THIS DOCUMENT IS FOR MAINTENANCE PURPOSES ONLY AND IS NOT RECOMMENDED FOR NEW DESIGNS

GEC PLESSEY

SEMICONDUCTORS

2462 - 3.1

CLA70000 SERIES

HIGH DENSITY CMOS GATE ARRAYS

(Supersedes January 1992 edition - version 2.1)

Recent advances in CMOS processing technology and improvements in design architecture have led to the development of a new generation of array-based ASIC products with vastly improved gate integration densities. This family of CLA70000 1 micron CMOS arrays brings considerable advantages to the design of next generation systems combining high performance and high complexity.

FEATURES

- Low power channelless arrays from 5,000 to 250,000 available gates (5µW / gate / MHz)
- 1 micron (0.8 micron effective) twin well epitaxial process
- Typical gate delays of 400 ps (NAND2 , Fanout=2)
- Comprehensive cell library including DSP, JTAG/BIST and compiled memory cells (ROM blocks to 64K bits and RAM blocks to 16K bits)
- Extensive Range of Plastic and Ceramic Packages for both Surface Mount and Through Board Assembly
- Flexible I/O structure allows user to define power pad locations
- Fully supported on industry standard workstations and in-house software
- High drive output stages with slew rate control
- Supports JTAG and BIST test philosophies (IEEE 1149-1 Test Procedures)
- MIL 883C compliant product available (paragraph 1.2.1)

OVERVIEW

The CLA70000 gate array family is GEC Plessey Semiconductors' (GPS's) sixth generation CMOS gate array product. The family consists of nine arrays implemented on the latest generation (1 micron) twin well epitaxial CMOS process. The process in conjunction with the advanced layout and route software, offers extremely high packing densities.

The array architecture is based upon the earlier well proven CLA60000 series with the emphasis being placed on high speed, high packing density, and provision of comprehensive cell libraries. The cell libraries encompass new DSP and other specialized macros.

Full design support is available for major industry standard ASIC design software tools, as well as GEC Plessey Semiconductor's proprietary PDS2 design environment. Design support is provided by GEC Plessey Semiconductor's design centers, each offering a variety of design routes, which may be customized to individual customer requirements.

PRODUCT DETAILS

The CLA70000 array series is shown below with typical figures given for usable gates. Actual gate utilization is dependent on circuit structure, giving a range of 40 -70% for two layer metallisation.

DEVICE NUMBER	I/O AND POWER PADS	GATE COMPLEXITY	ESTIMATED USABLE GATES
CLA70000	44	5K	2.5K
CLA71000	68	12K	6K
CLA72000	84	19K	9.5K
CLA73000	100	27K	13.5K
CLA74000	120	39K	17.5K
CLA75000	160	70K	31.5K
CLA76000	200	110K	49.5K
CLA77000	256	182K	82K
CLA78000	304	256K	115K

CORE CELL ARRANGEMENT

- Supports compact macros
- Allows high density routing

A four transistor group (2 NMOS and 2 PMOS) (fig.1) forms the basic cell of the core array. This array element is repeated in a regular fashion over the complete core area to give an homogenous 'Full Field' (sea of gates) array. This lends itself to hierarchical design, allowing pre-routed user defined subcircuits to be repeated anywhere on the array. The core cell structure together with all associated cell libraries have been carefully designed to maximize the number of nets which may be routed through the cell. This enables optimal routing of both data flow and control signal distribution schemes thus giving very high overall utilization factors. This feature is of particular benefit in designs using highly structured blocks such as memory or arithmetic functions.

I/O BUFFER ARRANGEMENT

- Several hundred different I/O cell combinations
- Programmable Slew rate Control on all Outputs
- Excellent Latchup and ESD immunity

The I/O buffers are the interface to external circuitry and are therefore required to be robust and flexible. Both inputs and outputs incorporate electrostatic discharge (ESD) protection structures which can withstand in excess of 2KV, and are highly resistant to latch-up due to the epitaxial process. In addition the construction concepts used for the I/O cells provide the designer with several hundred different options of I/O cell configuration.

The CLA70000 I/O buffers (fig.2) contain all the components for static protection, CMOS and TTL compatible input stages, and a wide variety of intermediate and output drive configurations. Included are Schmitt triggers, tristate

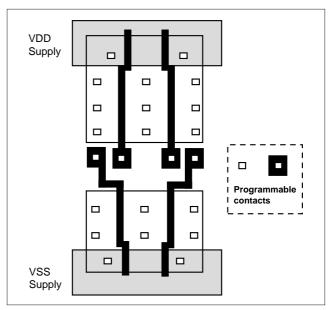


Fig 1. Diagrammatic representation of Array Core Cell

controls, and slew rate controlled output buffers. All I/O buffer locations can be configured as supply pads (VDD and VSS).

Slew rate control of output drivers is a useful feature when multiple high drive outputs need to be switched simultaneously, as may occur on driving capacitive loads such as buses. Using regular output buffers with their inherently fast edge speed can lead to significant power supply noise transients, with possible mis-operation as a result. To overcome this problem. The CLA70000 family includes a set of slew rate controlled output drivers, which use proprietary design techniques to control the turn-on of the output transistors (di/dt). These cells provide a significant benefit in the trade off between switching current magnitude and the number of supply pads required.

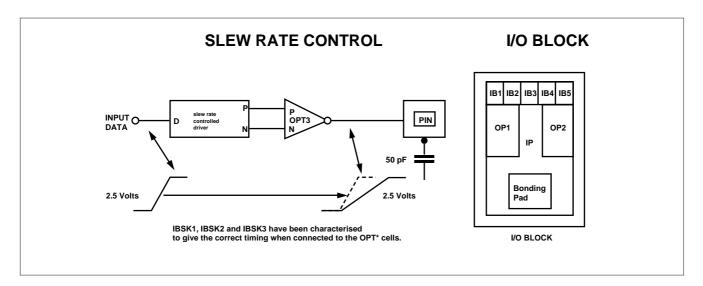


Fig 2. Slew Control & I/O Block

POWER SUPPLY DISTRIBUTION

- Three power rings for good noise immunity
- Optimized for efficient routing
- User defined placement of Power and Ground pads

The power supply distribution scheme for the CLA70000 arrays (fig.3) has the flexibility to meet varying applications needs. Three separate power rings are used, one each for the internal core logic, intermediate buffer cells, and large output driver cells. Noise generated in the low impedance output drivers is isolated from the core logic and buffer areas. The distribution of the supply rails can be automatically positioned by the layout software which allows greater design flexibility and optimisation.

