FEATURES

Access time: 85 ns (MAX.)

• Current consumption:

Operating: 30 mA (MAX.) 5 mA (MAX.) (t_{RC} , t_{WC} = 1 μ s) Standby: 30 μ A (MAX.)

Data Retention:

 $0.5 \mu A \text{ (Typ. } V_{CCDR} = 3 \text{ V}, t_A = 25 ^{\circ}\text{C})$

• Single power supply: 2.7 V to 3.6 V

Operating temperature: -25°C to +85°C

Fully-static operation

Three-state output

 Not designed or rated as radiation hardened

Package: 32-pin TSOP

N-type bulk silicon

DESCRIPTION

The LH52CV1000 is a static RAM organized as $131,072\times 8$ bits which provides low-power standby mode. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

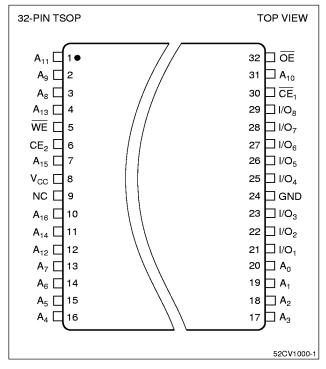


Figure 1. Pin Connections for TSOP Package

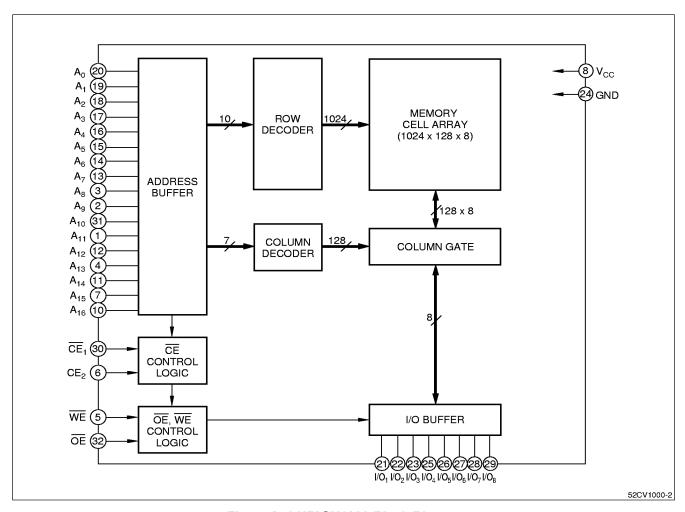


Figure 2. LH52CV1000 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
A ₀ - A ₁₆	Address inputs
CE ₁	Chip enable 1
CE ₂	Chip enable 2
WE	Write enable
ŌĒ	Output enable

SIGNAL	PIN NAME
I/O ₁ - I/O ₈	Data inputs and outputs
Vcc	Power supply
GND	Ground
NC	No connection

TRUTH TABLE

CE ₁	CE ₂	WE	ŌĒ	MODE	I/O ₁ — I/O ₈	SUPPLY CURRENT	NOTE
Н				Standby	Standby High Standby (I _{SB})		1
_	L	_		Startuby	impedance	Standby (ISB)	'
L	Н	L		Write	Data input	Active (I _{CC})	1
L	Н	Н	L	Read	Data output	Active (I _{CC})	
L	Н	Н	Н	Output disable	High impedance	Active (I _{CC})	_

NOTE:

1. — = Don't care

L = Low

H = High

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	Vcc	-0.5 to +4.6	٧	1
Input voltage	V _{IN}	-0.5 to V _{CC} + 0.5	٧	1, 2
Operating temperature	T _{OPR}	-25 to +85	°C	
Storage temperature	T _{STG}	-55 to +150	°C	_

NOTES:

- 1. The maximum applicable voltage on any pin with respect to GND.
- 2. Undershoot of -3.0 V is allowed width of pulse below 50 ns.

RECOMMENDED DC OPERATING CONDITIONS ($T_A = -25$ °C to +85°C)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Supply voltage	Vcc	2.7	3.0	3.6	٧	_
Input voltage	V _{IH}	2.0		V _{CC} + 0.3	٧	_
input voitage	V _{IL}	-0.3		0.8	٧	1

NOTE:

1. Undershoot of -3.0 V is allowed width of pulse below 50 ns.

DC ELECTRICAL CHARACTERISTICS ($T_A = -25$ °C to +85°C, $V_{CC} = 2.7$ V to 3.6 V)

