LINEAGE POWER ${ }^{*}$

12A Digital Pico DLynx ${ }^{\text {TM }}$: Non-Isolated DC-DC Power Modules $3 \mathrm{Vdc}-14.4 \mathrm{Vdc}$ input; 0.6 Vdc to 5.5 Vdc output; 12A Output Current

RoHS Compliant

Applications

- Distributed power architectures
- Intermediate bus voltage applications
- Telecommunications equipment
- Servers and storage applications
- Networking equipment
- Industrial equipment

Features

- Compliant to RoHS EU Directive 2002/95/EC (Z versions)
- Compatible in a Pb -free or SnPb reflow environment (Z versions)
- DOSA based
- Wide Input voltage range ($3 \mathrm{Vdc}-14.4 \mathrm{Vdc}$)
- Output voltage programmable from 0.6 Vdc to 5.5 Vdc via external resistor
- Digital interface through the PMBus ${ }^{\text {TM \# }}$ protocol
- Tunable Loop ${ }^{\text {TM }}$ to op timize dynamic output voltage response
- Flexible output voltage sequencing EZSEQUENCE
- Power Good signal
- Fixed switching frequency with capability of external synchronization
- Output overcurrent protection (non-latching)
- Overtemperature protection
- Remote On/Off
- Ability to sink and source current
- Cost efficient open frame design
- Small size: $12.2 \mathrm{~mm} \times 12.2 \mathrm{~mm} \times 8.5 \mathrm{~mm}$ (0.48 in $\times 0.48$ in $\times 0.335$ in)
- Wide operating temperature range $\left[-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right]$
- UL* 60950-1Recognized, CSA ${ }^{\dagger}$ C22.2 No. 60950-1-03 Certified, and VDE ${ }^{\ddagger}$ 0805:2001-12 (EN60950-1) Licensed
- ISO** 9001 and ISO 14001 certified manufacturing facilities

Description

The 12A Digital Pico DLynx ${ }^{\text {TM }}$ power modules are non-isolated dc-dc converters that can deliver up to 12A of output current. These modules operate over a wide range of input voltage ($\mathrm{V}_{\mathrm{IN}}=3 \mathrm{Vdc}-14.4 \mathrm{Vdc}$) and provide a precisely regulated output voltage from 0.6 Vdc to 5.5 Vdc , programmable via an external resistor. Features include a digital interface using the PMBus protocol, remote On/Off, adjustable output voltage, over current and overtemperature protection. The PMBus interface supports a range of commands to both control and monitor the module. The module also includes the Tunable Loop ${ }^{\text {TM }}$ feature that allows the user to optimize the dynamic response of the converter to match the load with reduced amount of output capacitance leading to savings on cost and PWB area.

[^0]Preliminary Data Sheet
February 1, 2011

12A Digital Pico DLynx ${ }^{\text {TM }}$: Non-isolated DC-DC Power Modules $3-14.4 \mathrm{Vdc}$ input; 0.6 Vdc to 5.5 Vdc output; 12A output current

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only, functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect the device reliability.

Parameter	Device	Symbol	Min	Max	Unit
Input Voltage Continuous	All	$\mathrm{V}_{\mathbb{I N}}$	-0.3	15	V
SEQ, SYNC, VS+	All			7	V
CLK, DATA, SMBALERT	All			3.6	V
Operating Ambient Temperature (see Thermal Considerations section)	All	T_{A}	-40	85	${ }^{\circ} \mathrm{C}$
Storage Temperature					

Electrical Specifications

Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions.

Parameter	Device	Symbol	Min	Typ	Max	Unit
Operating Input Voltage	All	$\mathrm{V}_{\text {IN }}$	3	-	14.4	Vdc
Maximum Input Current $\left(\mathrm{V}_{\mathbb{I N}}=3 \mathrm{~V} \text { to } 14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=\mathrm{I}_{0, \max }\right)$	All	$\mathrm{I}_{\mathrm{N}, \text { max }}$			9	Adc
Input No Load Current$\left(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=0 \text {, module enabled }\right)$	$\mathrm{V}_{\mathrm{O}, \text { set }}=0.6 \mathrm{Vdc}$	$\mathrm{I}_{1 \times, N o \mathrm{load}}$		52		mA
	$\mathrm{V}_{0, \text { set }}=5 \mathrm{Vdc}$	$\mathrm{I}_{1 \times, N o \mathrm{load}}$		85		mA
Input Stand-by Current ($\mathrm{V}_{\mathrm{IN}}=12 \mathrm{Vdc}$, module disabled)	All	$\mathrm{I}_{\text {IN,stand-by }}$		6.5		mA
Inrush Transient	All	$1^{2} \mathrm{t}$			1	$A^{2} \mathrm{~s}$
Input Reflected Ripple Current, peak-to-peak (5 Hz to $20 \mathrm{MHz}, 1 \mu \mathrm{H}$ source impedance; $\mathrm{V}_{\mathbb{N}}=0$ to $14 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=\mathrm{I}_{\mathrm{omax}}$; See Test Configurations)	All			40		mAp-p
Input Ripple Rejection (120Hz)	All			-55		dB

Electrical Specifications (continued)

Parameter	Device	Symbol	Min	Typ	Max	Unit
Output Voltage Set-point (with 0.1% tolerance for external resistor used to set output voltage)	All	V_{o}, set	-1.0		+1.0	\% $\mathrm{V}_{\mathrm{o} \text {, set }}$
Output Voltage (Over all operating input voltage, resistive load, and temperature conditions until end of life)	All	V_{O}, set	-3.0	-	+3.0	\% $\mathrm{V}_{\mathrm{o} \text {, set }}$
Adjustment Range (selected by an external resistor) (Some output voltages may not be possible depending on the input voltage - see Feature Descriptions Section)	All	V_{0}	0.6		5.5	Vdc
PMBus Adjustable Output Voltage Range	All	$\mathrm{V}_{\mathrm{o}}, \mathrm{adj}$	-25	0	+25	$\% \mathrm{~V}_{0, \text { set }}$
PMBus Output Voltage Adjustment Step Size	All		0.4			$\% \mathrm{~V}_{0, \text { set }}$
Remote Sense Range	All				0.5	Vdc
$\begin{aligned} & \text { Output Regulation (for } \left.\mathrm{V}_{\mathrm{O}} \geq 2.5 \mathrm{Vdc}\right) \\ & \text { Line }\left(\mathrm{V}_{I N}=\mathrm{V}_{I N, \text { min }} \text { to } \mathrm{V}_{\mathrm{IN}, \max }\right) \\ & \text { Load }\left(\mathrm{I}_{\mathrm{O}}=\mathrm{I}_{\mathrm{O}, \text { min }} \text { to } \mathrm{I}_{\mathrm{O}, \max }\right) \\ & \text { Output Regulation (for } \mathrm{V}_{\mathrm{O}}<2.5 \mathrm{Vdc} \text {) } \\ & \text { Line }\left(\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IN}, \min } \text { to } \mathrm{V}_{\mathrm{IN}, \max }\right) \\ & \text { Load }\left(\mathrm{I}_{\mathrm{O}}=\mathrm{I}_{\mathrm{O}, \min } \text { to } \mathrm{I}_{\mathrm{O}, \max }\right) \\ & \text { Temperature }\left(\mathrm{T}_{\text {ref }}=\mathrm{T}_{\mathrm{A}, \min } \text { to } \mathrm{T}_{\mathrm{A}, \max }\right) \end{aligned}$	All All All All All				$\begin{gathered} +0.4 \\ 10 \mathrm{mV} \\ \\ 5 \\ 10 \\ 0.4 \end{gathered}$	$\% V_{0, \text { set }}$ $\% \mathrm{~V}_{\mathrm{O} \text {, set }}$ mV mV $\% \mathrm{~V}_{\mathrm{O} \text {, set }}$
Output Ripple and Noise on nominal output $\left(\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{IN}, \text { nom }}\right.$ and $\mathrm{I}_{\mathrm{O}}=\mathrm{I}_{\mathrm{O}, \min }$ to $\mathrm{I}_{\mathrm{O}, \max } \mathrm{Co}=0.1 \mu \mathrm{~F} / / 22 \mu \mathrm{~F}$ ceramic capacitors) Peak-to-Peak (5 Hz to 20 MHz bandwidth) RMS (5 Hz to 20 MHz bandwidth)	$\begin{aligned} & \text { All } \\ & \text { All } \end{aligned}$		-	$\begin{aligned} & 50 \\ & 20 \end{aligned}$	$\begin{gathered} 100 \\ 38 \end{gathered}$	$\begin{gathered} \mathrm{mV}_{\mathrm{pk}-\mathrm{pk}} \\ \mathrm{mV}_{\mathrm{rms}} \end{gathered}$
External Capacitance ${ }^{1}$ Without the Tunable Loop ${ }^{\text {TM }}$ $E S R \geq 1 \mathrm{~m} \Omega$ With the Tunable Loop ${ }^{\text {TM }}$ $\begin{aligned} & \mathrm{ESR} \geq 0.15 \mathrm{~m} \Omega \\ & \mathrm{ESR} \geq 10 \mathrm{~m} \Omega \end{aligned}$	All All All	$C_{0, \max }$ $\mathrm{C}_{0, \text { max }}$ $\mathrm{C}_{\mathrm{o}, \text { max }}$	$\begin{aligned} & 22 \\ & 22 \\ & 22 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 47 \\ 1000 \\ 5000 \end{gathered}$	$\mu \mathrm{F}$ $\mu \mathrm{F}$ $\mu \mathrm{F}$
Output Current (in either sink or source mode)	All	I。	0		12	Adc
Output Current Limit Inception (Hiccup Mode) (current limit does not operate in sink mode)	All	lo, lim		130		\% $\mathrm{I}_{0, \max }$
Output Short-Circuit Current ($\mathrm{V}_{\mathrm{o}} \leq 250 \mathrm{mV}$) (Hiccup Mode)	All	$\mathrm{l}_{\mathrm{o}, \mathrm{s} / \mathrm{c}}$		0.92		A
PMBus Output Current Measurement Accuracy	All		TBD			
Efficiency $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=12 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{O}}=\mathrm{I}_{\mathrm{O}, \text { max },} \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{O}, \text { set }} \end{aligned}$	$\begin{aligned} \mathrm{V}_{0, \text { set }} & =0.6 \mathrm{Vdc} \\ \mathrm{~V}_{\mathrm{O}, \text { set }} & =1.2 \mathrm{Vdc} \\ \mathrm{~V}_{0, \text { set }} & =1.8 \mathrm{Vdc} \\ \mathrm{~V}_{0, \text { set }} & =2.5 \mathrm{Vdc} \\ \mathrm{~V}_{0, \text { set }} & =3.3 \mathrm{Vdc} \\ \mathrm{~V}_{0, \text { set }} & =5.0 \mathrm{Vdc} \end{aligned}$	$\begin{aligned} & \eta \\ & \eta \end{aligned}$		$\begin{aligned} & 76.4 \\ & 86.0 \\ & 89.9 \\ & 92.2 \\ & 93.6 \\ & 95.4 \end{aligned}$		$\begin{aligned} & \hline \% \\ & \% \\ & \% \\ & \% \\ & \% \\ & \hline \% \end{aligned}$
Switching Frequency	All	$\mathrm{f}_{\text {sw }}$	-	600	-	kHz

${ }^{1}$ External capacitors may require using the new Tunable Loop ${ }^{T M}$ feature to ensure that the module is stable as well as getting the best transient response. See the Tunable Loop ${ }^{\text {TM }}$ section for details.

