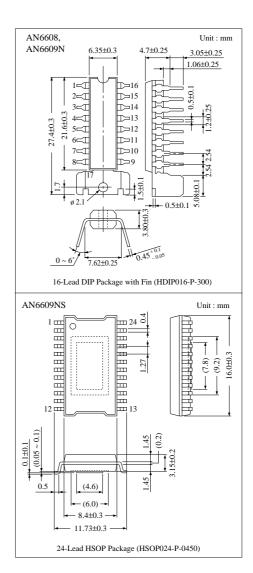
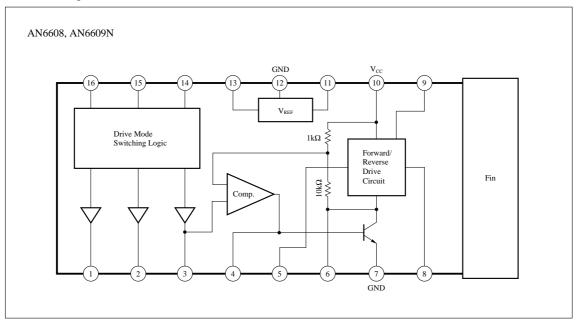
AN6608, AN6609N, AN6609NS

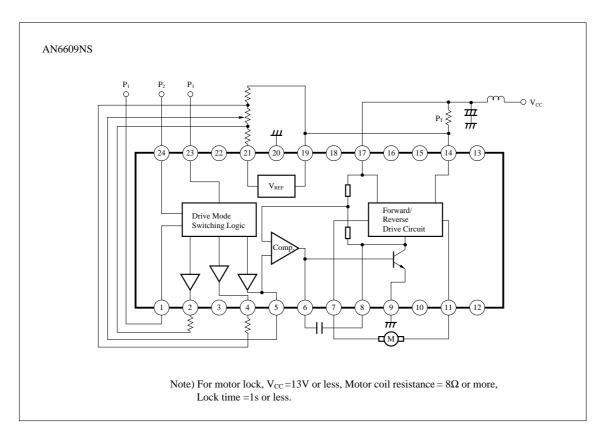
DC Motor Forward/Reverse Dual Speed Electronic Governors

Overview


The AN6608, the AN6609N and the AN6609NS are the electronic governors which incorporate the forward /reverse rotation and double speed controls of the DC motors used for radio/cassette tape recorder, and the functions such as fast forward, rewind, brake, and pause. They are also available for controlling the video tape deck mechanisms such as the VCRs and DATs. The AN6608, the AN6609N and the AN6609NS are identical with each other except the operating logic by 3-bit input.

■ Features


- Operating supply voltage range; Vcc = 8V to 16V
- Stable reference voltage (1.27V) and easy speed adjustment
- Large starting torque and maximum control torque
- Built-in power transistor
- Forward/reverse constant speed and double speed controls, and fast forward, brake, and pause functions available by 3-bit input


Applications

VCRs, cassette decks, radio/cassette tape recorders, car cassette tape players, tape loading DC motor con trol such as DATs.

■ Block Diagram

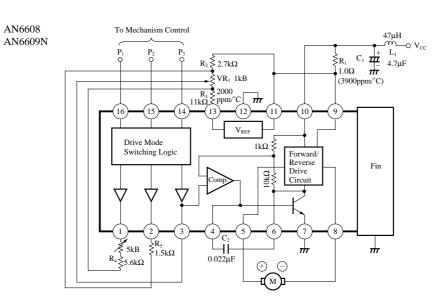
■ Absolute Maximum Ratings (Ta= 25°C)

Parameter	Symbol	Rat	Unit		
Supply Voltage	V_{CC}	1	V		
Supply Current	I_{CC}	1800	mA		
Power Dissipation	P _D	AN6608, AN6609N	2 Note 2)	W	
Fower Dissipation	FD	AN6609NS	2.08 Note 3)	· · · · · · · · · · · · · · · · · · ·	
Operating Ambient Temperature	$T_{ m opr}$	-20 ~	°C		
Storage Temperature	T_{stg}	−50 ~	°C		

Note 1) $t \le 200 ms$

Mounting on PCB (20mm × 20mm of copperfoil is used for heat sink) Glass epoxy PCB (50mm × 50mm × 1.2mm) Note 2)

Note 3)


■ Recommended Operating Range (Ta = 25°C)

Parameter	Symbol	Range			
Operating Supply Voltage Range	V _{CC}	8V ~ 16V			

■ Electrical Characteristics (Ta = 25°C)

Parameter	Symbol	Condition	min.	typ.	max.	Unit
Bias Current at No Load	I_{bias}	V _{CC} =12V	_	7	15	mA
Reference Voltage	$V_{\rm ref}$	V _{CC} =12V	1.15	1.27	1.4	V
Rated Load Start Voltage	V _{CC (s)}	Supply voltage with which a motor starts rotating	6.5		_	V
Rated r.p.m.	N_L	V _{CC} =12V, N=1600rpm	-8.75		8.75	%
r.p.m. Characteristics on Load Change	DN_L	V _{CC} =8V, I _L =55mA ~ 120mA	-100		100	rpm
r.p.m. Characteristics on Voltage Change	DN_V	V _{CC} =8V ~ 16V, N=1600rpm	-22	0	22	rpm
Double Speed Forward/Reverse r.p.m. Difference	$\mathrm{DN}_{\mathrm{Logi}}$	V _{CC} =12V, N=3200rpm	-3	0	3	%
Output Saturation Voltage 1	V _{sat (1)}	V _{CC} =8V, I _O =1A			2	V
Output Saturation Voltage 2	V _{sat (2)}	V _{CC} =8V, I _O =1A			1.5	V
r.p.m. Characteristics on Temperature Change	DN_A	V _{CC} =12V, Ta=-10°C ~ + 60°C		100	_	rpm/°C
r.p.m. Drift Characteristics by Time	DN_T	V _{CC} =12V, t=15s ~ 10ms		0.4		%