PARAMETER	SYMBOL	CONDITIONS		MIN.	TYP.	MAX.	UNIT
Input leakage current	ILI	VIR = 0V to V _{CC}		-1.0	_	1.0	μА
Output leakage current	I _{LO}	$\overline{CE_1} = V_{IH} \text{ or } CE_2 = V_{IL} \text{ or } \\ \overline{OE} = V_{IH} \text{ or } \overline{WE} = V_{IL} \\ V_{I/O} = 0 \text{ V to } V_{CC}$	-1.0		1.0	μΑ	
Operating	1 100 1 22 33 33 33 33 33 33 33 33 33 33 33 33		tcycle = MIN.			30	mA
supply current	I _{CC1}	$\overline{CE}_1 = 0.2 \text{ V}, \text{ V}_{\text{IN}} = 0.2 \text{ V} \text{ or V}_{\text{CC}} - 0.2 \text{ V}$ $CE_2 = V_{\text{CC}} - 0.2 \text{ V}, \text{ I}_{\text{VO}} = 0 \text{ mA}$	t _{CYCLE} = 1 μs	_	_	5	ША
Standby current	I _{SB}	$\overline{\text{CE}}_1, \text{CE}_2 \ge \text{V}_{\text{CC}} - 0.2 \text{V} \text{ or } $ $\text{CE}_2 \le 0.2 \text{V}$		_		30	μА
	I _{SB1}	$\overline{CE}_1 = V_{IH} \text{ or } CE_2 = V_{IL}$			_	0.5	mA
Output voltage	V _{OL}	I _{OL} = 2.1 mA				0.4	٧
Output voltage	V _{OH}	$I_{OH} = -1.0 \text{ mA}$	·	2.2	_	_	V

AC ELECTRICAL CHARACTERISTICS AC Test Conditions

PARAMETER	MODE	NOTE
Input pulse level	0.6 V to 2.2 V	
Input rise and fall time	5 ns	
Input and output timing Ref. level	1.5 V	
Output load	1 TTL + C _L (100 pF)	1

NOTE:

READ CYCLE ($T_A = -25^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = 2.7$ V to 3.6 V)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE
Read cycle time	t _{RC}	85		ns	
Address access time	t _{AA}		85	ns	
CE ₁ access time	t _{ACE1}		85	ns	
CE ₂ access time	t _{ACE2}		85	ns	
Output enable to output valid	toE		45	ns	
Output hold from address change	ton	10		ns	
CE ₁ Low to output active	t _{LZ1}	10		ns	1
CE ₂ High to output active	t _{LZ2}	10	_	ns	1
OE Low to output active	t _{OLZ}	0	_	ns	1
CE ₁ High to output in High impedance	t _{HZ1}	0	30	ns	1
CE ₂ Low to output in High impedance	t _{HZ2}	0	30	ns	1
OE High to output in High impedance	tonz	0	30	ns	1

NOTE

WRITE CYCLE $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 2.7 \text{ V to } 3.6 \text{ V})$

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE
Write cycle time	twc	85		ns	
CE ₁ Low to end of write	tcw1	75		ns	_
CE ₂ High to end of write	t _{CW2}	75		ns	_
Address valid to end of write	taw	70	_	ns	_
Address setup time	tas	0		ns	_
Write pulse width	t _{WP}	60		ns	_
Write recovery time	t _{WR}	0		ns	_
Input data setup time	t _{DW}	35		ns	_
Input data hold time	t _{DH}	0		ns	_
WE High to output active	tow	0		ns	1
WE Low to output in High impedance	t _{WZ}	0	30	ns	1
OE High to output in High impedance	tonz	0	30	ns	1

NOTE

^{1.} Including scope and jig capacitance.

Active output to High impedance and High impedance to output active tests specified for a ±200 mV transition from steady state levels into the test load.

Active output to High impedance and High impedance to output active tests specified for a ±200 mV transition from steady state levels into the test load.

DATA RETENTION CHARACTERISTICS ($T_A = 0$ °C to +70°C)

PARAMETER	SYMBOL	CONDITIONS		MIN.	TYP	MAX.	UNIT	NOTE
Data retention supply voltage	Vccdr	$\frac{\text{CE}_2 \leq 0.2 \text{ V or}}{\text{CE}_1 \geq \text{V}_{\text{CCDR}} - 0.2 \text{ V}}$		2.0		3.6	V	1
Data retantion		$V_{CCDR} = 3.0 \text{ V}$ $CE_2 \le 0.2 \text{ V or}$ $CE_1 \ge V_{CCDR} - 0.2 \text{ V}$	T _A = 25°C		0.5	1.0	μA	1
Data retention supply current	ICCDR			T _A = 40°C			3.0	μ
						25	μА	1
Chip enable setup time	tcdr	_	_				ns	
Chip enable hold time	t _R	_		t _{RC}			ns	3

