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1. Introduction 

1.1. Scope and Audience 

This paper presents details of the spatial-temporal processing of a received TD-
SCDMA signal and its channel impulse response. 

This document is targeted at systems engineers who are designing TD-SCDMA 
systems who are interested in deploying the Motorola MRC6011 in their designs. 
It is also targeted to applications engineers and marketing professions who want 
to learn more about the broad range of applications of the Motorola RCF 
technology. 

1.2. Executive Summary 

CDMA based systems suffer from Multiple Access Interference (MAI) and it 
affects all users equally. FDD based systems attempt to deal with the problem by 
using detection schemes such as the rake receiver, however these schemes are 
sub-optimal because they only consider one user’s signal information and do not 
take into account the interference from all other users in the system. 

Joint Detection algorithms on the other hand are designed to process all users in 
parallel by including the interference information from the other users. In general 
Joint Detection schemes are complex and computationally intensive (complexity 
grows exponentially as the number of users increases) because most of the 
operations are matrix and vector based operations, as the number of the users 
increase, the sizes of the matrices and vectors increases and therefore the 
computation power that is required to separate the users. 

TD-SCDMA however, solves this problem by limiting the number of users in a 
given time slot to 16, this creates a very manageable number of users that need 
to be processed in parallel, furthermore these users are also synchronized. 

1.3. Background 

In the year 1998 the Chinese Wireless Telecommunications Standards (CWTS, 
http://www.cwts.org) put forth a proposal to the International Communications 
Union (ITU) based on TDD and Synchronous CDMA technology (TD-SCDMA) for 
TDD. This proposal was accepted and approved by the ITU and became part of 
3GPP in March of 2001.  

TD-SCDMA was incorporated as part of the TDD mode of operation in addition to 
the existing TDD-CDMA mode of operation. To accommodate both modes, 
3GPP now includes a “low chip rate” mode of 1.28 Mcps that corresponds to the 
TD-SCDMA specifications. Because of this TD-SCDMA is sometimes referred to 
as the low-chip rate mode of UTRA TDD. 

Table 1-1 shows where TD-SCDMA fits in relationship to other 3GPP standards 
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3GPP  
Name Access Mode Chip Rate 

WCDMA FDD 3.84 Mcps 

TDD-CDMA TDD 3.84 Mcps 

TD-SCDMA TDD 1.28 Mcps 

Table 1-1 TD-SCDMA in relationship to other 3G standards 
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2. Signal Model 

2.1. TDD/TDMA 

Internet based applications, media (audio and video) enabled applications and 
file transfers have very different bandwidth requirements for uplink and downlink 
traffic. TD-SCDMA does not dictate a fixed utilization of the frequency band; 
rather uplink and downlink resources are assigned according to traffic needs.  

Symmetric 
Traffic 

Asymmetric 
Traffic 

UL UL DL DL 

 

Figure 2-1 Symmetric and Asymmetric traffic support in TD-SCDMA 

The variable allocation of the time slots for uplink or downlink traffic is what 
allows TD-SCDMA to efficiently support asymmetric traffic requirements and a 
variety of users.  Figure 2-1 illustrates this principle where for symmetric traffic, 
the time slots are equally split and for asymmetric traffic the DL can use more 
time slots. 

2.2. TD-SCDMA Frame Hierarchy 

TD-SCDMA uses both unique codes and time signatures to separate the users in 
a given cell. The standard defines a very specific frame structure as shown in 
Figure 2-2. There are three different layers: the radio frame, the sub-frame and 
the individual time slots. Depending on the resource allocation, the configuration 
of the radio frames becomes different. The radio frame is 10ms; the sub-frame is 
5 ms in length and is divided into 7 slots. The standard also specifies various 
ratios for the number of slots between these two groups in order to meet specific 
traffic requirements.  All physical channels require a guard symbol in every time 
slot. 
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Time Slot (0.675 ms) 

Time Slot (0.675 ms) 

Radio Frame (10 ms) 

TS0 TS1 TS2 TS3 TS4 TS5 TS6 

Data Data Midamble G 

Frame #i Frame i+1 

Subframe  (5  ms) 

Subframe #1 Subframe 2 

 

Figure 2-2 TD-SCDMA Frame Structure 

2.3. TD-SCDMA Slot Structure 

A TD-SCDMA time slot has been designed to fit into exactly one burst. The time 
slot (Figure 2-3) consists of four parts, a midamble with 144 chips duration, and 
two identical data fields with 352 chips duration at each side of the midamble and 
followed by a 16 chips guard period. The midamble is used by the receiver to 
carry out channel estimation tasks.  

