREQ_MUX[1]/RTS2# AA2 TC / SOUT2 Y4 DTR2# AA1 RI2# U4 SIN1 / R[0] V1 SOUT1 / R[1] V2 CTS1 / B[1] U3 RTS1# / G[0] W2 DTR1# T3 DCD1# / B[0] W1 RI1# F25 KBCLK F26 KBDATA G24 MCLK G23 MDATA D18 RESET C18 A[0] A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 <td>AD1</td> <td>SPKRD</td> | AD1 | SPKRD | | W4 DACK_ENC[2] / SIN2 Y1 DREQ_MUX[0]/CTS2# W3 DREQ_MUX[1]/RTS2# AA2 TC / SOUT2 Y4 DTR2# AA1 RI2# U4 SIN1 / R[0] V1 SOUT1 / R[1] V2 CTS1 / B[1] U1 DSR1# / G[0] W2 DTR1# T3 DCD1# / B[0] W1 RI1# F25 KBCLK F26 KBDATA G24 MCLK G23 MDATA D18 RESET C18 A[0] A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 < | V3 | DACK_ENC[0]/DCD2# | | Y1 DREQ_MUX[0]/CTS2# W3 DREQ_MUX[1]/RTS2# AA2 TC / SOUT2 Y4 DTR2# AA1 RI2# U4 SIN1 / R[0] V1 SOUT1 / R[1] V2 CTS1 / B[1] U3 RTS1# / G[0] W2 DTR1# T3 DCD1# / B[0] W1 RI1# F25 KBCLK F26 KBDATA G24 MCLK G23 MDATA D18 RESET C18 A[0] A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | Y2 | DACK_ENC[1]/DSR2# | | W3 DREQ_MUX[1]/RTS2# AA2 TC / SOUT2 Y4 DTR2# AA1 RI2# U4 SIN1 / R[0] V1 SOUT1 / R[1] V2 CTS1 / B[1] U3 RTS1# / G[0] W2 DTR1# T3 DCD1# / B[0] W1 RI1# F25 KBCLK F26 KBDATA G24 MCLK G23 MDATA D18 RESET C18 A[0] A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | W4 | DACK_ENC[2] / SIN2 | | AA2 TC / SOUT2 Y4 DTR2# AA1 RI2# U4 SIN1 / R[0] V1 SOUT1 / R[1] V2 CTS1 / B[1] U3 RTS1# / G[0] W2 DTR1# T3 DCD1# / B[0] W1 RI1# F25 KBCLK F26 KBDATA G24 MCLK G23 MDATA D18 RESET C18 A[0] A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | Y1 | | | Y4 DTR2# AA1 RI2# U4 SIN1 / R[0] V1 SOUT1 / R[1] V2 CTS1 / B[1] U3 RTS1# / G[0] W2 DTR1# T3 DCD1# / B[0] W1 RI1# F25 KBCLK F26 KBDATA G24 MCLK G23 MDATA D18 RESET C18 A[0] A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | W3 | DREQ_MUX[1]/RTS2# | | AA1 RI2# U4 SIN1 / R[0] V1 SOUT1 / R[1] V2 CTS1 / B[1] U3 RTS1# / G[0] W1 DSR1# / G[0] W2 DTR1# T3 DCD1# / B[0] W1 RI1# F25 KBCLK F26 KBDATA G24 MCLK G23 MDATA D18 RESET C18 A[0] A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | AA2 | TC / SOUT2 | | AA1 RI2# U4 SIN1 / R[0] V1 SOUT1 / R[1] V2 CTS1 / B[1] U3 RTS1# / G[0] W1 DSR1# / G[0] W2 DTR1# T3 DCD1# / B[0] W1 RI1# F25 KBCLK F26 KBDATA G24 MCLK G23 MDATA D18 RESET C18 A[0] A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | | | | U4 SIN1 / R[0] V1 SOUT1 / R[1] V2 CTS1 / B[1] U3 RTS1# / G[1] U1 DSR1# / G[0] W2 DTR1# T3 DCD1# / B[0] W1 RI1# F25 KBCLK F26 KBDATA G24 MCLK G23 MDATA D18 RESET C18 A[0] A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | Y4 | DTR2# | | V1 SOUT1 / R[1] V2 CTS1 / B[1] U3 RTS1# / G[0] W1 DSR1# / G[0] W2 DTR1# T3 DCD1# / B[0] W1 RI1# F25 KBCLK F26 KBDATA G24 MCLK G23 MDATA D18 RESET C18 A[0] A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | AA1 | RI2# | | V2 CTS1 / B[1] U3 RTS1# / G[1] U1 DSR1# / G[0] W2 DTR1# T3 DCD1# / B[0] W1 RI1# F25 KBCLK F26 KBDATA G24 MCLK G23 MDATA D18 RESET C18 A[0] A17 A[1] D17
A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | U4 | SIN1 / R[0] | | U3 RTS1# / G[1] U1 DSR1# / G[0] W2 DTR1# T3 DCD1# / B[0] W1 RI1# F25 KBCLK F26 KBDATA G24 MCLK G23 MDATA D18 RESET C18 A[0] A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | V1 | SOUT1 / R[1] | | U1 DSR1# / G[0] W2 DTR1# T3 DCD1# / B[0] W1 RI1# F25 KBCLK F26 KBDATA G24 MCLK G23 MDATA D18 RESET C18 A[0] A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | | CTS1 / B[1] | | W2 DTR1# T3 DCD1# / B[0] W1 RI1# F25 KBCLK F26 KBDATA G24 MCLK G23 MDATA D18 RESET C18 A[0] A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | U3 | RTS1# / G[1] | | T3 DCD1# / B[0] W1 RI1# F25 KBCLK F26 KBDATA G24 MCLK G23 MDATA D18 RESET C18 A[0] A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | | | | W1 RI1# F25 KBCLK F26 KBDATA G24 MCLK G23 MDATA D18 RESET C18 A[0] A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | | DTR1# | | F25 KBCLK F26 KBDATA G24 MCLK G23 MDATA D18 RESET C18 A[0] A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | Т3 | DCD1# / B[0] | | F26 KBDATA G24 MCLK G23 MDATA D18 RESET C18 A[0] A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | W1 | RI1# | | F26 KBDATA G24 MCLK G23 MDATA D18 RESET C18 A[0] A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | | | | G24 MCLK G23 MDATA D18 RESET C18 A[0] A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | F25 | | | G23 MDATA D18 RESET C18 A[0] A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | F26 | | | D18 RESET C18 A[0] A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | G24 | | | C18 A[0] A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | G23 | MDATA | | C18 A[0] A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | | | | A17 A[1] D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | | RESET | | D17 A[2] B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | | | | B16 A[3] C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | | | | C17 A[4] A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | | | | A16 A[5] B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | | | | B15 A[6] A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | | | | A15 A[7] C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | | | | C16 A[8] B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | | | | B14 A[9] D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | | | | D15 A[10] A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | | = = | | A14 A[11] C15 A[12] B13 A[13] D13 A[14] A13 A[15] | | | | C15 A[12] B13 A[13] D13 A[14] A13 A[15] | | | | B13 A[13] D13 A[14] A13 A[15] | | | | D13 A[14] A13 A[15] | | | | A13 A[15] | | = = | | | | | | C14 A[16] | | | | | C14 | A[16] | | B12 A[17] C13 A[18] A12 A[19] B11 A[20] A11 A[21] D12 A[22] B10 A[23] C11 A[24] A10 A[25] D10 D[0] B9 D[1] C10 D[2] A9 D[3] B8 D[4] C9 D[5] B7 D[6] D8 D[7] A7 D[8] B6 D[9] D7 D[10] A6 D[11] C7 D[12] A5 D[13] C6 D[14] B4 D[15] B22 IORD# D22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# | Pin # | Pin Name | |--|-------|----------| | A12 A[19] B11 A[20] A11 A[21] D12 A[22] B10 A[23] C11 A[24] A10 A[25] D10 D[0] B9 D[1] C10 D[2] A9 D[3] B8 D[4] C9 D[5] B7 D[6] D8 D[7] A7 D[8] B6 D[9] D7 D[10] A6 D[11] C7 D[12] A5 D[13] C6 D[14] B4 D[15] B22 IORD# D22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C23 CE2# C20 VS1# A19 VS2# D20 VCC5_EN | B12 | A[17] | | B11 A[20] A11 A[21] D12 A[22] B10 A[23] C11 A[24] A10 A[25] D10 D[0] B9 D[1] C10 D[2] A9 D[3] B8 D[4] C9 D[5] B7 D[6] D8 D[7] A7 D[8] B6 D[9] D7 D[10] A6 D[11] C7 D[12] A5 D[13] C6 D[14] B4 D[15] B22 IORD# D22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C20 VS1# A19 VS2# C10 VCC5_EN | C13 | A[18] | | A11 A[21] D12 A[22] B10 A[23] C11 A[24] A10 A[25] D10 D[0] B9 D[1] C10 D[2] A9 D[3] B8 D[4] C9 D[5] B7 D[6] D8 D[7] A7 D[8] B6 D[9] D7 D[10] A6 D[11] C7 D[12] A5 D[13] C6 D[14] B4 D[15] B22 IORD# D22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B24 CD1# A24 CD2# B23 CE1# C20 VS1# | A12 | A[19] | | D12 A[22] B10 A[23] C11 A[24] A10 A[25] D10 D[0] B9 D[1] C10 D[2] A9 D[3] B8 D[4] C9 D[5] B7 D[6] D8 D[7] A7 D[8] B6 D[9] D7 D[10] A6 D[11] C7 D[12] A5 D[13] C6 D[14] B4 D[15] B22 IORD# D22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B24 CD1# A24 CD2# B23 CE1# C20 VS1# A19 VS2# | B11 | A[20] | | B10 A[23] C11 A[24] A10 A[25] D10 D[0] B9 D[1] C10 D[2] A9 D[3] B8 D[4] C9 D[5] B7 D[6] D8 D[7] A7 D[8] B6 D[9] D7 D[10] A6 D[11] C7 D[12] A5 D[13] C6 D[14] B4 D[15] B22 IORD# D22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C20 VS1# A19 VS2# D20 VCC5_EN | A11 | A[21] | | C11 A[24] A10 A[25] D10 D[0] B9 D[1] C10 D[2] A9 D[3] B8 D[4] C9 D[5] B7 D[6] D8 D[7] A7 D[8] B6 D[9] D7 D[10] A6 D[11] C7 D[12] A5 D[13] C6 D[14] B4 D[15] B22 IORD# D22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C20 VS1# A19 VS2# D20 VCC5_EN | D12 | A[22] | | A10 A[25] D10 D[0] B9 D[1] C10 D[2] A9 D[3] B8 D[4] C9 D[5] B7 D[6] D8 D[7] A7 D[8] B6 D[9] D7 D[10] A6 D[11] C7 D[12] A5 D[13] C6 D[14] B4 D[15] B22 IORD# D22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C20 VS1# A19 VS2# D20 VCC5_EN | B10 | A[23] | | D10 D[0] B9 D[1] C10 D[2] A9 D[3] B8 D[4] C9 D[5] B7 D[6] D8 D[7] A7 D[8] B6 D[9] D7 D[10] A6 D[11] C7 D[12] A5 D[13] C6 D[14] B4 D[15] B22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B29 REG# B24 CD1# A24 CD2# B23 CE1# C20 VS1# A19 VS2# D20 VCC5_EN | C11 | A[24] | | B9 D[1] C10 D[2] A9 D[3] B8 D[4] C9 D[5] B7 D[6] D8 D[7] A7 D[8] B6 D[9] D7 D[10] A6 D[11] C7 D[12] A5 D[13] C6 D[14] B4 D[15] B22 IORD# D22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C20 VS1# A19 VS2# D20 VCC5_EN | A10 | A[25] | | C10 D[2] A9 D[3] B8 D[4] C9 D[5] B7 D[6] D8 D[7] A7 D[8] B6 D[9] D7 D[10] A6 D[11] C7 D[12] A5 D[13] C6 D[14] B4 D[15] B22 IORD# D22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C20 VS1# A19 VS2# D20 VCC5_EN | D10 | D[0] | | A9 D[3] B8 D[4] C9 D[5] B7 D[6] D8 D[7] A7 D[8] B6 D[9] D7 D[10] A6 D[11] C7 D[12] A5 D[13] C6 D[14] B4 D[15] B22 IORD# D22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C20 VS1# A19 VS2# D20 VCC5_EN | B9 | D[1] | | B8 D[4] C9 D[5] B7 D[6] D8 D[7] A7 D[8] B6 D[9] D7 D[10] A6 D[11] C7 D[12] A5 D[13] C6 D[14] B4 D[15] B22 IORD# D22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C20 VS1# A19 VS2# D20 VCC5_EN | C10 | D[2] | | C9 D[5] B7 D[6] D8 D[7] A7 D[8] B6 D[9] D7 D[10] A6 D[11] C7 D[12] A5 D[13] C6 D[14] B4 D[15] B22 IORD# D22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C20 VS1# A19 VS2# D20 VCC5_EN | A9 | D[3] | | B7 D[6] D8 D[7] A7 D[8] B6 D[9] D7 D[10] A6 D[11] C7 D[12] A5 D[13] C6 D[14] B4 D[15] B22 IORD# D22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C20 VS1# A19 VS2# D20 VCC5_EN | B8 | D[4] | | D8 D[7] A7 D[8] B6 D[9] D7 D[10] A6 D[11] C7 D[12] A5 D[13] C6 D[14] B4 D[15] B22 IORD#