Preliminary Data Sheet February 1, 2011

12A Digital Pico DLynx ${ }^{\text {TM }}$: Non-isolated DC-DC Power Modules $3-14.4 \mathrm{Vdc}$ input; 0.6 Vdc to 5.5 Vdc output; 12A output current

Electrical Specifications (continued)

Parameter	Device	Symbol	Min	Typ	Max	Unit
Frequency Synchronization	All					
Synchronization Frequency Range	All		510		720	kHz
High-Level Input Voltage	All	$\mathrm{V}_{\text {IH }}$	2.0			V
Low-Level Input Voltage	All	$\mathrm{V}_{\text {IL }}$			0.4	V
Input Current, SYNC	All	$\mathrm{I}_{\text {SYNC }}$			100	nA
Minimum Pulse Width, SYNC	All	$\mathrm{t}_{\text {SYNC }}$	100		ns	
Maximum SYNC rise time	All	$\mathrm{t}_{\text {SYNC_SH }}$	100		ns	

General Specifications

Parameter	Device	Min	Typ	Max	Unit
Calculated MTBF $\left(\mathrm{I}_{\mathrm{O}}=0.8 \mathrm{I}_{\mathrm{O}, \max ,} \mathrm{T}_{\mathrm{A}}=40^{\circ} \mathrm{C}\right)$ Telecordia Issue 2 Method 1 Case 3	All		TBD		Hours
Weight		-	TBD	-	g (oz.)

Feature Specifications

Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions. See Feature Descriptions for additional information.

Parameter	Device	Symbol	Min	Typ	Max	Unit
On/Off Signal Interface (VIN $=$ IIN, min to VIN, max ; open collector or equivalent, Signal referenced to GND) Device code with suffix "4" - Positive Logic (See Ordering Information) Logic High (Module ON) Input High Current Input High Voltage						

Preliminary Data Sheet February 1, 2011

12A Digital Pico DLynx ${ }^{\text {TM }}$: Non-isolated DC-DC Power Modules $3-14.4 \mathrm{Vdc}$ input; 0.6 Vdc to 5.5 Vdc output; 12A output current

Feature Specifications (cont.)

Parameter	Device	Symbol	Min	Typ	Max	Units
Turn-On Delay and Rise Times						
$\left(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathbb{I N}, \text { nom, }}, \mathrm{I}_{\mathrm{O}}=\mathrm{l}_{0, \max ,} \mathrm{~V}_{\mathrm{O}}\right.$ to within $\pm 1 \%$ of steady state $)$						
Case 1: On/Off input is enabled and then input power is applied (delay from instant at which $\mathrm{V}_{\mathbb{I}}=\mathrm{V}_{\mathbb{I N} \text {, min }}$ until $\mathrm{V}_{\mathrm{o}}=$ 10% of Vo , set)	All	Tdelay	-	1.1	-	msec
Case 2: Input power is applied for at least one second and then the On/Off input is enabled (delay from instant at which Von/Off is enabled until $\mathrm{V}_{\mathrm{o}}=10 \%$ of V_{o}, set)	All	Tdelay	-	700	-	$\mu \mathrm{sec}$
Output voltage Rise time (time for Vo to rise from 10% of Vo, set to 90% of Vo, set)	All	Trise	-	3.1	-	msec
Output voltage overshoot ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathbb{I N}, \text { min }}$ to $\mathrm{V}_{\mathbb{I N}, \text { max },} \mathrm{I}_{\mathrm{O}}=\mathrm{I}_{\mathrm{O}, \text { min }}$ to $\left.\mathrm{I}_{\mathrm{O}, \text { max }}\right)$ With or without maximum external capacitance					3.0	\% $\mathrm{V}_{\mathrm{o} \text {, set }}$
Over Temperature Protection (See Thermal Considerations section)	All	$\mathrm{T}_{\text {ref }}$		145		${ }^{\circ} \mathrm{C}$
PMBus Over Temperature Warning Threshold	All	$\mathrm{T}_{\text {WARN }}$		130		${ }^{\circ} \mathrm{C}$
Tracking Accuracy (Power-Up: 2V/ms) (Power-Down: $2 \mathrm{~V} / \mathrm{ms})$ $\left(\mathrm{V}_{\mathbb{I N}, \min }\right.$ to $\mathrm{V}_{\mathrm{IN}, \text { max }} ; \mathrm{I}_{\mathrm{O}, \text { min }}$ to $\left.\mathrm{I}_{\mathrm{O}, \max } \mathrm{VsEQ}<\mathrm{V}_{\mathrm{o}}\right)$	All All	$\begin{aligned} & \text { VseQ - Vo } \\ & \text { Vseq - } \mathrm{V} \text { 。 } \end{aligned}$			$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input Undervoltage Lockout Turn-on Threshold Turn-off Threshold Hysteresis	All All All		$\begin{gathered} 2.475 \\ 2.25 \\ 0.25 \end{gathered}$		$\begin{gathered} 3.025 \\ 2.75 \end{gathered}$	Vdc Vdc Vdc
PMBus Adjustable Input Under Voltage Lockout Thresholds Resolution of Adjustable Input Under Voltage Threshold	All All		2.5		$\begin{gathered} 14 \\ 500 \end{gathered}$	Vdc mV
PGOOD (Power Good) Signal Interface Open Drain, $\mathrm{V}_{\text {supply }} \leq 5 \mathrm{VDC}$ Overvoltage threshold for PGOOD ON Overvoltage threshold for PGOOD OFF Undervoltage threshold for PGOOD ON Undervoltage threshold for PGOOD OFF Pulldown resistance of PGOOD pin	All			$\begin{aligned} & 108 \\ & 105 \\ & 110 \\ & 90 \end{aligned}$	50	$\begin{gathered} \% \mathrm{~V}_{\mathrm{O}, \text { set }} \\ \Omega \end{gathered}$

Preliminary Data Sheet February 1, 2011

12A Digital Pico DLynx ${ }^{\text {TM }}$: Non-isolated DC-DC Power Modules $3-14.4 \mathrm{Vdc}$ input; 0.6 Vdc to 5.5 Vdc output; 12A output current

Digital Interface Specifications

Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions. See Feature Descriptions for additional information.

Parameter	Conditions	Symbol	Min	Typ	Max	Unit
PMBus Signal Interface Characteristics						
Input High Voltage (CLK, DATA)		VIH	2.1		3.6	V
Input Low Voltage (CLK, DATA)		VIL			0.8	V
Input high level current (CLK, DATA)		I_{H}	-10		10	$\mu \mathrm{A}$
Input low level current (CLK, DATA)		$1 /$	-10		10	$\mu \mathrm{A}$
Output Low Voltage (CLK, DATA, SMBALERT\#)	$\mathrm{l}_{\text {Out }}=2 \mathrm{~mA}$	Vol			0.4	V
Output high level open drain leakage current (DATA, SMBALERT\#)	$V_{\text {Out }}=3.6 \mathrm{~V}$	IOH	0		10	$\mu \mathrm{A}$
Pin capacitance		C。		0.7		pF
PMBus Operating frequency range	Slave Mode	FPmb	10		400	kHz
Data hold time	Receive Mode Transmit Mode	thd:dAt	$\begin{gathered} 0 \\ \hline 300 \\ \hline \end{gathered}$			ns
Data setup time		tsu:DAT	250			ns
Measurement System Characteristics						
Read delay time		tDLY	153	192	231	$\mu \mathrm{s}$
Output current measurement range		$\mathrm{I}_{\text {RNG }}$	0		18	A
Output current measurement resolution		Ires	62.5			mA
Output current measurement gain accuracy		$\mathrm{I}_{\text {ACC }}$			TBD	\%
Output current measurement offset		IoFst			TBD	A
$V_{\text {Out }}$ measurement range		$\mathrm{V}_{\text {OUT(rng) }}$	0		5.5	V
$V_{\text {Out }}$ measurement resolution		$\mathrm{V}_{\text {OUT(res) }}$		16.25		mV
$\mathrm{V}_{\text {Out }}$ measurement gain accuracy		$\mathrm{V}_{\text {OUT(gain) }}$	-2		2	LSB
$V_{\text {Out }}$ measurement offset		Vout(ofst)	-3		3	LSB
$\mathrm{V}_{\mathbb{I}}$ measurement range		$\mathrm{V}_{1 \mathrm{~N}(\mathrm{mg})}$	0		14.4	V
$\mathrm{V}_{\text {IN }}$ measurement resolution		$\mathrm{V}_{1 \mathrm{~N} \text { (res) }}$		32.5		mV
$\mathrm{V}_{\text {IV }}$ measurement gain accuracy		$\mathrm{V}_{1 \times(\text { gain })}$	-2		2	LSB
$\mathrm{V}_{\text {IN }}$ measurement offset		$\mathrm{V}_{1 \mathrm{~N} \text { (ofst) }}$	-5.5		1.4	LSB

Preliminary Data Sheet February 1, 2011

12A Digital Pico DLynx ${ }^{\text {TM }}$: Non-isolated DC-DC Power Modules $3-14.4 \mathrm{Vdc}$ input; 0.6 Vdc to 5.5 Vdc output; 12 A output current

Characteristic Curves

The following figures provide typical characteristics for the 12A Digital Pico DLynx ${ }^{T M}$ at 0.6 Vo and $25^{\circ} \mathrm{C}$.

Figure 1. Converter Efficiency versus Output Current.

TIME, t (1 $\mathrm{\mu s} / \mathrm{div}$)
Figure 3. Typical output ripple and noise ($\mathrm{C}_{\mathrm{o}}=22 \mu \mathrm{~F}$ ceramic, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=\mathrm{I}_{\mathrm{o}, \text { max, }}$).

