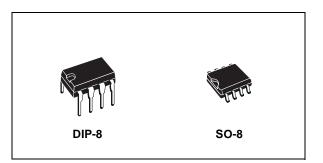
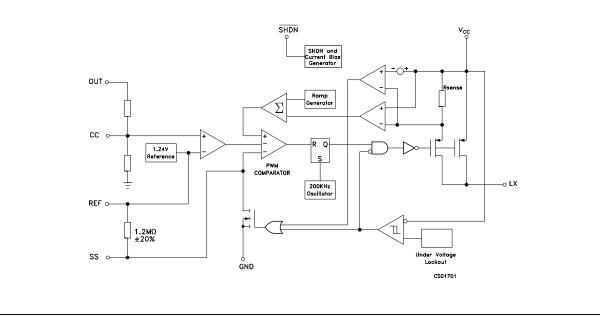


ST730A


5V STEP-DOWN, CURRENT-MODE PWM DC-DC CONVERTERS

- UP TO 450mA LOAD CURRENTS
- 200kHz HIGH-FREQUENCY CURRENT-MODE PWM
- 85% TO 96% EFFICIENCIES
- 33µH OR 100µH PRE-SELECTED INDUCTOR VALUE, NO COMPONENT DESIGN REQUIRED
- 0.8mA QUIESCENT CURRENT
- 0.3µA SHUTDOWN SUPPLY CURRENT
- ADJUSTABLE OUTPUT VOLTAGE
- OVERCURRENT, SOFT-START AND UNDERVOLTAGE LOCKOUT PROTECTION
- CYCLE-BY-CYCLE CURRENT LIMITING
- PACKAGE AVAILABLE: DIP-8 AND SO-8

DESCRIPTION


The ST730A is a 5V output CMOS, step-down switching regulator. The ST730A accepts inputs between 5.2V and 11V and delivers 450mA. Typical efficiencies are 85% to 96%.

Quiescent supply current is 0.8mA and only 0.3µA in shutdown mode. The output does not exhibit frequency over this specified range. Pulse-width modulation (PWM) current-mode control provides

precise output regulation and excellent transient responses. Output voltage accuracy is guaranteed to be $\pm 5\%$ over line, load, and temperature varations.

Fixed-frequency switching and absence of subharmonic ruipple allows easy filtering of output ripple and noise, as well as the use of small external components. This regulators require only a single inductor value to work in most applications, so no inductor design is necessary. Typical applications are: Cellular phones & radios, portable Instruments, Portable Communications Equipments and Computer Peripherals.

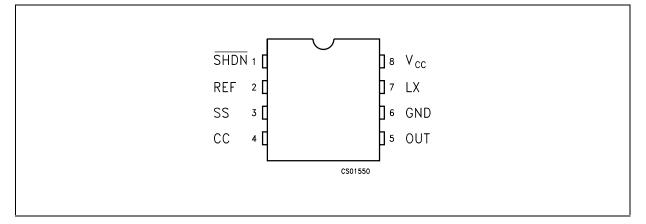
SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter ²	Value	Unit
V _{CC}	DC Input Voltage	-0.3 to 12	V
V_{LX}	Switch Pin Voltage	-0.3 to (V _{CC} + 0.3)	V
V _{SHDN}	Shutdown Voltage (SHDN)	-0.3 to (V _{CC} + 0.3)	V
V _S ,V _C	Soft Start (SS) and Compensation Capacitor (CC) Pins Voltage	-0.3 to (V _{CC} + 0.3)	V
I_{LX}	Switching Peak Current	2	А
I _{REF}	Reference Current	2.5	mA
P _{TOT}	Continuous Power Dissipation at T _A =70°C (DIP-8) (SO-8)	550 344	mW mW
T _{stg}	Storage Temperature Range	-40 to +150	°C
T _{op}	Operating Junction Temperature Range (AC series) (AB series)	0 to +70 -40 to +85	℃ ℃

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

THERMAL DATA


Symbol	Parameter	SO-8	DIP-8	Unit
R _{thj-amb}	Thermal Resistance Junction-ambient (*)	160	100	°C/W

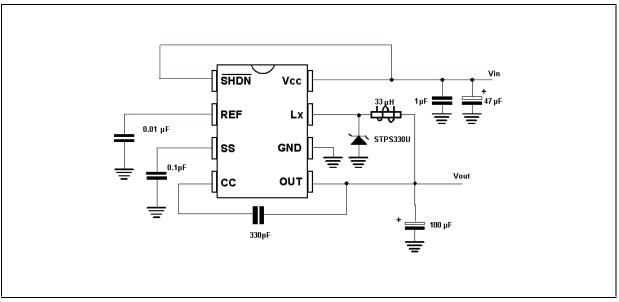
 $(\ensuremath{^*})$ This value depends from thermal design of PCB on which the device is mounted.