■ Application Circuit

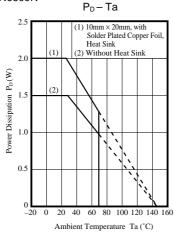
■ Pin Descriptions

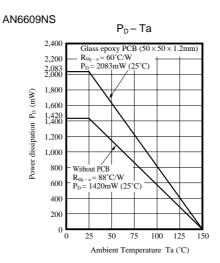
	Pin No. ANGGOR Pin Name		Typ. Waveform Description		Input Impedance	Equivalent Circuit	
AN6608 AN6609N	AN6609NS	I III INAIIIE	1 yp. wavelofiii	Description	input impedance		
1	2	Double Speed Setting		Pin to set the double speed r.p.m.	${ m Tr}_{ m C}$	V _{cc} \varnothing	
2	4	FF, REW Speed Setting	_	Pin to set the FF/REW r.p.m.	${ m Tr}_{ m C}$	2 V _{vc}	
3	5	Speed Control	_	Speed control pin A fixed resistor will do if fine adjustment is unnecessary.	Tr _E	3 ************************************	
4	6	Phase Adjustment	_	Phase adjustment pin for oscillation prevention	Tr _E	4	
5	7	Motor Connection ⊕	\	Pin to connect the motor ⊕ side	Tr _E Tr _C	5	
6	8	Phase Adjustment	**	Phase adjustment pin for oscillation prevention	Tr_{C}	6	
7	9	GND		GND pin for the power section inside the IC	Tr _E	7	
8	11	Motor Connection ⊖		Pin to connect the motor ⊖ side	Tr _E Tr _C	8	
9	14	Load Characteristics Setting	**	Pin to set the load characteristics (S–T curve) of the motor	Tr_{C}	9	

■ Pin Descriptions (Cont.)

	No.	Pin Name	Typ. waveform	Description	Input Impedance	Equivalent Circuit
10	17	V _{CC}		IC power pin	_	
11	19	Connect to Pin9 . Ref. Voltage ① Output	//	Reference voltage⊕ output pin when connecting to the pin9.	Tr_{C}	
12	20	GND	_	GND pin for the IC bias section	_	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
13	21	Ref. Voltage ⊖ Output	**	Reference voltage⊖ output pin	${ m Tr}_{ m C}$	V _{REF} V _{CC} A 13
14	23	Logic Input P ₃	_	Logic input pin P_3 to set the motor control state	60kΩ	14 60kΩ 340kΩ
15	24	Logic Input P ₂	_	Logic input pin P ₂ to set the motor control state	60kΩ	15 60kΩ
16	1	Logic Input P ₁		Logic input pin P_1 to set the motor control state	60kΩ	16 - 60kΩ

■ Supplementary Explanation


Operating Logic


]	Input Pin	s	Output Pins (AN6608)				Output Pins (AN6609N)					
14	15	16	5	8	1	2	Operating Mode	5	8	1	2	Operating Mode
Н	Н	Н	Н	L	OFF	ON	FF	_	_	OFF	OFF	Pause
L	Н	Н	L	Н	OFF	ON	REW	Н	L	ON	OFF	Double speed
Н	L	Н	Н	L	OFF	OFF	Constant speed	Н	L	OFF	OFF	Constant speed
Н	Н	L	Н	Н	OFF	OFF	Brake	Н	Н	OFF	OFF	Brake
L	L	Н	Н	L	ON	OFF	Double speed	Н	L	OFF	ON	FF
L	Н	L	L	Н	ON	OFF	Reverse double speed	L	Н	ON	OFF	Reverse double speed
Н	L	L	L	Н	OFF	OFF	Reverse constant speed	L	Н	OFF	OFF	Reverse constant speed
L	L	L	_	_	OFF	OFF	Pause	_	_	OFF	OFF	Pause

^{*} Input level H : 3V or more, Input level L : 0.7V or less For the AN6609NS, the above pin numbers must be replaced.

• Characteristics Curve

Request for your special attention and precautions in using the technical information and semiconductors described in this material

- (1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
- (2) The technical information described in this material is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license.
- (3) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this material are subject to change without notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, redundant design is recommended, so that such equipment may not violate relevant laws or regulations because of the function of our products.
- (6) When using products for which dry packing is required, observe the conditions (including shelf life and after-unpacking standby time) agreed upon when specification sheets are individually exchanged.
- (7) No part of this material may be reprinted or reproduced by any means without written permission from our company.

Please read the following notes before using the datasheets

- A. These materials are intended as a reference to assist customers with the selection of Panasonic semiconductor products best suited to their applications.
 - Due to modification or other reasons, any information contained in this material, such as available product types, technical data, and so on, is subject to change without notice.
 - Customers are advised to contact our semiconductor sales office and obtain the latest information before starting precise technical research and/or purchasing activities.
- B. Panasonic is endeavoring to continually improve the quality and reliability of these materials but there is always the possibility that further rectifications will be required in the future. Therefore, Panasonic will not assume any liability for any damages arising from any errors etc. that may appear in this material.
- C. These materials are solely intended for a customer's individual use. Therefore, without the prior written approval of Panasonic, any other use such as reproducing, selling, or distributing this material to a third party, via the Internet or in any other way, is prohibited.