Figure 5. Typical Start-up Using On/Off Voltage ($\mathrm{l}_{\mathrm{o}}=$ lo,max).

Figure 2. Derating Output Current versus Ambient Temperature and Airflow.

TIME, $\mathrm{t}(20 \mu \mathrm{~s} / \mathrm{div})$
Figure 4. Transient Response to Dynamic Load Change from $\mathbf{5 0 \%}$ to $\mathbf{1 0 0 \%}$ at $\mathbf{1 2 V i n}$, Cout= $3 \times 47 \mathrm{uF}+6 \times 330 \mathrm{uF}$, CTune $=47 \mathrm{nF}$, RTune $=180 \mathrm{ohms}$

Figure 6. Typical Start-up Using Input Voltage (Vin $=$ $12 \mathrm{~V}, \mathrm{l}_{\mathrm{o}}=(\mathrm{l}, \max)$.

Preliminary Data Sheet
February 1, 2011

12A Digital Pico DLynx ${ }^{\text {TM }}$: Non-isolated DC-DC Power Modules $3-14.4 \mathrm{Vdc}$ input; 0.6 Vdc to 5.5 Vdc output; 12 A output current

Characteristic Curves

The following figures provide typical characteristics for the 12A Digital Pico DLynx ${ }^{\top \mathrm{TM}}$ at 1.2 Vo and $25^{\circ} \mathrm{C}$.

Figure 7. Converter Efficiency versus Output Current.

TIME, $\mathrm{t}(1 \mu \mathrm{~s} / \mathrm{div})$
Figure 9. Typical output ripple and noise ($\mathrm{C}_{\mathrm{o}}=22 \mu \mathrm{~F}$ ceramic, $\mathrm{VIN}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=\mathrm{I}_{\mathrm{o}, \text { max, }}$).

Figure 1. Typical Start-up Using On/Off Voltage ($\mathrm{l}_{\mathrm{o}}=$ lo,max).

Figure 8. Derating Output Current versus Ambient Temperature and Airflow.

TIME, t (20 $\mathrm{\mu s} / \mathrm{div}$)
Figure 10. Transient Response to Dynamic Load Change from 50% to 100% at 12 Vin , Cout= 1x47uF+3x330uF, CTune=10nF \& RTune=220ohms

Figure 12. Typical Start-up Using Input Voltage (Vin = $\left.12 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=\mathrm{I}, \max \right)$.

Preliminary Data Sheet February 1, 2011

12A Digital Pico DLynx ${ }^{\text {TM }}$: Non-isolated DC-DC Power Modules $3-14.4 \mathrm{Vdc}$ input; 0.6 Vdc to 5.5 Vdc output; 12 A output current

Characteristic Curves

The following figures provide typical characteristics for the 12A Digital Pico DLynx ${ }^{T M}$ at 1.8 Vo and $25^{\circ} \mathrm{C}$.

Figure 13. Converter Efficiency versus Output Current.

TIME, t ($1 \mu \mathrm{~s} / \mathrm{div}$)
Figure 15. Typical output ripple and noise ($\mathrm{C}_{\mathrm{o}}=22 \mu \mathrm{~F}$ ceramic, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=\mathrm{I}_{\mathrm{o}, \text { max }}$).

Figure 17. Typical Start-up Using On/Off Voltage (lo= lo,max).

Figure 14. Derating Output Current versus Ambient Temperature and Airflow.

TIME, t (20 $\mathrm{\mu s} / \mathrm{div}$)
Figure 16. Transient Response to Dynamic Load Change from $\mathbf{5 0 \%}$ to $\mathbf{1 0 0 \%}$ at $\mathbf{1 2 V i n}$, Cout= $1 \times 47 \mathrm{uF}+2 \times 330 \mathrm{uF}, \mathrm{CT}$ une $=5600 \mathrm{pF}$ \& RTune=270ohms

Figure 18. Typical Start-up Using Input Voltage (Vin = $12 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=\mathrm{I}_{\mathrm{o}, \max }$).

Preliminary Data Sheet
February 1, 2011

12A Digital Pico DLynx ${ }^{\text {TM }}$: Non-isolated DC-DC Power Modules $3-14.4 \mathrm{Vdc}$ input; 0.6 Vdc to 5.5 Vdc output; 12 A output current

Characteristic Curves

The following figures provide typical characteristics for the 12A Digital Pico DLynx ${ }^{\top \mathrm{TM}}$ at 2.5 Vo and $25^{\circ} \mathrm{C}$.

Figure 19. Converter Efficiency versus Output Current.

TIME, t ($1 \mu \mathrm{~s} / \mathrm{div}$)
Figure 21. Typical output ripple and noise ($\mathrm{C}_{\mathrm{o}}=22 \mu \mathrm{~F}$ ceramic, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=\mathrm{I}_{\mathrm{o}, \text { max, }}$).

Figure 23. Typical Start-up Using On/Off Voltage ($\mathrm{l}_{\mathrm{o}}=$ $l_{0, \max)}$.

Figure 20. Derating Output Current versus Ambient Temperature and Airflow.

TIME, t (20 $\mu \mathrm{s} / \mathrm{div}$)
Figure 22. Transient Response to Dynamic Load Change from $\mathbf{5 0 \%}$ to $\mathbf{1 0 0 \%}$ at $\mathbf{1 2 V i n}$, Cout= $1 \times 47 \mathrm{uF}+1 \times 330 \mathrm{uF}, \mathrm{CT}$ une $=3300 \mathrm{pF}$ \& RTune $=270 \mathrm{ohms}$

Figure 24. Typical Start-up Using Input Voltage (Vin = $12 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=\mathrm{I}_{\mathrm{o}, \max }$).

Preliminary Data Sheet February 1, 2011

12A Digital Pico DLynx ${ }^{\text {TM }}$: Non-isolated DC-DC Power Modules $3-14.4 \mathrm{Vdc}$ input; 0.6 Vdc to 5.5 Vdc output; 12 A output current

Characteristic Curves

The following figures provide typical characteristics for the 12A Digital Pico DLynx ${ }^{T M}$ at 3.3 Vo and $25^{\circ} \mathrm{C}$.

Figure 25. Converter Efficiency versus Output Current.

Figure 27. Typical output ripple and noise ($\mathrm{C}_{\mathrm{o}}=22 \mu \mathrm{~F}$ ceramic, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=\mathrm{I}_{\mathrm{o}, \text { max }}$).

Figure 29. Typical Start-up Using On/Off Voltage ($\mathrm{l}_{\mathrm{o}}=$ $l_{0, \max)}$.

Figure 26. Derating Output Current versus Ambient Temperature and Airflow.

TIME, t ($20 \mu \mathrm{~s} / \mathrm{div}$)
Figure 28 Transient Response to Dynamic Load Change from $\mathbf{5 0 \%}$ to $\mathbf{1 0 0 \%}$ at $\mathbf{1 2 V i n}$, Cout= $1 \times 47 \mathrm{uF}+1 \times 330 \mathrm{uF}, \mathrm{CT}$ une $=2700 \mathrm{pF}$ \& RTune= 330 ohms

Figure 30. Typical Start-up Using Input Voltage (Vin = $12 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=\mathrm{I}_{\mathrm{o}, \max }$).

Preliminary Data Sheet
February 1, 2011

12A Digital Pico DLynx ${ }^{\text {TM }}$: Non-isolated DC-DC Power Modules $3-14.4 \mathrm{Vdc}$ input; 0.6 Vdc to 5.5 Vdc output; 12 A output current

Characteristic Curves

The following figures provide typical characteristics for the 12 A Digital Pico $\mathrm{DLynx}{ }^{\text {TM }}$ at 5 Vo and $25^{\circ} \mathrm{C}$.

Figure 31. Converter Efficiency versus Output Current.

TIME, t ($1 \mu \mathrm{~s} / \mathrm{div}$)
Figure 33. Typical output ripple and noise ($\mathrm{C}_{\mathrm{o}}=22 \mu \mathrm{~F}$ ceramic, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{Io}_{\mathrm{o}}=\mathrm{l}_{\mathrm{o}, \text { max, }}$).

Figure 35. Typical Start-up Using On/Off Voltage ($\mathrm{l}_{\mathrm{o}}=$ lo,max).

Figure 32. Derating Output Current versus Ambient Temperature and Airflow.

TIME, t (20 s /div)
Figure 34. Transient Response to Dynamic Load Change from $\mathbf{5 0 \%}$ to 100% at 12 Vin , Cout= $5 \times 47 \mathrm{uF}$, CTune $=1500 \mathrm{pF}$ \& RTune $=330 \mathrm{ohms}$

Figure 36. Typical Start-up Using Input Voltage (Vin = $\left.12 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=\mathrm{l}, \max \right)$.

Design Considerations

Input Filtering

The 12A Digital Pico DLynx ${ }^{\text {TM }}$ module should be connected to a low ac-impedance source. A highly inductive source can affect the stability of the module. An input capacitance must be placed directly adjacent to the input pin of the module, to minimize input ripple voltage and ensure module stability.
To minimize input voltage ripple, ceramic capacitors are recommended at the input of the module. Figure 37 shows the input ripple voltage for various output voltages at 12 A of load current with $2 \times 22 \mu \mathrm{~F}$ or 3×22 $\mu \mathrm{F}$ ceramic capacitors and an input of 12 V .

Figure 37. Input ripple voltage for various output voltages with $2 \times 22 \mu \mathrm{~F}$ or $3 \times 22 \mu \mathrm{~F}$ ceramic capacitors at the input (12A load). Input voltage is 12 V .

Output Filtering

These modules are designed for low output ripple voltage and will meet the maximum output ripple specification with $0.1 \mu \mathrm{~F}$ ceramic and $22 \mu \mathrm{~F}$ ceramic capacitors at the output of the module. However, additional output filtering may be required by the system designer for a number of reasons. First, there may be a need to further reduce the output ripple and noise of the module. Second, the dynamic response characteristics may need to be customized to a particular load step change.

To reduce the output ripple and improve the dynamic response to a step load change, additional capacitance at the output can be used. Low ESR polymer and ceramic capacitors are recommended to improve the dynamic response of the module. Figure 38 provides output ripple information for different external capacitance values at various Vo and a full load current of 12A. For stable operation of the module, limit the capacitance to less than the maximum output capacitance as specified in the
electrical specification table. Optimal performance of the module can be achieved by using the Tunable Loop ${ }^{\text {TM }}$ feature described later in this data sheet.