ORDERING CODES

ТҮРЕ	DIP8	SO-8	SO-8 (T&R)
ST730AB	ST730ABN	ST730ABD	ST730ABD-TR
ST730AC	ST730ACN	ST730ACD	ST730ACD-TR

CONNECTION DIAGRAM (top view)

PIN DESCRIPTION


57

Pin N°	Symbol	Name and Function
1	SHDN	Shutdown control (active low): If connected to GND the IC is in shutdown. Connect to V_{CC} for normal operation (ON MODE)
2	REF	Reference Output Voltage: (1.25V): Bypass to GND with a capacitor that does not exceed 47nF
3	SS	Soft Start: a capacitor between SS and GND provides soft-start and short-circuit protections.
4	CC	Compensation Capacitor Input: externally compensates the outer (voltage) feedback loop. Connect to OUT with 330pF capacitor
5	OUT	Output Voltage Sense Input: provides regulation of feedback sensing. Connect to 5V output.
6	GND	Ground
7	LX	Switch Output. Drain of internal P-Channel Power MOSFET
8	V _{CC}	Supply Voltage Input. Bypass to GND with 1µF ceramic capacitance and large value electrolytic capacitor in parallel. The 1µF capacitor must be as close as possible to the GND and V_{CC} pins

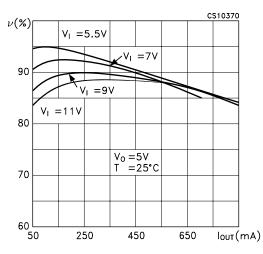
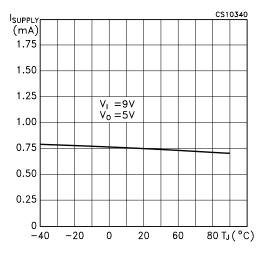
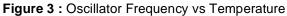
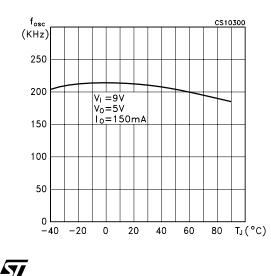
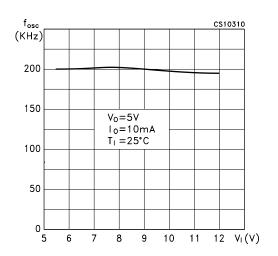
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{CC}	Input Voltage		4		11	V
Vo	Output Voltage	$V_{CC} = 6 \text{ to } 11V$ $I_O = 0 \text{ to } 450\text{mA}$	4.75	5	5.25	V
ΔV_O	Line Regulation	V _{CC} = 5.2 to 11V		0.15		%/V
ΔV_{O}	Load Regulatio	I _O = 0 to 450mA		0.005		%/mA
η	Power Efficency	I _O =300mA		92		%
I _{SUPPLY}	Supply Current	ON Mode OFF Mode, SHDN=0		0.8 0.3	2.5 100	mA μA
VIH	SHDN Input High Threshold		2			V
V_{IL}	SHDN Input Low Threshold				0.25	V
I _{SHDN}	Shutdown Input Leakage Current				1	μA
V _{LOCK}	Under Voltage Lockout	V _{CC} Falling		2.7	3	V
R _{DS(on)}	LX On Resistance	I _{LX} =500mA		0.5		Ω
I _{LX}	LX Leakage Current	$V_{CC} = 12V$ $V_{LX} = 0V$		1		μΑ
V_{REF}	Reference Voltage	$T_A = 25^{\circ}C$	1.17	1.24	1.31	V
ΔV_{REF}	Temperature Reference Drift			50		ppm/°C
f _{OSC}	Switching Frequency	C series B series	180 160	200	220 280	KHz
R _C	Compensation Pin Impedance			7500		Ω

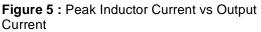
ELECTRICAL CHARACTERISTIC	$CS (V_{CC}=5V, I_{O}=0mA, T_{A}=7)$	T_{MIN} to $T_{MAX},$ unless otherwise specified. $\ensuremath{\underline{2}}$)

TYPICAL APPLICATION CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS (unless otherwise specified $T_i = 25^{\circ}C$

