# WESTERN DIGITAL

# WD2143-03 Four Phase Clock Generator

#### **FEATURES**

- IMPROVED VERSION OF WD2143-01
- TRUE AND INVERTED OUTPUTS
- SINGLE 5 VOLT SUPPLY
- TTL COMPATABLE
- ON CHIP OSCILLATOR
- . TTL CLOCK INPUT
- TTL CLOCK OUTPUT
- PROGRAMMABLE PULSE WIDTHS
- PROGRAMMABLE PHASE WIDTHS
- NO EXTERNAL CAPACITOR

#### GENERAL DESCRIPTION

The WD2143-03 Four-Phase Clock Generator is a MOS/LSI device capable of generating four phase clocks. The ouput pulse widths are controlled by tying an external resistor to the proper control inputs. All pulse widths may be set to the same width by tying the \$\phiPW\$ line through an external resistor. Each pulse width can also be individually programmed by tying a resistor through the appropriate \$1PW-\$4PW control inputs.

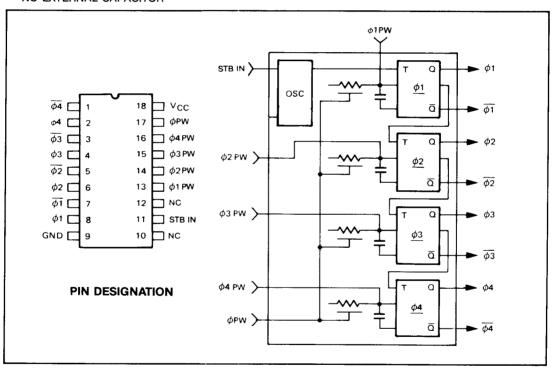



Figure 1. WD2143-03 BLOCK DIAGRAM

#### **DEVICE OPERATION**

Each of the phase outputs can be controlled individually by tying an external resistor from \$1PW\$\$ \$4PW\$ to a +5V supply. When it is desired to have \$1 through \$4\$ outputs the same width, the \$1PW\$\$ \$4PW\$ inputs should be left open and an external

resistor tied from the \$PW (Pin 17) input to +12V. STROBE IN (pin 11) is driven by a TTL square wave. Each of the four phase outputs provide both true and inverted signals, capable of driving 1 TTL load each.

| PIN NUMBER | SYMBOL                         | DESCRIPTION                                                                                                                       |  |  |  |  |  |
|------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1,3,5,7    | <del>4</del> 1- <del>4</del> 4 | Four phase clock outputs. These outputs are inverted (active low).                                                                |  |  |  |  |  |
| 2,4,6,8    | φ1-φ4                          | Four Phase clock outputs. These outputs are true (active high).                                                                   |  |  |  |  |  |
| 9          | GND                            | Ground.                                                                                                                           |  |  |  |  |  |
| 10         | NC                             | No connection.                                                                                                                    |  |  |  |  |  |
| 11         | STB IN                         | Input signal to initiate four-phase clock outputs.                                                                                |  |  |  |  |  |
| 12         | NC                             | No connection.                                                                                                                    |  |  |  |  |  |
| 13-16      | φ1PW-φ4PW                      | External resistor inputs to control the individual pulse widths of each output. These pins can be left open if $\phi$ PW is used. |  |  |  |  |  |
| 17         | $\phi$ PW                      | External resistor input to control all phase outputs to the same pulse widths.                                                    |  |  |  |  |  |
| 18         | V <sub>cc</sub>                | $+5V \pm 5\%$ power supply input.                                                                                                 |  |  |  |  |  |