The power supply rings may be connected either to separate pad locations or combined at a single location. All I/O cell pads may be configured as either power or ground, giving complete flexibility to the designer.

PROCESS TECHNOLOGY

- Advanced 1 micron twin well process with epitaxial substrate
- Class 10 six inch wafer fabrication facility
- High density low power process

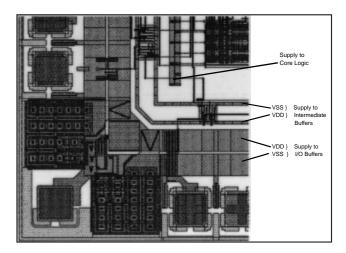


Fig 3. Power Supply Organisation

The CLA70000 arrays are built using the GEC Plessey 1 micron drawn CMOS process, which is the third generation of our 'V' series process family. Manufacture is at GPS's Class10, 6-inch fabrication facility. The process is a twin well, self aligned oxide-isolated technology on an epitaxial substrate, with an effective channel length of 0.8 micron, giving low defect density, high reliability, and inherently low power dissipation. The process has excellent immunity to latchup, and ESD, and exhibits stable performance characteristics ideal for all commercial, industrial and military applications.

Parameter	Min	Max	Units
Supply Voltage	-0.5	7.0	V
Input Voltage	-0.5	Vdd + 0.5	V
Output Voltage	-0.5	Vdd + 0.5	V
ESD protection	2.0		K Volts
Current per pad		100	mA
Storage Temperature			
Ceramic	-65	150	°C
Plastic	-40	125	°C
		1	

ABSOLUTE MAXIMUM RATINGS

Operation outside these absolute maximum ratings may permanently damage device characteristics and may affect reliability.

RECOMMENDED MAXIMUM OPERATING LIMITS

Parameter	Min	Max	Units
Supply Voltage	3.0	5.5	V
Input Voltage	Vss	Vdd	V
Output Voltage	Vss	Vdd	V
Operating Temperature			
Commercial Grade	0	70	°C
Industrial Grade	-40	85*	°C
Military Grade	-55	125**	°C

* 125°C maximum junction temperature for plastic devices. **Subject to a maximum junction temperature of 150°C for ceramic devices.

MANUFACTURING FACILITY

- Computer aided manufacturing
- Digital testers with large pinout capacity
- Vibration free for reliable manufacture

The CLA70000 product is manufactured near Plymouth, England in the latest purpose built facility for sub-micron process geometries. The factory uses the latest automated equipment for 6 inch wafers and Computer Aided Manufacturing techniques to ensure production efficiency. Wafer fabrication is carried out in Class 10, or better, clean room conditions in a vibration free environment to assure the lowest possible defect level. In addition to the world class wafer facility there are excellent probe and final test areas equipped with the latest analog and digital testers capable of handling complex test vectors and large pinouts. This large investment shows GEC Plessey Semiconductors commitment to all the market areas needing state-of-the-art CMOS ASICS.

CELL LIBRARY

LOGIC ARRAY CELLS

BUF	Buffer driver
ST1	Schmitt trigger
DELAY	Delay cell
2INV	Dual driver
INV2	Inverter, dual drive
INV4	Inverter, quad drive
INV8	Inverter, octal drive
NAND2	2 input NAND gate
ND3	3 input NAND gate
NAND3	3 input NAND gate + inverter
2NAND3	Dual 3 input NAND gate
NAND4	4 input NAND gate
NAND5	5 input NAND gate
NAND6	6 input NAND gate
NAND8	8 input NAND gate
NOR2	2 input NOR gate
NR3	3 input NOR gate
NOR3	3 input NOR gate + inverter
2NOR3	Dual 3 input NOR gate
NOR4	4 input NOR gate
NOR5	5 input NOR gate
NOR6	6 input NOR gate
NOR8	8 input NOR gate
A2O21	2 input AND to 2 input NOR gate + inverter
O2A21	2 input OR to 2 input NAND gate + inverter
2A2O21	Dual 2 input AND to 2 input NOR gate
2O2A21	Dual 2 input OR to 2 input NAND gate
2ANOR	2 input ANDs to 2 input NOR gate
2ONAND	2 input ORs to 2 input NAND gate

CELL LIBRARY

- Comprehensive range of cells
- Specialized DSP and BIST sub-libraries
- Compatible with Megacell and CLA60000

A very comprehensive cell library is available for the CLA70000 series. It contains sub libraries which may be used in specific applications areas such as Digital Signal Processing (DSP) and Built In Self Test (BIST). More details on these specialized libraries can be found in applications notes or the design manual.

The 1.4 micron (drawn) CMOS array (CLA60000) cell library may be converted to the equivalent cells on the CLA70000 to allow system upgrades. Equivalent cells are also available for the corresponding MVA70000 Megacell to enable an easy transition to a standard cell product to minimize silicon area or to add analog functions.

A2O31 O2A31 A3O21 O3A21 A4O21 O4A21 A2O41 O2A41 3A2O31 3O2A31 O2A2O21 A2O2A21	2 input AND to 3 input NOR gate 2 input OR to 3 NAND gate 3 input AND to 2 input NOR gate 3 input OR to 2 input NAND gate 4-input ANDs to 2 input NAND gate 2-input ORs to 2 input NAND gate 2-input AND to 4 input NOR gate 3 2-input ORs to 3 input NAND gate 3 2-input ORs to 3 input NAND gate 2 input OR to 2 input AND to 2 input NOR gate 2 input AND to 2 input OR to 2 input NAND gate
EXOR	Exclusive OR gate + NAND gate + inverter
EXNOR	Exclusive NOR gate + NOR gate + inverter
EXOR2	2 input exclusive OR gate
EXNOR2	2 input exclusive NOR gate
EX2	Exclusive OR gate + inverter
EXN2	Exclusive NOR gate + inverter
EXOR3	3 input exclusive OR gate
EXNOR3	3 input exclusive NOR gate
EXPRIM	2 input exclusive OR gate primitive
HADD	Half adder + inverter
SUM	Sum block
SUM2	Sum block
CARRY	Carry block + NOR gate
CARRY2	Carry block + inverter
FADD	Full adder + NOR gate
BMF1	Full adder 1
BMF2	Full adder 2
MUX2TO1	2 to 1 multiplexer
MUX4TO1	4 to 1 multiplexer
MUX8TO1	8 to 1 multiplexer
MUXI2TO1	2 to 1 inverting multiplexer