NOTES:

- 1. $CE_2 \ge V_{CCDR} 0.2 \text{ V or } CE_2 \le 0.2 \text{ V}$
- 2. Typical values at $T_A = 25$ °C
- 3. Read cycle

PIN CAPACITANCE ($T_A = 25^{\circ}C$, f = 1 MHz)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Input capacitance	C _{IN}	V _{IN} = 0 V	_	_	6	pF	1
I/O capacitance	C _{I/O}	V _{I/O} = 0 V			8	pF	1

NOTE:

1. This parameter is sampled and not production tested.

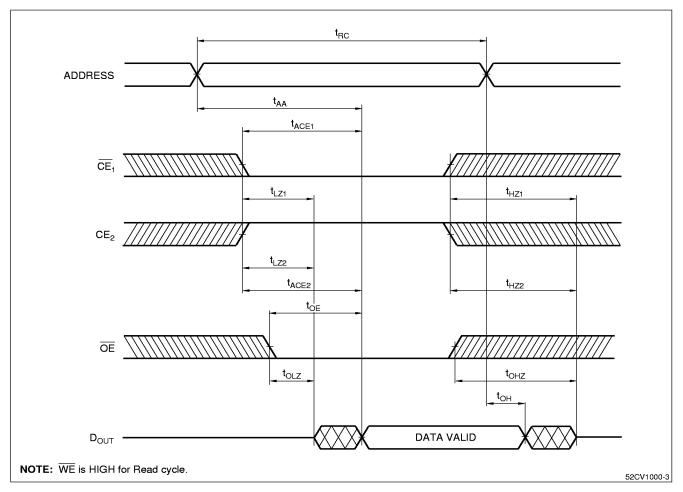
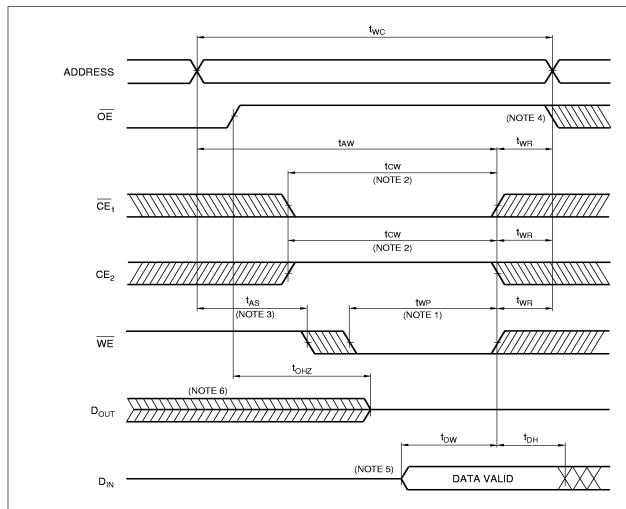
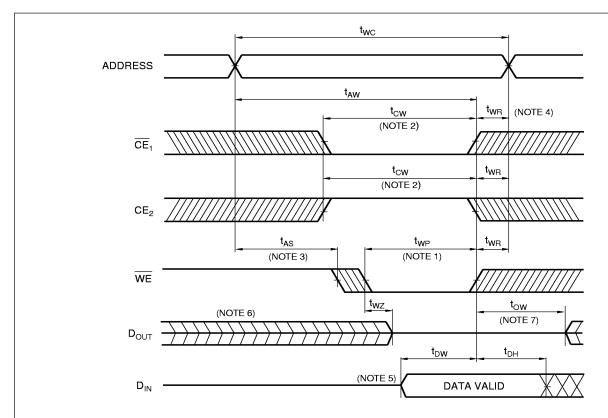



Figure 3. Read Cycle



NOTES:

- A write occurs during the overlap of a LOW CE₁, a HIGH CE₂ and a LOW WE.
 A write begins at the latest transition among CE₁ going LOW, CE₂ going HIGH and WE going LOW. A write ends at the earliest transition among CE₁ going HIGH. CE₂ going LOW and WE going HIGH. t_{WP} is measured from the beginning of write to the end of write.
- t_{CW} is measured from the later of CE₁ going LOW or CE₂ going HIGH to the end of write.
- 3. $t_{\rm AS}$ is measured from the address valid to the beginning of write.
- t_{WR} is measured from the end of write to the address change. t_{WR1} applies in case a write ends at CE₁ or WE going HIGH. t_{WR2} applies in case a write ends at CE₂ going LOW.
- During this period, I/O pins are in the output state, therefore the input signals of opposite phase to the outputs must not be applied.
- If CE₁ goes LOW simultaneously with WE going LOW or after WE going LOW, the outputs remain in high impedance state.
- 7. If $\overline{\text{CE}}_1$ goes HIGH simulaneously with $\overline{\text{WE}}$ going HIGH or before $\overline{\text{WE}}$ going HIGH, the outputs remain in high impedance state.