Figure 38. Output ripple voltage for various output voltages with external $1 \times 10 \mu \mathrm{~F}, 1 \times 47 \mu \mathrm{~F}, 2 \times 47 \mu \mathrm{~F}$ or $4 \times 47 \mu \mathrm{~F}$ ceramic capacitors at the output (12A load). Input voltage is 12 V .

Safety Considerations

For safety agency approval the power module must be installed in compliance with the spacing and separation requirements of the end-use safety agency standards, i.e., UL 60950-1 2nd, CSA C22.2 No. 60950-1-07, DIN EN 60950-1:2006 + A11 (VDE0805 Teil 1 + A11):2009-11; EN 60950-1:2006 + A11:200903.

For the converter output to be considered meeting the requirements of safety extra-low voltage (SELV), the input must meet SELV requirements. The power module has extra-low voltage (ELV) outputs when all inputs are ELV.
The input to these units is to be provided with a fastacting fuse with a maximum rating of TBD A in the positive input lead.

Analog Feature Descriptions
 Remote On/Off

The module can be turned ON and OFF either by using the ON/OFF pin (Analog interface) or through the PMBus interface (Digital). The module can be configured in a number of ways through the PMBus interface to react to the two ON/OFF inputs:

- Module ON/OFF can be controlled only through the analog interface (digital interface ON/OFF commands are ignored)
- Module ON/OFF can be controlled only through the PMBus interface (analog interface is ignored)
- Module ON/OFF can be controlled by either the analog or digital interface
The default state of the module (as shipped from the factory) is to be controlled by the analog interface only. If the digital interface is to be enabled, or the module is to be controlled only through the digital interface, this change must be made through the PMBus. These changes can be made and written to non-volatile memory on the module so that it is remembered for subsequent use.

Analog On/Off

The 12A Digital Pico $D_{\text {Lynx }}{ }^{\text {TM }}$ power modules feature an On/Off pin for remote On/Off operation. Two On/Off logic options are available. In the Positive Logic On/Off option, (device code suffix "4" - see Ordering Information), the module turns ON during a logic High on the On/Off pin and turns OFF during a logic Low. With the Negative Logic On/Off option, (no device code suffix, see Ordering Information), the module turns OFF during logic High and ON during logic Low. The On/Off signal should be always referenced to ground. For either On/Off logic option, leaving the On/Off pin disconnected will turn the module ON when input voltage is present.
For positive logic modules, the circuit configuration for using the On/Off pin is shown in Figure 39. When the external transistor Q2 is in the OFF state, the internal transistor Q1 is turned ON, and the internal PWM \#Enable signal is pulled low causing the module to be ON. When transistor Q2 is turned ON, the On/Off pin is pulled low and the module is OFF. A suggested value for $R_{\text {pullup }}$ is $20 \mathrm{k} \Omega$.

For negative logic On/Off modules, the circuit configuration is shown in Fig. 40. The On/Off pin should be pulled high with an external pull-up resistor (suggested value for the 3 V to 14 V input range is 20Kohms). When transistor Q2 is in the OFF state, the On/Off pin is pulled high, transistor Q1 is turned ON and the module is OFF. To turn the module ON, Q2 is turned ON pulling the On/Off pin low, turning transistor Q1 OFF resulting in the PWM Enable pin going high.

Digital On/Off

Please see the Digital Feature Descriptions section.

Figure 39. Circuit configuration for using positive On/Off logic.

Figure 40. Circuit configuration for using negative On/Off logic.

Monotonic Start-up and Shutdown

The module has monotonic start-up and shutdown behavior for any combination of rated input voltage, output current and operating temperature range.

Startup into Pre-biased Output

The module can start into a prebiased output as long as the prebias voltage is 0.5 V less than the set output voltage.

Analog Output Voltage Programming

The output voltage of the module is programmable to any voltage from 0.6 dc to 5.5 Vdc by connecting a resistor between the Trim and SIG_GND pins of the module. Without an external resistor between Trim and SIG_GND pins, the output of the module will be 0.6 Vdc . To calculate the value of the trim resistor, Rtrim for a desired output voltage, should be as per the following equation:

$$
\text { Rtrim }=\left[\frac{12}{(V o-0.6)}\right] k \Omega
$$

Rtrim is the external resistor in $\mathrm{k} \Omega$
$V o$ is the desired output voltage. Table 1 provides Rtrim values required for some common output voltages.

Figure 41. Circuit configuration for programming output voltage using an external resistor.

Table 1

$\mathbf{V}_{\mathbf{0} \text {, set }} \mathbf{(V)}$	Rtrim $(\mathbf{K} \boldsymbol{\Omega})$
0.6	Open
0.9	40
1.0	30
1.2	20
1.5	13.33
1.8	10
2.5	6.316
3.3	4.444
5.0	2.727

Digital Output Voltage Adjustment

Please see the Digital Feature Descriptions section.

Remote Sense

The power module has a Remote Sense feature to minimize the effects of distribution losses by regulating the voltage at the SENSE pin. The voltage between the SENSE pin and VOUT pin should not exceed 0.5 V .

Analog Voltage Margining

Output voltage margining can be implemented in the module by connecting a resistor, $\mathrm{R}_{\text {margin-up, }}$ from the Trim pin to the ground pin for margining-up the output voltage and by connecting a resistor, $\mathrm{R}_{\text {margin-down }}$, from the Trim pin to output pin for margining-down. Figure 42 shows the circuit configuration for output voltage margining. The POL Programming Tool, available at www.lineagepower.com under the Downloads section, also calculates the values of $R_{\text {margin-up }}$ and $R_{\text {margin-down }}$ for a specific output voltage and \% margin. Please consult your local Lineage Power technical representative for additional details.

Figure 42. Circuit Configuration for margining Output voltage.

Digital Output Voltage Margining

Please see the Digital Feature Descriptions section.

Output Voltage Sequencing

The power module includes a sequencing feature, EZSEQUENCE that enables users to implement various types of output voltage sequencing in their applications. This is accomplished via an additional sequencing pin. When not using the sequencing feature, leave it unconnected.
The voltage applied to the SEQ pin should be scaled down by the same ratio as used to scale the output voltage down to the reference voltage of the module. This is accomplished by an external resistive divider connected across the sequencing voltage before it is fed to the SEQ pin as shown in Fig. 43.

Figure 43. Circuit showing connection of the sequencing signal to the SEQ pin.

When the scaled down sequencing voltage is applied to the SEQ pin, the output voltage tracks this voltage until the output reaches the set-point voltage. The final value of the sequencing voltage must be set higher than the set-point voltage of the module. The output voltage follows the sequencing voltage on a one-toone basis. By connecting multiple modules together,
multiple modules can track their output voltages to the voltage applied on the SEQ pin.
To initiate simultaneous shutdown of the modules, the SEQ pin voltage is lowered in a controlled manner. The output voltage of the modules tracks the voltages below their set-point voltages on a one-to-one basis. A valid input voltage must be maintained until the tracking and output voltages reach ground potential.

Overcurrent Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current-limiting circuitry and can endure current limiting continuously. At the point of current-limit inception, the unit enters hiccup mode. The unit operates normally once the output current is brought back into its specified range.

Digital Adjustable Overcurrent Warning

Please see the Digital Feature Descriptions section.

Overtemperature Protection

To provide protection in a fault condition, the unit is equipped with a thermal shutdown circuit. The unit will shut down if the overtemperature threshold of $\mathrm{TBD}^{\circ} \mathrm{C}(\mathrm{typ})$ is exceeded at the thermal reference point $\mathrm{T}_{\text {ref }}$. Once the unit goes into thermal shutdown it will then wait to cool before attempting to restart.
Digital Temperature Status via PMBus
Please see the Digital Feature Descriptions section.

Digitally Adjustable Output Over and Under Voltage Protection
Please see the Digital Feature Descriptions section.

Input Undervoltage Lockout
At input voltages below the input undervoltage lockout limit, the module operation is disabled. The module will begin to operate at an input voltage above the undervoltage lockout turn-on threshold.

Digitally Adjustable Input Undervoltage Lockout

Please see the Digital Feature Descriptions section.

Digitally Adjustable Power Good Thresholds

Please see the Digital Feature Descriptions section.

Synchronization

The module switching frequency can be synchronized to a signal with an external frequency within a specified range. Synchronization can be done by using the external signal applied to the SYNC pin of the module as shown in Fig. 44, with the converter being synchronized by the rising edge of the external signal.

The Electrical Specifications table specifies the requirements of the external SYNC signal. If the SYNC pin is not used, the module should free run at the default switching frequency. If synchronization is not being used, connect the SYNC pin to GND.

Figure 44. External source connections to synchronize switching frequency of the module.
Measuring Output Current, Output Voltage and Input Voltage
Please see the Digital Feature Descriptions section.
Dual Layout
Identical dimensions and pin layout of Analog and Digital Pico DLynx modules permit migration from one to the other without needing to change the layout. To support this, 2 separate Trim Resistor locations have to be provided in the layout. As shown in Fig. 45, for the digital modules, the resistor is connected between the TRIM pad and SGND and in the case of the analog module it is connected between TRIM and GND.

Figure 45. Connections to support either Analog or Digital PicoDLynx on the same layout.

Tunable Loop ${ }^{\text {TM }}$

The module has a feature that optimizes transient response of the module called Tunable Loop ${ }^{\text {TM }}$.

External capacitors are usually added to the output of the module for two reasons: to reduce output ripple and noise (see Figure 38) and to reduce output voltage deviations from the steady-state value in the presence of dynamic load current changes. Adding external capacitance however affects the voltage control loop of the module, typically causing the loop to slow down with sluggish response. Larger values of external capacitance could also cause the module to become unstable.

The Tunable Loop ${ }^{\text {TM }}$ allows the user to externally adjust the voltage control loop to match the filter network connected to the output of the module. The Tunable Loop ${ }^{\text {TM }}$ is implemented by connecting a series R-C between the VS+ and TRIM pins of the module, as shown in Fig. 46. This R-C allows the user to externally adjust the voltage loop feedback compensation of the module.

Figure. 46. Circuit diagram showing connection of $\mathrm{R}_{\text {tume }}$ and $\mathrm{C}_{\text {tune }}$ to tune the control loop of the module.