MUXI4TO1 MUXI8TO 1	4 to 1 inverting multiplexer 8 to 1 inverting multiplexer
CLKA 2CLKA CLKAP CLKAM CLKB CLKBP CLKE1 CLKE2 CLKE3	Basic clock driver Dual basic clock driver Basic clock driver + inverter Basic clock driver + inverter Large clock driver + inverter Clock driver with enable Clock driver with enable Clock driver with enable
TM 2TM BDR	Buffered transmission gate Transmission gate for 2 to 1 multiplexing Internal bus driver
DL DL2 DLRS DLARS DF DFRS MDF MDFRS M3DF M3DF	Data latch Data latch Data latch Data latch with set and reset Data latch with set and reset Master-slave D type flip flop Master-slave D type flip flop with set & reset Multiplexed master-slave D type flip flop Multiplexed m/s D type flip flop Multiplexed m/s D type flip flop Multiplexed m/s D type flip flop with set & reset
JK JKRS JBARK JBARKRS	J-K flip-flop J-K flip-flop with set & reset JBAR-K flip-flop JBAR-K flip-flop with set & reset
BDL BDLRS JBARKRS BDF BDFRS	Buffered data latch Buffered data latch with set & reset Buffered data latch with set & reset Buffered master-slave D type flip-flop Buffered master-slave D type flip-flop with set & reset
BMDF BMDFRS BJBARK BJBARKRS	Buffered mux. master-slave D type flip-flop Buffered mux. m/s D type with set & reset Buffered J-K flip-flop Buffered J-K flip-flop with set & reset
TRID	Tristate driver
GND VDD	Ground Cell VDD Cell
INTERMED	IATE BUFFER CELLS
IBCCMOS1 IBCCMOS2 IBTTL1 IBBTL2 IBST1	CMOS input buffer + large 2 input NAND gate CMOS input buffer + data latch TTL input buffer + large 2 input NAND gate TTL input buffer + data latch Input Schmitt buffer with CMOS switching levels

IBST2 Input Schmitt buffer with 2V switching levels

IBGATE IBCLKB IBDF IBDFA IBSK1 IBSK2 IBSK3 IBTRID IBTRID1 IBTRID2 IBTRID3	NAND2/NOR2 gates Large clock driver Master-slave D type flip flop Master-slave D type flip flop Driver with slewed outputs Driver with slewed outputs Driver with slewed outputs Tri-state driver Tri-state driver with slewed outputs + 2 inverters Tri-state driver with slewed outputs + 2 inverters Tri-state driver with slewed outputs + 2 inverters
IB2BD	2 inverters Dual high powered inverters
DRV3 DRV6	Clock driver Clock driver

PAD INPUT CELLS

IPNR	Input cell with no pull up or down resistors
IPR1P	Input cell with 1KOhm pull up resistor
IPR1M	Input cell with 1KOhm pull down resistor
IPR2P	Input cell with 2KOhm pull up resistor
IPR2M	Input cell with 2KOhm pull down resistor
IPR3P	Input cell with 4KOhm pull up resistor
IPR3M	Input cell with 4KOhm pull down resistor
IPR4P	Input cell with 75KOhm pull up resistor
IPR4M	Input cell with 75kOhm pull down resistor

OSCILLATOR CELLS (crystal)

to be defined

PAD OUTPUT CELLS

OP1	Smallest drive output cell
OP2	Small drive output cell
OP3	Standard drive output cell
OP6	Medium drive output cell
OP12	Large drive output cell
OP5B OP11B	Standard drive non-inverting output cell Large drive non-inverting output cell
OPT1	Smallest drive tri-state output cell
OPT2	Small drive tri-state output cell
OPT3	Standard drive tri-state output cell
OPT6	Medium drive tri-state output cell
OPT12	Large drive tri-state output cell
OP4B	Standard drive non-inverting tri-state output cell
OP10B	Large drive non-inverting tri-state output cell
OPOD1	Smallest drive open-drain output cell
OPOD2	Small drive open-drain output cell
OPOD3	Standard drive open-drain output cell
OPOD6	Medium drive open-drain output cell
OPOD12	Large drive open-drain output cell

OPOD5B	Standard drive non-inverting open-drain
OPOD11B	output cell Large drive non-inverting open-drain output cell
OPOS1 OPOS2 OPOS3 OPOS6 OPOS12	Smallest drive open-source output cell Small drive open-source output cell Standard drive open-source output cell Medium drive open-source output cell Large drive open-source output cell
OPOS5B	Standard drive non-inverting open-source
OPOS11B	output cell Large drive non-inverting open-source output cell
POWER SU	JPPLY CELLS
OPVP OPVM OPVPB OPVMB OPVPBB	VDD power pad (outputs) GND power pad (outputs) VDD power pad (outputs) : break in VDD GND power pad (outputs) : break in GND VDD power pad (outputs) : break in VDD & GND GND power pad (outputs) : break in VDD & GND
IBVP IBVM IBVPB IBVMB IBVPBB	VDD power pad (buffers) GND power pad (buffers) VDD power pad (buffers) : break in VDD GND power pad (buffers) : break in GND VDD power pad (buffers) : break in VDD & GND GND power pad (buffers) : break in VDD & GND
LAVP LAVM	Power pad for logic array

CLA70000 PDS-BIST (JTAG/IEEE1149-1) LIBRARY

TEST REGISTER CELLS

|

LAGND | LAVDD

JTRDU4,8,16,24,32	4,8,16,24,32 bit Transparent Test registers with Update Latches
JTRDD4,8,16,24,32	4,8,16,24,32 bit Transparent Test registers
JTRCU4,8,16,24,32	4,8,16,24,32 bit Clocked Test registers with Update Latches
JTRCD4,8,16,24,32	4,8,16,24,32 bit Clocked Test Registers

TESTCONTROL CELLS

JTAP	PDS BIST JTAG Interface Controller
JTCLK	PDS-BIST Clock Gating and Buffer Cell
JTIDREG	PDS-BIST JTAG Identification Register
TEST REG	ISTER COMPONENT CELLS
JTDUT	Test register data bit (transparent) with update latch
JTDUF	Test register data bit (transparent)] with update latch
JTDDT	Test register data bit (transparent)
JTDDF	Test register data bit (transparent)
JTCUT	Test register data bit (clocked) with update latch
JTCUF	Test register data bit (clocked) with update latch
JTCDT	Test register data bit (clocked)
JTCDF	Test register data bit (clocked)
JTCT	Test register local controller
JTBF16	Test register driver 4-19 databits
JTBF16	Test register driver 20-34 databits