D22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C20 VS1# A19 VS2# D20 VCC5_EN | C9 | D[5] | | A7 D[8] B6 D[9] D7 D[10] A6 D[11] C7 D[12] A5 D[13] C6 D[14] B4 D[15] B22 IORD# D22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C20 VS1# A19 VS2# D20 VCC5_EN | B7 | D[6] | | B6 D[9] D7 D[10] A6 D[11] C7 D[12] A5 D[13] C6 D[14] B4 D[15] B22 IORD# D22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C20 VS1# A19 VS2# D20 VCC5_EN | D8 | D[7] | | D7 D[10] A6 D[11] C7 D[12] A5 D[13] C6 D[14] B4 D[15] B22 IORD# D22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C20 VS1# A19 VS2# D20 VCC5_EN | A7 | D[8] | | A6 D[11] C7 D[12] A5 D[13] C6 D[14] B4 D[15] B22 IORD# D22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C20 VS1# A19 VS2# D20 VCC5_EN | B6 | D[9] | | C7 D[12] A5 D[13] C6 D[14] B4 D[15] B22 IORD# D22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C23 CE2# C20 VS1# A19 VS2# D20 VCC5_EN | D7 | D[10] | | A5 D[13] C6 D[14] B4 D[15] B22 IORD# D22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C23 CE2# C20 VS1# A19 VS2# D20 VCC5_EN | A6 | D[11] | | C6 D[14] B4 D[15] B22 IORD# D22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C20 VS1# A19 VS2# D20 VCC5_EN | C7 | D[12] | | B4 D[15] B22 IORD# D22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C23 CE2# C20 VS1# A19 VS2# D20 VCC5_EN | A5 | D[13] | | B22 IORD# D22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C23 CE2# C20 VS1# A19 VS2# D20 VCC5_EN | C6 | D[14] | | D22 IOWR# D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C23 CE2# C20 VS1# A19 VS2# D20 VCC5_EN | B4 | D[15] | | D24 WP A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C23 CE2# C20 VS1# A19 VS2# D20 VCC5_EN | B22 | IORD# | | A18 BVD1 C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C23 CE2# C20 VS1# A19 VS2# D20 VCC5_EN | D22 | IOWR# | | C26 BVD2 A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C23 CE2# C20 VS1# A19 VS2# D20 VCC5_EN | D24 | WP | | A21 READY# C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C23 CE2# C20 VS1# A19 VS2# D20 VCC5_EN | | BVD1 | | C19 WAIT# A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C23 CE2# C20 VS1# A19 VS2# D20 VCC5_EN | C26 | BVD2 | | A25 INPACK# C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C23 CE2# C20 VS1# A19 VS2# D20 VCC5_EN | | READY# | | C22 OE# B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C23 CE2# C20 VS1# A19 VS2# D20 VCC5_EN | C19 | WAIT# | | B18 WE# B19 REG# B24 CD1# A24 CD2# B23 CE1# C23 CE2# C20 VS1# A19 VS2# D20 VCC5_EN | A25 | | | B19 REG# B24 CD1# A24 CD2# B23 CE1# C23 CE2# C20 VS1# A19 VS2# D20 VCC5_EN | C22 | OE# | | B24 CD1# A24 CD2# B23 CE1# C23 CE2# C20 VS1# A19 VS2# D20 VCC5_EN | B18 | WE# | | A24 CD2# B23 CE1# C23 CE2# C20 VS1# A19 VS2# D20 VCC5_EN | B19 | REG# | | B23 CE1# C23 CE2# C20 VS1# A19 VS2# D20 VCC5_EN | B24 | CD1# | | C23 CE2# C20 VS1# A19 VS2# D20 VCC5_EN | A24 | | | C20 VS1# A19 VS2# D20 VCC5_EN | B23 | CE1# | | A19 VS2#
D20 VCC5_EN | C23 | CE2# | | D20 VCC5_EN | C20 | _ | | | A19 | VS2# | | C21 VCC3 FN | D20 | _ | | 021 V 000_LIV | C21 | VCC3_EN | | Pin # | Pin Name | |-------|----------------| | B21 | VPP_PGM | | A22 | VPP_VCC | | | | | AD4 | RED | | AF4 | GREEN | | AE5 | BLUE | | AF3 | VSYNC | | AE4 | HSYNC | | AF5 | VREF_DAC | | AE6 | RSET | | AF6 | COMP | | AE3 | SDA / DDC[1] | | AF2 | SCL / DDC[0] | | | | | AE7 | B[2] | | AF7 | G[2] | | AD7 | R[2] | | AE8 | B[3] | | AC9 | G[3] | | AF8 | R[3] | | AD8 | B[4] | | AE9 | G[4] | | AF9 | R[4] | | AE10 | B[5] | | AD9 | G[5] | | AF10 | R[5] | | AC10 | RESERVED | | AD10 | FPLINE | | AE11 | FPFRAME | | AF11 | DE | | AE12 | ENAVDD | | AF12 | ENVCC | | AD11 | PWM | | | | | C8 | SCAN_ENABLE | | | | | AD5 | VDD_DAC1 | | AC5 | VDD_DAC2 | | AE17 | VDD_GCLK_PLL | | AF17 | VDD_DCLK_PLL | | K24 | VDD_ZCLK_PLL | | H25 | VDD_DEVCLK_PLL | | J24 | VDD_HCLK_PLL | | | | | Pin # Pin Name A8 RESERVED B5 RESERVED B17 RESERVED C12 RESERVED D6 VDD D11 VDD D16 VDD F4 VDD F23 VDD L4 VDD L23 VDD T4 VDD AA4 VDD AA23 VDD AC6 VDD AC7 VSS_DAC1 AC8 VDD AC7 VSS_DAC2 G26 VSS_DLL H24 VSS_DLL H24 VSS_DLL H24 VSS_DLL H24 VSS_DLL H24 VSS B25 VSS B26 VSS B27 VSS B28 VSS B29 VSS D4 VSS D19 VSS D23 <td< th=""><th>Pin#</th><th>Pin Name</th></td<> | Pin# | Pin Name | |--|--------|------------| | A23 RESERVED B5 RESERVED B17 RESERVED C12 RESERVED D6 VDD D11 VDD D16 VDD D21 VDD F4 VDD F23 VDD L4 VDD L23 VDD AA4 VDD AA4 VDD AC6 VDD AC7 VSS_DAC1 AC8 VSS_DAC2 G26 VSS_DAC2 G26 VSS_DLL H24 VSS_DLL A1 VSS A2 VSS B2 VSS B2 VSS B2 VSS B26 VSS C24 VSS D4 VSS D19 VSS D23 VSS | | I III Name | | B5 RESERVED B17 RESERVED C12 RESERVED D6 VDD D11 VDD D16 VDD D21 VDD F4 VDD F23 VDD L4 VDD L23 VDD T4 VDD AA4 VDD AA23 VDD AC6 VDD AC7 VSS_DAC1 AC8 VSS_DAC2 G26 VSS_DLL H24 VSS_DLL H24 VSS_DLL A1 VSS B2 VSS B2 VSS B2 VSS B26 VSS B27 VSS D4 VSS D4 VSS D19 VSS D23 VSS | A8 | RESERVED | | B17 RESERVED C12 RESERVED D6 VDD D11 VDD D16 VDD D21 VDD F4 VDD F23 VDD L4 VDD L23 VDD AA4 VDD AA23 VDD AC6 VDD AC7 VSS_DAC1 AC8 VDD AC7 VSS_DAC2 G26 VSS_DAC2 G26 VSS_DLL H24 VSS_DLL H24 VSS_DLL A1 VSS B2 VSS B2 VSS B2 VSS B26 VSS B27 VSS D4 VSS D9 VSS D19 VSS D23 VSS | A23 | RESERVED | | C12 RESERVED D6 VDD D11 VDD D16 VDD D21 VDD F4 VDD F23 VDD L4 VDD L23 VDD T4 VDD AA4 VDD AC6 VDD AC7 VSS_DAC1 AC8 VDD AC7 VSS_DAC2 G26 VSS_DLL H24 VSS_DLL A1 VSS A2 VSS B2 VSS B2 VSS B26 VSS B26 VSS C24 VSS D9 VSS D19 VSS D23 VSS | B5 | RESERVED | | D6 VDD D11 VDD D16 VDD F4 VDD F23 VDD L4 VDD L23 VDD T4 VDD AA4 VDD AA23 VDD AC6 VDD AC11 VDD AC21 VDD AC7 VSS_DAC1 AD6 VSS_DAC2 G26 VSS_DLL H24 VSS_DLL A1 VSS A2 VSS B2 VSS B2 VSS B26 VSS D4 VSS D9 VSS D19 VSS D23 VSS | B17 | RESERVED | | D11 VDD D16 VDD D21 VDD F4 VDD F23 VDD L4 VDD L23 VDD T4 VDD AA4 VDD AA23 VDD AC6 VDD AC11 VDD AC16 VDD AC21 VDD AC7 VSS_DAC1 AD6 VSS_DAC2 G26 VSS_DLL H24 VSS_DLL A2 VSS B2 VSS B2 VSS B2 VSS B26 VSS D4 VSS D9 VSS D19 VSS D23 VSS H4 VSS | C12 | RESERVED | | D11 VDD D16 VDD D21 VDD F4 VDD F23 VDD L4 VDD L23 VDD T4 VDD AA4 VDD AA23 VDD AC6 VDD AC11 VDD AC16 VDD AC21 VDD AC7 VSS_DAC1 AD6 VSS_DAC2 G26 VSS_DLL H24 VSS_DLL A2 VSS B2 VSS B2 VSS B2 VSS B26 VSS D4 VSS D9 VSS D19 VSS D23 VSS H4 VSS | | | | D16 VDD D21 VDD F4 VDD F23 VDD L4 VDD L23 VDD T4 VDD AA4 VDD AA23 VDD AC6 VDD AC11 VDD AC21 VDD AC7 VSS_DAC1 AD6 VSS_DAC2 G26 VSS_DLL H24 VSS_DLL A1 VSS A2 VSS B2 VSS B2 VSS B26 VSS C3 VSS D4 VSS D9 VSS D19 VSS D23 VSS | D6 | | | D21 VDD F4 VDD F23 VDD L4 VDD L23 VDD T4 VDD AA4 VDD AA23 VDD AC6 VDD AC11 VDD AC21 VDD AC7 VSS_DAC1 AD6 VSS_DAC2 G26 VSS_DLL H24 VSS_DLL A1 VSS A2 VSS B2 VSS B2 VSS B26 VSS C3 VSS D4 VSS D9 VSS D19 VSS D23 VSS | D11 | VDD | | F4 VDD F23 VDD L4 VDD L23 VDD T4 VDD AA4 VDD AA23 VDD AC6 VDD AC11 VDD AC21 VDD AC7 VSS_DAC1 AD6 VSS_DAC2 G26 VSS_DLL H24 VSS_DLL A1 VSS A2 VSS B2 VSS B2 VSS B26 VSS C3 VSS D4 VSS D9 VSS D19 VSS D23 VSS H4 VSS | D16 | VDD | | F23 VDD L4 VDD L23 VDD T4 VDD T23 VDD AA4 VDD AC6 VDD AC11 VDD AC21 VDD AC7 VSS_DAC1 AD6 VSS_DAC2 G26 VSS_DLL H24 VSS_DLL A1 VSS A2 VSS B2 VSS B25 VSS B26 VSS C3 VSS C4 VSS D4 VSS D9 VSS D19 VSS D23 VSS | D21 | VDD | | L4 VDD L23 VDD T4 VDD T23 VDD AA4 VDD AC6 VDD AC11 VDD AC21 VDD AC7 VSS_DAC1 AD6 VSS_DAC2 G26 VSS_DLL H24 VSS_DLL A1 VSS A2 VSS B2 VSS B2 VSS B26 VSS C3 VSS D4 VSS D9 VSS D19 VSS D23 VSS | F4 | VDD | | L23 VDD T4 VDD T23 VDD AA4 VDD AC6 VDD AC11 VDD AC16 VDD AC21 VDD AC7 VSS_DAC1 AD6 VSS_DAC2 G26 VSS_DLL H24 VSS_DLL A1 VSS A2 VSS B2 VSS B2 VSS B26 VSS C3 VSS C4 VSS D9 VSS D14 VSS D19 VSS D23 VSS | F23 | VDD | | T4 VDD T23 VDD AA4 VDD AC6 VDD AC11 VDD AC21 VDD AC7 VSS_DAC1 AD6 VSS_DAC2 G26 VSS_DLL H24 VSS_DLL A1 VSS A2 VSS B2 VSS B25 VSS B26 VSS C3 VSS C4 VSS D4 VSS D9 VSS D19 VSS D23 VSS | L4 | VDD | | T23 VDD AA4 VDD AA23 VDD AC6 VDD AC11 VDD AC21 VDD AC7 VSS_DAC1 AD6 VSS_DAC2 G26 VSS_DLL H24 VSS_DLL A1 VSS A2 VSS B2 VSS B2 VSS B26 VSS C3 VSS C4 VSS D9 VSS D14 VSS D19 VSS D23 VSS | L23 | | | AA4 VDD AA23 VDD AC6 VDD AC6 VDD AC11 VDD AC16 VDD AC21 VDD AC7 VSS_DAC1 AD6 VSS_DAC2 G26 VSS_DLL H24 VSS_DLL A1 VSS A2 VSS A26 VSS B2 VSS B2 VSS B26 VSS C3 VSS C24 VSS D4 VSS D14 VSS D19 VSS D19 VSS D19 VSS D23 VSS H4 VSS | T4 | VDD | | AA23 VDD AC6 VDD AC6 VDD AC11 VDD AC16 VDD AC21 VDD AC7 VSS_DAC1 AD6 VSS_DAC2 G26 VSS_DLL H24 VSS_DLL A1 VSS A2 VSS A2 VSS B2 VSS B2 VSS B2 VSS B26 VSS C3 VSS C24 VSS D4 VSS D9 VSS