Recommended values of $R_{\text {TUNE }}$ and $\mathrm{C}_{\text {TUNE }}$ for different output capacitor combinations are given in Tables 2 and 3 . Table 3 shows the recommended values of $\mathrm{R}_{\text {TUNE }}$ and $\mathrm{C}_{\text {TUNE }}$ for different values of ceramic output capacitors up to 1000 uF that might be needed for an application to meet output ripple and noise requirements. Selecting $\mathrm{R}_{\text {TUNE }}$ and $\mathrm{C}_{\text {TUNE }}$ according to Table 3 will ensure stable operation of the module. In applications with tight output voltage limits in the presence of dynamic current loading, additional output capacitance will be required. Table 3 lists recommended values of $\mathrm{R}_{\text {TUNE }}$ and $\mathrm{C}_{\text {TUNE }}$ in order to meet 2% output voltage deviation limits for some
common output voltages in the presence of a 6A to 12A step change (50% of full load), with an input voltage of 12 V .

Please contact your Lineage Power technical representative to obtain more details of this feature as well as for guidelines on how to select the right value of external R-C to tune the module for best transient performance and stable operation for other output capacitance values or input voltages other than 12 V .

Table 2. General recommended values of of $\mathrm{R}_{\text {TUNE }}$ and $\mathrm{C}_{\text {TUNE }}$ for Vin=12V and various external ceramic capacitor combinations.

Co	$\mathbf{1 \times 4 7} \boldsymbol{\mu F}$	$\mathbf{2 \times 4 7} \boldsymbol{\mu F}$	$\mathbf{4 \times 4 7} \boldsymbol{\mu F}$	$\mathbf{6 x 4 7} \boldsymbol{\mu F}$	$\mathbf{1 0 \times 4 7} \boldsymbol{\mu F}$
$\mathrm{R}_{\text {TUNE }}$	330	330	330	330	220
$\mathrm{C}_{\text {TUNE }}$	100 pF	560 pF	1500 pF	2200 pF	10 nF

Co	$\mathbf{2 0 \times 4 7 \mu F}$
$\mathrm{R}_{\text {TUNE }}$	180
$\mathrm{C}_{\text {TUNE }}$	6800 pF

Table 3. Recommended values of $R_{\text {TUNE }}$ and $C_{\text {TUNE }}$ to obtain transient deviation of 2\% of Vout for a 6A step load with Vin=12V.

Vo	5V	3.3 V	2.5V	1.8V	1.2V	0.6V
Co	$5 \mathrm{x} 47 \mu \mathrm{~F}$	$\begin{array}{\|c\|} \hline 1 \times 47 \mu \mathrm{~F} \\ + \\ 330 \mu \mathrm{~F} \\ \text { Polymer } \end{array}$	$\begin{array}{\|c\|} \hline 3 \times 47 \mu \mathrm{~F} \\ + \\ 330 \mu \mathrm{~F} \\ \text { Polymer } \end{array}$	$\begin{array}{\|c\|} \hline 1 \times 47 \mu \mathrm{~F} \\ + \\ 2 \times 330 \mu \mathrm{~F} \\ \text { Polymer } \\ \hline \end{array}$	$\begin{gathered} 1 \times 47 \mu \mathrm{~F} \\ + \\ 3 \times 330 \mu \mathrm{~F} \\ \text { Polymer } \end{gathered}$	$\begin{array}{\|c\|} \hline 3 \times 47 \mu \mathrm{~F} \\ + \\ 6 \times 330 \mu \mathrm{~F} \\ \text { Polymer } \\ \hline \end{array}$
$\mathbf{R}_{\text {TUNE }}$	330	330	270	270	220	180
$\mathrm{C}_{\text {tune }}$	1500pF	2700pF	3300pF	5600pF	10nF	47 nF
$\Delta \mathrm{V}$	99 mV	58 mV	47 mV	34 mV	24 mV	12 mV

Digital Feature Descriptions

PMBus Interface Capability

The 12A Digital Pico DLynx ${ }^{\text {TM }}$ power modules have a PMBus interface that supports both communication and control. The PMBus Power Management Protocol Specification can be obtained from www.pmbus.org. The modules support a subset of version 1.1 of the specification (see Table 5 for a list of the specific commands supported). Most module parameters can be programmed using PMBus and stored as defaults for later use.
All communication over the module PMBus interface must support the Packet Error Checking (PEC) scheme. The PMBus master must generate the correct PEC byte for all transactions, and check the PEC byte returned by the module.
The module also supports the SMBALERT response protocol whereby the module can alert the bus master if it wants to talk. For more information on the SMBus alert response protocol, see the System Management Bus (SMBus) specification.
The module has non-volatile memory that is used to store configuration settings. Not all settings programmed into the device are automatically saved into this non-volatile memory, only those specifically identified as capable of being stored can be saved (see Table 5 for which command parameters can be saved to non-volatile storage).

PMBus Data Format

For commands that set thresholds, voltages or report such quantities, the module supports the "Linear" data format among the three data formats supported by PMBus. The Linear Data Format is a two byte value with an 11-bit, two's complement mantissa and a 5-bit, two's complement exponent. The format of the two data bytes is shown below:

The value is of the number is then given by

$$
\text { Value }=\text { Mantissa } \times 2 \text { Exponent }
$$

PMBus Addressing

The power module can be addressed through the PMBus using a device address. The module has 64 possible addresses (0 to 63 in decimal) which can be set using resistors connected from the ADDRO and ADDR1 pins to GND. The address is set in the form of two octal (0 to 7) digits, with each pin setting one digit. The ADDR1 pin sets the high order digit and ADDR0 sets the low order digit. The resistor values suggested for each digit are shown in Table 4 (1\% tolerance resistors are recommended). Note that if either
address resistor value is outside the range specified in Table 4, the module will respond to address 127.

Table 4

Digit	Resistor Value (K))
0	10
1	15.4
2	23.7
3	36.5
4	54.9
5	84.5
6	130
7	200

The user must know which $I^{2} \mathrm{C}$ addresses are reserved in a system for special functions and set the address of the module to avoid interfering with other system operations. Both 100 kHz and 400 kHz bus speeds are supported by the module. Connection for the PMBus interface should follow the High Power DC specifications given in section 3.1.3 in the SMBus specification V2.0 for the 400 kHz bus speed or the Low Power DC specifications in section 3.1.2. The complete SMBus specification is available from the SMBus web site, smbus.org.

Figure 47. Circuit showing connection of resistors used to set the PMBus address of the module.

PMBus Enabled On/Off

The module can also be turned on and off via the PMBus interface. The OPERATION command is used to actually turn the module on and off via the PMBus, while the ON_OFF_CONFIG command configures the combination of analog ON/OFF pin input and PMBus commands needed to turn the module on and off. Bit [7] in the OPERATION command data byte enables the module, with the following functions:

0 : Output is disabled
1 : Output is enabled
This module uses the lower five bits of the ON_OFF_CONFIG data byte to set various ON/OFF options as follows:

Bit Position	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Access	r / w	r / w	r / w	r / w	r
Function	PU	CMD	CPR	POL	CPA
Default Value	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

PU: Sets the default to either operate any time input power is present or for the ON/OFF to be controlled by the analog ON/OFF input and the PMBus

OPERATION command. This bit is used together with the CP, CMD and ON bits to determine startup.

Bit Value	Action
0	Module powers up any time power is present regardless of state of the analog ON/OFF pin
1	Module does not power up until commanded by the analog ON/OFF pin and the OPERATION command as programmed in bits [2:0] of the ON_OFF_CONFIG register.

CMD: The CMD bit controls how the device responds to the OPERATION command.

Bit Value	Action
0	Module ignores the ON bit in the OPERATION command
1	Module responds to the ON bit in the OPERATION command

CPR: Sets the response of the analog ON/OFF pin. This bit is used together with the CMD, PU and ON bits to determine startup.

Bit Value	Action
0	Module ignores the analog ON/OFF pin, i.e. ON/OFF is only controlled through the PMBUS via the OPERATION command
1	Module requires the analog ON/OFF pin to be asserted to start the unit

PMBus Adjustable Soft Start Rise Time

The soft start rise time can be adjusted in the module via PMBus. When setting this parameter, make sure that the charging current for output capacitors can be delivered by the module in addition to any load current to avoid nuisance tripping of the overcurrent protection circuitry during startup. The TON_RISE command sets the rise time in ms, and allows choosing soft start times between $600 \mu \mathrm{~s}$ and 9 ms , with possible values listed in Table 5. Note that the exponent is fixed at -4 (decimal) and the upper two bits of the mantissa are also fixed at 0 .

Table 5

Rise Time	Exponent	Mantissa
$600 \mu \mathrm{~s}$	11100	00000001010
$900 \mu \mathrm{~s}$	11100	00000001110
1.2 ms	11100	00000010011
1.8 ms	11100	00000011101
2.7 ms	11100	00000101011
4.2 ms	11100	00001000011
6.0 ms	11100	00001100000
9.0 ms	11100	00010010000

Output Voltage Adjustment Using the PMBus

The VOUT_SCALE_LOOP parameter is important for a number of PMBus commands related to output voltage trimming, margining, over/under voltage protection and the PGOOD thresholds. The output voltage of the module is set as the combination of the voltage divider formed by RTrim and a $20 \mathrm{k} \Omega$ upper divider resistor inside the module, and the internal reference voltage of the module. The reference voltage $V_{\text {REF }}$ is nominally set at 600 mV , and the output regulation voltage is then given by

$$
V_{\text {OUT }}=\left[\frac{20000+\text { RTrim }}{R \text { Trim }}\right] \times V_{\text {REF }}
$$

Hence the module output voltage is dependent on the value of R Trim which is connected external to the module. The information on the output voltage divider ratio is conveyed to the module through the VOUT_SCALE_LOOP parameter which is calculated as follows:

$$
\text { VOUT_S }_{-} S C A L E_{-} L O O P=\frac{\text { RTrim }}{20000+\text { RTrim }}
$$

The VOUT_SCALE_LOOP parameter is specified using the "Linear" format and two bytes. The upper five bits [7:3] of the high byte are used to set the exponent which is fixed at -9 (decimal). The remaining three bits of the high byte [2:0] and the eight bits of the lower byte are used for the mantissa. The default value of the mantissa is 00100000000 corresponding to 256 (decimal), corresponding to a divider ratio of 0.5 . The maximum value of the mantissa is 512 corresponding to a divider ratio of 1 . Note that the resolution of the VOUT_SCALE_LOOP command is 0.2%.

When PMBus commands are used to trim or margin the output voltage, the value of $\mathrm{V}_{\text {REF }}$ is what is changed inside the module, which in turn changes the regulated output voltage of the module.

The nominal output voltage of the module can be adjusted with a minimum step size of 0.4% over a $\pm 25 \%$ range from nominal using the VOUT_TRIM command over the PMBus.