CLA70000 DSP MACROCELL LIBRARY

RIPPLE CARRY ADDERS

ADR1	1bit adder
ADR3	4 bit adder
ADR8	8 bit adder
ADR16	16 bit adder
ADR24	24 bit adder
ADR32	32 bit adder

HIGH SPEED CARRY SELECT ADDERS

ADS1	1bit adder
ADS3	4 bit adder
ADS8	8 bit adder
ADS16	16 bit adder
ADS24	24 bit adder
ADS32	32 bit adder

CARRY SELECT ADDERS (REDUCED AREA)

ADT8	8 bit adder
ADT16	16 bit adder
ADT24	24 bit adder

ADT32 32 bit adder

SUBTRACTOR BLOCKS

ADSU4	4 bit subtractor add-on
ADSU8	8 bit subtractor add-on
ADSU16	16 bit subtractor add-on
ADSU24	24 bit subtractor add-on
ADSU32	32 bit subtractor add-on

SHIFTERS ARITHMETIC RIGHT (PADDED WITH MSB)

SHA4	4 stage arithmetic right shifter
SHA8	8 stage arithmetic right shifter
SHA16	16 stage arithmetic right shifter
SHA24	24 stage arithmetic right shifter
SHA32	31 stage arithmetic right shifter

SHIFTERS BARREL RIGHT (PADDED WITH LSB DATA EXITING SHIFTER)

SHB4	4 stage barrel right shifter
SHB8	8 stage barrel right shifter
SHB16	16 stage barrel right shifter
SHB24	24 stage barrel right shifter
SHB32	31 stage barrel right shifter

SHIFTERS LOGIC RIGHT/LEFT (PADDED WITH ZERO'S)

SHL4	4 stage logic right shifter
SHL8	8 stage logic right shifter
SHL16	16 stage logic right shifter
SHL24	24 stage logic right shifter
SHL32	31 stage logic right shifter

LOGIC UNITS (8 FUNCTION)

4 logic bit unit
8 logic bit unit
16 logic bit unit
24 logic bit unit
32 logic bit unit

ARITHMETIC UNITS (8 FUNCTION)

4 bit logic unit
8 bit logic unit
16 bit logic unit
24 bit logic unit
32 bit logic unit

CLA70000 DSP MACROCELL LIBRARY

MULTIPLIERS AND ASSOCIATED CELLS

BMA8X8	Mixed mode multiplier (8 x 8 bits)
BMA16X16	Mixed mode multiplier (16 x 16 bits)
BMA24X24	Mixed mode multiplier (32 x 32 bits)

BMB16X12	Single pipeline multiplier (16 x 12 bits)
BMC24X24	Mixed mode multiplier (24 x 24 bits)
BTHE1 BTHD1 BTHD2	Booth encoder Non-Inverting Booth decoder Inverting Booth decoder

Many of the macro functions perform similar functions to the standard TTL and CMOS logic families. The user is warned, however, that the logic functions may differ slightly and is therefore recommended to refer to the design manual rather than assume an exact functional copy. The PDS simulator uses the constituent microcell models for circuit analysis.

The macrocells are constructed from basic microcells and are placed and routed to give optimum use of chip area.

MACRO FUNCTION ADDERS

ADA4	4 bit binary full adders with fast carry
ADG4	Look ahead carry generator

COUNTERS

CNA4	BCD counter/4 bit latch decoder/driver
CNB4	4 bit counter latch
CNC4	4 bit synchronous counter
CND4	4 bit binary up/down Synchronous counter
CND4A	4 bit binary up/down counter with reset
CNE4	4 bit decade counter
CNF4	4 bit binary synchronous counter
CNG4	4 bit binary counter

DECODERS

3 line to 8 line decoder/demultiplexer 4 line to 16 line decoder/demultiplexer
4 line to 16 line decoder/demultiplexer
no enable
3 line to 8 line decoder/demultiplexer
with address registers
3 line to 8 line decoder/demultiplexer
with address latches
2 line to line decoder
4 line to 10 line BCD decoder
4 line to 10 line excess 3 to
decimal decoder
4 line to 10 line excess gray to
decimal decoder decoder
BCD to decimal decoder/driver
BCD to 7 segment decoder/driver
BCD to 7 segment decoder/driver

DRL7	BCD to 7 segment decoder/driver	SRB8		bit PISO shift register with clear
ENCODEF	S	SRB8A SRC8 SRD4	8	bit PISO shift register without clear bit PISO shift register with clear bit SIPO shift register with clear
ENA8T3 ENB10T4	8 line to 3 line priority encoder 10 line to 4 line priority encode	SRE4	4	bit PIPO shift register with JKbar nput
FLIP-FLOF		SRF8	tr	bit shift and store register with ristate outputs
FFA8	8 bit bistable latches	SRG4	re	bit bidirectional universal shift egister
FFB6 FFC4	6 bit D-type flip-flop with clear 4 bit D-type flip-flop with clear & complimentary outputs	SRJ4 SRK5		bit parallel access shift register bit shift register
FFD8	Octal D-type flip-flop with clear	PROCESS	MONITC)R
ALU/FUNC	TIONAL GENERATOR	PERF	Perform	ance monitor
FGA5	4 bit ALU/function generator	BIST *		
ADDERS		RGBIT RGTBIT	Test reg	ister (one bit) ister (one monitor bit)
MCA4	4 bit magnitude comparators	RGDIAG RGCTL	Test reg	tic control unit ister controller
MULTIPLIE	ERS	RGHOLD	-	ister hold circuitry
MLA10	Decade rate multiplier	* (early buil	t in self tes	t cells) see CLA7BIST Library
MLB4X4	4 by 4 binary multiplier with tristate outputs	CLA70000	PARACE	ELL LIBRARY
MLW7	7 bit Wallace trees with tristate outputs	MEMORY	CELLS	
MULTIPLE	XERS	RBRAM		/AX 16384 bits per block VORDS 2:128, bits 1:128 (min:max)
MXA8T1	8 line to 1 line data selector / multiplexer	ROROM	ROM N	MAX 65536 bits per block VORDS 2:2048, bits 2:64 (min:max)
MXB4T1	Dual 4 line to 1 line data selector / multiplexers			
MXB4T1A	Dual 4 line to 1 line data selector / multiplexer with inverted tristate			
MXC2T1 MXC2T1A	outputs Quad 2 to 1 data selector / multiplexers Quad 2 to 1 selector (inverted outputs)			
MXD4T1	Quad 2 to 1 selector (inverted outputs) 4 to 1 multiplexor with strobe			
MXE4T1 MXF2T1	4 to 1 multiplexor with strobe 2 to 1 multiplexeor with storage			
PARITY G	ENERATOR			
PGA9	9 bit odd/even parity generator/checker			
SHIFT RE	GISTERS			
SRA2 SRA4	2 bit POS shift register with clear 4 bit POS shift register with clear			
SRA8	8 bit SIPO shift register with clear			
SRA8A SRB2	8 bit SIPO shift register without clear 2 bit PISO shift register with clear			
SRB4				