 

 

Data symbols 
352chips 

Midamble 
144 chips 

Data symbols 
352 chips 

GP 
16 
CP 

675 µs 

 

Figure 2-3 The TD-SCDMA Slot Structure  
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3. System Model 

3.1. Channel Model 

In a TD-SCDMA system, we have K users who access the channel 
simultaneously. On the same frequency and in the same time slot. Figure 3-1 
shows a general model of a TD-SCDMA System.  
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Figure 3-1 Discrete base band model of a TD-SCDMA system. 

In the system of Figure 3-1 we assume that there are Ka antennas for the 
receiver . 

The kth user transmits a data symbol sequence block with N symbols:    
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kkk ddd )()(
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)(
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)( , �=d  k = 1,2,…..,K (1) 
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Where N is the number of symbols in each data block. 

( )Tk
Q

kkk dcc )()(
2

)(
1

)(
�=c  k = 1, 2 … K (3) 

)(kc  is the kth user signature, N is the number of symbols in each data block and 
Q is the spreading factor.  All users are assumed to be at the same spreading 
factor. 

Each of the K channels in the system is characterized by its impulse response 
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Where W  is the number of taps in the channel. 
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Similarly, we have the noise vector for antenna ka 

[ ] T
ka

WNQ
kakaka nnn )(

1
)(

2
)(

1
)(

−+= �n   (5) 

and 

[ ] T
Ka )()2()1( nnnN �=       n = vec [N] (6) 

 

The transmission of the block on N symbols can be modeled by a system of 
linear equations that relates the spreading codes, the channel’s input response 
and the impact of noise in the signal. 

3.2. Received Signal Model 

The received sequence received at chip rate from the ka
th antenna is: 

e
(ka) 

= (e1
(ka) , e2

(ka)
, . . . , eNQ+W-1

(ka)
)
T
 (7) 

where  Q again is the spreading factor of the data symbol and  W is the number 
of taps in channel.   

[ ] T
Ka )()2()1( ., eeeE �=                           e = vec[E]  (8) 

From Figure 3-1 we can see that  

( ) ),(),(
1

),(
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1

),( *)(,, kakTkak
WQ

kakkakkak kbbb hcb == −+�  (9) 

Is the convolution of the channel input response with the corresponding spreading code. 

( ),( kakh is the channel impulse response between the user k and antenna ka, c(k) is the 
spreading code of the user k.) 

Then the we can see that the signal arriving at the receiver can be described by 
a linear system of equations that relate the user’s signal and the receiver input: 

 

NdIAE +⊗= )( )(Ka   (10) 

Where, � is the Kronecker product . 

Or 

nAde +=    (11) 

The matrix A is called channel matrix and is defined as 

[ ] T
Ka )()2()1( AAAA �=  (12) 
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Figure 3-2 The Channel Matrix A 
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4. Types of Channel Impulse Response 
When dealing with spatial-temporal signal processing in the TD-SCDMA, we need to identify two 
types of channel impulse responses – non-directional channel impulse response and directional 
channel impulse response.   

4.1. Non-Directional Channel Impulse Response. 

Let’s first discuss the non-directional channel impulse response. The impulse 
response is defined between each individual user and its antenna. A non-
directional channel response between user k and antenna ka can be modeled as 
a FIR filter with W taps: 

h(k,ka) = [h1
(k,kd),h2

(k,kd), … , hW
(k,kd) ]T      (13) 

We can stack all of the channel impulse responses of the k users together to 
form the non-directional channel impulse response matrix: 
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Then we stack all users’ matrixes together to form the system non-directional 
channel impulse response matrix: 

H = [ H(1)T, H(2)T,……, H(K)T ]  

4.2. Directional Channel Impulse Response 

The second type of channel impulse response is the directional channel impulse 
response. The directional channel impulse response is directly related to each 
signal path with a DoA and it is defined to be the channel impulse response 
between user k and a reference point: 
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(k,kd) ]T  

Similarly as with the non-directional channel impulse response matrix, we have: 
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Where Kd(k) is the number of DoA paths of the kth user.  
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Hd = [ Hd
 (1), Hd

 (2),……, Hd
 (K)]                                                      (16) 

 

(Note that there is no transpose operation) 

There is a close link between the non-directional channel impulse response and 
the directional channel impulse response. The non-directional channel impulse 
response for a given user k and given antenna ka is the summation of all 
directional channel impulse responses of the user k on the antenna ka:  

∑
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)(
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),(),,(ka)(k,
kKd
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kdk
d

kdkakje hh φ
 (17) 

 

where  φ(k,ka,kd) =  {2πL(ka)cos(β(k,kd) - α(ka) )}/λ      k=1…K   ka = 1…Ka and kd = 
1…Kd

(k) ; 

 

 

Reference point 
Signal k, DoA  kd 

Antenna ka 

L(ka) 

Interference ki 

β(k,kd) 

γ(ki) 

α(ka) 

 

Figure 4-1 Antenna array model 

For a given user k and DoA kd , e jφ(k,ka,kd)  ( ka = 1….Ka) forms its steering vector.   