D14 VSS D19 VSS D23 VSS H4 VSS | T23 | VDD | | AC6 VDD AC11 VDD AC16 VDD AC16 VDD AC21 VDD AC7 VSS_DAC1 AD6 VSS_DAC2 G26 VSS_DLL H24 VSS_DLL A1 VSS A2 VSS A2 VSS B2 VSS B2 VSS B26 VSS B26 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D19 VSS D23 VSS H4 VSS | AA4 | VDD | | AC11 VDD AC16 VDD AC16 VDD AC21 VDD AC7 VSS_DAC1 AD6 VSS_DAC2 G26 VSS_DLL H24 VSS_DLL A1 VSS A2 VSS A26 VSS B2 VSS B2 VSS B26 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D19 VSS D23 VSS H4 VSS | AA23 | VDD | | AC16 VDD AC21 VDD AC21 VDD AC7 VSS_DAC1 AD6 VSS_DAC2 G26 VSS_DLL H24 VSS_DLL A1 VSS A2 VSS A26 VSS B2 VSS B2 VSS B25 VSS B26 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D23 VSS H4 VSS | AC6 | VDD | | AC21 VDD AC7 VSS_DAC1 AD6 VSS_DAC2 G26 VSS_DLL H24 VSS_DLL A1 VSS A2 VSS A26 VSS B2 VSS B26 VSS B26 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D19 VSS D23 VSS H4 VSS | AC11 | VDD | | AC7 VSS_DAC1 AD6 VSS_DAC2 G26 VSS_DLL H24 VSS_DLL A1 VSS A2 VSS A26 VSS B2 VSS B2 VSS B26 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D19 VSS D23 VSS H4 VSS | AC16 | VDD | | AD6 VSS_DAC2 G26 VSS_DLL H24 VSS_DLL A1 VSS A2 VSS A26 VSS B2 VSS B25 VSS B26 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D19 VSS D23 VSS H4 VSS | AC21 | VDD | | AD6 VSS_DAC2 G26 VSS_DLL H24 VSS_DLL A1 VSS A2 VSS A26 VSS B2 VSS B25 VSS B26 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D19 VSS D23 VSS H4 VSS | | | | G26 VSS_DLL H24 VSS_DLL A1 VSS A2 VSS A26 VSS B2 VSS B25 VSS B26 VSS C3 VSS C4 VSS D9 VSS D14 VSS D19 VSS D23 VSS H4 VSS | AC7 | VSS_DAC1 | | H24 VSS_DLL A1 VSS A2 VSS A26 VSS B2 VSS B25 VSS B26 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D23 VSS H4 VSS | AD6 | VSS_DAC2 | | A1 VSS A2 VSS A26 VSS B2 VSS B25 VSS B26 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D19 VSS D23 VSS H4 VSS | G26 | VSS_DLL | | A2 VSS A26 VSS B2 VSS B25 VSS B26 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D23 VSS H4 VSS | H24 | VSS_DLL | | A26 VSS B2 VSS B25 VSS B26 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D23 VSS H4 VSS | A1 | VSS | | B2 VSS B25 VSS B26 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D23 VSS H4 VSS | A2 | VSS | | B25 VSS B26 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D19 VSS D19 VSS D23 VSS H4 VSS | A26 | VSS | | B26 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D23 VSS H4 VSS | B2 | VSS | | C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D19 VSS D23 VSS H4 VSS | B25 | VSS | | C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D23 VSS H4 VSS | B26 | VSS | | D4 VSS D9 VSS D14 VSS D19 VSS D23 VSS H4 VSS | C3 | VSS | | D9 VSS D14 VSS D19 VSS D23 VSS H4 VSS | C24 | VSS | | D14 VSS D19 VSS D23 VSS H4 VSS | D4 | VSS | | D19 VSS D23 VSS H4 VSS | D9 | VSS | | D23 VSS
H4 VSS | D14 | VSS | | H4 VSS | D19 | VSS | | | D23 | VSS | | | H4 | VSS | | J23 VSS | J23 | VSS | | L11:16 VSS | L11:16 | VSS | | M11:16 VSS | M11:16 | VSS | | Pin # | Pin Name | |--------|----------| | N4 | VSS | | N11:16 | VSS | | P11:16 | VSS | | P23 | VSS | | R11:16 | VSS | | T11:16 | VSS | | V4 | VSS | | W23 | VSS | | AC4 | VSS | | AC8 | VSS | | AC13 | VSS | | AC18 | VSS | | AC23 | VSS | | AD3 | VSS | | AD24 | VSS | | AE1 | VSS | | AE2 | VSS | | AE25 | VSS | | AF1 | VSS | | AF25 | VSS | | AF26 | VSS | # 3. STRAP OPTION This chapter defines the STPC Industrial Strap Options and their location. | Memory
Data
Lines | Refer to | Designation | Location | Actual
Settings | Set to '0' | Set to '1' | |-------------------------|----------------|-------------------------------|----------------------|------------------------------|------------------------|---------------------| | MD16 | | Reserved | Index 4C,bit 0 | Pull up | | | | MD17 | PCI Clock | PCI_CLKO Divisor | Index 4C,bit 1 | User defined | HCLK / 2 | HCLK / 3 | | MD18 | Host Clock | HCLK Pad Direction | Index 4C,bit 2 | Pull up | External | Internal | | MD19 | Graphics Clock | GCLK2x Pad Direction | Index 4C,bit 3 | Pull up | External | Internal | | MD20 | DOT Clock | DCLK Pad Direction | Index 4C,bit 4 | User defined | External | Internal | | MD21 | | Reserved | | Pull up | | | | MD22 | | Reserved | Index 5F,bit 1 | Pull up | | | | MD23 | | Reserved | Index 5F,bit 2 | Pull up | | | | MD24 | | | Index 5F,bit 3 | | | | | MD25 | HCLK | HCLK PLL Speed | Index 5F,bit 4 | User defined | See Sect | ion 3.1.6. | | MD26 | | | Index 5F,bit 5 | | | | | MD27 | | Reserved | | Pull down | | | | MD28 | | Reserved | | Pull down | | | | MD29 | | Reserved | | Pull down | | | | MD30 | | Reserved | | Pull down | | | | MD31 | | Reserved | | Pull down | | | | MD32 | | Reserved | | Pull down | | | | MD33 | | Reserved | | Pull up | | | | MD34 | | Reserved | | Pull down | | | | MD35 | | Reserved | | Pull up | | | | MD 36 | | Reserved | | Pull up | | | | MD 37 | | Reserved | | Pull up | | | | MD 38 | | Reserved | | Pull up | | | | MD 39 | | Reserved | | Pull up | | | | MD 40 | | PCMCIA or PCI I/F | 3C,bit 0 | User defined | PCI | PCMCIA | | MD 41 | | Local Bus or ISA I/F | 3C,bit 1 | User defined | ISA | Local Bus | | MD 42 | | KeyBoard & Mouse | 3C,bit 2 | User defined | External | Internal | | MD 43 | | Parallel Port | 3C,bit 3 | User defined | External | Internal | | MD 44 | Serial Port | UART1 | 3C,bit 4 | User defined | External | Internal | | MD 45
MD 46 | | UART2
Reserved | 3C,bit 5 | User defined Pull down | External | Internal | | | | | 3C,bit 6 | | | | | MD 47 | TET | Reserved TET interface | 3C,bit 7 | Pull down | Disable | Enable | | MD 48
MD 49 | TFT | TFT interface 5V Availability | 3D,bit 0
3D,bit 1 | User defined
User defined | Disable
Unavailable | Enable
Available | | MD 50 | | 3.3V Availability | 3D,bit 2 | User defined | Unavailable | Available | | MD 51 | Cardbus Socket | x.xV Available | 3D,bit 2
3D,bit 3 | User defined | Unavailable | Available | | MD 51 | | y.yV Available | 3D,bit 3
3D,bit 4 | User defined | Unavailable | Available | | MD 52 | | Reserved | 55,5it 4 | Pull up | Jilavallable | Available | | MD 56 | | Reserved | | Pull up | | | | MD 57 | | Reserved | | Pull down | | | | MD 58 | | Reserved | | Pull up | | | | MD 59 | CPU | clock speed factor | | User defined | X1 | X2 | | 2 33 | | order apaca radior | | Soci delined | 7.1 | //_ | #### 3.1. STRAP OPTION REGISTER DESCRIPTION #### 3.1.1. STRAP REGISTER 0 This register reflect the status of pins MD[7:0] respectively. They are expected to be connected on the system board to the SIMM configuration pins as follows: Strap0 Access = 0022h/0023h Regoffset = 04Ah 7 6 5 4 3 2 1 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | |-----|--|-----|-----|-----|-----|-----|---|--|--| | MD7 | MD6 | MD5 | MD4 | MD3 | MD2 | Rsv | | | | | | This register defaults to the values sampled on MD[7:0] pins after reset | | | | | | | | | | Bit Number Sampled | Mnemonic | Description | |--------------------|----------|--------------| | Bit 7-2 | MD[7:2] | User defined | | Bits 1-0 | Rsv | Reserved. | #### 3.1.2. STRAP REGISTER 1 This register reflect the status of pins MD[15:8] respectively. They are expected to be connected on the system board to the SIMM configuration pins as follows: | Strap1 Access = $0022h/0023h$ Regoffset = 04 | | | | | | | goffset = 04Bh | | |--|---|--|--|--|--|--|----------------|--| | 7 | 7 6 5 4 3 2 1 0 | | | | | | | | | MD15 | MD15 MD14 MD13 MD12 MB11 MD10 Rsv | | | | | | | | | | This register defaults to the values sampled on MD[15:8] pins after reset | | | | | | | | | Bit