Complete, Low Power 12-Bit D/A Converter AD370/AD371 **FEATURES** Bipolar Voltage Output: AD370 Unipolar Voltage Output: AD371 Low Power: 150mW max Linearity: ±1/2LSB, -55°C to +125°C (S Version) TTL/CMOS Compatible Compatible with Standard 18-Pin DAC Configurations Hermetic 18-Pin DIP ("D" Package) Factory Trimmed Gain and Offset: No External Adjustments Required Monotonicity Guaranteed Over Specified Temperature Range # AD370/AD371 FUNCTIONAL BLOCK DIAGRAM 18-PIN DIP #### PRODUCT DESCRIPTION The AD370/AD371 is a complete 12-bit digital-to-analog converter fabricated with the most advanced monolithic and hybrid technologies. The design incorporates a low power monolithic CMOS DAC, precision high speed FET-input operational amplifiers and a low drift reference available in a hermetically sealed package. This innovative design results in significant performance advantages over conventional designs. The integral package-substrate combined with a lower chip count improves reliability over the standard low power hybrids of this type. The converters come in two versions: AD370 with a bipolar output voltage range (-10V to +10V) and AD371 with a unipolar output voltage range (0 to +10V). Each device is internally laser trimmed for gain and offset to provide adjustment-free operation with only $\pm 0.05\%$ absolute error. The FET input operational amplifiers optimize the speed vs. power trade-off by settling to 1/21.SB from a full scale transition in $35\mu s$ with maximum total power dissipation of only 150mW. The low power monolithic CMOS DAC employs a current-switched silicon-chromium R-2R ladder to ensure that monotonicity is maintained over the full temperature range. The AD370/AD371 "K" and "S" features ±1/2LSB maximum linearity error. Its rated temperature ranges are 0 to +70°C for the "J" and "K" versions and -55°C to +125°C for the "S" version. ## PRODUCT HIGHLIGHTS - The AD370/AD371 replaces other devices of this type with significant increases in performance. - 2. Reduced power consumption requirements (150mW max) result in improved stability and shorter warm-up time. - 3. The precision output amplifiers and CMOS DAC have been optimized to settle within 1/2LSB for a full scale transition in $35\mu s$. - Reduced chip count and integral package-subsrate improve reliability. - 5. System performance upgrading is possible without redesign. - Internally laser trimmed—no gain or offset adjustments are required for specified accuracy. - 7. The device is available in a hermetically-sealed ceramic 18 lead dual-in-line package. Processing to MIL-STD-883 Class B is available. - 8. The AD370/AD371 is a second-source for 18-pin 12-bit DACs of the same configuration. | CDECIFICATIONS | (typical at $T_{\Delta} = +25^{\circ}C$, $V_{S} = \pm 15$ Volts unless otherwise noted) | |----------------|---| | VELPILIPATIONS | (typical at $I \Delta = \pm 25^{\circ} C$, $VS = \pm 15^{\circ} Voits unless otherwise noteur$ | | Model | AD370J | AD370K | AD371J | AD371K | AD370S1 | AD371S1 | Units | |-------------------------------------|-------------|----------|----------|--------------|-------------|---------|--| | | -10 to +10 | • | 0 to +10 | ** | • | • • | Volts | | RANGE | | • | CBI | ** | | ** | | | CODE | OCBI | | CBI | | | | | | LINEARITY ERROR | | | ±1 | ±1/2 | ±1/2 | ±1/2 | ESB ² max | | +25°C | ±1 | ±1/2 | ±1
±1 | ±1/2