DESIGN SUPPORT AND INTERFACES

- Flexible design route approach
- Design center engineer assigned to every customer circuit
- Full turnkey service capability

Design and layout support for CLA70000 arrays is available from various centers worldwide each of which is connected to our Headquarters via high speed data links. A design center engineer is assigned to each customer's circuit, to ensure good communication, and a smooth and efficient design flow. It should be noted that sign-off simulation against the GPS 'golden' simulator is also supported at our local design centers.

GPS offers a variety of formal design routes as illustrated in the table below. Differing interface methods allow for varying levels of involvement in a manner which complements individual customer design styles, whilst maintaining our responsibility to ensure first time working devices.

As part of the design process GPS operates a thorough design audit procedure to verify compliance with customer specification and to ensure manufacturability. The procedure includes four separate review meetings, with the customer, held at key stages of the design.

Review 1: Held at the beginning of the design cycle

To check and agree on all performance, packaging, specifications and design timescales.

Review 2: Held after Logic Simulation but prior to Layout

Checks to ensure satisfactory functionality, timing performance, and adequate fault coverage.

Review 3: Held after Layout and Post Layout Simulation

Verification of satisfactory design performance after insertion of actual track loads. Final check of all device specifications before prototype manufacture.

```
Review 4: Held after Prototype Delivery
Confirm that devices meet all specifications
and are suitable for full scale production.
```

DESIGN TOOLS

The focus of the GEC Plessey design tool methodology is that of maintaining an open CAD system with all interfaces standardized via EDIF 2.0. This enables us to provide full support for a variety of 3rd party ASIC design tools and facilitates rapid updating of associated libraries. It also provides an interface to the GEC Plessey (PDS2) design system, which offers a total design environment including behavioral and functional level modelling.

CAD SUPPORT						
	Desigr	Routes				
	THIRD PARTY SOFTWARE	PDS IN-HOUSE SOFTWARE	TURNKEY SERVICE			
OPTIONS						
Design Review 1						
Schematic Capture	CUSTOMER	CUSTOMER	GPS			
Logical Design	CUSTOMER	CUSTOMER	GPS			
Design Review 2						
Physical Design	GPS	CUSTOMER or GPS	GPS			
Design Review 3						
Prototype Manufacturing	GPS	GPS	GPS			
Prototype Evaluation	CUSTOMER	CUSTOMER	CUSTOMER			
Design Review 4						
Production	GPS	GPS	GPS			

THIRD PARTY SOFTWARE SUPPORT

- Design Kits for major industry standard ASIC design software tools
- All libraries include fully detailed timing information
- EDIF 2.0 Interface
- Post layout back annotation available

GPS supports a wide range of third party design tools including IKOS, Mentor, Verilog, and Viewlogic at the time of printing. Please check with our Sales Offices for the most recent additions. The design kits offer fully detailed timing information for all cell libraries, netlist extraction utilities, and post layout back annotation capability where applicable. An example of a workstation design flow is shown in fig 5 below. Please contact your local GEC Plessey Semiconductor's sales office for further information about support of particular tools.

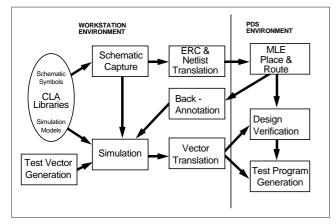


Fig 5. Workstation Design Flow

PDS2 - THE GPS ASIC DESIGN SYSTEM

- Behavioral, Functional, and Gate Level Modelling
- VHDL and Third Party Links
- Supports Hierarchical Design Techniques
- EDIF 2.0 Interface

PDS2 is GPS's own proprietary ASIC design system. It provides a fully-integrated, technology independent VLSI design environment for all GPS CMOS SemiCustom products.

PDS2 runs on Digital Equipment Computers and is self configuring according to the available machine resources. It comprises design capture (schematic capture or VHDL), testability analysis, logic simulation, fault simulation, auto place and route, and back annotation. The system offers full support for hierarchical design techniques, maintained from design capture through to layout, as well as advanced design management tools. PDS2 may be used either at a GPS Design Center or under licence at the customer's premises. A three day training course is available for first time users.

SPECIFICATIONS

THERMAL MANAGEMENT

- Lower power CMOS for better thermal management
- Improved reliability
- Power packages available

The increase in speed and density available through CMOS process geometry reduction, results in a corresponding increase in power dissipation. SemiCustom designers now have the ability to design circuits of 100,000 gates and over, and chip power consumption is (or should be) a very important concern.

The logic core of 100K plus gates is the dominant factor in power dissipation at this complexity. It is essential to offer ultra low power core logic to maintain an acceptable overall chip power budget.

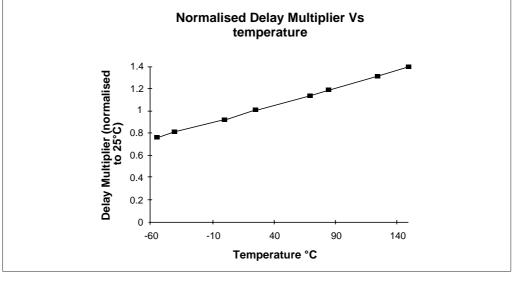
To minimize this problem GPS's CLA70000 arrays offer low power factors and a selection of power packages. Dissipation of 5μ W per gate per Mhz gate power and 1μ W per gate load, is lower than most competitive arrays, with the reduced junction temperatures having the added advantage of improved performance and reliability.