Number Sampled | Mnemonic | Description | |--------------------|----------|--------------| | Bit 7-2 | MD[7:2] | User defined | | Bits 1-0 | Rsv | Reserved. | ### 3.1.3. STRAP REGISTER 2 Bits 4-0 of this register reflect the status of pins MD[20:16] respectively. Bit 5 of this register reflect the status of pin MD[23]. Bit 4 is writeable, writes to other bits in this register have no effect. | Strap2 | Strap2 Access = $0022h/0023h$ Regoffset = $04C$ | | | | | | | | | |---|---|--|--|--|--|------|-----|--|--| | 7 | 7 6 5 4 3 2 1 0 | | | | | | | | | | Rsv MD20 MD19 MD18 N | | | | | | MD17 | Rsv | | | | This register defaults to the values sampled on MD[23] and MD[20:16] pins after reset | | | | | | | | | | | Bit Number Sampled | Mnemonic | Description | |--------------------|----------|--| | Bits 7-5 | Rsv | Reserved. | | Bit 4 | MD20 | This bit reflects the value sampled on MD[20] pin and controls the Dot clock (DCLK) source. Note This bit is writeable as well as readable. | | Bit 3 | MD19 | This bit reflects the value sampled on MD[19] pin and controls the Graphics clock source. | | Bit 2 | MD18 | This bit reflects the value sampled on MD[18] pin and controls the Host/CPU clock source as follows: setting to '0': External. HCLK pin is an input, setting to '1': Internal. HCLK pin is an output and is connected to the internal frequency synthesizer output. | | Bit 1 | MD17 | This bit reflects the value sampled on MD[17] pin and controls the PCI clock output as follows: Setting to '0', the PCI clock output = HCLK / 3 | | | | Setting to '1', the PCI clock output = HCLK / 2. | | Bit 0 | Rsv | Reserved. | ## 3.1.4. STRAP REGISTER 3 Bits 7-0 of this register reflect the status of pins MD[47:40] respectively. Strap3 Access = 0022h/0023h Regoffset = 03Ch | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |--|----|------|------|------|------|------|------| | R | SV | MD45 | MD44 | MD43 | MD42 | MD41 | MD40 | | This register
defaults to the values sampled on MD[47:40] pins after reset | | | | | | | | | Bit Number Sampled | Mnemonic | Description | | | |--------------------|----------|--|--|--| | Bits 7-6 | Rsv | Reserved. | | | | Bit 5 | MD45 | UART2 internal or external. This bit reflects the value sampled on MD[45] pin and controls the UART2 I/F as follows: Setting to '0', UART2 is external. Setting to '1', UART2 is internal. | | | | Bit 4 | MD44 | UART1 internal or external and additional TFT outputs. This bit reflects the value sampled on MD[44] pin and controls the UART1 I/F and the additional TFT I/F as follows: Setting to '0', UART1 is external and an additional 6 TFT outputs (lowest bits - 2 red, 2 green and 2 blue) are enabled. Setting to '1', UART1 is internal. | | | | Bit 3 | MD43 | Parallel Port internal or external. This bit reflects the value sampled of MD[43] pin and controls the Parallel Port I/F as follows: Setting to '0', the Parallel Port is external. Setting to '1', the Parallel Port is internal. | | | | Bit 2 | MD42 | MD42 KB/Mouse internal or external. This bit reflects the value sampled MD[42] pin and controls the KB/Mouse controller I/F as follows: Setting to '0', the KB/Mouse controller is external. Setting to '1', the KB/Mouse controller is internal. | | | | Bit 1 | MD41 | Local Bus I/F or ISA I/F. This bit reflects the value sampled on MD[41] pin and sets whether the Local Bus I/F or the ISA I/F is available at the device I/F as follows: Setting to '0', selects the ISA I/F. Setting to '1', selects the Local Bus I/F. | | | | Bit 0 | MD40 | PCMCIA I/F or PCI I/F. This bit reflects the value sampled on MD[40 pin and sets whether the PCMCIA I/F or the PCI I/F is available at the device I/F as follows: Setting to '0', selects the PCI I/F. Setting to '1', selects the PCMCIA I/F. | | | ### 3.1.5. STRAP REGISTER 4 Bits 5-0 of this register reflect the status of pins MD[53:48] respectively. Strap4 Access = 0022h/0023h Regoffset = 03Dh 7 6 5 4 3 2 0 1 Rsv MD52 MD51 MD50 MD49 MD48 This register defaults to the values sampled on MD[53:48] pins after reset | Bit Number Sampled | Mnemonic | Description | | | |--------------------|----------|--|--|--| | Bits 7-5 | Rsv | Reserved. | | | | Bit 4 | MD52 | y.y V present on board. This bit reflects the value sampled on MD[52] pin and is used to notify the Cardbus socket management unit if the y.y V vcc voltage (where y.y is less than x.x) is present on board as follows Setting to '0', y.y V Vcc voltage is not available. Setting to '1': y.y V Vcc voltage is available. | | | | Bit 3 | MD51 | x.x V present on board. This bit reflects the value sampled on MD[51] pin and is used to notify the Cardbus socket management unit if the x.x V vcc voltage (where x.x is less than 3.3) is present on board as follows: Setting to '0', x.x V Vcc voltage is not available. Setting to '1': x.x V Vcc voltage is available. | | | | Bit 2 | MD50 | 3.3 V present on board. This bit reflects the value sampled on MD[50] pin and is used to notify the Cardbus socket management unit if the 3.3 V vcc voltage is present on board as follows: Setting to '0', 3.3 V vcc voltage is not available. Setting to '1', 3.3 V vcc voltage is available. | | | | Bit 1 | MD49 | 5 V present on board. This bit reflects the value sampled on MD[49] pin and is used to notify the Cardbus socket management unit if the 5 V vcc voltage is present on board as follows: Setting to '0', 5 V vcc voltage is not available. Setting to '1', 5 V vcc voltage is available. | | | | Bit 0 | MD48 | This bit reflects the value sampled on MD[48] pin and is used to enable the TFT controller outputs. | | | ## 3.1.6. HCLK PLL STRAP REGISTER 0 Bits 5-0 of this register reflect the status of pins MD[26:21] respectively. HCLK_Strap0 Access = 0022h/0023h Regoffset = 05Fh | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |--|---|------|------|------|-----|---|-----| | Rsv | | MD26 | MD25 | MD24 | Rsv | | Rsv | | This register defaults to the values sampled on pins described below after reset | | | | | | | | | Bit Number Sampled | Mnemonic | Description | | | | |--------------------|-----------|--|--|--|--| | Bits 7-6 | Rsv | Reserved. | | | | | | | These pins reflect the value sampled on MD[26:24] pins respectively and control the Host clock Frequency synthesizer: | | | | | Bits 5-3 | MD[26:24] | 000 25 MHz 001 33 MHz 010 40 MHz 011 50 MHz 100 60 MHz 101 66 MHz 110 75 MHz 111 80 MHz | | | | | Bits 2-0 | Rsv | Reserved. | | | | #### **4 ELECTRICAL SPECIFICATIONS** #### 4.1 INTRODUCTION The electrical specifications in this chapter are valid for the STPC Industrial. #### **4.2 ELECTRICAL CONNECTIONS** #### 4.2.1 Power/Ground Connections/Decoupling Due to the high frequency of operation of the STPC Industrial, it is necessary to install and test this device using standard high frequency techniques. The high clock frequencies used in the STPC Industrial and its output buffer circuits can cause transient power surges when several output buffers switch output levels simultaneously. These effects can be minimized by filtering the DC power leads with low-inductance decoupling capacitors, using low impedance wiring, and by utilizing all of the VSS and VDD pins. #### 4.2.2 Unused Input Pins All inputs not used by the designer and not listed in the table of pin connections in Section 2 should be connected either to VDD or to VSS. Connect active-high inputs to VDD through a 20 k Ω (±10%) pull-down resistor and active-low inputs to VSS and connect active-low inputs to VCC through a 20 k Ω (±10%) pull-up resistor to prevent spurious operation. #### 4.2.3 Reserved Designated Pins Pins designated reserved should be left disconnected. Connecting a reserved pin to a pull-up resistor, pull-down resistor, or an active signal could cause unexpected results and possible circuit malfunctions. #### **4.3 ABSOLUTE MAXIMUM RATINGS** The following table lists the absolute maximum ratings for the STPC Industrial device. Stresses beyond those listed under Table 4-1 limits may cause permanent damage to the device. These are stress ratings only and do not imply that operation under any conditions other than those specified in section "Operating Conditions". Exposure to conditions beyond those outlined in Table 4-1 may (1) reduce device reliability and (2) result in premature failure even when there is no immediately apparent sign of failure. Prolonged exposure to conditions at or near the absolute maximum ratings (Table 4-1) may