±1/2 | ±1/2 | ±1/2 | LSB ² max | | T _{min} - T _{max} | ±1 | ±1/2 | 11 | -1/2 | | | | | ABSOLUTE ACCURACY | | | | | | | % of FSR3 max | | +25°C | ±0.05 | Ī | | | ±0.3 | ±0.3 | % of FSR3 max | | T _{min} - T _{max} | ±0.2 | | | | | | | | OFFSET ERROR | | | | ** | | ** | mV max | | +25°C | ±5 | <u> </u> | ±1 | | | | | | FULL SCALE SETTLING TIME | | | | | • | | μs | | TO ±1/2LSB | 25(35 max) | | | | | | Volts | | INTERNAL REFERENCE | +10.0 | • | * | | | | VOICS | | DIGITAL INPUTS | | | • | | | | Volts min | | V _{INH} | 2.0 | • | : | • | • | | Volts max | | V _{INL} | 0.8 | | | | | + | μΑ | | INPUT LEAKAGE CURRENT | ±1.0 | • | | | | | | | INPUT CAPACITANCE | 8 | • | • | * | • | | pF | | POWER SUPPLY REJECTION RATIO | | | | | | | % FSR3/% V _S max | | +15V Supply | 0.01 | • | • | • | | • | % FSR ³ /% V _S max | | -15V Supply | 0.01 | * | | | | | 76 T 51C 776 T 5 114.11 | | POWER SUPPLY CURRENTS | | | | _ | | | mA max | | +15V Supply | 3.5(5 max) | • | • | | | | mA max | | -15V Supply | 2.5(4 max) | <u> </u> | | | | | | | POWER DISSIPATION | 105(150 max | k) * | • | • | • | | mW | | TEMPERATURE RANGE | 0 to +70 | * | | | -55 to +125 | *** | °C | Specifications subject to change without notice. NOTES Also available to MIL-STD-883, Level B. LSB: Least Significant Bit FSR: Full Scale Range Specifications same as AD370J. Specifications same as AD370S. ## ABSOLUTE MAXIMUM RATINGS $(T_A = +25^{\circ}C \text{ unless otherwise noted})$ | V_{DD} (to GND) | ı | | | | | | | | | | | | | | | +17 | V | |-----------------------------|---|---|---|---|---|---|---|---|---|---|---|----|-----|------|------------|------|---| | VEE (to GND) | | | | | | | | | | | | | | | | -17 | V | | Digital Input Voltage Range | Ċ | Ť | • | - | | | | | | | | | ν | 'n | tr | GNI | n | | Digital input voltage Kange | ٠ | • | ٠ | • | • | • | • | • | • | • | • | ٠, | ٠, | שט | | 1500 | _ | | Storage Temperature | | | | ٠ | | | | | | | - | 0: | , (| ۰ t(| + (| 120 | L | ## CAUTION - ELECTROSTATIC SENSITIVE DEVICES The digital control inputs are zener protected; however permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times. Figure 1. Pin Designations Figure 2. Power Supply Decoupling Figure 3. Burn-In Circuit | DIGITAL INPUT | NOMINAL ANALOG OUTPUT | |---------------|-----------------------| | 111111111111 | О | | 100000000000 | 4.9975 Volts | | 01111111111 | 5.0000 Volts | | 000000000000 | 9.9975 Volts | | | | Table 1. Code Table for the AD371 (CBI) | DIGITAL INPUT | NOMINAL ANALOG OUTPUT | |------------------------------|-----------------------| |
111111111111 | -10.000 Volts | | 100000000001 | -0.0097 Volt | | 100000000000 | -0.0048 Volt | | 011111111111 | 0 | | 00000000000 | 9.9952 Volts | | 100000000000
011111111111 | -0.0048 Volt
0 | Table 2. Code Table for the AD370 (OCBI) ## **ACCURACY** Accuracy error of a D/A converter is defined as the difference between the analog output that is expected when a given digital code is applied and the output that is actually measured with that code applied to the converter. Accuracy error can be caused by gain error, zero error or linearity error. The initial accuracy of the AD370/AD371 is trimmed to within 0.05% of full scale by laser trimming the gain and zero errors. Of the error specifications, the linearity error specification is the most important since it cannot be corrected by the user. The linearity error of the AD370/AD371 is specified over its entire temperature range. This means that the analog output will not vary by more than ±1/2LSB maximum from an ideal straight line drawn between the end points (inputs all "1s" and all "0s") over the specified