CLA70000 POWER DISSIPATION CALCULATION

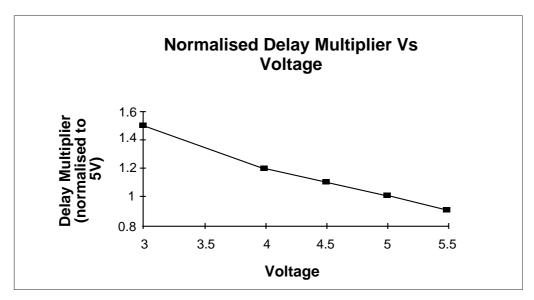
CLA70000 series power dissipation for any array can be estimated by following the example (calculated for the CLA76XXX) below.

Number of available gates Assume percent gates used Number of used gates (110102 X 0.4) Assume 15% of gates switching during.	110112 40% 44045
each clock cycle (44045 X 0.15) Power dissipation/gate/Mhz (gate fanout typically 2 loads)	6607 7μW
Total core dissipation/Mhz (6607 X 0.007)	46.2 mW
Number of available I/O pads	200
Percent of I/O pads used as Outputs Number of I/O pads used as Outputs Number of output buffers switching	40% 80
each clock cycle (20%)	16
Dissipation/output buffers/Mhz/pF Output loading	25μW 50 pF
Power/output buffer/Mhz Total output buffer dissipation/Mhz	1.25mW 20mW
Total Power dissipation/Mhz	66.2mW
Estimated discipation of the circuit at the frequencies h	

Estimated dissipation of the circuit at the frequencies below is


Total Power at 10 Mhz clock rate	0.66W
Total Power at 25Mhz clock rate	1.65W

AC CHARACTERISTICS FOR SELECTED CELLS


The CLA70000 technology library contains all the timing information for each cell in the design library. This information is accessible to the simulator, which calculates propagation delays for all signal paths in the circuit design. The simulator can automatically derate timings according to the various factors such as:

> Supply voltage variation (from nominal 5V) Junction temperature Processing tolerance - manufacturing spreads Gate fanout - logic loading on gate outputs Interconnection wiring - net loading on gate outputs

For initial assessments of feasibility, path delay multipliers can be estimated by referring to the following graphs in conjunction with the appropriate delays in the tables.

AC CHARACTERISTICS

				Typical		Worst case pro	pagation Delay (ns)	
INTERNAL	INTERNAL CORE CELLS			Propagation	Comr	nercial	Industrial		
Name	Cells	Description	Symbol	Delay (ns)	Far	nout	Far	nout	
				Fanout =2	2	4	2	4	
INV2	1	1 Invertor Dual Drive	tpLH	0.27	0.70	0.84	0.73	0.88	
11112	I		tpHL	0.18	0.47	0.56	0.49	0.58	
NAND2		2-Input NAND Gate	tpLH	0.39	1.01	1.29	1.05	1.35	
INAINDZ	1		tpHL	0.30	0.79	1.04	0.82	1.09	
NOR2	1		tpLH	0.50	1.30	1.81	1.35	1.89	
NORZ		2-Input NOR Gate	tpHL	0.22	0.57	0.80	0.60	0.84	
55		Master Slave	tpLH	0.54	1.40	1.60	1.46	1.68	
DF	1	D-Type Flip-Flop	tpHL	0.55	1.44	1.55	1.51	1.62	

				Typical	Typical Worst case propagation Delay (ns)			
INTERMEDIATE BUFFER CELLS			Propagation	Comn	nercial	Indu	strial	
				Delay (ns) Fanout		nout	Fanout	
Name	Cells	Description	Symbol	Fanout =2	2	4	2	4
IBGATE		Large 2 Input NAND	tpLH	0.34	0.88	1.02	0.92	1.02
IBGATE	-	Gate +2 Input NOR	tpHL	0.27	0.71	0.84	0.75	0.88
IBDF	-	Master Slave D-type	tpLH	0.48	1.24	1.44	1.30	1.50
	_	Flip-Flop	tpHL	0.50	1.31	1.42	1.37	1.49
IBCMOS1 -	CMOS input buffer with 2 input NAND	tpLH	0.60	1.58	1.68	1.65	1.75	
IBCMOS1	_	gate	tpLH	0.45	1.17	1.21	1.22	1.27

				Typical	V	Vorst case propa	agation Delay (na	5)
OUTPUT BUFFER CELLS			Propagation	Comr	nercial	Indu	strial	
Num			0	Delay (ns)	Far	nout	Fan	iout
Name	Cells	Description	Symbol	Fanout =10pF	10pF	50pF	10pF	50pF
OP3	013 -	Standard Output Buffer	tpLH	0.73	1.90	6.49	1.99	6.79
010			tpHL	0.49	1.27	4.40	1.33	4.60
OP6	-	Medium Output Buffer	tpHL	0.50	1.30	3.59	1.35	3.76
	060 -		tpLH	0.33	0.85	2.42	0.89	2.53
OP12		Large Output	tpLH	0.38	0.99	2.14	1.04	2.24
0P12	-	Buffer	tpHL	0.25	0.66	1.50	0.69	1.56

Note : Commercial worst case is 4.5V, 70°C operating Industrial worst case is 4.5V, 85°C operating

DC ELECTRICAL CHARACTERISTICS

All characteristics at Commercial Grade voltage and temperature (note1)