also result in reduced useful life and reliability. Table 4-1. Absolute Maximum Ratings | Symbol | Parameter | Minimum | Maximum | Units | |---------------------------------|----------------------------------|---------|-----------|-------| | V_{DDx} | DC Supply Voltage | -0.3 | 4.0 | V | | V _I , V _O | Digital Input and Output Voltage | -0.3 | VDD + 0.3 | V | | V _{5T} | 5Volt Tolerance | 2.5 | 5.5 | V | | V _{ESD} | ESD Capacity (Human body mode) | | 1500 | V | | T _{STG} | Storage Temperature | -40 | +150 | °C | | T _{OPER} | Operating Temperature | -40 | +115 | °C | | P _{TOT} | Maximum Power Dissipation | - | 4.8 | W | #### 4.3.1 5V Tolerance The STPC is capable of running with I/O systems that operate at 5V such as PCI and ISA devices. Certain pins of the STPC tolerate inputs up to 5.5V. Above this limit the component is likely to sustain permanent damage. All the pin that are V_{5T} have been denoted with a * besides the Signal Name in Table 2-1 . ## **4.4 DC CHARACTERISTICS** ## **Table 4-2. DC Characteristics** Recommended Operating conditions: VDD = $3.3V \pm 0.3V$, Tcase = 0 to $100^{\circ}C$ unless otherwise specified | Symbol | Parameter | Test conditions | Min | Тур | Max | Unit | |------------------|-----------------------|--|-------|-------|----------------------|------| | V_{DD} | Operating Voltage | | 3.0 | 3.3 | 3.6 | V | | P_{DD} | Supply Power | V _{DD} = 3.3V, H _{CLK} = 66Mhz | | 3.2 | 3.9 | W | | H _{CLK} | Internal Clock | (Note 1) | | | 80 | MHz | | V_{DAC} | DAC Voltage Reference | | 1.215 | 1.235 | 1.255 | V | | V_{OL} | Output Low Voltage | I _{Load} =1.5 to 8mA depending of the pin | | | 0.5 | V | | V _{OH} | Output High Voltage | I _{Load} =-0.5 to -8mA depending of the pin | 2.4 | | | V | | V_{ILD} | Input Low Voltage | Except XTALI | -0.3 | | 0.8 | V | | | | XTALI | -0.3 | | 0.5 | V | | V _{IHD} | Input High Voltage | Except XTALI | 2.1 | | V _{DD} +0.3 | V | | | | XTALI | 2.35 | | V _{DD} +0.3 | V | | I _{LK} | Input Leakage Current | Input, I/O | -5 | | 5 | μΑ | | C _{IN} | Input Capacitance | (Note 2) | | | | pF | | C _{OUT} | Output Capacitance | (Note 2) | | | | pF | | C _{CLK} | Clock Capacitance | (Note 2) | | | | pF | #### Notes: - 1. MHz ratings refer to CPU clock frequency. - 2. Not yet released. Table 4-3. RAMDAC DC Specification | Symbol | Parameter | Min | Nom | Max | |---------|---------------------------------|----------|---------|----------| | Vref | Voltage Reference | 1.00V | 1.12V | 1.24V | | INL | Integrated Non Linear Error | - | - | 2 Isb | |
DNL | Differentiated Non Linear Error | - | - | 1lsb | | FS | Full Scale | - | - | 20mA | | FSR | Full Scale Range | 14.00 mA | 16.50mA | 19.00 mA | | LSB | Least Significant Byte Size | 54uA | 63uA | 72uA | | Zero | Zero Scale @ 7.5IRE Mode | 0.95mA | 1.44mA | 1.90mA | | Compare | DAC to DAC matching | - | - | +/- 5% | #### 4.5 AC CHARACTERISTICS Table 4-5 through Table 4-22 list the AC characteristics including output delays, input setup requirements, input hold requirements and output float delays. These measurements are based on the measurement points identified in Figure 4-1. The rising clock edge reference level VREF, and other reference levels are shown in Table 4-4 below for the STPC Industrial. Input or output signals must cross these levels during testing. Figure 4-1 shows output delay (A and B) and input setup and hold times (C and D). Input setup and hold times (C and D) are specified minimums, defining the smallest acceptable sampling window a synchronous input signal must be stable for correct operation. Table 4-4. Drive Level and Measurement Points for Switching Characteristics | Symbol | Value | Units | |------------------|-------|-------| | V _{REF} | 1.5 | V | | V _{IHD} | 3.0 | V | | $V_{\rm ILD}$ | 0.0 | V | Note: Refer to Figure 4-1. Figure 4-1. Drive Level and Measurement Points for Switching Characteristics #### 4.5.1 POWER ON SEQUENCE SYSRSTI# has no constraint on its rising time but needs to be set to high at least $10\mu s$ after power supply is stable. Strap Options are continuously sampled during SYSRSTI# low and should be stable. Once SYSRSTI# is high, they MUST NOT CHANGE until SYSRSTO# is high. # 4.5.2 PCI AC Timing characteristics **Table 4-5. PCI Bus AC Timing** | Name | Parameter | Min | Max | Unit | |------|----------------------------------|-----|-----|------| | t1 | PCI_CLKI to AD[31:0] valid | 2 | 13 | ns | | t2 | PCI_CLKI to FRAME# valid | 2 | 11 | ns | | t3 | PCI_CLKI to CBE#[3:0] valid | 2 | 12 | ns | | t4 | PCI_CLKI to PAR valid | 2 | 12 | ns | | t5 | PCI_CLKI to TRDY# valid | 2 | 13 | ns | | t6 | PCI_CLKI to IRDY# valid | 2 | 11 | ns | | t7 | PCI_CLKI to STOP# valid | 2 | 14 | ns | | t8 | PCI_CLKI to DEVSEL# valid | 2 | 11 | ns | | t9 | PCI_CLKI to PCI_GNT# valid | 2 | 14 | ns | | t10 | AD[31:0] bus setup to PCI_CLKI | 7 | | ns | | t11 | AD[31:0] bus hold from PCI_CLKI | 3 | | ns | | t12 | PCI_REQ#[2:0] setup to PCI_CLKI | 10 | | ns | | t13 | PCI_REQ#[2:0] hold from PCI_CLKI | 1 | | ns | | t14 | CBE#[3:0] setup to PCI_CLKI | 7 | | ns | | t15 | CBE#[3:0] hold to PCI_CLKI | 5 | | ns | | t16 | IRDY# setup to PCI_CLKI | 7 | | ns | | t17 | IRDY# hold to PCI_CLKI | 4 | | ns | | t18 | FRAME# setup to PCI_CLKI | 7 | | ns | | t19 | FRAME# hold from PCI_CLKI | 3 | | ns | #### 4.5.3 DRAM CONTROLLER AC TIMING CHARACTERISTICS Figure 4-2 EDO Write Mode (ref table Table 4-6) Figure 4-3 Memory Early Write Mode (ref table Table 4-6) Figure 4-4 EDO Read Mode (ref table Table 4-6) Figure 4-5 Fast Page Mode Read (ref table Table 4-6) Figure 4-6 Fast Page Mode Write (ref table Table 4-6) Figure 4-7 Refresh Cycle (ref table Table 4-6) **Table 4-6. AC Memory Timing Characteristics** | | Parameter | Min | Max | Units | |-------|--|-----------------------|-----------------------|-------| | tCRAS | HCLK (or GCLK2X) to RAS#[3:0] valid (see Note 3) | | 17 | ns | | tCCAS | HCLK (or GCLK2X) to CAS#[7:0] bus valid (see Note 3) | | 17 | ns | | tCMA | HCLK (or GCLK2X) to MA[11:0] bus valid (see Note 3) | | 17 | ns | | tCMWE | HCLK (or GCLK2X) to MWE# valid (see Note 3) | | 17 | ns | | tCMD | HCLK to MD[63:0] bus valid (see Note 3) | | 25 | ns | | tGCMD | GCLK2X to MD[63:0] bus valid (see Note 3) | | 23 | ns | | tMDG | MD[63:0] Generic hold | 0 | | ns | | tCAH | Column Address Hold Time | ≥1T _{Cycles} | | ns | | tCHR | CAS Hold Time | ≥1T _{Cycles} | | ns | | tCOH | Data Hold Time from CAS Low | Note 1 | | ns | | tCPN | CAS Precharge Time | 1T _{Cycles} | | ns | | tCRP | CAS to RAS Precharge Time | | ≤1T _{Cycles} | ns | | tCRW | CAS Low to RAS HIGH (Write only) | ≥1T _{Cycles} | • | ns | | tCSR | CAS Setup Time | ≥1T _{Cycles} | | ns | | tDS | Data In Setup Time | ≥1T _{Cycles} | | ns | | tRAH | Row Address Hold Time | ≥1T _{Cycles} | | ns | | tRAS | RAS Pulse Width | ≥3T _{Cycles} | | ns | | tRC | Random Read or Write Time Cycle | ≥6T _{Cycles} | | ns | | tRCD | RAS to CAS Delay Time | ≥1T _{Cycles} | | ns | Note 1; $T_{Cycle} \times n_{CAS} + (t_{Data off} - t_{CAS out})$ Where T_{Cvcle} is the number of clock cycles. n_{CAS} is the number of CAS Cycles (see Section 6.7.) T_{Dataoff} is the Generic Datahold $t_{\mbox{\footnotesize CAS}\mbox{\footnotesize Out}}$ the CLK (either HCLK or GCLK2X) to CAS Low. $\rm T_{\rm Data off}$ and $\rm t_{\rm CAS~Out}$ are used to refine the timing programming. Note 2; Value to be derived from CAS pulse width which is programmable (see Section 6.7.). Note 3; for all chronograms, CLK refers to the clock signal that the program is using. It can be either HCLK or GCLK2X **Table 4-6. AC Memory Timing Characteristics** | | Parameter | Min | Max | Units | |------|--|-----------------------|-----|-------| | tRCH | Read Command Hold Time | ≥1T _{Cycles} | | ns | | tRCS | Read Command Setup Time | ≥1T _{Cycles} | | ns | | tRP | RAS Precharge Time | ≥2T _{Cycles} | | ns | | tWCH | Write Command Hold Time | ≥1T _{Cycles} | | ns | | tWCS | WE Command Setup Time | ≥1T _{Cycles} | | ns | | tWRH | WE Hold Time | Note 2 | | ns | | tWRP | WE Setup Time | ≥1T _{Cycles} | | ns | | tAR | Column Address Hold Time from RAS | ≥1T _{Cycles} | | ns | | tRAD | RAS to valid Column Address Delay | ≥1T _{Cycles} | | ns | | tRAL | Column Address to RAS Setup Time | ≥2T _{Cycles} | | ns | | tWCR | Write Command Hold Reference to RAS | ≥1T _{Cycles} | | ns | | tRWL | Write Command to RAS Setup Time (Note 2) | ≥1T _{Cycles} | | ns | | tCWL | Write Command to CAS