Figure 1 : Efficency vs Output Current


Figure 2 : Supply Current vs Temperature

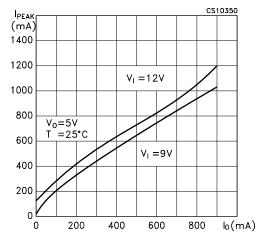
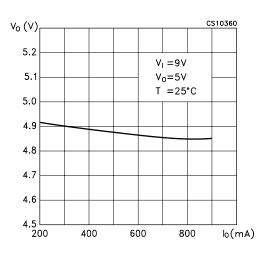
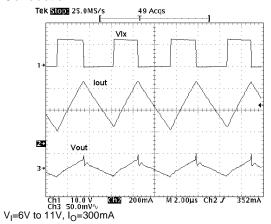
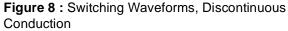
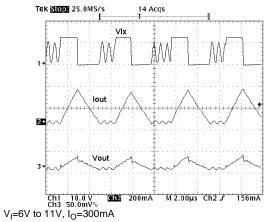
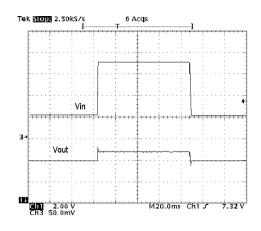
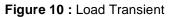
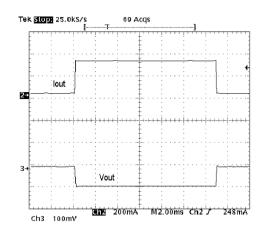
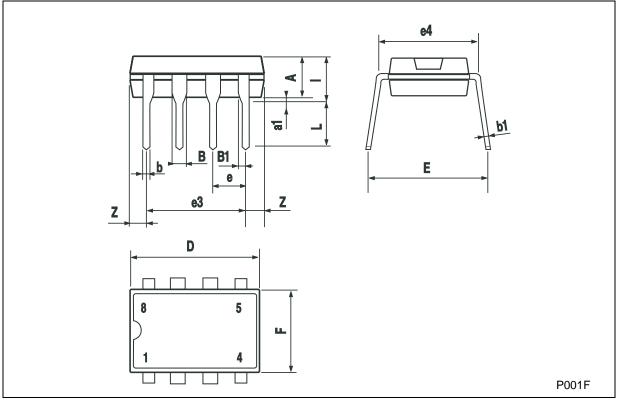
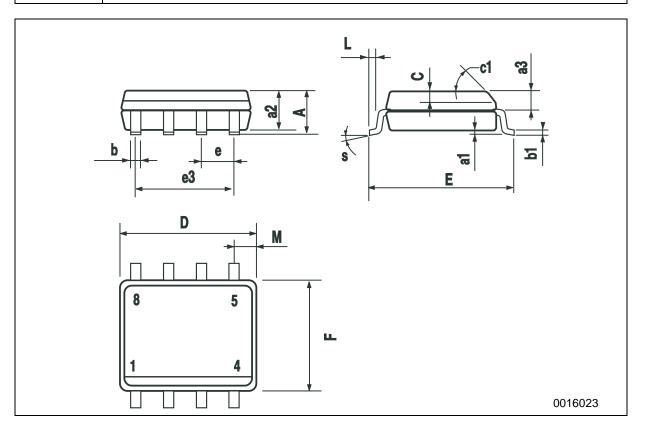





Figure 6 : Output Voltage vs Output Current

Figure 7 : Switching Waveforms, Continuous Conduction


Figure 9 : Line Transient



DIM	mm.			inch			
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.	
А		3.3			0.130		
a1	0.7			0.028			
В	1.39		1.65	0.055		0.065	
B1	0.91		1.04	0.036		0.041	
b		0.5			0.020		
b1	0.38		0.5	0.015		0.020	
D			9.8			0.386	
Е		8.8			0.346		
е		2.54			0.100		
e3		7.62			0.300		
e4		7.62			0.300		
F			7.1			0.280	
I			4.8			0.189	
L		3.3			0.130		
Z	0.44		1.6	0.017		0.063	

\$7

		SO-8 ME	CHANICAL	DATA		
DIM		mm.		inch		
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.25	0.003		0.009
a2			1.65			0.064
a3	0.65		0.85	0.025		0.033
b	0.35		0.48	0.013		0.018
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.019
c1			45°	(typ.)		•
D	4.8		5.0	0.189		0.196
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.149		0.157
L	0.4		1.27	0.015		0.050
М			0.6			0.023
S	8° (max.)					

0 140 <u>~</u>~

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

© http://www.st.com