**Table 1. PIN DESCRIPTIONS** 

### TYPICAL APPLICATIONS

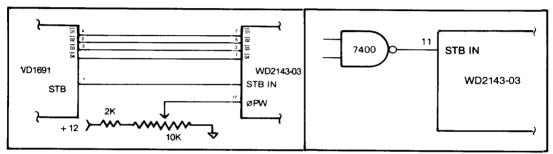



Figure 2. WRITE PRECOMP OPERATION WITH F.S.L. WD1691

Figure 3. TTL SQUARE WAVE OPERATION

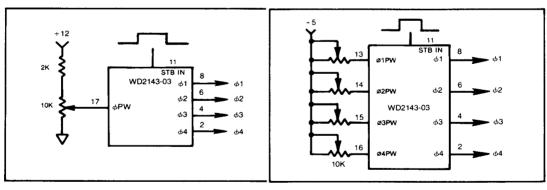



Figure 4. EQUAL PULSE WIDTH OUTPUTS

Figure 5. INDIVIDUAL PULSE WIDTH OUTPUTS

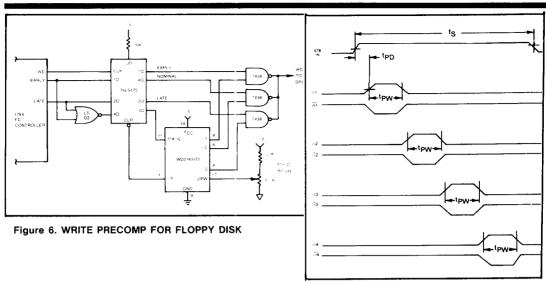



Figure 7. WD2143-03 TIMING DIAGRAM

#### **SPECIFICATIONS**

Absolute Maximum Ratings Operating

Temperature ......0°C (32°F) to +70°C (158°F)

Voltage on any pin with

respect to Ground\* -0.5 to +7V

Power Dissipation

Storage Temperature plastic ......55°C (-67°F) to +125°C (257°F) ceramic . . . . . -65°C (-85°F) to + 150°C (302°F) DC ELECTRICAL CHARACTERISTICS

 $V_{CC} = 5V \pm 5\%$ , GND = 0V,  $T_{\Delta} = 0^{\circ}$ C (32°F) to 70°C (158°F).

1 Watt

| SYMBOL          | PARAMETER             | MIN | MAX | UNITS | CONDITIONS                |
|-----------------|-----------------------|-----|-----|-------|---------------------------|
| V <sub>OL</sub> | TTL low level output  |     | 0.4 | V     | I <sub>OL</sub> = 1.6 mA  |
| V <sub>OH</sub> | TTL high level output | 2.0 |     | V     | I <sub>OH</sub> = -100μ A |
| VIL             | STB in low voltage    |     | 0.8 | v     | On 1                      |
| VIH             | STB in high voltage   | 2.4 |     | v     |                           |
| Icc             | Supply Current        |     | 80  | mA    | All outputs open          |

Table 2. DC ELECTRICAL CHARACTERISTICS

Note: Maximum ratings indicate limits beyond which permanent damage may occur. Continuous operation at these limits is not intended and should be limited to the DC electrical characteristics specified.

\*Pin 27 = -0.5V to + 12V. Increasing voltage on Pin 17 will decrease Tpw.

## **SWITCHING CHARACTERISTICS**

 $V_{CC} = 5V \pm 5\%$ , GND = 0V,  $T_A = 0^{\circ}C$  (32°F) to 70°C (158°F)

| SYMBOL           | CHARACTERISTIC           | MIN. | MAX. | UNITS | CONDITIONS                         |
|------------------|--------------------------|------|------|-------|------------------------------------|
| t <sub>PD</sub>  | STB IN to $\phi$ 1       |      | 140  | ns    |                                    |
| t <sub>pw</sub>  | Pulse Width (any output) | 100  | 300  | ns    | CL = 30pf                          |
| t <sub>PR</sub>  | Rise Time (any output)   |      | 30   | ns    | CL = 30pf                          |
| tpp              | Fall Time (any output)   |      | 25   | ns    | CL = 30pf                          |
| fs               | STROBE PULSE WIDTH       |      | 1.0  | ns    | combined $t_{pw} = 400 \text{ ns}$ |
| t <sub>DWP</sub> | Pulse Width Differential |      | ± 10 | %     | Referenced to $\phi$ 1, 100-300 ns |

**Table 3. SWITCHING CHARACTERISTICS** 

Note:  $T_{PW}$  measured at 50%  $V_{OH}$  Point;  $V_{OL} = 0.8V$ ,  $V_{OH} = 2.0V$ .