52CV1000-4

Figure 4. Write Cycle (OE Controlled)

NOTES:

- A write occurs during the overlap of a LOW CE₁, a HIGH CE₂ and a LOW WE.
 A write begins at the latest transition among CE₁ going LOW, CE₂ going HIGH and WE going LOW. A write ends at the earliest transition among CE₁ going HIGH. CE₂ going LOW and WE going HIGH. t_{WP} is measured from the beginning of write to the end of write.
- 2. t_{CW} is measured from the later of \overline{CE}_1 going LOW or CE_2 going HIGH to the end of write.
- 3. $\,t_{AS}$ is measured from the address valid to the beginning of write.
- t_{WR} is measured from the end of write to the address change. t_{WR1} applies in case a write ends at CE₁ or WE going HIGH. t_{WR2} applies in case a write ends at CE₂ going LOW.
- 5. During this period, I/O pins are in the output state, therefore the input signals of opposite phase to the outputs must not be applied.
- If CE₁ goes LOW simultaneously with WE going LOW or after WE going LOW, the outputs remain in high impedance state.
- 7. If $\overline{\text{CE}}_1$ goes HIGH simulaneously with $\overline{\text{WE}}$ going HIGH or before $\overline{\text{WE}}$ going HIGH, the outputs remain in high impedance state.

52CV1000-5

Figure 5. Write Cycle (OE Low Fixed)

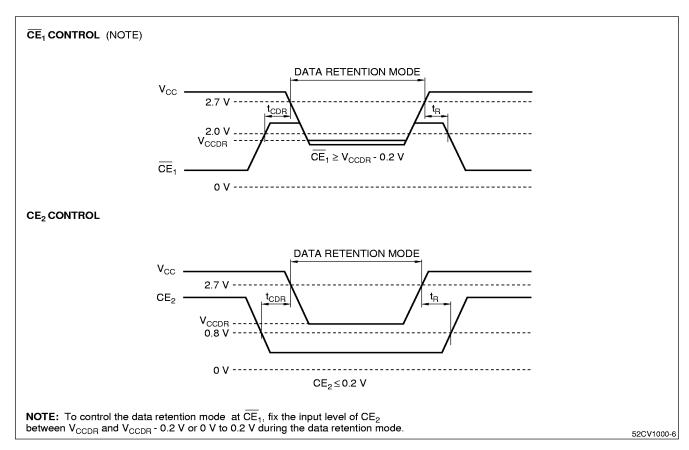
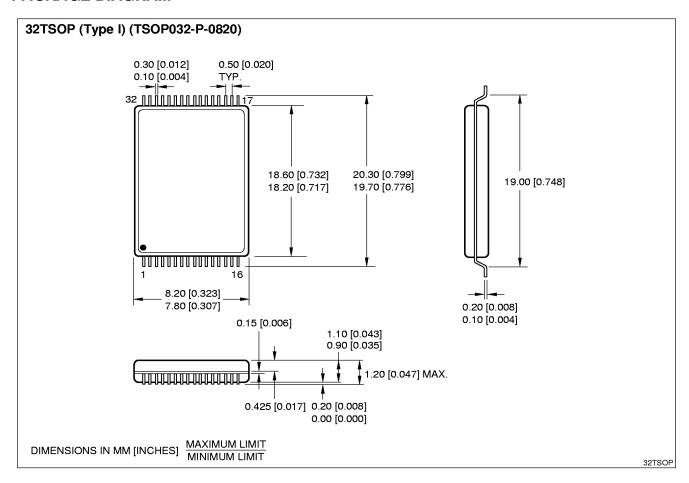
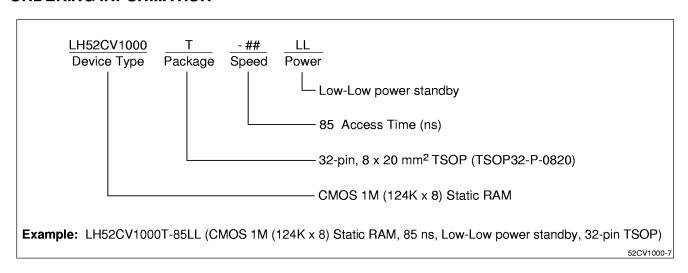




Figure 6. Data Retention (CE₁ Controlled)

PACKAGE DIAGRAM

ORDERING INFORMATION