The VOUT_TRIM command is used to apply a fixed offset voltage to the output voltage command value using the "Linear" mode with the exponent fixed at -10 (decimal). The value of the offset voltage is given by

$$
V_{\text {OUT }(\text { offset })}=V O U T_{-} T R I M \times 2^{-10}
$$

This offset voltage is added to the voltage set through the divider ratio and nominal $\mathrm{V}_{\text {REF }}$ to produce the trimmed output voltage. The valid range in two's complement for this command is -4000 h to 3999 h . The high order two bits of the high byte must both be either 0 or 1 . If a value outside of the $+/-25 \%$ adjustment range is given with this command, the module will set it's output voltage to the nominal value (as if VOUT_TRIM had been set to 0), assert

Preliminary Data Sheet
February 1, 2011

12A Digital Pico DLynx ${ }^{\text {TM }}$: Non-isolated DC-DC Power Modules $3-14.4 \mathrm{Vdc}$ input; 0.6 Vdc to 5.5 Vdc output; 12 A output current

SMBALRT\#, set the CML bit in STATUS_BYTE and the invalid data bit in STATUS_CML.

Output Voltage Margining Using the PMBus

The module can also have its output voltage margined via PMBus commands. The command
VOUT_MARGIN_HIGH sets the margin high voltage, while the command VOUT_MARGIN_LOW sets the margin low voltage. Both the VOUT_MARGIN_HIGH and VOUT_MARGIN_LOW commands use the "Linear" mode with the exponent fixed at -10 (decimal). Two bytes are used for the mantissa with the upper bit [7] of the high byte fixed at 0 . The actual margined output voltage is a combination of the VOUT_MARGIN_HIGH or VOUT_MARGIN_LOW and the VOUT_TRIM values as shown below.

```
\(V_{\text {OUT }(M H)}=\)
    \((\) VOUT_MARGIN_HIGH + VOUT_TRIM \() \times 2^{-10}\)
\(V_{\text {OUT(ML) }}=\)
    \((\) VOUT_MARGIN_LOW + VOUT_TRIM \() \times 2^{-10}\)
```

Note that the sum of the margin and trim voltages cannot be outside the $\pm 25 \%$ window around the nominal output voltage. The data associated with VOUT_MARGIN_HIGH and VOUT_MARGIN_LOW can be stored to non-volatile memory using the STORE_DEFAULT_ALL command.
The module is commanded to go to the margined high or low voltages using the OPERATION command. Bits [5:2] are used to enable margining as follows:

00XX :	Margin Off
$0101:$	Margin Low (Ignore Fault)
$0110:$	Margin Low (Act on Fault)
$1001:$	Margin High (Ignore Fault)
$1010:$	Margin High (Act on Fault)

PMBus Adjustable Overcurrent Warning

The module can provide an overcurrent warning via the PMBus. The threshold for the overcurrent warning can be set using the parameter
IOUT_OC_WARN_LIMIT. This command uses the "Linear" data format with a two byte data word where the upper five bits [7:3] of the high byte represent the exponent and the remaining three bits of the high byte [2:0] and the eight bits in the low byte represent the mantissa. The exponent is fixed at -1 (decimal). The upper six bits of the mantissa are fixed at 0 while the lower five bits are programmable with a default value of TBD (decimal). The resolution of this warning limit is 500 mA . The value of the IOUT_OC_WARN_LIMIT can be stored to non-volatile memory using the STORE_DEFAULT_ALL command.

Temperature Status via PMBus

The module can provide information related to temperature of the module through the STATUS_TEMPERATURE command. The command returns information about whether the pre-set over temperature fault threshold and/or the warning threshold have been exceeded.

PMBus Adjustable Output Over and Under Voltage Protection

The module has output over and under voltage protection capability. The PMBus command
VOUT_OV_FAULT_LIMIT is used to set the output over voltage threshold from four possible values: $108 \%, 110 \%, 112 \%$ or 115% of the nominal output voltage. The command VOUT_UV_FAULT_LIMIT sets the threshold that causes an output under voltage fault and can also be selected from four possible values: $92 \%, 90 \%, 88 \%$ or 85%. The default values are 112% and 88% of nominal output voltage. Both commands use two data bytes formatted as two's complement binary integers. The "Linear" mode is used with the exponent fixed to -10 (decimal) and the effective over or under voltage trip points given by:

Values within the supported range for over and undervoltage detection thresholds will be set to the nearest fixed percentage. Note that the correct value for VOUT_SCALE_LOOP must be set in the module for the correct over or under voltage trip points to be calculated.
In addition to adjustable output voltage protection, the 12A Digital Pico DLynx ${ }^{\text {TM }}$ module can also be programmed for the response to the fault. The VOUT_OV_FAULT RESPONSE and
VOUT_UV_FAULT_RESPONSE commands specify the response to the fault. Possible choices are shown below.

1. Continue operation without interruption
2. Continue for four switching cycles and then shut down if the fault is still present, followed by no restart or continuous restart (can select either option)
3. Immediate shut down followed by no restart or continuous restart (can select either option).
4. Module output is disabled when the fault is present and the output is enabled when the fault no longer exists.
Note that separate response choices are possible for output over voltage or under voltage faults.

PMBus Adjustable Input Undervoltage Lockout

The module allows adjustment of the input under voltage lockout and hysteresis. The command VIN_ON allows setting the input voltage turn on threshold, while the VIN_OFF command sets the input voltage turn off threshold. For the VIN_ON command, possible values are 2.75 V , and 3 V to $\overline{14} \mathrm{~V}$ in 0.5 V steps. For the VIN_OFF command, possible values are 2.5 V to 14 V in 0.5 V steps. If other values are entered for either command, they will be mapped to the closest of the allowed values.

Preliminary Data Sheet
February 1, 2011

12A Digital Pico DLynx ${ }^{\text {TM }}$: Non-isolated DC-DC Power Modules $3-14.4 \mathrm{Vdc}$ input; 0.6 Vdc to 5.5 Vdc output; 12 A output current

Power Good

The module provides a Power Good (PGOOD) signal that is implemented with an open-drain output to indicate that the output voltage is within the regulation limits of the power module. The PGOOD signal will be de-asserted to a low state if any condition such as overtemperature, overcurrent or loss of regulation occurs that would result in the output voltage going outside the specified thresholds. The PGOOD thresholds are user selectable via the PMBus (the default values are as shown in the Feature Specifications Section). Each threshold is set up symmetrically above and below the nominal value. The POWER_GOOD_ON command sets the output voltage level above which PGOOD is asserted (lower threshold). For example, with a 1.2 V nominal output voltage, the POWER_GOOD_ON threshold can set the lower threshold to 1.14 or 1.1 V . Doing this will automatically set the upper thresholds to 1.26 or 1.3 V .
The POWER_GOOD_OFF command sets the level below which the PGOOD command is de-asserted. This command also sets two thresholds symmetrically placed around the nominal output voltage. Normally, the POWER_GOOD_ON threshold is set higher than the POWER_GOOD_OFF threshold.
Both POWER_GOOD_ON and POWER_GOOD_OFF commands use the "Linear" format with the exponent fixed at -10 (decimal). The two thresholds are given by

$$
\begin{aligned}
& V_{\text {OUT }\left(P G O O D _O N\right)}=\left(P O W E R_{-} G O O D_{-} O N\right) \times 2^{-10} \\
& V_{\text {OUT }\left(P G O O D _O F F\right)}=\left(P O W E R_{-} G O O D_{-} O F F\right) \times 2^{-10}
\end{aligned}
$$

Both commands use two data bytes with bit [7] of the high byte fixed at 0 , while the remaining bits are r / w and used to set the mantissa using two's complement representation. Both commands also use the VOUT_SCALE_LOOP parameter so it must be set correctly. The default value of POWER_GOOD_ON is set at 1.1035 V and that of the POWER_GOOD_OFF is set at 1.08 V . The values associated with these commands can be stored in non-volatile memory using the STORE_DEFAULT_ALL command.
The PGOOD terminal can be connected through a pullup resistor (suggested value $100 \mathrm{~K} \Omega$) to a source of 5VDC or lower.

Measurement of Output Current, Output Voltage and Input Voltage

The module is capable of measuring key module parameters such as output current and voltage and input voltage and providing this information through the PMBus interface. Roughly every $200 \mu \mathrm{~s}$, the module makes 16 measurements each of output current, voltage and input voltage. Average values of of these 16 measurements are then calculated and placed in the appropriate registers. The values in the registers can then be read using the PMBus interface.
Measuring Output Current Using the PMBus

The module measures current by using the inductor winding resistance as a current sense element. The inductor winding resistance is then the current gain factor used to scale the measured voltage into a current reading. This gain factor is the argument of the IOUT_CAL_GAIN command, and consists of two bytes in the linear data format. The exponent uses the upper five bits [7:3] of the high data byte in two-s complement format and is fixed at -15 (decimal). The remaining 11 bits in two's complement binary format represent the mantissa. During manufacture, each module is calibrated by measuring and storing the current gain factor into non-volatile storage.

The current measurement accuracy is also improved by each module being calibrated during manufacture with the offset in the current reading. The IOUT_CAL_OFFSET command is used to store and read the current offset. The argument for this command consists of two bytes composed of a 5-bit exponent (fixed at -4 d) and a 11-bit mantissa. This command has a resolution of 62.5 mA and a range of -4000 mA to +3937.5 mA .

The READ_IOUT command provides module average output current information. This command only supports positive or current sourced from the module. If the converter is sinking current a reading of 0 is provided. The READ IOUT command returns two bytes of data in the linear data format. The exponent uses the upper five bits [7:3] of the high data byte in two-s complement format and is fixed at -4 (decimal). The remaining 11 bits in two's complement binary format represent the mantissa with the $11^{\text {th }}$ bit fixed at 0 since only positive numbers are considered valid.

Note that the current reading provided by the module is not corrected for temperature. The temperature corrected current reading for module temperature $\mathrm{T}_{\text {Module }}$ can be estimated using the following equation

TBD

Measuring Output Voltage Using the PMBus

The module can provide output voltage information using the READ_VOUT command. The command returns two bytes of data all representing the mantissa while the exponent is fixed at -10 (decimal).