Thus we define: 

A(k) = [ a(k,1), a(k,2),….., a(k,Kd(k))]          k=1…,K                            (18) 

as the user kth user’s steering matrix.  Then the relation between the directional 
channel impulse response and non-directional channel impulse response is given 
by 

Tkk
d

Tkdkkdk
kKd

kd

k )()(),(),(
d

)(

1

)( AHahH == ∑
=

 (19) 
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5. Non-directional channel impulse response 
We will estimate the non-directional channel impulse response first. The estimated response can 
be used to estimate the DoA for each user and each path. Then based on the estimated DoA and 
non-directional channel impulse response, the directional channel impulse response can be 
derived. The estimation will be based on the midamble training sequence with length of W+L., 
where W is the maximum number of channel delay taps. 

Suppose we have x = Ad + n, where n is a Nx1 Gaussian noise vector (it is not necessary to be 
white), A is an Nxp known matrix, d is px1 signal vector and x is Nx1 observed signal, then a ML 
estimator of d can be derived as 

xnn
1H1H )(ˆ −−= RAARAd  (20) 

Actually, the estimator d̂  is an efficient MVU (Minimum Variance Unbiased estimator reaching 
the Cramer-Rao Lower Bound) if  the vector n is a complex Gaussian noise vector.  

Now, we define Ka Lx1 column vectors:   em
(ka)   for ka=1…Ka.   em

(ka)   is the received signal 
for the antenna ka based on the last L midamble training sequence.  Stack Ka vectors together to 
form the received L x Ka matrix 

Em = [em
(1) , em

(2) ,…, em
(Ka) ]  

Similarly, we define received noise vectors and LxKa matrix 

Nm = [nm
(1) , nm

(2) ,…, nm
(Ka) ]  

Then we have  

Em= GH + Nm  

where the matrix G is an L x KW observing matrix.   

Moreover we have 

em=  vec{ Em }= vec{ GH } + vec{Nm} =  vec{ GHI(Ka) } +  nm (21) 
    = (I(Ka) ⊗  G)vec{H}+  nm = (I(Ka) ⊗  G)h+  nm                                          

where I(Ka) is a Ka-by-Ka identity matrix, and⊗  is the Kronecker product operator. 

Thus, from (8), we have 

mm
Hkaka

m
Hka eRGIGIRGIh 1)(1)(1)( )()}(){(ˆ −−− ⊗⊗⊗=  (22) 

Now we have to work out the matrix G and the noise covariance matrix Rm before the non-
directional channel impulse response vector h can be obtained. 

We define the matrix G to be 

G = [G(1), G(2),…, G(K)]                                                                         (23) 

where G(k)     k=1…K  is the LxW Toeplitz matrix of the midamble training sequence for the kth 
user.  It is clear that the matrix G is pre-defined since it is composed from the given midamble 
training code for all K users. 

For the noise covariance matrix Rm, we have 
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where [Rd  ]i,j =  ri,j 

The matrix mR
~

is a temporal covariance matrix and Rd  is spatial covariance matrix. 

From (10) 
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6. Directional channel impulse response 
The directional channel impulse response is based on each directional signal path. It is the 
impulse response between a given directional signal path and reference point. Based on (7) 
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Where G(k)HRm

-1 is the temporal whitening matched filter and (Rd 
-1)*A(k)* is the spatial whitening 

matched filter of the user k.   

We define the spatial whitening matched filter  

W(k) =(Rd
-1)*A(k)* =  [ w(k,1), w(k,2),….., w(k,Kd(k))], thus w(k,kd) is beanformed for the kd’s DoA. 
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7. Estimation of transmitted data 
Based on the directional channel impulse response, we will estimate the transmitted data. As we 
will see, beam-forming will be generated for each DoA path and all the DoA paths of the same 
user will be coherently combined to enhance the system’s performance. 