Characteristic	Symbol	Min.	Тур.	Max.	Units	Conditions
Low Level Input Voltage	V _{IL}				V	
TTL Inputs (IBTTL1/IBTTL2)	۰IL			0.80	,	
CMOS Inputs (IBCMOS1/IBCMOS2)				1.00		
	V _{IH}			1.00	V	
High Level Input Voltage TTL Inputs (IBTTL1/IBTTL2)	¥ІН	0.00			v	
		2.00				
CMOS Inputs (IBCMOS1/IBCMOS2)	V _{T+}	V _{DD} -1.00	0.00		V	
Input Hysterisis (IBST1) Rising	v _{т+} V _{т-}		3.09		v	V_{μ} to V_{μ}
Falling			1.89			V _{IH} to V _{IL}
(IBST2) Rising	V _{T+}		1.72			V _{IL} to V _{IH}
Falling	V _{T-}		1.10			V_{IH} to V_{IL}
Input Current CMOS/TTL Inputs	I _{IN}					
(without resistor)		-1.00		+1.00	μA	V _{IN} =V _{DD} OR V _{SS}
Inputs with 1K ohm resistor		±2.20	±5.00	±11.00	mA	V _{IN} =V _{DD} OR V _{SS}
Inputs with 2K ohm resistor		±1.10	±2.50	±5.50	mA	$V_{IN} = V_{DD} OR V_{SS}$
Inputs with 4K ohm resistor		±0.56	±1.25	±2.75	mA	$V_{IN} = V_{DD} OR V_{SS}$
Inputs with 75K ohm resistor		±18.00	±66.00	±275.00	μΑ	$V_{IN} = V_{DD} OR V_{SS}$
Resistor values nominal (note2)						
High Level Output Voltage	V _{OH}				v	
All Outputs			$V_{_{DD}}$ -0.05			I _{он} =-1.00µА
Smallest drive cell OP1/OPOS1/OPT1		V _{DD} -1.00	$V_{_{DD}}$ -0.50			I _{он} =-2.00mА
Low drive cell OP2/OPOS2/OPT2			$V_{_{DD}}$ -0.50			I _{он} =-4.00mА
Standard drive cell OP3/OPOS3/OPT3		V _{DD} -1.00	$V_{_{DD}}$ -0.50			I _{он} =-6.00mА
Medium drive cell OP6/OPOS6,OPT6		V _{DD} -1.00	$V_{_{DD}}$ -0.50			I _{он} =-12.00mA
Large drive cell OP12/OPOS12/OPT12		V _{DD} -1.00	V _{DD} -0.50			I _{он} =-24.00mА
Low Level Output Voltage	V _{OL}				v	
All Outputs			V _{ss} +0.05			Ι _{οL} =1.00μΑ
Smallest drive cell OP1/OPOD1/OPT1			0.20	0.40		I _{oL} =2.00mA
Low drive cell OP2/OPOD2/OPT2			0.20	0.40		I _{oL} =4.00mA
Standard drive cell OP3/OPOD3/OPT3			0.20	0.40		I _{oL} =6.00mA
Medium drive cell OP6/OPOD6,OPT6			0.20	0.40		I _{oL} =12.00mA
Large drive cell OP12/OPOD12/OPT12			0.20	0.40		I _{oL} =24.00mA
Tristate Output Leakage Current						
	I _{oz}	-1.00		1.00	μΑ	$V_{OH} = V_{SS} \text{ or } V_{DD}$
Output short Circuit Current	I _{os}				mA	
Standard output OP3/OPT3/OPOD3		67.00	135.00	270.00		V _{DD} =MAX V _{out} =V _{DD}
(Note 3) OP3/OPT3/OPOS3		37.00	75.00	150.00		V _{DD} =MAX V _{out} =OV
Operating Supply Current (per gate) (note4)	I DDOP		1.00		μA/MHz	00 00i
Input Capacitance	C,		5.00		pF	Any Inputs (note 5)
Output Capcitance	C _{OUT}		5.00		pF	Any Outputs (note 5)
Bidirectional Pin Capacitance	C _{ivo}		7.00		pF	Any I/O Pin (note 6)

Notes 1) Commercial grade is 0 - 70 °C, 5V \pm 10% power supply voltage

4) Excluding peripheral buffers.

- Excludes package leadframe capacitance or bi-directional pins. 5)
- 6) Excludes package.
- Commercial grade is 0 70 °C, 5V ± 10% power supply Voltage
 Resistor value spreads (Min-Max): Low Value (Rtyp 1K) 0.5-2K ohm Low Value (Rtyp 2K) 1.0-4K ohm High Value (Rtyp 75K) 20K-250K ohm
 Standard driver output OP3 etc. Short circuit current for other outputs will scale. Not more than one output may be shorted at a time for a maximum duration of one second.

PACKAGING

- Wide range of surface mount and through board packages
- Ceramic equivalents to most plastic packages for fast prototyping
- Ongoing commitment to new package development

Production quantities of the CLA70000 family are available in industry-standard ceramic and plastic packages according the codes shown below. Prototype samples are normally supplied in ceramic only.

DC	DILMON	Dual in Line, Multilayer ceramic. Brazed leads Metal Sealed Lid. Through Board
DG	CERDIP	Dual In Line, Ceramic body, Alloy leadframe, Glass Sealed, Through Board
DP	PLASDIP	Dual In Line, Copper or Alloy leadframe, Plastic Moulded. Through Board
AC	P.G.A.	Pin Grid Array, Multilayer Ceramic. Metal Sealed lid. Through Board
AC (P)	POWER P.G.A.	As above with cavity down and Cu/W heat plate
MP	SMALL OUTLINE (S.O.)	Dual In Line, 'Gullwing' Formed Leads. Plastic Moulded Surface Mount
LC	LCC	Leadless Chip Carrier. Multilayer Ceramic. Metal Sealed Lid. Surface Mount
HC	LEADED CHIP CARRIER	Quad Multilayer Ceramic. Brazed J Formed Leads. Metal Sealed Lid. Surface Mount
GC	LEADED CHIP CARRIER	Quad Multilayer Ceramic. Brazed Leads. Metal Sealed Lid. Surface Mount
GC (P)	POWER LEADED CHIP CARRIER	As above with cavity down, and Cu/W heat plate
HG	QUAD CERPAC	Quad Ceramic Body, 'J' Formed Leads. Glass Sealed. Surface Mount.
GG	CERAMIC QUAD FLATPACK	Quad Ceramic Body, 'Gullwing' Formed Leads. Glass Sealed. Surface Mount.
HP	PLCC	Quad Plastic Leaded Chip Carrier. 'J' Formed Leads. Plastic Moulded. Surface Mount
GP	PQFP	Plastic Quad Flat Pack. 'Gullwing' Formed Leads. Plastic Moulded. Surface Mount

PACKAGING OPTIONS

KEY

The package style and pin count information is intended only as a guide. Detailed package specification are available from GPS Design Centers on request. Available packages are being continuously updated, so if a particular package is not listed, please enquire through your GPS Sales Representative.

CLA70000 ARRAY PACKAGE GUIDE

AVAILABLE ARRAY / PACKAGE COMBINATIONS.