operating temperature range of 0 to +70°C for the "K" version and -55°C to +125°C for the "S" version. The absolute accuracy of the AD370/AD371 has been guaranteed to ±0.05% of full scale by internal factory trim of the gain and offset. External gain and offset adjustment terminals have been made available to allow fine adjustment to the ±0.012% accuracy level. The measurement system used to calibrate the output should be capable of stable resolution of 1/4LSB in the regions of zero and full scale. The adjustment procedure, described below, should be carefully followed to assure optimum converter performance. The proper connections for the offset and gain adjustments are shown in Figure 4. For the AD371 full-scale calibration apply a digital input of all "1s" and adjust the gain potentiometer to +9,9975 volts (see Table 1). The offset adjustment of the AD370 is made at the half-scale code. Adjust the offset potentiometer until 0.000V is obtained on the output. The full-scale adjustment is made at the negative endpoint or a code of all "1s". Adjust the gain potentiometer until -10.000 volts is obtained on the output. Figure 4. Optional External Trims #### SETTLING TIME Settling time for the AD370/AD371 is the total time required for the output to settle within ±1/2LSB band around its final value after a change in input (including slew time). The settling time specification is given for a full scale step which is 20V for the AD370 and 10V for the AD371. ## IMPROVED SECOND SOURCE The substrate design of the AD370/AD371 provides for complete pin-for-pin compatibility with other 18-pin DACs,; Hybrid Systems Corp. DAC340, DAC350 series and Micro Networks Corp. MN360, MN370, MN3200 series 18-pin 12-bit digital-to-analog converters all share the same pin configuration except for pin 7 and pin 8 (see Table 3). The AD370/AD371 is a superior direct replacement for these devices where the function of pins 7 and 8 allow. The versatility designed into the AD370/AD371 allows the function of pin 7 and pin 8 to be configured to exactly second source each of the other units. Information on other second source devices with 4 quadrant multiplying capability is available from Analog Devices. | | | Hybrid Systems | Micro Networks | | | | | |---|--|--------------------------|------------------------------|------------------------------------|------------------------------------|------------------|--| | Analog Devices AD370KD AD371KD AD370SD AD370SD/883B AD371SD | DAC346C-12BPG
DAC346C-12UP
DAC347LPC-12G
DAC347LPS-12G
DAC347LPC-12U | DAC356C-12
DAC356B-12 | DAC356LPC-12
DAC356LPB-12 | MN360
MN362
MN360H
MN362H | MN370
MN371
MN370H
MN371H | MN3211
MN3210 | | Table 3. Cross Reference ### AD370/AD371 ORDERING GUIDE | Model | Package | Package
Style ¹ | Linearity | Output Voltage
Range | Operating Temperature
Range | |--|--|--|--|--|--| | Model AD370JN AD370JD AD371JN AD371JD AD370KN AD370KD AD371KN AD371KN AD371KD AD370SD AD370SD/883B | Package Polymer Seal Hermetic Polymer Seal Hermetic Polymer Seal Hermetic Polymer Seal Hermetic Hermetic | Style* HY18A | 1LSB
1LSB
1LSB
1LSB
1/2LSB
1/2LSB
1/2LSB
1/2LSB
1/2LSB
1/2LSB | -10V to +10V
-10V to +10V
0 to +10V
0 to +10V
-10V to +10V
-10V to +10V
0 to +10V
0 to +10V
-10V to +10V
-10V to +10V | 0 to +70° C
0 C
-55° C to +125° C
-55° C to +125° C | | AD371SD
AD371SD/883B | Hermetic
Hermetic | HY18A
HY18A | 1/2LSB
1/2LSB | 0 to +10V
0 to +10V | -55°C to +125°C
-55°C to +125°C | ¹ See Section 20 for package outline information.