We define vector d as the transmitted data column vector of length KN for all K users; 

 

d = [d(1)T, d(2)T,……, d(K)T]T         where d(k)T  is user k’s transmitted data vector of length N  

Define matrix E the received signal matrix with dimension (NQ+W-1) x Ka: 

E = [ e(1), e(2),….., e(Ka)],    where e(ka) is the received signal vector of length NQ+W-1 from 
antenna ka.  And we also define e = vec{E} and the combined noise vector 

 

n = [n(1)T, n(2)T,……, n(K)T]T      of length  (NQ+W-1)Ka:  

The data d has to been spreaded by the special signature code before it can be transmitted, thus 
we define the spreading signature code matrix for user k: 

 
N blocks = NQ rows 

Q 

N 

C(k) = I(N) ⊗  c(k) = 

 
 

Figure 7-1 Structure of the Spreading signature code matrix                      

Where c(k) is the special signature code for user k, k=1…K.  Stack all C(k) k=1…K together to form 
the combined signature code matrix  

C  = blockdiag[ C
(1) , C

(2) ,….., C
(K)

 ]   

The spreaded data can be written as: 

C d = blockdiag[ C
(1) , C

(2) ,….., C
(K)

 ] [d(1)T, d(2)T,……, d(K)T]T           
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Figure 7-2 Structure of Vector Cd 

The received signal vector e is the transmitted spreaded data pass the directional channel plus 
the noise: 

e = Ad Hda C d + n  

Where Ad= A⊗  I
(NQ+W-1)

 , A=[A(1), A(2),……, A(K)]   and  

 
Hda= blockdiag[ Hda

(1) , Hda
(2) ,….., Hda

(K)
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Figure 7-3 The structure of matrix Hda
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Then based on the ML rule, we can estimate transmitted data: 

d̂ = ( C
H
Hda

H
Ad

H
(Rd

-1 ⊗ 1~ −
nR )AdHdaC)

-1 C
H
Hda

H
Ad

H
(Rd

-1 ⊗ 1~ −
nR ) e  

               = X C
H
Hda

H
Ad

H
(Rd

-1 ⊗ 1~ −
nR )e  

 

 

where  X = ( C
H
Hda

H
Ad

H
(Rd

-1 ⊗ 1~ −
nR )AdHdaC)

-1 is a zero force equalizer. 

Since Ad
H
(Rd

-1 ⊗ 1~ −
nR ) =( A

H ⊗  I
(NQ+W-1)

 ) (Rd
-1 ⊗ 1~ −

nR )= A
H Rd

-1 ⊗ 1~ −
nR  

d̂  = X C
H
Hda

H (A
H Rd

-1 ⊗ 1~ −
nR )vec{E} = X C

H
Hda

H vec{
1~ −

nR E (Rd
-1

)
T
A*}   

 

We define 

Kd
(k) 

K

w(k,1) w(k,2) w(k,Kd(k)) 

W(k) = (Rd
-1)TA (k)* = 

 

 
As the weight matrix for the user k and  

W = (Rd
-1

)
T
A* = [ w(1,1), …, w(1,Kd(1)),……, w(K,1),…, w(K,Kd(K))] is the combined antenna weight matrix 

for all K users.  Then the combined beam output is 

 

Z = EW = [y
(1,1), …, y(1,Kd(1)),……, y(K,1),…, y(K,Kd(K))], where   y(k,kd)= Ew(k,kd)  

 

d̂ = X C
H
Hda

H (A
H Rd

-1 ⊗ 1~ −
nR )vec{E} = X C

H
Hda

H vec{
1~ −

nR E W }  

               = X C
H
Hda

H vec{
1~ −

nR Z } 
 

 

Since vec{
1~ −

nR Z }= vec{
1~ −

nR Z I
(Kd)

 } =( I
(Kd)

 ⊗  
1~ −

nR )vec{Z}, then�

d̂ = X C
H
Hda

H
( I

(Kd)
 ⊗  

1~ −
nR )vec{Z}  

is the estimate of the transmitted data. 

   = X C
H
Hda

H
( I

(Kd)
 ⊗  

1~ −
nR ) [y

(1,1)T, …, y(1,Kd(1))T,……, y(K,1)T,…, y(K,Kd(K))T]  
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8. Summary 
In this paper, the spatial-temporal processing of a received TD-SCDMA signal is presented. The 
directional channel impulse response is estimated based on the non-directional response. It is 
shown in this paper that the ML estimator of the transmitted data utilizes both the temporal and 
spatial information of the signal and that the estimator consists of a bean former followed by a 
zero-force equalizer.  
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