During manufacture of the module, offset and gain correction values are written into the non-volatile memory of the module. The command VOUT_CAL_OFFSET can be used to read and/or write the offset (two bytes consisting of a 16-bit mantissa in two's complement format) while the exponent is always fixed at -10 (decimal). The allowed range for this offset correction is -125 to 124 mV . The command VOUT_CAL_GAIN can be used to read and/or write the gain correction - two bytes consisting of a five-bit exponent (fixed at -8) and a 11-bit mantissa. The range of this correction factor is -0.125

Preliminary Data Sheet
February 1, 2011

12A Digital Pico DLynx ${ }^{\text {TM }: ~ N o n-i s o l a t e d ~ D C-D C ~ P o w e r ~ M o d u l e s ~}$ $3-14.4 \mathrm{Vdc}$ input; 0.6 Vdc to 5.5 Vdc output; 12 A output current
to +0.121 , with a resolution of 0.004 . The corrected output voltage reading is then given by:
$V_{\text {OUT }}($ Final_Re ading $)=$
$\left[V_{\text {OUT }}(\right.$ Initial_Reading $\left.) \times\left(1+V O U T _C A L_{-} G A I N\right)\right]$

+ VOUT_CAL_OFFSET

Measuring Input Voltage Using the PMBus

The module can provide output voltage information using the READ_VIN command. The command returns two bytes of data in the linear format. The upper five bits [7:3] of the high data form the two's complement representation of the mantissa which is fixed at -5 (decimal). The remaining 11 bits are used for two's complement representation of the mantissa, with the $11^{\text {th }}$ bit fixed at zero since only positive numbers are valid.
During module manufacture, offset and gain correction values are written into the non-volatile memory of the module. The command VIN_CAL_OFFSET can be used to read and/or write the offset - two bytes consisting of a five-bit exponent (fixed at -5) and a11bit mantissa in two's complement format. The allowed range for this offset correction is -2 to 1.968 V , and the resolution is 32 mV . The command VIN_CAL_GAIN can be used to read and/or write the gain correction two bytes consisting of a five-bit exponent (fixed at -8) and a 11-bit mantissa. The range of this correction factor is -0.125 to +0.121 , with a resolution of 0.004 . The corrected output voltage reading is then given by:
$V_{I N}($ Final_Re ading $)=$
$\left[V_{I N}(\right.$ Initial_Re ading $\left.) \times\left(1+V I N _C A L _G A I N\right)\right]$
$+V I N_{-} C A L_{-} O F F S E T$

Reading the Status of the Module using the PMBus

The module supports a number of status information commands implemented in PMBus. However, not all features are supported in these commands. A 1 in the bit position indicates the fault that is flagged.

STATUS_BYTE : Returns one byte of information with a summary of the most critical device faults.

Bit Position	Flag	Default Value
7	X	0
6	OFF	0
5	VOUT Overvoltage	0
4	IOUT Overcurrent	0
3	VIN Undervoltage	0
2	Temperature	0
1	CML (Comm. Memory Fault)	0
0	None of the above	0

STATUS_WORD : Returns two bytes of information with a summary of the module's fault/warning conditions.

Low Byte		
Bit Position	Flag	Default Value
7	X	0
6	OFF	0
5	VOUT Overvoltage	0
4	IOUT Overcurrent	0
3	VIN Undervoltage	0
2	Temperature	0
1	CML (Comm. Memory Fault)	0
0	None of the above	0

High Byte

Bit Position	Flag	Default Value
7	VOUT fault or warning	0
6	IOUT fault or warning	0
5	X	0
4	X	0
3	POWER_GOOD (is negated)	0
2	X	0
1	X	0
0	X	0

STATUS_VOUT : Returns one byte of information relating to the status of the module's output voltage related faults.

Bit Position	Flag	Default Value
7	VOUT OV Fault	0
6	X	0
5	X	0
4	VOUT UV Fault	0
3	X	0
2	X	0
1	X	0
0		0

STATUS_IOUT : Returns one byte of information relating to the status of the module's output voltage related faults.

Bit Position	Flag	Default Value
7	IOUT OC Fault	0
6	X	0
5	IOUT OC Warning	0
4	X	0
3	X	0
2	X	0
1	X	0
0		0

STATUS_TEMPERATURE : Returns one byte of information relating to the status of the module's temperature related faults.

Bit Position	Flag	Default Value
7	OT Fault	0
6	OT Warning	0
5	X	0
		22

4	X	0
3	X	0
2	X	0
1	X	0
0	X	0

STATUS_CML : Returns one byte of information relating to the status of the module's communication related faults.

Bit Position	Flag	Default Value
7	Invalid/Unsupported Command	0
6	Invalid/Unsupported Command	0
5	Packet Error Check Failed	0
4	X	0
3	X	0
2	X	0
1	Other Communication Fault	0
0	X	0

MFR_SPECIFIC_00 : Returns information related to the type of module and revision number. Bits [7:2] in the Low Byte indicate the module type (000000 corresponds to the PDT012 series of module), while bits $[7: 3]$ indicate the revision number of the module.

Low Byte		
Bit Position	Flag	Default Value
$7: 2$	Module Name	000000
$1: 0$	Reserved	10

High Byte		
Bit Position	Flag	Default Value
$7: 3$	Module Revision Number	None
$2: 0$	Reserved	000

Preliminary Data Sheet
February 1, 2011

12A Digital Pico DLynx ${ }^{\text {TM }: ~ N o n-i s o l a t e d ~ D C-D C ~ P o w e r ~ M o d u l e s ~}$ $3-14.4 \mathrm{Vdc}$ input; 0.6 Vdc to 5.5 Vdc output; 12 A output current

Summary of Supported PMBus Commands

Please refer to the PMBus 1.1 specification for more details of these commands.
Table 5

Hex Code	Command	Brief Description	Non-Volatile Memory Storage
01	OPERATION	Turn Module on or off. Also used to margin the output voltage	
02	ON_OFF_CONFIG	Configures the ON/OFF functionality as a combination of analog ON/OFF pin and PMBus commands	YES
03	CLEAR_FAULTS	Clear any fault bits that may have been set, also releases the SMBALERT\# signal if the device has been asserting it.	
11	STORE_DEFAULT_ALL	Stores all current storable register settings in module non-volatile memory as new defaults on power up	
12	RESTORE_DEFAULT_ALL	Restores all of the storable register settings from module non-volatile memory	
20	VOUT_MODE	The module has MODE set to Linear and Exponent set to -10. These values cannot be changed	
22	VOUT_TRIM	Apply a fixed offset voltage to the output voltage command value	YES
25	VOUT_MARGIN_HIGH	Sets the target voltage for margining the output high	YES
26	VOUT_MARGIN_LOW	Sets the target voltage for margining the output low	YES
29	VOUT_SCALE_LOOP	Sets the scaling of the output voltage - equal to the feedback resistor divider ratio	YES
35	VIN_ON	Sets the value of input voltage at which the module turns on	YES
36	VIN_OFF	Sets the value of input voltage at which the module turns off	YES
38	IOUT_CAL_GAIN	Returns the value of the gain correction term used to correct the measured output current	YES
39	IOUT_CAL_OFFSET	Returns the value of the offset correction term used to correct the measured output current	YES
40	VOUT_OV_FAULT_LIMIT	Sets the voltage level for an output overvoltage fault	YES
41	VOUT_OV_FAULT_RESPONSE	Instructs the module on what action to take in response to a output overvoltage fault	YES
44	VOUT_UV_FAULT_LIMIT	Sets the voltage level for an output undervoltage fault	YES
45	VOUT_UV_FAULT_RESPONSE	Instructs the module on what action to take in response to a output undervoltage fault	YES
4A	IOUT_OC_WARN_LIMIT	Sets the output overcurrent warning level in A	YES
5E	POWER_GOOD_ON	Sets the output voltage level at which the PGOOD pin is asserted high	YES
5F	POWER_GOOD_OFF	Sets the output voltage level at which the PGOOD pin is de-asserted low	YES
61	TON_RISE	Sets the rise time of the output voltage during startup	YES
78	STATUS_BYTE	Returns one byte of information with a summary of the most critical module faults	
79	STATUS_WORD	Returns two bytes of information with a summary of the module's fault/warning conditions	
7A	STATUS_VOUT	Returns one byte of information with the status of the module's output voltage related faults	
7B	STATUS_IOUT	Returns one byte of information with the status of the module's output current related faults	
7D	STATUS_TEMPERATURE	Returns one byte of information with the status of the module's temperature related faults	
7E	STATUS_CML	Returns one byte of information with the status of the module's communication related faults	
88	READ_VIN	Returns the value of the input voltage applied to the module	
8B	READ_VOUT	Returns the value of the output voltage of the module	
8C	READ_IOUT	Returns the value of the output current of the module	

Summary of PMBus Commands Supported (cont.)

Table 5 (continued)

Hex Code	Command	Brief Description	Non-Volatile Memory Storage
98	PMBUS_REVISION	Returns one byte indicating the module is compliant to PMBus Spec. 1.1 (read only)	YES
A0	MFR_VIN_MIN	Returns the minimum input voltage the module is specified to operate at (read only)	YES
A1	MFR_VIN_MAX	Returns the maximum input voltage the module is specified to operate at (read only)	YES
A4	MFR_VOUT_MIN	Returns the minimum output voltage possible from the module (read only)	YES
D0	MFR_SPECIFIC_00	Returns module name and revision number information (read only)	YES
D4	VOUT_CAL_OFFSET	Applies an offset to the READ_VOUT command results to calibrate out offset errors in module measurements of the output voltage (between -125 mV and +124 mV)	YES
D5	VOUT_CAL_GAIN	Applies a gain correction to the READ_VOUT command results to calibrate out gain errors in module measurements of the output voltage (between -0.125 and 0.121)	YES
D6	VIN_CAL_OFFSET	Applies an offset correction to the READ_VIN command results to calibrate out offset errors in module measurements of the input voltage (between -2 V and $+1.968 \mathrm{~V})$	YES
D7	VIN_CAL_GAIN	Applies a gain correction to the READ_VIN command results to calibrate out gain errors in module measurements of the input voltage (between -0.125 and 0.121)	YES

Preliminary Data Sheet
February 1, 2011

12A Digital Pico DLynx ${ }^{\text {TM }}$: Non-isolated DC-DC Power Modules
$3-14.4 \mathrm{Vdc}$ input; 0.6 Vdc to 5.5 Vdc output; 12A output current

Thermal Considerations

Power modules operate in a variety of thermal environments; however, sufficient cooling should always be provided to help ensure reliable operation.
Considerations include ambient temperature, airflow, module power dissipation, and the need for increased reliability. A reduction in the operating temperature of the module will result in an increase in reliability. The thermal data presented here is based on physical measurements taken in a wind tunnel. The test set-up is shown in Figure 48. The preferred airflow direction for the module is in Figure 49.

Figure 48. Thermal Test Setup.

The thermal reference points, $\mathrm{T}_{\text {ref }}$ used in the specifications are also shown in Figure 49. For reliable operation the temperatures at these points should not exceed $120^{\circ} \mathrm{C}$. The output power of the module should not exceed the rated power of the module (Vo,set x lo,max).
Please refer to the Application Note "Thermal Characterization Process For Open-Frame BoardMounted Power Modules" for a detailed discussion of thermal aspects including maximum device temperatures.

