

D370-Type Digital Uncooled FastLight™ Laser Module

The low-profile D370-Type Laser Module is ideally suited for short- and long-reach SONET and other high-speed digital applications.

Features

- Eight-pin package suitable for SONET/SDH applications
- MQW F-P 1.3 μm laser with single-mode fiber pigtail
- Wide operating temperature range: -40 °C to +85 °C
- No TEC required
- * Telcordia Technologies is a registered trademark of Bell Communications Research, Inc.

- High output power: typically 1.0 mW peak power coupled into single-mode fiber; 0.2 mW and 2.0 mW versions available
- Hermetically sealed active components
- Internal back-facet monitor
- Qualification program: Telcordia Technologies* TA-983

Applications

- Long-reach SONET OC-3/OC-12 systems
- SDH STM-1/STM-4 systems
- Telecommunications
- Secure digital data systems

Benefits

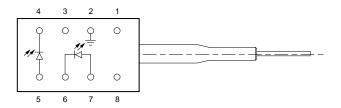
- Easily board mounted
- Requires no lead bending
- No additional heat sinks required
- Pin compatible with industry-standard, 14-pin laser module

Description

The D370-type uncooled laser module consists of a laser diode coupled to a single-mode fiber pigtail. The device is available in a standard, 8-pin configuration (see Figure 1 and/or Table 1) and is ideal for long-haul (SONET) and other digital applications.

The module includes a multiquantum-well Fabry-Perot (MQW F-P) laser and an InGaAs PIN photodiode back-facet monitor in an epoxy-free, hermetically sealed package.

Description (continued)


The device characteristics listed in this document are met at 1.0 mW output power. Higher- or lower-power operation is possible. Under conditions of a fixed photodiode current, the change in optical output is typically ± 0.5 dB over an operating temperature range of -40 °C to +85 °C.

This device incorporates the new laser 2000 manufacturing process from the Optoelectronic Products unit of Lucent Technologies Microelectronics Group. Laser 2000 is a low-cost platform that targets high-volume manufacturing and tight product distributions on all optical subassemblies. This platform incorporates an advanced optical design that is produced on Lucent's highly automated production lines. The laser 2000 plat-

form is qualified for the central office and uncontrolled environments, and can be used for applications requiring high performance and low cost.

Table 1. Pin Descriptions

Pin Number	Connection	
1	NC/Reserved	
2	Case ground	
3	NC/Reserved	
4	Photodiode cathode	
5	Photodiode anode	
6	Laser diode cathode	
7	Laser diode anode	
8	NC/Reserved	

1-900

Figure 1. D370-Type Digital Uncooled Laser Module Schematic, Top View

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Parameter	Symbol	Min	Max	Unit
Maximum Peak Laser Drive Current or	ЮР	_	150	mA
Maximum Fiber Power*	Рмах	_	10	mW
Peak Reverse Laser Voltage:				
Laser	VRL	_	2	V
Monitor	VRD	_	20	V
Monitor Forward Current	lfd	_	2	mA
Operating Case Temperature Range	Tc	-40	85	°C
Storage Case Temperature Range	Tstg	-40	85	°C
Lead Soldering Temperature/Time	_	_	260/10	°C/s
Relative Humidity (noncondensing)	RH	_	85	%

^{*} Rating varies with temperature.

Handling Precautions

Caution: This device is susceptible to damage as a result of electrostatic discharge (ESD). Take proper precautions during both handling and testing. Follow guidelines such as JEDEC Publication No. 108-A (Dec. 1988).

Although protection circuitry is designed into the device, take proper precautions to avoid exposure to ESD.

Electro/Optical Characteristics

Table 2. Electro/Optical Characteristics (over operating temperature range unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Operating Temperature Range	Т	_	-40	_	85	°C
Optical Output Power*	PF	CW, nominal	_	1	_	mW
Threshold Current	Ітн	T = 25 °C T = full range	4.5 1	9	15 45	mA mA
Modulation Current	Імор	CW, P _F = 1.0 mW, T = 25 °C CW, IMON = constant, T = full range	10 8	15 —	20 35	mA mA
Slope Efficiency [†]	SE	CW, P _F = 1.0 mW, T = 25 °C	50	75	100	μW/mA
Center Wavelength	λς	PF = 1.0 mW, CW	1270	_	1350	nm
RMS Spectral Width	Δλ	Pr = 1.0 mW, 155 Mbits/s	_	2	3	nm
Tracking Error	TE	IMON = constant, CW	_	0.5	±1	dB
Spontaneous Emission	Ртн	I = Iтн x 0.9	_	_	50	μW
Rise/Fall Times	tr, tr	10%—90% pulse, T = 25 °C	_	0.25	0.5	ns
Forward Voltage	VF	CW	_	1.1	1.6	V
Input Impedance	R	_	3	_	8	Ω
Monitor Current	Імон	$V_R^{\ddagger} = 5 V$	150	_	750	μΑ
Monitor Dark Current	ΙD	$V_R^{\ddagger} = 5 V$	_	10	200	nA
Wavelength Temperature Coefficient	_	_	_	0.4	0.5	nm/°C

^{*} Higher and lower powers available. See Table 4 for more information.

[†] The slope efficiency is used to calculate the modulation current for a desired output power. This modulation current plus the threshold current comprise the total operating current for the device.

[‡] VR = reverse voltage.

