

SST5912C MONOLITHIC DUAL N-CHANNEL JFET

Linear Systems replaces discontinued Siliconix / National SST5912C

The SST5912C are monolithic dual JFETs. The monolithic dual chip design reduces parasitics and gives better performance at very high frequencies while ensuring extremely tight matching. These devices are an excellent choice for use as wideband differential amplifiers in demanding test and measurement applications. The SST5912C is a direct replacement for discontinued Siliconix and National SST5912C.

The 8 Pin SOIC provides ease of manufacturing, and the symmetrical pinout prevents improper orientation. (See Packaging Information).

SST5912C Applications:

- Wideband Differential Amps
- High-Speed,Temp-Compensated Single-Ended Input Amps
- High-Speed Comparators
- Impedance Converters and vibrations detectors.

FEATURES			
Improved Direct Replacement for SILICONIX	(& NATIONAL SST5912C		
LOW NOISE (10KHz)	e _n ~ 4nV/√Hz		
HIGH TRANSCONDUCTANCE (100MHz)	g _{fs} ≥ 4000μS		
ABSOLUTE MAXIMUM RATINGS ¹			
@ 25°C (unless otherwise noted)			
Maximum Tamparaturas			
Maximum Temperatures			
Storage Temperature	-65°C to +150°C		
Operating Junction Temperature	-55°C to +135°C		
Maximum Power Dissipation			
Continuous Power Dissipation (Total)	500mW		
Maximum Currents			
Gate Current	50mA		
Maximum Voltages			
Gate to Drain	-25V		
Gate to Source	-25V		

MATCHING CHARACTERISTICS @ 25°C (unless otherwise stated)

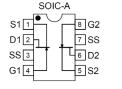
V _{GS1} - V _{GS2} Differential Gate to Source Cutoff Voltage 40 m\	
V _{GS1} - V _{GS2} Differential Gate to Source Cutoff Voltage 40 m\	$V_{DG} = 10V, I_D = 5mA$
$\Delta V_{GS1} - V_{GS2} / \Delta T$ Differential Gate to Source Cutoff 40 $\mu V / \Delta V_{GS1} - V_{GS2}$	$V_{DG} = 10V, I_D = 5mA$
Voltage Change with Temperature	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$
I _{DSS1} / I _{DSS2} Gate to Source Saturation Current Ratio 0.95 1 %	$V_{DS} = 10V, V_{GS} = 0V$
I _{G1} - I _{G2} Differential Gate Current 20 nA	$V_{DG} = 10V, I_D = 5mA$ $T_A = +125^{\circ}C$
g_{fs1}/g_{fs2} Forward Transconductance Ratio ² 0.95 - 1 %	$V_{DS} = 10V, I_{D} = 5mA, f = 1kHz$
CMRR Common Mode Rejection Ratio 85 dB	$V_{DG} = 5V to 10V, I_D = 5mA$

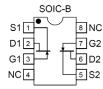
ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	CONDITIONS		
BV_GSS	Gate to Source Breakdown Voltage	-25				$I_G = -1\mu A$, $V_{DS} = 0V$		
$V_{GS(off)}$	Gate to Source Cutoff Voltage	-1		-5	V	$V_{DS} = 10V, I_{D} = 1nA$		
$V_{GS(F)}$	Gate to Source Forward Voltage		0.7			$I_G = 1mA, V_{DS} = 0V$		
V_{GS}	Gate to Source Voltage	-0.3		-4		$V_{DG} = 10V, I_{G} = 5mA$		
I _{DSS}	Gate to Source Saturation Current ³	7		40	mA	$V_{DS} = 10V, V_{GS} = 0V$		
I _{GSS}	Gate Leakage Current ³		-1	-50		$V_{GS} = -15V, V_{DS} = 0V$		
I _G	Gate Operating Current		-1	-50	pА	$V_{DG} = 10V$, $I_D = 5mA$		
g _{fs}	Forward Transconductance	4000		10000				
		4000		10000	μS	$V_{DG} = 10V, I_{D} = 5mA$		
g _{os}	Output Conductance			100				
				150				
C _{ISS}	Input Capacitance			5	pF	$V_{DG} = 10V$, $I_{D} = 5mA$, $f = 1MHz$		
C_{RSS}	Reverse Transfer Capacitance			1.2				
NF	Noise Figure			1	dB	$V_{DG} = 10V$, $I_D = 5mA$, $f = 10kHz$, $R_G = 100K\Omega$		
e _n	Equivalent Input Noise Voltage		7	20	nV/√Hz	$V_{DG} = 10V$, $I_D = 5mA$, $f = 100Hz$		
			4	10		$V_{DG} = 10V$, $I_D = 5mA$, $f = 10kHz$		

Notes: 1. Absolute Maximum ratings are limiting values above which serviceability may be impaired 2. Pulse Test: PW \leq 300 μ s Duty Cycle \leq 3%

3. Assumes smaller value in numerator




Please contact Micross for full package and die dimensions:

Email: chipcomponents@rnicross.com
Web: www.micross.com/distribution.aspx

Available Packages:

SST5912C in SOIC SST5912C available as bare die