Setup Time (Note 2) | ≥1T _{Cycles} | | ns | | tDHR | Data Hold Reference to RAS | ≥3T _{Cycles} | | ns | | tRPC | RAS High to CAS Low Precharge | ≥1T _{Cycles} | | ns | | tCRS | CAS Before RAS Setup Time | ≥1T _{Cycles} | | ns | | tCHR | CAS Before RAS Hold Time | ≥1T _{Cycles} | | ns | | tCSH | CAS Hold Time after RAS | ≥1T _{Cycles} | | ns | Note 1; T_{Cycle} x n_{CAS} + (t_{Data off} - t_{CAS out}) Where T_{Cycle} is the number of clock cycles. n_{CAS} is the number of CAS Cycles (see Section 6.7.) T_{Dataoff} is the Generic Datahold $t_{\mbox{\footnotesize CAS}\mbox{\footnotesize Out}}$ the CLK (either HCLK or GCLK2X) to CAS Low. $T_{\mbox{\scriptsize Dataoff}}$ and $t_{\mbox{\scriptsize CAS Out}}$ are used to refine the timing programming. Note 2; Value to be derived from CAS pulse width which is programmable (see Section 6.7.). Note 3; for all chronograms, CLK refers to the clock signal that the program is using. It can be either HCLK or GCLK2X Table 4-7. Graphics Adapter (VGA) AC Timing | Name | Parameter | Min | Max | Unit | |------|---------------------|-----|-----|------| | t18 | DCLK to VSYNC valid | | 27 | ns | | t19 | DCLK to HSYNC valid | | 27 | ns | ## 4.5.4 ISA INTERFACE AC TIMING CHARACTERISTICS Figure 4-8 ISA Cycle (ref table Table 4-8) Note 1; Stands for SMEMR#, SMEMW#, MEMR#, MEMW#, IOR# & IOW#. Note; The clock has not been represented as it cannot be accurately represented depending on the ISA Slave mode. Table 4-8. ISA Bus AC Timing | Name | Param | eter | Min | Max | Units | |-------------|--|--|-----|-----|--------| | 2 | LA[23: | 17] valid before ALE# negated | 5T | | Cycles | | 3 | LA[23:17] valid before MEMR#, MEMW# asserted | | | | | | | 3a | Memory access to 16 bit ISA Slave | 5T | | Cycles | | | 3b | Memory access to 8 bit ISA Slave | 5T | | Cycles | | 9 | SA[19: | 0] & SBHE valid before ALE# negated | 1T | | Cycles | | 10 | SA[19 | SA[19:0] & SBHE valid before MEMR#, MEMW# asserted | | | | | | 10a Memory access to 16 bit ISA Slave | | 2T | | Cycles | | | 10b | Memory access to 8 bit ISA Slave | 2T | | Cycles | | 10 | SA[19 | :0] & SHBE valid before SMEMR#, SMEMW# asser | ted | • | | | | 10c | Memory access to 16 bit ISA Slave | 2T | | Cycle | | | 10d | Memory access to 8 bit ISA Slave | 2T | | Cycle | | 10e | SA[19: | 0] & SBHE valid before IOR#, IOW# asserted | 2T | | Cycles | | 11 | XTAL | O to IOW# valid | | • | • | | Note; The s | ignal num | bering refers to Table 4-8 | | | | Table 4-8. ISA Bus AC Timing | Name | Parame | eter | Min | Max | Units | |------|-------------|--|-----------|-----|-------| | | 11a | Memory access to 16 bit ISA Slave - 2BCLK | 2T | | Cycle | | | 11b | Memory access to 16 bit ISA Slave - Standard 3BCLK | 2T | | Cycle | | | 11c | Memory access to 16 bit ISA Slave - 4BCLK | 2T | | Cycle | | | 11d | Memory access to 8 bit ISA Slave - 2BCLK | 2T | | Cycle | | 11e | | Memory access to 8 bit ISA Slave - Standard 3BCLK | 2T | | Cycle | | 12 | ALE# a | asserted before ALE# negated | 1T | | Cycle | | 13 | ALE# | asserted before MEMR#, MEMW# asserted | | | | | | 13a | Memory Access to 16 bit ISA Slave | 2T | | Cycle | | | 13b | Memory Access to 8 bit ISA Slave | 2T | | Cycle | | 13 | ALE# | asserted before SMEMR#, SMEMW# asserted | | | | | | 13c | Memory Access to 16 bit ISA Slave | 2T | | Cycle | | | 13d | Memory Access to 8 bit ISA Slave | 2T | | Cycle | | 13e | ALE# a | asserted before IOR#, IOW# asserted | 2T | | Cycle | | 14 | ALE# | asserted before AL[23:17] | | | - | | | 14a | Non compressed | 15T | | Cycle | | | 14b | Compressed | 15T | | Cycle | | 15 | ALE# | asserted before MEMR#, MEMW#, SMEMR#, SMEMW | # negated | | | | | 15a | Memory Access to 16 bit ISA Slave- 4 BCLK | 11T | | Cycle | | | 15e | Memory Access to 8 bit ISA Slave- Standard Cycle | 11T | | Cycle | | 18a | ALE# r | negated before LA[23:17] invalid (non compressed) |
14T | | Cycle | | 18a | ALE# r | negated before LA[23:17] invalid (compressed) | 14T | | Cycle | | 22 | MEMR | #, MEMW# asserted before LA[23:17] | | | | | | 22a | Memory access to 16 bit ISA Slave. | 13T | | Cycle | | | 22b | Memory access to 8 bit ISA Slave. | 13T | | Cycle | | 23 | MEMR | #, MEMW# asserted before MEMR#, MEMW# negated | l | | | | | 23b | Memory access to 16 bit ISA Slave Standard cycle | 9T | | Cycle | | | 23e | Memory access to 8 bit ISA Slave Standard cycle | 9T | | Cycle | | 23 | SMEM | R#, SMEMW# asserted before SMEMR#, SMEMW# ne | gated | | | | | 23h | Memory access to 16 bit ISA Slave Standard cycle | 9T | | Cycle | | | 231 | Memory access to 16 bit ISA Slave Standard cycle | 9T | | Cycle | | 23 | IOR#, | IOW# asserted before IOR#, IOW# negated | | | | | | | Memory access to 16 bit ISA Slave Standard cycle | 9T | | Cycle | | | 23r | Memory access to 8 bit ISA Slave Standard cycle | 9T | | Cycle | | 24 | MEMR | #, MEMW# asserted before SA[19:0] | | | | | | | Memory access to 16 bit ISA Slave Standard cycle | 10T | | Cycle | | | 24d | Memory access to 8 bit ISA Slave - 3BLCK | 10T | | Cycle | | | 24e | Memory access to 8 bit ISA Slave Standard cycle | 10T | | Cycle | | | 24f | Memory access to 8 bit ISA Slave - 7BCLK | 10T | | Cycle | | 24 | SMEM | R#, SMEMW# asserted before SA[19:0] | | | | | | 24h | Memory access to 16 bit ISA Slave Standard cycle | 10T | | Cycle | | | 24i | Memory access to 16 bit ISA Slave - 4BCLK | 10T | | Cycle | | | 24k | Memory access to 8 bit ISA Slave - 3BCLK | 10T | | Cycle | | | 241 | Memory access to 8 bit ISA Slave Standard cycle | 10T | | Cycle | | 24 | IOR#, | IOW# asserted before SA[19:0] | | | | | 24 | | I/O access to 16 bit ISA Slave Standard cycle | 19T | | Cycle | | | 240 | I/O access to 10 bit IOA blave standard cycle | | | - , | # **ELECTRICAL SPECIFICATIONS** Table 4-8. ISA Bus AC Timing | Name | Param | | Min | Max | Unit | |------|-------|--|---------------|-----|------| | 25 | MEMF | R#, MEMW# asserted before next ALE# asserted | | | | | | 25b | Memory access to 16 bit ISA Slave Standard cycle | 10T | | Cycl | | | 25d | Memory access to 8 bit ISA Slave Standard cycle | 10T | | Cycl | | 25 | SMEN | IR#, SMEMW# asserted before next ALE# asserted | | _ | | | | 25e | Memory access to 16 bit ISA Slave - 2BCLK | 10T | | Cycl | | | 25f | Memory access to 16 bit ISA Slave Standard cycle | 10T | | Cycl | | | 25h | Memory access to 8 bit ISA Slave Standard cycle | 10T | | Cycl | | 25 | IOR#, | IOW# asserted before next ALE# asserted | | | | | | 25i | I/O access to 16 bit ISA Slave Standard cycle | 10T | | Cycl | | | 25k | I/O access to 16 bit ISA Slave Standard cycle | 10T | | Cycl | | 26 | MEMF | R#, MEMW# asserted before next MEMR#, MEMW# as | serted | | | | | 26b | Memory access to 16 bit ISA Slave Standard cycle | 12T | | Cycl | | | 26d | Memory access to 8 bit ISA Slave Standard cycle | 12T | | Cycl | | 26 | SMEN | IR#, SMEMW# asserted before next SMEMR#, SMEM | W# asserted | | • | | | 26f | Memory access to 16 bit ISA Slave Standard cycle | 12T | | Cycl | | | 26h | Memory access to 8 bit ISA Slave Standard cycle | 12T | | Cycl | | 26 | IOR#, | IOW# asserted before next IOR#, IOW# asserted | • | | • | | | 26i | I/O access to 16 bit ISA Slave Standard cycle | 12T | | Cycl | | | 26k | I/O access to 8 bit ISA Slave Standard cycle | 12T | | Cycl | | 28 | Any c | ommand negated to MEMR#, SMEMR#, MEMR#, SMI | EMW# asserted | ı | • | | | 28a | Memory access to 16 bit ISA Slave | 3T | | Cycl | | | 28b | Memory access to 8 bit ISA Slave | 3T | | Cycl | | 28 | Any c | ommand negated to IOR#, IOW# asserted | • | | · · | | | 28c | I/O access to ISA Slave | 3T | | Cycl | | 29a | MEMF | R#, MEMW# negated before next ALE# asserted | 1T | | Cycl | | 29b | SMEN | IR#, SMEMW# negated before next ALE# asserted | 1T | | Cycl | | 29c | IOR#, | IOW# negated before next ALE# asserted | 1T | | Cycl | | 33 | LA[23 | :17] valid to IOCHRDY negated | • | | • | | | 33a | Memory access to 16 bit ISA Slave - 4 BCLK | 8T | | Cycl | | | 33b | Memory access to 8 bit ISA Slave - 7 BCLK | 14T | | Cycl | | 34 | LA[23 | :17] valid to read data valid | • | | · · | | | 34b | Memory access to 16 bit ISA Slave Standard cycle | 8T | | Cycl | | | 34e | Memory access to 8 bit ISA Slave Standard cycle | 14T | | Cycl | | 37 | ALE# | asserted to IOCHRDY# negated | | | | | | 37a | Memory access to 16 bit ISA Slave - 4 BCLK | 6T | | Cycl | | | 37b | Memory access to 8 bit ISA Slave - 7 BCLK | 12T | | Cycl | | | 37c | I/O access to 16 bit ISA Slave - 4 BCLK | 6T | | Cycl | | | 37d | I/O access to 8 bit ISA Slave - 7 BCLK | 12T | | Cycl | | 38 | ALE# | asserted to read data valid | • | | · · | | | 38b | Memory access to 16 bit ISA Slave Standard Cycle | 4T | | Cycl | | | 38e | Memory access to 8 bit ISA Slave Standard Cycle | 10T | | Cycl | | | 38h | I/O access to 16 bit ISA Slave Standard Cycle | 4T | | Cycl | | | 381 | I/O access to 8 bit ISA Slave Standard Cycle | 10T | | Cycl | | 41 | SA[19 | :0] SBHE valid to IOCHRDY negated | · · | 1 | | | | 41a | Memory access to 16 bit ISA Slave | 6T | | Cycl | | | | Í. | 1 | | | Table 4-8. ISA Bus AC Timing | Name | Param | | Min | Max | Unit | |------|-------|---|----------------|---------|-------| | | 41c | I/O access to 16 bit ISA Slave | 6T | | Cycle | | | 41d | I/O access to 8 bit ISA Slave | 12T | | Cycle | | 42 | SA[19 | :0] SBHE valid to read data valid | | | | | | 42b | Memory access to 16 bit ISA Slave Standard cycle | 4T | | Cycle | | | 42e | Memory access to 8 bit ISA Slave Standard cycle | 10T | | Cycle | | | 42h | I/O access to 16 bit ISA Slave Standard cycle | 4T | | Cycle | | | 421 | I/O access to 8 bit ISA Slave Standard cycle | 10T | | Cycle | | 47 | MEMF | #, MEMW#, SMEMR#, SMEMW#, IOR#, IOW# asserted | d to IOCHRDY i | negated | • | | | 47a | Memory access to 16 bit ISA Slave | 2T | | Cycle | | | 47b | Memory access to 8 bit ISA Slave | 5T | | Cycle | | | 47c | I/O access to 16 bit ISA Slave | 2T | | Cycle | | | 47d | I/O access to 8 bit ISA Slave | 5T | | Cycle | | 48 | MEMF | #, SMEMR#, IOR# asserted to read data valid | !! | | 4 | | | 48b | Memory access to 16 bit ISA Slave Standard Cycle | 2T | | Cycle | | | 48e | Memory access to 8 bit ISA Slave Standard Cycle | 5T | | Cycle | | | 48h | I/O access to 16 bit ISA Slave Standard Cycle | 2T | | Cycle | | | 481 | I/O access to 8 bit ISA Slave Standard Cycle | 5T | | Cycle | | 54 | IOCHE | RDY asserted to read data valid | <u>l</u> | | | | | 54a | Memory access to 16 bit ISA Slave | 1T(R)/2T(W) | | Cycle | | | 54b | Memory access to 8 bit ISA Slave | 1T(R)/2T(W) | | Cycle | | | 54c | I/O access to 16 bit ISA Slave | 1T(R)/2T(W) | | Cycle | | | 54d | I/O access to 8 bit ISA Slave | 1T(R)/2T(W) | | Cycle | | 55a | | RDY asserted to MEMR#, MEMW#, SMEMR#, IW#, IOR#, IOW# negated | 1T | | Cycle | | 55b | IOCHE | RY asserted to MEMR#, SMEMR# negated (refresh) | 1T | | Cycle | | 56 | IOCHE | RDY asserted to next ALE# asserted | 2T | | Cycle | | 57 | IOCHE | RDY asserted to SA[19:0], SBHE invalid | 2T | | Cycle | | 58 | MEMF | R#, IOR#, SMEMR# negated to read data invalid | 0T | | Cycle | | 59 | MEMF | R#, IOR#, SMEMR# negated to databus float | 0T | | Cycle | | 61 | Write | data before MEMW# asserted | l l | | | | | 61a | Memory access to 16 bit ISA Slave | 2T | | Cycle | | | 61b | Memory access to 8 bit ISA Slave (Byte copy at end of start) | 2T | | Cycle | | 61 | Write | data before SMEMW# asserted | | | | | | 61c | Memory access to 16 bit ISA Slave | 2T | | Cycle | | | 61d | Memory access to 8 bit ISA Slave | 2T | | Cycle | | 61 | Write | Data valid before IOW# asserted | | | | | | 61e | I/O access to 16 bit ISA Slave | 2T | | Cycle | | | 61f | I/O access to 8 bit ISA Slave | 2T | | Cycle | | 64a | MEMV | V# negated to write data invalid - 16 bit | 1T | | Cycle | | 64b | MEMV | V# negated to write data invalid - 8 bit | 1T | | Cycle | | 64c | SMEN | IW# negated to write data invalid - 16 bit | 1T | | Cycle | | 64d | SMEN | IW# negated to write data invalid - 8 bit | 1T | | Cycle | | 64e | IOW# | negated to write data invalid | 1T | | Cycle | # **ELECTRICAL SPECIFICATIONS** Table 4-8. ISA Bus AC Timing | Name | Parameter | Min | Max | Units | | |--|---|-----|-----|--------|--| | 64f | MEMW# negated to copy data float, 8 bit ISA Slave, odd Byte by ISA Master | 1T | | Cycles | | | 64g | IOW# negated to copy data float, 8 bit ISA Slave, odd Byte by ISA Master | 1T | | Cycles | | | Note; The signal numbering refers to Table 4-8 | | | | | | ## 4.5.5 IPC INTERFACE AC TIMING CHARACTERISTICS **Table 4-9. IPC Interface AC Timings** | Name | Parameter | Min | Max | Unit | |------|---------------------------------------|-----|-----|------| | t20 | XTALO to DACK_EN[2:0] valid | | 71 | nS | | t21 | XTALO to TC valid | | 68 | nS | | t22 | IRQ_MUX Input setup to ISACLK2X | 0 | - | nS | | t23 | DREQ_MUX[1:0] Input setup to ISACLK2X | 0 | - | nS | ## 4.5.6 PCMCIA INTERFACE AC TIMING CHARACTERISTICS Table 4-10. PCMCIA Interface AC Timing | Name | Parameters | Min | Max | Units | |------|--------------------------|-----|-----|-------| | t24 | Input setup to ISACLK2X | 24 | | nS | | t25 | Input hold from ISACLK2X | 5 | | nS | | t28 | ISACLK2X to IORD | - | 55 | nS | | t29 | ISACLK2X to IORW | - | 55 | nS | | t30 | ISACLK2X to AD[25:0] | - | 25 | nS | | t31 | ISACLK2X to OE# | 2 | 55 | nS | | t32 | ISACLK2X to WE# | 2 | 55 | nS | | t33 | ISACLK2X to DATA[15:0] | 0 | 35 | nS | | t34 | ISACLK2X to INPACK | 2 | 55 | nS | | t35 | ISACLK2X to CE1# | 7 | 65 | nS | | t36 | ISACLK2X to CE2# | 7 | 65 | nS | | t37 | ISACLK2X to RESET | 2 | 55 | nS | ## 4.5.7 PARALLEL INTERFACE AC TIMING CHARACTERISTICS **Table 4-11. Parallel Interface AC Timing** | Name | Parameters | Min | Max | Units |
------|------------------------|-----|-----|-------| | t37 | STROBE# to BUSY setup | 0 | - | nS | | t38 | PD bus to AUTPFD# hold | 0 | - | nS | | t39 | PB bus to BUSY setup | 0 | - | nS | ## 4.5.8 KEYBOARD INTERFACE AC TIMING CHARACTERISTICS Table 4-12. Keyboard Interface AC Timing | Name | Parameters | Min | Max | Units | |------|----------------------|-----|-----|-------| | t40 | Input setup to KBCLK | 5 | - | nS | | t41 | Input hold to KBCLK | 1 | - | nS | | t42 | KBCLK to KBDATA | - | 12 | nS | ## 4.5.9 MOUSE INTERFACE AC TIMING CHARACTERISTICS **Table 4-13. Mouse Interface AC Timing** | Name | Parameters | Min | Max | Units | |------|---------------------|-----|-----|-------| | t43 | Input setup to MCLK | 5 | - | nS | | t44 | Input hold to MCLK | 1 | - | nS | | t45 | MCLK to MDATA | - | 12 | nS | ## 4.5.10 LOCAL BUS INTERFACE AC TIMING CHARACTERISTICS Table 4-14. 16 bit Memory Write Table 4-15. 16 bit Memory Read **Table 4-16. 16 bit I/O Write** Table 4-17. 16 bit I/O Read Table 4-18. 8 bit I/O Write at even addresses with IOWIDTH=0 or 1 Table 4-19. 8 bit I/O Write at odd addresses with IOWIDTH=0 (8 bit Peripheral) Table 4-20. 8 bit I/O Write at odd addresses with IOWIDTH=1 (16 bit Peripheral) **Table 4-21. Local Bus Interface AC Timing** | Name | Parameters | Min | Max | Units | |-------------|--|--------------------------|-----|-------| | t46 | PRDY# Input hold to HCLK | 2 | | nS | | t47 | PD[15:0] Input hold to HCLK | 2 | | nS | | t48 | PRDY# Input setup to HCLK | 1 | - | nS | | t49 | PD[15:0] Input setup to HCLK | 2 | 4 | nS | | t50 | HCLK to PA bus | - | 15 | nS | | t51 | HCLK to PD bus | - | 15 | nS | | t52 | HCLK to PWR0# | - | 15 | nS | | t53 | HCLK to PWR1# | - | 15 | nS | | t54 | HCLK to PRD0# | - | 15 | nS | | t55 | HCLK to PRD1# | - | 15 | nS | | t56 | HCLK to FCS0# | - | 15 | nS | | t57 | HCLK to FCS1# | - | 15 | nS | | t58 | HCLK to IOCS#[3:0] | - | 15 | nS | | Note; To pr | ogram the values of Setup, Active and Hold timings | refer to Section 14.4.3. | | • | # 4.5.11 TFT INTERFACE AC TIMING CHARACTERISTICS **Table 4-22. TFT Interface Timing** | Name | Parameters | Min | Max | Units | |------|----------------|-----|-----|-------| | t59 | DCLK to FPLINE | | 15 | nS | | t60 | DCLK to R[2] | | 15 | nS | | t61 | DCLK to R[3] | | 15 | nS | | t62 | DCLK to R[4] | | 15 | nS | | t63 | DCLK to R[5] | | 15 | nS | | t64 | DCLK to G[2] | | 15 | nS | | t65 | DCLK to G[3] | | 15 | nS | | t66 | DCLK to G[4] | | 15 | nS | | t67 | DCLK to G[5] | | 15 | nS | | t68 | DCLK to B[2] | | 15 | nS | | t68 | DCLK to B[3] | | 15 | nS | | t69 | DCLK to B[4] | | 15 | nS | # **Table 4-22. TFT Interface Timing** | Name | Parameters | Min | Max | Units | |------|-----------------|-----|-----|-------| | t70 | DCLK to B[5] | | 15 | nS | | t71 | DCLK to FPFRAME | | 15 | nS | ## 5. MECHANICAL DATA #### **5.1. 388-PIN PACKAGE DIMENSION** Dimensions are shown in Figure 5-2, Table 5-1 and Figure 5-3, Table 5-2. The pin numbering for the STPC 388-pin Plastic BGA package is shown in Figure 5-1. Figure 5-1. 388-Pin PBGA Package - Top View Figure 5-2. 388-pin PBGA Package - PCB Dimensions Table 5-1. 