Figure 49. Preferred airflow direction and location of hot-spot of the module (Tref).

Example Application Circuit

Requirements:
Vin: 12V
Vout: $\quad 1.8 \mathrm{~V}$
lout: 9A max., worst case load transient is from 6A to 9A
Δ Vout: $\quad 1.5 \%$ of Vout $(27 \mathrm{mV})$ for worst case load transient
Vin, ripple $\quad 1.5 \%$ of $\operatorname{Vin}(180 \mathrm{mV}, \mathrm{p}-\mathrm{p})$

CI1	$2 \times 22 \mu \mathrm{~F} / 16 \mathrm{~V}$ ceramic capacitor (e.g. Murata GRM32ER61C226KE20)
CI2	$47 \mu \mathrm{~F} / 16 \mathrm{~V}$ bulk electrolytic
CO1	$2 \times 47 \mu \mathrm{~F} / 6.3 \mathrm{~V}$ ceramic capacitor (e.g. Murata GRM31CR60J476ME19)
CO2	$1 \times 330 \mu \mathrm{~F} / 6.3 \mathrm{~V}$ Polymer (e.g. Sanyo Poscap)
CTune	3300 pF ceramic capacitor (can be 1206,0805 or 0603 size)
RTune	270 ohms SMT resistor (can be 1206,0805 or 0603 size)
RTrim	$10 \mathrm{k} \Omega$ SMT resistor (can be 1206,0805 or 0603 size, recommended tolerance of 0.1%)

Preliminary Data Sheet
February 1, 2011
12A Digital Pico DLynx ${ }^{\text {TM }}$: Non-isolated DC-DC Power Modules $3-14.4 \mathrm{Vdc}$ input; 0.6 Vdc to 5.5 Vdc output; 12A output current

Mechanical Outline

Dimensions are in millimeters and (inches).
Tolerances: $x . x \mathrm{~mm} \pm 0.5 \mathrm{~mm}$ ($x . x x$ in. ± 0.02 in.) [unless otherwise indicated]
$x . x x \mathrm{~mm} \pm 0.25 \mathrm{~mm}(x . x x x$ in $\pm 0.010 \mathrm{in}$.)

PIN	FUNCTION	PIN	FUNCTION
1	ON/OFF	10	PGOOD
2	VIN	11	SYNC
3	GND	12	VS-
4	VOUT	13	SIG. GND
5	VS+ (SENSE)	14	SMBALERT
6	TRIM	15	DATA
7	GND	16	ADDR0
8	CLK	17	ADDR1
9	SEQ		

PIN 7
BOTTOM VIEW

Preliminary Data Sheet
February 1, 2011

12A Digital Pico DLynx ${ }^{\text {TM }}$: Non-isolated DC-DC Power Modules $3-14.4 \mathrm{Vdc}$ input; 0.6 Vdc to 5.5 Vdc output; 12 A output current

Recommended Pad Layout

Dimensions are in millimeters and (inches).
Tolerances: $\mathrm{x} . \mathrm{x} \mathrm{mm} \pm 0.5 \mathrm{~mm}$ ($\mathrm{x} . \mathrm{xx}$ in. $\pm 0.02 \mathrm{in}$.) [unless otherwise indicated]
$x . x x \mathrm{~mm} \pm 0.25 \mathrm{~mm}$ ($x . x x x$ in $\pm 0.010 \mathrm{in}$.)

PIN	FUNCTION	PIN	FUNCTION
1	ON/OFF	10	PGOOD
2	VIN	11	SYNC
3	GND	12	VS-
4	VOUT	13	SIG_GND
5	VS+ (SENSE)	14	SMBALERT
6	TRIM	15	DATA
7	GND	16	ADDR0
8	CLK	17	ADDR1
9	SEQ		

Preliminary Data Sheet
February 1, 2011

12A Digital Pico DLynx ${ }^{\text {TM }: ~ N o n-i s o l a t e d ~ D C-D C ~ P o w e r ~ M o d u l e s ~}$ $3-14.4 \mathrm{Vdc}$ input; 0.6 Vdc to 5.5 Vdc output; 12 A output current

Packaging Details

The 12V Digital Pico DLynx ${ }^{\text {TM }} 12 \mathrm{~A}$ modules are supplied in tape \& reel as standard. Modules are shipped in quantities of TBD modules per reel.
All Dimensions are in millimeters and (in inches).

Reel Dimensions:
Outside Dimensions: $\quad 330.2$ mm (13.00)
Inside Dimensions: $\quad 177.8 \mathrm{~mm}(7.00$ ")
Tape Width:
24.00 mm (0.945 ")

Surface Mount Information

Pick and Place

The 12A Digital Pico DLynx ${ }^{\text {TM }}$ modules use an open frame construction and are designed for a fully automated assembly process. The modules are fitted with a label designed to provide a large surface area for pick and place operations. The label meets all the requirements for surface mount processing, as well as safety standards, and is able to withstand reflow temperatures of up to $300^{\circ} \mathrm{C}$. The label also carries product information such as product code, serial number and the location of manufacture.

Nozzle Recommendations

The module weight has been kept to a minimum by using open frame construction. Variables such as nozzle size, tip style, vacuum pressure and placement speed should be considered to optimize this process. The minimum recommended inside nozzle diameter for reliable operation is 3 mm . The maximum nozzle outer diameter, which will safely fit within the allowable component spacing, is 7 mm .

Bottom Side / First Side Assembly

This module is not recommended for assembly on the bottom side of a customer board. If such an assembly is attempted, components may fall off the module during the second reflow process. If assembly on the bottom side is planned, please contact Lineage Power for special manufacturing process instructions.

Lead Free Soldering

The modules are lead-free (Pb -free) and RoHS compliant and fully compatible in a Pb-free soldering process. Failure to observe the instructions below may result in the failure of or cause damage to the modules and can adversely affect long-term reliability.

Pb-free Reflow Profile

Power Systems will comply with J-STD-020 Rev. C (Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices) for both Pb -free solder profiles and MSL classification procedures. This standard provides a recommended forced-air-convection reflow profile based on the volume and thickness of the package (table 4-2). The suggested Pb -free solder paste is $\mathrm{Sn} / \mathrm{Ag} / \mathrm{Cu}$ (SAC). The recommended linear reflow profile using $\mathrm{Sn} / \mathrm{Ag} / \mathrm{Cu}$ solder is shown in Fig. 50. Soldering outside of the recommended profile requires testing to verify results and performance.

MSL Rating

The 12A Digital Pico DLynx ${ }^{\text {TM }}$ modules have a MSL rating of TBD.

Storage and Handling

The recommended storage environment and handling procedures for moisture-sensitive surface mount
packages is detailed in J-STD-033 Rev. A (Handling, Packing, Shipping and Use of Moisture/Reflow Sensitive Surface Mount Devices). Moisture barrier bags (MBB) with desiccant are required for MSL ratings of 2 or greater. These sealed packages should not be broken until time of use. Once the original package is broken, the floor life of the product at conditions of $\leq 30^{\circ} \mathrm{C}$ and 60% relative humidity varies according to the MSL rating (see J-STD-033A). The shelf life for dry packed SMT packages will be a minimum of 12 months from the bag seal date, when stored at the following conditions: $<40^{\circ} \mathrm{C},<90 \%$ relative humidity.

Figure 50. Recommended linear reflow profile using $\mathrm{Sn} / \mathrm{Ag} / \mathrm{Cu}$ solder.

Post Solder Cleaning and Drying Considerations

Post solder cleaning is usually the final circuit-board assembly process prior to electrical board testing. The result of inadequate cleaning and drying can affect both the reliability of a power module and the testability of the finished circuit-board assembly. For guidance on appropriate soldering, cleaning and drying procedures, refer to Board Mounted Power Modules: Soldering and Cleaning Application Note (ANO4-001).

Ordering Information

Please contact your Lineage Power Sales Representative for pricing, availability and optional features.
Table 6. Device Codes

Device Code	Input Voltage Range	Output Voltage	Output Current	On/Off Logic	Sequencing	Comcodes
PDT012A0X3-SRZ	$3-14.4 \mathrm{Vdc}$	$0.6-5.5 \mathrm{Vdc}$	12 A	Negative	Yes	CC109159661
PDT012A0X43-SRZ	$3-14.4 \mathrm{Vdc}$	$0.6-5.5 \mathrm{Vdc}$	12 A	Positive	Yes	CC109159678

-Z refers to RoHS compliant parts
Table 7. Coding Scheme

Package Identifier	Family	Sequencing Option	Output current	Output voltage	On/Off logic	Remote Sense	Options		ROHS Compliance
P	D	T	012A0	X	4	3	-SR	-D	Z
$\begin{gathered} \mathrm{P}=\text { Pico } \\ \mathrm{U}=\text { Micro } \\ \mathrm{M}=\text { Mega } \\ \mathrm{G}=\text { Giga } \end{gathered}$	D=Dlynx Digital V = DLynx Analog.	T=with EZ Sequence X=without sequencing	12A	$X=$ programm able output	$4=$ positive No entry negative	$3 \text { = }$ Remote Sense	$S=$ Surface Mount R = Tape \& Reel	$\mathrm{D}=105^{\circ} \mathrm{C}$ operating ambient, 40G operating shock as per MIL Std 810F	$\mathrm{Z}=\mathrm{ROHS} 6$

Asia-Pacific Headquarters

Tel: +86.021.54279977*808

LINEAGE POWER ${ }^{\circledR}$

World Wide Headquarters
Lineage Power Corporation
601 Shiloh Road, Plano, TX 75074, USA
+1-888-LINEAGE(546-3243)
(Outside U.S.A.: +1-972-244-WATT(9288))
www.lineagepower.com
e-mail: techsupport1@lineagepower.com

Europe, Middle-East and Africa Headquarters
Tel: +49.89.878067-280

India Headquarters
Tel: +91.80.28411633

Lineage Power reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information

Lineage Power DC-DC products are protected under various patents. Information on these patents is available at www.lineagepower.com/patents.
© 2011 Lineage Power Corporation, (Plano, Texas) All International Rights Reserved.

[^0]: UL is a registered trademark of Underwriters Laboratories, Inc
 \dagger CSA is a registered trademark of Canadian Standards Association.
 $\ddagger V D E$ is a trademark of Verband Deutscher Elektrotechniker e.V.
 ** ISO is a registered trademark of the International Organization of Standards