PROTOTYPES ONLY

	70	71	72	73	74	75	76	77	78
GP44									
GP52									
GP64									
GP80									
GP100									
GP120									
GP144									
GP160									

PLASTIC QUAD FLAT PACK (GP)

CERAMIC QUAD FLAT PACK (GG)

		-		-	-	-		-	
	70	71	72	73	74	75	76	77	78
GG44									
GG52									
GG64									
GG80									
GG100									
GG120									
GG144									
GG160									

PLASTIC SMALL OUTLINE (MP)

	70	71	72	73	74	75	76	77	78
MP16L									
MP20									
MP24									
MP28									

PLASTIC LEADED CHIP CARRIER (HP)

_		70	71	72	73	74	75	76	77	78
	HP28									
	HP44									
	HP68									
	HP84									

GLASS SEALED CERAMIC LEADED CHIP CARRIER (HG)

_	70	71	72	73	74	75	76	77	78
HG28									
HG44									
HG68									
HG84									

CERAMIC LEADED CHIP CARRIER (GC)

_	70	71	72	73	74	75	76	77	78
GC132									
GC172									
GC196									

PLASTIC DUAL IN LINE (DP)

	70	71	72	73	74	75	76	77	78
DP16									
DP22									
DP24									
DP28									
DP40									
DP48									

CERAMIC SMALL OUTLINE (MC)

	70	71	72	73	74	75	76	77	78
MC16									
MC20									
MC24									
MC28									

CO-FIRED CERAMIC LEADED CHIP CARRIER (HC)

	70	71	72	73	74	75	76	77	78
HC28									
HC44									
HC68									
HC84									

CERAMIC LEADLESS CHIP CARRIER (LC)

	70	71	72	73	74	75	76	77	78
LC28									
LC44									
LC68									
LC84									

POWER CERAMIC LEADED CHIP CARRIER (GC)

	70	71	72	73	74	75	76	77	78
GC132							-	-	
GC172									
GC196									
GC256									

CERAMIC DUAL IN LINE (DC)

	70	71	72	73	74	75	76	77	78
DC16									
DC22									
DC24									
DC28									
DC40									
DC48									

CERAMIC PIN GRID ARRAY (AC)

	70	71	72	73	74	75	76	77	78
AC68									
AC84									
AC100					-				
AC120									
AC132									
AC144									
AC180									
AC257									

QUALITY AND RELIABILITY

- Statistical process control used in manufacture
- Regular sample screening and reliability testing
- Screening to MIL and Industrial standards available

At GPS, quality and reliability are built into the product by statistical control of all processing operations and by minimizing random uncontrolled effects in all manufacturing operations. Process management involves full documentation of procedures, recording of batch-by-batch data, using traceability procedures and provision of appropriate equipment and facilities to perform sample screening and conformance testing on finished product.

PRIMARY SEMI-CUSTOM DESIGN CENTRES

UNITED KINGDOM: Swindon, Tel: (0793) 518000 Tx: 449637 Fax: (0793) 518411. Oldham, Tel: (061) 682 6844, Tx: 666001 Fax: (061) 688 7898. Lincoln, Tel: 0522 500500 Tx: 56380 Fax: 0522 500550. Wembley, Tel: 081 908 4111 Tx: 28817 Fax: 081 908 3801. **UNITED STATES OF AMERICA:** Scotts Valley, Tel: (408) 438 2900 ITT Tx: 4940840 Fax: (408) 438 5576. Dedham, Tel: (617) 320-9790. Fax: (617) 320-9383. Irvine, Tel: (714) 455-2950. Fax: (714) 455-9671. San Jose, Tel: (408) 433-1030 Fax: (408) 433-1033. **AUSTRALIA:** Rydalmere, NSW, Tel: 612 638 1888. Fax: 612 638 1798. **FRANCE:** Les Ulis Cedex, Tel: (6) 446 23 45 Tx: 602858F. Fax: (6) 446 06 07. **ITALY:** Milan, Tel: (02) 33001044/45 Tx: 331347 Fax: (GR3) 2316904. **GERMANY:** Munich, Tel: (089) 3609 06 0 Tx: 523980. Fax: (089) 3609 06 55. **JAPAN:** Tokyo, Tel: (3) 839 3001. Fax: (3) 839 3005.

GEC PLESSEY

SEMICONDUCTORS

HEADQUARTERS OPERATIONS GEC PLESSEY SEMICONDUCTORS Cheney Manor, Swindon, Wiltshire SN2 2QW, United Kingdom. Tel: (0793) 518000 Tx: 449637 Fax: (0793) 518411

GEC PLESSEY SEMICONDUCTORS

Sequoia Research Park, 1500 Green Hills Road, Scotts Valley, California 95066, United States of America. Tel (408) 438 2900 ITT Telex: 4940840 Fax: (408) 438 5576

POWER CERAMIC PIN GRID ARRAY (AC)

	70	71	72	73	74	75	76	77	78
AC84									
AC144									
AC208									

A common information management system is used to monitor the manufacturing of GPS CMOS and Bipolar processes. All products benefit from the use of this integrated monitoring system throughout all manufacturing operations leading to high quality standards for all technologies.

Further information is contained in the Quality Brochure, available from GPS Sales Offices.

- CUSTOMER SERVICE CENTRES
- FRANCE & BENELUX Les Ulis Cedex Tel: (1) 64 46 23 45 Tx: 602858F Fax : (1) 64 46 06 07
- GERMANY Munich Tel: (089) 3609 06-0 Tx: 523980 Fax : (089) 3609 06-55
- ITALY Milan Tel: (02) 33001044/45 Tx: 331347 Fax: (GR3) 316904
- JAPAN Tokyo Tel: (03) 3296-0281 Fax: (03) 3296-0228
- NORTH AMERICA Integrated Circuits, Scotts Valley, USA Tel (408) 438 2900 ITT Tx: 4940840 Fax: (408) 438 7023.
- SOS, Microwave and Hybrid Products, Farmingdale, USA Tel (516) 293 8686 Fax: (516) 293 0061.
- SOUTH EAST ASIA Singapore Tel: 2919291 Fax: 2916455
- SWEDEN Johanneshov Tel: 46 8 7228690 Fax: 46 8 7227879
- UNITED KINGDOM & SCANDINAVIA Swindon Tel: (0793) 518510 Tx: 444410 Fax : (0793) 518582
- These are supported by Agents and Distributors in major countries world-wide.

 $\ensuremath{\mathbb{C}}$ GEC Plessey Semiconductors 1992 Publication No. PS 2462 Issue No. 3.1 March 1992

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.