Characteristic Curve

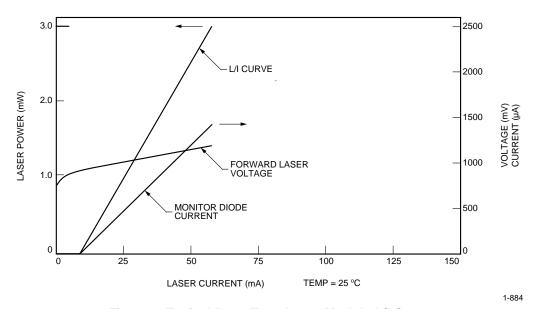
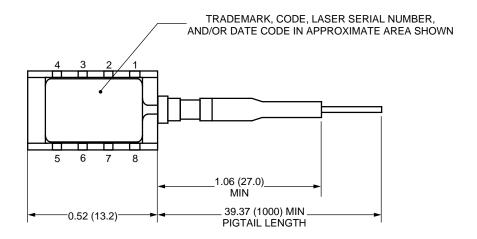
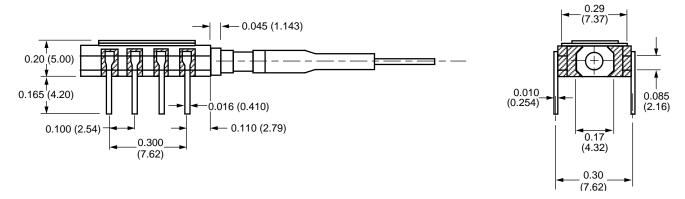




Figure 2. Typical D370-Type Laser Module L/I Curve

Outline Diagram

Dimensions are in inches and (millimeters).

Qualification Information

The D370-type laser module has passed the following qualification tests and meets the intent of *Telcordia Technologies* TR-NWT-000468 for interoffice environments and TA-TSY-000983 for outside plant environments.

Table 3. D370-Type Laser Module Qualification Test Plan

Qualification Test	Conditions	Sample Size	Reference
Mechanical Shock	500 G	11	MIL-STD-883
			Method 2002
Vibration	20 g, 20 Hz—2,000 Hz	11	MIL-STD-883
			Method 2007
Solderability	_	11	MIL-STD-883
			Method 2007
Thermal Shock	Delta T = 100 °C	11	MIL-STD-883
			Method 2003
Fiber Pull	1 kg; 3 times	11	Telcordia Technologies
			983
Accelerated (Biased) Aging	85 °C, 5,000 hrs.	25	Telcordia Technologies
			983, Section 5.18
High-temperature Storage	85 °C, 2,000 hrs.	11	Telcordia Technologies
			983
Temperature Cycling	500 cycles	11	Telcordia Technologies
			983, Section 5.20
Cyclic Moisture Resistance	10 cycles	11	Telcordia Technologies
			983, Section 5.23
Damp Heat	40 °C, 95% RH, 1344 hrs.	11	MIL-STD-202
			Method 103
Internal Moisture	<5,000 ppm water vapor	11	MIL-STD-883
			Method 1018
Flammability	-	_	TR357
			Section 4.4.2.5
ESD Threshold	_	6	Telcordia Technologies
			983, Section 5.22

Laser Safety Information

Class IIIb Laser Product

FDA/CDRH Class IIIb laser product. All versions are Class IIIb laser products per CDRH, 21 CFR 1040 Laser Safety requirements. All versions are Class 3B laser products per *IEC** 60825-1:1993. The device has been classified with the FDA under accession number 8720010.

This product complies with 21 CFR 1040.10 and 1040.11. 8.3 μ m single-mode pigtail with optional connector Wavelength = 1.3 μ m Maximum power = 10 mW

Because of size constraints, labeling is not affixed to the module but attached to the outside of the shipping carton. Product is not shipped with power supply.

Caution: Use of controls, adjustments, and procedures other than those specified herein may result in hazardous laser radiation exposure.

* IEC is a registered trademark of The International Electrotechnical Commission.

Ordering Information

Table 4. Ordering Information

Device Code	Comcode	Pfiber	Connector
D370-02A	107950859	0.2 mW	SC-PC
D370-10A	107950867	1.0 mW	SC-PC
D370-20A	107950875	2.0 mW	SC-PC
D370-10B	108096322	1.0 mW	SC-APC
D370-02F	107950883	0.2 mW	FC-PC
D370-10F	107950891	1.0 mW	FC-PC
D370-20F	107950909	2.0 mW	FC-PC
D370-02N	107950917	0.2 mW	none
D370-10N	107950925	1.0 mW	none
D370-20N	107950933	2.0 mW	none

For additional information, contact your Microelectronics Group Account Manager or the following:

INTERNET: http://www.lucent.com/micro, or for Optoelectronics information, http://www.lucent.com/micro/opto

E-MAIL: docmaster@micro.lucent.com

N. AMERICA: Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286

1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)

ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256

Tel. (65) 778 8833, FAX (65) 777 7495

CHINA: Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road,

Shanghai 200233 P. R. China Tel. (86) 21 6440 0468, ext. 325, FAX (86) 21 6440 0652

JAPAN: Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700

Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 1189 324 299, FAX (44) 1189 328 148 Technical Inquiries: OPTOELECTRONICS MARKETING: (44) 1344 865 900 (Ascot UK)

Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information. FastLight is a trademark of Lucent Technologies Inc.

microelectronics group

EUROPE:

DS99-033LWP-1 (Replaces DS99-033LWP)