388-pin PBGA Package - PCB Dimensions | Symbols | mm | | inches | | | | |---------|-------|-------|--------|-------|-------|-------| | Symbols | Min | Тур | Max | Min | Тур | Max | | А | 34.95 | 35.00 | 35.05 | 1.375 | 1.378 | 1.380 | | В | 1.22 | 1.27 | 1.32 | 0.048 | 0.050 | 0.052 | | С | 0.58 | 0.63 | 0.68 | 0.023 | 0.025 | 0.027 | | D | 1.57 | 1.62 | 1.67 | 0.062 | 0.064 | 0.066 | | E | 0.15 | 0.20 | 0.25 | 0.006 | 0.008 | 0.001 | | F | 0.05 | 0.10 | 0.15 | 0.002 | 0.004 | 0.006 | | G | 0.75 | 0.80 | 0.85 | 0.030 | 0.032 | 0.034 | Figure 5-3. 388-pin PBGA Package - Dimensions Table 5-2. 388-pin PBGA Package - Dimensions | Symbols | mm | | inches | | | | |---------|------|------|--------|-------|-------|-------| | Symbols | Min | Тур | Max | Min | Тур | Max | | А | 0.50 | 0.56 | 0.62 | 0.020 | 0.022 | 0.024 | | В | 1.12 | 1.17 | 1.22 | 0.044 | 0.046 | 0.048 | | С | 0.60 | 0.76 | 0.92 | 0.024 | 0.030 | 0.036 | | D | 0.52 | 0.53 | 0.54 | 0.020 | 0.021 | 0.022 | | E | 0.63 | 0.78 | 0.93 | 0.025 | 0.031 | 0.037 | | F | 0.60 | 0.63 | 0.66 | 0.024 | 0.025 | 0.026 | | G | | 30.0 | | | 11.8 | | ## 5.2. 388-PIN PACKAGE THERMAL DATA The structure in shown in Figure 5-4. The 388-pin PBGA package has a Power Dissipation Capability of 4.5W. This increases to 6W when used with a Heatsink. Thermal dissipation options are illustrated in Figure 5-5 and Figure 5-6. Figure 5-4. 388-Pin PBGA structure Figure 5-5. Thermal Dissipation Without Heatsink Figure 5-6. Thermal Dissipation With Heatsink #### 5.3. SOLDERING RECOMMENDATIONS High quality, low defect soldering requires identifying the **optimum temperature profile** for reflowing the solder paste, therefore optimizing the process. The heating and cooling rise rates must be compatible with the solder paste and components. A typical profile consists of a preheat, dryout, reflow and cooling sections. The most critical parameter in the **preheat section** is to minimize the rate of temperature rise to less than 2°C / second, in order to minimize thermal shock on the semi-conductor components. **Dryout section** is used primarily to ensure that the solder paste is fully dried before hitting reflow temperatures. Solder reflow is accomplished in the **reflow zone**, where the solder paste is elevated to a temperature greater than the melting point of the solder. Melting temperature must be exceeded by approximately 20°C to ensure quality reflow. In reality the profile is not a line, but rather **a range of temperatures** all solder joints must be exposed. The total temperature deviation from component thermal mismatch, oven loading and oven uniformity must be within the band. Figure 5-7. Reflow soldering temperature range #### 6. BOARD LAYOUT #### 6.1. THERMAL DISSIPATION Thermal dissipation of the STPC depends mainly on supply voltage. When the system does not need to work at 3.3 V, it may be beneficial to reduce the voltage to, for example, 3.15 V. This may save a few 100's of mW. A further area to consider is unused interfaces and functions. Depending on the application, some input signals can be grounded, some blocks left un-powered, other blocks shutdown. Clock speed dynamic adjustment offers a further solution, together with the integrated power management unit. The standard way to route the thermal balls to the internal ground layer uses one via for each ball pad, connected using 8-mil wire. With such a configuration, the Plastic BGA 388 package provides 90% of the thermal dissipation through the ground balls, in particular the central thermal balls, as these are directly connected to the die. The remaining 10% of heat is dissipated through the case. Adding a heat sink can reduce this value by 85%. To avoid thermal problems when routing to the STPC, some basic rules must be applied. Firstly, the ground balls must be directly connected to the ground layer, which acts as a heat sink. This is illustrated in Figure 6-1. If one ground layer is not enough, a second ground plane may be added on the solder side. Pad for ground ball Thru hole to ground layer Ground layer Bottom Layer: signals + local ground layer (if needed) Note: For better visibility, ground balls are not all routed. Figure 6-1. Ground Routing When considering thermal dissipation, the most important - if not the most obvious - part of the layout is the connection between the ground balls and the ground layer. A 1-wire connection is shown in Figure 6-2. The use of 8-mil wire results in a thermal resistance of 105°C/W assuming copper is used (418 W/m.°K). This high value is due to the thickness (34 μ m) of the copper on the external side of the PCB. Considering only the central matrix of 36 thermal balls and one via for each ball, the global thermal resistance is 2.9°C/W. This can be improved by using four 10 mil wires to connect to the four vias around the ground pad link, as in Figure 6-3. This gives a total of 49 vias and a global resistance for the 36 thermal balls of 0.6°C/W. The use of a ground plane, as shown in Figure 6-4, is even better. To avoid solder wicking over to the via pads during soldering, it is important to have a solder mask of 4 mil around the pad (NSMD pad). This gives a diameter of 33 mil for a 25 mil ground pad. To obtain the optimum ground layout, place the vias directly under the ball pads. In this case, no local board distortion can be tolerated. The thickness of the copper on PCB layers is typically 34 μ m for external layers and 17 μ m for internal layers. The resulting thermal dissipation is not good, with areas of high temperature being concentrated around the devices, falling off quickly with increased distance. Where possible, place a metal layer inside the PCB. This will improve dramatically the spread of heat and hence improve the thermal dissipation of the board.. Figure 6-2. Recommended 1-wire Ground Pad Layout Figure 6-3. Recommended 4-wire Ground Pad Layout Figure 6-4. Optimum Layout for Central Ground Ball The PBGA Package also dissipates heat through the peripheral ground balls. When a heat sink is placed on the device, heat is more uniformly spread throughout the moulding, increasing the dissipation of heat through the peripheral ground balls. The higher the number of via pads connected to each ground ball, the higher the amount of heat dissipated. The only limitation is the risk of losing routing channels. Figure 6-1 shows a routing with a good trade off between thermal dissipation and the number of routing channels. A local ground plane on the opposite side of the board, as shown in Figure 6-2, improves thermal dissipation. It is used to connect decoupling capacitors but can also be used for connection to a heat sink or to the system metal box for better dissipation. This possibility of using the whole system box for
thermal dissipation can be very useful in cases of high internal temperature and low external temperature. In such cases, both sides of the PBGA should be thermally connected to the metal chassis in order to propagate the heat flow through the metal. Figure 6-3 illustrates a typical example. Via to ground layer Ground pad Figure 6-1. Global Ground Layout for Good Thermal Dissipation Figure 6-2. Bottom Side Layout and Decoupling Figure 6-3. Use of Metal Plate for Thermal Dissipation # 6.2. HIGH SPEED SIGNALS As some STPC interfaces (listed below in decreasing speed order) run at high speeds, they must be carefully routed or even shielded. - 1) Memory interface. - 2) Graphics and video interfaces. - 3) PCI bus. 4) 14 MHz oscillator stage. All clock signals must be routed first and shielded for speeds of 27 MHz or higher. All high-speed signals, such as memory control signals and PCI control signals, require the same constraints. All analog noise-sensitive signals should be routed in a separate area and hence can be routed indepedently. Figure 6-5. Shielding Signals # **7 ORDERING DATA** #### 7.1 ORDERING CODES # **ORDERING DATA** # 7.2 AVAILABLE PART NUMBERS | Part Number | Core Frequency
(MHz) | CPU Mode | Tcase Range
(C) | Operating Voltage
(V) | |---------------|-------------------------|----------|--------------------|--------------------------| | STPCI0166BTC3 | 66 | DX | 0°C to +100°C | | | STPCI0180BTC3 | 80 | DX | 0 0 10 +100 0 | 3.3V ± 0.3V | | STPCI0166BTI3 | 66 | DX | -40°C to +100°C | 3.3 V ± 0.3 V | | STPCI0180BTI3 | 80 | DX | -40 0 10 + 100 0 | | Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. © 2000 STMicroelectronics - All Rights Reserved The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.